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Abstract
In recent years, agent-based modelling (ABM) has been increasingly used to elucidate complex

adaptive systems. An ABM is a structural computational system that consists of a collection

of abstract objects (agents) embedded in a virtual environment that interact based on a set of

prescribed rules. While traditional approaches such as di�erential equation-based compartmental

models span a vast literature, they often impose restrictive assumptions such as homogeneity

and determinism that limit their application to real settings. ABM overcomes these limitations

through a bottom-up approach in which macro dynamics emerge from micro level phenomena.

During the past decade, there has been a surge of interest in the use of ABM in human health and

disease dynamics. While this is rapidly growing, its application to other relevant areas such as

health economics is still in infancy, and frameworks that could systematically apply ABM are still

lacking. In this thesis, we develop a general framework for cost-e�ectiveness analysis in which

ABM is designed to project the system dynamics. We argue that ABM improves the empirical

reliability of policy-oriented simulation models and that it presents an ideal tool to address the

complexity of disease processes, project the impact of interventions and inform their optimal

implementation. We use this framework in an epidemiological context to quantify the economic

impact of vaccination strategies for prevention of infectious diseases.

We present two case studies for a human-to-human infection transmission (i.e., Haemophilus

in�uenzae) and a vector-borne disease (i.e., Zika). In each case, we detail the construction of ABM

and its utilization to conduct Bayesian cost-e�ectiveness analysis of potential vaccine candidates.

In addition to uncovering important characteristics of these diseases in epidemic dynamics, we

present their �rst cost-e�ectiveness analysis and implications for vaccination strategies in di�erent

populations settings.
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Glossary
in silico Modelling Modelling of biological processes performed via computer simulations.

Agent-Based Modelling A type of computational model for simulating the actions and interac-

tions of autonomous agents.

Asymptomatic (or Carriage) A disease manifestation when the infected host does not show

any clinical symptoms, but is infectious and can transmit the disease to others.

Attack Rate The proportion of population infected over the course of an epidemic.

Basic reproduction number Commonly denoted by R0, it is de�ned as the average number

of secondary cases which a single infectious case produces in a completely susceptible

population.

Bootstrap A technique used for statistical inference by repeatedly sampling a dataset with

replacement.

E�ective Reproductive Number Denoted byRe�, it estimates the average number of secondary

cases caused by a single infectious case in a population when control measures are applied.

Generation Interval Refers to the time duration between the infection of an infected person

and the infection of his or her infector.

Herd Immunity The proportion of the population that is immune against the disease.

Latent Period De�ned as the time duration between disease transmission and the onset of

infectiousness (i.e., when the infected host becomes infectious and can trasmit the disease).

This term is sometimes interchanged with exposed..

Survival Rate The percentage of people in a study or treatment group who are still alive for a

given period of time after diagnosis or treatment for a disease.

Symptomatic A disease manifestation when the infected host shows clinical symptoms.

xii



Chapter 1

Introduction
Innovations such as the exponential increase in computing power, and the evolution of information

and database technologies during the preceding two decades have opened up novel vistas for the

collection of complex, voluminous, and heterogeneous data that can be synthesized to address a

variety of real-life challenges, such as population health. Methodologically, since mathematical

and statistical models that are capable of encapsulating such data are often theoretically intractable,

computational models have become an integral part of scienti�c research, and have led to dramatic

changes in approaches to addressing societal issues. Such models have already had signi�cant

impacts on public policy at the global scale, and in particular for the development of intervention

strategies to combat emerging disease outbreaks. However, the systematic application of compu-

tational models in understanding the underlying processes of system dynamics (e.g., network of

human interactions and disease transmission mechanisms) is relatively new; the integration of

these systems into the public policy and decision-making processes is even more novel. In this

thesis, we aim to enhance this integration and develop a general framework for evidence-based

health economic analysis, by employing a computational modelling approach that has evolved

to deal with data that are more heterogeneous, less coarse (based at a community or individual

level), and more complex (joint spatial, temporal and behavioural interactions). This evolution is

typi�ed by the “Agent-Based Modelling" (ABM) paradigm, in which the collection of autonomous

decision-making entities (i.e., agents) and their interactions unveil the dynamics and emergent

properties of the entire system. In the context of population health and infectious disease dynamics,

the �exibility of ABM permits an e�ective representation of individual interaction with their own

characteristics, which may impact their future decisions and outcomes. The framework developed

here provides a methodology to perform cost-e�ectiveness analysis of public health interventions

more systematically, while accounting for critical properties that are often overlooked in existing

methods, yet essential for outcomes prediction and translating knowledge and evidence to action.

Traditionally, aggregate or cohort models such as continuous dynamical systems, decision trees,

and Markov models have been used to provide the integration of disease transmission dynam-
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ics and cost-e�ectiveness analysis. While such models are easy to implement and have been

generally successful, their use is often limited due to a number of limitations such as linearity

and homogeneity. To overcome these limitations, we apply ABM computational systems that

can capture the system heterogeneity from micro to macro levels, while utilizing the available

data and information that drive the model outcomes. In principle, ABM can theoretically encap-

sulate an arbitrary level of heterogeneities that can be observed experimentally, provided we

understand the underlying mechanisms of the individual components of phenomena. However, in

practice this �exibility comes with a complexity and thus demands stringent simulation design

requirements than conventional models, especially with respect to outcome reproducibility. We

address these requirements in developing our framework to ensure its sound application to cost-

e�ectiveness analysis that remains an important component of decision-making process in public

health planning and program delivery.

In this framework, we show that ABM presents an ideal tool to address the complexity of disease

processes, project the impact of interventions, and inform their optimal implementation. We use

this framework in an epidemiological context to quantify the economic impact for vaccination

strategies for prevention of infectious diseases. We begin by providing a succinct and rigorous

description of an ABM computational system in Chapter 2, including construction details and a

formal mathematical structure. This is followed by an overview of cost-e�ectiveness analysis in

Chapter 3, where we also highlight the potential �aws of current methodologies. We then apply

the framework to present two case studies for a human-to-human infection transmission model

and a vector-borne disease model in which ABM is used to generate system dynamics, considering

potential vaccine candidates. In Chapter 4, we study the dynamics of severe community-acquired

acute infections caused by Haemophilus in�uenzae serotype ‘a’ (Hia), with alarming incidence

rates in North America, particularly among Indigenous populations. The severity and outcomes

of Hia infections are reminiscent to those of invasive Hib disease in the pre-vaccine era, including

pneumonia, septicaemia, and meningitis. The remarkable success of Hib conjugate vaccine

suggests that the development of an Hia vaccine could be a viable prevention measure to reduce the

incidence of invasive Hia disease as well as prevent the spread of disease in the general population.

Recent research e�orts have established the pre-clinical proof of concept for a glycoconjugate

vaccine against Hia. However, quanti�cations of the long-term epidemiologic and economic

impacts of vaccination are needed to inform decision on investment in Hia vaccine development

and immunization programs.

In Chapter 5 and Chapter 6, we utilize a multi-agent ABM to uncover important characteristics

2



of Zika virus epidemics and transmission dynamics. Given the public health concern about

its potential to cause severe outcomes and long-term sequelae, including microcephaly with

brain abnormalities and neurological disorders in infants, and Guillain–Barré syndrome (GBS) in

adults, the development of a preventive measure is the key to combat this vector-borne disease.

Currently, a number of Zika vaccine platforms are being investigated, some of which have entered

clinical trials. Understanding the impact of this vaccine and its cost-e�ectiveness, especially in the

presence of Zika asymptomatic infection, can help inform vaccination strategies and prioritization

in countries where the primary vector carrier, Aedes aegypti, is endemic.

The outcomes of ABM in both case studies are integrated with a Bayesian cost-e�ectiveness

analysis to investigate the bene�ts of vaccination and their economic impact. We close this

thesis in Chapter 7 with a discussion on the implication of our results. We believe that this

research will have a signi�cant impact on the relevant healthcare systems (including Canadian) by

generating scienti�c, evidence-based results that inform the optimal use of health resources and

improve population health, and therefore contribute to reducing health and economic burdens of

preventable diseases. Although our ABM framework is useful for the exploration of uncertainties,

heterogeneities, and their impact on public health decisions, we omit a number of important

factors in vaccine cost-e�ectiveness analysis, including research and development costs of vaccine,

potential adverse e�ects of vaccine that may incur additional costs for patient management,

and emerging technologies for vaccine development. These factors may alter parameters and

assumptions underlying health economics of vaccination, and should be evaluated before policy

implementation. We are committed to continuously re�ne our models to consider these factors.

3



Chapter 2

Agent Based Modelling

2.1 Introduction to Agent-Based Modelling

The seminal works of the American economist Thomas Schelling (1971) [1] showed that compu-

tational and simulation approaches can be applied to understanding the universal principles of

any complex adaptive systems
1

provided the system can be reconstructed in silico environment

by programming the constituent components of the complex system. In Schelling’s approach
2
,

he directly manipulated abstract computer entities representing actors and updated them itera-

tively. This led to a whole new �eld of research on socio-economic systems in which the natural

unit of decomposition is the individual rather than the observable or equations, often termed

individual-based modelling. Together with the rapid development of computational theory and

the collection of vast amounts of data, this �eld has led to the evolution of Agent-Based Modelling

(ABM) computational systems.

Today, methodologies studying complex adaptive systems in a qualitative sense have shifted

to systematically investigate them by ABM through a disaggregation of the systems into their

individual components that have their own characteristics and behaviours and by capturing the

interdependencies between the individual components
3

[13, 14, 15]. An ABM computational

system is a structural, dynamical system that consists of a collection of abstract objects (i.e.,

1
While there is no single de�nition of a complex adaptive system, it is generally accepted that a complex adaptive

system is one that has many individual parts working together in order to generate the macro dynamics of the system.

Complex adaptive systems are common in both nature and society. For example, the immune system is a highly

advanced biological system comprised of a complex network of individual cells and chemicals working together to

produce non-linear e�ect, feedback loops, and other micro and macro-dynamics.

2
In Schelling’s demonstration that residential segregation can occur at a systemic level, the economist implicitly

introduce the idea of a local neighbourhood which is a central element in the construction of agent-based models,

seen later in this chapter.

3
ABM computational systems have been applied to a range of disciplines including economics [2, 3, 4], ecology

[5], healthcare [6], sociology [7], geography [8], �nance [9], and even niche disciplines such as military strategies [10,

11, 12].
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agents) embedded in an in-silico (i.e., computer) environment and interact together through a set of

prescribed rules. This type of model is often implemented computationally by using deterministic

input-output functions, typically coded in a structured or object-oriented programming language.

The agents in ABM represents the individual components of the complex system under study.

Each agent individually perceives its situation, makes decisions, and performs actions according

to speci�c rules. These rules can be simple or complex, deterministic or stochastic, and �xed

or adaptive. Thus an ABM encodes in a computer program a set of rules that describe the

behaviour of agents as the system evolves in time. While often the formal set of rules are simple,

large scale agent-based models can incorporate neural networks, genetic algorithms, and other

machine learning techniques for realistic agent behaviour and adaptation [16]. Since each agent is

modelled individually, there is no central controlling agency nor explicit language that describes

the global dynamics of the system. As a consequence, ABM allows for an investigation into the

universal properties of a complex system, including: heterogeneity since agents can be modelled

individually, adaptation since the model is dynamic, space and scale since an arbitrary number of

agents can be embedded in this virtual environment, and non-linearity since the model can track

individual agents separately. This methodology has three main advantages: (i) it allows to capture

global complex patterns and dynamics as a result of interactions between local, heterogeneous

individual agents; (ii) it allows the construction of models in the absence of knowledge about global

interdependencies of the complex system; and (iii) it provides the �exibility required to study the

system’s complexity in comparison to traditional equation-based aggregate-level mathematical

modelling. These three points are discussed below.

Emergent global dynamics in ABM

Traditional models of complex systems are typically formulated in the general language of math-

ematics. Examples include dynamical systems such as the Lotka-Volterra equations, describing

predator-prey interactions [17] and the Susceptible-Exposed-Infected-Recovered models of epidemic

propagation [18]. While the utility of such models have been exempli�ed in a vast literature, a

signi�cant limitation of these models is the treatment of all or groups of individual components

as largely homogeneous entities, i.e., a representative entities. For example, in di�erential equation

models of disease transmission, all individuals in a population are equipped with the same charac-

teristics and parameters. On the other hand, an ABM enables the generation of complex patterns

and dynamics “in a bottom-up approach" in which a single uni�ed homogeneous model is replaced

with a population of individual models, each of which is an autonomous decision-maker (i.e., the
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agent). This population heterogeneity includes not just the variation in individual agents, but also

the interactions and network topology. Running such a model simply amounts to instantiating an

agent population with initial conditions and iteratively letting the agents interact by executing

the rules that de�ne them. Of course, if the model is stochastic, then multiple realizations are

necessary in order to capture the randomness. That is all that is necessary in order to solve

an agent-based model. As a result, although the global (or macro-level) dynamics of a process

are not explicitly programmed in the model, enigmatic global dynamics including �xed points,

cycles, dynamic patterns, and long transients emerge from the local interactions among agents.

These emergent dynamics can have properties that are decoupled from those of the individual

components. The emphasis on modelling the heterogeneity of agents and the emergence of global

behaviour from local interactions is an important distinguishing feature of ABM.

Absence of global interdependencies

The essential characterization of any complex system is that they are invariably qualitative

in nature. That is, in many cases we do not know the full mathematical description of the

complex system under study, but only the behaviour of the constituent components of the system.

Agent-based models are particularly suited to complex systems in which the dynamics of its

constituent components are more understood than the overall dynamics of the system. They

are ideal for modelling systems in which individual component behaviour is non-linear and

heterogeneous, which di�erential equations are unequipped to handle
4
, and where individual

behaviour includes learning and adaptation, including temporal and spatial correlations, and

non-Markovian behaviour. In this sense, contrary to what the term agent suggests, the concept

of an agent enables us to represent any physical object that can be programmed, provided we

have a clear understanding of the object. Agents can represent particles, cells, individuals, groups,

organizations, or spatial entities such as buildings and roads. Consequently ABM can, in principle,

incorporate any complex behaviour that can be observed experimentally, provided we have a

qualitative understanding of the underlying mechanisms and components. Of course, in practice

agent-based models are limited by �nite computational resources, time investment, and incomplete

knowledge and therefore will inevitably require a balance between the desired complexity of a

system and available resources.

4
It is true that di�erential equations can be used to model arbitrary levels of heterogeneity, but the complexity of

the equations and their subsequent analysis increases exponentially as the complexity of the individual behaviour

increases. At some point di�erential equation models becomes intractable.

6



Flexibility of ABM in comparison to equation-based models

A common objection to agent-based models is that they are not (theoretically) as rigorous as

mathematical and analytical models. That is, they do not o�er a set of equations together with

an algebraic solution that can be easily interpreted and analysed. Analytical or equation-based

models, for example di�erential-equation based dynamical systems, provide a formal framework

for the organization and analysis of knowledge and theoretical results. Such models are equipped

with an established set of rigorous tools for analysis, for example bifurcation, sensitivity, and

stability analyses. This allows an analytical model to be easily communicated because they are

fully described and unambiguous by mathematical equations and formulas. On the other hand,

ABM often will not make use of any explicit mathematical equations but exploits computational

simulations, implemented in a programming language, to elucidate the complex system under-

pinning the model. However, the idea that the lack of formal mathematical tools prevents any

sort of formal analysis of agent-based models is misguided. Indeed computational ABM, by virtue

of being computer programs, can and do utilize a well-de�ned set of functions which relate

inputs to outputs, in either a deterministic or stochastic fashion, and unambiguously de�ne the

global dynamics and any eventual equilibria of the system [19, 20, 21, 22, 23]. For example, in

Laubenbacher et al. [22], the proposed mathematical representation of an agent-based model is a

time-discrete dynamical system over a �nite state set. In this framework, the state of the model is

fully speci�ed by a vector taking values over a �nite �eld K. A transition function transforms

a given state into another state based on rules of the complex system underpinning the model.

The model dynamics are generated by repeated iteration of this function. Another approach is

taken by Veliz-Cuba, Jarrah, and Laubenbacher [23] where they derive a polynomial dynamical

system where the input-output functions are de�ned by polynomials, which makes it amenable to

powerful symbolic computational capabilities. That is, the computation of equilibria and analysis

of the model reduces to symbolically solving a system of polynomial equations. Agent-based

models are also, from a formal point of view, Markov chains [24, 25, 26, 27, 28], Banisch, Lima,

and Araújo [25] and Gintis [27] and provide a rigorous mathematical basis of ABM by linking the

micro-description of the system to the complex global behaviours in the form of a Markov chain.

They establish how the corresponding global dynamics of an agent-based model are obtained by a

projection construction and the model’s long-term properties are given by the ergodic theorem

for Markov processes. Analysing an agent-based model as a Markov chain can make apparent

transient dynamics, asymptotic behaviour, and stochasticity that were otherwise not evident.

More generally, ABMs can be naturally classi�ed as hidden or latent variable models that relates a
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set of observable variables to a set of latent variables [28]. In addition to formal mathematical

frameworks, Grimm et al. [29] establishes a protocol for an ABM speci�cation. They develop the

so called ODD (Overview, Design concepts, Details) protocol which describes a standard template

for the model analysis, reproducibility, and transition functions [29].

Another common objection to ABM is that a single realization of the model is just a special case,

and that no formal statements on the results of the model can be stated. This is partially addressed

by the works of Newell and Simon who established the computer programs as su�ciency theorems

approach. When an ABM, call it A, produces result R, it establishes a su�ciency theorem which

is the formal statement R if A [19, 30]. In other words, each run of an ABM is a logical theorem

that reads: the output of an agent-based model follows with logical necessity from applying to the

input the formal rule-set that de�nes the model. Nevertheless, despite the fact that each run of

such a model yields a su�ciency theorem, a single run does not establish the robustness of such

theorems. That is, when A yields the result R, how much change in A is necessary in order for R

to no longer be derived. This problem is, however, easily treated by multiple realizations of the

agent-based model, often by Monte Carlo techniques with each realization systematically varying

initial conditions, parameters, and random number streams.

Despite these objections, there are several advantages of ABM approach over conventional

equation-based mathematical models. Axtell [30] describes three distinct uses of ABM: (1) nu-

merical computation of analytical models, (2) validation and robustness of analytical models,

and (3) a substitute for analytical models that are intractable. Often complex equation-based

models cannot be fully solved in order to gain insight into the system. When the solutions are not

available symbolically, a set of solutions can be obtained numerically by solving the equations.

ABMs can then provide a suitable validation of the numerical solutions. If the equation-based

model is stochastic, the primary method of obtaining numerical solutions consists of Monte Carlo

simulations. When the symbolic solution is explicitly speci�ed, it would seem that there is no

speci�c role for agent-based modelling. However, since the output of ABM tend to be more visual

and pattern-oriented, such models can still be very e�ective in elucidating complex systems to

individuals that have no formal mathematical knowledge.

2.2 Structure and Components

A typical agent-based model has three fundamental components:
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1. A set of agents which represent the components of the system that is being modelled. Since

every ABM is a computer program, agents are often implemented as virtual computational

objects
5
. The concept of an agent as being a computational object makes it clear that this

basic unit is abstract. The agent is made concrete by translating su�cient properties of the

real-world component into a suitable formalization in the programming language.

2. An in silico environment that allows agents to change their spatial and relational associations.

In most complex systems, the concept of physical space or spatial network is signi�cant to

the global dynamics. This concept is di�cult to model in traditional analytic models, except

in highly stylized ways. However, in ABM it is rather easy to have the agent interactions

mediated by a virtual space.

3. A set of rules which de�ne the level of connectedness and modes of interaction between

agents. Each agent can be assigned a unique set of rules or a single one that can be applied

to all (or a group of) agents.

To integrate these three components, an ABM requires a computational framework or a simulator

engine (see §2.3). This simulator framework is responsible for driving the ABM by repeatedly (i.e.,

by iteration) executing the rules that de�ne the agents’ behaviours and interactions. This iterative

process often operates over a time-step or discrete event simulation structures. In the course

of these iterations, the simulator framework also calculates the aggregate results of the model

which can be re-injected back into the evolving behaviour of the agents. Thus, the construction

and simulation of an ABM as a whole is through a bottom-up approach from these constituent

components that work together to generate the global dynamics. The structure of a typical

agent-based model is shown in Figure 2.1. A mathematical description of ABM as a fully recursive

system is presented in §2.4, expanding on the formalism described in [21].

Agent Structure and Properties

Since an ABM is an abstraction of a real-world phenomenon, an agent ideally represents a

component of the complex system that is being modelled. When using this approach, we need to

systematically recognize which components of the system can be translated into agents. Next, we

need to decide on the level of abstraction and the details that are to be included for each agent.

5
In computer science, an object is a data structure consisting of variables, functions, or methods, and is a value in

memory which is referenced by an identi�er. There is a large degree of similarity between a computational agent and

the concept of an object (or structure) in a programming language. In fact, an ABM can be seen as a set of object

classes that share the same properties and the same rules i.e., functions.

9



Rules Agents Environment

Figure 2.1: The general structure of an ABM computational system. Figure shows agents equipped with a

set of properties, connected through a lattice environment system. Figure shows the interaction between a

susceptible and infected individual as a result of movement across the lattice

An acceptable compromise between realism and simplicity is required. If the level of abstraction

is too low, the model may fail to faithfully capture the system dynamics. On the other hand, it is

neither feasible nor always desirable to model all the complexity and agents’ heterogeneity. A

one-to-one mapping of the real-world component to an agent is likely unnecessary, impossible,

and/or computationally overwhelming. We will need to have valid hypothesis on the underlying

processes or fundamental mechanisms that needs to be explained. Ideally, the level of abstraction is

justi�ed by utilizing empirical data as well as expert opinions. Doran [31] suggests two principles

that should be followed for implementing a set of rules: (i) agents should be as abstract as possible

subject to the requirement that any rule attributed to them must either be reliably set from

empirical observation or be subject to experimental observation, and (ii) assumptions based on

pre-conceptions are avoided. Several other authors [15, 19, 29, 32, 33, 34, 35] have also identi�ed

similar key characteristics:

• Self-contained and autonomous. Autonomy implies that there is no central authority

that controls the agents’ behaviour. On the contrary, an agent can be thought of a model in

itself, capable of processing information and making decisions. They are free to interact

with other agents and move in the virtual environment they reside in.

• Heterogeneity. Each agent represents a unique component of the complex system. For

example, an agent representing a human in some population model can have age, sex, and

location as dynamic attributes.

• Active. Agents can be: goal-oriented [34] where agents try to achieve a goal but not
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necessarily maximize utility, perception-decision-action where they interact with each other

and their environment and only perform actions when triggered to do so by some external

stimulus [34, 36], or bounded rational [37] in which agents are generally assumed to be

rational optimisers with complete access to information and bounded analytical ability

(through heterogeneity).

• Internal state. Agents have an internal state (i.e., data represented by variables) and can

communicate this state to the model by message-passing or signal protocols.

The next step is to implement a formal set of functions (the rule-set) which de�ne the perception-

decision-action cycle (PDA) for every agent [34, 36]. An agent-based model systematically and

iteratively gives each agent the change to perform a PDA cycle. Formally speaking, let Λ denote

an ABM and let xa represent the represent the internal state of some agent a. xa is essentially a

list of quantitative variables and internal parameters associated with the agent’s current situation,

i.e. a vector taking values over some �nite �eld K (often K = Rn
) that describes the state of the

agent at a given time. Let X = {xa}a∈Λ denote the collection of all internal states, so that x ∈ X

denotes the global state of the model. Then the PDA cycle of an agent a is a set of functions
6
:

• De�ne Perception()a : X −→ P which computes a percept p ∈ P using the global state

of the model x. Intuitively, the function processes the global state of the model including

the environment, and returns data such as the coordinates of nearby agents or objects or

possible locations for a roaming agent. Thus, elements of P are often an multi-dimensional

vectors (or tuples) consisting of quantitative and categorical information.

• De�ne Decision()a : P → D which is a core function executing the rules that de�nes

the agent’s behaviour given their perception. Decision functions are can be arbitrarily

complex, encapsulating the bulk of the model’s logic, ranging from simplistic fuzzy rules to

complex behaviours modelled by neural networks, logic systems, arti�cial intelligence, or a

hybrid/multi-layer system and are often imputed by using empirical data and expert opinion.

Elements of D be in the form of discrete messages
7

or signals being passed between agents.

In response to a message an agent may change their internal state, modify the environment,

or respond back with another message, but should not be able to modify the internal state

of other agents.

6
Notation and names of the functions were adapted from Drogoul, Michel, and Ferber [36].

7
The technical details of implementing message-passing in computational abstract objects is a technical study of

computer-science. It is beyond the scope of this thesis and details are omitted.
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Figure 2.2: A visual representation of a Perception-Action-Decision cycle which formally implements the

rule-set which drives an agent’s behaviors and interactions.

• Finally, the action function Action()a : D ×X → X computes the new internal state

x of the agent by acting on a decision d ∈ D, updates the global state of the model, and

advances the virtual time by the relevant unit.

The Virtual Environment

The second fundamental component of an agent-based model is the in-silico environment, which

models the physical space of the real-world system. The environment de�nes the spatial associa-

tions of an agent and the conditions for the PDA cycle to carry out, i.e. the state of the environment

is part of the input to the Perception function of every agent. The environment may also

include passive objects such as roads and buildings or resources such as wealth and healthcare.

As agents move in the environment, their location can be tracked by a dynamic variable. Agents

may also be spatially implicit, that is their location within the environment is irrelevant.

Modelling the environment is often via a discrete topology of discretized, connected, and

bounded space units. The topology of the environment de�nes possible interactions and re-

lationships between agents. There are two main types of a spatial environments:

1. The most common type is a discretized environment consisting of a �nite grid of cells in

one or more dimensions with integer coordinates, which provides a simple representation

of physical space, e.g. GIS based environments. This type of environment provides an easy

mechanism for agents to interact with others who share similar coordinates or reside in
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neighbouring cells. The simplest form of spatial environments are described by cellular

automata models where the environment consists of a square lattice, divided uniformly

into ‘cells’. However, in cellular automata, the cells are interpreted as agents and there is

no distinction between the agents and the cells that create the lattice environment. ABMs

extend this topology by decoupling the agents from their cells. Agents can then move

from one cell to another and interact with di�erent parts of the grid, resulting in a set of

neighbours that constantly change as the simulation proceeds.

2. The second type is a ‘relational environment’ in which a link between two agents de�nes

a network topology. Relational environments are often de�ned by graph- or node-based

constructions and there is no distinction between agents and the nodes of the network.

Both directed and undirected graphs can be supported and can be static or dynamic [15]. In

static networks, links are �xed and do not change. In dynamic networks, links and nodes

are determined endogenously according to the mechanisms programmed in the model.

Figure 2.3 shows examples of di�erent environment topologies. Agents typically interact with a

subset of all other agents, denoted as the agent’s neighbourhood. In complex and large-scale agent-

based models, spatial and relational environments can be intertwined to o�er a more granular

approach. The environment may further have its own set of properties relevant to the real-world

complex systems; for example, in modelling disease-transmission at the age-group level, it might

be relevant to identify sections of the environment as school, residential and business. It may

respond to messages from agents (deterministic environment), or changes with time (dynamic

environment), and can even generate or delete agents.

Figure 2.3: Di�erent environment topologies for agent interactions and movement. From left to right:

Cellular Automata (von Neumann neighbourhood), network relational topology, Geographic Information

System (GIS), and free-roaming with neighbourhoods.
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Rules of Interactions Between Agents

Recall that the Decision and Action functions of every agent implement the rules that

will a�ect their internal state and interactions with other agents in a dynamically changing

environment. The rules are typically derived from published literature, expert opinion, or empirical

data. For example, in modelling in�uenza dynamics via an ABM, the intrinsic incubation period

of the disease is between three to �ve days, derived from observational data. At the point of

infection, the latency period for each agent (if transmission occurred) is sampled from the relevant

distribution. In general, rules are based upon simple if-else statements with agents carrying out an

action once the speci�ed condition has been met. More recently, there has been work incorporating

machine-learning techniques and arti�cial intelligence within ABMs to better represent human

behaviour. Due to these adaptive rules, ABMs are non-linear with multiple feedback-loop dynamics

and can therefore have vastly di�erent behaviours for each run.

2.3 Model Implementation

Every ABM implements a simulator engine that speci�es the operating procedures of the agents,

drives the PDA cycle, and describes the model evolution in time from an initial condition. The

simulator is often implemented in a programming language and sound principles of computer

science should be applied whenever possible. For example, writing independent modules (which

represent distinct components of the complex system) makes maintenance, debugging, and code

re-use easier when considering future changes to the model. Good programming principles also

leads to reproducibility of the model across various platforms and operating systems.

2.3.1 Monte Carlo Simulations

ABMs are stochastic in nature and account for randomness found in real-life phenomena. This

stochasticity is known as �rst-order uncertainty and relates to the natural randomness in agent

behaviours, interactions, and the progression of the model. First-order uncertainty is often

addressed by the use of a random number generator through a deterministic program code;

however, in digital computers random numbers are not really random. They are generated by

an algorithm that produces a sequence of numbers that is seemingly random. These numbers

are referred to as pseudo-random and the algorithm is called a pseudo-random number generator

(PRNG). Each sequence produced by any PRNG is uniquely identi�ed by its seed s, a number

which provides the initial value to the generator. The seed is usually supplied by an environmental
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variable such as the computer clock, which can virtually guarantee that it is di�erent for every

simulation run. In other words, PRNGs produce numbers based on a deterministic formula which

is seeded with some initial number. This allows for computer, and particularly agent-based models

to simulate stochastic variables but also o�er reproducible results. Several probability distributions

have been established in computer-science literature
8
, although most random number generators

produce uniform randomness. First-order uncertainty can be reduced by running the model

several times, commonly known as Monte Carlo simulations. The su�cient number of Monte

Carlo simulations depends on the parameters, time horizon, and the structure of the model, and

common ABMs can employ several hundred to several thousand independent runs.

The behavior of any ABM is further sensitive to the model parameters and on the initial conditions,

often called second-order uncertainty. That is, while �rst-order uncertainty relates to stochasticity

in model structure, second-order uncertainty corresponds to estimation of parameters since

true values and distributions are often unknown. In order to address second-order uncertainty,

underlying distributions of parameters should be utilized whenever available. Typically, however,

second-order uncertainty is evaluated by formal sensitivity analysis methods such as Probabilistic

Sensitivity Analysis using Latin Hypercube Sampling techniques.

2.3.2 Temporal Evolution

In most ABMs, modelling the temporal evolution of the environment is crucial. The model

components (e.g. environment) may not only react to the agent inputs but also evolve according to

endogenous factors including time. Time evolution can be modelled using three main approaches:

(1) continuous time in which the model can compute the system state for any time input, (2) discrete

time in which time evolves in discrete, but �xed intervals, and (3) discrete event in which time

instantaneously jumps from one event to the next. Within each time step, speci�c events occur

(e.g., movement of agents across the environment or transmission and progression of disease) or

agents update their internal state based on interactions and endogenous factors. The decision to

use continuous time or discrete time depends on the application domain. Applications of ABM in

this thesis are based on the discrete time approach.

Discrete Time In discrete-time mode, the simulator advances the virtual clock by a given

interval ∆t. The time interval ∆t will typically have a natural real-world unit associated with it,

8
In virtually all agent-based models, the Mersenne Twister is an example of a pseudo-random number generator

that produces a uniformly distributed random number stream, at least until the number of random draws approaches

the algorithm’s period of 219937 − 1.
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Figure 2.4: In an ABM simulation agents are updated sequentially at any time. The order in which each

agent is updated may change the results obtained for the system state since the environment evolves for

each action.

such as seconds, hours, days, or years depending on the complex system underpinning the model.

At each ∆t, the simulator engine picks agents sequentially (in some given order) and executes

their PDA cycle iteratively. However, there is a signi�cant limitation of this technique. The order

in which the agents are selected (and their PDAs executed) may change the result obtained for

the system, since the system state evolves with each action. It is entirely possible that a di�erent

ordering may result in very di�erent global dynamics. Figure 2.4 illustrates this issue with three

agents. Possible solutions to this limitation include selecting shu�ing the order of agents at every

time interval or have all agents simulate concurrently by operating on temporary variables, so that

the perceived state is the same for all agents. For example, in an agent-based model that tracks

the HIV patterns over long-time periods, the natural time unit is a year. A model for seasonal

in�uenza epidemics, the natural time unit has a day resolution.

Discrete Event A discrete-event simulation considers time as discrete increments with variable

magnitudes corresponding to events occurring in the model [38]. Every jump in time marks a

change of state in the system. Between consecutive events, the system is idle and no change in the

system is assumed to occur. A discrete-event model is programmed to maintain a list of events
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(a ‘queue’) corresponding to the events that will occur. The program iterates over the queue,

executing the event at the head of the queue. Once the event executed, it is removed from the

queue, and the next event is scheduled appropriately (and sometimes dynamically). In comparison

to the discrete-time approach, this is a more �exible paradigm. For instance, because discrete-

event simulations do not have to simulate every time-step, they are typically run faster than the

corresponding discrete-time simulations
9
. Moreover, a discrete-event can be made equivalent to a

discrete-time approach via a linearly spaced sequence of events.

2.3.3 Validation and Calibration

Model validation concerns with identifying the degree of consistency between the agent-based

model and the underlying system it represents. It comprises of two stages: (i) Input validation

that refers to the realism of the assumptions used to build the model, and (ii) output validation

which measures the plausibility of the model outcomes relative to the observations of a real-world

phenomenon. Output-validation relies on a process called calibration, which systematically re�nes

the model parameters so that the output data closely resemble those observed in the phenomenon.

A proposed formal framework by Marks [39] characterises a model as useful if it can exhibit at

least some real-world observations; as accurate if the simulated data matches historically observed

real-world data; and as complete if the simulated data matches all of the observed patterns of the

real-world phenomenon. Based on this framework the goal of validation and calibration is to

construct a model that is accurate, but also complete if possible.

Input Validation Input validation concerns the structural assumptions of the model relative to

the theory it is based on. Structural assumptions include choices of the rules and behaviours that

de�ne an agent’s PDA cycle, the environment, and pattern of interactions. For instance, agents

can be utility maximizing or employ bounded rationality. A more complete and accurate set of

assumptions correspond to a higher number of parameters and variables in the model. Parameter-

rich models are often di�cult to calibrate, may su�er from over-�tting, end up in dimension hell

and might even become computationally infeasible. In order to cope with the impossibility of

a complete and accurate model, it is often the case that input validation is evaluated against

some stylized facts, i.e., focusing on a limited number of variables which are most relevant to

the complex system. For example, the basic reproduction number (commonly denoted byR0) in

9
If the time to some next event is very small, simulations can take a long time to run. In these cases discrete-time

should be used.
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epidemiology is a stylized fact summarizing succinctly the impact of a communicable disease. In

this sense, one does not need to know the individual trajectories of disease transmission but can

develop a functioning model based onR0 only.

Input-validation also often requires program validation which refers to the validation of the

simulator engine. That is, the validation of the computer codes which implement the various

components of the agent-based model. Computer codes do not automatically generate errors

when a bug is encountered or if something is incorrectly implemented. On the contrary, many

programs will continue to produce results, independently of how bad the code is. Careful attention

is therefore needed to capture bugs and other artefacts and is recommended that one follows

principles from computer-science, including modularity and unit-testing [34]. These tests can

be performed for each functional component of the system during the model development cycle,

in which simple scenarios are created to verifying that all modules of the model are working in

concert when executed together.

Output Validation This process systematically determines a set of model parameters and input

values which maximize the �tness of the model with the observed data, i.e., �nding parameter

values, assumptions and structural components that make the model �t the data well. A well

calibrated and validated model can be used to make predictions, and can provide inference on

microscopic states, which may not be inferred from standard time series or statistical methods. On

the other hand, a model where the parameters have not been properly calibrated is not particularly

useful for inference and may even fail to describe the dynamics of the real-world complex system.

Calibration of agent-based models can be inherently di�cult due to large parameter spaces, long

simulation run-times, stochasticity of the structural model, and sometimes lack of empirical data.

At present, ABMs are limited to some ad-hoc, qualitative calibration of the relevant parameters.

That is, comparing instances of a model with di�erent values of parameters and choosing the ones

that best �t the data. It is worth noting that calibration and validation does not necessarily imply

that the model reaches to a single optimal choice for the parameters. Indeed, often con�dence

intervals are generated in which the true value of the parameters lie. In a Bayesian approach to

calibration, parameters are equipped with a prior probability distribution re�ecting the uncertainty

about the parameter values based on prior knowledge. In either case, this e�ectively means using

observed empirical data to inform parameters such that the model predicts the past and present

observations well. It is clear, however, that this ad-hoc approach is limited by the quality of the
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empirical data available
10

. The high degrees of freedom in an ABM further exacerbates the issue of

data quality. When restrained by lack or limited amount of data, Fagiolo, Windrum, and Moneta

[40] suggests the use of stylized facts, i.e., de�ning a restricted set of criteria on which the model

is evaluated, to circumvent the problems of data availability and quality. With these stylized

facts, the ad-hoc approach continues by calculating statistics of the simulated data. These are

then compared through a suitable summary measure of the model quality, conditional on the

parameters values. A common choice for such a measure is the squared di�erence distance metric

d(datasimulated, dataobserved) = (datasimulated−dataobserved)
2
, which increasingly penalizes parameters

that make simulated data more distant from observed data. The summary measure, in general, is

chosen with respect to the context of the model and can be, for example, speci�c data points, cross-

sectional averages, regression analysis, and averages over realizations. If the simulated dynamics

bear resemblance to the real-world observations, then the model is a possible explanation of the

underlying complex system. This naïve way of calibration and validation is often computationally

demanding. Indeed, for any given point in the parameter space, a large number of Monte Carlo

simulations must be run to generate a distribution for the statistics of interest. Even though we

have described a systematic algorithm, calibration is still based on observed qualitative similarities

between model outputs and real-world data. Nevertheless, the preceding two decades have seen

an increasingly number of studies attempting calibration and estimation of agent-based models

by way of optimization techniques and statistical methods [41, 42, 43]. These methods include

simulated minimum distance, Bayesian estimation, Markov Chain Monte Carlo (MCMC), Sequential

Monte Carlo (SMC), and particle �lters which are all closely related to each other. However, in

validating the structural components of the model, a well-established method of degeneracy tests

can always be performed to evaluate the outcomes using extreme value analysis by selectively

disabling portions of the model or selecting plausible values for input parameters from estimated

ranges [44].

It is imperative that qualitatively derived parameters are subject to sensitivity analysis. This

is because a high goodness of �t does not necessarily imply a highly predictive or explanatory

power [35, Chapter 5]. In this setting, sensitivity analysis amounts to running the Monte Carlo

simulations with modi�ed parameters and initial conditions, at least within the range of some

con�dence interval, to determine the robustness of the simulation results. Often this analysis is

implemented in three stages: (i) individual parameter sensitivity: examines model sensitivity to

each parameter individually by executing simulations while varying each parameter systematically

10
It is important to note that the rise of internet-of-things, cheap sensors and individual-level data collection tools

have recently led to a much greater availability of data, almost instantly from a variety of sources and platforms.
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across its full range and measuring the outcomes; (ii) parameter interactions sensitivity: identi�es

sensitivity of model outcomes to a number of important parameter pairs with respect to the

frequency and strength of their interactions; and (iii) robustness of results: evaluates the e�ect of

parameter uncertainty and sensitivity on the entire parameter space.

2.4 A Mathematical Formalism of Agent-Based Models

2.4.1 Partial Recursive Functions

Since an ABM is a collection of independent models (§2.1), all of which are computer programs (i.e.

computable by a Turing machine), there exists a corresponding unique partial recursive function
11

[19, 21]. Therefore, in principle, one can provide a representation an ABM as an explicit set of

mathematical formulas (i.e. recursive functions). A system of equations is recursive (rather than

simultaneous) if the output depends on one or more of its past outputs; or in other words, the

values for all state variables can be determined sequentially rather than simultaneously. If, in

addition, the probability distribution of the next state only depends on the current state (and not

the entire history), the system is memoryless and is called a Markov Chain. In fact, it is always

possible to characterize an ABM as a Markov process [26] by rede�ning the state space, a concept

we have not yet de�ned. Thus, all ABMs are Markov chains.

To begin, consider an ABM Λ with m agents which evolves over some time, which can be

continuous or discrete. We are interested in the state of the model observed at discrete times

t1, t2, . . ., with tk < tk+1. Even if the underlying model runs in continuous time, the model state

can be sampled at discrete observation times tk. At any time t, an agent i ∈ Λ is associated

with the variable x(i,t), which take values in some �nite �eld F12
. Assuming the variables can be

codi�ed in a �nite set of possibilities and are quantitative in nature (i.e., real numbers or integers),

then x(i,t) corresponds to n-dimensional vector i.e., x(i,t) ∈ Rn
. The variable x(i,t) represents the

state of an agent. For example, an agent could be described by the vector (age, sex, location), so

the set of variables is a triple with a mixture of numerical and codi�ed entries. The complete

system state (i.e. the global state) at time t is the collection Xt = [x(1,t) x(2,t) . . .x(m,t)] which is

an n×m matrix of all individual states. The evolution of the agent’s state variable through time

11
Recursive theory is still very young, having developed only in the early twentieth century with the study of

computable functions and Turing Degrees.

12
For example, in the case of Boolean networks the choice of the underlying �eld is the Galois �eld F = {0, 1}.
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is speci�c by the di�erence equation

x(i,t+1) = fi(x(i,t),Xt, αi) (2.1)

where fi is an agent-speci�c update function (or transition function) which implements the agent’s

PDA cycle, αi is a vector of agent-speci�c parameters (some of which could be stochastic) and

Xt is the global state of the model. . The set of update equations fi, one for each agent i de�nes

the data-generating process (DGP) of the model. These functions are typically complicated,

possibly involving discontinuities, fuzzy logic rules, and if-else statements. In the case that each

fi is a polynomial, the resulting model is called a polynomial dynamical system and is amenable to

the computational tools and theoretical results of computer algebra, an area that utilizes powerful

symbolic computation capabilities [23]. The time evolution of the overall model is thus speci�ed

as a stochastic di�erential or di�erence equation,

Xt+1 = F (Xt,α) + ξt (2.2)

where α a vector of agent-speci�c parameters, and ξt ∈ Rn×m
is a matrix containing all stochastic

elements at time t. Since the DGP functions fi need not be linear and stochasticity is often

implemented in each fi, the agent-based model is better represented by a more general map F

Xk+1 = F(Xk,α, ξk) (2.3)

where ξt is a stochastic random matrix. The initial conditions of the system at t0 are (X0, ξ0).

Equation (2.3) is called the transition equation of the system. A closer look at (2.3) reveals the

Markov chain representation of agent-based models, though in practice these expressions may be

extremely complex and di�cult to interpret. Indeed, in most cases, the explicit set of functions

fi and F, are not tractable. In analytical models, the transition function (2.3) often have a closed

form, a simple structure, and are linear (or can be linearized), and are kept free of heterogeneity

(or at a minimum). Any aggregation can be performed on variables by taking expectations over

the stochastic elements. However, in ABM the speci�cation of (2.3) have little or no restrictions.

Since the state space of the model can grow large (possibly with in�nite states), the transition

equation often does not have an analytical representation.

Once we have speci�ed the data generating process, we are then interested in some aggregate or

macro feature of our model. Let yt be a set of aggregate statistics at time t, and let h be a statistic
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function (i.e., some projection function from X to y) over the system state

yt = h(x(1,t), x(2,t), . . . ,x(m,t)) = h(Xt) (2.4)

Regardless of the complexity and speci�cation of each fi, the solution (i.e., shape and form) to

(2.4) for each time t can always be found by backwards iteration, which traces yk back to the

initial conditions. That is,

y0 = h(X0)

y1 = h(X1) = h(F(X0,α, ξ0))

y2 = h(X2) = h(F(X1,α, ξ1)) = h(F(F(X0, α, ξ0),α, ξ1))

.

.

.

yk = h(F(. . .F(F(X0,α, ξ0), . . .)))

This backwards iteration uniquely relates the value of yt to the initial conditions, however

explicating this relationship is complicated because of the stochastic ξt terms. Since the DGP

functions (Equation (2.3)) and the statistic function h need not be linear, these random terms cannot

be averaged out by expectations. Therefore, the relationship between the initial conditions (X0, ξ0)

and the statistic y is only realized by Monte Carlo analysis
13

. Using Monte Carlo simulations of

the agent-based model for di�erent initial states and values of parameters, one could obtain a

distribution for y. Recall that Monte Carlo techniques for simulations relies on a pseudo-random

number generator (§2.3.1) which is an inherently deterministic algorithm given the initial value

of the seed s. Thus, any stochasticity implemented in the model by virtue of a PRNG has a

deterministic nature, which allows to further pin down the formalism of an ABM. In particular, the

stochastic term ξk is a deterministic function of the seed s and can be considered, conveniently,

part of the initial conditions. Letting Z0 = {X0, s}, Equation (2.3) is reduced to

Xk+1 = F(Z0, α) (2.5)

It follows that the statistic y is given by

Xt = F(F(. . .F(X0, α, s))) = Ft(Z0, α)

yt = h(Ft(Z0, α)) ≡ gk(Z0, α)
(2.6)

13
Suppose the output Y of a stochastic model is completely determined by h(X) where h is a deterministic function

and X is a random variable, but can not be computed analytically. In a Monte Carlo simulation, many realizations of

X = x are made and y = h(x) are computed. In this way Y is built up progressively.
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Equation (2.6) is called the input-output transformation (IOT) function and drives the results of the

ABM. When the seed s is �xed, the IOT is a deterministic mapping of inputs (initial values and

parameters of the system) onto outputs
14

. While this is a convenient mathematical representation,

from a practical point of view the explicit form of the IOT function is unknown and the empirical

distribution of the underlying stochastic process is often obtained by Monte Carlo simulations,

by selecting di�erent random seeds together with the initial values and parameters. However,

since an ABM places little restrictions on the speci�cation of Equation (2.1), careful attention is

needed to keep it simple (while controlling the complexity) and within the bounds of available

computation resources. Nevertheless, we have provided a convenient formalism for agent-based

modelling to bridge the gap in the alleged di�erences in terms of mathematical rigour between

pure analytical models and computer simulations. This formalization is abstract enough to apply

statistical rigour in performing quantitative analysis of the emergent properties of an agent-based

model, in particular to assess stationarity and ergodicity.

2.4.2 Stationarity and Ergodicity

Stationarity and ergodicity are intuitive concepts describing the long-term properties of a process

or model. Stationarity of a process, in general, implies that every observation comes from the

same probability distribution and that every observation carries information about the properties

of the data-generating process. A variety of well-established techniques exist for understanding

stationarity of traditional models. For example, the Dickey-Fuller tests (unit root tests in which

the presence of a stochastic trend is equivalent to check the null-hypothesis in non-stationary)

and KPSS (checking the null-hypothesis in stationary) can be used to test the stationarity of

a time series [45]. However, any conclusion derived from using parametric tests is valid only

if the underlying assumptions are valid. In the framework of agent-based models where the

implementation of the data-generating process may not yield an analytical form, one needs to

confront with a priori unknown stochastic properties of the model, assumptions and applicability

of parametric tests that may be too restrictive or erroneous. Therefore, non-parametric tests are

in general more suited for agent-based models as they do not require any assumptions on the IOT

function of the model
15

.

Recall that the autonomous and heterogeneous nature of an agent can evolve the system in incon-

14
The IOT function need not be one-to-one. Indeed, di�erent inputs might lead to the same output.

15
Although parametric tests are superior than non-parametric tests, their superiority stems from the assumptions

about the stochastic process generating the observations. On the other hand, the limited power of non-parametric

tests can be overcome by increasing the number of Monte Carlo simulations.
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sistent ways and global dynamics are generated by repeatedly running the model under di�erent

initial conditions and parameters. Any equilibria obtained in agent-based models are always

idiosyncratic with respect to the agents, in the sense that in distinct Monte Carlo simulations,

the evolution of every agent may vary substantially. Therefore, equilibria in agent-based models

can only be de�ned at the aggregate level and in statistical terms after the global dynamics have

emerged. When the agent-based model is relatively simple so that for any values of the parameters

the model is stationary and ergodic, it is generally possible to characterise its equilibria. On the

other hand, non-stationarity and non-ergodicity hinders the capability of fully describing the

long-term dynamics of the model. By stationarity in this section, we mean weak stationarity (also

known as covariance stationarity).

De�nition 1. A stochastic process {wt} is weakly stationary if the �rst moment of wt is independent

of t, that is, E(wt) = µ and if Cov[wt, wt+h] exists, is �nite and depends only on h and not on t.

Recall the IOT function derived earlier {yk}∞k=0 de�ned by yk = gk(Z0, α), which relates the

initial state of the system Z0 = (X0, s) to the aggregate output of the model yk. We call {yk}∞k=0

the associated time-series of the agent-based model. Intuitively speaking, a time-series from some

stochastic process is stationary if the statistical properties (mean, variance, etc) remain constant

over time. In other words, the time-series has no distinguished points in time. An example of a

stationary process is shown is Figure 2.5.

De�nition 2. A statistical equilibrium in an agent-based model is reached in a given time window

(t−, t+) if the associated time-series {yk}∞k=0 is (weakly) stationary. The statistical equilibrium is

denoted by µ∗ = g∗(Z0) and is given by

µ∗(Z0, α) = E[yt | t ∈ (t−, t+)] (2.7)

with respect to the process {yt}, and initial conditions Z0. An equilibrium is said to be an absorbing

(or steady-state) if yk is stationary in (t−, t+ + τ), τ →∞. An equilibrium is said to be a transient

if yk is stationary in (t−, t+), but no longer stationary in (t−, t+ + τ), τ > 0.

A model may display both transient and absorbing equilibria, but the latter shows that once the

system is in this state, it can no longer move out. On the other hand, a model may oscillate between

two or more transient equilibria (possibly followed by an absorbing equilibria). It follows that for

any given initial conditions and parameters, there can be at most one absorbing equilibrium. It is

entirely possible that a model displays no absorbing equilibrium for a given statistic of interest. If

a model is stationary and converges to the same equilibria µ∗(Z0, α) = µ∗(α) irrespective of the
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Figure 2.5: Stationarity and ergodicity are independent concepts, and one does not imply the other. A typical

example of a stationary, but non-ergodic, process is drawing a number y1 from some distribution which

remains constant for the rest of the series, i.e. yt = y1 for all t (solid curve). An example of a non-stationary

but ergodic process is yt = yt−1 +N(0, 1) (dotted curve).

initial conditions Z0, the process yk is said to be ergodic. Ergodicity is sometimes de�ned [46] as

lim
n→∞

1

n

n∑
k=1

Cov(yt, yt−k) = 0 (2.8)

which describes a property that concerns with the memory of a process. An ergodic process is

characterized by weak memory (low persistence), and events far away from each other can be

considered as almost independent because the e�ects of stochasticity fades with time. That is, a

time series {yk}∞k=0 is ergodic if it exhibits the same type of qualitative behaviour. If an equilibrium

is reached, it will be the same for all simulation runs, irrespective of the initial conditions, and

the absorbing equilibrium will be unique. Di�erent initial values (X0, s) would not change the

equilibrium value µ∗, but might change the reaching timing. Moreover, if yk is ergodic, the

observation of a unique time series provides su�cient information to infer the shape and form of

the IOT function (2.6). That is, if the model is ergodic the properties can be analysed by using

a long time-series produced by a single run of the model. If the model is non-ergodic then a

set of Monte Carlo simulations (each produced by the same IOT but with di�erent seeds) are

necessary to describe, in distributional terms, the properties of the model. Non-ergodic models,

on the other hand, are sensitive to their initial conditions, including the random seed. A model

that is stationary but not ergodic can obtain multiple absorbing equilibria depending on the initial

conditions. Furthermore, since transient equilibria are de�ned for a �nite duration of time, these

equilibria will also di�er when computed for di�erent initial conditions. Ergodicity is a powerful

concept in agent-based models. If an ergodic model, one that is in a statistical equilibrium, receives

a shock that moves it out of its statistical equilibrium, the system returns to the equilibrium after a

�nite amount of time. As a consequence, ergodic models are well suited for analytical estimation
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and calibration techniques [46].

In ABMs stationarity and ergodicity tests are crucial to know whether the model reaches a statistical

(unique) equilibrium state. The inherent lack of an analytical form of the data-generator process

and the di�culty of dealing with unknown stochasticity requires non-parameteric statistics and

tests. For agent-based models, the standard non-parametric test used to check stationarity is an

application of the Runs Test (or Wald-Wolfowitz test) developed by Wald and Wolfowitz in 1940

[as cited in 45]. It tests the hypothesis that a given set of observations are mutually independent

and randomly distributed. On the other hand, while ergodicity is crucial for understanding the

long-term behaviour, literature surveying tests for ergodicity is scarce. [45] describe a modi�ed

Runs Test algorithm which considers the invariance of the moment of order k between di�erent

time-series produced by the same data-generator process, but with di�erent random seeds. A full

detailed survey of stationarity tests can be found in Phillips and Xiao [47] and Grazzini [45].

2.5 Application to Disease Dynamics

The use of ABM in the �eld of mathematical epidemiology has been rapidly growing, with the

development of comprehensive models that incorporate various databases to address public health

challenges [48, 49, 50, 51], in particular for emerging infectious diseases [52, 53, 54]. In this

section, we detail an application of ABM to disease dynamics. We illustrate the construction and

calibration of an ABM that describes the dynamics of disease transmission in a simple linear

cascade of infection and recovery.

The model we consider here was originally developed by Kermack and McKendrick in the 1920s

[18], and is referred to as the classical SIR (Susceptible-Infected-Recovered) model. In this model,

the population is strati�ed into three di�erent compartments (or health states) of susceptible (S),

infected (I), and recovered (R). A susceptible individual leaves the S-compartment when infected

and enters the I-compartment. Similarly, an infected individual leaves the I-compartment and

enters the R-compartment upon recovery. An individual who recovers is assumed to have perfect

immunity to the disease thereafter. When the rate of infection is proportional to the total number

26



of individuals in the population, the model can be represented by a set of di�erential equations:

dS

dt
= −βSI

N
dI

dt
= β

SI

N
− γI

dR

dt
= γI

(2.9)

where β is the rate of disease transmission, γ is the recovery rate, and N = S + I +R. Although

Equation (2.9) is written in deterministic form, it is clear that a disease transmission process

involves stochasticity as contacts between individuals occur randomly, even when stochastic

nature of other behavioural, host, and biological factors are omitted. Thus, the classical SIR model

is built on the assumption of homogeneous mixing in the population where all individuals have

equal chance to interact with others. On average, each infected individual generates βS new

infected individuals per unit time.

Here, we develop an agent-based model to replicate the dynamics of the SIR model. The general

framework of the model includes two main entities: (i) an in-silico two-dimensional lattice envi-

ronment and (ii) a set of unique agents situated (�xed) in the lattice. We set the size of the lattice

to 20× 20 resulting in an environment with a total of 400 agents. Each agent is fully characterized

by their health status of Susceptible, Infected, or Recovered which are programmatically codi�ed as

integer values of 0 = SUS, 1 = INF, and 2 = REC, respectively. Therefore, an agent a is fully

described by its associated internal state variable xa ∈ {0, 1, 2}.

Running the agent-based model simply amounts to instantiating a fully susceptible agent pop-

ulation, introducing an infected agent as the initial condition, and iteratively letting the agents

interact by executing their associated PDA cycles. The iterative process operates over a discrete

time-step structure where the simulator engine advances the virtual clock by a single unit, in

which the PDA cycle of each agent is carried out sequentially. The perception stage of each agent

determines all possible interactions of the agent, modelled through contacts with up to 8 random

agents on the lattice that are situated in neighbouring cells. The perception function returns the

number of infected contacts k out of the eight random contacts of each agent at any time-step. In

the decision stage, decision functions encapsulating the logic of the interactions are executed. If a

susceptible agent meets an infected agent, successful disease transmission is determined using

a rejection sampling-based (Bernoulli) trial where the chance of success is de�ned by a suitable

probability distribution. Letting xa,t denote the internal state of an agent a at time t, the one-step
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transition probability (in the Markov process) is given by:

Pr[xa,t+1 = INF | xa,t = SUSC] = 1− (1− b)k (2.10)

where k is the number of simultaneous contacts with infectious individuals (assuming that

transmission events are independent per contact) and b is the baseline transmission probability. If

the trial is successful, a susceptible individual becomes infected. In a similar way, the one-step

transition from INF → REC is given by:

Pr
[
xa,t+1 = REC | xa,t = INF

]
=

1 if t > tU

0 otherwise

(2.11)

where tU is an empirically derived parameter representing the period of infectiousness, which in

this context is sampled from a Uniform distribution between 3 to 6 time units. Finally the action

stage updates the internal state of each agent as well as the global state of the model and broadcasts

it to the entire lattice for the next iteration of the PDA cycle to continue. The computational

implementation of the associated update function is described in Algorithm 1.

A key parameter in our model is the unknown transmission probability b. Typically the value of b

is calibrated to a stylized fact of the underlying system such as the basic reproduction number

(denoted byR0 as described in Section §2.3.3) or incidence rate (i.e., new infections per unit time).

By running Monte Carlo simulations, the value of b could be estimated to match, for example,

R0 obtained from simulation data with a given R0. It is worth noting that this process can be

computationally demanding depending on the complexity of the model. One must sweep through

a parameter space (which could be arbitrarily large), running Monte Carlo simulations for each

value. Reduction of the parameter space to a suitable subset requires an educated initial guess.

In our example, we calibrated b to yieldR0 = 1.6 indicating that, at the beginning of an epidemic,

an infected person can infect 1.6 individuals (on average). The calibration procedure requires

an initial value of b, and counting the number of secondary cases caused by the initial infected

agent. If the model predictedR0 is not acceptable, the value of b is changed accordingly, and the

process is repeated. Of course, multiple realisations are necessary for each value of b to address the

�rst- and second-order uncertainties. Using 500 Monte-Carlo simulations, the calibration process

provided an estimated value of b = 0.047 for which the average of realisations givesR0 ≈ 1.6.

After calibration, we ran 500 Monte-Carlo simulation for 120 units of time to illustrate the behaviour

of the system, corresponding to the spread of disease in the population. The global dynamics are
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Algorithm 1: Pseudocode implementation of an agent’s PDA cycle and the associated

update function.

Input :agent a, time t
// when the agent is susceptible

1 if xa,t = SUS then
2 n← Discrete Uniform [1, 8] // sample a number of agents to contact

3 k = 0 // total contacts with infectious agents

4 for 1 to n do
5 x̂← AgentState(Discrete Uniform [1, 400]) // contact agent’s state variable

6 if x̂ = INF then
7 k = k + 1
8 end
9 P = 1− (1− b)k

10 if rand() < P then
11 a.tU ← Discrete Uniform [3, 6] // sample length of infection tU

12 xa,t = INF // update agent state variable

13 end
14 end
15 end

// when the agent is infected

16 if xa,t = INF then
17 if t > a.tU then

// if infection duration is over, update to recovered

18 xa,t = REC

19 end
20 end

represented by the changes in the number of individuals in di�erent health states of the model.

Figure 2.6A shows the outputs for the state variable I (i.e., the number of infections at any point

in time) for each realisation. As is evident, each realisation produces a di�erent infection curve

as a result of stochasticity. It is also interesting to note that the average of realisations has a

lower magnitude compared to many realisations. This is due to the fact that in many simulations,

the initial infected case recovers without infecting any susceptible individuals and therefore the

epidemic dies out. Figure 2.6B shows the average of realisations for all state variables.
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Figure 2.6: Monte-Carlo simulations of the SIR computational model: (A) independent realisations of the

state variable I ; (B) average of realisations for all state variables.

2.6 Concluding Remarks

The current surge of interest in ABM has gradually built up over the last twenty years [14],

especially with emerging technologies in computational power and big data collection platforms

that bring a higher realism to such models for simulating the real-world phenomena. The use of

agent-based models has provided an additional tool for advancing quantitative science, especially

in research areas (e.g., public health domain [55]) in which decision to intervene in the system

dynamics may be subject to substantial heterogeneity and variability. While the capability of

these models to address practical questions and inform decision-making in the face of uncertainty

has been exempli�ed, there remain limitations to their systematic application. In particular, a

more directed research is needed for expanding the theoretical aspects of ABM, by taking into

account the objectives of reliability, e�ciency, and adaptability which underlie the �exibility of

agent-based models.
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Chapter 3

Cost-E�ectiveness Analysis

3.1 Introduction

Health economics (i.e., the application of economic theory to health
16

) aims to enhance and

optimize the use of healthcare resources and public health policies and interventions on the basis

of modern micro- and macro-economic theory. A branch of health economics is the comparison

of costs and bene�ts of new healthcare interventions, technologies, or medications against an

alternative through formal socio-economic evaluations. In the context of a health care system

with limited resources and budgetary constraints, the e�ectiveness of a healthcare intervention is

a necessary (though not always su�cient) for provision of that intervention. The costs of health

care must also be considered in order to achieve maximum health gain from limited resources.

There is vast health economics literature on formal, utility-maximizing evaluation techniques

which o�ers policy-makers a means to allocate limited resources based on costs and bene�ts [56,

57]. Some of these techniques include cost–bene�t analysis (CBA), cost-e�ectiveness analysis

(CEA), and cost-utility analysis (CUA) [56, 57]. CBA, founded on economic welfare theory, requires

all costs and bene�ts of interventions that are being investigated to be converted into monetary

units. An intervention is considered to be economically viable if the bene�ts B exceeds that of the

costs C (i.e., B > C) known as the cost–bene�t criterion. While the basic use of the cost–bene�t

criterion is easy for the decision-maker, it presents challenges due to the ethical and logistical

di�culties of associating monetary units with health outcomes such as mental illness-free years

or additional years of life, making CBA less suitable for economic evaluations. In comparison, a

CEA aims to evaluate e�ects of an intervention without assigning any monetary value. Instead,

a CEA expresses e�ects using a more descriptive unit on a one-dimensional scale such as years

of life saved, or increase in median survival, or survival rates. For example, a summary measure

16
This �eld consists of the economics of health and the economics of healthcare, two distinct, but closely related,

disciplines.
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used in comparison of two interventions is the average cost-e�ectiveness ratio

ACER =
costs in units of money

e�ects in natural units (e.g., life years gained)

Another more commonly used measure is the incremental cost-e�ectiveness ratio (ICER) which is

the ratio of incremental costs to incremental bene�ts compared to the next most e�ective, de�ned

as

ICER =
di�erence in costs

di�erence in e�ects in natural units

(3.1)

Multiple interventions can now be ranked by their ICER values, which provides an easy inter-

pretation of the results. Nevertheless, CEA comes with its own set of limitations. While CEA

provides a rank order of measures, it does not decide up to which ratio an intervention should

be accepted. Although this is easily addressed in the presence of a �xed budget, it is di�cult

under a constraint-based open budget. Another limitation is that the use of a one-dimensional

measure is not suitable for comparing interventions that provide more than one e�ect e.g., there

is no speci�c way to combine information about a treatment that reduces high blood pressure

but also gains years of life lived, since their units are neither additive nor multiplicative. This

limitation is addressed by CUA, a special case of CEA. CUA enables comparisons across di�erent

interventions and multiple e�ects by utilizing a common measure which encapsulates the impact

of an intervention on a patient’s length of life, but also the impact on their health-related quality

of life. It so does this by measuring all e�ects of an intervention on morbidity and mortality on

a multi-dimensional utility scale, through the use of appropriate weights. The best-known and

most commonly used measure is called the quality-adjusted life year (QALY) followed by a related

measure called the disability-adjusted life year (DALY), which can be used in the denominator

of Equation (3.1). In addition, compared to CEA, CUA has the advantage of being applicable

to di�erent interventions (and even beyond health-care interventions) because it maps all the

e�ects into a single utility number, and is often the preferred economic evaluation method by

health care professionals and national agencies. For these reasons, CEA and CUA are sometimes

not distinguished from each other in the literature and that the term cost-e�ectiveness analysis

is commonly used to refer to both family of techniques. A summary of methods is presented in

Table 3.1 with a formal review of CEA in §3.2.

Regardless of the economic methodology selected, any systematic evaluation requires a suitable

parameterization with relevant evidence and data in order to develop policies and guidelines of

new interventions and technologies. Randomized controlled trials (RCTs) provide an empirical

distribution of individual patient data to allow for head-to-head comparisons of treatments in
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Table 3.1: A comparison of the three types of economic evaluation frameworks. Health outcomes are a

single dimensional measure such as the number of lives saved or the number of deaths averted. A utility

measure is a multi-dimensional index such as the quality-adjusted life year or the disability-adjusted life

year. Table adapted from Baio [57].

Evaluation type Costs included Type of outcome

Direct Indirect

Cost-bene�t X X $

Cost-e�ectiveness X often Health outcome

Cost-utility X rarely Utility measure

controlled environments. While RCTs have been a crucial component in economic evaluations,

there are inherent limitations in their utilization to inform policy [58]. RCT sample sizes are often

too small and do not re�ect standard care available to the general population. Patients are also not

followed up long enough to capture the full impact of the intervention. In some scenarios RCTs can

be completely ine�ective in informing policy, e.g., in evaluating a potential vaccination program

against aimed at reducing long-term severe sequelae caused by a disease. This inadequacy of

RCTs have lead agencies such as the National Advisory Committee on Immunization (NACI) in

Canada and the National Institute for Health and Clinical Excellence (NICE) in the UK to call for

systematic, evidence-based methods to inform public health policies and program delivery [59,

60].

Mathematical models, as decision analytic tools, are being increasingly used within economic

evaluation studies to provide an alternative approach to RCTs. The ability of mathematical models

to synthesize evidence and integrate information from di�erent sources have made them useful in

situations where RCTs are not applicable or where data from RCTs is insu�cient. As such they can

help to inform decisions about clinical practices and health-care resource allocations. In the last

ten years, with the rapid increase in the volume and heterogeneity of data, mathematical models

concerning health economic evaluations have integrated several disciplines, including medical

research, epidemiology, statistics, and economics. To date, the most frequently used modelling

techniques have been deterministic, aggregate level models which are relatively straightforward

to develop, but are limited by their homogeneity and inability to capture adaptive dynamics and

possible randomness in system phenomena. For instance, in an assessment of a new vaccination

programme, such models may not capture indirect bene�ts of an intervention such as herd

immunity e�ects or interactions between strati�ed populations (e.g., di�erent age-groups). These
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models are usually complemented by dynamic transmission models (such as di�erential equation-

based models) or stochastic aggregate models, which overcome some of the limitations, but are

often intractable because of uncertain parameters and still display a high degree of homogeneity.

In Chapter 2, we argued that ABM computational systems are extremely �exible and capable of

capturing (in principle) arbitrary level of heterogeneities. An ABM can incorporate the complex

nature of disease transmission (e.g., co-infection by multiple pathogens) and human behaviour

(e.g., sexual partnerships and contact patterns). In this chapter, we review existing methodology

for CEA and present a mathematically rigorous integration of ABM within the CEA framework.

3.2 Cost-E�ectiveness Analysis (CEA)

In CEA, results are characterized by the extra cost necessary to produce additional units of

health bene�t, i.e., cost-per-bene�t gained. The methodology involves estimating costs, modelling

intervention e�ects, and making an inference from the estimated costs to e�ects ratio. E�ects of an

intervention, such as illness prevention, symptoms relief, decreased medical resource utilization,

and reduced loss of productivity are usually obtained from clinical trials, observational studies,

academic and medical literature, and even patient interviews. However, how these e�ects are

quanti�ed is important. For instance, e�ects that can be measured in a continuum, such as life

expectancy and survival time, may be estimated using survival functions [61]. We summarize the

basic analysis of any CEA in four major steps:

1. The target population and the time horizon in which the analysis takes place should be

clearly de�ned.

2. The necessary data, including quanti�ed health outcomes, weights, and potential costs,

should be collected through a systematic review of peer-reviewed literature and various other

sources including government agencies and private organizations. In addition, potential

data biases should be critically considered and addressed.

3. A functional disease model (e.g., Markov models or ABM computational system) that

characterizes the transmission dynamics of a disease and identi�es the di�erent health states

(e.g., acute or chronic, short-term or long-term sequelae) associated with disease burden

should be applied with and without the intervention under study. Relevant epidemiological

parameters should be sought, and whenever possible through the data collection process.

This step is often the most di�cult and time-consuming one, while it is also the most crucial

34



one.

4. Summarize the model output (i.e. relevant e�ects of the intervention) in a suitable, quanti�ed

measure such as the number of years gained, quality adjusted life years, or disability adjusted

life years.

3.2.1 Types of Cost Variables

The cost of resources consumed by an intervention can be of two types of direct and indirect,

which de�ne the viewpoint or the perspective of the analysis. Direct costs include the value of all

goods and services consumed in the provision of an intervention or in dealing with the immediate

e�ects of the disease or any future consequences linked to it [62]. Common contributors to direct

costs include the cost of physicians and nurses, medical testing and hospitalization, and drugs.

Indirect costs are associated with societal care or impaired ability to work or engage in leisure

activities [62]. Indirect costs also include loss of economic productivity due to pre-mature death

caused by the disease. The extent to which indirect costs should be considered is still a matter of

debate and the arguments to include them are complex [62]. Costs can further be classi�ed as

�xed or variable. Fixed costs are those that remain the same regardless of the type of disease or

the intervention, e.g., the cost of buying specialised equipment for delivery of an intervention.

Variable costs are those that change in the short term, e.g., increasing nursing sta� because of an

outbreak.

3.2.2 Quality-Adjusted and Disability-Adjusted Life Years

Quality-adjusted life year The quality-adjusted life year (QALY) is a commonly used summary

measure (or an outcome measure) to quantify the e�ects of an intervention, incorporating the

impact on both the quantity and quality of life through the use of generic utility weights. QALYs

provide a high degree of standardization for the comparison of interventions, insomuch that the

use of QALYs is now required by the National Institute for Health and Clinical Excellence (NICE)

in the UK for health intervention assessment [60]. Today, QALY calculation methodologies have

advanced from the qualitative analysis as originally introduced by Klarman, Francis, and Rosenthal

[63], Torrance, Thomas, and Sackett [64], and Fanshel and Bush [65] to utilizing statistical models

deeply rooted in expected utility analysis. For instance, Miyamoto [66] formulates six classes of

QALY utility models and axiomatizes these models under expected utility (EU) and rank-dependent

utility (RDU) assumptions. In general, QALY utility models are now widely used in the EU analysis
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of health interventions because they capture quantitatively concrete outcomes such as death, but

also speci�c improvements in the state of health, such as reduced pain or improved ability to walk.

Speci�c states of health are often associated with utility weights, where a more desirable health

state will receive greater utility and will be favoured in the analysis. Derivations of utility weights

are discussed later in this chapter.

By considering utility weights as a single index of morbidity and mortality, the basic calculation of

QALY is quite simple. Consider an individual who is burdened with some health state H that does

not change up to time t (in years). Let the utility of spending t years in health state H be denoted

by u(H, t), which, under an expected utility framework [56], must have the from u(H, t) = tv(H)

where v(H) is the utility weight assigned to state H . The function v(·) is cardinal and is unique

up to positive a�ne transformations and can be chosen such that 0 ≤ v(·) ≤ 1. This leads to

a quite intuitive interpretation of QALY: A year of life lived in perfect health is worth 1 QALY

while death is assigned 0 QALYs. A year of life live in all other health states is worth less than

1 QALY. States worse than death can exist and they would have a negative value and subtract

from the number of QALYs [67]. QALYs are calculated by simply multiplying the duration of time

spent in a health state by the associated utility of that state, For instance, if an individual is in a

health state H∗ for 10 years with v(H∗) = 0.6, this would generate six non-discounted QALYs (i.e.

0.6 multiplied by 10 years). In most cost-e�ectiveness analysis, future QALYs are discounted
17

to

present values, incorporating the idea of positive time preference, i.e., that individuals prefer to

receive health bene�ts now rather than in the future. The standard time discounting expression is

e−r(x−a)
where r is the discount rate. The quality-adjusted life expectancy (QALE) of an individual

in health state H at age a is then given by

QALE =

∫ a+L

x=a

v(H)e−r(x−a) = v(H)
1− e−rL

r
(3.2)

where L is the life expectancy (relative to age a) and a the year in which the weight will be applied.

However, the direct use of Equation 3.2 to calculate QALYs is rare. The main use of QALYs in a

cost-e�ectiveness analysis is to assess the improvement in QALE obtained through an intervention

relative to a situation in which either no intervention or a standard alternative intervention is

provided. Suppose an intervention improves an individual’s quality of life from health state H1 to

17
Discounting is a mathematical procedure for adjusting future costs and outcomes to present value.
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Figure 3.1: Visual interpretation of quality-adjusted life years (QALYs) and disability adjusted life years

(DALYs). In the left �gure, the total number of QALYs with and without intervention are the areas under

the relevant polygons. The right �gure shows the relationship between QALYs and DALYs.

H2. The outcome of interest is, then, the number of QALYs gained, determined by

QALYs gained =

∫ a+L2

x=a

v(H2)e−r(x−a) −
∫ a+L1

x=a

v(H1)e−r(x−a)

= v(H2)
1− e−rL2

r
− v(H1)

1− e−rL1

r

(3.3)

where L2 is the period over which an intervention a�ects an individual’s quality of life and v(H2)

is the associated utility weight of quality of life with intervention, while L1 and v(H1) are the

corresponding parameters without intervention. However Equation 3.3 is based on the unrealistic

assumption that quality of life remains constant throughout an individual’s life. A more general

formula, given by [68], is

QALE =
N∑
m=1

Qm
e−r(tm−a) − e−r(tm−1−a)

r
(3.4)

In this formula, an individual’s life expectancy is divided into N time periods tm (with 1 ≤ m ≤,

t0 = a, tN = a + L) with possible di�erent durations, each a�ected by quality of life Qm. The

number of QALYs gained follows immediately,

QALYs gained =

p∑
p=1

Qi
p

e−r(t
′
p−a) − e−r(tip−1−a)

r
−

N∑
m=1

Qm
e−r(tm−a) − e−r(tm−1−a)

r
(3.5)

Although we have presented a simplistic framework here, a decision-theoretic analysis based on

expected utility theory including risk aversion and uncertainties can be found in [56].
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In the context of the above framework, measurements of utility weights, across di�erent studies,

must ensure the same units for all possible health states. Several methods have been established

to accomplish this including direct methods such as Rating Scale, Time Trade-o�, and Standard

Gamble and indirect methods also known as generic preference-based measures (see Figure 3.2) [56,

57, 69]. The rating scale method is the simplest direct approach and consists of a line with clearly

de�ned end points describing the best and worst health states. Respondents are asked to evaluate

a certain disease or health state by indicating where on the scale they consider the health state to

be. The corresponding QALY weight of the health state is then read, after normalization, from

the [0, 1] scale. This method is not very popular due to the inherent end-of-scale and spacing-out

bias. The Time Trade-O� procedure presents respondents with two alternative scenarios and ask

which they prefer. The choice is between choosing to live x number of years in a impaired health

state or giving up years of life to live for a shorter y period in full health
18

. The time spent in

full health y is varied until the respondent is indi�erent between the alternatives. The standard

gamble procedure is similar. Here, the choice is between the certainty of remaining in a particular

health state or taking a gamble (say with probability p) on a treatment/intervention that may

award perfect health or lead to immediate death. The probability p is varied until the individual is

indi�erent between the certainty and the gamble. Generally, these methods are time consuming

and, in some cases, unethical. As a result, indirect methods for measuring health outcomes have

also been developed, often “o�-the-shelf” questionnaires such as the Short Form 36 (SF-36), the

Nottingham Health Pro�le, and the Sickness Impact Pro�le [70].
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Figure 3.2: Methods of measuring health utility weights including The Standard Gamble (A), Rating Scale

(B), Time Trade-O� (C), and the SQ-5D form (D).

Disability-adjusted life year The disability-adjusted life year (DALY) measure is an alternative

to the QALY framework developed in the early 90s, as a means of estimating the global burden of

18
It is assumed that the only possible treatment is free and would cure perfectly.
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disease [71, 72]. DALYs have been the key measure in four Global Burden of Disease (GBD) studies,

each assessing the worldwide impact of disease and injury [73, 74]. DALYs are a two-dimensional,

time-based measure that combines years of lifetime lost through premature mortality and the

number of years lived with any mental or physical disability caused by a disease or injury. One

DALY has the intuitive interpretation of losing one year of perfect health. The burden of disease,

de�ned by disability weights, can be thought of a measurement of the gap between an impaired

health state and the ideal situation where everyone lives into old age, free of disease and disability.

Disability weights (and their correct elicitation) are a crucial component of DALY calculations as

they enable comparison of morbidity and mortality using a common unit. Although DALYs can be

considered as a variant of QALYs, the disability weights used in DALY calculations di�er from the

health-related utility weights used in QALY calculations that often rely on preference-based utility

measures usually elicited from surveys and questionnaires. DALY weights, on the other hand, are

based on a universal set of standard weights based on expert valuations and judgements. Another

signi�cant di�erence is that, although measured on similar scales, disability weights represent

levels of loss of functioning caused by a disease or injury whereas QALYs represent the levels

of quality of life in particular health states. That is, QALY weights are normally measured on a

scale in which 1 represents full health and 0 represents death; while DALY weights are measured

on a scale in which 0 represents no disability. DALYs are therefore a measure of something lost

rather than gained, and unlike QALYS, they are not desired themselves, but what is sought is their

reduction. An advantage of DALY models is that they incorporate age-weighting function, as

opposed to QALY models which assume one QALY has always the same interpretation, regardless

of the age. Another advantage is that DALY calculations are essentially used in an aggregated

context, where the aggregation is carried out by summing each incidence of the disease or injury.

DALY calculations are composed of the morbidity component, i.e., years lived with disability (YLD)

and the mortality component years lost due to premature death (YLL). The morbidity component

for a single individual is calculated by

YLD = duration till perfect health (or death)× disability weight

The mortality component for a single individual is the di�erence of life expectancy and age at time

of death. A DALY is simply the sum of YLDs and YLLs, i.e., DALY = YLD + YLL. The expressions

for YLD and YLL can be extended by applying social weighting expression such as age weighting

Cx−βx and time discounting e−r(x−a)
where r is the discount rate. Thus, the general formula for
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the DALY measure due to sequelae j at time t for the person i is:

∆t
i,j =

∫ ati+L(ai)

ati

KδjCxe−βxe−r(x−a
t
i)dx (3.6)

where x is the time, ai is the age of disease onset, δj is the disability weight of sequelae j, β and

K are the age-weighting parameter and the age-weighting modulation factor, respectively, and

L(a) is the duration of condition in the case of disabilities or average life expectancy in the case

of death. The aggregate DALY at time t for a given sample of the population with size Nt due to

total disease burden is then

∆t =
Nt∑
i=0

∆t
i (3.7)

Summing over the relevant time period T (with time discounting), the total number of DALYs

attributable to a disease or injury is

∆ =

∫ T

0

∆te
−rtdt (3.8)

The e�ectiveness of some intervention is then assessed by the reduction in DALYs in the presence

and absence of the intervention, i.e.,

e�ectiveness = ∆Without intervention −∆With intervention

Although QALYs and DALYs share the same conceptual framework, they are not interchangeable

as they are based on di�erent assumptions and methodologies, for example, elicitation of utility

weights for quality of life as compared to the expert valuation of disability weights. Moreover,

while considered to be the cornerstone of economic evaluations, exempli�ed throughout literature,

both methodologies have been under debate in recent years. Concerns relating to QALYs range

from the theoretical foundations of the framework [56, 75] to problems in the multiplicative model

which underlies the generation of QALY values [76, 77]. Similarly, the idea of DALY as expressing

burden of disease in a single index is tempting; however, several studies have questioned both the

validity of the results as well as the underlying value-judgements [78, 79, 80]. For instance, Anand

and Hanson [80] exposes the inherent inequities: discounting future health gains and losses is

disadvantageous for future generations, age-weighting disfavours children and seniors, and the

chosen estimates for life expectancy tend to disfavour women.
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3.2.3 Incremental Cost-E�ectiveness Ratio

The results of a cost-e�ectiveness analysis are usually summarized by several available measures

including the cost-e�ectiveness ratio, cost-e�ectiveness acceptability curves, and net bene�t ratio.

The most common, incremental cost-e�ectiveness ratio (ICER), is de�ned by Equation (3.1), where

the di�erence in costs appear in the numerator and di�erence in e�ects of interventions (usually

measured by QALYs or DALYs) are in the denominator. ICER values are more commonly used when

the interventions are mutually exclusive, e.g., in a scenario with two incompatible medications

of di�erent costs for the same health condition, one needs to consider the rate at which higher

expenses brings additional bene�ts. In other words, the ICER of an intervention is de�ned as the

ratio of incremental costs and incremental bene�ts relative to the next best available alternative

or “nothing”. Most common ICER calculation frameworks take a “population” level perspective as

opposed to individual level.

Let i1 = (e1, c1) denote the e�ectiveness and cost of a new intervention t1 that is compared with

the alternative i0 = (e0, c0). For example, (ei, ci) could represent sample statistics of the e�ect

measure such as average number of QALYs. This data is usually obtained from randomized control

trials or observational studies. Then we have the following scenarios:

1. e1 > e0 and c1 < c0. The new intervention is more e�ective and costs less, in which case it

is said to be dominant.

2. e1 > e0 and c1 > c0. The new intervention is more e�ective and costs more.

3. e1 < e0 and c1 < c0. The new intervention is less e�ective and costs less.

4. e1 < e0 and c1 > c0. The new intervention is less e�ective but costs more, in which case it

can discarded.

If e1 = e0 or c1 = c0, we accept the intervention that minimizes costs or maximizes bene�ts,

respectively. It is clear that in scenarios 1 and 4, the choice between the two interventions is

simple. For scenarios 2 and 3, an intervention has higher cost but also yields a greater bene�t or a

lower e�ectiveness but is also cheaper to implement. In this case, decisions can be made in light

of the ICER value, i.e., the additional cost for each unit of bene�t gained by the new intervention

over its alternative. The ICER value in the comparison of t0, t1 is de�ned as

ICER =
∆c

∆e

(3.9)
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where ∆c = c1− c0 and ∆e = e1− e0, provided that the denominator is not zero. An intervention

is considered acceptable by comparing the ICER value against some threshold, often based on

willingness-to-pay (WTP) criteria. In a societal perspective that accounts for the total costs to all

payers for all subjects, and the World Health Organization suggests using the per-capita gross

domestic product (GDP) as a WTP threshold [81]. ICER values up to the per-capita GDP are

considered very cost-e�ective, and for a WTP up to 3 times the per-capita GDP as cost-e�ective.

For a WTP greater than 3 times the per-capita GDP, the intervention is considered to be not

cost-e�ective [81]
19

. Other thresholds include individual WTP (2 times of salary) [83] and value of

a statistical life [84].

While the measures of interest constructed so far (i.e. QALYs, DALYs, and ICER) are seemingly

straightforward, estimates of the cost-e�ectiveness of healthcare interventions are subject to un-

certainty, which should be taken into account during the decision-making process [85]. Essentially,

such analysis relies on statistical models and assumptions on the underlying distributions of costs

and e�ects [61, 85, 86, 87, 88]. The choice of distributions used in practice is often determined by

convenience, for example, on the basis of familiarity or ease of computation. Usually, the choice of

normality is commonly assumed for describing cost and bene�t data [86, 87, 88], or at least a large

enough sample size for the sample means to be normally distributed; in addition, most approaches

to estimation of cost-e�ectiveness adopt essentially a frequentist approach. Such assumptions are

rarely realistic. For instance, data obtained from individual-level datasets (such as those collected

in RCTs) trials are unlikely to be normally distributed; clinical outcomes are often measured on a

binary scale, such as the eradication of a symptom, or on a ordinal scale, such as questionnaires.

Similarly, cost data will often have a large presence of structural zeros [89], and are typically

positively skewed (or even bimodal) [90, 91]. In such cases even the use of Lognormal or Gamma

models becomes impractical, since these distributions are de�ned for strictly positive parameters.

Assumptions on normality have also lead to several troubling problems in the interpretation and

estimation of the ICER, in addition to the statistical di�culties with estimation of a ratio parameter

[87, 88].

In order to address these concerns, several authors have now established a general framework

19
Although there is widespread acceptance of using threshold values to assess cost-e�ectiveness, it is argued

that thresholds based on per capita GDP have major shortcomings as guides for policy-makers [82]. An alternative

approach which avoids the limitations and focuses instead on getting the largest health impact for the budget
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for CEA that can incorporate arbitrary distributions and employ a Bayesian approach
20

which

treats model parameters as random quantities while accounting for patient level data available (as

produced by RCTs or observational studies) [57, 85, 92, 93, 94, 95]. In the next section, within the

purview of this thesis, we extend this Bayesian statistical framework of [57] and [96] to integrate

an alternative source of data, mainly the data-generation process of an ABM computational system.

3.3 Integration of CEA in the ABM Framework

Consider an ABM computational system of which the data-generating process (i.e. Equation 2.1)

produces the set of observables Di = {xij | j = 1, 2, . . . , ni} where each xij is, possibly mul-

tivariate, an observation of subject j (of the in-silico population) receiving intervention i ∈ I ,

with I = (0, 1, 2, . . .) a set of interventions to be evaluated and ni is the number of individuals

given intervention i. Typically xij will be represented by two numbers: the e�ectiveness of a

suitable clinical outcome e (e.g., e measured in terms of QALYs or DALYs), and the measure of the

individual speci�c costs c, including the cost of intervention. We can then formally write xij as a

vector of two elements, xij = (eij, cij). Without loss of generality, we consider the comparison of

two interventions I = (0, 1) where i = 0 represents the status quo, standard programme that is

already available, and intervention i = 1 is suggested to replace it or implemented simultaneously,

either to the entire population or to a speci�c sub-group of individuals. The entire observable

dataset is then referred to as D = D0 ∪ D1
. Denote by ei, ci the sample means of e�ectiveness

and costs, respectively, of intervention i. De�ne the increment in mean e�ectiveness and costs as

∆e = e1 − e0

∆c = c1 − c0

(3.10)

then the ICER statistic R̂ is

R̂ =
∆c

∆e

(3.11)

If R̂ < λ and ∆e > 0, or if R̂ > λ and ∆e < 0, where λ represents some willingness-to-pay

parameter for an additional health bene�t, then the intervention is said to be cost-e�ective. That is,

the criteria of acceptability not only depends on the cost-e�ectiveness ratio being less than λ but

also depends on the sign of ∆e. This point is illustrated by the cost-e�ectiveness plane (Figure 3.3)

20
O’Hagan, Stevens, and Montmartin [92] points out that the construction of the proposed cost-e�ectiveness

acceptability curves by van Hout et al. [86] which plots the probability of net bene�t against the threshold willingness-

to-pay parameters is essentially Bayesian.
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Figure 3.3: The cost-e�ectiveness plane. The dotted line with slope λ divides the plane into two regions,

cost-e�ective (grey region, lower right) and not cost-e�ective (white region, upper left) regions. Points a1

and a2 have ICER values less than λ, but a1 falls in the rejection region and a2 in the acceptance region.

which plots possible (∆c,∆e) pairs with a threshold line of slope λ passing through the origin.

The shaded area below this threshold line indicates the region of acceptability. Inference for the R̂

is limited to constructing con�dence intervals, however generating con�dence intervals of such a

ratio statistic is not straightforward since the variance of a ratio can not be obtained in closed form

and the sampling distribution of a ratio is often unknown. For instance, Wakker and Klaassen

[87] note that, under the assumption of normality for ∆e and ∆c, the sampling distribution of R̂

is Cauchy distributed and thus standard statistical techniques of inference are not applicable
21

.

These concerns can be addressed by an alternative, but equivalent, formulation. The region of

acceptability of an intervention in the cost-e�ectiveness plane can be expressed as the region in

which

β(λ) := λ∆e −∆c > 0 (3.12)

21
Several studies have established methods for constructing statistically rigorous con�dence intervals including

parametric methods (normal theory methods), nonparametric methods (e.g. standard bootstrap, bootstrap percentile),

and Bayesian methods [88, 97].
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where β(λ) is referred to as the Monetary Net Bene�t, which expresses the cost-e�ectiveness

criterion on a single, monetary scale by converting the ∆e units of e�ectiveness into λ∆e units of

money. In practice however, the explicit value of λ is unknown and subject to uncertainty. As such,

decision makers often infer the relative cost-e�ectiveness by means of a Cost-e�ective Acceptability

Curve, introduced by van Hout et al. [86], which plots the probability of β(λ) > 0 over a range

of suitable λ values, based on available evidence. Although the CEAC was originally formulated

under a frequentist approach, unknown parameters such as λ are often better understood in

a Bayesian framework where appropriate probability distributions can be used to address the

uncertainty. That is, the probability of β(λ) > 0 is only meaningful in a Bayesian framework.

The Bayesian extension to the above framework is relatively simple. We suppose that a general

observation x = (e, c) follows a distribution from a family F = {f(· | θ)}, indexed by the

population parameter θ = {θ0, θ1} where the true parameter value for intervention i is θi. The

likelihood of observing the data is then,

p(D | θ) =
∏
i∈I

ni∏
j=1

f(xij | θi) (3.13)

The uncertainty about θ can be formally described by probability distribution by starting from

a suitable prior distribution π(θ) that represents beliefs on θ prior to observing any data. The

posterior joint density is then given by Bayes’ theorem,

p(θ | D) ∝ p(D | θ)π(θ) (3.14)

from which it is possible to obtain the marginal distributions p(θi | D). With a functional form for

the posterior distribution, future (i.e. yet unobserved) health responses be evaluated by drawing

independent x from p(θ | D), thereby taking into account prior information and all individual

and population variability.

In order to assess the relative cost-e�ectiveness of interventions i ∈ (0, 1), we consider the means

of e�ectiveness and costs for each intervention. Denote by α(θ) = (µ(θ),γ(θ)) the mean of

the distribution f(· | θ), where µ(θ) = (µ(θ0), µ(θ1)) is the population mean e�ectiveness, and

γ(θ) = (γ(θ0), γ(θ1)) is the population mean costs. Accordingly, an intervention i (say i = 1) is

cost-e�ective relative to intervention i = 0 if it is more e�ective and cost less, i.e., if µ(θ1) > µ(θ1)

and cheaper, i.e., if γ(θ) < γ(θ0). We may also consider, similar to the Equation 3.10, the increment
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in mean e�ectiveness and costs,

∆µ = µ1 − µ0 (3.15)

∆γ = γ1 − γ0 (3.16)

For a given WTP threshold λ, the net bene�t is given by β(λ) := λ∆µ−∆γ , by which intervention

i = 1 is more cost-e�ective than intervention i = 0 if β(λ) > 0. However since µ and γ are

inherently functions of the random variable θ with associated posterior distribution p(θ | D)

(Equation 3.14), β is also a function of θ, and its posterior distribution is derived from the posterior

distribution of θ. We are interested in the probability of positive net bene�t, i.e.

Q(λ) = P(β(λ) > 0 | D) (3.17)

which is evaluated with the associated posterior distribution. A plot of Q(λ) against λ is called

the cost-e�ectiveness acceptability curve, which provides a visual representation of the uncertainty

of the cost-e�ective analysis. The CEAC is particularly useful in presenting the results of a

cost-e�ectiveness analysis as it provides a summary of the probability of cost-e�ectiveness by

varying WTP values, as decision-makers are often not ready to commit to a single value of λ.

The ultimate aim of the Bayesian extension is, then, to provide a framework for computing Q(λ)

for various assumptions and scenarios, utilizing prior information to inform on the parameters

θ 22
. However, while this approach provides a well-justi�ed interpretation for a CEAC, it is not

without inherent limitations. For instance, since the calculation of a Bayesian CEAC requires the

speci�cation of the prior distribution, there exists many CEAC plots, one for each unique prior

distribution chosen, with no “correct” one. Using a non-informative prior also creates further

potential areas of question in the analysis.

Another criterion to investigate cost-e�ectiveness of interventions is the expected net bene�t,

ENB = E[β(λ) | D] = E[λ∆µ −∆γ] = λE[∆µ]− E[∆γ] (3.18)

where the expectations are now over the distribution of θ. It is clear to see that if ENB > 0 then

22
The R package BCEA developed by Baio, Berardi, and Heath [98] describes in detail and provides the relevant

algorithms on how to perform health economic evaluations from the perspective of a Bayesian statistical approach.

The package can be used present the results of a Bayesian cost-e�ectiveness model, producing standardised and

highly customisable outputs. I have actively started to port this code over to Julia programming language, a fresh

new approach to numerical computing.
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λ >
E[∆µ]

E[∆γ]
(3.19)

which is similar to the approach to cost-e�ectiveness analysis based on the incremental cost-

e�ectiveness ratio, except inference about ENB is more straightforward to evaluate since it is a

ratio of expectations as opposed to an expectation of a ratio.

Although the above Bayesian approach accounts for individual variations and uncertainty of

the parameters by utilizing prior information, traditional economic evaluations have resorted to

additional sensitivity analysis methods to test the robustness of the results, particularly given

the irreversibility of decisions and the large �nancial commitments of health care interventions.

Various di�erent methods for SA have been recognized in health-economic literature. In Scenario

Analysis, likely values are selected for the parameters and the model is evaluated under all

these di�erent scenarios. Although this leads to a spectrum of results, fails to consider the

possible correlation between the parameters of interest or the underlying uncertainty and thus no

probabilistic meaning can be placed on the results. More in line with the Bayesian approach, and an

alternative to Scenario Analysis is Probabilistic Sensitivity Analysis in which all input parameters are

considered as random variables and are therefore associated with relevant probability distributions.

Probabilistic Sensitivity Analysis is often conducted using a simulation approach, such that for

each simulation s = 1 . . . S, a value θ(s) is simulated from the distribution p(θ | D) and used in

the cost-e�ectiveness analysis. An alternative approach to PSA is based on the value of information

analysis, in which the overall value of the decision process is compared to that obtained in the

actual evaluation [57].

Sensitivity analysis methods are often required for when the data-generating process is inadequate

for a robust analysis, e.g., using randomized clinical trial data in which censored data is present such

as time to death. In our approach of using an ABM to model epidemiological relevant scenarios,

the computational model provides a data-generating process which naturally accounts for �rst-

and second- order uncertainties, both on the individual and population level, through Monte Carlo

simulations. As such, it addresses some of the limitations of traditional data-generating processes

including censored data and small sample sizes, by incorporating more realistic prior information

and hence reaching stronger conclusions.
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3.4 Discussion

The integration of ABM computational systems with Bayesian cost-e�ectiveness analysis, along

with rapid developments in computational power and simulation models, provides a robust

framework for approaching more intuitive and complex problems in health care systems. In

such a framework, independent individuals (“agents”) are assigned context-speci�c attributes

such stage and severity of disease, and move through the model experiencing events at discrete

times, induced by independent decisions and localized interactions. The e�ects of implementing a

health intervention, e.g. vaccination, can then a�ect the probabilities of experiencing these events

or even generate new events, signi�cantly changing the outcomes of the model. Cost-inducing

events can be categorized and averaged over the relevant time horizon. Similarly, e�ectiveness

of the intervention can be quanti�ed in terms of individual QALYs or DALYs. By modelling at

the individual level, ABM provides more �exibility and o�ers greater realism over traditional

methods. The data-generation process of ABM enhances the utility of existing methods such as

randomized clinical trials in which data may be inadequate for decision-making and capturing

important heterogeneities.
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Chapter 4

Case Study 1:
Cost-E�ectiveness of a Vaccine for
Haemophilus Influenzae Serotype ‘a’
In this case study, we highlight a human-to-human infection agent-based model of Haemophilus

in�uenzae serotype ‘a’ (Hia) to simulate epidemic dynamics taking into account the relevant clinical

and epidemiological outcomes of Hia disease. This approach takes into consideration the age-

dependent individual characteristics and population heterogeneities, as well as the herd immunity

generated by naturally acquired or vaccine-induced protection. The model is then utilized to

conduct cost-e�ectiveness analysis of a potential vaccine candidate to inform government decision-

making and program delivery. This cost-e�ectiveness analysis was conducted in the context of

Nunavut, Canada where pre-dominantly the aboriginal population is a�ected by Hia.

4.1 Background

Haemophilus in�uenzae (H. in�uenzae) is a Gram-negative pathogenic bacterium that normally

resides in the upper respiratory tract and is responsible for a wide range of invasive infections [99,

100, 101]. H. in�uenzae is divided into typeable and nontypeable strains based on the presence or

absence of a polysaccharide capsule. Typeable strains are further classi�ed into six serotypes (‘a’

to ‘f’) based on their ability to react with antisera against recognized polysaccharide capsules [99,

100]. Typeable strains tend to cause invasive diseases such as meningitis, bacteremic pneumonia

and septic arthritis, while nontypeable strains generally cause non-invasive infections.

Among encapsulated serotypes, the serotype b (Hib) was one of the leading causes of invasive

disease with severe long-term sequelae in paediatric population and immunocompromised adults

worldwide prior to the introduction of universal infant immunization in the late 1980s [99, 102, 103].
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Since the introduction of Hib conjugate vaccines, the incidence of Hib has dramatically decreased

[104, 105], although it has not been eliminated and instances of resurgence have occurred [106,

107, 108]. However, surveillance programs, and clinical and epidemiological studies indicate that

serotype a (Hia) has now emerged as a signi�cant cause of invasive disease in some populations

and geographic regions, especially among indigenous communities of the North American Arctic,

including Alaska and northern Canada [109, 110, 111, 112, 113, 114, 115, 116]. A recent study

shows that in Northwestern Ontario, Canada, with a relatively high (82%) indigenous population,

the incidence of invasive Hia disease exceeds that of Hib in the pre-Hib vaccine era [117]. The

severity and outcomes of Hia infections are reminiscent to those of invasive Hib disease [118, 119].

The reasons for increased susceptibility of these speci�c populations to Haemophilus in�uenzae

infections are still unknown [118, 120].

The global success of Hib immunization programs over the past 20 years suggests that a protein-

polysaccharide conjugated vaccine may be a solution to prevent Hia disease before it can open the

niche to spread in the general population [120, 121, 122]. In 2016, the National Research Council,

Public Health Agency of Canada, and the Canadian Institutes of Health Research organized a

workshop to examine the current state of Hia disease epidemiology, summarize immunology

and vaccine research, and identify potential vaccine solutions [121, 122]. The meeting included

representatives from academia, government public health agencies, hospital laboratories, and

federal departments involved in Aboriginal health. It concluded with a list of recommendations

and identi�ed the key components to focus on in the development of an Hia vaccine including

completing pre-clinical studies (i.e. choice of protein carrier, obtaining regulatory approvals) and

policy to demonstrate value of a Hia vaccine [121]. As such, recent research e�orts have now

established the pre-clinical proof of concept for a glycoconjugate vaccine against Hia; in a �rst

study by Cox et al. [123], they show that antibodies to encapsulated Hia can be generated via

a conjugation strategy and that these antibodies can facilitate bactericidal killing of Hia strains.

However, the cost-e�ectiveness and economic impact of a potential vaccine candidate is a major

factor in decisions regarding vaccine production and implementation of immunization programs.

To address this knowledge gap, we developed an ABM to conduct a cost-e�ectiveness analysis

from a government perspective. In this chapter, we detail the modelling process and its analysis,

and present the results.
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4.2 Model Details and Parameterization

The general structure of the model is a single-agent, discrete-time ABM in which an agent

represents an individual human, characterized by a time-dependent vector of variables, including

their demographic information, health status, and immunity levels. The key characteristics of

each agent is illustrated in Algorithm 2.

Algorithm 2: The agent structure for human in HIA.

1 agent structure {
2 basic variables {
3 id ; // ID of the human

4 health ; // current health status

5 age ; // age in days - 365 days per year

6 expectancy ; // life expectancy

7 expectancyreduced ; // expectancy can be reduced due to invasive disease

8 agegroup

9 gender

10 };
11 model speci�c variables {
12 invtype ; // invasive sequelae

13 invdeath ; // death due to invasive disease

14 plvl ; // immunity level following vaccination or recovery

15 meetcnt ; // total no. of interactions

16 pvaccine ; // if primary vaccine series is received

17 bvaccine ; // if booster vaccine is received

18 dosesgiven ; // no. of doses given

19 vaccineexpirytime ; // duration of vaccine and naturally acquired protection

20 };
21 associated functions {
22 func initialize()
23 func interact()
24 func update()
25 };
26 } end;

4.2.1 Disease Model, States, and Outcomes

The disease model is based on the natural history of Haemophilus in�uenzae infection, which

includes the states of latent (infected but not yet infectious), carriage (infectious without symptoms),
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Figure 4.1: Schematic diagram for transitions and natural history between epidemiological states in the

disease component of the ABM framework. The model does not include recurrent episodes of invasive

disease. We structured the health status of the individuals in the model based on the epidemiological and

clinical characteristics of Hia disease reported in previous studies [107, 124, 125].

symptomatic non-invasive disease, and symptomatic invasive disease. This infection stage of

each agent is stored as a dynamic attribute. Recovery from infection provides a high level of

protection, although there is a possibility of reinfection. Similar to vaccine-induced immunity,

naturally acquired immune protection is assumed to wane over time. The model does not include

the recurrence of invasive disease after the �rst episode or during partial protection following

recovery from infection or vaccination. A schematic diagram for the model for infection dynamics

is illustrated in Figure 4.1. Clinical presentations of invasive Hia disease are analogous to those

caused by Hib, including meningitis, bacteraemic pneumonia, septic arthritis, and osteomyelitis

[118]. Bacterial meningitis is often associated with long-term sequelae even after full recovery

from the disease. Survivors of bacterial meningitis are at risk of developing life-long neurological

and behavioural de�cits leading to an impaired quality of life. These factors have been considered

in the cost-e�ectiveness analysis of an Hia vaccine.

All parameters governing the dynamics of the model are drawn from previously published literature.

Their descriptions are provided below and their relevant sources are provided in Table 4.3 and

Table 4.4.

4.2.2 Population and Demographics

An in-silico population of 100 000 agents (“individuals”) was generated, with a demographic

distribution identical to Nunavut, Canada, considering that Hia was the predominant serotype

causing invasive disease in the region during 2000 – 2012. Nunavut spans over 1,750,000 km
2

of the

Canadian Arctic Archipelago, with a population of approximately 36,000 primarily inhabited with

Indigenous Inuit. We used the sero-epidemiological data reported for Nunavut to parameterize

and calibrate the model to the incidence of invasive Hia disease in di�erent age groups [111, 114,

116]. During a 13-year period from 2000 to 2012, a total of 89 cases were serotyped, of which 43

were Hia with an overall rate of 13.7 per 100,000 population for the incidence of Hia disease [111].
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Age speci�c annual incidence rates were 274.8 per 100 000 for < 1 year old, and 61.2 per 100 000

for 1–4 years of age [111]. Taking this into account, we strati�ed our population into �ve age

groups of <1, 1–5, 6–10, 11–59, and 60+ years of age to match the age-speci�c incidence rates and

other population characteristics used for model parameterization. In the simulation model, all

natural or disease-induced deaths were replaced by newborns to maintain a constant population

size.

4.2.3 Transmission and Infection Dynamics

Disease transmission (infection) occurs through contacts between susceptible and infectious

individuals in the state of carriage or symptomatic (but non-invasive) disease. Since invasive

disease often requires hospitalization, we assume that this state of disease is not a signi�cant

contributing factor to disease transmission.

In order to determine the contact structure between individuals, the population was strati�ed to

four age groups (0 to <2 years of age; 2 to <5 years of age; 5 to <10 years of age; and 10+ years of

age). The population contact structure was then derived by converting a relevant Who Acquires

Infection From Whom (WAIFW) matrix [107] for Alaska Native populations, whose elements

correspond to the product of the annual rate at which persons of age group i encounter persons

of age group j and the probability of transmission between a susceptible contact in age group i

and infectious contact in age group j, into a probability distribution of individuals in age group i

encountering individuals in age group j. See Table 4.1. Disease transmission occurred as a result of

Table 4.1: (a) Who Aquired Infection From Who matrix adapted from [107]. The elements correspond to the

product of the yearly rate at which individuals of age group i encounter persons of age group j and the

probability of transmission given contact between susceptible in age group i and infectious in age group j.
(b) Cumulative probability distribution for individuals in age group i encountering individuals in age group

j.

age group of

infectious person
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0-2 2.11 0.15 0.53 0.03

2-5 0.55 0.40 0.50 0.12

5-10 0.56 3.68 3.61 0.13

>10 0.55 0.55 0.81 1.43

age group of

person j
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i

0-2 0.75 0.80 0.98 1.0

2-5 0.35 0.60 0.92 1.0

5-10 0.07 0.53 0.98 1.0

>10 0.17 0.33 0.57 1.0

rejection sampling-based (Bernoulli) trials where the chance of success is de�ned by a probability
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distribution. Given a contact between a susceptible (or recovered person) i and infectious person

j, the probability transmission of disease between this susceptible-infectious pair was calculated

by

Ptransmission(j → i) = Cβag(1− ρi) (4.1)

where βag is the age-speci�c transmission rate of person j calibrated by �tting the model to

reported incidence rates (see Table 4.3), C is the reduction in transmission for individuals in

carriage state that assumed to be 50% less infectious compared to those in symptomatic state [126],

and ρi is the e�ect of naturally-acquired or vaccine-induced protection acting as a reduction factor

in the baseline transmission depending on the level of immune protection at the time of contact

(Table 4.3).

Upon successful transmission of the bacteria, infected individuals move to the latent state. The

latent period for an infected individual (following exposure and colonization) was sampled from

a truncated log-normal distribution with shape and scale parameters of 0.588 and 0.458, with

the mean of 2 days [127]. After the latent period has elapsed, individuals become infectious and

experience one of the clinical states of carriage, symptomatic, or invasive disease. The transition

to carriage or symptomatic (and invasive) states is determined through a probability distribution

de�ned by decision tree analysis, taking into account their infection stage, age, natural immunity

levels, and vaccination status. The decision tree paths are illustrated in Figure 4.2. For example,

a susceptible individual who has previously experienced infection has a 60%–90% chance of

transitioning to a carriage state. The duration of carriage varies in reported estimates, but it

can last from several days to several months [107, 128]. We sampled the carriage period from

a uniform distribution in the range of 14–70 days. The period for symptomatic infection was

sampled from a Poisson distribution with a mean of 2 days post symptoms onset. The symptomatic

(non-invasive) infection was considered non-communicable 2 days after the start of e�ective

antibiotic treatment [129]. Individuals who further progressed to invasive disease (manifested as

meningitis, pneumonia, or non-meningitis-non-pneumonia) were assumed to receive critical care

(i.e., hospitalization).

The length of hospital stay, obtained from the Canadian Institute of Health Information databases

[130], varies by age and depends on the type of invasive disease (Table 4.2). About 25% of deaths

caused by invasive disease due to bacterial meningitis occur within 2 days of hospitalization

[131]. To corroborate this estimate for individuals with fatal outcomes, the time spent in the

hospital before death was sampled from a truncated Poisson distribution with an average of 4

days and maximum of 10 days. The case fatality ratio was set to 9.1% for invasive disease [111].
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Figure 4.2: Progression through the Hia disease model by an infected agent.

Table 4.2: The length of hospital stay estimates for meningitis, pneumonia, and non-meningitis-non-

pneumonia (NMNP) outcomes of invasive disease due to Hia.

Parameter Description Baseline value (range) Source

Length of hospital stay (days) for invasive disease

Age Group Meningitis Pneumonia NMNP

<1 years 11.8 (10-14) 5 (3-7) 9.1 (7-11)

[130]

1-7 years 9.3 (7-11) 4 (2-6) 5.6 (5-7)

8-17 years 4.9 (3-7) 5.6 (4-7) 6.7 (5-9)

18-59 years 6.9 (5-9) 8.1 (6-10) 9.5 (8-11)

60-70 years 11.2 (9-13) 8.8 (7-11) 11.7 (10-14)

80+ years 19 (17-21) 8.4 (6-10) 12.2 (10-14)

Clearance of infection upon recovery was assumed to confer a transient immune protection of

95% that wanes over time between 2 and 5 years, thereby increasing the level of susceptibility to

re-colonization [107, 126, 127]. This protection level was considered adequate to prevent invasive

disease if infection occurred.
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4.2.4 Vaccination Schedules and Dynamics

Prevention of infection and invasive disease following vaccination was implemented based on the

number of vaccine doses and induced protection levels. In the context of Hib, clinical studies have

shown that a high level of protection requires at least two doses of conjugate vaccines [132, 133],

followed by a booster. In the absence of Hia vaccine data, we assumed that an Hia vaccine will

be rolled out in a similar schedule to the routine infant immunization programs against Hib in

Canada
23

[134]. We therefore implemented vaccination in primary series with 3 doses scheduled

at 2, 4, and 6 months, followed by a booster dose at 18 months of age. Furthermore, considering

the similarity between Hia and Hib immune dynamics, vaccine e�cacy was estimated based on

Hib conjugate vaccines against colonization and invasive disease. Vaccine speci�c parameters are

summarized in Table 4.3.

The durations of high protection following primary series (1–3 years) and booster vaccination

(6–10 years) were also sampled from estimates reported for vaccination against Hib [107]. For

the coverage of infant immunization, we used estimates of Hib vaccine coverage in Canada for

primary series (77%) and booster vaccination (93.5% of primary vaccinated infants) [135], though

recognizing that this coverage is even lower in remote regions like Nunavut. Since bacteria

with identical or similar polysaccharides to Haemophilus in�uenzae can induce cross-protective

antibodies [136, 137], the accumulated exposure to such bacteria may raise some level of pre-

existing immunity. We therefore assumed a 50% protection against colonization for individuals

older than 5 years of age.

4.2.5 Model Calibration

The model was calibrated by �tting baseline age-speci�c transmission probabilities β1, β2, β3, β4

to reported incidence rates (Table 4.3), by running simulations over a 30-year period in a no-

vaccine scenario corresponding to the period of 1991–2020. In particular, we ran simulations for

the �rst 10 years as a warm-up period to reach a stationary state in the model. In the next 13

years, transmission probabilities β1, β2, β3, β4 were systematically adjusted over a 4-dimensional

parameter space to generated results that match incidence rates reported for di�erent age-group,

with an overall rate of 13.2 per 100,000 population. All calculations were based on the average of

500 Monte-Carlo independent realizations. Each simulation was seeded independently with an

23
The schedule for a routine Hib vaccination varies in di�erent countries depending on the type of vaccine and the

region’s public health recommendations. For example, vaccination schedules for individual EU countries and speci�c

age groups can be found in https://vaccine-schedule.ecdc.europa.eu/.
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Table 4.3: Description of Haemophilus In�uenzae serotype ‘a’ model parameters and associated ranges.

Model parameters were largely derived from published literature.

Parameter description Baseline value (range) Source

Transmission rates for infection β

<1 year β1 = 0.0793

calibrated to

age-speci�c

incidence rates

1 – 5 years β2 = 0.0545

6 – 10 years β3 = 0.0491

10 – 60 years β4 = 0.0799

60+ years β5 = 0.0491

Relative transmission

of carriage

0.5 (0.3 - 0.7) [127]

Infection Parameters

Latent period

following colonization

Mean: 2 days

(Lognormal)

[127]

Period of

communicability following

the start of treatment for

(non-invasive) symptomatic

2 days [129]

Infectious period for carriage 14 – 70 days [107, 128]

Disease Outcomes

Case fatality ratio 9.1% [111]

Probability of carriage

Depends on age

and immunity

[132, 138]

Probability of

invasive disease

Depends on age

and immunity

[138]

Length of hospital stay

Depends on age

and immunity

[130]

Time spent in

hospital before death

Mean: 4 days (Poisson) [131]

Immune Protection levels Against colonization Against Invasive

After 1st dose 50% 60%

[132, 133]

After 2nd dose 80% 90%

After 3rd dose 85% 93%

After booster dose (85%-95%) 97%
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Table 4.3: Description of Haemophilus In�uenzae serotype ‘a’ model parameters and associated ranges.

Model parameters were largely derived from published literature.

Parameter description Baseline value (range) Source

After recovery

from infection

95% 100%

Duration of immune protection against colonization

Naturally acquired 2 - 5 years

[107, 126]After completing primary series 1 - 3 years

After receiving a booster dose 6 - 10 years

Vaccine Coverage

Primary Series <1 year 77%

[135]

Booster Dose <2 years

93% of primary

vaccinated individuals

individual in the latent state of the infection, and the events and outcomes were recorded over

time.

4.2.6 Cost-E�ectiveness Analysis

For the cost-e�ectiveness analysis, we considered sequelae for individuals who develop invasive

disease through short and long-term �nancial burden together with associated disabilities, and

possible reduction of life expectancy [139].

Direct costs borne by government were considered for the cost-e�ectiveness analysis, including

physician visits, immediate hospitalization for invasive disease, and long-term care for patients

with neurological sequelae. In addition, infants with invasive disease can’t be treated in their

home community due to the general lack of medical resources, expertise, equipment, and facilities

in the Canadian North and have to be medically evacuated to hospitals by the Medivac program

[140]. As these transportation costs can be signi�cant (upwards of $55,000 CAD), our analysis

takes considers the associated costs of the Medivac program. For minor sequelae, we considered

costs associated with special programs in pre-school (0-5), school years (6-18), and adult training

programs up to 22 years of age [141]. Bacterial meningitis is often associated with major sequelae

even after full recovery from the disease. Survivors of bacterial meningitis are at risk of developing

life-long neurological and behavioural de�cits leading to an impaired quality of life, and often
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require lifetime care [141] which carries a signi�cant �nancial burden.

Costs of vaccine doses and administration were estimated based on a monovalent Hib conjugate

vaccine in Canada. Indirect costs associated with lost productivity and those incurred by house-

holds were not included in the cost-e�ectiveness analysis. All costs were converted to year 2017

Canadian dollars using the health and personal care component of the Canadian Consumer Price

Index [142] and future costs and health outcomes were discounted at 3% [143]. All cost parameters

and values are presented in Table 4.4.

Table 4.4: Cost parameters of Haemophilus In�uenzae treatments and interventions used in the cost-

e�ectiveness analysis.

Parameter description Estimated Costs Source

Medivac per evacuation $55,000 [121]

Physician visit $ 60 [130]

Hospitalization per night Meningitis Pneumonia NPNM

<1 years $11,076 $8,739 $10,237

[130]

1 – 7 years $8,856 $7,554 $7,088

8 – 17 years $6,833 $9,649 $7,508

18 – 59 years $9,994 $13,278 $11,696

60 – 79 years $16,088 $13,093 $13,645

80+ years $24,479 $9,983 $12,866

Long-term sequelae

Major (lifetime) $109,664/year

[141]

Minor (up to age 22)

Pre-school $21,434/year

School years $26,917/year

Adult training $13,957/year

Vaccination

Vaccine dose $20 [144]

Administration $8 [144]

Wastage 3% Assumed

Our model measures e�ectiveness in disability-adjusted life years (DALYs) averted, which was

estimated using the method recommended in the 1996 global burden of disease study [72]. Although

there is no data comparing the long-term disability rates of Hia and Hib, we considered existing
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weights (as measures of impairment of quality of life) for major and minor sequelae used for Hib,

corresponding to standard global burden of disease categories. These include cognitive de�cit,

hearing loss, motor de�cit, seizures, visual impairment, and multiple impairments [145, 146, 147].

For the scenarios with years of life lost due to bacterial meningitis, we assumed a reduction

of lifetime in the range 2–10 years [139]. The disability weights for minor and major sequelae

due to invasive Hia disease are presented in Table 4.5, along with their sources. To determine

cost-e�ective scenarios for vaccination, we calculated ICER values and con�dence intervals over

a 10-year period following the start of vaccination. Since the ICER is neither a su�cient nor

an unbiased statistic, the uncertainty around the point estimates was assessed by applying a

non-parametric bootstrap method [87, 97]. A cost-e�ectiveness plane was then utilized to o�er a

visual representation of the joint distribution and uncertainty along with 95% con�dence intervals.

Table 4.5: Disability weights for long-term major and minor sequelae of bacterial meningitis due to invasive

Haemophilus In�uenzae disease.

Parameter Description Parameter value (range) Source

Long-term sequelae Disability weights Major Sequelae Minor Sequelae

Cognitive di�culties 0.469 0.01 0.024

[145, 146]

Seizure disorder 0.099 0.015 0

Hearing loss 0.223 0.032 0.006

Motor de�cit 0.388 0.012 0.013

Visual disturbance 0.223 0.01 0.001

Clinical impairments 0.359 0.07 0.008

Multiple impairments 0.627 0.019 0.008

4.3 Results

We implemented two vaccination strategies for infants during the warm-up period in the model

simulations, with primary vaccination coverages of 77% and 90%. For booster doses, we considered

coverages of 90% and 93%, and this coverage applied to those who have completed the primary

series. We also considered scenarios in which the expected individual lifetime was reduced due to

invasive disease outcomes [139]. Individuals who su�er from invasive disease with major sequelae

can die prematurely before reaching expected life expectancy. This was modelled by a uniform
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Table 4.6: Summary of Hia simulation scenarios and their associated �gures.

Scenario Primary
Coverage

Booster
Coverage

Life-time
Reduction

Associated
Figures

I 77% 90% No 4.3, 4.4, 4.5, 4.6

II 90% 93% No 4.7, 4.8, 4.9, 4.10

III 77% 90% Yes 4.11, 4.12, 4.13, 4.14

IV 90% 93% Yes 4.15, 4.16, 4.17, 4.18

distribution with minimum of 2 years and a maximum of 10 years of life lost. These scenarios are

summarized in Table 4.6.

No lifetime reduction The results of the scenario with 77% coverage of primary series and 90%

coverage of booster dose and without any lifetime reduction due to invasive disease are illustrated

in Figure 4.3. In this �gure, the overall and age-speci�c incidence rates are shown over a 40-year

time horizon. Years 10 to 22 correspond to a calibration period �tting the model to Nunavut

incidence rates between 2000 and 2012. At year 30, the model diverged to two alternative settings.

The �rst setting was in the absence of vaccination. The second setting included a routine infant

vaccination schedule. The results show that the vaccination program reduced the overall incidence

of invasive disease by 63.8% on average after 10 years of vaccination from 9.97 to 3.61 cases per

100 000 population. While there is a steady decline in the incidence of invasive disease in infants

following the start of vaccination, we observed an initial increase in the incidence of disease in

other age groups. This is explained by the e�ect of partial protection conferred by primary series

in infants, who are more likely to experience carriage if infected. Because the carriage period

is signi�cantly longer than symptomatic period, it can lead to more opportunities for infection

transmission in the population. With continuous vaccination and the rise of herd immunity, the

initial increase in the incidence of other age groups is followed by a sharp decline several years

after the onset of the vaccination program. The cost-e�ectiveness analysis was performed over

the course of 10 years post vaccination. Our results show that a routine vaccination program

with 77% primary coverage reduces the overall costs of disease management by 53.4% on average

by the tenth year, from CDN $1.863 million (95% CI: $1.229–$2.519) to CDN $0.868 million (95%

CI: $0.627–$1.120) (Figure 4.4). The cost categories included in the analysis were hospitalization,

MediVac, physician visits, and long-term disability care caused by major and minor sequelae

(Figure 4.5). The largest costs are associated with hospitalization and long-term care of major

sequelae. The distribution of costs in the presence and absence of vaccine were signi�cantly
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Figure 4.3: Scenario I. Overall (A) and age-speci�c (B) incidence rates over a 40-year simulation time period.

Years 10 to 22 correspond to a calibration period �tting the model to Nunavut incidence rates between 2000

and 2012. At year 30, two alternative scenarios were run in the absence of vaccination (solid curves), and

with routine infant vaccination schedules (dashed curves).
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Figure 4.4: Scenario I. Overall average annual costs without vaccination (red) and with vaccination (blue)

over a 10-year period. Average costs and associated 95% con�dence intervals were computed by performing

nonparametric bootstrapping method over 500 independent simulations. Direct costs included physician

visits, hospitalization, MediVac, major and minor disability, and vaccination costs of doses per individual,

administration, and wastage. All costs are in 2017 Canadian dollars.

di�erent (Mann-Whitney U test, p-value < 0.001).
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Figure 4.5: Scenario I. Distribution of di�erent cost categories with their 95% con�dence intervals, obtained

using nonparametric bootstrap over 500 independent simulations without vaccination (A), and with routine

infant vaccination schedule (B). All costs are in 2017 Canadian dollars.

The associated cost-e�ectiveness plane, constructed using 5000 bootstrap replicates, of the net

costs and net e�ects (measured by DALYs) is illustrated in Figure 4.6. This �gure, based on a

$30 vaccine cost per individual (including vaccine dose, administration and wastage) derived

from current Hib vaccine prices, shows the cost-e�ectiveness results with the inclusion and

exclusion of the MediVac program. All ICER values are clustered in the dominant region of the

cost-e�ectiveness plane, suggesting that a routine infant immunization program is expected to

be very cost-e�ective in both scenarios. Further interpretation of these results suggests that in

populations with similar incidence rates, vaccination would still be very cost-e�ective even when

critical care resources for management of invasive disease are available and exorbitant costs of

MediVac are averted.

Since an Hia vaccine has not yet been developed (and licensed), vaccination costs per individual

are undetermined. We therefore performed the same analysis for a plausible range of vaccine costs

per individual from $10 to $50 per dose. The results of ICER values, illustrated in Figure 4.6, show

that our conclusions of vaccine cost-e�ectiveness for a routine infant immunization program

remain intact.

Increasing the coverage of primary series to 90% did not alter the conclusion obtained for 77%

coverage of primary vaccine. Figure 4.7 shows the rapid decline in incidence by the tenth year

of vaccination and Figures 4.8 and 4.9 illustrate the cost savings associated with the vaccination
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Figure 4.6: Scenario I. (Left) Boxplots for ICER values with the inclusion (black) and exclusion (red) of

Medivac costs, as functions of vaccine costs per individual. Each box contains 50% of data points for ICER

values between the �rst and third quartiles of the bootstrap sampling distribution. Whiskers represent

the remaining 50% data points. (Right) Cost-e�ectiveness plane using average costs (y-axis) and average

DALYs averted (x-axis) calculated on daily bases for two scenarios in the presence and absence of MediVac

program. The dashed lines indicate 95% con�dence intervals for the ICER values. The ICER values, clustered

in the southeast quadrant of the cost-e�ectiveness plane, indicate that the vaccination program is very

cost-e�ective.

programs. In Figure 4.10, ICER values are clustered in the dominant region of the cost-e�ectiveness

plane, suggesting that a routine infant immunization program is expected to be very cost-e�ective

with or without MediVac programs. Figure 4.10 describes the results of cost-e�ectiveness analysis

for a plausible range of vaccine costs.
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Figure 4.7: Scenario II. Overall (A) and age-speci�c (B) incidence rates over a 40-year simulation time

period. Years 10 to 22 correspond to a calibration period �tting the model to Nunavut incidence rates

between 2000 and 2012. At year 30, two alternative scenarios were run in the absence of vaccination (solid

curves), and with routine infant vaccination schedules (dashed curves).

With lifetime reduction Similar results for incidence and vaccine cost-e�ectiveness were

obtained by considering a reduction in lifetime expectancy due to major sequelae. The reduction
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Figure 4.8: Scenario II. Overall average annual costs without vaccination (red) and with vaccination (blue)

over a 10-year period. Average costs and associated 95% con�dence intervals were computed by performing

nonparametric bootstrapping method over 500 independent simulations. Direct costs included physician

visits, hospitalization, MediVac, major and minor disability, and vaccination costs of doses, administration,

and wastage. All costs are in 2017 Canadian dollars.
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Figure 4.9: Scenario II.Distribution of di�erent cost categories with their 95% con�dence intervals, obtained

using nonparametric bootstrap over 500 independent simulations without vaccination (A), and with routine

infant vaccination schedule (B). All costs are in 2017 Canadian dollars.

Figure 4.10: Scenario II. (A) Boxplots for ICER values with the inclusion (black) and exclusion (red) of

Medivac costs, as functions of vaccine costs per individual. Each box contains 50% of data points for ICER

values between the �rst and third quartiles of the bootstrap sampling distribution. Whiskers represent

the remaining 50% data points. (B) Cost-e�ectiveness plane using average costs (y-axis) and average

DALYs averted (x-axis) calculated on daily bases for two scenarios in the presence and absence of MediVac

program. The dashed lines indicate 95% con�dence intervals for the ICER values. The ICER values, clustered

in the southeast quadrant of the cost-e�ectiveness plane, indicate that the vaccination program is very

cost-e�ective.
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Figure 4.11: Scenario III. Overall (A) and age-speci�c (B) incidence rates over a 40-year simulation time

period. Years 10 to 22 correspond to a calibration period �tting the model to Nunavut incidence rates

between 2000 and 2012. At year 30, two alternative scenarios were run in the absence of vaccination (solid

curves), and with routine infant vaccination schedules (dashed curves).

in lifetime was modelled by a uniform distribution with minimum of 2 years and a maximum of

10 years. The results for vaccination coverages of 77% plus a 93% booster coverage are shown in
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Figure 4.12: Scenario III. Overall average annual costs without vaccination (red) and with vaccination

(blue) over a 10-year period. Average costs and associated 95% con�dence intervals were computed by

performing nonparametric bootstrapping method over 500 independent simulations. Direct costs included

physician visits, hospitalization, MediVac, major and minor disability, and vaccination costs of doses,

administration, and wastage. All costs are in 2017 Canadian dollars.
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Figure 4.11, Figure 4.12, Figure 4.13. Cost-e�ectiveness results of these scenarios are shown in

Figure 4.14. The results for vaccination coverages of 90% plus a 93% booster coverage are shown

in Figure 4.15, Figure 4.16, Figure 4.17. Cost-e�ectiveness results of these scenarios are shown in

Figure 4.18.
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Figure 4.13: Scenario III. Distribution of di�erent cost categories with their 95% con�dence intervals,

obtained using nonparametric bootstrap over 500 independent simulations without vaccination (A), and

with routine infant vaccination schedule (B). All costs are in 2017 Canadian dollars.
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Figure 4.14: Scenario III.(A) Boxplots for ICER values with the inclusion (black) and exclusion (red) of

Medivac costs, as functions of vaccine costs per individual. Each box contains 50% of data points for ICER

values between the �rst and third quartiles of the bootstrap sampling distribution. Whiskers represent

the remaining 50% data points. (B) Cost-e�ectiveness plane using average costs (y-axis) and average

DALYs averted (x-axis) calculated on daily bases for two scenarios in the presence and absence of MediVac

program. The dashed lines indicate 95% con�dence intervals for the ICER values. The ICER values, clustered

in the southeast quadrant of the cost-e�ectiveness plane, indicate that the vaccination program is very

cost-e�ective.
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Figure 4.15: Scenario IV. Overall (A) and age-speci�c (B) incidence rates over a 40-year simulation time

period. Years 10 to 22 correspond to a calibration period �tting the model to Nunavut incidence rates

between 2000 and 2012. At year 30, two alternative scenarios were run in the absence of vaccination (solid

curves), and with routine infant vaccination schedules (dashed curves).
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Figure 4.16: Scenario IV. Overall average annual costs without vaccination (red) and with vaccination (blue)

over a 10-year period. Average costs and associated 95% con�dence intervals were computed by performing

nonparametric bootstrapping method over 500 independent simulations. Direct costs included physician

visits, hospitalization, MediVac, major and minor disability, and vaccination costs of doses, administration,

and wastage. All costs are in 2017 Canadian dollars.
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Figure 4.17: Scenario IV. Distribution of di�erent cost categories with their 95% con�dence intervals,

obtained using nonparametric bootstrap over 500 independent simulations without vaccination (A), and

with routine infant vaccination schedule (B). All costs are in 2017 Canadian dollars.
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Figure 4.18: Scenario IV. (A) Boxplots for ICER values with the inclusion (black) and exclusion (red) of

Medivac costs, as functions of vaccine costs per individual. Each box contains 50% of data points for ICER

values between the �rst and third quartiles of the bootstrap sampling distribution. Whiskers represent

the remaining 50% data points. (B) Cost-e�ectiveness plane using average costs (y-axis) and average

DALYs averted (x-axis) calculated on daily bases for two scenarios in the presence and absence of MediVac

program. The dashed lines indicate 95% con�dence intervals for the ICER values. The ICER values, clustered

in the southeast quadrant of the cost-e�ectiveness plane, indicate that the vaccination program is very

cost-e�ective.

4.4 Discussion

In this chapter, we sought to investigate the cost-e�ectiveness analysis of a potential Hia vaccine

candidate. Our motivation stems from a number of studies which have reported the emergence

and increasing rates of invasive Hia in the northern regions of Canada and Alaska [109, 110, 111,

112, 113, 114, 115]. It is now established that Hia is a signi�cant health burden in northern Canada,

particularly among aboriginal communities in Nunavut, with over 90% of cases being less than

two years of age. Surveillance of IMPACT (Canada’s Immunization Monitoring Program ACTive)

study between 2007 and 2015 reports a number of invasive Hia cases in major urban centres [121],

indicating that the disease is not just a risk to indigenous or northern populations. Immunization

with Hib conjugate vaccine confers no cross-protection against Hia, and therefore timely treatment

is essential to alleviate disease outcomes [99, 123]. The incidence rates of invasive Hia disease now

underscore the urgent need to prevent primary infection, especially among pediatric population.

The experience with Hib vaccines demonstrate that even highly vulnerable populations can be

successfully protected using immunization with protein-polysaccharide conjugated vaccines.
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To this end, we developed an ABM system, which implements a population-based probabilistic ap-

proach, taking into account the herd immunity e�ects, in addition to encapsulating heterogeneities

in mixing patterns and transmission rates. We used the simulation results at the individual level

to calculate disability adjusted life years and calculate ICER values to quantify the bene�ts of a

vaccination program. We employed a nonparametric bootstrap method to infer statistical prop-

erties of ICER measuring the sensitivity of the model outcomes to parameter variations, which

indicates the robustness of our results.

Using the cost estimates associated with treatment, vaccine administration, and long-term sequelae

of Hia, our results show that the introduction of a 3-dose primary series plus a booster dose

vaccination program is (dominantly) cost-e�ective. The total costs of such immunization program

is signi�cantly less than the costs required to provide life-time care of severely debilitated survivors

of invasive Hia. Our analysis suggests an overall 53.4% reduction in costs by the tenth year of the

vaccination program, with signi�cant decreases across all cost categories, including immediate

hospitalization and long-term disability. We assumed incremental increase in vaccine e�cacy

with 50% (�rst dose), 80% (second dose), and 85% (third dose) protection against infection in

primary series, and 85%-95% protection following a booster dose. These protection levels are

conservative compared to estimates reported in previous studies, indicating that vaccine e�cacy

against invasive Hib disease after one, two or three doses of vaccine was 59%, 92% and 93%,

respectively [133].

The immunization coverage for Hia vaccine in our model is based on the estimates of Hib vaccine

coverage of 77% in Canada [135]. This coverage is even lower in northern populations with an

estimate of 68% in Nunavut [135]. These relatively low rates may be explained by the rising

prevalence of vaccine hesitancy in Canada [148]. The perceived (but untrue) lack of safety in the

Diphtheria, Tetanus, Pertussis, Hepatitis B, Polio, and Haemophilus in�uenzae type b (DTaP-HB-

IPV-Hib) combination vaccine might be a contributing factor to reduced vaccination coverage [149]

There is also evidence of reduced immunogenicity of Hib in the DTaP-HB-IPV-Hib combination

vaccine compared to the monovalent Hib vaccine [150, 151, 152]. Thus, a possible solution to

increasing coverage and conserve immunogenicity would be to decouple the Hib vaccine from

other antigens and o�er a conjugate bivalent Hib/Hia vaccine with an appropriate composition of

carrier proteins [120, 153]. In our study, increasing Hia vaccine coverage to 90% did not alter our

conclusion, and the vaccine remains dominantly cost-e�ective.

Despite the strengths of the ABM approach for cost-e�ectiveness analysis, this particular study
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has several limitations which the model did not account for, but warrant further investigation.

Currently, there is a clear lack of literature detailing the risks and �nancial burdens of long-term

sequelae caused by Hia invasive disease. Furthermore, epidemiological and clinical databases

are mainly established for invasive cases, and therefore rates of non-invasive symptomatic or

carriage remain undetermined. For missing information on Hia, we parameterized our model

with available estimates pertinent to Hib infection. There is also evidence that young children,

especially infants may experience repeated invasive episodes after the initial one [154]. Our

model does not include recurrence of invasive disease, but considers the possibility of recurrent

symptomatic infection or carriage. We expect that repeated invasive disease would argue in

favor of an Hia vaccine being cost-e�ective. Our analysis was carried out in the context of the

Canadian healthcare system with publicly funded immunization programs. We conducted this

analysis from a governmental perspective, and not a societal perspective; yet we understand

that invasive disease and its outcomes can lead to signi�cant socioeconomic burden (e.g., loss of

productivity). We also did not consider the costs associated with research and development of

a vaccine candidate prior to its availability and use in immunization programs. Moreover, our

model did not include possible costs associated with potential adverse side-e�ects of vaccination.

However, based on low adverse rates of Hib and other conjugate vaccines [155], we do not expect

the inclusion of these costs in the model to change the conclusion of our cost-e�ectiveness analysis.

Despite these limitations, our results highlight the importance of vaccination against Hia, and

indicate that a routine infant immunization program will be highly cost-e�ective. While informing

decision-making on vaccination policies, this study provides a modelling framework for future

e�orts in vaccine cost-e�ectiveness analysis. Given our results [50], we believe research and

development of an Hia vaccine candidate is an important public health investment.
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Chapter 5

Case Study 2 (Part I):
Dynamics of Zika Infection
In this chapter, we detail the construction of a multi-agent model in which two distinct types

of agents interact to generate the overall dynamics of the system. We present a case study for

Zika virus (ZIKV) infection (vector-borne disease), which employs populations of humans and

mosquitoes as agents in the chain of disease transmission. The model is utilized to uncover

important characteristics of ZIKV epidemics and transmission dynamics.

5.1 Background

ZIKV, an arbovirus from Flaviviridae family, is a mosquito-borne virus that is phylogenetically

similar to other important mosquito-borne �aviviruses such as West Nile, dengue, and yellow

fever viruses [156, 157, 158]. In most cases, the infection presents no symptoms or only mild

symptoms, including mild fever, rash, arthralgia, arthritis, myalgia, headache, conjunctivitis, and

edema [156, 157]. However, prenatal ZIKV infection has been linked to adverse pregnancy and

birth outcomes, most notably microcephaly and other serious neurological disorders [159, 160,

161, 162]. ZIKV is transmitted to humans primarily through the bites of infectious mosquitoes

in the subgenus Stegomyia, particularly Aedes aegypti [163]. However, a number of cases have

been reported as a result of sexual contacts [164, 165, 166, 167] and blood transfusion [168] which

highlights the potential signi�cance of human-to-human transmission, especially when clinical

symptoms of ZIKV infection are absent.

In 2013-2014, the largest documented outbreak of ZIKV occurred in French Polynesia with an

approximated 11% of the population seeking medical attention for ZIKV related complications

[158]. Following this initial outbreak, ZIKV spread to 69 countries and territories worldwide

[158, 169], causing the World Health Organization (WHO) to declare a public health emergency
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of international concern [170]. Ideal climate conditions and the lack of countermeasures such

as vaccination or treatment intensi�ed the ZIKV outbreaks, especially in regions such as Latin

America where the primary transmitting vector (i.e., Aedes aegypti mosquito) is endemic [171]. The

outbreaks spread to more northern latitudes, including several southern parts of the United States

[172, 173] and Canada [174]. Although ZIKV outbreaks have diminished in a�ected countries and

the WHO has ended its declaration, the risk of future outbreaks cannot be discounted. Sporadic

cases of ZIKV infection have occurred [175] and the threat of large outbreaks continues to exist

in the absence of countermeasures such as vaccination or prophylactic drugs. Although vector-

control programs can mitigate the impact of disease, ZIKV still remains an important public health

concern due to its potential to cause severe outcomes and long-term sequelae, especially in the

absence of estimates for the levels of herd immunity generated during the 2015-2016 outbreaks

and unknown transmissibility of asymptomatic compared to symptomatic ZIKV infection.

A signi�cant portion (up to 80%) of ZIKV infection is estimated to be asymptomatic without

presenting any clinical symptoms of illness [162, 176]. However, the extent to which asymptomatic

infection contributes to the overall disease incidence and its impact on the size of outbreaks has

not been quanti�ed, which introduces substantial uncertainty into modeling studies of ZIKV

transmission dynamics and control interventions. For instance, this quanti�cation is required

in understanding the levels of herd immunity in the population, which can prevent large-scale

outbreaks if it is su�ciently high.

To understand the e�ect of asymptomatic transmission to the overall ZIKV dynamics, a comprehen-

sive multi-agent ABM was constructed which encapsulates age-dependent individual attributes,

population heterogeneities, and the e�ect of herd immunity to simulates disease spread in hu-

mans through vector (i.e., mosquitoes) and sexual encounters. In particular, using a scaled-down

population with demographic characteristics resembling those of Colombia, one of the most

Zika-a�ected countries in South America, we generated simulations of the daily incidence of

ZIKV infection over a 2-year period. We also investigated the likelihood of observing a second

wave of ZIKV infection, estimated the cumulative attack rates for di�erence levels of the relative

transmissibility of asymptomatic infection (compared to symptomatic infection), and calculated

the e�ective reproduction number of ZIKV infection at the end of �rst wave. We demonstrate

that the occurrence of a second wave of ZIKV depends heavily on the relative transmissibility of

asymptomatic infection.
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5.2 Model Structure and Parameterization

The general structure of our model is a multi-ABM consisting of an in-silico population of human

and mosquito populations, characterized by a time-dependent vector of relevant variables and

parameters including their infection stage, demographic information, and disease outcomes. The

functional structure of the agents as implemented programatically are illustrated in Algorithm 3.

Each of the populations resides on a one-dimensional in-silico lattice. Due to the lack of individual

movement data, our model does not include mobility patterns (which may in�uence the level of

exposure to the vector), but we did consider individual interactions only for the implementation

of sexual transmission (to be described later). The number of human and mosquito agents in each

population was determined based on a range of estimated basic reproduction numbersR0 of ZIKV

reported in previous studies [177, 178]. Particularly, using daily counts of con�rmed ZIKV cases

obtained from the Secretary of Health of Antioquia, Colombia during January-April 2016, [177]

estimates the basic reproduction number in the range 1.9 to 2.8 with a mean of 2.216. Thus, the

abundance of mosquito, considered as the ratio of mosquito population to human population,

was varied between 2, 5 and 10 corresponding to scenarios ofR0 = 1.9,R0 = 2.2 andR0 = 2.8.

Given the short simulation time horizon, we ignored the individual births and deaths in the

populations, and therefore the population size remained constant.

susceptible asymptomatic

recovered

symptomaticincubation

risk of microcephaly decreases per trimester

transmission
model natural history

disease outcomes

bites

bites

sexual
encounter

risk of GBS

Figure 5.1: Schematic model diagram and natural history ZIKV infection.
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Algorithm 3: The dynamic variables and functions that characterize both types of agents

(human and mosquito) in the model.

1 human agent structure {
2 basic variables {
3 ID ; // ID of the human

4 health ; // infection stage of human

5 gender

6 };
7 model speci�c variables {
8 partner ; // monogamous partner of human

9 sexfrequency ; // total frequency of sex

10 sexprobability ; // probability of weekly sex

11 cumulativesex

12 };
13 associated functions {
14 func initialize()
15 func interact()
16 func update()
17 };
18 };
19 mosquito agent structure {
20 basic variables {
21 health ; // infection stage of mosquito

22 age

23 ageofdeath ; // lifespan

24 };
25 model speci�c variables {
26 numofbites ; // number of bites over lifespan

27 bitedistribution ; // how the bites are distributed

28 };
29 associated functions {
30 func initialize()
31 func interact()
32 func update()
33 };
34 } end;

The model is initialized by the corresponding functions which set up the one-dimensional lattice

environments, apply relevant demographics and sexual interaction rules, and mosquito-human

bite interactions. The evolution of time was in discrete time steps, representing a single day of
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the real-world system. This pattern was repeated over a 2-year time horizon, with 2000 Monte

Carlo iterations for each scenario. All simulations started at day “0” in a high-temperature season.

In the next few sections, we describe the general components of our model. All baseline values

of the model parameters are based on published estimates and are summarized in Table 5.1. A

schematic diagram describing the multi-agent model is illustrated in Figure 5.1.
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Figure 5.2: Population age and sex distributions of Colombia derived from census data [179].

Human Demographics For the human population, individual age and sex attributes were

sampled from relevant distributions of population demographics of Colombia (Figure 5.2). Natural

death for the human population was not implemented given the relatively short time-span of

the epidemic dynamics. An epidemiological report from the US Center for Disease Control and

Prevention indicates that about 1% of Zika cases resulted from sexual contact with travellers

to a�ected areas [180]. Previous studies [52, 181] have omitted this route of transmission for

ZIKV infection dynamics due to its low risk [182]. Here, we include the possibility of ZIKV

transmission through sexual contact in the model, and consider the range of 1–5% for the risk

of transmission to account for its variability. To implement ZIKV sexual transmission dynamics

in the model, we considered individuals above age of 15, and created partners in a monogamous

context. The frequency of sexual encounters per week for partnered individuals was sampled

from their associated distributions corresponding to sex and age of the individuals. Figure 5.3
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Figure 5.3: Age-dependent probability distributions of weekly frequency of sexual encounters among adult

men and women [183, 184].

represents weekly frequency of sexual encounters derived from a national probability sample

among adult men and women in the United States [183, 184]. For an individual of age ai years,

the partner was selected with an age in the range ai ± 5. We assumed the same risk of ZIKV

sexual transmission for infectious individuals to their susceptible partners. Demographic related

variables were static and did not change during the simulation.

Mosquito Lifespans and Biting Process Due to similarities between ZIKV and dengue infec-

tions, being primarily transmitted through the bites of infectious Aedes aegypti mosquitoes, we

relied on parameter estimates reported in the literature for dengue infection. We assumed that

mosquitoes have a lifespan [185] determined by a hazard function given by [185]

H(t) =
aebt

1 + as
b

(ebt − 1)
(5.1)

Using Equation (5.1), we generated discretized distributions for sampling lifetime of mosquitoes

shown in Figure 5.4. For the season with a high temperature, the lifetime of mosquitoes was

sampled with a = 0.0018, b = 0.3228, and s = 2.146, having the mean of 19.6 days [185]. The

longevity of mosquitoes for the season with a low temperature was sampled from the distribution

generated using a = 0.0018, b = 0.8496, and s = 4.2920, with the mean of 11.2 days. After 180

days of simulations, mosquito lifespans were sampled from the distribution corresponding to the

low temperature season. All deaths in the mosquito population were replaced, thus maintaining a
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Figure 5.4: Distributions of mosquitos lifespan during seasons with: (A) high temperature (a=0.0018,

b=0.3228, s=2.1460) and (B) low temperature (a=0.0018, b=0.8496, s=4.2920).

constant population size.

The mosquito bites were implemented as a Poisson process, with a biting rate of 0.5 per day within

the reported range 0.33–1 in previous studies [186, 187, 188]. This corresponds to an average of

1 bite every 2 days. We considered the half-life of a single mosquito as the mean of a Poisson

distribution, from which the number of bites was sampled. Bites for each mosquito were randomly

distributed over the mosquito lifetime, with a maximum of 1 bite per day. We assumed that a single

bite corresponds to a full blood meal for a mosquito and has the potential for disease transmission.

Infection Stages The human population was constructed to encapsulate several epidemiological

statuses of susceptible, exposed and incubating, infectious (i.e., symptomatic and asymptomatic),

and recovered. The infection stages of vector population included compartments of susceptible,

infected and incubating, and infectious. We assumed that recovered individuals are fully protected

against ZIKV re-infection (at least for 3 years).

Transmission Dynamics ZIKV transmission from humans to mosquitoes occurred as a result

of Bernoulli trials where the chance of success is de�ned by a transmission probability distribution.

This probability was calculated at the time of bite from a susceptible mosquito to an infectious
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human (or vice versa) by

P [M→ H] = P [H→ M] = 1− (1− βvec)
N

where βvec is the baseline probability of transmission for symptomatic cases and N is the number

of bites of a single mosquito to an infectious individual. This baseline probability of transmission

was determined by calibration of the model to the given basic reproduction number in the range

1.9 to 2.8 as estimated in [177]. Recent studies suggest that symptomatic cases reached levels

of molecular viral load that were signi�cantly higher than asymptomatic cases [189]. Although

this level depends on the time of sampling, it may be an indication of lower transmissibility of

asymptomatic infection. We therefore considered scenarios in which the reduction factor in the

transmissibility of asymptomatic infection compared with symptomatic infection was in the range

0.1 to 0.9. This was implemented as a reduction factor in transmission parameter βvec. Similarly,

any potential interventions to blunt transmission such as reducing the number of mosquitoes or

use of condoms was also included in the model as a reduction factor in βvec. Transmission values

βvec ranged from 0.2851 to 0.3947 (obtained from calibration, §5.2.1) depending on the assumed

relative transmissibility of asymptomatic infection compared to symptomatic infection from 0.9

to 0.1.

For sexual transmission of ZIKV, we considered the probability

P [H→ H] = 1− (1− βsex)

where βsex is the risk of sexual transmission per encounter. If an infectious individual was at

least 15 years old and had a sexual partner, we used Bernoulli trials for each sexual contact

where the weekly frequency of contacts with the susceptible partner was sampled from age and

sex-dependent distributions with a maximum of one encounter per day. We assumed the risk

of sexual transmission was included only during the infectious period. Although this risk may

continue for several days or weeks following recovery [190, 191], our assumption is justi�ed

due to uncertainty in the duration of sexual transmission at the individual level. The associated

pseudocode describing the transmission dynamics is illustrated in Algorithm 4.

Upon successful transfer of ZIKV, individuals experience an intrinsic incubation period (IIP) before

becoming infectious [192, 193]. We sampled the IIP for an infected individual from a log-normal

distribution with the shape and scale parameters of 1.72 and 0.21, and mean of 5.7 days (95% CI:

4–8), as estimated for dengue infection [192]. In the infectious stage, individuals are classi�ed as
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Algorithm 4: Pseudocode implementation of ZIKV transmission dynamics.

input :βvec = calibrated transmission probability

input :H = humans with an assigned partner

1 for each mosquito m do
2 if m will bite then
3 h = random(non-isolated humans) ;

4 if h.health = SUSC and m.health = INF then
5 r = rand()
6 r ≤ β =⇒ h.health = INF

7 end
8 if h.health = SYMP and m.health = SUSC then
9 r = rand()

10 r ≤ β =⇒ h.health = INF

11 end
12 if h.health = ASYMP and m.health = SUSC then
13 r = rand()
14 α = reduction factor

15 r ≤ α · β =⇒ h.health = INF

16 end
17 end
18 end
19 for each human h ∈ H do
20 p = partner ;

21 if h.health = INF and p.health = SUSC then
22 βsex = calculate probability(h)

23 if P = true then
24 βe� = h.sexprobability · (1− p.condom reduction)
25 end
26 end
27 end

either symptomatic or asymptomatic, with (40–80%, sampled uniformly) of infected individuals

experiencing asymptomatic infection without developing clinical symptoms [162, 176, 193]. The

infectious period was sampled from a log-normal distribution with the shape and scale parameters

of 1.54 and 0.12, and mean of 4.7 days (95% CI: 3.8–5.7) [194]. For a bite through which a mosquito

was infected, the extrinsic incubation period (EIP) was sampled from a log-normal distribution

with the shape and scale parameters of 2.28 and 0.21, and mean of 10 days (95% CI: 7–14) [195].

Once this period elapsed, the mosquito became infectious for its remaining lifespan.
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Table 5.1: Zika model parameters values and their associated ranges. Transmissibility values ranged

depending on the assumed relative transmissibility of asymptomatic infection compared to symptomatic

infection from 0.1 to 0.9. Risk of infection through sexual encounter was assumed to be low [182].

Parameter Description Baseline value (range) Source

Transmission rates for infection

Human to mosquito 0.2851 to 0.3947 based calibration process

Mosquito to human on relative transmission

Relative transmissibility of

asymptomatic infection

0.1 to 0.9 assumed

Human infection parameters

Intrinsic incubation period Lognormal(µ = 1.72, σ = 0.2) [178, 193]

Infectious period Lognormal(µ = 1.54, σ = 0.12) [196]

Risk of infection through sexual

encounter

1% - 5% assumed

Fraction of infected cases

experiencing asymptomatic

infection

40% - 80% [162, 176]

Mosquito lifespan and infection parameters

Lifespan (high temperature) mean: 19.6 days [185]

Lifespan (low temperature) mean: 11.2 days [185]

Extrinsic incubation period Lognormal(µ = 2.28, σ = 0.21) [195]

Number of mosquito bites Poisson(λ = mosquito half-life) [187, 188]

5.2.1 Calibration

The baseline transmission probability βvec was determined by calibrating the model to estimated

basic reproduction numbers of Antioquia, Colombia. These estimates were in the range 1.9–

2.8 with the mean of 2.2 [177, 178], determined using daily counts of con�rmed ZIKV cases.

Accordingly, we calibrated for three scenarios of basic reproduction numbersR0 = 1.9,R0 = 2.2

andR0 = 2.8. For eachR0 scenario, we considered a reduction factor in the transmissibility of

asymptomatic infection compared with symptomatic infection in the range 0.1 to 0.9.

Calibration simulations were started by seeding the simulation with 1 infected human in the IIP

stage and a fully susceptible mosquito population. To obtain the average R0, each simulation
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Figure 5.5: Calibrated probabilities of ZIKV transmission based on the reproduction number and ratio of

mosquito to human populations.

was run until this initial infected person recovered. The basic reproduction number R0 was

then calculated by counting the average number of secondary infections over 1000 Monte Carlo

simulations, generated by the initial case either through mosquito bites or sexual transmission.

This was repeated while sweeping over a range of transmission values and relative transmissions

of asymptomatic infection. A linear regression was applied to the resulting data in order to

determine βvec values, illustrated in Figure 5.5.

5.3 Results: The Role of Asymptomatic Infection

Disease outcomes and cumulative daily incidence throughout each simulation were recorded and

averaged for each scenario to estimate attack rates during an outbreak. We de�ned an outbreak if

the cumulative incidence of infection during the third disease generation was greater thanR0,

which implies a sustained transmission within the �rst two disease generation intervals with

R0 exceeding 1. Simulations in which there was no more transmission of ZIKV after the third

generation interval were excluded in estimating the attack rate. We assumed a gamma distribution

for the generation interval with the mean of 14 days and standard deviation of 2 days [197]. The
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e�ective reproduction number Re� at the end of an outbreak was estimated using the formula

Re� =

(
number of susceptibles at the end of outbreak

number of susceptibles at the start of outbreak

)
R0

In addition, the probability of a second wave was calculated by considering the fraction of

simulations that resulted in an outbreak in the second year following the outbreak in the �rst year.

Simulations were run to obtain the daily case incidence of ZIKV infection for calibrated scenarios,

corresponding to basic reproduction numbers R0 of 1.9, 2.2 and 2.8. For each scenario, we

further considered disease spread when the contribution of symptomatic ZIKV infection to

disease transmission through mosquitoes was reduced by 10%, 30% and 50%. This reduction was

implemented probabilistically for each mosquito bite when the infectious case was symptomatic.

For R0 = 2.2, Figure 5.6 shows the daily incidence of symptomatic infection over a two year

period for various levels of the relative transmissibility of asymptomatic infection and di�erent

reduction levels of Zika transmission from symptomatic cases to mosquitoes. As the contribution

of symptomatic infection to disease spread reduced (e.g., due to vector control interventions), the

occurrence of a second wave of outbreak required a higher level of the relative transmissibility of

asymptomatic infection. The probability of a second wave of infection occurring as a function of

the relative transmissibility of asymptomatic infection is illustrated in Figure 5.7.

With 10% reduction of transmission from symptomatic cases, the probability of a second wave

occurring increased from 0.19 to 0.48 when the relative transmissibility of asymptomatic infection

increased from 10% to 90%. We observed the same increasing trend (with lower probabilities) for

higher levels of transmission reduction.

We also estimated the e�ective reproduction numbersRe� and the cumulative attack rates at the

end of the �rst wave of ZIKV outbreak. Figure 5.9 shows boxplots for the range ofRe� estimates

as a function of the relative transmissibility of asymptomatic infection when R0 = 2.2 at the

onset of the outbreak. With a 10% reduction of ZIKV transmission from symptomatic cases,

the median Re� was estimated at 2.04 (95% CI: 1.64–2.18) for 10% relative transmissibility of

asymptomatic infection. The mean attack rate for this scenario (Figure 5.10) was estimated at 9%

(95% CI: 8.4%–9.4%). When the relative transmissibility increases to 90%, the medianRe� was

1.99 (95% CI: 1.50, 2.18) with an average attack rate of 11% (95% CI: 10.5%–11.3%). As the level
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Figure 5.6: Incidence of symptomatic ZIKV infection over a two year period for the �rst and second waves,

when the contribution of symptomatic ZIKV infection to disease transmission through mosquitoes was

reduced by 10% (A1–E1), 30% (A2–E2), and 50% (A3–E3). The relative transmissibility of asymptomatic

infection is 10% (A1,A2,A3), 30% (B1,B2,B3), 50% (C1,C2,C3), 70% (D1,D2,D3) and 90% (E1,E2,E3). The red

curve represents the average of sample realizations for incidence curves. Figure corresponds to model

scenario calibrated to basic reproduction numberR0 = 2.2.

of ZIKV transmission from symptomatic cases decreased, the medianRe� declined towardsR0

(Figure 5.9), giving lower attack rates for the �rst wave (Figure 5.10). Overall, we estimated attack

rates to range from 2.2% to 11% for the scenarios simulated here withR0 = 2.2. These estimates

are consistent with those reported for Colombia during outbreaks through February 2017 [52].

We also estimated the cumulative number of Zika infection resulted from the virus transmission

through sexual encounter. Figure 5.8 shows the range of these estimates for di�erent relative

transmissibility of asymptomatic infection in the absence of any control measure. For a low
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Figure 5.7: The probability of a second wave of ZIKV outbreak occurring as a function of the relative trans-

missibility of asymptomatic infection. Color bars correspond to scenarios in which infection transmission

from symptomatic cases to mosquitoes was reduced by 10% (dark blue), 30% (light blue), and 50% (grey).

Figure corresponds to model scenario calibrated to basic reproduction numberR0 = 2.2.
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Figure 5.8: Estimated range of cumulative incidence of sexual transmission during the �rst wave of ZIKV

infection as a function of the relative transmissibility of asymptomatic infection, in the absence of condom

use (blue) and 50% condom use during symptomatic infection (red). Figure corresponds to model scenario

calibrated to basic reproduction numberR0 = 2.2.
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Figure 5.9: E�ective reproduction number Re� at the end of the �rst wave as a function of the relative

transmissibility of asymptomatic infection. The contribution of symptomatic ZIKV infection to disease

transmission through mosquitoes was reduced by 10%, 30%, and 50%. Figure corresponds to model scenario

calibrated to basic reproduction numberR0 = 2.2.

relative transmissibility (10%), the median number of sexual transmission is 10.6 (95% CI: 0, 31.5),

which accounts for 1.16% of the cumulative incidence (95% CI: 0, 2.29%). When the relative

transmissibility increased to 90%, the median number of sexual transmission increased to 23 (95%

CI: 0, 77). This corresponds to 2.4% of the cumulative incidence (95% CI: 1.02, 3.88%). These

results suggest that the previous work in a deterministic context [198] may have overestimated

the upper bound of the fraction of cases due to sexual transmission.

We observed similar results for scenarios ofR0 = 1.9 andR0 = 2.8. Incidence of symptomatic

ZIKV infection over a two year period are shown in Figure 5.11 and Figure 5.12. The probability

of a second wave of ZIKV outbreak and e�ective reproduction numbers at the end of the �rst

wave are shown in Figure 5.13 and Figure 5.14. Attack rates (cumulative incidence per 10,000) of

ZIKV infection over a 2-year period are shown in Figure 5.15 and Figure 5.16. Estimated range of

cumulative incidence of sexual transmission during the �rst wave is shown in Figure 5.17. These

results suggest that the relative transmissibility of asymptomatic infection is a key parameter in
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Figure 5.10: Attack rates (cumulative incidence per 10,000) of ZIKV infection over a 2-year period for the �rst

and second waves, when the contribution of symptomatic ZIKV infection to disease transmission through

mosquitoes was reduced by 10% (A1–E1), 30% (A2–E2), and 50% (A3–E3). The relative transmissibility

of asymptomatic infection is 10% (A1,A2,A3), 30% (B1,B2,B3), 50% (C1,C2,C3), 70% (D1,D2,D3) and 90%

(E1,E2,E3). The red curve represents the mean attack rate in each scenario within its 95% con�dence interval.

Figure corresponds to model scenario calibrated to basic reproduction numberR0 = 2.2.

estimating the burden of disease through di�erent modes of transmission (i.e., mosquito bites and

sexual interactions) and evaluating the probability of a second wave of ZIKV infection.
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Figure 5.11: Incidence of symptomatic ZIKV infection over a two year period for the �rst and second waves,

when the contribution of symptomatic ZIKV infection to disease transmission through mosquitoes was

reduced by 10% (A1–E1), 30% (A2–E2), and 50% (A3–E3). The relative transmissibility of asymptomatic

infection is 10% (A1,A2,A3), 30% (B1,B2,B3), 50% (C1,C2,C3), 70% (D1,D2,D3) and 90% (E1,E2,E3). The red

curve represents the average of sample realizations for incidence curves. Figure corresponds to model

scenario calibrated to basic reproduction numberR0 = 2.8.
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Figure 5.12: Incidence of symptomatic ZIKV infection over a two year period for the �rst and second waves,

when the contribution of symptomatic ZIKV infection to disease transmission through mosquitoes was

reduced by 10% (A1–E1), 30% (A2–E2), and 50% (A3–E3). The relative transmissibility of asymptomatic

infection is 10% (A1,A2,A3), 30% (B1,B2,B3), 50% (C1,C2,C3), 70% (D1,D2,D3) and 90% (E1,E2,E3). The red

curve represents the average of sample realizations for incidence curves. Figure corresponds to model

scenario calibrated to basic reproduction numberR0 = 1.9.
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Figure 5.13: The probability of a second wave of ZIKV outbreak occurring as a function of the relative trans-

missibility of asymptomatic infection. Color bars correspond to scenarios in which infection transmission

from symptomatic cases to mosquitoes was reduced by 10% (dark blue), 30% (light blue), and 50% (grey).

Top and bottom �gures correspond to model scenario calibrated to basic reproduction numbersR0 = 2.8
andR0 = 1.9, respectively.
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Figure 5.14: E�ective reproduction number at the end of the �rst wave as a function of the relative

transmissibility of asymptomatic infection. The contribution of symptomatic ZIKV infection to disease

transmission through mosquitoes was reduced by 10%, 30% , and 50%. Top and bottom �gures correspond

to model scenario calibrated to basic reproduction numbersR0 = 2.8 andR0 = 1.9, respectively.
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Figure 5.15: Attack rates (cumulative incidence per 10,000) of ZIKV infection over a 2-year period for the �rst

and second waves, when the contribution of symptomatic ZIKV infection to disease transmission through

mosquitoes was reduced by 10% (A1–E1), 30% (A2–E2), and 50% (A3–E3). The relative transmissibility

of asymptomatic infection is 10% (A1,A2,A3), 30% (B1,B2,B3), 50% (C1,C2,C3), 70% (D1,D2,D3) and 90%

(E1,E2,E3). The red curve represents the mean attack rate in each scenario within its 95% con�dence interval.

Figure corresponds to model scenario calibrated to basic reproduction numberR0 = 2.8.
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Figure 5.16: Attack rates (cumulative incidence per 10,000) of ZIKV infection over a 2-year period for the �rst

and second waves, when the contribution of symptomatic ZIKV infection to disease transmission through

mosquitoes was reduced by 10% (A1–E1), 30% (A2–E2), and 50% (A3–E3). The relative transmissibility

of asymptomatic infection is 10% (A1,A2,A3), 30% (B1,B2,B3), 50% (C1,C2,C3), 70% (D1,D2,D3) and 90%

(E1,E2,E3). The red curve represents the mean attack rate in each scenario within its 95% con�dence interval.

Figure corresponds to model scenario calibrated to basic reproduction numberR0 = 1.9.
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Figure 5.17: Estimated range of cumulative incidence of sexual transmission during the �rst wave of ZIKV

infection as a function of the relative transmissibility of asymptomatic infection, in the absence of condom

use (blue) and 50% condom use during symptomatic infection (red). Top and bottom �gures correspond to

model scenario calibrated to basic reproduction numbersR0 = 2.8 andR0 = 1.9, respectively.

5.4 Discussion

The results above show that the relative transmissibility of asymptomatic infection is a key

epidemiological parameter that can signi�cantly in�uence disease dynamics, especially in the

context of intervention strategies. We considered scenarios in which the contribution of ZIKV

transmission from symptomatic cases is reduced as a result of isolation via hospitalization, self-

isolation, or through disease interventions. For instance, interventions to reduce exposure to

infectious bites may include mosquito avoidance through full clothing, mosquito repellents, and

spraying and larviciding. Similarly, condom use was considered as an e�ective intervention to
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prevent sexual transmission of the Zika virus. In an exploratory analysis, we found that the

use of condoms could signi�cantly reduce the risk of sexual transmission (Figure 5.8, red bars);

however, this reduction depends on the level of condom use. We observed that when interventions

are absent or their e�ectiveness is very low in blunting the contribution of symptomatic cases

to ZIKV transmission, a second wave is more likely to occur as the relative transmissibility of

asymptomatic infection increases (Figures 5.6, 5.12, 5.11). Furthermore, the occurrence of a second

wave of ZIKV infection requires higher values of the relative transmissibility as the e�ectiveness

of interventions increases.

The relative transmissibility of asymptomatic infection has also important implications for the use

of the e�ective basic reproduction numberRe� in determining the potential for a second wave. For

example, the probability of a second wave occurring is over 26% for a relative transmissibility of 0.5

when the transmission of ZIKV from symptomatic cases is reduced by 10% on average (Figure 5.6,

E1). In this case, the estimatedRe� has the median of 2.05 (95% CI: 1.71, 2.18), suggesting that the

herd immunity is relatively low to prevent a second wave (Figure 5.6, C1). In fact, the median attack

rate is estimated at 6.6% (95% CI: 6.2%, 6.9%). However, for the same relative transmissibility, the

corresponding probability for the scenario in which the transmission of ZIKV from symptomatic

cases is reduced by 30% remains below 9%. In this case, whileRe� is above 1 (median: 2.11) due

to the e�ectiveness of interventions and low attack rates of the �rst wave, the second wave is

unlikely to occur (Figure 5.6, C2). Increasing the relative transmissibility leads to higher attack

rates of the �rst wave (Figure 5.6), but may also increase the probability of a second wave unfolding

(Figure 5.7). These results indicate that the level of herd immunity in the population cannot be

accurately measured without quantitative estimates of the contribution of asymptomatic infection.

In the context of the 2015–2016 ZIKV outbreaks in the Americas, previous work suggests that Zika

spread may have contributed to the generation of herd immunity, which prevented the occurrence

of a second wave of widespread ZIKV infection in the presence of sustained control e�orts [199].

A recent stochastic model of ZIKV spread through the Americas estimates reporting and detection

rates of 1–2% [52]. Without considering the e�ect of interventions or behavioural changes due

to increased awareness, the model in [52] projects a signi�cant variation amongst attack rates

in di�erent countries, and illustrates the importance of seasonal factors in the introduction

and occurrence of multiple waves of ZIKV infections. As expected [52, 200] and shown in

our simulations, these epidemic waves coincide with the seasonal pattern of mosquito lifetime.

However, our results also indicate that the occurrence of a second wave depends on other factors,

such as transmission reduction measures that largely in�uence the contribution of symptomatic
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infection to disease spread, and more importantly, the silent transmission of the Zika virus from

asymptomatic infection. Quantifying asymptomatic transmission requires speci�c data on the

magnitude and duration of infectiousness in infected individuals, combined with measures of

exposure to biting mosquitoes during the course of infection [201]. While we do not address the

contribution of asymptomatic infection to herd immunity, our study highlights its importance in

understanding the disease dynamics and the epidemiological trends observed in countries a�ected

by the Zika virus. In a recent study [202], the authors highlight the potential for large errors that

can arise in quantifying the contribution of asymptomatic infection to the overall cumulative

incidence in an infectious disease outbreak These considerations call for further biological, clinical,

and epidemiological studies to provide estimates of the relative transmissibility of asymptomatic

infection, given its central role in determining the levels of herd immunity.

The importance of asymptomatic transmission has also been recognized in other vector-borne

diseases including dengue and malaria [203, 204]. While infectiousness and severity of the

disease are strongly correlated with viremia, outbreaks of dengue associated with low viremia

have been reported [205, 206, 207]. It has been shown that, at a given level of dengue viremia,

infected individuals with no symptoms or prior to the onset of symptoms are more infectious to

mosquitoes than those with symptoms [203]. In the case of Zika, asymptomatic cases with low

viremia may also play a role in silent transmission of infection through sexual contacts and blood

transfusion. Within the context of previous studies [52, 181, 199, 200], our results underscore the

need to characterize and quantify the transmission potential for asymptomatic ZIKV infection.

Quantitative modelling can be used to predict the risk of infection more accurately, identify

e�ective public health measures, and suggest strategies to counter vector-borne diseases with

similar characteristics.

98



Chapter 6

Case Study 2 (Part II):
Cost-E�ectiveness of a Zika Vaccine
In this chapter, we extend the previously developed ZIKV transmission model in Chapter 5 to

include vaccination dynamics and Zika-associated sequelae during pregnancy. We utilize the

extended model to inform on the socio-economic impact of a vaccination program in 18 countries

in the Americas a�ected by the 2015-2017 ZIKV outbreaks, with a particular focus on Colombia

which was one of the most ZIKV a�ected country. We perform this analysis using country-speci�c

parameter estimates extracted from published studies with a plausible range of costs of vaccine

administration.

6.1 Background

Several studies have shown the potential for ZIKV to cause severe outcomes and long-term

sequelae, including microcephaly with brain abnormalities and neurological disorders in infants,

and Guillain-Barré syndrome (GBS) in adults [160, 161, 162]. Furthermore, congenital ZIKV

syndrome has been reported to occur in the same proportion of women with asymptomatic

infection as symptomatic ZIKV infection during pregnancy [208]. These outcomes have instigated

global e�orts for the development of a safe and e�ective Zika vaccine. A prophylactic vaccine has

the potential to reduce disease incidence and eliminate birth defects of prenatal ZIKV infection in

future outbreaks.

At its �rst consultation in March 2016, the World Health Organization and United Nations Inter-

national Children’s Emergency Fund set out a framework to facilitate the development of a safe

and e�ective ZIKV vaccine, and its strategic implementation [169, 209]. They proposed a Target

Product Pro�le (TPP) for vaccination as a response measure for future ZIKV outbreaks [210]. The

TPP recommends vaccinating women of reproductive age and childbearing women to minimize
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the incidence of microcephaly and related neurological disorders in infants. In addition to women

of reproductive age, vaccination of males is also recommended, provided vaccine supply and

resources are available. The TPP describes two scenarios:

• Outbreak Response: A mass vaccination campaign of the target group to prevent ZIKV

infection and associated complications for an ongoing epidemic or an imminent outbreak.

• Routine/Endemic use: A routine immunization program for the general population.

The TPP is more oriented towards addressing the �rst scenario.

Since the development of the TPP, there are a number of vaccine candidates being investigated

using a variety of vaccine platforms [211], including puri�ed inactivated, live attenuated, viral-

vectored, virus-like particles, recombinant subunit, DNA, self-replicating RNA, and mRNA [211,

212]. Experience with the development of other �avivirus vaccines suggests that generating a

preventive Zika vaccine should be feasible [213, 214]. Indeed, several vaccine candidates have

now advanced to clinical trials and shown to be safe and well-tolerated in generating humoral

immune responses [215, 216]. However, the economic impact of a vaccine candidate will be a

major factor in decisions regarding implementation and strategic use of vaccines in immunization

programs. We sought to investigate the cost-e�ectiveness of a potential Zika vaccine candidate in

18 a�ected countries in the Americas, where the estimated attack rates (i.e., the proportion of the

population infected) during the 2015-2017 outbreaks exceeded 2% [52, 217]. We considered the

World Health Organization’s recommendation of vaccine prioritization of women of reproductive

age including pregnant women, and assessed the vaccination’s impact on prenatal ZIKV infection

and microcephaly as well as other severe brain anomalies [210].

6.2 Model Details and Parameterization

The basic agent structure from Chapter 5 was expanded to account for vaccination dynamics,

pregnancy, and microcephaly disease outcomes (Algorithm 5). We brie�y describe the model again.

For infection dynamics, human population remained strati�ed into susceptible, exposed and incu-

bating, infectious (i.e., symptomatic and asymptomatic), and recovered compartments. Similarly,

mosquito population remained divided into susceptible, exposed and incubating, and infectious

groups. The model simulated disease spread via two main modes of transmission, including vector

bites and sexual interactions. Human to mosquito transmission (or vice versa) occurred as a result

of rejection sampling-based (Bernoulli) trials, where the chance of successful transmission is given
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Algorithm 5: The extended human agent from algorithm 3 with �elds relevant to

vaccination and pregnancy dynamics.

1 human agent structure {
2 basic variables {
3 ID ; // ID of the human

4 health ; // infection stage of human

5 gender

6 };
7 model speci�c variables {
8 partner ; // monogamous partner of human

9 sexfrequency ; // total frequency of sex

10 sexprobability ; // probability of weekly sex

11 cumulativesex

12 ispregnant ; // is agent pregnant?

13 timeinpregnancy ; // total time in pregnancy

14 isvaccinated ; // is agent vaccinated?

15 protectionlvl ; // efficacy of vaccine

16 };
17 };

by P [M→ H] = P [H→ M] = 1− (1− βvec)
N

where βvec is the calibrated baseline probability

of transmission for symptomatic cases and N is the number of bites of a single mosquito to an

infectious individual. The number of bites for each mosquito was individually sampled from a

Poisson distribution with the half-life of the mosquito as the mean of the distribution. The bites

over the lifespan of a mosquito were also implemented as a Poisson process with an average of

one bite every two days, and a maximum of 1 bite per day. Sexual transmission of ZIKV was im-

plemented for individuals older than 15 years of age and in a monogamous context. The frequency

of sexual encounters for partnered individuals was sampled from age-dependent distributions.

Upon successful ZIKV transmission, susceptible individuals entered an intrinsic incubation period

(IIP), sampled for each individual from the associated distribution. After the IIP elapsed, a fraction

(sampled between 40% to 80%) of infected individuals entered asymptomatic infection without

developing clinical symptoms. A schematic diagram of the model for transmission dynamics,

natural history of ZIKV infection, and disease outcomes are provided in Figure 5.1

The model was parameterized with country-speci�c demographics (i.e., age and sex distributions

and fertility rates). Each simulation was seeded with a single case of Zika in the incubating stage

and run for a time horizon of 1 year (360 days), beginning with a high temperature season. We ran

101



2000 Monte Carlo simulations of ZIKV infection dynamics with a scaled-down population of 10 000

individuals and 50 000 mosquitos. Given the short (one-year) simulation timelines, we ignored

the individual births and deaths in the populations, and therefore the population size remained

constant. However, births following pregnancy were considered in the model implicitly for the

e�ect of microcephaly if Zika infection occurred. Disease and vaccination outcomes were recorded

throughout each simulation and used to calculate ICER values and cost-e�ectiveness acceptability

probabilities. Only epidemic curves that had at least one secondary case by the end simulations

were considered in cost-e�ectiveness analysis. Infection and disease transmission parameters

were as described previously in Table 5.1. Vaccination, disease outcomes, and cost-e�ectiveness

parameters are summarized in Table 6.1 and Table 6.4.

Calibration and Transmissibility

Based on the calibration process in the previous chapter, we initially present cost-e�ectiveness

results of a ZIKV vaccine in Colombia. This calibration was based on the estimates of the re-

production number of R0 = 2.2 and R0 = 2.8 for Antioquia, Colombia with the mean attack

rate of 8% (95% CI: 4% and 26%) [177, 178]. Given that relative transmissibility of asymptomatic

infection is a key epidemiological parameter, we therefore considered two scenarios with reduction

factors of 0.1 (low) and 0.9 (high) to quantify this relative transmissibility. We also considered

two scenarios with reduction factors of 0.1 and 0.5 for symptomatic transmission to account

for decreased mobility and lower exposure to mosquito bites through full clothing, mosquito

repellents, or possible isolation during symptomatic infection.

Later studies [52, 217] provided ZIKV burden in countries a�ected by the disease, and estimated

attack rates for these countries. We therefore expanded our cost-e�ectiveness analysis for 18

countries in the Americas, where the estimated attack rates (i.e., the proportion of the popula-

tion infected) during the 2015-2017 outbreaks exceeded 2%, by calibrating the model to these

estimated attack rates (considering both symptomatic and asymptomatic infections). Here we

assumed the same transmissibility for both asymptomatic and symptomatic infection, with any

transmission reduction in asymptomatic infection accounted for in the calibration process. In the

main simulations, these attack rates were considered as the proportion of the population immune

(i.e., representing the level of herd immunity) at the start of simulations for each country in the

evaluation of vaccination scenarios.

Calibration was performed to determine the transmissibility of the disease corresponding to

country-speci�c attack rates in the absence of any control measures. We seeded the calibration
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Table 6.1: Zika model parameters values and their associated ranges.

Parameter Description Baseline value (range) Source

Risk of microcephaly

First trimester (97 days) 5% - 14% [159, 208, 218]

Second and third trimester 3% - 5% [159, 208, 218]

Risk of Guillain-Barre Syndrome 0.025% - 0.06% [219]

Life expectancy

Without microcephaly 70 years [220]

With microcephaly 35 years [220]

Probability of survival past �rst year

of life for infants with microcephaly

0.798 [221]

Pre-existing level of herd immunity

From previous outbreaks 8% (2.2% - 11%) [52]

Vaccination coverage and e�cacy

Non-pregnant women of 15 to 49

years of age

60%

Pregnant women 80% assumed

Other individuals from 9 to 60 years

of age

10%

Preventing infection 60% - 90%

Cost-e�ectiveness rates

Disability weight for microcephaly 0.16 [147]

Annual discount rate 3% assumed

for an appropriate initial value of the transmissibility, and ran 2000 Monte-Carlo simulations. The

simulations were averaged after a 2-year time horizon to estimate the attack rate. This process was

iterated over a range of transmission values so that estimated attack rates were covered for each

country. We then performed curve �tting to the simulated data to determine the transmission

values that correspond to the country-speci�c attack rates for simulation scenarios. A general

formula of transmission values as a function of attack rates was found using Matlab’s curve �tting

toolbox. These attack rates and calibrated transmission values are shown in Table 6.2.
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Table 6.2: Estimated attack rates for the 2015-2017 ZIKV outbreaks [52, 217], and corresponding transmissi-

bility values via model calibration.

Country Attack Rate Estimated Transmissibility

Belize 21% 0.2884

Bolivia 10% 0.2761

Brazil 18% 0.2859

Colombia 12% 0.2792

Costa Rica 2% 0.2476

Ecuador 8% 0.2723

El Salvador 16% 0.2839

French Guiana 18% 0.2859

Guatemala 14% 0.2817

Guyana 15% 0.2829

Honduras 14% 0.2817

Mexico 5% 0.2641

Nicaragua 17% 0.2849

Panama 15% 0.2829

Paraguay 17% 0.2849

Peru 4% 0.2602

Suriname 22% 0.2891

Venezuela 19% 0.2868

6.2.1 Disease Outcomes and Microcephaly

There is evidence that associates the risk of microcephaly in infants to ZIKV infection in all

trimesters of pregnancy, although the risk is signi�cantly higher in the �rst and second trimesters

[208, 218]. Previous studies, considering possible over-reporting, have quanti�ed the risk of

developing microcephaly in both symptomatic and asymptomatic pregnant women [159, 222].

We considered the associated risks in a probabilistic approach to determine the microcephaly

outcome in pregnant women at the time of infection. The risk of microcephaly was highest in the

range 5% to 14% during the �rst trimester (which ends at 97 days of pregnancy), and reduced to

3% to 5% during the second and third trimesters [159, 208, 218]. We set a probability of 0.798 for

survival past �rst year of life for infants with microcephaly [221]. Infants with microcephaly who

survived their �rst year of life were assumed to have signi�cantly lower life expectancy [220, 221],
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Table 6.3: Age-speci�c fertility rates per 10,000 women of reproductive age [224].

Country Age Groups

15-19 20-24 25-29 30-34 35-39 40-44 45-49

Belize 69.7 150.9 142 98.5 49.3 16.2 1.3

Bolivia 72.6 146.9 148.6 115 80.9 36.5 8

Brazil 68.4 107.6 90.6 55.8 29.2 10.2 1.9

Colombia 57.7 112.3 96.8 65 37.7 14.7 2.7

Costa Rica 59.1 101.1 87.2 70.3 40.5 10.7 1.3

Ecuador 77.3 139.3 124.6 90.9 55.1 24.4 5.7

El Salvador 66.8 108.1 97.6 70.5 37.2 12.6 1.7

French Guiana 82.6 156.2 182.5 151.3 88.7 33 2.6

Guatemala 84 173.2 159.4 124.2 80.1 32.8 6.4

Guyana 90.1 156.3 118.7 87.2 49.7 13.1 4.7

Honduras 68.4 134.8 113.7 87.3 56.2 28.2 5.3

Mexico 66 126.4 127.5 83 44 9.2 1.8

Nicaragua 92.8 122.5 108.7 76.1 42.8 16.1 4.6

Panama 78.5 149.1 132.2 87.9 38 9.1 0.9

Paraguay 60.2 129.8 130.3 102.9 65.3 26.1 5.1

Peru 68 110 113 104 73 25 3

Suriname 48.1 117 128.6 101.1 59 24.3 1.9

and reduced by 50% from 70 years to 35 years on average [220]. In addition to microcephaly, we

considered the risk of developing GBS in ZIKV-infected individuals [219]. The risk of GBS in adults

was sampled in the range 0.025%–0.06% [219]. We also considered the e�ect of neurological

and behavioural de�cits due to microcephaly, leading to an impaired quality of life, quanti�ed

by disability weights provided in the Global Burden of Disease study [223]. The total number of

pregnant women was calculated based on the country-speci�c fertility rate of population in each

simulation (Table 6.3). Ignoring fatal complications, the number of pregnant women at any point

in time for each simulation was calculated by

number of pregnant women =

(
nWRA

1000

)
(fertility rate× 0.75 + abortion rate× 0.167) (6.1)

where nWRA is the number of women of reproductive age. We used an estimated abortion rate of

12% for WRA [225]. The probability of birth for 9 months was assumed 0.75, and the probability
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of abortion for 2 months was assumed 0.167.

Given the �exibility of an ABM, we considered trimesters to implement risk of microcephaly in

the model. At the onset of each simulation, the trimester for each pregnant woman was randomly

selected according to the respective distributions [226]. The beginning of the �rst trimester was

set for newly pregnant women during simulations. Microcephaly occurred according to the risk

associated with infection in each trimester, which was implemented at the time of infection.

6.2.2 Vaccination Dynamics

Based on the recommendations outlined in the WHO/UNICEF ZIKV Vaccine Target Product

Pro�le (TPP) for vaccine prioritization [210], we implemented vaccination in the model for women

between 15 and 49 years of age. The vaccination coverage was set to 60% for this group at the

onset of simulations. For pregnant women in the same age group, the vaccination coverage was

set to 80% throughout the simulations. We also considered a vaccination coverage of 10% for

other individuals in the population between 9 and 60 years of age, in order to reduce the risk

of disease transmission to pregnant women. This implementation strategy corresponds to the

outbreak response strategy in the TPP document [210], prioritizing women of reproductive age

(WRA).

While some ZIKV vaccine candidates have entered clinical trials, there is currently no data available

to indicate the level of vaccine-induced protection and number of vaccine doses required. We

therefore assumed that a single vaccine dose provides a protection e�cacy in the range 60% –

90% against infection, which was sampled for each vaccinated individual and implemented as a

reduction factor in disease transmission. We assumed that ZIKV infection following vaccination (if

occurred) was asymptomatic without clinical manifestation and that vaccination has no e�ect on

the risk of microcephaly in pregnant women if infection occurred. Naturally acquired immunity

was assumed to provide full protection for su�ciently long period of time, so that the risk of

re-infection within the same epidemic season was eliminated.

6.3 Cost-E�ectiveness

We conducted the cost-e�ectiveness analysis from a government (or a public-payer) perspective

and considered both short- and long-term medical costs speci�c to each country, summarized in

Table 6.4. Short-term costs included physician visits and diagnostic tests for symptomatic ZIKV
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infection in pregnant women. For microcephaly in infants and GBS in adults, we considered

lifetime direct medical costs related to hospitalization, treatment, and other associated outcomes.

Based on the estimates for other �avivirus vaccines, we considered a range of US$2 to US$100

for vaccination costs per individual (VCPI) [228], including vaccine dose, administration, and 3%

wastage.

The health impact of microcephaly and GBS on an individual’s quality of life was captured by

disability-adjusted life years (DALYs) with disability weights extracted from the Global Burden of

Disease [223]. We used disability weights associated with i.e., severe intellectual disability, which

was considered a good proxy for microcephaly, also used in previous work [220]. We understand

that the disability weights may be subject to uncertainty, such uncertainty is not quanti�ed, and

Table 6.4: Direct medical costs, and GDP per capita for a�ected countries in the Americas. Physician visits

only applied to symptomatic individuals. Data obtained from [227].

Country Cost Categories

Microcephaly GBS Physician Visit GDP per capita

Belize $103,586 $32,709 $61 $4,955

Bolivia $80,974 $25,569 $57 $3,097

Brazil $100,068 $31,599 $57 $8,694

Colombia $78,990 $24,943 $68 $5,900

Costa Rica $124,203 $39,220 $63 $11,563

Ecuador $98,759 $31,185 $60 $6,084

El Salvador $124,203 $39,220 $63 $3,719

French Guiana $91,925 $29,027 $65 $18,036

Guatemala $91,173 $28,790 $59 $4,032

Guyana $98,974 $31,253 $57 $4,325

Honduras $88,351 $27,899 $57 $2,358

Mexico $93,867 $29,640 $67 $8,867

Nicaragua $72,383 $22,856 $56 $2,109

Panama $107,620 $33,983 $63 $14,009

Paraguay $81,542 $25,749 $58 $4,094

Peru $88,850 $28,056 $61 $6,042

Suriname $95,294 $30,091 $63 $7,298

Venezuela $120,582 $38,076 $69 $7,766
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we therefore relied on established values used in previous work. For given vaccination costs

per individual (VCPI), we calculated incremental cost-e�ectiveness ratios (ICER) averaged over

simulations. Negative ICER values are always considered to be cost-saving since the intervention

provides additional bene�t over the alternative while costs less than the alternative. For positive

ICER values, we considered the World Health Organization standards of using the per-capita

gross domestic product (GDP) as a threshold of Willingness to Pay (WTP) [81]. The vaccination

program was considered very cost-e�ective and cost-e�ective for ICER values up to the per-capita

GDP and 3 times the per capita GDP, respectively. We also considered a range of WTP values to

inform decisions on vaccine cost-e�ectiveness in settings where the per-capita GDP threshold

may not be applicable. We calculated the average incremental cost-e�ectiveness ratio (ICER)

and the associated 95% con�dence interval using a non-parametric bootstrap method of 2000

replicates, and constructed the cost-e�ectiveness plane and acceptability probabilities to o�er a

visual representation of the joint distribution of costs and bene�ts. A discount rate of 3% was

applied to both the costs and DALY calculations to consider preference for present value.

6.4 Results

We considered a plausible range of $2 to $100 for VCPI to account for vaccine dose, administration,

and wastage based on the estimates for other �avivirus vaccines [228]. Our results show that for a

su�ciently low VCPI, a single-dose vaccination program is cost-saving for all countries studied

here. We describe our results below.

6.4.1 Vaccination in Colombia

We �rst present the results for Colombia since it is one of the most Zika-a�ected countries in

the northwest of South America. We considered the scenarios ofR0 = 2.2 andR0 = 2.8, taking

into consideration pre-existing herd immunity in the population. Figure 6.1 and Figure 6.2 show

disease incidence of 2000 independent realizations for a time horizon of one year. Each �gure

shows simulation-level incidence (blue curves) with and without vaccination, and in the absence

and presence of herd immunity in the population. Sub�gures correspond to di�erent relative

transmissibility of asymptomatic infection. In the next few sections, we describe the results of the

cost-e�ectiveness analysis however one may �nd a succinct summary of the analysis in Table 6.5

which summarizes simulation outcomes for VCPI in each scenario.

108



Disease incidence without vaccination

Disease incidence with vaccination

Figure 6.1: Incidence of infection for 5000 independent realizations without (top) and with (bottom)

vaccination in the absence of herd immunity (A1-A4) and in the presence of 8% herd immunity (B1-B4) in

the population. Simulations were run considering the relative transmissibility of asymptomatic infection

and the reduction of transmission by symptomatic infection to be respectively: 0.1 and 0.1 (A1,B1); 0.1 and

0.5 (A2,B2); 0.9 and 0.1 (A3,B3); 0.9 and 0.5 (A4,B4). Figure corresponds to model scenario calibrated to basic

reproduction numberR0 = 2.2.
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Disease incidence without vaccination

Disease incidence with vaccination

Figure 6.2: Incidence of infection for 5000 independent realizations without (top) and with (bottom)

vaccination in the absence of herd immunity (A1-A4) and in the presence of 8% herd immunity (B1-B4) in

the population. Simulations were run considering the relative transmissibility of asymptomatic infection

and the reduction of transmission by symptomatic infection to be respectively: 0.1 and 0.1 (A1,B1); 0.1 and

0.5 (A2,B2); 0.9 and 0.1 (A3,B3); 0.9 and 0.5 (A4,B4). Figure corresponds to model scenario calibrated to basic

reproduction numberR0 = 2.8.
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Figure 6.3: Boxplots for ICER values obtained using bootstrap method for a range of VCPI. Subplots

correspond to the scenarios without pre-existing immunity (A,B), and with an average of 8% pre-existing

immunity (C,D) in the population. The relative transmissibility of asymptomatic infection was set to 10%
(A,C) and 90% (B,D). Solid (grey) line represents the willingness-to-pay threshold corresponding to the

average of per capita GDP of Colombia between 2013 and 2017. Figure corresponds to model scenario

calibrated to basic reproduction numberR0 = 2.2.

Vaccine cost-e�ectiveness Estimated ICER values (corresponding to R0 = 2.2) are shown

in Figure 6.3. In this �gure, boxplots of calculated ICER values and their associated con�dence

intervals obtained using the non-parametric bootstrap method are shown for a range of VCPI. The

grey line corresponds to Colombia’s GDP of $6610 per DALY averted, corresponding to the average

per-capita GDP of Colombia between 2013 and 2017, which was considered as the threshold value

for cost-e�ectiveness. Subplots correspond to the scenarios of no pre-existing immunity and with

an average of 8% pre-existing immunity in the population. In a fully susceptible population, with

a 10% relative transmissibility of asymptomatic infection (i.e. Figure 6.3A), the ICER values and

their associated ranges remained negative for 100% of simulation results when VCPI is $6 or less,

thus suggesting that the vaccine is cost-saving regardless of the thresholds of WTP. For VCPI

with positive ICER values, the vaccine is very cost-e�ective with a probability of at least 90%

if VCPI is $10 or less. Increasing the threshold to $19832 (three times the average GDP) [228],
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Figure 6.4: Probabilities of vaccine being cost-e�ective for a range of VCPI and willingness-to-pay. Subplots

correspond to the scenarios without pre-existing immunity (A,B), and with an average of 8% pre-existing

immunity (C,D) in the population. The relative transmissibility of asymptomatic infection was set to 10%
(A,C) and 90% (B,D). Solid line represents the willingness-to-pay threshold corresponding to the average of

per capita GDP of Colombia between 2013 and 2017. Dashed line represents three times the average of per

capita GDP of Colombia. The red curve represents the 90% probability of vaccine being cost-e�ective for a

given VCPI. Figure corresponds to model scenario calibrated to basic reproduction numberR0 = 2.2.

our results suggest that vaccination is still cost-e�ective for VCPI up to $16. The probability of

cost-e�ectiveness is sensitive to VCPI and decreases sharply from 90% to below 10% with marginal

increase in the VCPI (Figure 6.4). When the transmissibility of asymptomatic infection is relatively

high, i.e., 90% (Figure 6.3B), then vaccination is cost-saving for VCPI up to $12, as suggested

by negative ICER values. For positive ICER values, vaccination is very cost-e�ective if VCPI is

$16 or less. For three times the GDP threshold of willingness-to-pay, vaccination is still cost-

e�ective for VCPI up to $29. We also investigated the presence of pre-existing herd immunity as a

result of previous outbreaks. We used estimates of 8% (95% CI: 4% – 26%) attack rate to account

for herd immunity in the population [52]. When the relative transmissibility of asymptomatic

infection was low (10%), the ICER values and their associated ranges are negative for VCPI up to

$4 (Figure 6.3C). In the presence of herd immunity, for positive ICER values, vaccination remains

very cost-e�ective (with a probability of at least 90%) at the $6610 threshold of WTP per DALY
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Figure 6.5: Boxplots for ICER values obtained using bootstrap method for a range of VCPI. Subplots

correspond to the scenarios without pre-existing immunity (A,B), and with an average of 8% pre-existing

immunity (C,D) in the population. The relative transmissibility of asymptomatic infection was set to 10%
(A,C) and 90% (B,D). Solid (grey) line represents the willingness-to-pay threshold corresponding to the

average of per capita GDP of Colombia between 2013 and 2017. Figure corresponds to model scenario

calibrated to basic reproduction numberR0 = 2.8.

averted if VCPI does not exceed $7. At the threshold of three times the average GDP, vaccination is

still cost-e�ective for VCPI up to $13. With the same level of herd immunity (i.e., 8%), but a higher

relative transmissibility of asymptomatic infection (90%) (Figure 6.3D), vaccination is cost-saving

(with negative ICER values) for VCPI up to $6. When ICER values are positive, vaccination is very

cost-e�ective if VCPI is $8 or less, and cost-e�ective if VCPI is $14. In Figure 6.4, the associated

probabilities of vaccine being cost-e�ective for a range of VCPI and WTP values forR0 = 2.2 are

presented for all scenarios. In this �gure, the red curve represents the 90% probability of vaccine

being very cost-e�ective for a given VCPI. Solid line represents the WTP threshold corresponding

to the average of per capita GDP of Colombia. Dashed line represents three times the average of

per capita GDP of Colombia. Subplots correspond to the scenarios with and without pre-existing

immunity and with reductions of 10% and 90% relative transmissibility of asymptomatic infection.

We also evaluated the vaccine cost-e�ectiveness scenarios in a population setting with a higher
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Figure 6.6: Probabilities of vaccine being cost-e�ective for a range of VCPI and willingness-to-pay, with

R0 = 2.8. Subplots correspond to the scenarios without pre-existing immunity (A,B), and with an average

of 8% pre-existing immunity (C,D) in the population. The relative transmissibility of asymptomatic infection

was set to 10% (A,C) and 90% (B,D). Solid line represents the willingness-to-pay threshold corresponding

to the average of per capita GDP of Colombia between 2013 and 2017. Dashed line represents three times

the average of per capita GDP of Colombia. The red curve represents the 90% probability of vaccine being

cost-e�ective for a given VCPI. Figure corresponds to model scenario calibrated to basic reproduction

numberR0 = 2.8.

transmissibility of R0 = 2.8. The estimated ICER values and associated con�dence intervals

shown in Figure 6.5. Compared toR0 = 2.2, Figure 6.5 and Figure 6.6 indicate that vaccination is

very cost-e�ective for a larger range of VCPI, in particular, when the reduction of transmission

from ZIKV symptomatic infection is relatively low (10% on average). Figure 6.5A and Figure 6.5B

show that in the absence of pre-existing herd immunity the vaccine is cost-saving (as suggested

by negative ICER values) up to a VCPI of $29 when the relative transmissibility of asymptomatic

infection is 10%, and up to $35 when the relative transmissibility of asymptomatic infection is 90%.

Similarly, Figure 6.5C and Figure 6.5D show that in the presence of herd immunity the vaccine is

cost-saving when VCPI is $16 and $20 for low and high relative transmissibility, respectively. For

positive ICER values, vaccination remains very cost-e�ective (with a probability of at least 90%)

up to VCPI of $38 and $45 in the absence of herd immunity and up to VCPI of $22 and $27 in the

presence of herd immunity, for 10% and 90% relative transmissibility of asymptomatic infection.
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In Figure 6.6, the associated probabilities of vaccine being cost-e�ective for a range of VCPI and

willingness-to-pay forR0 = 2.8 are presented.

E�ect of vaccination on microcephaly We calculated the reduction of fetal microcephaly

during pregnancy by comparing the simulation scenarios in the presence and absence of vaccina-

tion. We used cumulative number of fetal microcephaly cases following ZIKV infection during

pregnancy at the end of each simulation and calculated percentage reduction of microcephaly due

to vaccination using non-parametric bootstrap sampling. The results are presented in Figure 6.7

and Figure 6.8, in which the distribution of the percentage reduction is shown. In all scenarios

investigated for vaccine cost-e�ectiveness, the median percentage reduction of microcephaly

exceeded 64%, suggesting that a vaccine with protection e�cacy as low as 60% could signi�cantly

reduce the incidence of microcephaly.

6.4.2 Vaccination in the Americas

In addition to Colombia, we applied the model to assess the cost-e�ectiveness of a potential

ZIKV vaccine in 18 other countries in the Americas. All estimates are based on the attack rates

reported in Table 6.2 as the level of pre-existing herd immunity in the population for each country.

Incidence and attack rates (which serve to validate the model) for di�erent countries in the absence

of vaccination are illustrated in Figure 6.9 and Figure 6.10.

Our results show that for a su�ciently low VCPI, a single-dose vaccination program is cost-

saving for all countries studied here (Figure 6.11, green). In this �gure, green curves correspond

to the upper range of VCPI for which the vaccine is cost-saving, i.e. ICER < 0. Similarly, red

and black curves correspond to the upper range of VCPI for which the vaccine is very cost-

e�ective and cost-e�ective, respectively. The lowest VCPI was estimated for Costa Rica, where

Table 6.5: Upper range of VCPI (US dollar) for a Zika vaccine candidate to be cost-saving (ICER<0), very

cost-e�ective (WTP of per capita GDP) or cost-e�ective (WTP of three times per capita GDP).

0% herd immunity 8% herd immunity

RTA 10% 90% 10% 90%

R0 <$0 $6,610 $19,832 <$0 $6,610 $19,832 <$0 $6,610 $19,832 <$0 $6,610 $19,832

2.2 $6 $10 $16 $12 $16 $29 $4 $7 $13 $6 $8 $14

2.8 $29 $38 $53 $35 $45 $66 $16 $22 $35 $20 $27 $45
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Figure 6.7: Distribution of percentage reduction of microcephaly obtained using bootstrap method. Subplots

correspond to the scenarios without pre-existing immunity (A,B), and with an average of 8% pre-existing

immunity (C,D) in the population. The relative transmissibility of asymptomatic infection was set to 10%
(A,C) and 90% (B,D). The median percentage reduction is (A) 0.739 (IQR: 0.715 – 0.759); (B) 0.723 (IQR: 0.709

– 0.736); (C) 0.687 (IQR: 0.652 – 0.717); (D) 0.711 (IQR: 0.694 – 0.728). Figure corresponds to model scenario

calibrated to basic reproduction numberR0 = 2.2.

the vaccine is cost-saving with a probability of at least 90% for VCPI up to $10, derived from

the cost-e�ectiveness acceptability curves (Figure 6.12). With the same probability, the highest

VCPI was estimated at $25 for Guatemala and Panama under which the vaccine is cost-saving.

The upper range of VCPI for a cost-saving scenario in other countries is estimated between $14

and $24. For positive ICER values, the vaccine is very cost-e�ective with a probability of at

least 90% at VCPI of $16 or less in Costa Rica (mean incremental cost of $7352/DALY averted;

95% CI: $1280–$9234) and $47 or less in French Guiana (mean incremental cost of $14475/DALY

averted; 95% CI: $10016–$16653), with other countries having an upper value of VCPI in this

range (Figure 6.11, red). For the threshold of three times the per capita GDP, the vaccine is still

cost-e�ective (with a probability of at least 90%) with VCPI up to $24 (mean incremental cost

of $4829/DALY averted; 95% CI: $2395–$6068) in Nicaragua and $96 (mean incremental cost of
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Figure 6.8: Distribution of percentage reduction of microcephaly obtained using bootstrap method, with

R0 = 2.8. Subplots correspond to the scenarios without pre-existing immunity (A,B), and with an average

of 8% pre-existing immunity (C,D) in the population. The relative transmissibility of asymptomatic infection

was set to 10% (A,C) and 90% (B,D). The median percentage reduction is (A) 0.699 (IQR: 0.687 – 0.712); (B)

0.695 (IQR: 0.687 – 0.704); (C) 0.666 (IQR: 0.649 – 0.683); (D) 0.670 (IQR: 0.658 – 0.682). Figure corresponds

to model scenario calibrated to basic reproduction numberR0 = 2.8.

$49934/DALY averted; 95% CI: $36523–$53661) in French Guiana, with other countries having an

upper value of VCPI in this range (Figure 6.11, black). The VCPI for scenarios of cost-saving, very

cost-e�ective, and cost-e�ective for each country are provided in Table 6.6. The corresponding

incremental cost per DALY averted with 95% con�dence intervals are reported in Table 6.7. The

associated cost-e�ectiveness acceptability curves are presented in Figure 6.12. In this �gure, the

red curve represents the 90% probability of vaccine being cost-e�ective for a given VCPI. Solid

line represents the willingness-to-pay threshold corresponding to the average of per capita GDP

of each country between 2015 and 2017. Dashed line represents three times this average of per

capita GDP.

We also calculated the reduction of fetal microcephaly during pregnancy by comparing the
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Figure 6.9: Incidence of ZIKV infection for each country with estimated attack rates for two years in the

absence of vaccination (corresponding to the main scenario). The black curve shows the average of 2000

realizations.
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Figure 6.10: Attack rates (average of 2000 realizations) of ZIKV outbreaks for two years in the absence of

vaccination (corresponding to the main scenario).
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Figure 6.11: Upper range of VCPI (US dollar) for the scenarios of cost-saving (green), very cost-e�ective

(red), and cost-e�ective (black). All estimates are based on the level of pre-existing herd immunity in the

population for each country.

simulation scenarios in the presence and absence of vaccination. We found a marked reduction

in cases of microcephaly within the range of 74%–92% due to vaccination, with the median

percentage reduction exceeding 80% in all countries (Figure 6.13). This suggests that a ZIKV

vaccine with a prophylactic e�cacy as low as 60% could signi�cantly reduce the incidence of

microcephaly.

Given that the attack rates in future outbreaks may be di�erent from those estimated for the

2015–2017 outbreaks, we further conducted cost-e�ectiveness analysis for two additional scenarios

(Table 6.8). As such, we conducted cost-e�ectiveness analysis for two additional scenarios. In the

�rst scenario, we calibrated the model to an increase of 4% to the estimated attack rate for each

country. In the second scenario, the model was calibrated to a 4% decrease in the estimated attack

rates, with a lower bound of 1%, for each country. The levels of pre-existing herd immunity at the

onset of simulations remained the same as those in Table 6.2. In the scenario with increased attack

rates, we found that vaccination is very cost-e�ective with a probability of at least 90% at VCPI of

$20 or less in Nicaragua (mean incremental cost of $1067/DALY averted) and $50 or less in French

Guiana (mean incremental cost of $14914/DALY averted). The upper VCPI for other countries
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Figure 6.12: Probabilities of vaccine being cost-e�ective in 18 Latin American countries for a range of VCPI

and willingness-to-pay. Solid line represents the willingness-to-pay threshold corresponding to the average

of per capita GDP of each country in 2015 and 2016. Dashed line represents three times the average of per

capita GDP of each country. The red curve represents the 90% probability of vaccine being cost-e�ective

for a given VCPI

ranged between these values (Figure 6.14). Similarly, using three times the per-capita GDP, the
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Table 6.6: Upper range of VCPI (US dollar) for a Zika vaccine candidate to be cost-saving (ICER<0), very

cost-e�ective (threshold of the per capita GDP) or cost-e�ective (threshold of 3× the per capita GDP).

Cost Saving Very Cost-E�ective Cost-E�ective

Country Herd immunity VCPI GDP VCPI 3×GDP VCPI

Belize 21% $18 $4955 $23 $14865 $34

Bolivia 10% $22 $3097 $27 $9291 $36

Brazil 18% $14 $8694 $21 $26082 $38

Colombia 12% $16 $5900 $23 $17700 $35

Costa Rica 2% $10 $11563 $16 $34689 $29

Ecuador 8% $24 $6084 $32 $18252 $48

El Salvador 16% $22 $3719 $26 $11157 $34

French Guiana 18% $23 $18036 $47 $54108 $96

Guatemala 14% $25 $4032 $32 $12096 $45

Guyana 15% $18 $4325 $23 $12975 $33

Honduras 14% $21 $2358 $23 $7074 $29

Mexico 5% $17 $8867 $26 $26601 $44

Nicaragua 17% $16 $2109 $18 $6327 $24

Panama 15% $25 $14009 $43 $42027 $82

Paraguay 17% $19 $4094 $23 $12282 $32

Peru 4% $16 $6042 $22 $18126 $35

Suriname 22% $14 $7298 $21 $21894 $37

Venezuela 19% $21 $7766 $29 $23298 $47

vaccine is still cost-e�ective for a VCPI up to $26 in Nicaragua and up to $98 in French Guiana

(Figure 6.14). In the scenario with decreased attack rates, the results show that vaccination was

very cost-e�ective with a VCPI of $4 or less in Mexico (mean incremental cost of $3054/DALY

averted) and $41 or less in French Guiana (mean incremental cost of $15037/DALY averted), with

other countries having an upper VCPI value in this range (Figure 6.15). The median percentage

reduction of microcephaly in these scenarios exceeded 75% with vaccination (Technical Appendix,

Figure A8). Summaries of the cost-e�ectiveness analysis for both scenarios of higher and lower

attack rates are provided in Table 6.9.
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Table 6.7: Mean ICER values with 95% con�dence intervals corresponding to VCPI values under which

vaccination program is at least 90% cost-e�ective in each country. The per capita GDP and three times the

per capita GDP were used as thresholds for very cost-e�ective and cost-e�ective analysis, respectively.

The dollar values in ‘()’ indicates that the 95% CI extends to negative ICER values, which is considered

cost-saving.

Very cost-e�ective Cost-e�ective

Country VCPI ICER 95% CI VCPI ICER 95% CI

Belize $23 $3,516 $144–$4,575 $34 $12,092 $7,379–$15,050

Bolivia $27 $1,827 $(872)–$2,669 $36 $7,038 $4,249–$9,745

Brazil $21 $6,356 $1,596–$7,223 $38 $21,725 $14,938–$27,441

Colombia $23 $4,184 $1,284–$5,349 $35 $14,086 $9,447–$16,736

Costa Rica $16 $7,352 $1,280–$9,234 $29 $29,061 $15,459–$30,561

Ecuador $32 $4,451 $1,343–$5,560 $48 $15,581 $10,338–$17,576

El Salvador $26 $1,379 $(1,884)–$2,826 $34 $8,177 $3,408–$9,785

French Guiana $47 $14,475 $10,016–$16,653 $96 $49,934 $36,523–$53,661

Guatemala $32 $2,544 $148–$3,944 $45 $9,786 $6,556–$11,859

Guyana $23 $2,270 $(285)–$3,717 $33 $10,034 $5,884–$12,262

Honduras $23 $892 $(1,711)–$1,705 $29 $4,992 $1,623–$6,142

Mexico $26 $6,362 $2,564–$7,445 $44 $21,652 $14,717–$24,875

Nicaragua $18 $595 $(1,465)–$1,231 $24 $4,829 $2,395–$6,068

Panama $43 $11,001 $7,016–$13,486 $82 $37,247 $29,096–$43,898

Paraguay $23 $2,348 $(305)–$3,332 $32 $9,903 $5,028–$10,670

Peru $22 $4,332 $1,087–$4,870 $35 $14,028 $9,262–$16,432

Suriname $21 $4,434 $1,505–$6,235 $37 $18,705 $12,714–$22,331

Venezuela $29 $4,697 $623–$6,590 $47 $19,170 $13,160–$23,579
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Figure 6.13: Boxplots for percentage reduction of microcephaly due to vaccination. The median is shown

by the red circle.

Table 6.8: Attack rates for additional simulation scenarios. Attack rates were increased and decreased by

4%, with a lower bound of 1%. The model was calibrated to country-speci�c attack rate.

Main Scenario Additional Scenarios

Country Attack rate (AR) AR+ 4% AR− 4%

Belize 21% 25% 17%

Bolivia 10% 14% 6%

Brazil 18% 22% 14%

Colombia 12% 16% 8%

Costa Rica 2% 6% 1%

Ecuador 8% 12% 4%

El Salvador 16% 20% 12%

French Guiana 18% 22% 14%

Guatemala 14% 18% 10%

Guyana 15% 19% 11%

Honduras 14% 18% 10%

Mexico 5% 9% 1%

Nicaragua 17% 21% 13%

Panama 15% 19% 11%

Paraguay 17% 21% 13%

Peru 4% 8% 1%

Suriname 22% 26% 18%

Venezuela 19% 23% 15%
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Figure 6.14: Upper range of VCPI (US dollar) for the scenarios of cost-saving (green), very cost-e�ective

(red), and cost-e�ective (black). Estimates correspond to simulations calibrated to an increase of 4% in

estimated attack rates for the 2015-2017 outbreaks.
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Figure 6.15: Upper range of VCPI (US dollar) for the scenarios of cost-saving (green), very cost-e�ective

(red), and cost-e�ective (black). Estimates correspond to simulations calibrated to an decrease of 4% in

estimated attack rates for the 2015-2017 outbreaks.
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Table 6.9: Mean ICER values with 95% con�dence intervals corresponding to VCPI values under which

vaccination program is at least 90% cost-e�ective in each country. The per capita GDP were used as

thresholds for cost-e�ective analysis. The dollar values in ‘()’ indicates that the 95% CI extends to negative

ICER values, which is considered cost-saving.

Simulations calibrated to an increase of 4% in estimated attack rates.

Very cost-e�ective Cost-e�ective

Country VCPI ICER 95% CI VCPI ICER 95% CI

Belize $24 $2689 $(1194)–$3773 $34 $10892 $6136–$14590

Bolivia $30 $1189 $(1334)–$2164 $40 $6920 $4089–$8997

Brazil $27 $6589 $2553–$7720 $45 $21841 $15274–$26353

Colombia $26 $4181 $1458–$5539 $38 $13721 $9371–$16483

Costa Rica $40 $9072 $4951–$12098 $70 $30013 $22287–$33976

Ecuador $39 $3618 $973–$5276 $58 $15088 $10878–$18087

El Salvador $25 $1098 $(2753)–$2733 $34 $7545 $2781–$10230

French Guiana $50 $14914 $10328–$18865 $98 $49466 $34961–$53192

Guatemala $36 $2197 $(200)–$3521 $51 $10076 $6620–$11936

Guyana $27 $2691 $(250)–$4032 $37 $9665 $5907–$11632

Honduras $30 $1078 $(1445)–$1723 $38 $5439 $2953–$6806

Mexico $43 $7099 $4304–$8866 $70 $23159 $18270–$27829

Nicaragua $20 $1067 $(757)–$1789 $26 $5069 $2673–$6063

Panama $48 $10427 $6843–$13151 $88 $34894 $27744–$42041

Paraguay $25 $2662 $5–$3705 $35 $9702 $5960–$11045

Peru $39 $4398 $1577–$5465 $60 $15565 $11540–$17911

Suriname $21 $4820 $798–$6335 $35 $17716 $11223 –$21123

Venezuela $34 $4820 $1944–$7838 $51 $19982 $11823–$21092

Simulations calibrated to an increase of 4% in estimated attack rates.

Very cost-e�ective Cost-e�ective

Country VCPI ICER 95% CI VCPI ICER 95% CI

Belize $21 $2344 $(812)–$3581 $32 $12128 $7102–$14, 544

Bolivia $16 $909 $(1459)–$2077 $23 $7207 $3196–$8, 751

Brazil $21 $6720 $2642–$8089 $36 $20704 $14484–$24808

Colombia $16 $3465 $266–$4008 $27 $14476 $9076–$17082

Costa Rica $9 $6661 $(741)–$8037 $18 $25476 $12133–$38507

Ecuador $19 $4241 $688–$5265 $29 $13608 $8413–$16282

El Salvador $20 $1183 $(1846)–$2852 $27 $8404 $3222–$9843

French Guiana $41 $15037 $10339–$17905 $84 $48232 $37689–$57894

Guatemala $25 $2445 $(447)–$3601 $35 $9639 $5399–$11411

Guyana $17 $2130 $(1099)–$3429 $25 $10149 $5292–$13610

Honduras $16 $946 $(1896)–$1676 $21 $5276 $1658–$7219

Mexico $4 $3054 $(5722)–$2798 $9 $19550 $3620–$23927

Nicaragua $14 $802 $(1638)–$1335 $19 $4798 $2246–$6295

Panama $29 $11311 $5967–$13785 $54 $34281 $24242–$41282

Paraguay $19 $2627 $(29)–$3344 $27 $8492 $5258–$10724

Peru $6 $2594 $(2114)–$2779 $11 $13487 $3063–$17903

Suriname $18 $5057 $1164–$6269 $30 $16836 $10634–$20560

Venezuela $23 $4915 $808–$6501 $39 $19481 $12735–$23902
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Figure 6.16: Boxplots for the percentage reduction of microcephaly due to vaccination for scenarios: (A)

an increase of 4%; and (B) a decrease of 4% to estimated attack rates for the 2015–2017 outbreaks. The

median is shown by the red circle.
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6.5 Discussion

In this chapter, we evaluated the cost-e�ectiveness of a Zika vaccine candidate from a government

perspective under a number of plausible scenarios. We utilized the comprehensive ABM developed

in Chapter 5 by extending it to include vaccination dynamics. Our analysis considered: (i) in a

Colombian population setting where the model was calibrated to estimated basic reproduction

numberR0 of Colombia, taking into account existing herd-immunity from previous outbreaks

and relative transmission of asymptomatic infection, and (ii) 17 other countries in the Americas

where the model was calibrated to attack rates estimated for the 2015-2017 outbreaks. Our analysis

determined a range of VCPI within which vaccination is cost-saving, very cost-e�ective, and

cost-e�ective for these countries. Although a number of factors (e.g., the level of pre-existing herd

immunity, attack rate, costs associated with the management of Zika infection and its outcomes,

and the WTP) are critical in determining VCPI for cost-e�ectiveness, our results show that targeted

vaccination of women of reproductive age would be cost-e�ective, and even cost-saving, in all

countries studied here if VCPI is su�ciently low. Furthermore, vaccination with a protection

e�cacy in the range 60% – 90% signi�cantly reduces the incidence of microcephaly, with a median

percentage reduction that exceeds 75% in simulated scenarios.

Cost-e�ectiveness analysis was based on using direct medical cost estimates associated with

the treatment of symptomatic Zika infection, GBS cases, and long-term neurological sequelae

caused by microcephaly condition. Although the likelihood of cost-e�ectiveness was shown

to be sensitive to willingness-to-pay and vaccination costs, the largest range of VCPI for cost-

e�ectiveness corresponded to scenarios in which the population is fully susceptible or the e�ect

of other interventions to blunt ZIKV transmission is relatively low. However, non-pharmaceutical

measures (including vector control programs), increased access to contraception [229], and pre-

existing herd e�ects as a result of naturally acquired immunity in previous outbreaks could decrease

the range of VCPI for cost-e�ectiveness, requiring a signi�cantly higher willingness-to-pay for

vaccination to prove cost-e�ective. Previous work suggests that a prophylactic vaccine with a

protection e�cacy of 75% reduces the incidence of prenatal infections by at least 94% if 90% of

women of reproductive age are vaccinated [224] These estimates are higher than what our model

predicts (with a median percentage reduction between 75% and 88%) in similar scenarios, which is

expected given the deterministic nature of model used in the previous study [224]. Nevertheless,

the �ndings indicate that targeted vaccination is an important preventive measure for mitigating

the impact of ZIKV infection in future outbreaks.
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The strength of our study relies on the evaluation of cost-e�ectiveness for countries a�ected by

Zika with estimated attack rates exceeding 2% within a single modelling framework. Our analysis

was based on an individual-level stochastic approach, accounting for parameter uncertainty and

heterogeneities in disease transmission. Due to its dynamic nature, the simulation model also

takes into account the accruing herd immunity during the epidemic that results from the indirect

protection e�ects of naturally acquired immunity in the population.

The results presented in this chapter should be considered within the context of study limitations.

First, we note that our analysis was based on estimates of attack rates during the 2015-2017 ZIKV

outbreaks in the Latin and South American countries [52, 217, 227], which were regarded as the

level of pre-existing herd immunity in the simulations. Should this level fall at the time of vaccine

availability in future outbreaks, the expected changes in the VCPI range for cost-e�ectiveness

require further analysis. Second, although the initial phase of clinical trials indicates high levels

of neutralizing antibodies [215, 216], the range of vaccine e�cacy is not ascertained, and our

estimates relied on the assumption that a single dose of vaccine would provide a protection

e�cacy of 60% to 90%. The e�cacy data can also provide information on the number of vaccine

doses required, which would a�ect the vaccination costs per individual. We also assumed that

the risk of microcephaly is independent of vaccine-induced immunity in a vaccinated pregnant

woman if infection occurred. In the absence of pre-existing immunity, clinical and epidemiological

studies indicate that a signi�cant portion (up to 80%) of ZIKV-infected individuals experience

asymptomatic infection without presenting clinical symptoms. We assumed that vaccine-induced

immunity further reduces the chance of clinical manifestation (if infection occurred), and therefore

considered infection following vaccination to be asymptomatic.

We assumed that during the epidemic, pregnant women are vaccinated (with a coverage of

80%) early in their �rst trimester that is associated with the highest risk of microcephaly. Yet,

we understand that due to various factors, including access to healthcare resources and late

recognition of pregnancy, vaccination may not occur prior to any potential ZIKV infection during

pregnancy. The risk of microcephaly following vaccination was not altered if infection occurred

but the disease was considered to be asymptomatic. However, in terms of costs associated with

microcephaly (which dominate), we expect the results of cost-e�ectiveness analysis to hold because

we did not alter the risk of microcephaly in the presence of vaccine-induced immunity in pregnant

women. Without the outcomes of clinical trials, our model did not consider the possible adverse

side e�ects of vaccination and their associated costs. Although, other neurological disorders have

been reported in association with ZIKV infection (including encephalitis, meningoencephalitis,
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myelitis, and optical neuritis), we considered only microcephaly and GBS outcomes. Finally, in

the context of cost-e�ectiveness analysis from a government perspective, our analysis excluded

indirect costs such as loss of productivity and earnings in families in�icted by microcephaly

and GBS, yet we understand that the lifetime indirect costs related to the care of children with

microcephaly could be substantial. The validation of the above assumptions requires e�cacy data

from clinical trials, which are currently lacking.

Despite these limitations that merit further investigation as relevant information and data become

available, we have provided estimates for Zika vaccine cost-e�ectiveness to inform decision makers

for the implementation of a targeted vaccination program. The �ndings suggest that a vaccine has

the potential to signi�cantly reduce the health and economic burden of ZIKV infection in at-risk

populations.
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Chapter 7

Closing Remarks and Future Directions
Cost-e�ective analysis, as part of health economics, is widely used in many settings across the

world to evaluate the potential impact of healthcare interventions and technologies, often in the

face of budget constraints, scarce resources, and even ethical considerations. Traditional economic

evaluations often utilize clinical trials and observational studies which are inadequate in many

aspects to support decision-making processes, largely because of limited follow-up time-horizon

and small sample sizes. In order to address these limitations for the long-term consequences of

health intervention strategies, mathematical and computational models are needed to extrapolate

results to a larger scale and a longer timeframe. The choice on the type of model, including

explicit and implicit assumptions on system dynamics and parameters, depends on the context

of the intervention or technology [230]. Incorrect assumptions or an inappropriate choice of

model can lead to suboptimal decisions at best, with potential negative consequences in the

quality of life or wasted resources. We found that most economic evaluations are conducted using

aggregate frameworks such as state-transition (Markov) models or compartmental models with

di�erential equations [231]. While these approaches span a vast literature, they often impose

restrictive limitations such as homogeneous populations and linear interactions, which hinders

their application to communicable disease dynamics. Moreover, aggregate models often adopt

assumptions that are inaccurate or inadequate to faithfully represent the underlying system

dynamics and may generate spurious results.

In this thesis, we described a more comprehensive modelling framework in which traditional cost-

e�ectiveness analysis is integrated with an ABM computational system to overcome the limitations

of other methodologies. ABM can adopt less stringent assumptions and have a “bottom-up”

approach in which system dynamics are generated as a result of modelling at the individual level.

For example, ABM can capture indirect e�ects such as herd immunity without explicitly having to

model them. This is an important characteristic that is overlooked in many Markov models with

cohort structure for evaluating vaccination e�ects. As a result, the data-generating process of an

ABM captures non-linear interactions among agents and feedback loops. In our framework, we
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integrate this data-generating process into cost-e�ectiveness analysis, thus avoiding the inherent

di�culties of traditional methods, such as censored data and homogeneity.

In order to test the robustness of our framework, we considered two case studies: (i) a human-to-

human infection transmission (i.e., Haemophilus infuenzae) model and (ii) a vector-borne disease

(i.e., Zika) model. In each case, we developed a disease-speci�c agent-based model to determine

how a potential vaccine candidate may a�ect the epidemic dynamics, but also present their �rst

cost-e�ectiveness analysis and implications for vaccination strategies in di�erent population

settings. For a routine vaccination against Haemophilus infuenzae serotype ‘a’, our analysis

suggests a signi�cant reduction in costs by the tenth year of the vaccination program, with

signi�cant decreases across all cost categories, including immediate hospitalization and long-term

disability. The total costs of the immunization program are signi�cantly lower than the costs

required to provide life-time care of severely debilitated survivors of invasive Hia disease. Similarly,

for a potential vaccination against Zika virus, our analysis shows that targeted vaccination of

women of reproductive age would be cost-e�ective (and even cost-saving) for su�ciently low

vaccine costs per individual in many countries in the Americas a�ected by previous Zika outbreaks.

We also found that a Zika vaccine can provide substantial bene�ts by reducing the incidence of

microcephaly, which leads to life-long sequelae with reduced quality of life.

Given the results of our case studies, we believe this framework advances the research e�orts in

understating the mechanisms of disease processes and evaluating the potential impact of health

intervention strategies in a more systematic manner, and with a higher level of realism and

�exibility. Our results show that the empirical reliability generated by our model can be far more

informative than traditional aggregate models. As part of further studies in near-term research

e�orts, this framework can be extended to include a number of other important investigations in

health economics of interventions or technologies, such as:

• Cost-bene�t analysis, which examines both costs and consequences in monetary terms.

• Cost-utility analysis, which examines costs and a single consequence in the form of a

health-related quality of life measure.

• Cost-minimization analysis, which examines the least costly consequence among alternatives

with equivalent consequences.

• Cost-consequence analysis, which examines the costs and multiple consequences in their

natural units without aggregation into a single consequence.
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• Input cost analysis, which examines the costs of all alternatives but not their consequences.

• Cost-related outcome analysis, which examines the consequences of all alternatives in

monetary terms but not the input costs incurred.

Despite the growing application of ABM in various �elds of research beyond health economics,

a number of limitations exists that need to be addressed in future work. For example, while the

computational aspects of ABM have been detailed in existing literature, the underlying theoretical

basis has rarely been used in its construction. As a consequence, the advantage of ABM to capture

realistic features of real-world phenomena is undermined by the lack of dynamical systems tools

for their analysis. In §2.4, we introduced a brief mathematical formalism in terms of recursive

functions, but little is gained in terms of analytical power without methods like bifurcation and

stability analyses that are well-established for investigating di�erential equation-based models.

Recently, however, it has been established that the basic mathematical nature of many agent-based

models can be derived from a sequential dynamical system. This characterization makes ABM

amenable to powerful symbolic analysis, in which the language and tools of mathematical theory

are used to examine the system. Although it is beyond the scope of this thesis, the theory of

sequential dynamical systems and their application to ABM will be a subject of future studies

within the framework proposed here.
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