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Homotopy groups of homotopy fixed point spectra
associated to En

ETHAN S DEVINATZ

We compute the mod.p/ homotopy groups of the continuous homotopy fixed point
spectrum E

hH2

2
for p > 2 , where En is the Landweber exact spectrum whose coeffi-

cient ring is the ring of functions on the Lubin–Tate moduli space of lifts of the height
n Honda formal group law over Fpn , and Hn is the subgroup W F�

pn Ì Gal.Fpn=Fp/

of the extended Morava stabilizer group Gn . We examine some consequences of this
related to Brown–Comenetz duality and to finiteness properties of homotopy groups
of K.n/�–local spectra. We also indicate a plan for computing ��.E

hHn
n ^V .n�2// ,

where V .n�2/ is an En�–local Toda complex.

55Q10, 55T25

Introduction

Let En denote the Landweber exact spectrum with coefficient ring

En� DW FpnJu1; : : : ;un�1KŒu;u�1�;

where W Fpn denotes the ring of Witt vectors with coefficients in the field Fpn of pn

elements, and whose BP�–algebra structure map r W BP�!En� is given by

r.vi/D

8̂<̂
:

uiu
1�pi

i < n

u1�pn

i D n

0 i > n

where vi 2 BP� is the i th Hazewinkel generator. In particular, each ui has degree 0

and u has degree �2. En is a commutative ring spectrum, and Morava theory tells
us that the group of ring automorphisms of En is isomorphic to the profinite group
Gn D Sn Ì Gal, where Sn denotes the group of (not necessarily strict) isomorphisms
of the height n Honda formal group law over Fpn , and Gal is the Galois group of
Fpn=Fp . A priori, Gn acts on En only in the stable category, but Hopkins and Miller
(later improved by Goerss and Hopkins) proved that this can be made an honest action
in an appropriate point set category of spectra (see Goerss and Hopkins [9] and Rezk
[14]). “Continuous homotopy fixed point spectra” may also be constructed [7]: if G is
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132 Ethan S Devinatz

a closed subgroup of Gn , the continuous homotopy G fixed point spectrum will be
denoted by EhG

n ; if G is finite, this spectrum agrees with the ordinary homotopy fixed
point spectrum. Moreover, E

hGn
n ' LK.n/S

0 , the K.n/�–localization of S0 , EhG
n

has the expected functorial properties, and there is a strongly convergent “continuous
homotopy fixed point spectral sequence”

H�c .G;E
�
n X /) .EhG

n /�X

for any spectrum X . (H�c .G;E
�
n X / denotes the continuous cohomology of G with

coefficients in the profinite G –module E�n X .)

The hope of this paper is to make some headway towards the computation of ��EhG
n ,

for G a closed subgroup of Gn . At first sight, this program seems impossible: the
formulas for the action of (most elements of) Gn on En� are extremely complicated
(see Devinatz and Hopkins [6]), making the computation of H�c .G;En�/ apparently
inaccessible. However,

H�c .Gn;N /D Ext�Mapc.G;En�/
.En�;N /;

where .En�;Mapc.G;En�// is the complete Hopf algebroid defined using the action
of G on En� (see for example Devinatz [5]). Since Mapc.G;En�/ is a quotient of

Mapc.Gn;En�/DEn� b̋ BP�BP�BP b̋ BP�En� �E^n�En;

one may try to use the Hopf algebroid structure maps in BP�BP together with several
Bockstein spectral sequences to go from, for example, H�c .G;En�=In/ to H�c .G;En�/.
As usual, In is the maximal ideal .p;u1; : : : ;un�1/ in En� .

Let Hn DW F�pn Ì Gal� Gn , where W F�pn is the subgroup of Sn consisting of the
diagonal matrices (see Section 1), and let M.p/ denote the mod.p/ Moore spectrum.
We compute ��

�
E

hH2

2
^M.p/

�
for all primes p > 2 (Theorem 3.8). Of course,

��LK.2/M.p/ is known (Shimomura [15; 16]) for p > 2, so it is unclear if our
computation yields any new homotopy information. Our computation is, however,
much simpler and already indicates the necessity of “p–adic suspensions” in the Gross–
Hopkins work on Brown–Comenetz duality (Remark 3.9). Moreover, we believe that
computations such as ��

�
E

hHn
n ^V .n�2/

�
—recall that the Toda complex V .n�2/ ex-

ists En�–locally whenever p is sufficiently large compared to n—should be accessible
to more skilled calculators.

Even when a complete calculation of ��EhG
n is unattainable, partial information can

lead to interesting consequences. For example, it is a long-standing conjecture that
��LK.n/S

0 is a module of finite type over the p–adic integers Zp . (This conjecture
is known to be true for n D 1, and, if p � 3, for n D 2 Shimomura and Wang
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[17], Shimomura and Yabe [18]. The reader may also find Hovey and Strickland [12,
Theorem 15.1] interesting, where it is shown that ��LK.2/S

0 is not of finite type—at
least when p � 5—if the grading is taken to be over the Picard group of invertible
spectra in the K.2/�–local category.) By a thick subcategory argument—see Devinatz
[3] for a discussion of this in the En�–local category—if ��LK.n/X is of finite type
for some X in the En�–local category, then ��LK.n/Y is of finite type for any finite
Y such that

fm� n WK.m/�Y ¤ 0g � fm� n WK.m/�X ¤ 0g:

This in turn only requires that we prove that ��.EhG
n ^X / is of finite type for some

closed subgroup G of Gn for which there exists a chain

G DK0 C K1 C � � �C Kt DGn

of closed subgroups. Indeed, assume inductively that ��.E
hKi
n ^X / is of finite type.

Then, since KiC1=Ki is a p–adic analytic profinite group (see Dixon, du Sautoy,
Mann and Segal [8, Theorem 9.6]), we have that H�c

�
KiC1=Ki ; ��.E

hKi
n ^ Y /

�
is

also of finite type. (This follows from the fact that any p–adic analytic profinite group
is of type p�FP1 in the language of Symonds and Weigel [20].) But, in an earlier
paper [4], we constructed a strongly convergent spectral sequence

H�c
�
KiC1=Ki ; ��

�
EhKi

n ^X
��
) ��.E

hKiC1
n ^X /

and showed that its E1 term has a horizontal vanishing line. This implies that the
group ��

�
E

hKiC1
n ^X

�
is of finite type and hence, by induction, so is ��LK.n/X D

��
�
E

hGn
n ^X

�
.

These considerations are unfortunately not applicable to G DHn , since the normalizer
of Hn in Gn is Hn , and, moreover, the group ��

�
E

hH2

2
^M.p/

�
is not even of finite

type. Yet it is, in some sense, “almost” of finite type (see Section 4), although the
significance of this property is not clear.

The author was partially supported by a grant from the NSF.

1 H �
c .Hn;En�=In/ and its Hopf algebroid description

Recall that the group Sn may be described in several ways. If �n denotes the height
n Honda formal group law over Fpn , then Sn consists of all formal power series of
the form

P�n

i�0
bix

pi

with each bi 2 Fpn and bi ¤ 0. The ring of endomorphisms
of �n may also be described as the ring obtained by adjoining an indeterminate
S —which corresponds to the endomorphism f .x/D xp —to W Fpn along with the
relations Sn D p and Sw D w�S , where � W W Fpn !W Fpn denotes the Frobenius
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134 Ethan S Devinatz

automorphism. The automorphism
P�n

i�0
bix

pi

corresponds to the element
Pn�1

iD0 aiS
i

with
ai D

X
k�0

e.biCnk/p
k ;

where e.b/ is the multiplicative representative of b in W Fpn . The subgroup W F�pn of
Sn is then the group of automorphisms with ai D 0 for all i > 0. In terms of matrices,
Sn is the subgroup of GLn.W Fpn/ consisting of matrices of the form26666664

a0 pan�1 pan�2 � � � pa1

a�
�1

1
a�
�1

0
pa�

�1

n�1
� � � pa�

�1

2
:::

:::
:::

:::
:::

:::
::: pa�

�.n�2/

n�1

a�
�.n�1/

n�1
a�
�.n�1/

n�2
a�
�.n�1/

n�3
� � � a�

�.n�1/

0

37777775 ;

and W F�pn is the subgroup of diagonal matrices in Sn .

Now let S0
n be the p–Sylow subgroup of Sn consisting of strict automorphisms of

�n . There is a split extension

S0
n ! Sn! F�pn I

the map Sn! F�pn is given by
Pn�1

iD0 aiS
i 7! a0 , and the splitting sends a 2 Fpn to

e.a/ 2W F�pn � Sn . This map also gives us a splitting of the short exact sequence

0!W F0
pn !W F�pn ! F�pn ! 0;

and hence an isomorphism W F�pn !W F0
pn �F�pn . Since the order of F�pn is prime to

p , it follows that

H�c .W F�pn ;N /
�
�!H�c .W F0

pn ;N /
F�

pn

whenever N is a discrete ZpJW F�pnK–module. Now suppose, in addition, that N is a
W Fpn –module and Hn –module in such a way that the W F�pn action is W Fpn –linear
and that �.cn/D c��.n/ for all c 2W Fpn and n 2N . It then follows from Devinatz
[1, Lemma 5.4] that H i

�
Gal;H�c .W F�pn ;N /

�
D 0 for all i > 0, and hence

H�c .Hn;N /
�
�!H�c .W F�pn ;N /Gal:

Now Sn acts on En�=In D Fpn Œu;u�1� via Fpn –algebra homomorphisms, and the
action on u is given by

(1–1)
�n�1P

iD0

aiS
i
�
.u/D a0u;
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Homotopy groups of homotopy fixed point spectra associated to En 135

where, once again, a0 is the mod.p/ reduction of a0 . From this it follows that

H�c .W F�pn ; Fpn Œu;u�1�/D Fpn Œvn; v
�1
n �˝Fpn H�c .W F0

pn ; Fpn/:

Moreover, since Gal acts trivially on vn ,

H�c .Hn; Fpn Œu;u�1�/D Fp Œvn; v
�1
n �˝H�c .W F0

pn ; Fpn/Gal:

It is also easy to compute H�c .W F0
pn ; Fpn/Gal . Let gi 2Homc.W F0

pn ; Fpn/ be defined
by

(1–2) gi

�
1C

P
j�1

e.cj /p
j
�
D c

pi

1
D c�

i

1 ;

0� i �n�1. Since the Galois automorphisms id; �; : : : ; �n�1 are linearly independent
over Fpn , so are the gi ’s. Now, and for the rest of this section, assume that p > 2.
Then

Zn
p �W Fpn

�
�!W F0

pn

via the map sending x 2 W Fpn to exp.px/ D 1C
P

j�1
pjxj

j!
2 W F0

pn , so that
H�c .W F0

pn ; Fpn/ is the exterior algebra over Fpn on n generators in H 1
c .W F0

pn ; Fpn/.
This implies that these generators may be taken to be g0;g1; : : : ;gn�1 . Each gi is
Galois invariant, so

(1–3) H�c .Hn; Fpn Œu;u�1�/D Fp Œvn; v
�1
n �˝E.g0;g1; : : : ;gn�1/:

Next consider the complete Hopf algebroid
�
En�;Mapc

�
W F0

pn ;En�

��
� .En�; †n/.

We explicitly identify †n=In†n as a quotient of E^n�En=InE^n�En and give cobar
representatives for

gi 2H 1;0
c .W F0

pn ; Fpn Œu;u�1�/D Ext1;0
†n=In†n

.Fpn Œu;u�1�; Fpn Œu;u�1�/:

First recall that the maps �L; �R W En�!Mapc.Gn;En�/ are given by �R.x/.s/D x ,
�L.x/.s/D s�1x . Since W F0

pn �Gn acts trivially on W Fpn �En� , it follows that
�R

ˇ̌
W Fpn

D�L

ˇ̌
W Fpn

in †n , so that †n is a Hopf algebra over W Fpn and is a quotient
of

W Fpn ˝Zp
Mapc.Sn;En�/

Gal
DW Fpn ˝Zp

.EGal
n�
b̋ BP�BP�BP b̋ BP�E

Gal
n� /

DW Fpn ˝Zp
.EGal

n /^�EGal
n ;

where EGal
n is the Landweber exact spectrum with coefficient ring

ZpJu1; : : : ;un�1KŒu;u�1�:
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136 Ethan S Devinatz

Now let u� �R.u/ and w � �L.u/ in .EGal
n /^�EGal

n . By (1–1), we have that uD w

in †n=In†n . Moreover, the image of tj 2 BP�BP in .EGal
n /^�EGal

n —also denoted
tj —satisfies

tj

�X
i�0

�nbix
pi
�
D u1�pi

b�1
0 bj mod In.E

Gal
n /^�EGal

n

(see Devinatz [1, Proposition 2.11]), and thus

(1–4) †n=In†n D Fpn Œu;u�1�Œtn; t2n; : : :�=Jn;

with
Jn D .t

pn

n � v
pn�1
n tn; t

pn

2n
� vp2n�1

n t2n; : : : ; t
pn

jn � v
pjn�1
n tjn; : : :/:

Finally, let g D v�1
n tn 2 †n . These considerations imply that gpi

2 †n=In†n is a
cobar representative for gi 2H 1.W F0

pn ; Fpn/.

2 The Bockstein spectral sequence

Fix a prime p and integer n � 2, and let N be a complete
�
En�;Mapc.Hn;En�/

�
–

comodule. Write

H�N �H�c .Hn;N /DH�c .W F0
pn ;N /

F�
pn ÌGal

D Ext�†n
.En�;N /

F�
pn ÌGal

:

The Bockstein spectral sequence we will use is defined by the exact couple

(2–1) H�.En�=.p;u1; : : : ;un�2//

((PPPPPPPPPPPP
H�.En�=.p;u1; : : : ;un�2//

vn�1oo

H�.En�=In/:

66nnnnnnnnnnnn

Truncated, this spectral sequence is isomorphic to the spectral sequence of the unrolled
exact couple

0

��3333333 H�.En�=In/oo

""EEEEEEEEE
H�.En�=.p; : : : ;un�2;u

2
n�1

//oo

((PPPPPPPPPPPP
� � �oo

H�.En�=In/

<<yyyyyyyyy
H�.En�=In/

vn�1

66nnnnnnnnnnnn
H�.En�=In/

v2
n�1

DD								

Since H��.En�=.p;u1; : : : ;un�2;u
k
n�1

// is finite in each bidegree, this spectral se-
quence converges strongly to

H�.En�=.p; : : : ;un�2//D lim
 
j

H�.En�=.p;u1; : : : ;un�2;u
j
n�1

//:
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3 Computation of ��.EhH2 ^M.p//

In this section, we specialize the above spectral sequence to the case nD 2, p > 2.
Write S†2 D†2=p†2 , and let g D v�1

2
t2 2 S†2 as in Section 1.

We will need the following congruences for our calculation of the differentials in the
Bockstein spectral sequence.

Lemma 3.1 v
1�p2

2
t
p2

2
D t2 mod vpC1

1
S†2 .

Proof Begin with the formula (see Ravenel [13, Theorem A2.2.5])X
i;j�0

F ti�R.vj /
pi

D

X
i;j�0

Fvi t
pi

j

in BP�BP=pBP�BP , where F is the universal p–typical formal group law on BP� .
Up through power series degree p4 we then have

(3–2) v1CF v
p
1

t1CF v
p2

1
t2CF v

p3

1
t3CF �R.v2/CF t1�R.v2/

p
CF t2�R.v2/

p2

D v1CF v1t
p
1
CF v1t

p
2
CF v1t

p
3
CF v2CF v2t

p2

1
CF v2t

p2

2

in E^
2�

E2=pE^
2�

E2 . But �R.v2/ D v2 C v1t
p
1
� v

p
1

t1 in BP�BP=pBP�BP , and
therefore, since t1 2 v1

S†2 , �R.v2/ D v2 mod vpC1
1
S†2 . t3 is also in v1

S†2 ; hence,
mod vpC1

1
S†2 , (3–2) reduces to

v
p
2

t1CF v
p2

2
t2 D v1t

p
2
CF v2t

p2

2
:

The desired result follows immediately from this equation.

Lemma 3.3 t1 D v1gp � v
pC2
1

v�1
2

gC v
pC2
1

v�1
2

gp mod v2pC3
1

S†2 .

Proof From Ravenel [13, Corollary 4.3.21],

�R.v3/D v3Cv2t
p2

1
Cv1t

p
2
�v

p
2

t1�v
p2

1
t2�v

p
1

t
1Cp2

1
Cv

p2

1
t
1Cp
1
Cv1w1

�
v2; v1t

p
1
;�v

p
1

t1
�

in BP�BP=pBP�BP , where w1.x;y; z/�
1
p
ŒxpCypCzp� .xCyCz/p �. Hence

(3–4) 0D v1t
p
2
� v

p
2

t1� v
2
1v

p�1
2

t
p
1
C v

pC1
1

v
p�1
2

t1 mod v2pC3
1

S†2;

and thus
t1 D v

�p
2
v1t

p
2

mod vpC2
1
S†2:

Geometry & Topology Monographs, Volume 10 (2007)



138 Ethan S Devinatz

Plug this relation for t1 back into the last two terms of (3–4) to get

v
p
2

t1 D v1t
p
2
� v

pC2
1

v
�p2Cp�1
2

t
p2

2
C v

pC2
1

v�1
2 t

p
2

mod v2pC3
1

S†2:

By the previous lemma,

v
pC2
1

v
�p2Cp�1
2

t
p2

2
D v

pC2
1

v
p�2
2

t2 mod v2pC3
1

S†2:

We then get the desired result.

The next propositions will allow us to compute the Bockstein differentials on vk
2
2

H 0.Fp2 Œu;u�1�/.

Proposition 3.5 In S†2=v
3pC3
1

S†2 ,

�R.v
s
2/� v

s
2 D

svs
2

�
v�1

2 v
1Cp
1

.gp2

�gp/C v�2
2 v

2.1Cp/
1

.g�gp/C s�1
2
v�2

2 v
2.1Cp/
1

.gp2

�gp/2
�
:

Proof Compute in S†2=v
3pC3
1

S†2 :

�R.v
s
2/� v

s
2 D v

s
2Œ.v
�1
2 �R.v2//

s
� 1�

D vs
2Œ.1C v

�1
2 v1t

p
1
� v�1

2 v
p
1

t1/
s
� 1�

D svs
2

�
v�1

2 .v1t
p
1
� v

p
1

t1/C
s�1

2
v�2

2 .v1t
p
1
� v

p
1

t1/
2
�

D svs
2

�
v�1

2 v
pC1
1

gp2

� v�1
2 v

pC1
1

gp
C v�2

2 v
2.pC1/
1

.g�gp/

C
s�1

2
v�2

2 v
2.pC1/
1

.gp2

�gp/2
�

by the previous lemma.

Proposition 3.6 Suppose that p 6 j s , that k � 0, and let

b.spk/D spk
�pk

�pk�1
� � � � � 1:

Then there exists zspk 2E2� such that zspk D v
spk

2
mod I2 and such that

dzspk � �R.zspk /� zspk D cv
b.spk/
2

v
.pkCpk�1C���C1/.pC1/
1

.gp
�g/

in S†2=v
.pkCpk�1C���CpC2/.pC1/
1

S†2 , for some c 2 F�p .
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Proof Proceed by induction on k . If k D 0, let zs D v
s
2

. Then by the preceding
proposition,

�R.zs/� zs D svs�1
2 v

pC1
1

.gp2

�gp/mod v2.pC1/
1

S†2:

But gp2

D g mod vpC1
1
S†2 , so we get the desired result.

Suppose now that zspk�1 has been chosen. Then

d.zspk�1/p D cv
pb.spk�1/
2

v
.pkCpk�1C���Cp/.pC1/
1

.gp2

�gp/�
mod v.p

kCpk�1C���Cp2C2p/.pC1/
1

S†2

�
:

Next consider dv
.s�1/pk�pk�1�����pC1
2

. Since the exponent of v2 is equal to 1 mod.p/,
we have

d.v
b.spk/C2
2

/Dv
b.spk/C1
2

v
1Cp
1

.gp2

�gp/Cv
b.spk/
2

v
2.1Cp/
1

.g�gp/ mod v3pC3
1

S†2:

Then take

zspk D .zspk�1/p � cv
.pkCpk�1C���Cp�1/.pC1/
1

v
.s�1/pk�pk�1�����pC1
2

:

Corollary 3.7 Suppose that p 6 js and k � 0. Up to multiplication by a unit in Fp ,

d.pkCpk�1C���C1/.pC1/v
spk

2
D v

.s�1/pk�pk�1�����p�1
2

.gp
�g/

in the Bockstein spectral sequence (2–1). In particular, vt
2
.gp �g/ is a boundary for

all t 2 Z.

Now, since gpi

may be regarded as an element of H 1
c .Hn; Fpn/, and the inclusion

Fpn �! .En/0=.p;u1; : : : ;un�2/

induces a map

H�c .Hn; Fpn/ �!H�.En�=.p1;u1; : : : ;un�2//;

it follows that gpi

is a permanent cycle in the Bockstein spectral sequence. Moreover,

H�.Fp2 Œu;u�1�/D Fp Œv2; v
�1
2 �˝E.gCgp;g�gp/:

Using the preceding corollary, it’s easy to read off the remaining differentials, yielding
our main result.
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Theorem 3.8 If p � 3

H i.Fp2Ju1KŒu;u�1�/D

8̂̂<̂
:̂

Fp Œv1�f1g i D 0

Fp Œv1�f�g �
Q

t2Z
FpŒv1�

.v
nt
1
/
fctg i D 1Q

t2Z
FpŒv1�

.v
nt
1
/
fct�g i D 2

as Fp Œv1�–modules, where � D gCgp , ct reduces to vt
2
.g�gp/ 2H 1.Fp2 Œu;u�1�/,

and

nt D

8<:
pC 1 t ¤�1 mod.p/
.pi Cpi�1C � � �C 1/.pC 1/ t D .s� 1/pi �pi�1� � � � �p� 1;

s ¤ 0 mod.p/

By sparseness,

�t�s.E
hH2

2
^M.p//�H s;t .Fp2Ju1KŒu;u�1�/:

Remark 3.9 Let In denote the Brown–Comenetz dual of LnS0 , the En�–localization
of S0 . In is characterized by

�0F.X; In/D ŒX; In�0 D Hom.�0LnX;Q=Z.p//

for any spectrum X . In [10] (see also Strickland [19]), Gross and Hopkins establish a
remarkable relationship between Brown–Comenetz and Spanier–Whitehead duality:
they prove that if p is sufficiently large compared to n� 2, and if X is a K.n�1/�–
acyclic finite complex with pEn�X D 0 and with vn self-map †2pN .pn�1/X !X ,
then

(3–10) F.X; In/'†
˛LnDX;

where ˛ is any integer with

˛ D 2pnN .pn
� 1=p� 1/C n2

� n mod.2pN .pn
� 1//:

(As usual, DX denotes the Spanier–Whitehead dual of X .) There is, however, no
integer ˛ for which (3–10) is satisfied for all X . This contrasts with the situation when
nD 1: here we have I1 '†

2L1.S
0
p / (if p > 2), where S0

p denotes S0 completed at
p , and thus F.X; I1/'†

2L1DX whenever X is a rationally acyclic finite spectrum.

Historically, it was Shimomura’s calculation [15] of ��L2M which shattered the
hope that I2 might also be an integral suspension of L2.S

0
p /. Our calculation of

��.E
hH2

2
^M.p// yields this result as well; a sketch of the proof follows.
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Suppose there existed an integer c with

(3–11) F.M.p; vk
1 /; I2/'†

cL2DM.p; vk
1 /

for a cofinal set of k , where M.p; vk
1
/ denotes a finite spectrum with

BP�M.p; vk
1 /D BP�=.p; v

k
1 /:

In addition, we may assume that

DM.p; vk
1 /'†

�2k.p�1/�2M.p; vk
1 /:

Let
E2�M.p; vk

1 /
�
D Hom.E2�M.p; vk

1 /;Q=Z.p//;

and recall that
†4.E2�M.p; vk

1 /
� /�E2�F.M.p; vk

1 /; I2/

as modules over E2� and G2 . (See Strickland [19, Proposition 17] or Devinatz [2]
for p � 5; note, however, that we are using Strickland’s equivalent definition of
E2�M.p; vk

1
/� .) Then (3–11) implies that

E2�M.p; vk
1 /
�
�†c�2k.p�1/�6E2�M.p; vk

1 /;

and, by the theory of Poincaré pro–p groups (cf. Devinatz and Hopkins [6, Sections 5,
6]), there is a map

H 2;6C2k.p�1/�c.E2�M.p; vk
1 //!Q=Z.p/

such that

H i.E2�M.p; vk
1 //˝H 2�i.E2�M.p; vk

1 //!H 2.E2�M.p; vk
1 //!Q=Z.p/

is a perfect pairing. Hence there must exist a dk 2H 2;6C2.p�1/�c.E2�M.p; vk
1
//, for

each k , such that vk�1
1

dk ¤ 0. But the computation of H 2.Fp2Ju1KŒu;u�1�/ together
with the exact sequence

H 2.Fp2Ju1KŒu;u�1�/
vk

1
�!H 2.Fp2Ju1KŒu;u�1�/!H 2.E2�M.p; vk

1 //! 0

shows that this is impossible.

4 Some remarks on finiteness

In this section, we work in the En�–local stable category, so that by a finite spectrum,
we mean an object of the thick subcategory generated by LnS0 .

Let G be a closed subgroup of Gn , n� 1.
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Proposition 4.1 Let Y be a K.n�1/�–acyclic finite spectrum. Then ��.EhG
n ^Y /

is of finite type (as a graded abelian group).

Proof The proof is just as we argued in the Introduction: use the strongly convergent
spectral sequence

H��c .G;En�Y /) ��.E
hG
n ^Y /

whose E1 term has a horizontal vanishing line. Since En�Y is of finite type, so is
H��c .G;En�Y /. The horizontal vanishing line then implies that ��.EhG

n ^Y / is also
of finite type.

Now suppose n� 2 and X is a K.n�2/�–acyclic finite spectrum with vn�1 self-map
� . Let X.�k/ denote the cofiber of �k W †kj�jX ! X , and let X.�1/ denote the
cofiber of X ! ��1X , so that

X.�1/D holim
!k

†�kj�jX.�k/:

There are also canonical maps X.�k/! X.�k�1/ and X ! holim k X.�k/. We
will need the following well-known result (cf. Hovey [11, Section 2]).

Lemma 4.2 If Z is any (En�–local) spectrum, the map

Z ^X ! holim
 k

Z ^X.�k/

is the K.n/�–localization of Z ^X .

Proposition 4.3 ��1��.E
hG
n ^X / is countable if and only if ��.EhG

n ^X / is of
finite type.

Proof Proposition 4.1 implies that ��.EhG
n ^X.�1// is countable, and therefore

��1��.E
hG
n ^X / is countable if and only if ��.EhG

n ^X / is countable. But

EhG
n ^X ' holim

 k
EhG

n ^X.�k/I

it therefore again follows from Proposition 4.1 that �i.E
hG
n ^X / is profinite and is

thus countable if and only if it’s finite.

Remark 4.4 The chromatic splitting conjecture (see Hovey [11]) actually identifies
��1.E

hGn
n ^X /D ��1LK.n/X as Ln�1X _†�1Ln�1X .
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Although ��.E
hH2

2
^M.p// is not of finite type, this proposition suggests to us the

sense in which it is “almost” of finite type. The details follow.

We will consider graded modules over the graded ring Fp Œ��, where � has positive
even (unless p D 2) degree, satisfying the following two conditions:

(i) M is complete in the sense that M D lim
 i

M=�iM .

(ii) M=�M is an Fp vector space of finite type.

Proposition 4.5 Let X and � be as above and suppose that pW X ! X is trivial.
Then ��.EhG

n ^X / is an Fp Œ��–module satisfying conditions (i) and (ii).

Proof Since
��.E

hG
n ^X /

�k��.EhG
n ^X /

,! ��.E
hG
n ^X.�k//;

we have the requisite finiteness. Moreover, it follows from the commutative diagram

��.E
hG
n ^X /

� //

��

lim
 
k

��.E
hG
n ^X.�k//

lim
 
k

��.E
hG
n ^X /

�k��.E
hG
n ^X /

* 


77ppppppppppp

that ��.EhG
n ^X / is complete.

Torii [21, Proposition 4.10] shows that such a module M may be written as

(4–6) M �
Y
˛

†n˛Fp Œ���
Y
ˇ

†mˇFp Œ��=.�
iˇ /:

If M is of finite type, then the n˛ ’s are bounded below and

��1M � ��1
Y
˛

†n˛Fp Œ��D
M
˛

†n˛Fp Œ�; �
�1�:

In general, the torsion submodule T of M is a submodule of
Q
ˇ †

mˇFp Œ��=.�
iˇ /; its

closure ST is equal to
Q
ˇ †

mˇFp Œ��=.�
iˇ /. Let us say that M is essentially of finite

rank if there are only a finite number of ˛ in the decomposition (4–6); that is, if and
only if M=ST is a finitely generated Fp Œ��–module.
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Our main theorem shows that ��.E
hH2

2
^M.p// is essentially of finite rank for p> 2.

We do not know, however, whether this property is generic; that is, whether, given
G , ��.EhG

n ^X / is essentially of finite rank for all X satisfying the hypotheses of
Proposition 4.5 if it is for one such X with K.n�1/�X ¤ 0.
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