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Accuracy of Range Restriction Correction with Multiple 

Imputation in Small and Moderate Samples: A Simulation 

Study 

Andreas Pfaffel & Christiane Spiel,  
University of Vienna 

 
Approaches to correcting correlation coefficients for range restriction have been developed under the 
framework of large sample theory. The accuracy of missing data techniques for correcting correlation 
coefficients for range restriction has thus far only been investigated with relatively large samples. 
However, researchers and evaluators are often faced with a small or moderate number of applicants 
but must still attempt to estimate the population correlation between predictor and criterion. 
Therefore, in the present study we investigated the accuracy of population correlation estimates and 
their associated standard error in terms of small and moderate sample sizes. We applied multiple 
imputation by chained equations for continuous and naturally dichotomous criterion variables. The 
results show that multiple imputation by chained equations is accurate for a continuous criterion 
variable, even for a small number of applicants when the selection ratio is not too small. In the case 
of a naturally dichotomous criterion variable, a small or moderate number of applicants leads to biased 
estimates when the selection ratio is small. In contrast, the standard error of the population correlation 
estimate is accurate over a wide range of conditions of sample size, selection ratio, true population 
correlation, for continuous and naturally dichotomous criterion variables, and for direct and indirect 
range restriction scenarios. The findings of this study provide empirical evidence about the accuracy 
of the correction, and support researchers and evaluators in their assessment of conditions under 
which correlation coefficients corrected for range restriction can be trusted. 

In psychometrics, it is well known that estimating 
predictive validity based on selected samples leads to 
biased population estimates, which is known as the range 
restriction problem. The correlation between a predictor 
(e.g., scores on an aptitude test, assessment center, or 
interview) and a criterion of success (grades, 
achievement scores, or graduation status) obtained from 
the selected sample typically underestimates the 
correlation in the applicant population, i.e. it 
underestimates the predictive validity. This problem 
arises because the selected sample is not random and 
therefore not representative of the applicant population 

(Sackett & Yang, 2000). Researchers and evaluators are 
often faced with a moderate or a small number of 
applicants but must still attempt to evaluate the 
predictive validity of a selection method. Such samples 
cause problems in terms of the accuracy of the 
population estimate and in examining its statistical 
significance because sample size is an important factor 
affecting the accuracy of a parameter estimate. This 
problem becomes worse in cases of selection because 
population estimates are based on only a subsample of 
applicants, i.e. on the available selected sample. 
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Researchers have proposed two approaches to 
correct correlation coefficients for range restriction. The 
traditional approach is to use the correction formulas 
presented by Thorndike (1949) based on earlier works 
by Pearson (1903), Aitkin (1935), and Lawley (1943). In 
the psychometric literature, it is well documented that 
the corrected Pearson product-moment correlation 
coefficients are less biased than uncorrected correlation 
coefficients even over a wide range of assumption 
violations (Greener & Osburn, 1979; Gross & 
Fleischman, 1983; Holmes, 1990; Linn, 1983; Linn, 
Harnisch, & Dunbar, 1981; Ree, Carretta, Earles, & 
Albert, 1994). The modern approach is to view the 
selection as a missing data mechanism (Pfaffel, Schober, 
& Spiel, 2016; Mendoza, 1993; Wiberg & Sundström, 
2009). This approach offers some advantages over the 
correction formulas. Recent simulation studies show 
that state-of-the-art missing data techniques such as full 
information maximum likelihood estimation (FIML) 
and multiple imputation (MI) are equally or under some 
conditions more accurate than the traditional correction 
formulas (Pfaffel, Kollmayer, Schober, & Spiel, 2016; 
Pfaffel, Schober, et al., 2016). 

Both approaches, the correction formulas and the 
missing data approach, have been derived and justified 
in terms of large sample theory, which is a generic 
framework for assessing the properties of statistical 
estimators as sample size grows indefinitely (Lehmann, 
1999). Although multiple imputation and full 
information maximum likelihood estimation make the 
same assumptions, simulation studies suggest that 
multiple imputation performs better than maximum 
likelihood estimation with small or moderate sample 
sizes (Graham & Schafer, 1999; Little & Rubin, 1989). 
The accuracy of the missing data techniques to 
correcting for range restriction have been investigated so 
far only with relatively large samples (Pfaffel, Kollmayer, 
et al., 2016; Pfaffel, Schober, et al., 2016). Investigations 
in small and moderate samples are missing. Therefore, it 
is questionable whether missing data techniques are able 
to correct correlation coefficients for range restriction in 
small or moderate samples. Additionally, correction 
methods have been widely studied for continuous 
criterion variables but little is known about range 
restriction correction when the criterion is dichotomous. 
In particular, there is a lack of studies considering the 
standard error. To the best of our knowledge, no 
empirical study has investigated so far the accuracy of 
the multiple imputation standard error of the population 

correlation estimate in the case of range restriction. 
Therefore, the purpose of the present study is to 
investigate both the accuracy of the range restriction 
correction and the accuracy of the associated standard 
error when the sample size is small or moderate. We 
apply a Bayesian multiple imputation technique for both 
continuous and naturally dichotomous criterion 
variables. ‘Naturally’ means the dichotomous criterion 
has no underlying continuous distribution (Ulrich & 
Wirtz, 2004). 

We first describe the two most common range 
restriction scenarios (direct and indirect range 
restriction) for both a continuous criterion variable and 
a dichotomous one. We then give a brief overview of 
approaches to correcting for range restriction with a 
focus on missing data techniques. After that, we give a 
brief introduction to calculating the standard error in the 
case of missing values under the framework of 
maximum likelihood estimation and multiple 
imputation. Finally, we investigate the accuracy of 
multiple imputation by chained equations under various 
conditions with a focus on the sample size by conducting 
several Monte Carlo simulations. 

Range restriction in the case of a continuous and a 

dichotomous criterion 

Direct and indirect range restriction are the two 
most common scenarios in the selection of applicants. 
In a direct range restriction scenario (DRR), the selection 
is based directly on the predictor X, whereas X can be 
either a score from a single selection method or a 
composite score derived from several selection methods, 
e.g. an aptitude test, an assessment center, and an 
interview (Pfaffel, Schober, et al., 2016). In a DRR 
scenario, we are interested in the predictive validity of 
the variable used for the selection. For example, this is 
the case if we want to assess the predictive validity of a 
selection method or of an entire selection procedure, 
which is based on several selection methods. In contrast, 
in an indirect range restriction scenario (IRR), selection 
is based on another variable Z, which is usually 
correlated with X, the predictor Y, or both. In an IRR 
scenario, we are interested in the predictive validity of a 
selection method X (the predictor of interest), which is 
not the selector Z. Z can either be a single selection 
method or a combination of selection methods, possibly 
but not necessarily including X (Linn et al., 1981). For 
example, this is the case if scores on another selection 
method or a composite score are used for the selection, 

2

Practical Assessment, Research, and Evaluation, Vol. 21 [2016], Art. 10

https://scholarworks.umass.edu/pare/vol21/iss1/10
DOI: https://doi.org/10.7275/bwnx-mz97



Practical Assessment, Research & Evaluation, Vol 21, No 10 Page 3 
Pfaffel, Spiel, Correcting for Range Restriction in Small Samples 
                                                   
but we want to assess the predictive validity of a certain 
selection method X. 

The predictive validity of X, or more precisely the 
correlation between a predictor X and a criterion of 
success Y, is a measure of the effectiveness of the 
selection. The higher the correlation between X and Y, 
the smaller the prediction error of the criterion values. 
However, the correlation between X and Y can only be 
obtained from the selected sample. Due to the selection 
itself, values of the criterion are not available for non-
selected applicants. Figure 1 illustrates the loss of 
criterion data for DRR and IRR scenarios in the case of 
a continuous criterion variable. Figure 1a shows the 
complete data in which the (unrestricted) Pearson 

population correlation ρ�� is .50. Figure 1b and 1c 
illustrates the effects of selection on X and Z, 
respectively. The blue data points are the available 
selected sample, the gray data points represent the non-
selected sample in which the values for Y are missing. In 
both scenarios, the selection ratio is .40, which is the 
ratio of the number of selected individuals to the 
number of applicants. Figure 1b shows that the top 40% 
of applicants are selected while 60% are not selected. 
Applicants with scores below a specific value of X are 
thus excluded from the sample. It is clear that scores of 
X in the selected sample are restricted in range. 
Consequently, the Pearson correlation coefficient 
obtained from the selected sample rXY = .23 is 
significantly smaller than in the complete dataset. The 
correlation coefficient obtained from the selected 
sample underestimates the true population correlation. 

Figure 1c shows an IRR scenario in which the loss 
of criterion data is based on another variable Z. In this 
example, Z is correlated with X and Y at .50, 
respectively, and the top 40% of applicants with respect 
to Z are selected. Consequently, the Pearson correlation 
coefficient obtained from the selected sample is rXY = 
.38. The effect on correlations due to selection on Z is 
typically weaker than in the case of selection on X 
(Sackett & Yang, 2000). Levin (1972) showed that it is 
theoretically possible that selection on Z can increase 
rather than decrease the correlation coefficient when the 
correlations of Z with X and with Y become extreme. 
However, this effect is rarely encountered in real 
datasets, meaning that selection on Z can be expected to 
reduce the magnitude of the correlation coefficient (Linn 
et al., 1981). 

 

Figure 1. An illustration of the loss of criterion data 
for direct and indirect range restriction scenarios in 
the case of a continuous criterion variable. 

 

A closer look at the problem shows that the effect 
on the Pearson correlation coefficient does not stem 
directly from the restriction in range of X, but as a result 
of the reduction of the sample variances of X and Y as 
well as by the reduction of the sample covariance 
between X and Y in the selected sample. The problem 
arises from the formula of the Pearson correlation 

coefficient (Equation 1). The reduction of rXY is given as 
the reduction in the sample covariance (the numerator) 
relative to the reduction in the product of the sample 

standard deviations sX and sY (the denominator). 

��� � ���	
, �
�� ∙ ��  (1) 

Next, we look at direct and indirect range restriction 
scenarios and the loss of criterion data in the case of a 
dichotomous criterion variable. So far only a few studies 
have focused on range restriction correction in the case 
of a dichotomous criterion variable (Bobko, Roth, & 
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Bobko, 2001; Pfaffel, Kollmayer, et al., 2016; Raju, 
Steinhaus, Edwards, & DeLessio, 1991). Figure 2 shows 
that the criterion Y is divided into two groups (‘not 
successful’ and ‘successful’). The correlation coefficient 
used to express the relationship between a continuous 
and a naturally dichotomous variable is the point-biserial 

correlation coefficient ��� (Ulrich & Wirtz, 2004), which 

is calculated by 

����� � 	�� � ��
�����  (2) 

where M1 and M0 are the mean values of the 
continuous variable X for the two groups p (‘not 
successful’, Y = 0) and q (‘successful’, Y = 1), and sX is 
the standard deviation of the continuous variable X. 
Figure 2a shows the complete data in which the 

unrestricted point-biserial correlation coefficient ρ���� 

is .50. Figures 2b and 2c illustrate the effects on the 
point-biserial correlation coefficient due to selection on 
X and Z. In both scenarios, the selection ratio is 40%. In 
a DRR scenario, as shown in Figure 2b, applicants with 
scores below a specific value of X have been excluded 

from the sample. Consequently, ����� obtained from 

the selected sample is .27. Figure 2c shows an IRR 
scenario in which the top 40% applicants with respect to 
Z have been selected; Z is correlated with X and Y at .50, 
respectively. In the case of IRR, we obtain a value for ����� of .40. 

Range restriction in the case of a dichotomous 
criterion variable is similar to range restriction scenarios 
in the case of a continuous one. However, a very 
important factor that has to be considered additionally is 
the base rate of success BR (Abrahams, Alf, & Wolfe, 
1971; Pfaffel, Kollmayer, et al., 2016). The BR is the 
percentage of applicants who would be successful on the 
criterion if there were no selection, and is calculated by 
dividing the number of successful individuals by the 
number of applicants. The BR ranges from 0 to 1, or 
from 0% to 100%. For example, if all applicants were to 
be admitted to a study program and 50% percent of 
them complete this program, then the BR is 50%. In our 
examples in Figure 2, we used a BR of 50%. The BR is 
closely related to the effectiveness of the selection, 
because a selection is considered effective when the 
percentage of successful applicants (in the selected 
sample) is higher than the BR, i.e. when the selected 
applicants are more frequently successful than would be 

 

Figure 2. An illustration of the loss of criterion data 
for direct and indirect range restriction scenarios in 
the case of a dichotomous criterion variable. 

 

the case by random chance. It is not surprising that when 
the BR is high, the probability of gaining an effective 
selection is low. In such a case, the incremental 
predictive validity of additional and resource-intensive 
selection methods should be examined. Thus, the BR 
also plays a role in assessing the efficiency of a selection 
method. 

Unfortunately, the BR is unknown in the case of 
selection and thus the unbiased information about the 
proportion of successful individuals in the applicant 
population. We can only obtain the success rate from the 
selected sample, which is a biased estimator for the BR. 
The success rate is the number of successful individuals 
divided by the number of selected applicants. In Figures 
2b and 2c, the success rate is 75%. This success rate is 
higher than the BR, because the relationship between 
predictor and criterion is positive. Hence, more 
applicants who would be successful have been selected. 
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In addition to the range restriction effect, the 
magnitude of the observed (restricted) point-biserial 
correlation coefficient is also affected by variance-
restriction due to unequal p-q split (Kemery, Dunlap, & 
Griffeth, 1988). The variance of a dichotomous variable 
is the product of p and q with a maximum value of .25 at 
p = q = .50. If p does not equal q, the variance will be 
less than .25. Consequently, rpb decreases as p and q move 
away from .50, and increases as p and q move towards 
.50. The two effects can sometimes act in opposite 

directions. For example, assume that ρ�� is positive, the 

BR is .10, and after selection, the observed success rate 
is .60. Because .60 is closer to 0.50 than 0.10, the variance 
of the dichotomous variable in the selected sample is 
higher than in the population, and this consequently 
leads to an increase in rpb. In such a case, rpb decreases 
due to range restriction and increases due to the p-q split. 
Despite range restriction, it is conceivable that rpb is not 

much smaller than ρ�� because of the combination of 

the two effects. Therefore, correction methods for range 
restriction must take into account the effect of the p-q 
split in the case of a dichotomous criterion variable. 

Approaches to correcting for direct and indirect 
range restriction scenarios 

Researcher have proposed two approaches to 
correct correlations for direct and indirect range 
restriction scenarios. The traditional approach is to apply 
the correction formulas presented by Thorndike (1949). 
The formulas correct the Pearson correlation coefficient 
for univariate direct and indirect range restriction 
scenarios for continuous variables. They were derived 
within the framework of maximum likelihood estimation 
under the assumptions of multivariate normality, 
linearity between X and Y, and homoscedasticity. In the 
psychometric literature, it is well documented that 
corrected Pearson correlations are less biased than 
uncorrected correlations over a wide range of 
assumption violations (Greener & Osburn, 1979; Gross 
& Fleischman, 1983; Holmes, 1990; Linn, 1983; Linn et 
al., 1981; Ree et al., 1994). The corrected Pearson 
correlations are always higher than the uncorrected 
correlations. The formulas include only the variables X 
and Y, or X, Y, and Z, where X and Z must have no 
missing values. Covariates that could potentially 
contribute to the prediction of Y are not considered. 

The modern approach is to view the selection 
mechanism as a missing data mechanism (Mendoza, 
1993; Pfaffel, Kollmayer, et al., 2016; Pfaffel, Schober, et 

al., 2016; Wiberg & Sundström, 2009). Rubin (1976) 
identified three missing data mechanisms, according to 
the underlying cause of missing data. These mechanisms 
are important since they are necessary assumptions for 
the missing data methods: Missing completely at random 
(MCAR) means the probability of missing values of Y is 
unrelated to other measured variables and to the values 
of Y itself. Missing at random (MAR) means the 
probability of missing values of Y is related to other 
measured variables, but not related to the values of Y 
itself. Missing not at random (MNAR) means the 
probability of missing values of Y is related to the values 
of Y itself, even after controlling for other variables. The 
missing data mechanism in both range restriction 
scenarios (DRR and IRR) is missing at random (MAR) 
because the missing values depend either on X or Z, but 
not on the values of Y itself (Pfaffel, Schober, et al., 
2016).  

The missing data approach has several advantages 
over the correction formulas: 1) This approach no longer 
requires a distinction between DRR and IRR to be made 
in applying the correction because both scenarios are 
considered to be MAR and the same techniques can be 
used to correct for both range restriction scenarios. 2) 
State-of-the-art missing data techniques such as full 
information maximum likelihood and multiple 
imputation can handle multivariate datasets with 
multiple covariates and 3) can also handle different types 
of predictor and criterion variables (e.g., dichotomous, 
unordered and ordered categorical, continuous). Pfaffel, 
Kollmayer, and colleagues (2016) showed that the 
correction using multiple imputation by chained 
equations is more accurate than Thorndike’s (1949) 
correction formulas when the criterion variable is 
dichotomous, especially in the case of IRR. 4) In contrast 
to Thorndike’s formulas, covariates – but not the 
selection variable – may have some missing values 
(missing values in the selection variable is MNAR). 
However, no empirical studies have been presented, 
which investigate the effect of covariates with missing 
values on the accuracy of the correction. 

Methodologists currently regard full information 
maximum likelihood and multiple imputation as state of 
the art when dealing with missing data. Techniques such 
as listwise or pairwise deletion, arithmetic mean 
imputation, single regression imputation, or single EM 
imputation are no longer considered state-of-the-art 
because they have potentially serious drawbacks 
(Enders, 2010). For example, arithmetic mean 
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imputation imputes values that fall directly on a 
horizontal line. Consequently, the correlations between 
imputed values and other variables are zero for the 
subset of cases with imputed values. Arithmetic mean 
imputation attenuates correlations and covariances. In 
single regression imputation, the imputed values fall 
directly on the (straight) regression line, which 
overestimates correlations and covariances. This under- 
and overestimation of correlations is present under any 
missing data mechanism, including MCAR, and 
increases as the missing data rate increases (Enders, 
2010). In addition, single imputation techniques 
attenuate standard errors. Neither state-of-the-art 
technique, full information maximum likelihood and 
multiple imputation, suffers from the problems 
mentioned for deletion of incomplete cases and single 
imputation techniques (Enders, 2010). 

Full information maximum likelihood (FIML) is a 
technique of finding population parameters by 
maximizing the log-likelihood function that has the 
highest probability of producing the data of a certain 
sample. FIML requires the missing data mechanism to 
be either MAR or MCAR. Finding the parameter values 
that maximize the log-likelihood function is possible 
with iterative optimization algorithms such as 
expectation maximization (EM) algorithms (Dempster, 
Laird, & Rubin, 1977; Meng & Rubin, 1993). In the 
social and behavioral sciences, population data is 
commonly assumed to be multivariate normally 
distributed (Enders, 2010). Dealing with identically 
distributed variables is straightforward and many 
software packages can handle missing values under the 
condition of multivariate normality. FIML estimation 
with non-identically distributed variables in multivariate 
datasets is much more complicated, for example in 
logistic regression analysis. FIML with complex 
multivariate incomplete data is typically only possible 
with structural equation modeling (SEM) software, e.g. 
Mplus (Muthén & Muthén, 2015), or the lavaan package 
for R Statistics (Rosseel, 2012). For a detailed description 
of likelihood-based techniques, see Little and Rubin 
(2002), or for a less technical description see Enders 
(2010).  

Multiple imputation (MI), proposed by Rubin 
(1978), is another state-of-the-art technique for handling 
missing values that allows the data analyst to use 
statistical methods designed for complete data. In 
contrast to FIML, MI creates plausible estimates for the 
missing values. MI and FIML make the same 

assumptions regarding the missing data mechanism 
(MAR or MCAR), their estimators have similar statistical 
properties (e.g., consistency, asymptotic normality), and 
they frequently produce equivalent results (Enders, 
2010; Graham, Olchowski, & Gilreath, 2007). A multiple 
imputation analysis consists of three distinct steps: the 
imputation phase, the analysis phase, and the pooling 
phase. The imputation phase creates m complete datasets 
(e.g., m = 20 imputations) based on one dataset with 
missing values. Each of these m complete datasets 
contains different plausible estimates of the missing 
values, but the observed values are identical. In contrast 
to a single imputation technique, the created m complete 
datasets reflect the uncertainty of the missing data. Thus, 
the imputed values do not fall on the regression line. 
Consequently, MI does not attenuate correlations and 
covariances. In the analysis phase, each complete dataset 
is analyzed with conventional statistical methods, e.g. m 
correlation analyses. Finally, the pooling phase combines 
the m parameter estimates into a single set of parameters, 
e.g. m correlation coefficients are combined into one 
pooled value. The pooled parameter values are typically 
the arithmetic average of the m estimates generated in 
the analysis phase (Rubin, 2004). Analyzing and pooling 
a large number of imputed datasets sound laborious, but 
modern MI software packages automate this procedure. 

Handling incomplete multivariate normal data is 
possible with the data augmentation algorithm (Schafer, 
1997; Tanner & Wong, 1987). A general multiple 
imputation technique, which can handle incomplete 
datasets with not necessarily normal or non-identically 
distributed variables is multivariate imputation by 
chained equations (MICE), also known as fully 
conditional specification (FCS) (Raghunathan, 
Lepkowski, van Hoewyk, & Solenberger, 2001; van 
Buuren, 2007, 2012). The MICE algorithm, for example, 
is implemented in the R software package mice (van 
Buuren & Groothuis-Oudshoorn, 2011). 

The multivariate imputation model is specified on a 
variable-by-variable basis by a set of conditional 
densities, one for each incomplete variable (van Buuren 
& Groothuis-Oudshoorn, 2011). In the case of an 
incomplete dichotomous variable such as our example 
in Figure 2, multiple imputation is possible using a 
logistic regression model, which incorporates the 
parameter uncertainty (Pfaffel, Kollmayer, et al., 2016; 
van Buuren, 2012). Typically, all variables or many 
variables in the dataset are part of the imputation model 
used to generate the plausible estimates of the missing 
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values. Because MI clearly separates the imputation and 
the analysis phase, the analysis model can differ from the 
imputation model. Therefore, the plausible estimates 
contain information on variables that might not be 
included in the analysis model. However, the imputation 
model has to be more general then the analysis model. 
For example, a common source for incompatibility 
occurs when the analysis model contains interactions 
and non-linearities, but the imputation model did not. 
Recent simulation studies show that correction for DRR 
and IRR with full information maximum likelihood or 
multiple imputation by chained equations is equally or 
more accurate compared to Thorndike’s (1949) 
correction formulas in the case of multivariate normality 
(Pfaffel, Schober, et al., 2016) and in the case of an 
artificially or a naturally dichotomous criterion variable 
(Pfaffel, Kollmayer, et al., 2016). Especially in the case 
of IRR, correction with a missing data technique is more 
precise and therefore more efficient than the formulas. 
Full information maximum likelihood and multiple 
imputation by chained equations produce equal 
parameter estimates. Because of these empirical findings 
and the advantages mentioned above, we recommend 
the use of missing data techniques to correct for range 
restriction. 

Standard error of correlations corrected for range 

restriction 

Estimating the standard error and confidence 
intervals of correlation coefficients in the case of missing 
data is often much more complex than with complete 
datasets. In this section, we first give a brief overview of 
calculating the standard error of correlation coefficients 
in the case of complete samples and in the case of 
missing data. Next, we present some approaches for 
estimating the standard error of correlation coefficients 
corrected for direct and indirect range restriction 
scenarios. Finally, we show that multiple imputation 
allows for calculating the standard error and confidence 
intervals of correlation coefficients very similar to 
complete datasets. 

In statistics, it is well known that an unbiased 
estimator converges in probability to the true quantity 
being estimated as the sample size goes to infinity 
(property of consistency). This means that the sampling 
error of a sample parameter becomes smaller and smaller 
as the sample size increases, and is zero when the sample 
size is infinitely large. Conversely, if the sample size 
decreases, then the sampling error of the estimate 

increases, making the estimation less precise. A common 
measure of the variability of the sampling distribution is 
the standard error SE, which is often used for calculating 
confidence intervals for a parameter estimate in 
hypothesis testing. A larger standard error is less likely to 
reject the null hypothesis. The sampling distribution of 

the Pearson correlation coefficient ��� (Equation 1) is 

quite complex even under bivariate normality, and ��� is 
a negatively biased estimator of ρ�� (Olkin & Pratt, 
1958). However, this bias is small and decreases as the 
sample size increases. Thus, the true SE is not easy to 
calculate and only valid when the underlying 
assumptions are fully met. For complete data analysis, 
Kendall and Stuart (1977) proposed an approximation 

of SE of the sample Pearson correlation coefficient ��� 
in samples with size N: 

��	���
 ≈ 1 � ����√ � 1 (3) 

Equation 3 shows that the SE of ��� depends on 

the sample size and on the value of ��� itself. 
Consequently, with the same sample size, a stronger 
correlation can be estimated more precisely than a 
weaker one. The procedure for examining the statistical 
significance and the asymmetric confidence interval of ��� is to transform ��� into a Fisher z-value with the 
associated standard error (Fisher, 1915): 

��!"#$%& '	���
 � 1√ � 3 (4) 

As we can see, this standard error depends only on 
the sample size. Fisher’s z-transformation is necessary 
because the sampling distribution of rXY is skewed and 
correlation coefficients are only supported on the 
bounded interval [-1,1]. An asymmetric sampling 
distribution leads to asymmetric confidence intervals. 
Fisher’s z-transformation can also be applied to the 
point-biserial correlation coefficient because rpb is 
mathematically equivalent to the Pearson correlation 
coefficient. 

Next, we want to show what happens to the SE in 
the case of range restriction, i.e. in the case of missing 
values. Many researchers have demonstrated that the SE 
of a corrected Pearson correlation coefficient is larger 
than for the uncorrected correlation coefficient (Bobko 
& Rieck, 1980; Mendoza, 1993; Millsap, 1989; Raju & 
Brand, 2003). The increase in the magnitude of SE can 
be explained by considering two circumstances: First, 
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the correlation coefficient is measured in a subsample 

with sample size ) ≤  , where ) is the size of the 
selected sample. As shown in Equation 3 and 4, the 
magnitude of the standard error is approximately 
inversely proportional to the square root of the sample 
size. Second, the population correlation estimate must 
include the uncertainty caused by the proportion of 
missing values. Consequently, the magnitude of the 
standard error increases by applying corrections for 
range restriction.  

Bobko and Rieck (1980) presented a large sample 
estimator for the standard error of correlation 
coefficients corrected for a direct range restriction 
scenario. The estimator is the product of the standard 
error of the correlation coefficient obtained from the 
selected sample and a factor derived from Thorndike’s 
(1949) formula for direct range restriction scenarios. In 
case of indirect range restriction scenarios, a large sample 
estimator has been presented by Allan and Dunbar 
(1990), but this formula is very long and complicated. As 
shown for complete datasets, Fisher’s z-transformation 
can be applied to calculate the confidence interval of 
correlation coefficients. However, Mendoza (1993) 
showed that Fisher’s z-transformation cannot directly 
applied to correlations corrected for direct and indirect 
range restriction scenarios (assumption MAR), and 
proposed additional correction terms to the Fisher’s z-
transformation. Admittedly computers allow to easily 
calculate these formulas. However, this examples show 
that deriving the sampling distribution under the 
framework of maximum likelihood estimation, especially 
in the case of missing data, often leads to complex 
problems relatively quickly. In summary, it can be 
ascertained that deriving the sampling distribution of the 
sample correlation coefficient under the framework of 
maximum likelihood estimation is very complex or 
maybe sometimes impossible in the case of (non-
normal) multivariate distributions with missing data. 

In contrast, calculating the standard error using 
multiple imputation is relatively straightforward. A 
major advantage is that conventional statistical 
procedures to calculate the standard error can be applied 
to the m complete datasets. Moreover, the correlation is 
calculated based on the total sample size N, and 
therefore making Fisher's z-transformation much more 
accurate. Multiple imputation standard errors combine 
two sources of uncertainty regarding the parameter 
estimate (Little & Rubin, 2002): The uncertainty within 
an imputation (the within-imputation variance), and the 

uncertainty between the m imputations (the between-
imputation variance). The Fisher’s z standard error of 
one of the m complete datasets represents the 
uncertainty of the data. The increase in Fisher’s standard 
error in the case of missing data results from the 
between-imputation variance. The parameter estimates 
and the standard errors can be combined by Rubin’s 
rules (Rubin, 2004). The Appendix shows the equations 
for computing the estimate of the correlation coefficient, 
its associated standard error, and the confidence interval 
for multiple imputed datasets. However, software 
packages typically implement these procedures, so there 
is usually no need to compute parameter estimates by 
hand. 

As mentioned above, multiple imputation and full 
information maximum likelihood make the same 
assumptions and have similar statistical properties. The 
statistical theory underlying these techniques is based 
partly on large-sample approximations. However, this 
statement must be restricted because the two missing 
data techniques differ in their performance in the case of 
small sample sizes. Simulation studies show that 
maximum likelihood estimation is inadequate for small 
or moderate sample sizes and is likely to result in biased 
estimates (Graham & Schafer, 1999; Little & Rubin, 
1989). The findings suggest that multiple imputation 
performs more efficiently with small samples. Graham 
and Schafer (1999, p. 26) pointed out that “limitations of 
analysis with small sample size lie in the small sample 
size itself, not with the multiple-imputation procedure”. 
This finding is fundamental for empirical evaluation 
studies of the predictive validity of selection methods. 
On the one hand, it supports the use of multiple 
imputation in small or moderate samples. On the other 
hand, it makes clear that multiple imputation cannot 
compensate for having a small number of applicants or 
small selection ratios. However, multiple imputation 
allows for the most effective usage of all the data that 
have been collected. 

Therefore, we suggest using a Bayesian multiple 
imputation technique such as multiple imputation by 
chained equations to overcome the range restriction 
problem in small or moderate samples. So far, simulation 
studies investigating the accuracy of this missing data 
technique when the sample size is small or moderate are 
lacking. Additionally, little is known about the 
correctness of the multiple imputation standard error in 
the case of range restriction. Our intention is to close 
these research gaps. The accuracy of the corrected 
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correlation coefficient and of the multiple imputation 
standard error are important considerations for 
researchers and evaluators. Thus, our empirical findings 
will help to increase understanding of the circumstances 
(e.g. sample size, selection ratio, true population 
correlation) under which range restriction corrections 
are appropriate. 

Purposes of this study 

The first purpose is to examine the accuracy of the 
population correlation estimates by using multiple 
imputation by chained equations in terms of small and 
moderate sample sizes for direct and indirect range 
restriction scenarios, and for continuous and naturally 
dichotomous criterion variables. The second purpose is 
to examine the accuracy of the associated multiple 
imputation standard error. 

Method 

We conducted several Monte Carlo simulations to 
examine the accuracy of the proposed missing data 
approach and the sampling distribution of the multiple 
imputation standard error under different model 
conditions. Multivariate data were simulated in order to 
investigate four scenarios: DRR and IRR scenarios with 
a continuous criterion variable, and DRR and IRR 
scenarios with a naturally dichotomous criterion 
variable. Additionally, three factors (continuous 
criterion) and four factors (dichotomous criterion) that 
affect the accuracy of the correction as well as the 
sampling distribution of the standard error were 
systematically manipulated. 

Factor 1: Total sample size, N. Multiple imputation was 
developed under the framework of large sample theory. 
In contrast to maximum likelihood estimation, multiple 
imputation seems to promise a more accurate correction 
when the sample size is small or moderate. As shown in 
Equations 3 and 4, sample size also affects the standard 
error of the correlation coefficient. Therefore, sample 
size is a very important factor in studying asymptotic 
estimates. Two different sample sizes were investigated: 
a small sample with size N = 50, and a moderate sample 
with size of N = 100.  

Factor 2: Population correlation, +�� and  +,-��. The 

effect of the population correlation on the accuracy of 

                                                 
1 In a preliminary experiment, we also tested a selection ratio of 

10%, but frequent convergence problems led to invalid estimates. In 

the correction has been documented in a number of 
empirical studies (Duan & Dunlap, 1997; Pfaffel, 
Kollmayer, et al., 2016; Pfaffel, Schober, et al., 2016). 
The correction to the correlation coefficient becomes 
more precise as the population correlation increases. 
This effect is valid for DRR and IRR and for continuous 
and dichotomous criterion variables. As shown in 
Equation 3, the standard error of the correlation 
coefficient depends on the magnitude of the correlation 
coefficient itself and decreases as the correlation 
coefficient increases. Hence, in the present study, we 

investigated three levels of ρ�� and ρ���� .20, .40, and 

.60. According to Cohen’s (1988) classification of 
correlation coefficients in the social sciences, these 
values represent a small, medium, and large association 
between predictor and criterion, i.e. a small, medium, 
and large predictive validity. 

Factor 3: Selection ratio, SR. The selection ratio is the 
ratio of the number of selected applicants to the total 
sample size N. The selection ratio directly affects the 
proportion of missing values in the criterion variable, 
and therefore the accuracy of the correction. Correlation 
estimates become more biased and exponentially less 
precise when the selection ratio decreases (Pfaffel, 
Schober, et al., 2016). It is to be expected that this 
adverse effect increases, when sample sizes become 
small or moderate. Hence, in the present study, we 
investigated four levels of the selection ratio: 20%, 30%, 
40%, and 50%. The smallest selection ratio of 20% 
corresponds to subsample sizes of n = 10 (N = 50) and 
n = 20 (N = 100). These two sample sizes have to be 
considered extremely small because on the one hand, 
80% of the criterion values have been systematically 
excluded, and on the other hand, 10 and 20 observations 
are small even for complete data analysis1. 

Factor 4: Base rate of success, BR. This factor was used 
in the case of a dichotomous criterion variable. As 
described above, the effect of range restriction and the 
effect of variance restriction can sometimes work in 
opposite directions when the p-q split is closer to .50 in 
the selected sample than in the unrestricted sample. 
Therefore, the effect of the BR is an especially relevant 
factor to investigate when the criterion variable is 
dichotomous. In the present study, we varied the BR at 
three levels: 20%, 50%, and 80%. These three levels 
represent a small, medium, and large proportion of 

the case of a dichotomous criterion, Y was almost always constant in 

the subsample. 
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applicants who would be successful if there were no 
selection. 

Monte Carlo simulation procedure 

The Monte Carlo simulations were conducted using 
the program R (R Core Team, 2016) with 5,000 
iterations for each factor combination of sample size, 
population correlation, selection ratio, and base rate of 
success. In the case of a continuous criterion variable, 
there were 2×3×4 = 24 factor combinations, while in 
the case of a dichotomous criterion variable, 
2×3×4×3 = 72 factor combinations were investigated. 
For each of the four scenarios (DRR & IRR × 
continuous & dichotomous), a random sample with size 
N was generated from a multivariate distribution (see 

Data simulation) with a population correlation ρ or ρ�� 

between predictor X and criterion Y, and a base rate of 
success in the case of a dichotomous criterion variable. 
Then, we simulated the selection by isolating those 
n = N·SR cases with the highest values in X in the case 
of a DRR scenario, and in descending order by the third 
variable Z in the case of an IRR scenario. Values of Y 
for non-selected cases were converted into missing 
values. The selected samples created in this way with  � ) missing values in Y were used in applying the 
correction. Next, we used the R package mice 
(multivariate imputation by chained equations, Version 
2.25, van Buuren & Groothuis-Oudshoorn, 2011) to 
generate m = 20 imputed datasets. Pfaffel, Kollmayer 
and colleagues (2016) showed that 20 imputations are 
sufficient for DRR and IRR corrections using multiple 
imputation by chained equations. We used the 
elementary imputation method ‘norm’ for the 
imputation of the continuous criterion variable, and the 
method ‘logreg’ for the imputation of the dichotomous 
criterion variable. Finally, the pooled correlation 
coefficients and the multiple imputation standard errors 
were calculated using Fisher’s z-transformation and 
Rubin’s (2004) rules for combining multiple imputation 
parameter estimates (for details, see the Appendix). 

Pfaffel, Kollmayer, and colleagues (2016) reported 
problems (e.g. constancy of Y in the selected sample) in 
conducting a logistic regression analysis for some factor 
combinations, especially when the base rate of success 
and the population correlation were high and the 
selection ratio was small. They excluded selected 
samples (with minimum sample size of n = 50) with less 
than five observations in each of the two criterion 
groups. In the present study, the smallest n was 10 when 

the total sample size N was 50 and the selection ratio .20. 
Requiring at least five observations in each criterion 
group means that only one p-q split of 50% in the 
selected sample is valid for n = 10. Thus, there would be 
no variability in the p-q split for this factor combination. 
Consequently, we weakened the prerequisite to at least 
three observations in each of the two criterion groups. 

Data simulation 

We simulated multivariate data for a) a normally 
distributed (continuous) criterion variable and b) for a 
naturally dichotomously distributed criterion variable. In 
simulating the multivariate data, we used the procedures 
presented in the studies by Pfaffel, Schober, et al. (2016) 
and Pfaffel, Kollmayer, et al. (2016). 

a) Continuous criterion: We generated a bivariate 
(DRR) and a trivariate (IRR) standard normal 
distribution with Pearson population correlations 
between X and Y of .20, .40, and .60 using the mvrnorm 
function of the MASS package (Venables & Ripley, 
2002). In the case of IRR, the Pearson correlations 
between Z and X, and Z and Y were varied continuously 
between .10 and .90. This continuous variation facilitates 
the aggregation of a parameter estimate over factors and 
factor levels (more specifically, it facilitates integration 
over a continuous interval of a parameter). Aggregating 
parameter estimates over other factors with only a few 
levels would lead to an underestimation of the variance 
of the parameter estimate, and therefore to a biased 
empirical sampling deviation. 

b) Naturally dichotomous criterion: The distribution of a 
naturally dichotomous criterion variable is defined via 
the two proportions p and q, no underlying distribution 
exists. We generated bivariate (DRR) and trivariate (IRR) 
data where Y was naturally dichotomous, and X and Z 
were a mixture distribution of two uniform normal 
distributions, one normal distribution for each of the 
two criterion groups. Abrahams and colleagues (1971) 
also used this mixture distribution to develop the Taylor-
Russell tables for dichotomous criterion variables. As 
shown in Equation 2, the magnitude of the point-biserial 
correlation coefficient depends on the mean difference 
in X (or in Z) between the two criterion groups. 
Therefore, we generated data with point-biserial 
population correlations between X and Y of .20, .40, and 

.60 based on the difference in mean �� � �� for a given 
p-q split. In the case of IRR, we varied the differences in 
means and therefore Pearson correlations between Z 
and X, and Z and Y continuously between .10 and .90. 
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Analysis of the parameters  

In order to investigate the accuracy of the missing 
data approach, we analyzed the residual distribution of 
the correlation estimates for each factor combination. 
The concept of accuracy provides quantitative 
information about the goodness of a parameter estimate 
and encompasses trueness and precision (Ayyub & 
McCuen, 2011). Trueness, which is also known as bias 
or systematic error, describes the distance of an 
estimated value to the true parameter value. Precision, 
which is also known as random error, describes the 
reproducibility of an estimated value. The mean error 
(ME) of the residuals is a measure of trueness, and the 
root-mean-square error (RMSE) of the residuals is a 

measure of precision. Let θ/ be the value of the parameter 

estimate and θ the true value of the parameter. The ME 
and the RMSE can be calculated by 

ME � 1� 23θ/" � θ45
"6�  (5) 

 

RMSE � 91� 23θ/" � θ4�5
"6�  

 
(6) 

 

where E is the number of the Monte Carlo 

experiments (E = 5,000 in the present study), and θ/" is 
the pooled correlation coefficient from the multiple 
imputation analysis. When the ME is close to zero, the 
parameter estimate is to be said unbiased. The smaller 

the RMSE, the more precise the estimation, i.e. the 
higher the reproducibility of the estimated parameter 
value. 

The multiple imputation standard error of the 
correlation coefficient (see Appendix Equation A8) is a 
theoretical (asymptotic) estimate of the sampling 
deviation of the sample correlation coefficient. The 
RMSE is a measure of the empirical sampling deviation 
of the sample correlation coefficient. In order to 
investigate the accuracy of the multiple imputation 
standard error, we compared its average value (over 
5,000 Monte Carlo experiments) with the RMSE for 
each factor combination. When the difference between 
the theoretical and the empirical value of the multiple 
imputation standard error is close to zero, the theoretical 
value is an accurate measure of the true sampling 
distribution of the corrected sample correlation 
coefficient. When the theoretical value of the multiple 
imputation standard error is smaller than the empirical 
sampling deviation, the confidence intervals for the 
population correlation based on the multiple imputation 
standard error are smaller than they need to be. 

Results 

Continuous criterion variable 

Table 1 summarizes the trueness and the precision 
of the correction for direct and indirect range restriction 
scenarios in the case of a continuous criterion variable 
across 5,000 Monte-Carlo experiments for each factor 
combination. For both the DRR and IRR scenarios, the 
correction of the Pearson correlation coefficient is 
negatively biased, whereby the bias tends to be smaller 
in the case of an IRR scenario. The bias is higher for a 

Table 1. Mean error (ME) and root-mean-square error (RMSE, in parentheses) for a continuous criterion variable in the 
case of direct and indirect range restriction scenarios. 

  DRR IRR 

N SR ρ = .2 ρ = .4 ρ = .6 ρ = .2 ρ = .4 ρ = .6 

50 0.2 -.075 (.499) -.157 (.506) -.178 (.466) -0.088 (.315) -0.117 (.312) -0.140 (.293) 
 0.3 -.056 (.403) -.100 (.389) -.100 (.332) -0.051 (.248) -0.074 (.239) -0.080 (.204) 
 0.4 -.035 (.333) -.067 (.308) -.067 (.249) -0.035 (.201) -0.047 (.187) -0.053 (.154) 
 0.5 -.022 (.273) -.041 (.249) -.043 (.190) -0.022 (.165) -0.032 (.154) -0.034 (.117) 

100 0.2 -.053 (.391) -.083 (.368) -.098 (.316) -0.053 (.232) -0.068 (.224) -0.070 (.185) 
 0.3 -.031 (.303) -.047 (.273) -.056 (.218) -0.030 (.176) -0.037 (.161) -0.042 (.134) 
 0.4 -.021 (.242) -.031 (.219) -.035 (.163) -0.021 (.143) -0.023 (.125) -0.027 (.102) 
 0.5 -.012 (.199) -.021 (.175) -.022 (.126) -0.016 (.116) -0.013 (.099) -0.017 (.078) 

Note. N … sample size of the applicant dataset, SR … selection ratio, ρ … population correlation between predictor and criterion, DRR … direct 
range restriction scenario, IRR … indirect range restriction scenario 
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small sample size of N = 50 than for a moderate sample 
size of N = 100, and increases as the selection ratio 
decreases and the true correlation coefficient between X 
and Y increases. The correction is more precise for 
moderate samples than for small ones and increases as 
the selection ratio increases. The precision of the 
correction increases as the true Pearson correlation 
coefficient between X and Y increases. 

Table 2 summarizes the comparison of the multiple 
imputation standard error with the empirical sampling 
distribution for direct and indirect range restriction 
scenarios in the case of a continuous criterion variable 
across 5,000 Monte-Carlo experiments for each factor 
combination. The results show that the multiple 
imputation standard error tends to underestimate the 
sampling deviation of the sample correlation coefficient. 
This underestimation tends to be smaller in the case of 
an IRR scenario than for a DRR scenario. The difference 
between the multiple imputation standard error and the 
sampling deviation decreases as the selection ratio, the 
sample size, and the population correlation increase. 

Naturally dichotomous criterion variable  

Table 3 summarizes the trueness and the precision 
of the correction for a direct range restriction scenario 
in the case of a naturally dichotomous criterion variable 
for each factor combination. However, for a number of 
factor combinations the number of Monte Carlo 
experiments was less than 5,000. More than 90% of 
selected samples did not meet the prerequisite of at least 
three observations in each criterion group, or there were 

convergence problems with the logistic regression 
imputation. No selected sample met the prerequisite at a 
base rate of success (BR) of 80% and a true point-biserial 
correlation coefficient of .6. The superscripted numbers 
in Table 3 and 5 show the percentage of excluded 
samples. Results of the remaining Monte Carlo 
experiments show that the correction of the point-
biserial correlation coefficient is negatively biased for 
factor combinations of sample size, true point-biserial 
correlation coefficient, and selection ratio when the base 
rate of success is 20% or 50%, but positively biased 
when the BR is 80%. As expected, the bias decreases as 
the selection ratio and the sample size increase. The 
effect of the direction of the true point-biserial 
correlation coefficient varied across different base rates 
of success: For a BR of 20%, the bias of the correction 

become smaller as ρ�� increases, but for a BR of 50%, 

bias increases as ρ�� increases. For a BR of 80%, too 

many data points are missing to assess the direction of 
the effect. The correction become more precise as the 
sample size, the selection ratio, and the true correlation 

between predictor and criterion increase. Comparing the 
results of the same factor combinations across the three 
base rates of success to the extent allowed by the data 
reveals that the correction is most accurate when the BR 
is 50%. This indicates a non-linear relationship between 
base rate of success and accuracy. 

 

Table 2. Average multiple imputation standard error and its absolute bias to the empirical sampling deviation (in 
parentheses) for a continuous criterion variable in the case of direct and indirect range restriction scenarios. 

  DRR IRR 

N SR ρ = .2 ρ = .4 ρ = .6 ρ = .2 ρ = .4 ρ = .6 

50 0.2 .361 (-.148) .353 (-.144) .327 (-.142) 0.319 (-.043) 0.337 (-.069) 0.299 (-.057) 

 0.3 .326 (-.091) .311 (-.084) .273 (-.081) 0.268 (-.030) 0.267 (-.040) 0.220 (-.025) 

 0.4 .294 (-.053) .274 (-.048) .230 (-.041) 0.235 (-.023) 0.222 (-.022) 0.177 (-.014) 

 0.5 .263 (-.035) .241 (-.029) .196 (-.024) 0.208 (-.016) 0.191 (-.013) 0.149 (-.007) 

100 0.2 .317 (-.076) .298 (-.071) .260 (-.064) 0.245 (-.031) 0.226 (-.026) 0.195 (-.024) 

 0.3 .270 (-.048) .247 (-.037) .202 (-.030) 0.194 (-.015) 0.179 (-.014) 0.146 (-.013) 

 0.4 .233 (-.023) .208 (-.020) .164 (-.015) 0.167 (-.010) 0.151 (-.010) 0.119 (-.006) 

 0.5 .203 (-.015) .178 (-.015) .137 (-.008) 0.145 (-.006) 0.132 (-.006) 0.101 (-.003) 

Note. N … sample size of the applicant dataset, SR … selection ratio, ρ … population correlation between predictor and criterion, DRR … direct 
range restriction scenario, IRR … indirect range restriction scenario. 
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Table 4 shows the difference between the multiple 
imputation standard error of the estimate of the point-

biserial correlation coefficient and its empirical sampling 
deviation decreases as the sample size and selection ratio 

Table 3. Mean error and root-mean-square error (in parentheses) for a naturally dichotomous criterion variable in the 
case of direct range restriction scenarios. 

N SR 

BR = .2 BR = .5 BR = .8 ρ�� = .2 ρ�� = .4 ρ�� = .6 ρ�� = .2 ρ�� = .4 ρ�� = .6 ρ�� = .2 ρ�� = .4 

50 0.2 -.282 

(.330)19% 

-.263 

(.308) 

-.231 

(.254)15% 

-.040 

(.166)10% 

-.100 

(.161)66% 

--- --- --- 

 
0.3 -.250 

(.318)1% 

-.212 

(.272) 

-.165 

(.198) 

-.035 

(.188) 

-.064 

(.167)5% 

--- --- --- 

 
0.4 -.201 

(.283) 

-.156 

(.220) 

-.102 

(.132) 

-.031 

(.191) 

-.062 

(.176) 

-.089 

(.153)11% 

.241 

(.275)46% 

--- 

 
0.5 -.154 

(.240) 

-.110 

(.169) 

-.062 

(.084) 

-.028 

(.180) 

-.055 

(.161) 

-.081 

(.153) 

.159 

(.226)10% 

--- 

100 0.2 -.231 

(.290) 

-.197 

(.248) 

-.175 

(.204) 

-.042 

(.166) 

-.068 

(.153)5% 

--- .208 

(.235)73% 

--- 

 0.3 -.176 

(.252) 

-.133 

(.191) 

-.093 

(.125) 

-.037 

(.173) 

-.061 

(.166) 

-.091 

(.146)12% 

.193 

(.241)15% 

--- 

 0.4 -.131 

(.210) 

-.087 

(.141) 

-.051 

(.076) 

-.029 

(.163) 

-.048 

(.154) 

-.075 

(.143) 

.135 (.216) .140 

(.180)53% 

 0.5 -.092 

(.166) 

-.057 

(.104) 

-.030 

(.049) 

-.020 

(.144) 

-.038 

(.135) 

-.052 

(.117) 

.092 (.184) .077 

(.166)8% 

Note. N … sample size of the applicant dataset, SR … selection ratio, BR … base rate of success, ρpb … population correlation between predictor 
and criterion, --- … ≥80% of selected samples did not meet the prerequisite of at least three observations in each criterion group. 

 

Table 4. Average multiple imputation standard error and its absolute bias to the empirical sampling deviation (in 
parentheses) for a naturally dichotomous criterion variable in the case of direct range restriction scenarios. 

N SR 

BR = .2 BR = .5 BR = .8 ρ�� = .2 ρ�� = .4 ρ�� = .6 ρ�� = .2 ρ�� = .4 ρ�� = .6 ρ�� = .2 ρ�� = .4 

50 0.2 .277 

(-.021) 

.270 

(-.057) 

.256 

(-.057) 

.276 

(.075) 

.268 

(.044) 

--- --- --- 

 
0.3 .266 

(-.060) 

.249 

(-.055) 

.213 

(-.015) 

.264 

(.048) 

.254 

(.050) 

--- --- --- 

 
0.4 .249 

(-.056) 

.243 

(-.041) 

.171 

(-.011) 

.249 

(.029) 

.237 

(.029) 

.221 

(.030) 

.252 

(.016) 

--- 

 
0.5 .231 

(-.043) 

.198 

(-.030) 

.142 

(-.004) 

.231 

(.018) 

.216 

(.018) 

.194 

(.020) 

.245 

(.013) 

--- 

100 0.2 .240 

(-.064) 

.223 

(-.043) 

.200 

(-.016) 

.238 

(.055) 

.232 

(.061) 

--- .234 

(.028) 

--- 

 0.3 .220 

(-.053) 

.189 

(-.030) 

.140 

(-.004) 

.222 

(.030) 

.214 

(.036) 

.205 

(.036) 

.230 

(-.003) 

--- 

 0.4 .197 

(-.039) 

.159 

(-.018) 

.105 

(-.002) 

.202 

(.017) 

.192 

(.020) 

.178 

(.023) 

.222 

(-.003) 

.209 

(.041) 

 0.5 .176 

(-.025) 

.135 

(-.010) 

.088 

(-.001) 

.183 

(.012) 

.167 

(.012) 

.143 

(.010) 

.209 

(-.008) 

.203 

(.034) 

Note. N … sample size of the applicant dataset, SR … selection ratio, BR … base rate of success, ρpb … population correlation between predictor 
and criterion, --- … ≥80% of selected samples did not meet the prerequisite of at least three observations in each criterion group. 
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increase. The effect of the true point-biserial population 
correlation is not clear: For a BR of 20% only, this 
difference tends to decrease as the true population 
correlation increases. For a BR of 20%, the multiple 
imputation standard error tends to underestimate the 
sampling deviation; for base rates of success of 50% and 
80%, the multiple imputation standard error tends to 
overestimate the sampling deviation for all combinations 
of sample size, selection ratio, and true point-biserial 
population correlation. 

Table 5 summarizes the trueness and precision of the 
correction for an indirect range restriction scenario in 
the case of a naturally dichotomous criterion variable 
for each factor combination. The results show a similar 
pattern as the correction for a direct range restriction 
scenario. The correction of the point-biserial 
correlation coefficient is negatively biased for factor 
combinations of sample size, true point-biserial 
correlation coefficient, and selection ratio when the 
base rate of success is 20% or 50%, but positively 
biased when the BR is 80%. The bias decreases as the 
selection ratio and the sample size increase. The 
correction becomes more precise as the sample size, 
the selection ratio, and the true point-biserial 
correlation coefficient between predictor and criterion 
increase. Similar to DRR, the correction is least biased 

when the BR is 50%. In contrast to DRR, the 
correction is not most precise for a BR of 50%. For a 
moderate sample size of N = 100, the precision of the 
correction tends to decrease as the base rate of success 
increases. 

Table 6 shows the results for the accuracy of the 
multiple imputation standard error of the estimate of the 
point-biserial correlation coefficient for a dichotomous 
criterion variable in the case of an indirect range 
restriction scenario. The difference between the multiple 
imputation standard error and its empirical sampling 
deviation decreases as the sample size and the selection 
ratio increase. For a BR of 20% and 50%, this difference 
decreases as the true point-biserial population 
correlation increases, but the effect for a BR of 80% is 
not clear. 

Discussion 

Statistical problems in estimating the predictive 
validity of a selection method become worse when the 
number of applicants in the unrestricted dataset is 
moderate or small because statistical estimates are only 
based on a subsample of applicants. In this paper, we 
proposed using the state-of-the-art missing data 
approach multiple imputation by chained equations to 
correct correlations for direct and indirect range 

Table 5. Mean error (ME) and root-mean-square error (RMSE, in parentheses) for a naturally dichotomous criterion 
variable in the case of indirect range restriction scenarios. 

N SR 

BR = 0.2 BR = 0.5 BR = 0.8 ρ�� = .2 ρ�� = .4 ρ�� = .6 ρ�� = .2 ρ�� = .4 ρ�� = .6 ρ�� = .2 ρ�� = .4 

50 0.2 -.151 

(.233)34% 

-.142 

(.211)34% 

-.164 

(.200)33% 

-.018 

(.171)68% 

-.057 

(.164)69% 

-.083 

(.137)70% 

--- --- 

 
0.3 -.136 

(.192) 

-.122 

(.171) 

-.121 

(.153) 

-.015 

(.140)45% 

-.048 

(.137)47% 

-.062 

(.116)47% 

--- --- 

 
0.4 -.099 

(.142) 

-.086 

(.125) 

-.085 

(.113) 

-.026 

(.125)29% 

-.045 

(.122)30% 

-.053 

(.103)30% 

--- --- 

 
0.5 -.068 

(.105) 

-.059 

(.091) 

-.059 

(.083) 

-.027 

(.108)14% 

-.040 

(.108)14% 

-.043 

(.090)15% 

.086 

(.156)72% 

.051 

(.127)73% 

100 0.2 -.127 

(.119)17% 

-.112 

(.166)17% 

-.119 

(.153)16% 

-.024 

(.141)46% 

-.049 

(.139)46% 

-.061 

(.114)47% 

--- --- 

 0.3 -.092 

(.137) 

-.076 

(.115) 

-.074 

(.102) 

-.021 

(.116)30% 

-.041 

(.114)30% 

-.049 

(.099)30% 

.101 

(.169)75% 

.063 

(.132)77% 

 0.4 -.056 

(.092) 

-.047 

(.078) 

-.047 

(.071) 

-.022 

(.102)19% 

-.033 

(.099)18% 

-.039 

(.084)18% 

.080 

(.150)62% 

.048 

(.122)64% 

 0.5 -.035 

(.065) 

-.030 

(.056) 

-.030 

(.050) 

-.023 

(.085)6% 

-.028 

(.081)6% 

-.029 

(.069)6% 

.052 

(.125)51% 

.022 

(.107)52% 

Note. N … sample size of the applicant dataset, SR … selection ratio, BR … base rate of success, ρpb … population correlation between predictor 
and criterion, --- … ≥80% of selected samples did not meet the prerequisite of at least three observations in each criterion group. 
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restriction scenarios when the sample size is small or 
moderate. Approaches to overcoming the range 
restriction problem, including multiple imputation 
techniques, have been developed within the framework 
of large sample theory. However, some findings on the 
comparison between maximum likelihood and multiple 
imputation suggest that multiple imputation is more 
efficiently with small samples. Additionally, correction 
methods have been widely studied for continuous 
criterion variables but not for dichotomous ones. 
Therefore, the primary purpose of this research was to 
examine the accuracy of correlation coefficients 
corrected for range restriction scenarios using multiple 
imputation by chained equations in small or moderate 
samples and for continuous and dichotomous criterion 
variables. To the best of our knowledge, no empirical 
studies so far have investigated the accuracy of the 
multiple imputation standard error of the population 
correlation estimate in the case of direct (DRR) and 
indirect (IRR) range restriction scenarios. Therefore, the 
second purpose of this study was to examine the 
accuracy of the multiple imputation standard error of the 
population correlation estimate. We conducted Monte 
Carlo simulations to accomplish both purposes for four 
scenarios: a DRR and an IRR scenario with a continuous 
and a dichotomous criterion variable. Sample size, 

selection ratio, true population correlation, and base rate 
of success were systematically varied in an experimental 
design. 

In the case of a continuous criterion variable, the 
corrected Pearson correlation coefficient systematically 
underestimated the true correlation between predictor 
and criterion for both direct and indirect range 
restriction scenarios, especially when the selection ratio 
was small with 20% selected applicants. The correction 
was more precise for moderate samples than for small 
samples and gradually increased as the selection ratio and 
the true correlation coefficient increased. Our results are 
consistent with the findings of the simulation studies by 
Chan and Chan (2004), who investigated Thorndike’s 
correction formula for a selection scenario on X (DRR). 
The extent of this bias is similar for both approaches, 

e.g. for N = 100, SR = .2, and ρ = .2: -.053 and -.059 (p. 
374). This means that the underestimation of the 
correlation coefficient due to range restriction cannot be 
fully corrected in either approach. The multiple 
imputation standard error of the corrected correlation 
coefficient tended to be smaller than the empirical 
sampling deviation, which means that confidence 
intervals for the population correlations are smaller than 
they should be. This bias was lower for moderate than 

Table 6. Average multiple imputation standard error and its absolute bias to the empirical sampling deviation (in 
parentheses) for a naturally dichotomous criterion variable in the case of indirect range restriction scenarios. 

N SR 

BR = .2 BR = .5 BR = .8 ρ�� = .2 ρ�� = .4 ρ�� = .6 ρ�� = .2 ρ�� = .4 ρ�� = .6 ρ�� = .2 ρ�� = .4 

50 0.2 .248 

(-.020) 

.237 

(-.006) 

.218 

(.002) 

.247 

(.033) 

.235 

(.041) 

.208 

(.052) 

--- --- 

 
0.3 .221 

(-.019) 

.208 

(-.006) 

.185 

(.007) 

.225 

(.036) 

.210 

(.035) 

.182 

(.039) 

--- --- 

 
0.4 .196 

(-.004) 

.181 

(-.004) 

.156 

(.013) 

.206 

(.032) 

.192 

(.027) 

.162 

(.029) 

--- --- 

 
0.5 .177 

(.002) 

.162 

(.008) 

.137 

(.014) 

.189 

(.022) 

.175 

(.017) 

.146 

(.020) 

.195 

(.003) 

.172 

(.018) 

100 0.2 .198 

(-.017) 

.183 

(.013) 

.162 

(-.003) 

.201 

(.037) 

.187 

(.034) 

.160 

(.027) 

--- --- 

 0.3 .163 

(-.007) 

.147 

(.004) 

.122 

(.003) 

.178 

(.032) 

.165 

(.027) 

.140 

(.022) 

.183 

(.002) 

.162 

(.014) 

 0.4 .139 

(.002) 

.122 

(.002) 

.099 

(.005) 

.160 

(.022) 

.147 

(.019) 

.121 

(.015) 

.173 

(.013) 

.152 

(.013) 

 0.5 .124 

(.003) 

.108 

(.002) 

.087 

(.005) 

.142 

(.016) 

.130 

(.015) 

.105 

(.010) 

.163 

(.024) 

.146 

(.019) 

Note. N … sample size of the applicant dataset, SR … selection ratio, BR … base rate of success, ρpb … population correlation between predictor 
and criterion, --- … ≥80% of selected samples did not meet the prerequisite of at least three observations in each criterion group. 
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for small samples and gradually decreased as the 
selection ratio increased. 

In the case of a naturally dichotomous criterion 
variable, multiple imputation by chained equations could 
not be applied for a large number of selected samples 
because the criterion variable was constant or nearly 
constant. This was often the case when the sample size 
and the selection ratio were small, and the base rate of 
success was high. The estimate of the population 
correlation is strongly biased for both direct and indirect 
range restriction scenarios. The results show that the 
number of individuals in the selected samples are too 
small for an accurate correction. Consequently, our 
findings indicate that correcting for range restriction 
when the criterion is dichotomous is not a trustworthy 
method for small sample sizes, and for combinations of 
small selection ratios and low or high base rates of 
success. In contrast, the multiple imputation standard 
error of the corrected point-biserial correlation 
coefficient was accurate over a wide range of factor 
combinations for direct and indirect range restriction 
scenarios. 

This study’s findings provide empirical evidence 
about the accuracy of correcting for range restriction 
using multiple imputation by chained equations, and 
support researchers and evaluators in their assessment 
of conditions under which corrected correlation 
coefficients can be trusted. The results show that 
interpreting the population correlation estimates can 
sometimes lead to invalid conclusions about the 
predictive validity of selection methods if the number of 
applicants is small or moderate and the selection is 
rigorous, especially in the case of a dichotomous 
criterion variable. However, this does not mean that 
selections should be made only on a large number of 
applicants or that small selection ratios should be 
avoided. The predictive validity of a selection method 
can be high even for a highly competitive selection (i.e. 
a small selection ratio) with a small number of applicants. 
The problem is simply that a satisfactory statistical 
evaluation of the predictive validity is not possible under 
some conditions. The missing data approach cannot 
compensate for having small samples (Graham & 
Schafer, 1999) in which the most criterion values are 
systematically missing. It would be naive to believe that 
the predictive validity of a selection method can be 
statistically assessed for a small number of individuals 
regardless of which approach is used to correct for range 
restriction. However, multiple imputation allows for the 

most effective usage of all collected data. Although this 
correction can lead to biased estimates in small sample 
sizes, the missing data approach is currently the best-
known approach for handling a dichotomous criterion. 

Some of the methodological limitations of our study 
should be mentioned. However, these limitations also 
point to promising avenues for further research. The 
Monte Carlo simulations we conducted considered a 
limited number of combinations of sample size, 
population correlation, and base rates of success. In the 
case of a naturally dichotomous variable, the results 
indicate a non-linear relation between accuracy of the 
corrected point-biserial correlation coefficient and the 
base rate of success. Further research should investigate 
this effect in more detail. For our data simulation with a 
naturally dichotomous criterion variable, we assumed a 
mixture distribution of the predictor based on two 
normal distributions for each criterion group. This 
distribution was also used to develop the Taylor-Russell 
tables for a naturally dichotomous criterion variable 
(Abrahams et al., 1971) and in the simulation study by 
Pfaffel, Kollmayer, and colleagues (2016). Although 
many reasons speak in favor of the assumption of 
normally distributed values for the criterion groups, 
other distributions are quite conceivable and should be 
also investigated. Finally, we generated multivariate 
datasets with a minimum number of variables, which is 
not typical for real datasets. The correction using 
multiple imputation by chained equations should 
become more accurate for datasets with more variables, 
e.g. more predictors and covariates, or even more than 
one criterion. However, generating multivariate data, 
especially multivariate data with non-identically 
distributed variables, is often difficult but necessary in 
simulation studies. Further research should investigate 
the accuracy of the correction in datasets with more 
predictors, covariates, and criteria. 

In conclusion, our study shows that the proposed 
missing data approach is accurate for estimating the 
predictive validity of a selection method for a continuous 
criterion variable, even for a small number of applicants 
when the selection ratio is not too small. For a 
dichotomous criterion variable, a small or moderate 
number of applicants sometimes leads to biased 
estimates or an inability to carry out the correction. The 
multiple imputation standard error of the estimate of the 
predictive validity is accurate over a wide range of 
conditions for both kinds of criterion variables and for 
direct and indirect range restriction scenarios. 
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Appendix  

The Appendix shows the equations for computing the estimate of the Pearson correlation coefficient, its 
associated standard error, and the confidence interval for multiple imputed datasets. Equations A1 to A9 are 
implemented in the method micombine.cor() of the R package miceadds (Robitzsch, Grund, & Henke, 2015). 

The multiple imputation point estimate of the Pearson correlation coefficient �̅ (or of the point-biserial correlation 
coefficient) is the arithmetic average of the m Fisher z-transformed correlation estimates 

�̅ � tanh ? 1@ 2 artanh	�̂C
D
C6� E (A2) 

where �̂C is the correlation estimate (see Equation 1) from the complete dataset t, artanh is the inverse hyperbolic 
tangent function (the Fisher z-transformation), and tanh is the hyperbolic tangent function, which converts the Fisher 

z-value back into a correlation coefficient. The corresponding Fisher z-transformed point estimate F&̅ is calculated by 

F&̅ � 1@ 2 artanh	�̂C
D
C6�  (A2) 

The within-imputation variance W is the arithmetic average of the squared standard error of the m complete 
datasets 

G � 1@ 2 1 � 3D
C6�  (A3) 

and the between-imputation variance B is the sample variance of the Fisher z-transformed correlation estimates across 
the m datasets 

H � 1@ � 1 2	artanh	�̂C
 � F&̅
�D
C6�  (A4) 

These two components of uncertainty can be combined into a single quantity, the total-imputation variance T of 

the Fisher’s z-transformed parameter estimate F&̅: 

I � G + @ + 1@ H (A5) 

Consequently, the Fisher’s z-transformed multiple imputation standard error is the square root of the total-
imputation variance 
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                                                   ��KLMNOP ' � √I (A6) 

The lower and the upper bound of the 1 � α asymmetric confidence interval can be calculated by CI�TU � tanh3artanh	F&̅
 ± F�TU �⁄ ∙ ��KLMNOP '4 (A7) 

where F�TU �⁄  is the value of the cumulative normal distribution at half of the significance level α. The z-value for a 
95% confidence interval is approximately 1.96. Based on the confidence interval, the standard error of the point 
estimate of the Pearson correlation coefficient can by calculated as 

��&̅ � 	upper bound CI�TU � lower bound CI�TU
2 ∙ F�TU �⁄  (A8) 

In order to test the null hypothesis that �̅ is equal to 0, a one sample t-test has to be applied to the corresponding 

Fisher z-transformed point estimate F&̅, because F&̅ is to be assumed t-distributed with ab �  � 2 if the sample size 
is not too small and the magnitude of the correlation coefficient is not too extreme. 

c � F&̅��KLMNOP ' (A9) 
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