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Joseph J. Glutting, University of Delaware 

 
 

When exploring missing data techniques in a realistic scenario, the current literature is limited: most 
studies only consider consequences with data missing on a single variable. This simulation study 
compares the relative bias of two commonly used missing data techniques when data are missing on 
more than one variable. Factors varied include type of missingness (MCAR, MAR), degree of 
missingness (10%, 25%, and 50%), and where missingness occurs (one predictor, two predictors, or 
two predictors with overlap). Using a real dataset, cells are systematically deleted to create various 
scenarios of missingness so that parameter estimates from listwise deletion and multiple imputation 
may be compared to the “true” estimates from the full dataset. Results suggest the multiple imputation 
works well, even when the imputation model itself is missing data. 

     

Missing data are extremely common throughout 
social science research (Patrician, 2002; Puma, Olsen, 
Bell, & Price, 2009). Respondents mistakenly skip 
questions on a survey; pages of paper surveys get stuck 
together; individuals can be offended by or refuse to 
answer questions (Field, 2009). Regardless of reasons for 
missingness, all analysts at one time or another are 
confronted with and must address it - even if addressing 
it means ignoring it altogether. Yet, it is known that the 
missing data mechanism can impact the results of a 
model depending on how missingness is handled. The 
complexity in dealing with missingness has led some to 
call for statistical consultation with experts in most cases 
(Ferketich & Verran, 1992).  

The problem is relatively simple: if respondents 
with missing data differ from respondents without 
missing data, bias can result when applying a model 
(Tabachnick & Fidell, 2007). However, the solutions are 
not so simple. Technical explications abound for missing 
data techniques for many types of data (Little & Rubin, 
2002; Puma, et al., 2009; Schafer, 1997). However, the 
current literature on the use of missing data techniques 
is limited to exploring the impact of data missing on a 
single variable. Yet in practice, analysts commonly 

encounter data missing on multiple variables. This article 
studies the impact of missingness on more than one 
variable when utilizing various missing data techniques. 

Types of Missing Data 

There are three definitions, or “types,” of 
missingness (Rubin, 1976). These designations are 
important, as the type of missingness can have a larger 
impact on model results than the amount of data missing 
from a dataset. The overall categories of missingness are 
missing completely at random (MCAR), missing at 
random (MAR), and missing not at random (MNAR). 

Data are MCAR if the probability of missingness is 
unrelated to the value of the observation or to the value 
of any other variables in the data set; data are MAR if 
missingness depends on the value of another variable in 
the dataset (Allison, 2001). The final missing data 
pattern, MNAR, has a specified pattern, yet no 
secondary variable is available to explain it (Muthen & 
Muthen, 2004). Although some techniques are available 
to determine which type of missing data patterns are 
present (Cohen & Cohen, 1983; Cohen, Cohen, West, & 
Aiken, 2003), it is difficult to assess the pattern of 
missingness in practice (Jones, 1996). 
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Methods of Handling Missing Data 

A number of techniques have been used to handle 
missing data, with success depending on the nature of 
the data and the nature of the missingness pattern. 
Common solutions historically include listwise deletion 
(LD), pairwise deletion, and mean substitution. Yet, 
more recent solutions include Maximum Likelihood, 
Full Information Maximum Likelihood, and Multiple 
Imputation (MI).  

The most common way of handling missingness 
(and the default for all major statistical packages) is LD, 
which simply omits cases with missing data and runs 
analyses using the remaining cases. This approach works 
well with MCAR data, leading to unbiased parameter 
estimates (Allison, 2001). Still, a number of problems 
exist when using LD. The loss of subjects to deletion 
reduces power by increasing standard errors, reducing 
significance levels, and increasing the risk of errors of 
the second kind. However, when data are MAR or 
MNAR, LD results can be biased since the remaining 
cases may not be representative of the full sample (von 
Hippel, 2004). 

In order to prevent the loss of subjects in LD, 
imputation techniques instead insert a reasonable value 
into each missing cell (Little & Rubin, 2002). The 
imputation technique garnering the most recent 
attention outside of the structural equation modeling 
tradition has been multiple imputation (MI). To avoid 
the problems of single imputations, Rubin (Rubin, 1976, 
1996) developed an alternative way of including the 
uncertainty of imputed values by adding a portion of the 
residual distribution to imputed values. Rubin solves the 
problem of underestimating standard errors by repeating 
this imputation several times, generating multiple sets of 
new data whose imputed values vary from set to set. 
These separate datasets are analyzed individually, with 
results combined for final inferences. This process of 
imputing multiple times and pooling results more 
accurately reproduces the uncertainty surrounding the 
true values of missing data points.  

For readers interested in implementing any of these 
missing data procedures, in-depth writings include Little 
and Rubin (2002) and Allison (2001). Additionally, 
Enders (2010) is a very readable book, which also 
helpfully provides example datasets and code for 
carrying out the procedures discussed here utilizing 
variety of statistical software programs. And, the 
Institute for Digital Research and Education at the 
University of California, Los Angeles hosts a number of 

applied examples on their website at 
https://idre.ucla.edu/stats. 

Simulation studies suggest that Maximum 
Likelihood and MI are generally the best methods for 
handling missing data (Jelicˇic´, Phelps, & Lerner, 2009). 
However, little data are available on how these 
techniques recover parameter estimates with data 
missing on multiple variables. This very common 
situation possesses a problem particularly for MI: the 
imputation model used to impute a value may have data 
missing on other variables. The extent to which MI is 
hampered by data missing on multiple indicators is in 
need of study.  

Method 

The purpose of this study is to compare LD and MI 
methods of addressing missing data on more than one 
variable in the context of multiple regression analysis 
(MRA). These techniques were selected since, other than 
structural equation modeling situations, they are the 
most widespread and commonly used missing data 
approaches. MRA was chosen to demonstrate the utility 
of these techniques because of its broad application to 
data in social sciences (Cohen, et al., 2003). Real data will 
be utilized in this study so that the impact of LD and MI 
on parameter estimation can be studied realistically. 
Various missing data conditions following MCAR and 
MAR are generated from real data. Parameter estimates 
resulting from LD and MI treatments are compared to 
the complete dataset results to assess bias in estimation. 
This procedure is replicated multiple times to reduce 
sampling error and to obtain estimates on how well these 
techniques perform on average within each condition. 

Data are taken from the joint standardization 
sample for the Differential Ability Scales (DAS-1) and 
the Adjustment Scales for Children and Adolescents 
(ASCA) (McDermott, 1993, 1999). The dataset consists 
of 1,268 subjects. For this study, we utilize reading 
ability, spatial ability, verbal ability, and mean parental 
educational achievement.  

In performing the MRA, spatial and verbal ability 
scores serve as predictors while reading scores serve as 
the criterion. Descriptive statistics of these variables for 
the complete dataset are shown in Table 1. All three 
variables are standardized so that regression coefficients 
are standardized and without an intercept. The MRA 
model is given as: 

 Reading = β1Spatial + β2Verbal + ε 
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Table 1. Descriptive statistics for complete data.
Variable Mean SD Minimum Maximum
Reading 100.66 14.58 55 145 
Spatial 100.86 14.233 56 144 
Verbal 100.2 14.35 55 140 

 
Regression assumptions were verified for the 

complete data, assuring linearity, approximately normal 
studentized residuals, and no worrisome outliers or 
variance inflation factors. MRA results from the 
complete data are summarized in Table 2. The overall 
model was statistically significant, and both predictors 
made statistically significant, unique contributions to the 
prediction (p<0.001) of the criterion.  

Table 2. Results of multiple regression analysis 
for the complete data set 

Variable B SE t ratio p value R2 

Spatial 0.137 0.025 5.37 <0.001 0.349
Verbal 0.516 0.025 20.22 <0.001  

 
Starting with this full dataset, eighteen conditions 

are produced with different types and percentages of 
missingness. Missing data are created based on three 
factors: the percent missing, the number of variables 
where missingness occurs, and type of missingness 
(MCAR and MAR). For the degree of missing, three 
levels are studied: 10% missing, 25% missing, and 50% 
missing. For the number of variables on which data were 
missing, three cases are studied: missing only on one 
independent variable (spatial ability), missing equally on 

both variables (verbal and spatial abilities) without 
overlap, and missing on both variables with overlap. The 
combination of these two factors results in nine different 
combinations of data sets as displayed in Table 3.  

In the first three data sets 10% of data are missing. 
In Data 1, all 10% are missing on spatial ability. In Data 
2, 5% of data are missing on spatial only, and 5% are 
missing on verbal only. In Data 3, one third data is 
missing on spatial ability, one third data is missing on 
verbal ability, and one third is missing on both spatial 
and verbal abilities. Data 4-6 and 7-9 are produced in a 
similar manner with 25% of cases missing and 50% of 
cases missing, respectively. The first nine datasets, 
Dataset 1 to Dataset 9, are produced as MCAR following 
the missing data conditions in Table 3. The next 9 
datasets, Dataset 10 to Dataset 18, also following the 
pattern in Table 3, are produced to be MAR conditional 
on a related variable, mean parental educational 
achievement. For example, Dataset 7 has 50% data 
missing completely at random on the variable spatial IQ, 
while Dataset 16 also has 50% data missing on the 
variable spatial IQ, but missing conditional on the 
variable mean parental education. Conditional here 
means that subjects with lower mean parental education 
are more likely to have missing data. 

On each of the eighteen datasets, MRA is 
performed using LD, and again using MI. MI is 
implemented utilizing 50 imputations, including the 
parental education variable as part of the imputation 
model. Regression estimates from the complete data are 
compared with estimates from all datasets using absolute 
bias. Absolute bias is computed as follows: 

Table 3. Generated datasets with missing data.* 
   10% cases missing 25% cases missing 50% cases missing 

Data 

Spatial 
IQ 

Verbal 
IQ 

Spatial 
and 

Verbal 
IQ 

Spatial 
IQ 

Verbal 
IQ 

Spatial 
and 

Verbal 
IQ 

Spatial 
IQ 

Verbal IQ 

Spatial 
and 

Verbal 
IQ 

1 10% 0 0       
2 5% 5% 0       
3 3.30% 3.30% 3.30%       
4    25% 0 0    
5    12.50% 12.50% 0    
6    8.30% 8.30% 8.30%    
7       50% 0 0 
8       25% 25% 0 
9       16.70% 16.70% 16.70% 

*Cell values denote percentage of data missing on each predictor. 
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Absolute bias = 
complete

complete


 missing

 (1)

where complete  is the regression coefficient associated 

with the complete data, and gmis sin  is the regression 

coefficient utilizing one of the missing data techniques 
on one of the generated datasets. For example, suppose 

complete = 0.5 and gmis sin = 0.4. Then, absolute bias is 

0.2 (or 20%), meaning that the bias of estimation in the 
regression estimate associated with the missing data 
technique is 20% for that condition. PROC MI and 
PROC MIANALYZE in SAS version 9.2 (SAS) are used 
to perform regression analysis and imputation, with all 
regression using direct-entry MRA.  

Within the specifications of each condition, data are 
deleted randomly. However, calculations of absolute 
bias resulting from only one replication are subject to 
fluctuation due to sampling. More accurate estimates of 
absolute bias within each condition can be made by 
repeating this process multiple times. Here, the process 
of randomly deleting data, implementing a missing data 
technique, and comparing the regression estimates with 
those from the full dataset is repeated 500 times for each 
condition in order to estimate the average absolute bias 
within each condition. 

To test overall mean differences in absolute bias 
across missing data techniques taking into consideration 
the experimental factors (percent of missingness, type of 
missingness, and location of missingness), a repeated 
measures analysis of variance (ANOVA) is carried out, 
one for each regression estimate [β1 (spatial) and β2 
(verbal)]. Since two missing data techniques are run on a 
single simulated dataset, technique is treated as the 
repeated (within) factor. The independent variables are 
the amount of missingness (10%, 25%, 50%), type of 
missingness (MCAR, MAR), and where missingness 
occurs (one independent variable, two independent 
variables without overlap, two independent variables 
with overlap). The total sample size for each ANOVA is 
9,000, resulting from 500 replications for each of the 18 
conditions. As the focus of this work is on the missing 
data technique, only the within factor main effects and 
interactions are investigated. Between factor main 
effects only address average differences in absolute bias 
across the experimental factors, which is not of interest.  

With a large number of replications (500) for each 
condition purposely used to be able to detect small 
differences, it is likely that the ANOVAs will be over-

powered. To combat the impact of an over-powered 
test, practical significance is determined by both a 
significant p-value (p<0.001) and a large effect size 
(partial η2>0.138). Partial η2 is the proportion of variance 
explained by the effect under scrutiny not explained by 
other effects in the model. 

Results 

Tables 4 and 5 display results for the spatial ability 
coefficient and Tables 6 and 7 display results for the 
verbal ability coefficient. Table 4 shows means, standard 
deviations, and ranges of absolute bias in the spatial (β1) 
coefficient by condition. It can be seen that, across all 
conditions, bias worsens as the percentage of missing 
data increases from 10 to 50 percent. Comparing results 
between LD and MI techniques for dealing with missing 
data, under the MCAR pattern for all three missing 
conditions bias is about the same or smaller for MI than 
for LD. When missing data follows the MAR pattern, 
however, the bias is small for MI only when data are 
missing on only one variable (here, spatial). When 
missing data occurs on more than one variable under 
MCAR, LD seems to be a better technique to deal with 
missing data.  

In order to see if meaningful differences exist 
among the different factors studied, an ANOVA was 
performed to test for differences. In performing a 
repeated measures ANOVA on these biases, the 
procedure assumes that the dependent variable (mean 
absolute bias) is normally distributed, and that sphericity 
holds. Examination of the histograms and P-P plots 
suggests no outliers or worrisome deviation from 
normality. Mauchley’s Test of Sphericity is not needed, 
as the within factor (missing technique LD versus MI) 
has only two factors. 

Examining the ANOVA results on the spatial biases 
as displayed in Table 5 shows that half of the within 
effects and interactions are statistically significant at 
p<0.001, but none meet the large effect size (partial 
η2>0.138) criteria. Since no effect meets both criteria, 
none of the effects are further explored. 

The means, standard deviations, and ranges of 
absolute bias in the verbal (β2) coefficient by condition 
are presented in Table 6. Just as in the case of spatial 
coefficient, across all conditions, bias worsens as the 
percentage of missing data increases from 10 to 50 
percent. However, unlike the spatial coefficient, the bias 
for MI is smaller than LD for all missing conditions for 
both MCAR and MAR patterns. To further examine  
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meaningful differences on the different factors studied, 
an ANOVA was performed to test for differences. The 
normality assumptions hold for these data as well. 

Examining the ANOVA results on the spatial biases 
as displayed in Table 7, it can be seen that all of the 
within effects and interactions are statistically significant 

Table 4. Mean, standard deviation, and range of bias in the spatial coefficient by 
condition. 

Where Missing 
Missing 

Technique
10% Missing 25% Missing 50% Missing 

MCAR     

Spatial LD 0.053+0.040 
(0.000-0.236) 

0.086+0.067 
(0.000-0.435) 

0.152+0.108 
(0.001-0.534) 

 MI 0.052+0.041 
(0.001-0.266) 

0.087+0.066 
(0.000-0.419) 

0.148+0.108 
(0.002-0.528) 

Spatial + Verbal LD 0.050+0.038 
(0.000-0.182) 

0.093+0.069 
(0.001-0.361) 

0.140+0.108 
(0.000-0.572) 

 MI 0.039+0.030 
(0.000-0.144) 

0.065+0.050 
(0.000-0.316) 

0.106+0.080 
(0.000-0.411) 

Spatial + Verbal + 
Overlap 

LD 0.053+0.041 
(0.000-0.203) 

0.089+0.065 
(0.000-0.369) 

0.157+0.113 
(0.001-0.588) 

 MI 0.045+0.036 
(0.000-0.167) 

0.074+0.054 
(0.001-0.315) 

0.120+0.096 
(0.001-0.485) 

MAR     

Spatial LD 0.027+0.020 
(0.000-0.116) 

0.047+0.035 
(0.000-0.188) 

0.067+0.048 
(0.000-0.232) 

 MI 0.028+0.021 
(0.000-0.134) 

0.049+0.038 
(0.000-0.217) 

0.067+0.050 
(0.000-0.269) 

Spatial + Verbal LD 0.027+0.020 
(0.000-0.112) 

0.048+0.037 
(0.000-0.194) 

0.066+0.049 
(0.000-0.276) 

 MI 0.035+0.026 
(0.000-0.128) 

0.066+0.046 
(0.000-0.216) 

0.099+0.070 
(0.000-0.309) 

Spatial + Verbal + 
Overlap 

LD 0.028+0.020 
(0.000-0.113) 

0.051+0.037 
(0.000-0.216) 

0.075+0.052 
(0.000-0.268) 

 MI 0.034+0.025 
(0.000-0.126) 

0.062+0.044 
(0.000-0.233) 

0.099+0.072 
(0.001-0.383) 

Table 5. ANOVA univariate testes for within effects on absolute bias of the spatial 
variable. 

Source DF MS F p 
Partial 
η2 

Technique 1 0.013 8.73 0.003 0.001 
Technique*Percent 2 0.001 1.00 0.366 0.000 
Technique*Type 1 0.809 547.29 <0.001 0.057 
Technique*Percent*Type 2 0.099 66.83 <0.001 0.015 
Technique*Location 2 0.004 2.73 0.065 0.001 
Technique*Percent*Location 4 0.004 2.42 0.047 0.001 
Technique*Type*Location 2 0.177 119.42 <0.001 0.026 
Technique*Percent*Type*Location 4 0.024 15.94 <0.001 0.007 
Error 8982 0.001    
†p<0.001 and partial η2>0.138 
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at p<0.001. This was anticipated due to the large sample 
size used in the simulation. Examining the effect sizes 
(last column in Table 7), it can be seen that four effects 
meet the minimum effect size requirement. However, 
the main effect and two-way interactions can only be 
interpreted within the context of the significant three-
way interaction.  

The three-way interaction between technique, 
percent, and type of missingness is significant, 
F(2,8982)=1861.36, p<0.001, partial η2=0.293, Cohen’s 
large effect. A plot of the means is shown in Figure 1. 
As shown in Figure 1, the absolute bias in the verbal 
coefficient using MI is very similar with MCAR or MAR 
data, and gets slightly higher in bias as the percentage of 
missingness increases. LD performs worse than MI 
when handling MCAR data, and similarly increases in 
bias when missing data rates increase. However, LD with 

MAR data shows significantly higher rates of absolute 
bias than MI with data MAR, and gets dramatically 
worse as the percentage of missingness increases.  

Figure 1. Unconditional means of absolute bias in 
the verbal coefficient by technique, percent, and type 
of missingness. 
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Table 6. Mean, standard deviation, and range of bias in the verbal coefficient by 
condition. 

Where Missing 
Missing 

Technique 
10% Missing 25% Missing 50% Missing 

MCAR     

Spatial LD 0.013+0.010 
(0.000-0.063) 

0.023+0.017 
(0.000-0.087) 

0.038+0.029 
(0.000-0.140) 

 MI 0.007+0.005 
(0.000-0.035) 

0.011+0.008 
(0.000-0.049) 

0.019+0.014 
(0.000-0.066) 

Spatial + Verbal LD 0.013+0.010 
(0.000-0.063) 

0.023+0.017 
(0.000-0.079) 

0.036+0.027 
(0.000-0.156) 

 MI 0.009+0.007 
(0.000-0.041) 

0.014+0.010 
(0.000-0.058) 

0.022+0.016 
(0.000-0.093) 

Spatial + Verbal + 
Overlap 

LD 0.014+0.010 
(0.000-0.046) 

0.022+0.016 
(0.000-0.082) 

0.038+0.030 
(0.000-0.165) 

 MI 0.010+0.008 
(0.000-0.046) 

0.017+0.012 
(0.000-0.060) 

0.025+0.020 
(0.000-0.113) 

MAR     

Spatial LD 0.022+0.010 
(0.000-0.050) 

0.050+0.018 
(0.001-0.096) 

0.107+0.025 
(0.047-0.175) 

 MI 0.005+0.003 
(0.000-0.021) 

0.008+0.005 
(0.000-0.030) 

0.011+0.007 
(0.000-0.041) 

Spatial + Verbal LD 0.022+0.010 
(0.000-0.056) 

0.050+0.018 
(0.002-0.100) 

0.109+0.024 
(0.021-0.171) 

 MI 0.008+0.006 
(0.000-0.028) 

0.017+0.011 
(0.000-0.054) 

0.027+0.019 
(0.000-0.102) 

Spatial + Verbal + 
Overlap 

LD 0.021+0.010 
(0.000-0.054) 

0.050+0.018 
(0.002-0.115) 

0.107+0.025 
(0.039-0.174) 

 MI 0.009+0.006 
(0.000-0.028) 

0.020+0.013 
(0.000-0.063) 

0.035+0.021 
(0.000-0.091) 
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Discussion 

This simulation study attempted to stretch the limits 
of missing data techniques in the novel, yet realistic, 
situation where data are missing on more than one X 
variable in the context of MRA. Previous studies have 
examined the impact of various missingness factors with 
missingness occurring on only one X variable. In this 
study, missingness was examined in a simulation setting 
where missing data were created multiple times and 
analyzed in terms of mean absolute bias across 
replications. Simulating missingness patterns multiple 
times allows for more accurate comparisons of absolute 
bias across factors of missingness type (MCAR and 
MAR), percent of missingness (10, 25, and 50 percent), 
and missing technique (MI and LD). 

In this more realistic scenario, results closely mirror 
those from previous studies on the topic. MI preforms 
better at recreating the true regression coefficients than 
LD. Additionally, more missing data leads to more bias 
in the regression parameter estimates. And, MAR data is 
more difficult to faithfully recreate than MCAR, 
especially for LD. 

However, these relationships only held true for one 
of the regression coefficients (verbal) considered in this 
study. As shown in Table 2, the standardized regression 
coefficient for the verbal variable’s prediction of reading 
ability was much higher than the spatial variable. Thus, 
there was a greater opportunity for the missing data 
conditions studied here to impact the estimation of that 
variable’s coefficient. As a limitation of this study, these 
results may change if a different dataset, different 
variables, and different relationships between variables 
were observed. 

It is notable that the magnitude and direction of the 
factors considered in this study mirrored those from 
previous studies, since this design specifically sought to 
examine the impact when data were missing on more 
than one variable. Interestingly, the location of 
missingness did not impact the amount of bias in the 
regression coefficients. That is, it did not matter in this 
case whether data were missing on one variable, on two 
variables, or on two variables with overlap. This is 
especially important since the MI method requires the 
specification of an imputation model that depends on 
these supplementary variables to guide the imputation. 
These results reaffirm that MI works better than LD, 
especially when data are MAR. This study also provides 
confidence that MI can perform in cases where data are 
missing on multiple variables, even when the imputation 
model itself is missing data. 
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