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Using the Student’s t-test with extremely small sample sizes 

J.C.F. de Winter 
Delft University of Technology 

 
Researchers occasionally have to work with an extremely small sample size, defined herein as N ≤ 5. 
Some methodologists have cautioned against using the t-test when the sample size is extremely 
small, whereas others have suggested that using the t-test is feasible in such a case. The present 
simulation study estimated the Type I error rate and statistical power of the one- and two-sample t-
tests for normally distributed populations and for various distortions such as unequal sample sizes, 
unequal variances, the combination of unequal sample sizes and unequal variances, and a lognormal 
population distribution. Ns per group were varied between 2 and 5. Results show that the t-test 
provides Type I error rates close to the 5% nominal value in most of the cases, and that acceptable 
power (i.e., 80%) is reached only if the effect size is very large. This study also investigated the 
behavior of the Welch test and a rank-transformation prior to conducting the t-test (t-testR). 
Compared to the regular t-test, the Welch test tends to reduce statistical power and the t-testR yields 
false positive rates that deviate from 5%. This study further shows that a paired t-test is feasible with 
extremely small Ns if the within-pair correlation is high. It is concluded that there are no principal 
objections to using a t-test with Ns as small as 2. A final cautionary note is made on the credibility of 
research findings when sample sizes are small. 

The dictum “more is better” certainly applies to 
statistical inference. According to the law of large 
numbers, a larger sample size implies that confidence 
intervals are narrower and that more reliable 
conclusions can be reached. 

The reality is that researchers are usually far from 
the ideal “mega-trial” performed with 10,000 subjects 
(cf. Ioannidis, 2013) and will have to work with much 
smaller samples instead. For a variety of reasons, such 
as budget, time, or ethical constraints, it may not be 
possible to gather a large sample. In some fields of 
science, such as research on rare animal species, 
persons having a rare illness, or prodigies scoring at the 
extreme of an ability distribution (e.g., Ruthsatz & 
Urbach, 2012), sample sizes are small by definition 
(Rost, 1991). Occasionally, researchers have to work 
with an extremely small sample size, defined herein as 
N ≤ 5. In such situations, researchers may face 
skepticism about whether the observed data can be 
subjected to a statistical test, and may be at risk of 
making a false inference from the resulting p value.  

Extremely-small-sample research can occur in 
various scenarios. For example, a researcher aims to 
investigate whether the strength of an alloy containing 
a rare earth metal is above a threshold value, but has 
few resources and is therefore able to sacrifice only 
three specimens to a tensile test. Here, the researcher 
wants to use a one-sample t-test for comparing the 
three measured stress levels with respect to a reference 
stress level. Another example is a researcher who 
wishes to determine whether cars on a road stretch 
drive significantly faster than cars on another road 
stretch. However, due to hardware failure, the 
researcher has been able to measure only two 
independent cars per road stretch. This researcher 
wants to use a two-sample t-test using N = M = 2. A 
third example is a behavioral researcher who has tested 
the mean reaction time of five participants and needs to 
determine whether this value is different from a 
baseline measurement. Here, the researcher would like 
to submit the results (N = 5) to a paired t-test. 
Reviewers will typically demand a replication study 
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using a larger sample size, but it may not be feasible to 
carry out a new experiment.  

Of course, researchers strive to minimize Type II 
errors. That is, if the investigated phenomenon is true, 
it is desirable to report that the result is statistically 
significant. At the same time, Type I errors should be 
minimized. In other words, if the null hypothesis holds, 
researchers have to avoid claiming that the result is 
statistically significant. Numerous methodologists have 
cautioned that a small sample size implies low statistical 
power, that is, a high probability of Type II error (e.g., 
Cohen, 1970; Rossi, 1990). The ease with which false 
positives can enter the scientific literature is a concern 
as well, and has recently attracted substantial attention 
(e.g., Ioannidis, 2005; Pashler & Harris, 2012). 

Noteworthy for its longstanding influence is the 
book “Nonparametric statistics for the behavioral 
sciences” by Siegel (1956; see also the 2nd edition by 
Siegel & Castellan, 1988, and a summary article by 
Siegel, 1957). The book by Siegel (1956) is arguably the 
most highly cited work in the statistical literature, with 
39,926 citations in Google Scholar as of 20 July 2013. 
Siegel (1956) pointed out that traditional parametric 
tests should not be used with extremely small samples, 
because these tests have several strong assumptions 
underlying their use. The t-test requires that 
observations are drawn from a normally distributed 
population and the two-sample t-test requires that the 
two populations have the same variance. According to 
Siegel (1956), these assumptions cannot be tested when 
the sample size is small. Siegel (1957) stated that “if 
samples as small as 6 are used, there is no alternative to 
using a nonparametric statistical test unless the nature 
of the population distribution is known exactly” (p. 18). 
Similarly, Elliott and Woodward (2007) stated that “if 
one or more of the sample sizes are small and the data 
contain significant departures from normality, you 
should perform a nonparametric test in lieu of the t-
test.” (p. 59). Is the t-test invalid for extremely small 
sample sizes and is it indeed preferable to use a 
nonparametric test in such a case? 

Ample literature is available on the properties of 
the t-test as a function of sample size, effect size, and 
population distribution (e.g., Blair et al., 1980; De 
Winter & Dodou, 2010; Fay & Proschan, 2010; 

Ramsey, 1980; Sawilowsky & Blair, 1992; Sheppard, 
1999; Zimmerman & Zumbo, 1993). Simulation 
research on the extremely-small-sample behavior of the 
t-test is comparatively scarce. Fritz et al. (2012) 
calculated the sample size required for the t-test as a 
function of statistical power and effect size. For large 
standardized effect sizes (D = 0.8) and low statistical 
power (25%), a sample size of 6 sufficed for the two-
tailed t-test. Posten (1982) compared the Wilcoxon test 
with the t-test for various distributions and sample sizes 
(as small as 5 per group) and found that the Wilcoxon 
test provided overall the highest statistical power. 
Bridge and Sawilowsky (1999) found that the t-test was 
more powerful than the Wilcoxon test under relatively 
symmetric distributions. The smallest sample size 
investigated in this study was 5 versus 15. Fitts (2010) 
investigated stopping criteria for simulated t-tests, with 
an emphasis on small sample sizes (3–40 subjects per 
group) and large effect sizes (Ds between 0.8 and 2.0). 
The author found that it is possible to prematurely stop 
an experiment and retain appropriate statistical power, 
as long as very low p values are observed. Mudge et al. 
(2012) recommended that the significance level (i.e., the 
alpha value) for t-tests should be adjusted in order to 
minimize the sum of Type I and Type II errors. These 
authors investigated sample sizes as small as 3 per 
group for a critical effect size of D = 1. Campbell et al. 
(1995) estimated sample sizes required in two-group 
comparisons and concluded that N = 5 per group may 
be suitable as long as one accepts very low statistical 
power. Janušonis (2009) argued that small samples (N 
= 3–7 per group) are often encountered in 
neurobiological research. Based on a simulation study, 
the author concluded that the t-test is recommended if 
working with N = 3 or N = 4, and that the Wilcoxon 
test should never be used if one group has 3 cases and 
the other has 3 or 4 cases. Janušonis (2009) further 
reported that small sample sizes are only to be used 
when the effect size in the population is very large.  

The results of the above studies suggest that 
applying the t-test on small samples is feasible, contrary 
to Siegel’s statements. However, explicit practical 
recommendations about the application of the t-test on 
extremely small samples (i.e., N ≤ 5) could not be 
found in the literature. The aim of this study was to 
evaluate the Type I error rate and the statistical power 
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(i.e., 1 minus the Type II error rate) of the Student’s t-
test for extremely small sample sizes in various 
conditions, and accordingly derive some guidelines for 
the applied researcher. 

Method 

Simulations were conducted to determine the 
statistical power and Type I error rate of the one-
sample and two-sample t-tests. Sampling was done 
from a normally distributed population with a mean of 
0 and a standard deviation of 1. One of the two 
distributions was shifted with a value of D with respect 
to 0. A sample was drawn from the population, and 
submitted to either the one-sample t-test with a 
reference value of zero, or to the two-sample t-test for 
testing the null hypothesis that the populations have 
equal means. 

The simulations were carried out for Ds between 0 
(i.e., the null hypothesis holds) and 40 (i.e., the 
alternative hypothesis holds with an extremely large 
effect), and for N = 2, N = 3, and N = 5. In the two-
sample t-test, both samples were of equal size (i.e., N = 
M). A p value below 0.05 was considered statistically 
significant. All analyses were two-tailed. Each case was 
repeated 100,000 times. 

This study also investigated the behavior of the 
two-sample t-test for extremely small sample sizes in 
various scenarios: 

• Unequal variances. The population values of one 
group were multiplied by 2 and the values of the 
other population were multiplied by 0.5. 
Accordingly, the ratio of variances between the 
two population variances was 16. A sample size of 
3 was used (N = M = 3). 

• Unequal sample sizes. The behavior of the t-test was 
investigated for N = 2 and M = 5. 

• Unequal sample sizes and unequal variances. The 
combination of unequal sample sizes and unequal 
variances was used. The unequal variances 
condition was repeated for N = 2, M = 5, and for 
N = 5, M = 2. In this way, both the larger and 
smaller samples were drawn from the larger 
variance population.  

• Non-normal distribution. A lognormal distribution 
was used as shown by the black line in Figure 1. 
The distribution had a mean of 0, a variance of 1, 
and a skewness of 5.70. The lognormal distribution 
originally had a mean of 0.8 and was offset with 
−0.8, such that the mean equaled 0. N = M = 3 
was used. 

Figure 1. Probability density function of the investigated 
non-normal distributions (mean = 0, variance = 1). 

Furthermore, it was investigated whether other 
types of tests improve the statistical power and the 
false positive rate. Specifically, this study evaluated (a) 
the t-test on ranked data (t-testR) and (b) the t-test 
using the assumption that the two samples come from 
normal distributions with unknown and unequal 
variances, also known as the Welch test. The degrees of 
freedom for the Welch test was determined with the 
Welch-Satterthwaite equation (Satterthwaite, 1946). 
The t-testR was implemented by concatenating the two 
samples into one vector, applying a rank 
transformation on this vector, splitting the vector, and 
then submitting the two vectors with ranked data to the 
two-sample t-test. This approach gives p values that are 
highly similar to, and a monotonic increasing function 
of, the p values obtained with the Mann-Whitney-
Wilcoxon test (Conover & Iman, 1981; Zimmerman & 
Zumbo, 1989, 1993). Note that when sample sizes are 
extremely small, the Mann-Whitney-Wilcoxon test is 
somewhat more conservative (i.e., provides higher p 
values) than the t-testR. 

An additional analysis was performed to explore 
how the Type I error rate and statistical power vary as a 
function of the degree of skewness of the lognormal 
distribution. The offset value (originally −0.8) of the 
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population distribution was systematically varied with 
20 logarithmically spaced values between −0.1 and 
−100, while holding the population mean at 0 and the 
population variance at 1. Changing the offset value 
while holding the mean and variance constant 
influences skewness (see Figure 1 for an illustration). D 
= 0 was used for estimating the Type I error rate and D 
= 2 was used for estimating the Type II error rate.  

Finally, the paired t-test was evaluated. This study 
investigated its behavior for N = 3 as a function of the 
within-pair population correlation coefficient (r). The 
correlation coefficient was varied between −0.99 and 
0.99.  

The analyses were conducted in MATLAB 
(Version R2010b, The MathWorks, Inc., Natick, MA). 
The MATLAB code for the simulations is provided in 
the appendix, and may be used for testing the effect of 
the simulation parameters such as sample size or 
parameters of the non-normal distribution. 

Results 

The results for equal sample sizes (N = M = 2, N 
= M = 3, & N = M = 5) are shown in Table 1. For the 
one-sample t-test, acceptable statistical power (i.e., 1 – 
beta > 80%) is reached for D ≥ 12. For the two-sample 
t-test, acceptable power is reached for D ≥ 6. In other 
words, the t-test provides acceptable power for 
extremely small sample sizes, provided that the 
population effect size is very large. Table 1 further 
shows that the t-testR has zero power for any effect 
size when N = M = 2. The results in Table 2 also 
reveal that the Welch t-test is not preferred; statistical 
power is lower as compared to the regular t-test.  

For N = M = 3, the null hypothesis is rejected in 
more than 80% of the one-sample and two-sample t-
tests for D ≥ 4 (Table 1). The t-testR provides a power 
advantage as compared to the t-test. However, the 
Type I error rate of the t-testR is 9.9%, which is 
substantially higher than the nominal value of 5%. 
Again, the Welch test results in diminished statistical 
power as compared to the regular t-test. 

For N = M = 5, the statistical power is 91.0% and 
79.0% at D = 2, for the one-sample and two-sample t-
test, respectively. For this sample size, the power 
differences between the t-test, t-testR, and Welch test 

are small, and either test might be chosen. The Type I 
error rates of the regular t-test are close to the nominal 
level of 5% for all four t-test variants (Table 1). 

Table 1. Proportion of 100,000 repetitions yielding p < 0.05 
for various mean distances D. The simulations were 
conducted with equal sample sizes per group and normally 
distributed populations. 

 
Note: The values for D = 0 represent the Type I error rate. The 
values for D > 0 represent statistical power (i.e., 1−Type II error 
rate). 
 

Table 2 shows the results for extremely small and 
unequal sample sizes (i.e., N = 2, M = 5). The t-test 
and t-testR provide more than 80% power for D ≥ 3. 
The t-testR yields a high Type I error rate of 9.4%. The 
Welch test provides diminished power as compared to 
the regular t-test. 

Table 2 further shows the results for unequal 
variances for N = M = 3. The t-testR provides greater 
statistical power than the t-test (cf. 72.9% for t-testR vs. 
52.9% for the t-test at D = 3), but yields a high Type I 
error rate of 15.7%. The Welch test again reduces 
statistical power as compared to the t-test. The Welch 
test yields an acceptable Type I error rate of 5.5%, that 
is, slightly above the nominal level of 5.0%, whereas for 
the regular t-test the false positive rate is 8.3%. 

N  = M  = 2 N  = M  = 3

D
t- test

(1 sample)
t- test

(2 sample)
t- testR

(2 sample)
Welch

(2 sample) D
t- test

(1 sample)
t- test

(2 sample)
t- testR

(2 sample)
Welch

(2 sample)
0 0.049 0.049 0.000 0.023 0 0.050 0.050 0.099 0.035
1 0.093 0.095 0.000 0.046 1 0.179 0.161 0.264 0.118
2 0.175 0.216 0.000 0.106 2 0.472 0.464 0.625 0.369
3 0.260 0.389 0.000 0.197 3 0.747 0.784 0.890 0.679
4 0.341 0.563 0.000 0.303 4 0.908 0.947 0.981 0.884
5 0.421 0.718 0.000 0.411 5 0.976 0.993 0.998 0.970
6 0.496 0.838 0.000 0.513 6 0.995 0.999 1.000 0.994
7 0.564 0.913 0.000 0.599 7 0.999 1.000 1.000 0.999
8 0.622 0.958 0.000 0.671 8 1.000 1.000 1.000 1.000
9 0.683 0.982 0.000 0.733 9 1.000 1.000 1.000 1.000

10 0.733 0.993 0.000 0.782 10 1.000 1.000 1.000 1.000
15 0.903 1.000 0.000 0.929 15 1.000 1.000 1.000 1.000
20 0.973 1.000 0.000 0.981 20 1.000 1.000 1.000 1.000
40 1.000 1.000 0.000 1.000 40 1.000 1.000 1.000 1.000

N  = M  = 5

D
t- test

(1 sample)
t- test

(2 sample)
t- testR

(2 sample)
Welch

(2 sample)
0 0.050 0.049 0.056 0.044
1 0.401 0.287 0.294 0.266
2 0.910 0.790 0.781 0.767
3 0.998 0.985 0.979 0.980
4 1.000 1.000 0.999 1.000
5 1.000 1.000 1.000 1.000
6 1.000 1.000 1.000 1.000
7 1.000 1.000 1.000 1.000
8 1.000 1.000 1.000 1.000
9 1.000 1.000 1.000 1.000

10 1.000 1.000 1.000 1.000
15 1.000 1.000 1.000 1.000
20 1.000 1.000 1.000 1.000
40 1.000 1.000 1.000 1.000
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Table 2. Proportion of 100,000 repetitions yielding p < 0.05 
for various mean distances D. The simulations were 
conducted with normally distributed populations having 
unequal sample sizes (left pane) and unequal variances (right 
pane). 

 
Note: The values for D = 0 represent the Type I error rate. The 
values for D > 0 represent statistical power (i.e., 1−Type II error 
rate). 
 

For unequal sample sizes and unequal variances, a 
mixed picture arises (Table 3). When the larger sample 
is drawn from the high variance population, the t-testR 
and the Welch test are preferred over the regular t-test, 
because the statistical power is higher for these two 
tests. However, when the larger sample is drawn from 
the low variance population, none of the three 
statistical tests can be recommended. The t-test and t-
testR provide unacceptably high false positive rates (> 
27%), whereas the Welch test provides very low power: 
even for an effect as large as D = 20, the statistical 
power is only 76.5%. The high Type I error rate for the 
t-test is caused by the fact that the pooled standard 
deviation is determined mostly by the larger sample 
(having the lower variability), while the difference in 
sample means is determined mostly by the smaller 
sample (having the higher variability). As a result, the t-
statistic is inflated. 

Table 4 shows that for a lognormal distribution, 
the t-testR provides the greatest statistical power. For 
example, for D = 1, the power is 57.4%, 39.8%, and 
30.4%, for the t-testR, regular t-test, and Welch test, 
respectively. However, the Type I error rate is high for 
the t-testR (9.9%) as compared to the regular t-test 
(3.4%) and the Welch test (2.0%). The Type I error rate 
of the one-sample t-test is very high (15.3%). Note that 
for larger sample sizes (i.e., N = M = 15), the t-testR 
provides an accurate Type I error rate of 5%, while the 

one-sample t-test retains a high Type I error rate of 
13.9% (data not shown).   
 
Table 3. Proportion of 100,000 repetitions yielding p < 0.05 
for various mean distances D. The simulations were 
conducted with normally distributed populations having 
unequal sample sizes combined with unequal variances. 

Note: The values for D = 0 represent the Type I error rate. The 
values for D > 0 represent statistical power (i.e., 1−Type II error 
rate).

Table 4. Proportion of 100,000 repetitions yielding p < 0.05 
for various mean distances D. The simulations were 
conducted for the lognormal distribution shown in Figure 1 
(skewness = 5.70) with equal sample sizes per group. 

 
Note: The values for D = 0 represent the Type I error rate. The 
values for D > 0 represent statistical power (i.e., 1−Type II error 
rate).

 

Figures 2 and 3 present the results of the 
simulations for the 20 different degrees of skewness (N 
= M = 3). It can be seen that Type I error rates are 
relatively independent of the degree of skewness 
(Figure 2). Statistical power at D = 2 increases with 
increasing skewness (Figure 3). This phenomenon can 
be explained by the fact that the probability that the tail 
of the distribution is sampled is small when skewness is 

N  = 2, M  = 5 N  = M  = 3 (unequal variances)

D
t- test

(2 sample)
t- testR

(2 sample)
Welch

(2 sample) D
t- test

(2 sample)
t- testR

(2 sample)
Welch

(2 sample)
0 0.050 0.094 0.063 0 0.083 0.157 0.055
1 0.162 0.252 0.165 1 0.148 0.255 0.098
2 0.487 0.609 0.384 2 0.314 0.487 0.210
3 0.816 0.885 0.559 3 0.529 0.729 0.362
4 0.963 0.980 0.654 4 0.723 0.887 0.516
5 0.996 0.998 0.722 5 0.858 0.963 0.662
6 1.000 1.000 0.770 6 0.939 0.991 0.774
7 1.000 1.000 0.813 7 0.978 0.998 0.861
8 1.000 1.000 0.846 8 0.993 1.000 0.920
9 1.000 1.000 0.874 9 0.998 1.000 0.957

10 1.000 1.000 0.897 10 1.000 1.000 0.977
15 1.000 1.000 0.966 15 1.000 1.000 1.000
20 1.000 1.000 0.991 20 1.000 1.000 1.000
40 1.000 1.000 1.000 40 1.000 1.000 1.000

N  = 2 (small variance), M  = 5 (large variance) N  = 5 (small variance), M  = 2 (large variance)

D
t- test

(2 sample)
t- testR

(2 sample)
Welch

(2 sample) D
t- test

(2 sample)
t- testR

(2 sample)
Welch

(2 sample)
0 0.014 0.046 0.041 0 0.271 0.309 0.104
1 0.043 0.122 0.117 1 0.352 0.392 0.126
2 0.154 0.345 0.350 2 0.547 0.587 0.176
3 0.354 0.627 0.652 3 0.748 0.785 0.232
4 0.598 0.844 0.874 4 0.883 0.910 0.279
5 0.801 0.949 0.966 5 0.955 0.971 0.323
6 0.922 0.988 0.992 6 0.986 0.993 0.360
7 0.976 0.998 0.997 7 0.995 0.998 0.397
8 0.994 1.000 0.999 8 0.999 1.000 0.432
9 0.999 1.000 0.999 9 1.000 1.000 0.464

10 1.000 1.000 1.000 10 1.000 1.000 0.494
15 1.000 1.000 1.000 15 1.000 1.000 0.645
20 1.000 1.000 1.000 20 1.000 1.000 0.765
40 1.000 1.000 1.000 40 1.000 1.000 0.977

N  = M  = 3 (lognormal)

D
t- test

(1 sample)
t- test

(2 sample)
t- testR

(2 sample)
Welch

(2 sample)
0 0.153 0.034 0.099 0.020
1 0.332 0.398 0.574 0.304
2 0.783 0.728 0.830 0.626
3 0.907 0.867 0.922 0.789
4 0.952 0.929 0.960 0.872
5 0.972 0.959 0.978 0.917
6 0.984 0.975 0.987 0.945
7 0.989 0.984 0.991 0.961
8 0.992 0.989 0.995 0.973
9 0.995 0.992 0.996 0.979

10 0.996 0.994 0.997 0.984
15 0.999 0.999 0.999 0.995
20 1.000 1.000 1.000 0.998
40 1.000 1.000 1.000 1.000
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high. In other words, for high skewness (cf. red line in 
Figure 1) the sample distribution is often narrow, and 
consequently, shifting one of the samples with D = 2 
results in a high t-statistic and low p value. For all 
degrees of skewness, the t-testR retains a higher Type I 
error rate (Figure 2) and greater statistical power 
(Figure 3) than the t-test and Welch test. 

Figure 2. Type I error rate of the two-sample t-test, the two-
sample t-test after rank transformation (t-testR), and the 
Welch test, as a function of the degree of skewness of the 
lognormal distribution (N = M = 3). 
 

Figure 3. Statistical power at D = 2 of the two-sample t-test, 
the two-sample t-test after rank transformation (t-testR), and 
the Welch test, as a function of the degree of skewness of 
the lognormal distribution (N = M = 3). 

 

Figure 4 shows the results of the paired t-test. It 
can be seen that statistical power improves when the 
within-pair correlation increases. Acceptable statistical 
power (> 80%) can be obtained with N = 3, as long as 
the within-pair correlation is high (r > 0.8). A negative 
correlation diminishes statistical power, which can be 
explained by the fact that the variance of the paired 

differences increases when the correlation coefficient 
decreases. The results in Figure 4 are in agreement with 
the statement that “in rare cases, the data may be 
negatively correlated within subjects, in which case the 
unpaired test becomes anti-conservative” (Wikipedia, 
2013; cf. 46.4% and 62.5% statistical power for the 
unpaired t-test and t-testR at N = M = 3, Table 1). 
Figure 4 further illustrates that the Type I error rate is 
again higher for the t-testR as compared to the regular 
t-test. 

Figure 4. Type I error rate and statistical power (1-Type II 
error rate) for the paired t-test as a function of the within-
pair correlation coefficient (r). Simulations were conducted 
with N = 3. D = 0 was used for estimating the Type I error 
rate and D = 2 was used for estimating the statistical power. 

 

Discussion 

The present simulation study showed that there is 
no fundamental objection to using a regular t-test with 
extremely small sample sizes. Even a sample size as 
small as 2 did not pose problems. In most of the 
simulated cases, the Type I error rate did not exceed 
the nominal value of 5%. A paired t-test is also feasible 
with extremely small sample sizes, particularly when the 
within-pair correlation coefficient is high. 

A high Type I error rate was observed for unequal 
variances combined with unequal sample sizes (with 
the smaller sample drawn from the high variance 
population), and for a one-sample t-test applied to non-
normally distributed data. The simulations further 
clarified that when the sample size is extremely small, 
Type II errors can only be avoided if the effect size is 
extremely large. In other words, conducting a t-test 
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with extremely small samples is feasible, as long as the 
true effect size is large.  

The fact that the t-test functions properly for 
extremely small sample sizes may come as no surprise 
to the informed reader. In fact, William Sealy Gosset 
(working under the pen name “Student”) developed the 
t-test especially for small sample sizes (Student, 1908; 
for reviews see Box, 1987; Lehmann, 2012; Welch, 
1958; Zabell, 2008), a condition where the traditional z-
test provides a high rate of false positives. Student 
himself verified his t-distribution on anthropometric 
data of 3,000 criminals, which he randomly divided into 
750 samples each having a sample size of 4. 

The simulations showed that a rank 
transformation is not recommended when working 
with extremely small sample sizes. Although the t-testR 
occasionally improved statistical power with respect to 
the regular t-test, the Type I error rate was 
disproportionally high in most of the investigated cases. 
However, for N = M = 2, application of the rank 
transformation resulted in 0% Type I errors and 100% 
Type II errors. The erratic Type I/II error behavior of 
the t-testR can be explained by a quantization 
phenomenon, as also explained by Janušonis (2009). 
There are (2N)!/(N!*N!) ways to distribute 2N cases 
into two groups (Sloane, 2003, sequence A000984), 
setting an upper limit to the number of possible 
differences in mean ranks, being ceil(N^2+1)/2) 
(Sloane, 2003; sequence A080827). For N = M = 2, 
three distinct p values are possible (i.e., 0.106, 0.553, & 
1.000). Illustratively, if submitting the following two 
vectors to the two-sample t-test: [1 2] and [3 4], the 
resulting p value is 0.106, so even in this ‘perfectly 
ordered’ condition the null hypothesis will not be 
rejected. For N = M = 3, five distinct p values are 
possible (0.021, 0.135, 0.326, 0.573, & 0.854), for N = 
M = 4, nine distinct p values are possible, and for N = 
M = 5, 13 different p values can be obtained. Some 
researchers have recommended rank-based tests when 
working with highly skewed distributions (e.g., Bridge 
& Sawilowsky, 1999). The present results showed that a 
rank-transformation is not to be preferred when 
working with extremely small sample sizes, because of 
quantization issues. 

The t-test with the unequal variances option (i.e., 
the Welch test) was generally not preferred either. Only 
in the case of unequal variances combined with unequal 
sample sizes, where the small sample was drawn from 
the small variance population, did this approach 
provide a power advantage compared to the regular t-
test. In the other cases, a substantial amount of 
statistical power was lost compared to the regular t-test. 
The power loss of the Welch test can be explained by 
its lower degrees of freedom determined from the 
Welch-Satterthwaite equation. For N = M = 2, and 
normally distributed populations with equal variances, 
the degrees of freedom of the Welch test is on average 
1.41, compared to 2.0 for the t-test. To the credit of the 
Welch test, the Type I error rates never deviated far 
from the nominal 5% value, and were in several cases 
substantially below 5%. Similar results for unequal 
sample sizes (Ns between 6 and 25) and unequal 
variances were reported in a review article about the 
Welch test by Ruxton (2006). 

Some researchers have recommended that when 
sample sizes are small, a permutation test (also called 
exact test or randomization test) should be used instead 
of a t-test (e.g., Ludbrook & Dudley, 1998). In a follow-
up analysis, I repeated the two-sample comparisons by 
means of a permutation test using the method 
described by Hesterberg et al. (2005). The permutation 
test yielded Type I and Type II error rates that were 
similar to the t-testR. This similarity can be explained 
by the fact that for extremely small sample sizes, a 
permutation test suffers from a similar quantization 
problem as the t-testR. A permutation test may be 
useful for analyzing data sampled from a highly skewed 
distribution. However, permutation tests or other 
resampling techniques, such as bootstrapping and 
jackknifing, do not overcome the weakness of small 
samples in statistical inference (Hesterberg et al., 2005). 

This study showed that there are no objections to 
using a t-test with extremely small samples, as long as 
the effect size is large. For example, researchers can 
safely use a group size of only 3 when D = 6 or larger 
and the population distribution is normal. Such large 
effects may be quite common in engineering and 
physical sciences where variability and measurement 
error tend to be small. However, large effect sizes are 
uncommon in the behavioral/psychological sciences. 
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Bem et al. (2011) and Richard et al. (2003) stated that 
effect sizes in psychology typically fall in the range of 
0.2 to 0.3. In some cases, large effects do occur in 
behavioral research. For example, severe and enduring 
early isolation may have strong permanent effects on 
subsequent behavior and social interaction (see Harlow 
et al., 1965 for a study on monkeys), strong physical 
stimuli—particularly electric shock and warmth—are 
perceived as highly intensive (Stevens, 1961), and 
training/practice can dramatically alter skilled 
performance. Shea and Wulf (1999), for example, 
found that the angular root mean square error on a task 
requiring participants to balance on a stabilometer 
improved with about D = 6 after 21 practice trials. 
Aging/maturation can also have large effects. Tucker-
Drob (2013) mentioned Ds of about 7 for differences 
in reading, writing, and mathematics skills between 4-
year olds and 18-year olds. Royle et al. (in press) 
reported a difference of D = 6 between total brain 
volume of 18−28-year olds and 84−96-year olds, a 
biological factor which may explain the age-related 
decline typically observed in the mean test scores of 
cognitive abilities such as reasoning, memory, 
processing speed, and spatial ability. Mesholam et al. 
(1998) reported large effect sizes (Ds up to 4) on 
olfactory recognition measures for Alzheimer’s and 
Parkinson’s disease groups relative to controls. A 
worldwide study comparing 15-year-old school pupils’ 
performance on mathematics, reading, and science 
found differences up to D = 2.5 between countries 
(OECD, 2010). Mathes et al. (2002) found large sex 
differences (D = 10.4) on a paper-and-pencil measure 
of desire for promiscuous sex for respondents in their 
teens (data reviewed by Voracek et al., 2006). In 
summary, large effects do occur in the 
behavioral/psychological sciences. 

A final cautionary note is in place. In this work, a 
frequentist statistical perspective was used. From a 
Bayesian perspective, small sample sizes may still be 
problematic and may contribute to false positives and 
inflated effect sizes (Ingre, in press; Ioannidis, 2005, 
2008). This can be explained as follows. In reality, the 
applied researcher does not know whether the null 
hypothesis is true or not. It may be possible, however, 
to estimate the probability that an effect is true or false, 
based on a literature study of the research field. 

Suppose that there is a 50% probability that the null 
hypothesis is true and a 50% probability that the null 
hypothesis is false with D = 1. If sample sizes are small, 
then statistical power is low. For example, if N = M = 
2, the probability of a true positive is only 4.7% (9.5% 
power value in Table 1 * 50%) and the probability of a 
false positive equals 2.5% (alpha level of 5% * 50%). 
This implies that the probability that a statistically 
significant finding reflects a true effect is 65% (i.e., 
4.7%/(4.7%+2.5%). Now suppose one uses N = M = 
100. The probability of a true positive is now 50% 
(~100% statistical power * 50%) and the probability of 
a false positive is still 2.5%, meaning that the positive 
predictive value is 95%. In other words, when the 
sample size is smaller, a statistically significant finding is 
more likely to be a false positive. Taking this further, it 
can be argued that if a psychologist observes a 
statistically significant effect based on an extremely 
small sample size, it is probably grossly inflated with 
respect to the true effect, because effect sizes in 
psychological research are typically small. Accordingly, 
researchers should always do a comprehensive 
literature study, think critically, and investigate whether 
their results are credible in line with existing evidence 
in the research field. 

Summarizing, given infinite time and resources, 
large samples are always preferred over small samples. 
Should the applied researcher conduct research with an 
extremely small sample size (N ≤ 5), the t-test can be 
applied, as long as the effect size is expected to be 
large. Also in case of unequal variances, unequal sample 
sizes, or skewed population distributions, can the t-test 
be validly applied in an extremely-small-sample 
scenario (but beware the high false positive rate of the 
one-sample t-test on non-normal data, and the high 
false positive rate that may occur for unequal sample 
sizes combined with unequal variances). A rank-
transformation and the Welch test are generally not 
recommended when working with extremely small 
samples. Finally, researchers should always judge the 
credibility of their findings and should remember that 
extraordinary claims require extraordinary evidence. 
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Appendix 

 
% MATLAB simulation code for producing Figure 1 and Tables 1-4 
close all;clear all;clc 
m = 0.8;v = 1;mu = log((m^2)/sqrt(v+m^2));sigma = sqrt(log(v/(m^2)+1)); % parameters for lognormal 
distribution 
DD=[0:1:10 15 20 40]; 
CC=[2 2 1 1 % 1. equal sample size, equal variance 
    3 3 1 1 % 2. equal sample size, equal variance 
    5 5 1 1 % 3. equal sample size, equal variance 
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    2 5 1 1 % 4. unequal sample size, equal variance 
    3 3 2 1 % 5. equal sample size, unequal variance 
    2 5 2 1 % 6. unequal sample size, unequal variance 
    5 2 2 1 % 7. unequal sample size, unequal variance 
    3 3 1 2 % 8. equal sample size, equal variance, non-normal distribution 
    15 15 1 2]; % 9. equal sample size, equal variance, non-normal distribution ("large sample" 
verification) 
reps=100000; 
p1=NaN(size(CC,1),length(DD),reps); 
p2=NaN(size(CC,1),length(DD),reps); 
p3=NaN(size(CC,1),length(DD),reps); 
p4=NaN(size(CC,1),length(DD),reps); 
for i3=1:size(CC,1) 
    for i2=1:length(DD) 
        disp([i3 i2]) % display counter 
        for i=1:reps 
            N=CC(i3,1); 
            M=CC(i3,2); 
            R=CC(i3,3); 
            if CC(i3,4)==1; % normal distribution 
                X=randn(N,1)/R+DD(i2); % sample with population mean = D 
                X2=randn(M,1)*R; % sample with population mean = 0 
            else  % non-normal distribution 
                X=(lognrnd(mu,sigma,N,1)-m)/R+DD(i2); % sample with population mean = D 
                X2=(lognrnd(mu,sigma,M,1)-m)*R; % sample with population mean = 0 
            end 
        V=tiedrank([X;X2]); % rank transformation of concatenated vectors 
        [~,p1(i3,i2,i)]=ttest(X); % one sample t-test with respect to 0 
        [~,p2(i3,i2,i)]=ttest2(X,X2); % two sample t-test 
        [~,p3(i3,i2,i)]=ttest2(V(1:N),V(N+1:end)); % two sample t-test after rank transformation 
(t-testR) 
        [~,p4(i3,i2,i)]=ttest2(X,X2,[],[],'unequal'); % two-sample t-test using unequal variances 
option (Welch test) 
        end 
    end 
end 
%% display results of Tables 1-4 
for i3=1:size(CC,1) 
    disp(CC(i3,:,:)) 
    disp([DD' mean(squeeze(p1(i3,:,:))'<.05)' mean(squeeze(p2(i3,:,:))'<.05)' 
mean(squeeze(p3(i3,:,:))'<.05)'   mean(squeeze(p4(i3,:,:))'<.05)']) 
end 
%% make figure 1 
m = 0.8;v = 1;mu = log((m^2)/sqrt(v+m^2));sigma = sqrt(log(v/(m^2)+1)); % parameters for lognormal 
distribution, offset = -0.8 
H=lognrnd(mu,sigma,1,5*10^7)-m; 
VEC=-10:.05:20; 
DIS=histc(H,VEC);DIS=DIS./sum(DIS)/mean(diff(VEC)); 
figure;plot(VEC,DIS,'k','Linewidth',3) 
m = 0.5;v = 1;mu = log((m^2)/sqrt(v+m^2));sigma = sqrt(log(v/(m^2)+1)); % parameters for lognormal 
distribution, offset = -0.5 
H=lognrnd(mu,sigma,1,5*10^7)-m; 
DIS=histc(H,VEC);DIS=DIS./sum(DIS)/mean(diff(VEC)); 
hold on;plot(VEC,DIS,'r','Linewidth',3) 
m = 10;v = 1;mu = log((m^2)/sqrt(v+m^2));sigma = sqrt(log(v/(m^2)+1)); % parameters for lognormal 
distribution, offset = -10.0 
H=lognrnd(mu,sigma,1,5*10^7)-m; 
DIS=histc(H,VEC);DIS=DIS./sum(DIS)/mean(diff(VEC)); 
plot(VEC,DIS,'g','Linewidth',3) 
xlabel('Value','Fontsize',36,'Fontname','Arial') 
ylabel('Relative likelihood','Fontsize',36,'Fontname','Arial') 
set(gca,'xlim',[-3 5]) 
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h = findobj('FontName','Helvetica'); 
set(h,'FontSize',36,'Fontname','Arial') 
legend('Offset = -0.8, skewness = 5.70','Offset = -0.5, skewness = 14.0','Offset = -10.0, skewness 
= 0.30') % skewness calculated as: sqrt(exp(sigma^2)-1)*(2+exp(sigma^2)) 
  
%% MATLAB simulation code for producing Figure 4 
clear all 
RR=[-0.99 -0.95:0.05:0.95 0.99]; % vector of within-pair Pearson correlations 
DD=[0 2]; 
reps=100000; 
p1=NaN(length(DD),length(RR),reps); 
p2=NaN(length(DD),length(RR),reps); 
for i3=1:length(DD) 
    for i2=1:length(RR) 
        disp([i3 i2]) % display counter 
        for i=1:reps 
            N=3; M=3; D=DD(i3); r=RR(i2); 
            X=randn(N,1)+D; % sample with population mean = D 
            X2=r*(X-D)+sqrt((1-r^2))*randn(M,1); % sample with population mean = 0 
            V=tiedrank([X;X2]); % rank transformation of combined sample 
            [~,p1(i3,i2,i)]=ttest(X,X2); % paired t-test 
            [~,p2(i3,i2,i)]=ttest(V(1:N),V(N+1:end)); % paired t-test after rank transformation (t-
testR) 
        end 
    end 
end 
figure;hold on % make figure 4 
plot(RR, mean(squeeze(p1(1,:,:))'<.05)','k-o','Linewidth',3,'MarkerSize',15) 
plot(RR, mean(squeeze(p2(1,:,:))'<.05)','k-s','Linewidth',3,'MarkerSize',15) 
plot(RR, mean(squeeze(p1(2,:,:))'<.05)','r-o','Linewidth',3,'MarkerSize',15) 
plot(RR, mean(squeeze(p2(2,:,:))'<.05)','r-s','Linewidth',3,'MarkerSize',15) 
xlabel('\it{r}\rm','FontSize',32,'FontName','Arial') 
ylabel('Type I error rate / Statistical power at \it{D}\rm = 2','FontSize',32,'FontName','Arial') 
legend('Type I error rate \it{t}\rm-test','Type I error rate \it{t}\rm-testR','1-Type II error rate 
\it{t}\rm-test','1-Type II error rate \it{t}\rm-testR',2) 
h=findobj('FontName','Helvetica'); set(h,'FontName','Arial','fontsize',32) 
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