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While linear programming is a common tool in business and industry, there have not been many applications in
educational assessment and only a handful of individuals have been actively involved in conducting
psychometric research in this area. Perhaps this is due, at least in part, to the complexity of existing software
packages. This article presents three applications of linear programming to automate test assembly using an
add-in to Microsoft Excel 2007. These increasingly complex examples permit the reader to readily see and
manipulate the programming objectives and constraints within a familiar modeling environment. A spreadsheet

used in this demonstration is available for downloading.

Advances in educational measurement and technology
continue to afford psychometricians new ways to deal
with complex measurement problems. For example,
measurement researchers (e.g. Armstrong, Jones,
Kunce, 1998; Luecht, 1998; van der Linden, 1998) have
recently outlined mathematical procedures' that, when
used with generic optimization software such as ILOG
OPL-CPLEX and LINGO, can automate the process of
selecting questions from large item banks to construct
parallel tests. Parallel tests are important in large-scale
testing programs because they are equivalent in terms of
both content and statistical properties and are
considered interchangeable which leads to many
practical benefits. Automated test assembly (ATA) is
the most efficient and effective way to construct parallel
tests. Unfortunately, however, existing software
packages remain largely inaccessible to the wider
psychometric community because of their complicated
and unfamiliar modeling platforms. That is, in order to
model ATA problems using available optimization
software, psychometricians often require additional
training in unfamiliar programming languages which
might be acting as a deterrent to their widespread use.
In a recent review of the utility of conducting ATA

in Microsoft Excel 2007 with a premium solver upgrade,
Cor, Alves, and Gierl (2008) conclude that Excel offers a

PuBRAEIS Ao NS RO UIRNE R MDA, SpRpined with its

popularity, could be used to bring ATA to a wider
psychometric audience. The following paper builds on
the Cor et al (2008) review by providing an in-depth
description of how to model and solve three increasingly
complex test assembly problems using Microsoft Excel
2007 and the Premium Solver Platform upgrade.

AUTOMATIC TEST ASSEMBLY:
AN OVERVIEW

In Item Response Theory, the measurement precision of
a test is characterized by its test information function.
Test information functions indicate the strength of a test
at each point on an ability scale (Davey & Pitoniak,
20006). ATA is possible is because of the property of
conditional item independence (see Lord, 1980). Due to
conditional item independence, the total information
provided by a test at any one point on the ability scale
can be defined as the sum of the information at that
point provided by the individual items included in the
test. This property allows assembly problems to be
modeled as systems of linear equations. Once modeled,
optimization algorithms can be employed to efficiently
search the solution space of possible combinations of
test items that serve to optimally satisfy both
psychometric and content specifications.

Test assembly models are specified using a system
of equations that define decision variables, an objective
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function, and constraints associated with the problem.
Decision variables are values that optimization
algorithms change in order to find the solution to a given
problem. In test assembly, the decision variables are
defined as 1’s and 0’s to indicate whether an item is
included (1) or excluded (0) in the final form.
Mathematically, decision variables in test assembly
problems are expressed as follows:

X, =

{ lifitem i is included in test form t
it

0 if item i is notincluded in test form t (1)

The objective function is the equation that
fluctuates when decision variables change. Different test
assembly problems have different objective functions.
For example, in some testing situations the goal is to
generate parallel tests that maximize the information at
certain points on the ability scale. In these instances, the
objective function can be mathematically represented as

follows:
Maximize: Zzzlj(ekt)xit (2)
t k i

In words, Equation 2 states that the sum of the
information, I, across all items, 4, across each specified
level of ability, 8,, across each test, 4 multiplied by the
decision variable x;, should be maximized.

The next types of equations in the model are the
test assembly constraints. In general, constraints define
the boundaries that restrict how high, low, or close to a
specified value an objective function can get. In test
assembly problems, there are two types of constraints -
item level and test level. Item level constraints are used
to restrict or force the use of items that are not wanted
or required on the final form. For example, the test
developer, using a test bank made up of items that have
been calibrated using a 3 parameter item response
model, may want to restrict the selection of items to
those with guessing parameters, ¢, less than 0.30. This
item level constraint is represented mathematically as in
Equation 3:

X, (c” )S 0.30 for all items 7 on all test forms # 3)

Other item level constraints include item
life/ovetlap, item difficulty, reading level, or any item
attribute that is discretely associated with items in the
test bank.

Test level constraints are used to specify the

httpsrdehttarabitksufiast.édutpard/hekeatigpes #f constraints
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can be psychometric or content related. For example, a
test developer may wish to include exactly 9 items that
belong to content category C, on each test form. This
content related constraint is represented mathematically
in the following way:

2% =9 O

ieVCl

In words, Equation 4 states that the sum of the items
that are a subset of content category C, must equal nine.

This concludes our brief overview of how to define
systems of equations required to set up mathematical
models to solve ATA problems. For a detailed
description of the various types of objective functions
and constraints that can be included in test assembly
models, readers are referred to van der Linden (2005).
We now turn to demonstrating how to represent and
solve test assembly problems using Excel. In order to
provide readers with a sense for how these problems can
be set up in Excel, demonstrations with three
increasingly large and diverse test assembly problems are

described.
THREE DEMONSTRATIONS

Example 1: Small Scale Simultaneous Test
Assembly

This first problem demonstrates how Excel can be used
to model simple test assembly problems that, although
small, were once considered not solvable in Excel (see
van der Linden, 2005). In this scenario, the goal of the
test assembly problem is to simultaneously produce
three parallel tests containing ten items that are
maximally informative and parallel at three points on the
ability scale. For this problem, a set of 55 previously
simulated items from an introductory course in item
response theory were used”. The means of the a, b, and ¢
parameters for these simulated items were 0.91, -0.14,
and 0.20 respectively. Figure 1 shows the item
information curves for each of the 55 items.

Figure 1 shows that, even in this small test assembly
problem, trying to select three sets of ten items that
result in statistically parallel tests (tests with overlapping
information functions) is a difficult prospect.
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Figure 1. Item Information Curves for the 55 Items in
Example 1

Figure 2 shows how the item bank was represented
in Excel. The bank contains the a, b, and ¢ parameters,
the content categorization of each item, and the 3
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set up. For full mathematical definitions of each
problem, readers are referred to Appendix A.

Figure 3 shows how the unsolved model is
represented in Excel. Each part of the model is
described in turn. First, readers are referred to the table
titled “Item level Decision Variables” in the middle left
portion of the spreadsheet. This part of the model is
used to specify the decision variables and the item level
constraints for the problem. The blank cells in this table
represent the item decision variable matrix (iem x test

form). These cells are the values that the solver algorithm

change in order to search for an optimal solution. In the
model, these cells are constrained to be binary so that a
‘1’ indicates an item has been chosen for the associated
test and a ‘0’ means it was not.

The problem states that items are to be used only
once across the three tests. In order to meet this overlap

| CR28 - £ |

14 " Hem  auan  Bomn Comn A B T D ]

16 2 11140 06230 01150 0 1 ) ol 003847 041533 0.
17 3 12650 -08380 0.2200 0 D 1 ol 066707 042300 D.06
19 5 00500 11200  0.1020 1 2 ) 0| 045066 024715 0.06401
21| 7 CO110 08200 0.3070 0 D 1 o| 001438 013504 033073
231 o 05710 01350 04070 1 5 5 ol 01126 018332 013502
24 10 14220 -03080 0.2450 0 i 5 0| 025469 088234 0.17018
26| 12 C6980 -02360 02960 ) ) ) 1| 011723 019829 014133
271 13 04490 -05300 02700 1 7 ) 0| 007427 008631 0071
28| 14 08270 -0.6530  0.206D 0 1 ) ol 022128 025377 010982
20| 15 06410 02090 01520 0 0 1 0| 010331 020406 0.19443
30 16 10230 (04810 01380 0 0 ) 1| 004651 03612 046842
31| 17 10830 -0.3820 (01720 1 0 ) 0| 033573 057231 018693
22| 18 08420 03540 0.1130 0 1 ) o| 028762 020021 019674
3 19 00080 12530 01170 D 0 1 0| 046027 022820 0.06091
34| 20 07980 00770 (0.1370 0 D 2 1| 012662 030801 024557
25| 21 07760 -07990 (2360 : ) ) ol 024077 023545 010144
WA k¥ Ttem Rank < Model < F1 I

Figure 2. Item Banking in Excel

parameter logistic information at the specified levels of
ability’. In this example, items were simulated to be
mutually exclusive in terms of content®. For example an
item that measured content category A, has a 1 in the
content column for A and 0’s in the remaining columns.
We now turn to describing how the model for this
problem is represented in Excel (shown in Figure 3). For
the purposes of the paper we limit our explanations to
verbal descriptions of the spreadsheets and how they are

Published by ScholarWorks@UMass Amherst, 2009

constraint the column directly to the left of the item
decision variable matrix (starting at cell E15), which
represents the sum of the decision variables across the
three tests, is constrained to be less than or equal to one.
For example, if item one was assigned to test one, it
could not be assigned to tests two or three because it
would violate the constraint that the sum across the
three forms must be less than or equal to one. We now
turn to the content specifications for this problem.
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Figure 3. Defining a Simple Simultaneous Test Assembly Problem in Excel

The content specifications state that each test must
contain two items from content category A, three items
from content category B, two items from content
category C, and three items from content category D. In
order to build this specification into the model, the
required values are directly input into the grey cells in the
content specification table at the top left quadrant of the
spreadsheet. The number of items measuring each
content category on each test is then calculated in the
rows below the entered specifications. These cells are
defined to equal the sum of the product of the decision
variables assigned to each item for each test and its
category classification from the item bank (also a binary
variable). For example, if in the solution to the problem,
items three and seven are indicated as being included in
test one and these items are the only items on the test
measuring content category A, the value in cell B10
would equal two. In the model, the values in the cells in
these rows (one row per test) must be less than or equal
to the values in the grey cells entered above’.

We now turn to the problem of specifying the
objective function for this problem. In order to make

httRsi sehPlAMMaris IR asTe A RaTR Rl thdsspeldfied levels of
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ability, the objective function was formulated to
minimize the difference between the resulting test
information curves and an absolute target information
curve (for a detailed description of this type of
formulation see van der Linden, 2005, p. 109). The
absolute targets for this problem are calculated by
considering the best three tests that the item bank could
hypothetically produce. When unconstrained, the most
parallel three tests this item bank can produce will evenly
share the total information available at each level of
ability. For example, if the total information available at
0, = -1is 11.29, the hypothetical target for the three test
forms is 11.29/3 3.76. For this problem, three
arbitrary levels of ability are considered, 6, = -1, 8, = 0,
and 0; = 1. The same procedute is used to determine the
absolute targets for 6, = 0 and 6, = 1. The targets are
entered in the grey «cells of the Curve
Specification/Constraint table in the upper right
quadrant of the spreadsheet shown in Figure 2. Each
test has the same absolute targets.

In order to force the solver algorithm to search for
the solution that minimizes the difference between the
absolute targets and the actual information included in

4
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Figure 4. Specifying a Simultaneous Test Assembly Problem in Solver
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the test, a new variable, ‘y’, that represents the absolute
maximum difference between the targets and the actual
information is defined in cell G14. This cell becomes
both the objective and a variable that is free to change
when solving the problem. In order to find a solution to
the problem that minimizes the value of y, three types of
cells are defined. First, the actual amount of information
for each test at each level of ability based on a given
solution is calculated in cells G9:09. These cells
calculate the sum of the product of the decision variables
for each item on each test and the information that each
item provides at the specified level of ability. For
example, if a given solution indicated that items one
through ten are to be included in test one, the actual
amount of information at 6, = -1 for test one is simply
the sum of the information provided by each of these
items at this level of ability (recall that the information at
various levels of ability is calculated in the item bank).

Next, the upper bounds on the difference between
the target and the actual information for each level of
ability on each test are defined. These values are
calculated as the specified target plus ‘y’ (shown in cells
G11:011). Finally, the lower bounds on the difference
between the target and the actual information for each
level of ability on each test are defined. These values are
calculated as the specified target minus ‘y’(shown in cells
G12:012). In order to ensure the solution produces a
value of ‘y’ that is within the calculated upper and lower
bounds, constraints indicating that the actual
information from the calculated total information (cells
G9:09) is less than the upper bounds and greater than
the lower bounds of each individual target are added. A
description of how each of the constraints and variables
described above are specified in the Solver interface is
provided next.

Figure 4 shows the solver interface as it appears in
the latest version of Excel 2007. The solver interface
described in this paper is the most up to date version of
solver that can be installed and used with Excel 2007°.
This platform differs from the factory installed version
of solver and the version of Solver evaluated by Cor et
al. (2008) but requires the same basic specification
strategy.

For the purposes of this demonstration we focus on
the Solver Options and Model Specifications menu
shown on the far right of the spreadsheet in Figure 4.
Specifying a model in solver involves filling in the
different branches of the modelling tree under the

httMﬁéﬁ]lolatﬁporlés% m@?.ed%%‘é%/vo@@i@ﬁ 4and  Model
iglgghand side of the sheet.
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For example, by selecting the branch titled Objective
and then clicking the add button at the top left of the
menu, users can select the cells they want to be specified
as the objective. Once selected users are prompted to
specify whether the objective is to be maximized,
minimized, set to a value of zero, or set to a specific
value. In this problem, the objective was specified to
minimize the value in cell G14.

The same basic procedure is used to specify all of
the components of the model. To specify the decision
variables, the Variables branch is selected and the
appropriate cells are chosen from the spreadsheet. In
this example, the variables are located in the zfem x test
form matrix as well as in cell G14. Next, users begin to
define the constraints. For example, in order to add
content constraints to the model, cells B10:E10 must be
constrained to be less than or equal to cells B9:E9. After
defining all the constraints described in the model (item
overlap constraints and target bounds) users turn to
specifying variable bounds. That is, recall that the item
decision variables must be bound to be integers. In
order to facilitate this constraint, the Model tab includes
an Integer branch where users add the cells in the e x
test form matrix. The last thing that must be constrained
for this problem is the range for ‘y>. That is, ‘y’
represents the maximum absolute difference between
the target and the actual information calculated for each
test. As a result, ‘v’ cannot be less than zero. Users
specify this constraint in the Bound branch under the
Model tab’. This concludes the description of all
information that must be entered into the Solver
interface in order to solve the problem.

After fully defining the assembly problem in the
Solver Options and Model Specifications interface, users
select an engine to solve the optimization problem.
Without getting too technical, most ATA problems can
be solved using the Large-scale LP engine which is
suitable for Mixed Integer Programming problems with
an unlimited number of wvariables and unlimited
constraints. In cases where the Large-scale LP engine is
taking a substantial amount of time to solve the
problem, the Gurobi engine can be used to solve all test
assembly problems. However, there is a substantial cost
difference between the two engines so.

In order to start the solution of the problem, users
click on the play button at the top right of the Solver
Options and Model Specifications interface. The display
automatically switches to the Output tab and begins to
show solution progress. Once a solution has been found
or the iteration or time limits have been reached, users

6
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Figure 4. Solution to Simple Simultaneous Test Assembly Problem
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are presented with a window stating the status of the
solution. Given a successful solution with all constraints
being met, users select ‘ok’ and are directed back to the
sheet. Figure 4 shows the solution to this problem.

The Output tab (shown in the far right of Figure 4)
displays the solution time and other solution
characteristics for the problem. Using the Large-Scale
LP engine on a computer with a 2.0 GHz processor and
1.0 GB of RAM, a satisfactory solution® to the test
assembly problem was found in 1 minute and 48
seconds that satisfied all the problem constraints. The
items selected for each test are indicated in the e x fest
Jform matrix. Using these values and the data in the item
bank, the item information curves for each form are
automatically generated in the graph shown in the
middle of the spreadsheet. Based on the overlap of
these curves, the tests generated appear statistically
parallel. Finally, we see that the maximum difference
between the target and the actual total information for
each test at each ability level was 1.301. We now turn to
an example that is based on real item data. This
concludes the first demonstration.

Example 2 - Observed-Score Pre-Equating using
ATA

The first test assembly demonstration, although
sophisticated, was rather small by test assembly

Page 8

meaning from year to year. One way to limit the amount
of equating that is required is to try to construct
successive tests so that they have overlapping test
characteristic curves. Test characteristic curves are
calculated as the linear combination of the item
characteristic curves for any given test. In a similar way
that we were able to use ATA to model linear
combinations of item information, the linear
combinations of item characteristic curves can be used
as a basis for the model.

In this example, the goal of the test assembly
problem is to create a new version of a criterion
referenced achievement test that has the same test
characteristic curve as the original form. In order to set
this problem up, a bank consisting of 168 science nine
achievement test items administered to approximately
40,000 Canadian students from 1995 to 1999 was
assembled. Using BILOG, the 3-PL parameters for
each item were estimated so that all parameters were
placed on the 1995 scale’. Figure 5 shows the item bank
data for this problem. The only difference between the
bank shown in example one and the current bank is that
instead of showing the calculations for item information,
this bank shows the calculation of the 3-PL probabilities.
The model defining this problem is defined next.

A B D E F G H I J K L I N Q B Q R =
; 1
& IRT Parameters Content Categories 3-PL Probabilities i2
4 Year Iltem # a b c c1 c2 Cc3 C4 Ch Cé -3.4 -3.2 -3 -2.8 -2.6 -2.4
5 1995 S8C95 01 0724 -0.042 0174 1 ] 0 0 0 0 0.1870 0.1806 0.1951 0.2008 0.2080 0.2170
6 1995 SC85 02 0377 -1.094 0.041 1 0 0 0 0 0 0.2191 0.2385 0.2593 0.2817 0.3055 0.3308
7 1995 SC95.03 0443 -0.063 0.064 il 0 0 0 0 0 0.1341 0.1446 0.1564 0.1697 0.1847 0.2014
8 1995 S5C95_04 0458 -2.236 0.09 1 a 0 0 0 a 0.3519 0.3818 0.4135 0.4467 0.4810 0.5160
2} 1995 5C95 05 0.583 -0.821 0.266 1 0 0 0 0 0 0.3189 0.3295 0.3419 0.3565 0.3735 0.3929
10 1995 SC95. 06 0.342 0.686 0.284 1 0] 0 0 0 0 0.3449 0.3517 0.3592 0.3674 0.3763 0.3861
11 1995 SC95_09 0.57 0.235 0.142 1 1] 0 0 0 0 0.1666 01717 0.1778 0.1850 0.1937 0.2040
12 1995 SC95 11 0.463 0.168 0.123 1 a 0 0 0 1] 0.1729 0.1808 0.1899 0.2003 0.2122 0.2256
13 1995 SC95 54 0.528 -1.435 0.029 1 0 o} 0 0 0 0.1711 0.1943 0.2203 0.2494 0.2815 0.3165
14 1995 SC95 58 0437 0.916 0.124 1 0] o} 0 0 0 0.1581 0.1633 0.1693 0.1761 0.1839 0.1927
15 1606 SCO6 05  0.347 -1.622 0.059 | 0 0 0 0 1} 0.3031 0.3251 0.3481 0.3723 0.3074 0.4234
16 1906 SCO6 06  0.729 -0.926 0.083 1 0 0 0 0 0 0.1238 0.1347 0.1482 0.1649 0.1853 0.2101
17 1897 SCO7_18 0729 -2.113 0.081 1 0 0 0 0 0 0.2360 0.2706 0.3108 0.3559 0.4059 0.4596
18 1997 SC97_19 0635 -2.398 0.046 1 0 0 0 0 0 0.2875 0.3283 0.3732 04211 0.4712 0.5225
19 1997 SCO7_ 20 0645 -1.395 0.03 1 a 0 0 0 a 0.1269 0.1478 0.1724 0.2012 0.2343 0.2719
20 1997 SCOT 24 0442 -1.122 0.085 1 0 0 0 0 0 0.2080 Q.227v2 0.2483 0.2715 0.2967 0.3238
21 1998 SC98 05 0595 0.41 0.146 1 a 0 0 0 0 0.1637 0.1676 0.1723 0.1780 0.1848 0.1930
22 1998 SC98_ 06 0.809 -0 109 0.305 1 a 0 0 0 0 0.3124 0.3148 0.3178 0.3218 O 3269 0.3335 1
T e e R A B _ m—— : aEas o N

Figure 5. Pre-equating Item Bank

standards. That is, the model had only 166 variables and
86 constraints. In this second example, a larger more
real world example is demonstrated.

In many large-scale testing programs equating
procedures are used to place successive yeat’s test scores

htt%iﬂﬁ&@%@ﬁi‘@é&%%%ﬁ%é@?@ﬂ@@ 853t Rave the same

1268

In the present problem, a test is to be constructed
that contains the same number of items from the six
content categories as was included in a pre-specified
reference test. Further, in order to facilitate future
linking, 23 of the items on the new form must be
common to both the reference test and the new test.
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Finally, the new test must minimize the difference
between the observed cut scores of the reference test

0,., =-0.80and 6,,, = 0.80) and the new test. Figure 6
shows the unsolved model for this problem. For the
sake of brevity, only new aspects of the model will be
described in detail for this test assembly problem. Once
again, readers are referred to Appendix A for a full

mathematical representation of the model.

Similarities between this model and the model
described in example one include the way in which the
item decision variables, the content specifications, and
the objective function have been formulated. That is, the
same formulas that were used to specify these
components in the previous example, with one
exception, are also used in this model. The exception is
the values calculated in cells J3:K3. That is, rather than
calculating the total information for each test at each
ability level as was done in example one, the observed
cut scores at the indicated levels of ability are calculated
instead (cells ]3:K3). Observed cut scores are calculated
as the sum of the product of the calculated 3-PL
probabilities and the decision variables describing
whether each item is included in the test for each of the

two cut scores (0, = -0.80 and 6, = 0.80). The cut
score targets are obtained directly from the test
characteristic curve of the reference form. The graph in
the lower right quadrant of the spreadsheet shows the
target test characteristic curve based on the items
included in the reference test. The target cut-score
values based on this curve are T, = 28 and T, ., = 44

respectively. The new features of the present model are
described next.

b

First, the model includes the specification of the
reference form data starting in cell B16. These values
function in a similar way as item decision variables do in
that they represent whether or not an item is included in
the reference test. They differ in that, for this problem,
these values are fixed and are only used as a basis for
calculating item overlap constraints. Next, the total item
constraint is specified in cell B9. This value is calculated
as the sum of the item decision variables for the new
form. It is included in the model so that the total items
in the new form can be constrained to the specified
value of 55. Finally, sets of cells constraining the
problem to have 23 items that overlap between the new
and old form are included in the model.

Specifically, a new set of overlap decision variables,
%, are defined (starting at cell D10) to represent whether
each item is included in one, z; = 0, or both of the tests, g

Published by ScholarWorks@UMass Amherst, 2009

Page 9

= 1. In other words, the Solver algorithm is free to
change these wvalues in order to find the best
combination of overlapping items to minimize ‘y’. To
ensure that exactly 23 items overlap, the sum of the
overlap variables (g) is calculated in cell B12 and is
constrained to equal the specified value in cell B11.
Next, to facilitate the proper selection of overlap
decision variables, these variables are constrained to be
greater than or equal to sum of the item level decision
variables across the two forms minus one (starting at cell
F16). Finally, the sum of the item variables (starting at
cell E16) are constrained to be less than or equal to two
times the overlap variable for each item (starting at cell
G16). Readers are referred to van der Linden (2005, p.
144) for a complete explanation of how these sets of
constraints function to control for item overlap.

The last step to solve this problem is to specify the
model in the Solver Options and Model Specification
tab on the far right of Figure 6. The same procedures are
used to define the decision wvariables, constraints,
bounds, and integer constraints for this problem as were
used in example 1. Figure 7 shows the solution to the
observed score pre-equating problem. Using the Large
Scale LP engine on a computer with a 2.0 GHz
processor and 1 GB of RAM, the solution time for this
problem was 2 minutes and 55 seconds. The problem
involved 337 variables and 348 constraints. The graph
of the test characteristic curves in the bottom right
quadrant of the spreadsheet of Figure 7 shows how the
new test characteristic curve almost perfectly parallels
the reference form. Further, there is almost no
difference between the new test cut scores and the
specified targets. Finally, all constraints were satisfied.
We now turn to example 3.

Example 3: Large-Scale Balanced Incomplete
Block Design

Example three constitutes the largest and most
advanced problem of the three demonstrated in this set.
In this example, the goal of the test assembly problem is
to generate 26 parallel forms in a balanced incomplete
block design (BIB). An item bank consisting of 613
grade 4 mathematics items from the Brazilian National
Basic Education Assessment System (Sistema Nacional
de Avaliacao da Educacao Basica - SAEB) is used to
solve this problem. The bank includes the 3-PL item
parameters along with content categorization based on 4
mutually exclusive themes and 28 mutually exclusive
descriptor categories. Figure 8 shows how the bank is
represented in Excel.
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Figure 6. Observed Score Pre-equating Model
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Figure 8. Large-Scale BIB Item Bank

The bank includes the item number, the 3PL IRT
parameters, four content themes, and 28 content
categories (Figure 8 displays only 4 of the 28
descriptors). Also included in the bank is the item
information function specified at multiple points on the
theta scale (the figure displays only four of these points:
—2.0,—1.84, 1.84, 2.0).

The BIB requirement necessitates two stages of
optimization in order to solve this problem. In the first
stage, 13 parallel blocks consisting of 13 unique items are
assembled. In stage two the 13 blocks are organized into
26 parallel forms in a BIB design. The model for the
first stage of the problem is presented in Figure 9 with
the complete mathematical representation presented in

Appendix A.

Once again, this model contains the usual suspects,
the decision variables (represented in an sfemX test block
matrix in cells B27 to N637), constraints, and an
objective function (cell O23). The unique features of
this problem include more complex content constraints
and a new way of formulating the objective function.
Each of these new features are discussed in turn. First,
the content constraints in the problem are modelled at
two levels. At the broadest level, each block must
contain a specific number of items that measure each
curriculum theme. These constraints are formulated in

S0/ SHBISWETKs am%%%a% Srbgeh iyt fwo previous
DOFWE{BP}?GOG 107 popgore specitic level, there

is a requirement that when taken together, the test
blocks must have sampled the specified number of items
for each descriptor (descriptors are nested within
themes). In order to accommodate this constraint more
relaxed content constraints were employed. That is, in
order to facilitate a solution the total number of items
measuring each descriptor (cells F20:AG20) was allowed
to vary within plus or minus one of the specified
requirements (cells F5:AGD5).

The other unique aspect of this model is how the
objective function was formulated. In this example the
goal has no specific target. That is, the goal is to
maximize the information provided at the hypothetical
cut score of 0 = 1. This formulation is much simpler
than the previous examples and involves pushing the
sum of the information provided across all test blocks at
0 =1 (calculated in cell O23) to its maximum. Although
this formulation is simpler, it can be problematic
because it does not necessitate a parallel solution. That
is, the original formulation can result in an uneven
spread of the information across the test blocks. In
order to spread the information out evenly across the
blocks, a second round of optimization is required. In
the second round of optimization, the total information
for each test block (cells B23:N23) is constrained to be
less than or equal to the average information produced
for each block in the first round of optimization. For
this problem, the first optimization run resulted in

12
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Figure 9. Stage 1 of Large-Scale BIB Model
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Figure 11. Model and Solution for Stage II of the Large-Scale BIB Problem
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average information of 21.7 for each block of items.
After solving the problem a second time with the new
constraint that no one block could have more than 21.7
units of information, a more parallel solution was found.

Figure 10 shows the solution to the problem. Due
to the large size of this model (7969 variables and 2108
constraints), the Gurobi Solver engine was used to solve
the problem. Using a computer with a 2.0 GHz
processor and 1.0 GB of RAM, the first round of
optimization took 24.69 seconds. The second round of
optimization (with the added constraint that test blocks
could not exceed 21.7 units of information) was stopped
after 5 minutes and 58 seconds because a strong enough
solution had been reached. All constraints were satisfied
and the solution produced 13 blocks that provided total
information ranging between 21.6 and 21.7 units of
information.

In stage 2 of the problem, blocks are combined into
26 parallel forms subject to the following two
constraints. First, each final form must contain exactly
three blocks of items. Second, each block must appear a
total of 6 times across the forms. To model these
constraints, the same principles used to set up the
overlap constraints in example two are applied. That is,
test blocks are treated as items that are constrained in
terms of how many times they can overlap across the
final forms. Figure 11 shows how stage two of the
problem is modeled in Excel as well as the associated
solution. Because this model does not introduce any
new modeling components, the modeling sheet is not
explained. Once again, readers are referred to Appendix
A for a complete mathematical definition of the
problem. Also, a detailed description of how to define

overlap constraints for the blocks can be found in van
der Linden (2005, p. 152)

Once again, due to the complexity of this problem
(2366 variables and 4174 constraints), the Gurobi Solver
engine was used. A solution time of 18.02 seconds was
indicated on a computer with a 2.0 GHz processor and
1GB of RAM. All constraints were satisfied and the best
possible solution is reported. As a point of comparison,
Figure 13 shows the information curves that resulted
from the actual manual assembly process used to
construct forms along with the information curves
produced based on the automated test assembly model.

Figure 12 shows that the tests constructed based on
the automated model are more parallel and more
uniform across the ability scale that the tests created

httpsiatsantkarwolks. yimesdddpanestet] 4lisswdder, that the
DOI: https://doi.org/10.7275/02m6-1268
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automated test assembly solution shown in Figure 13
does not include all constraints that would have been
required to produce the manual test assembly solution
on the left. That being said, more constraints would not
be expected to change the nature of the comparison
dramatically. The test information curves would be
expected to provide less overall information but would
still be highly statistically parallel (the curves would still
overlap) in comparison to the manually generated forms.

Automated Solution

A

-1 0 1
Ability Level

Manual Solution

Figure 12. Comparing the Manual and Automated Test
Assembly Solutions.

SUMMARY

The above demonstration served as an introduction to
how to model and solve test assembly problems using
Microsoft Excel 2007 and the newly updated Solver
platform. We have taken readers through increasingly
large and complex test assembly problems and have
shown that ATA in Excel is feasible. In our experience,
learning to model test assembly problems in Excel is not
a problem for psychometricians already familiar with the
speadsheet program.  Further, the actual program
interface for the Solver add-in is user friendly and self
explanatory. It is concievable that after some intitial
instruction, users would be able to set up basic test
assembly spreadsheets in a mater of a couple hours.
Once basic ATA sheets are created, users can
continually modify sheets to become increasingly more
sophisticated in terms of the number of and types of
constraints they contain.

Having solved the three increasingly large test
assembly problems, it is now possible to comment on
the factors that affect solution times. Solution times for
the three examples varied from 18.2 seconds to 5
minutes and 58 seconds. The primary factor affecting
solution time was the nature of the constraints and
objective function modeled in each test assembly
problem. Specifically, absolute constraints and targets
lead to longer solution times than more open targets.
For example, in the BIB example, when the objective

16
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was to merely maximize the information at a single point
on the ability scale (part one of stage one and stage two),
solution times were fast (24 and 18 seconds
respectively).  Alternatively, with multiple absolute
targets (example 1, 2, and step two of stage one of
example 3), solution times were much longer (1 min 48
sec, 2 min 55 sec, and 5 min 58 sec respectively). Even
though there is substantial variation in solution time. In
comparison to manual test assembly procedures, which,
depending on the program, require days or even weeks
to generate multiple forms, ATA in Excel is extremely
less time intensive.'”

In general, the above discussion paints modeling in
Excel as a straightforward and easy to learn process.
There are, however, some limitations. For example,
with more sophisticated constraints, modelling in a
spreadsheet becomes unwieldy and inefficient. In these
situations a more flexible modeling language becomes
more appealing. Also, cost might be a concern for some
users''. For example, small business users may find the
cost too high to justify. Alternatively, for users involved
in large testing programs interested in implementing
ATA, cost reductions that will result from increased
efficiency in test construction are expected to more than
offset any initial investment. At the end of the day, we
hope that because Excel is so widley used,
demonstrating its utility in solving all types of test

Notes
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assembly problems will, at the very least, help to bring
ATA and all of its benefits to the wider psychometric
community.
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1. For a complete overview and step-by-step guide on how to model various test assembly problems, readers are
referred to Wim van der Linden’s (2005) book entitled “Linear models for optimal test design”.

2. 'The simulated items were not generated by the authors of this paper and as a result were not in any way
designed to facilitate a tractable solution to the present test assembly problem.

3. Due to alack of readability of the screenshot that would have shown the full 55-item bank, only a portion of

it can be shown in the figure.

4. Item content can be categorized in more complicated ways. For example, in the third demonstration, content
categorization is done at two hierarchical levels. This leads to dependencies that do not cause problems for

ATA models.

5. An exact constraint is not used for each category because this constrains the problem more than it needs to be.
That is, the solution will always push the less than or equal to constraint to its maximum in order to produce
the best possible solution. For a complete explanation, readers are referred to van der Linden, 2005 p. 56-57.

6. Readers interested in trying out the problem described in Example 1 can download the Excel file used to
model the problem from the PARE site http://patreonline.net/sup/v14n14/ata.xIsx. A 30-day trial version of
the Solver Add-in components required to run the sheet can be downloaded from
http://solver.com/dwnxls.php.
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7. 'The Bound branch is not viewable in Figure 3. In the actual file, this branch appears in sequence following the
Constraints branch in the Model tree.

8. The solution provided to this problem is not the optimal solution. That is, the solver had reached a maximum
time constraint set for the engine and automatically prompted us to choose if we would like to stop. Given
that the best possible solution (shown in the bottom of the output tab) was 1.28, and the current solution of
1.301, a decision was made to stop the search because the solution provided was deemed strong enough.

9. Parameter equating is made possible because of the linking structure employed in the original administration.

10. Solution times will also vary depending on which Solver engine is used. For the most part, more expensive
engines can be expected to result in faster solution times.

11. The total onetime cost of the configuration used to solve each of the examples in this demonstration is §9325.
Academic discounts are available for professors and students. Further, the configuration used in this paper is
more sophisticated than is required for most test assembly problems. Users are encouraged to contact Solver
support to determine the configuration that best suits their specific optimization needs. For example, the
problems in this paper could have been solved with a configuration costing $6490. This configuration would
have lead to slightly slower solution times. For a complete price list visit http://www.solver.com/pricexls.php
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APPENDIX A
Mathematical Model for Example 1

The decision variable for this problem (and for the remaining problems in this investigation) is represented by
equation Al.

% =10 (A1)

The decision variable is constrained so that it can only take the form of a one or a zero. Within the excel framework
this constraint can be accomplished by using equation A2.

lifitem i is included in test form t A2
0 if item i is notincluded in test form t ( )

x, =binary;i.e.x, {

The following multiple test level constraints (as generalized by equation A3) ensure that each item, 7, can only be used for
one test, 7 i.e. no item overlap. This general expression results in 55 constraints.

3
D x, <1 foralli (A3)
t=1

There are 12 content constraints (4 categories x 3 forms) that are used to restrict the total number of items in each content

categoty, I/, to the cotresponding specification, Cg,,, for each test (equation A4).

int <C,, forall? (A4)

iel,

It should be noted that although it appears that this general expression would admit solutions with fewer than the
required number of items from each content category; this will never be the case. The solution to this problem will
necessarily reach the upper bound set by each of the content specifications because each test form can only gain more
information as result of the inclusion of more items. Inequalities are used because they tend to be less restrictive on
linear programming algorithms and results in faster solution times as well as a lower likelihood of infeasibility.

In order to facilitate a solution to this problem, the constraints described above must be applied to an
objective function. Equations A5 through A7b define the objective function and system of constraints required to
achieve an absolute target test information curve required for this problem.

objective: minimize y (A5)
Subject to:
)20 (AG)
Zli(‘gkt)xit 2Tkt_y (A7a
! for all levels of ability, £, and all tests, # &
Zli(‘gkz)xit <Tu+y AT7b)

1

For this problem, equations 6a and 6b result in 9 curve constraints that restrict the sum of the information for the
items included in each test, # at each ability level, £, to be between the upper and lower bounds of the absolute targets,
T,
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Mathematical Model for Example 2
Stage I: Creating the Reference Form

The goal of this problem is to create a new test, t, with specific cut scores at the acceptable (4,,,) and excellent (6,,.,)
levels of achievement. The two decision variables required to formulate this problem are x;, which allows items to be
selected or not selected for the new test, and y, which represents the maximum absolute difference between the target
cut scores and the actual cut scores on the reference form. Both variables, shown in equations 8 and 9, are free to
change so that an optimal solution to the problem can be found. The item level decision variable, x;, is constrained to
be cither a one or a zero using equation 10.

Xy (A8)
Y, (A9)
R ol lifitem i is included in test form t
xit - blnary’ L.C. xit { 0 if item / is notincluded in test form t (Al O)

The objective function for this problem is to minimize the absolute maximum difference, y, between the target cut
scores and the actual cut scores. In order to initiate this objective, a set of psychometric test level constraints must be
implemented. Equations A1l through A16 produce five psychometric constraints that constrain j.

minimize y (A11)
168
ZPZ (Haccep )S Taccep + y (Al 2)
=1
168
ZE (gaccep(z‘))Z Taccep () — (Al 3)
i=1

168

ZPi (gexcel(t))g T oxcer(t) TVt (A14
i=1

168

ZPi (gexcel(t)y T oxcer(t) = (A15
i=1

y>0 (A16)

Equation A17 produces a test level constraint that ensures the reference form contains exactly 55 items. Equation
A18, results in six content constraints ensuring that the reference form meets the test blue print specifications, C,,, for
each content category, C.

le.t =55 (A17)
i=1
spec

int =C,,.. forall content categories C (A18)

ieC
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The new test form must contain 23 items in common with the reference form. This common item specification
requires an additional decision variable that describes whether item 7has been assigned to forms #and #. Equation A19
is used to specify the overlap decision variables for this stage of the problem. Like x; z,, must be constrained to be
either a one or a zero as shown in equation A20.

(A1)

1ifitem 7 is included in test form t
0 if item 7 is notincluded in test form t (AZO)

z,, =binary;i.e.z,, {

Equations A21 through A23 generate the item overlap constraints to ensure that exactly 23 items are common
between the two forms.

168

D zp=23 forall < 7 (A21)

i=1
2z, <x,+x;, forall7and 7 < 7’ (A22)
Zyp 2 X, +X;,—1 forall7and 7 < 7’ (A23)

Mathematical Model for Example 3

The BIB requirement necessitates two stages of optimization in order to solve this problem. S7age I requires the
creation of 13 parallel blocks consisting of 13 unique items, while S7ge II organizes the 13 blocks into 26 parallel forms
in a BIB design. The following is a description of the models and specifications used to facilitate the solution of each
stage of the automated test assembly problem.

Stage 1: Creating 13 Parallel Blocks

The decision variable for this problem, x;, is represented and constrained in the same way as is shown in the previous
two scenarios (see equations Al and A2). In order to ensure no item overlap, 613 overlap constraints (equation A24) are
imposed on the items.

13
> x, <1 forall (A24)
=1

This test assembly problem requires 429 sest level constraints. Of these 429 test level constraints, 13 are used to ensure the
number of items contained in each form equals 13 (equation A25), 52 are used to ensure that each theme specification
is exactly met (equations A26 to A29), and the remaining 364 are used to ensure that sum of items used to assess each
descriptor across all forms is within one deviation of the descriptor specifications (as generalized by equations A30
and A31).

613
D x, =13 forallz (A25)
i=1
D x,=2 forallz (A26)
iel'l
Y x,=3 forallz (A27)
ieT2
D x,=7 forallz (A28)

ieT'3
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> x,=1 forallz (A29)
ieT4
13
> x,-D,,. <l forallieD,_ andall D, (A30)
t=l1
13
> x,—D,. 21 forallieD  andall D, (A31)

t=1

In order to facilitate a reasonable solution for this problem, the objective function was formulated to maximize the
information at @ = 0 on the ability scale. The problem is akin to a criterion referenced testing situation in which the
most important point on the ability scale is € = 0. For the purposes of stage one, the objective function used to
assemble the 13 blocks is shown in equation A32 where k = 1.

maximize Zzzlj(ekt)xit (A32)
t ki

The mathematical representation described above concludes the definition of the model required to solve stage one of
example 3.

Stage 11: Implementing BIB

The objective for this BIB model is to combine the 13 parallel blocks created in S7age I, into 26 parallel test forms. In
otder to facilitate the assignment of blocks of items to each test form, a new decision variable is required (equation

A33).

_ { 1 if block jisassignedtotest? (A33)

jt — | Oifblock jisnotassigned to test ¢

The BIB design also requires a decision variable to describe whether pairs of item blocks have been assigned to
individual test forms. Equation A34 shows this new decision variable which allows the test developer to constrain the
total amount of overlap that can exist between item blocks across all resulting test forms.

z _ { 1 if the pair of blocks ( j,k)isassigned to test? (A34)

jkt — | 0if thepairof blocks ( j,k)isassignedto testz
The BIB design for this problem requires the following set of constraints (equations A35 to A39):

13

[E]> %, =3 foralls (A35)

j=1

26
D x, <6 forall, (A36)
t=1
26
Dz, =1 forallj <k (A37)
t=1
2z,,<x,+x, foralzand;<# (A38)
Zy2X,+x,—1 foralzsand; < £ (A39)

Equation A35 results in 26 individual constraints that force the number of blocks in each test form to be equal to three.
F];;ac"}_}llation A306 defines 73 constraints that limit the total number of appearances for each block of items to six, and

yaschalanverksumassedly pars/MAIRASTHIG the number of times that each set of blocks can appear together across all
ttps://doi.org/10.7275/02m6-1268 2
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of the final test forms to one. The last 78 constraints ensure that each of the final forms share a maximum of 13 items
with only one of the remaining forms. The constraints that are generated as a result of equations A38 and A39 ensure
that pairs of blocks are assigned to each test form only if the individual blocks have also been assigned. When taken
together, the last two general expressions result in an additional 4056 constraints.

Because the total amount of information that can be obtained when these individual forms is fixed, the objective
function for this optimization problem merely serves as a tool to facilitate the organization of the blocks to meet the
aforementioned combinatorial constraints. The objective function that is used to initiate the optimization is shown in

equation A40.
Maximize Y > > 1,(6)x,, (A40)
"

The objective function reported above maximizes the total information at @ = 0 for each of the items included in each
block across each block included in each final form.
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