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Estimating Policy and Program Effects with Observational Data: The "Differences-in-Differences" Estimator

Jack Buckley & Yi Shang
Boston College

When randomized field trials are impossible or impractical, researchers in education and the social sciences more
broadly must use observational data, such as standardized test scores or responses to survey questions, to quantitatively
evaluate the effects of policies or programs. A potential pitfall with these analyses, however, is that units of observation
are not randomly assigned to participate; rather, they self-select to introduce the policy or program of interest. This
becomes a problem for estimation and inference if the decision to institute the policy is correlated with the outcome
measure—e.g. if states that are more likely to introduce high-stakes testing are also more likely to have a larger gain in
test scores. In the econometrics literature, statistical techniques used to analyze these data are often referred to as
"treatment effects" models (Goldberger, 1972; Maddala, 1983), where the policy of interest is the "treatment."

In this literature, which spans several disciplines (although perhaps is most developed in econometrics), several families
of approaches to modeling treatment effects have been suggested, including:

e "Heckman-type" selection models (Goldberger 1972, based on Heckman’s [1976] sample selection model)
in which a selection equation and an outcome equation are jointly estimated, assuming a bivariate
normal error term in the two equations;

e Instrumental variables estimators (widely used in econometrics, with Brundy and Jorgenson 1971
being a seminal reference) in which an variable can be defined and measured that is related to selection
to treatment but not to the outcome measure, and this "instrument" is used to make unbiased inference;

e Nonparametric matching methods, most prominently propensity score matching (Rosenbaum and
Rubin 1983), in which the probability of each unit selecting treatment is first estimate, and control
observations are chosen by matching on this score to the treatment observations (see Schneider and
Buckley 2003 for a recent application in education).

In this article, we consider one of the simplest and most powerful techniques for estimating treatment effects with
observational data: the "difference-in-differences" (DiD) estimator. We will briefly describe the DiD model and its
underlying assumptions, and then turn to a simple but topical example: applying the DiD to estimate the effects of high-
stakes testing on student outcomes.

The Difference-in-Differences Estimator

The basic logic behind the DiD estimator (Ashenfelter, 1978; Ashenfelter & Card, 1985), or the "natural experiment
approach," is to model the treatment effect by estimating the difference between outcome measures at two time points for
both the treated observations and the controls (those not implementing or participating in the policy or program) and
then comparing the difference between the groups—hence the difference-in-differences moniker. This strategy ensures
that any variables that remain constant over time (but are unobserved) that are correlated with the selection decision
and the outcome variable will not bias the estimated effect.

Clearly this technique thus requires repeated observations of the units. Note, however, that these may be either a true
panel, where data is gathered on the same units at both times, or repeated cross-sections, such as two national random
survey samples. This is both a strength and a limitation of the DiD model in comparison to the methods described above
—the DiD model tends to be more powerful and thus better able to detect small treatment effects, but the other types of
treatment effects models can be estimated with only a single cross-section of data.

The key assumption of the DiD model is that the average change in the outcome is presumed to be the same for both the
non-participants and, counterfactually, for participants if they had not participated. In other words, the analyst must be
comfortable in assuming that unmeasured factors, perhaps changes in economic conditions or other policy initiatives,
affect both the participants and the non-participants in similar ways. Dee and Fu (2003) provide an excellent discussion
of this assumption in an education research context and how to minimize the possibility of its violation through the
careful selection of independent variables; Abadie (in press) provides a more technically complex solution that employs
the propensity score matching technique to adjust the DiD sample.
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We should note that, in addition to this unique identifying assumption, the DiD as we describe it here employs the

ordinary least squares estimator and, as such, is sensitive to the usual violations of the Gauss-Markov assumptions
(such as homoscedasticity, normality, and no autocorrelation).

If the researcher has pooled cross-sectional data, then the DiD can be estimated with the linear equation:

}’i‘, =o+ ﬁDz.J + &+ }sz.‘l +g,

where ;, denotes the outcome measure for every unit i at both times ¢, ¢ itself is a variable coded 1 if the observation is
in the second time period and 0 if it is in the initial period, 2;, is an indicator (or "dummy") variable coded 1 if unit is in
the treatment group, 0 if in the control group, and 1), is an indicator variable coded 1 if the observation is in the

treatment group and in second time period, O otherwise. The estimable quantities of interest are thus:® , a common
constant for all observations, &, a constant for treatment units only, &, the effect of time on all units, and ¥, the effect of
treatment on the treated units (and the main target of inference). The final term, &,,, is just an error or disturbance for
each unit at each time period. If we assume that these disturbances are uncorrelated normal variates with mean 0 and
unknown variance, then we can estimate the DiD model quite simply with the familiar ordinary least squares multiple
linear regression estimator.

The expected values of quantities of interest can be shown in a simple table (Table 1, below) that also helps to clarify the
model described above:

Table 1: Quantities of Interest in the DiD Model

Pre-Treatment Post-Treatment Difference
Outcome Outcome
Treated Units
a+f a+f+85+y d+y

Control Units

& o+ F &
Difference-in- ¥
Differences

If the researcher has access to true panel data, then the model is even more straightforward and statistically
powerful. Differencing the time 1 and time 0 equations yields:

Ln—Lfa=o0+yi,+ %'

H
where ¥, - ¥, is the difference between the repeated outcome measures for each observation, 73, is the treatment

indicator, ¥ is the treatment effect, & is still the effect of time on all units, and g is the difference between errors at

time 1 and time 0, which is itself a normal random variate with mean 0.

Practically speaking, to estimate the DiD model for panel data, all the researcher has to do is to compute the
difference between observed outcome measures and then regress this on a constant and a dummy variable for whether-
or-not the unit of observation elected to participate in the treatment or not. The repeated cross section version is a little
more involved, as the researcher must construct the additional indicators for time and for time and treatment, but
basically the same steps are required. Before we turn to an example, however, we must first consider a slightly more
complicated model.

Extending the DiD Model

Often the simple DiD model may not be sufficient to capture the dynamics that our theory suggests are occurring
in the real world. The easiest way to include additional factors to account for heterogeneous dynamics in a DiD model is
to simply add them linearly to the regression equation. Say, for example, we have an additional demographic variable,

htté:/%%%?bs@&%%%éhﬁo@ﬁ?ﬁtﬂcmss section data, the model thus becomes:
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fe=otan X + 60 +a+yD +s&,

where =, are the effects of the new covariate on the outcome for each of the two time points which are practically
computed by estimating a separate coefficient for X, at time 0 and at time 1. Once again, the panel data model is
slightly simpler due to differencing:
+
Ta—Tg=0+m& +yl) +5

where & isjust &, -7, from the previous model. Of course, either model can be extended to simultaneously consider
several independent covariates instead of just a single X;.

As Meyer (1995) points out, however, if the researcher believes that the treatment may actually have different effects on
different units depending on these additional variables, then this simple linear model will not be sufficient to capture
the heterogeneity of the dynamics. One possible solution that is easy to implement is the inclusion of interactions
between the treatment indicator and the additional covariates, yielding:

YM =at+w X + ﬁDu + 5+ }'D!.J +,?.2X2.DL1 +s,

for the multiple cross-sections and:

Y-Yo=8+aX,+yD, +1X,D, +5

1,

for panel data. Here A, or 4 denotes the coefficient on the new interaction term. These models (once again extendable to

multiple additional coefficients) allow the modeling of nonlinearity in the treatment effect due to differences in level of
the additional covariates. To better clarify this point, as well as the usage of the previous models, we now turn to an
example.

Example: DiD Models for the Effects of High-Stakes Testing

High-stakes tests and their uses by education policymakers remain a vital and contentious area of research. In a
recent article, Amrein & Berliner (2002) make a strong contribution to the debate over whether such tests boost student
achievement by examining the performance of states who have adopted high-stakes testing on a variety of independent
measures, or audit tests, such as the SAT and the NAEP math and reading tests. Their findings are challenged,
however, by Rosenshine (2003) who points out that they failed to include a proper control group for comparison in their
analyses of NAEP 4th and 8th grade mathematics and 4P grade reading scores. In their response to Rosenshine,
Amrein-Beardsley & Berliner (2003) concede this point, but report different results due to removing a greater number of

states from the population of interest because of their "unclear" status (they had a changing rate of student exemptions
from the NAEP tests).

To illustrate the various DiD models discussed above, let us consider the data on the 4th grade NAEP math scores
in 1996 and 2000 (here we ignore the reclassification of unclear status and retain the full 35 observations, 18 of which
are high-stakes states, examined in the original paper and by Rosenshine). Since the authors are considering state
average scores at two time periods and the unit of analysis is individual states, the panel form of the DiD estimator is
appropriate here. A simple model might thus be:

Score;, — Score, = & +pHigh Stakes;, +&

where the dependent variable is the difference in scores between time 1 and time 0 and the variable "High Stakes" is an
indicator coded 1 if state i requires high-stakes tests and 0 otherwise.

We may be interested in a one or more demographic measures of the states, however, such as racial composition of the
students, or per capita educational spending. Accordingly, we could include a measure of 1998-1999 per public school
pupil spending (in 1000’s of dollars, data from NCES) and estimate a second model:

Score;, —Score, = 5+ pHigh Stakes;, + wSpending, + 5.

Finally, what if high-stakes testing actually has a different effect on outcomes depending on the level of per pupil
spending? We now need to estimate a third model that includes this interaction:

Srcore ) —Scorg, = &+ yHigh Stakes;, +w3pending;

+AHigh Stakes,  xSpending, + ,5';.

Table 2, below, compares the results of the three models. Note that example SPSS syntax for estimating all models
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presented below (and their repeated cross-sectional counterparts as well) in is included below in the Appendix.

Table 2: Comparing DiD Models for 4th Grade Math NAEP Data

Model 1 Model 2 Model 3
& 2.117 -0.70 -1.995
(Constant time effect for all states) (.609) 2.31) (3.119)
¥ 2.382 2.410 6.493
(High-stakes testing treatment effect) (.850) (.850)  (4.520)
" 345 648
(Per pupil spending effect, 000’s of $) (.351) (.482)
A -.648
(High-stakes testing and per pupil spending interaction effect) (.705)
Root mean squared error of the model 2.512 2.514 2.520

Note: Number of observations = 35. Results presented are estimated coefficients from ordinary least squares

multiple linear regressions, standard errors in parentheses.

Before discussing the results, we should note that we neither test nor correct for violations of Gauss-Markov assumptions
here, but suspect that heteroscedasticity is a potential problem. We suggest, at a minimum, that researchers who detect
heteroscedasticity replace the conventional standard errors with White’s (1980) consistent standard errors, or consider
alternative approaches to estimating heteroscedastic regression models.

The first column of Table 2 presents the results of the simplest panel DiD. These results suggest that all states over this

period had an average increase in NAEP 4! grade mathematics scores of 2.117, but that high-stakes test states had an
average additional increase of 2.382 points (a substantively meaningful and statistically significant gain). The second
column shows that considering per pupil spending does not meaningfully alter the high-stakes effect, but predicts an
average gain of .345 points per $1000 spent (note however that there is a great deal of uncertainty about this estimate
and it does not approach significance at conventional levels).

The third column, which reports the results of considering an interaction between spending and high-stakes testing,
bears closer examination. Because it is notoriously difficult to directly interpret regression coefficients in an interaction
model, we use the estimated variance-covariance matrix from the model to simulate predictions while varying quantities
of interest in the model (King, Tomz, & Wittenberg, 2000; Tomz, Wittenberg, & King, 2000). This allows for easy
interpretation but still proper accounting of the uncertainty of our model estimates. In particular, we are interested in
exploring the effect of high-stakes testing on the difference-in-differences at various levels of per capita education
spending. The results of the two such sets of simulations are presented in Figure 1, below.

Figure 1: Predictions from the Panel DiD Model with Interactions

https://scholarworks.umass.edu/pare/vol8/iss1/24
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expected change in scores.

In these simulations, we estimate the impact of high-stakes testing on the difference in test scores for a hypothetical
state with average per capita spending of $4000 (approximately the low end of the sample) versus one with spending of
$10000 (the high end). The results are quite interesting. The graph on the left shows the differences for the high-stakes
and no high-stakes conditions at the $4000 spending level—graphically, the difference-in-differences is thus the right
point minus the left point. As is clear from the overlap of the plotted 95% confidence intervals, there is insufficient
precision to distinguish the high-stakes effect from zero at this level of significance. Nevertheless, the results are
suggestive that high-stakes testing might predict an increase in student achievement.

As the right graph shows, however, this is clearly not the case at the $10000 per pupil spending level. Here, the
confidence intervals overlap almost totally, and the means are virtually indistinguishable. In short, at this level of
spending the DiD prediction is essentially zero: high-stakes testing does not appear to improve student scores when
spending is at this level. Interestingly, we can conclude at the 95% level that states with this amount of spending do
have an expected gain in their average NAEP 4'h grade math score during this period, but high-stakes testing appears
to provide no additional benefit.

Conclusion

The DiD estimator is a useful tool for applied quantitative education and public policy researchers confronted with
observational data in which self-selection to treatment may be confounded with the outcome measure. The model is
extremely flexible, and allows for the inclusion of additional covariates that are hypothesized to influence either the
baseline change common to all units of observation or the amount of change predicted by the treatment. Moreover, the
models are simple to estimate with "off-the-shelf" technology and are reasonably easy to interpret.

Appendix: SPSS Syntax for DiD Models

SPSS Syntax for DiD Models Based on 4" Grade Math NAEP Data (Panel Data)

The example included in the article uses true panel data, and only includes states that report scores for both the 1996
and 2000 NAEP tests. All three models presented above can be estimated in SPSS using the following syntax:

REGRESSION

/MISSING LISTWISE

/STATISTICS COEFF OUTS R ANOVA

/CRITERIA=PIN(.05) POUT(.10)

/NOORIGIN

/DEPENDENT d4math

/METHOD=ENTER histakes METHOD=ENTER spend /METHOD=ENTER hsspend .

Note: the coefficients of the variables histakes (the high-stakes testing dummy), spend (the level of state educational
Published by ScholarWorks@UMass Amherst, 2002 Page 5 of 8
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spending per pupil (in 000’s of $), and hsspend (the interaction between the two) correspond respectively to y, mm, and A.

SPSS Syntax for DiD Models Based on 4" Grade Math NAEP Data (Cross-section Data)

We also include, for completeness, syntax and results of the repeated cross-section DiD model discussed in the paper.
Here we assume that we do not have true panel data, and thus we ignore the names of the states and simply model the
data as two cross-sections. An interesting consequence of this change is that we can now include states that only have a
reported NAEP score in one of the two years.

REGRESSION

/MISSING LISTWISE

/STATISTICS COEFF OUTS R ANOVA

/CRITERIA=PIN(.05) POUT(.10)

/NOORIGIN

/DEPENDENT y

/METHOD=ENTER time /METHOD=ENTER histakes /METHOD=ENTER hstime
/METHOD=ENTER spend /METHOD=ENTER hsspend .

Note: time is coded O for 1996 and 1 for 2000; histakes is coded 1 for high-stakes states and 0 for non-high-stakes states;
hstime is coded 1 for high-stakes states in 2000 and 0 otherwise; spend is hsspend is again the interaction between
histakes and spend).

Table Al: Results of the Cross-Section DiD Models:

Model 1 Model 2 Model 3
a 224.857 208.908 212.710
(Common constant for all
observations (1.412) (3.480) (4.830)
6 time 1.943 2.393 2.286
(Time effect for all states) (2.022) (1.781) (1.781)
y hstime 2.694 2.994 3.269
(High-stakes testing treatment
offect) (2.844) (2.503) (2.510)
J histakes -4.994 -5.167 1.879
(Constant for states that choose
to have high-stakes) (1.975) (1.738) (722)
n spend 2.467 -12.562
(Per pupil spending effect, 000’s (503) 6.755)
of §)
A hsspend 1.138
(High-stakes testing and per (1.004)
pupil spending interaction effect) ’
Root mean squared error of the | 6.472 5.694 5.684
model

Note the large increase in root mean squared errors (i.e. average prediction error) of these models
versus those reported in the body of the article above. Clearly the panel approach, when possible,
is to be preferred; the presumed benefit of adding states with observed NAEP scores only in either
https://scholarworks.umessed adpaie bvel8tiskhédsby the additional uncertainty of the cross-section model.
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