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Abstract

We make an imaginative comparison between the Minimal Supersymmetric Stan-

dard Model and the 24-cell polytope in four dimensions, the Octacube.

1 Introduction

The Standard Model (SM) of particles and forces has a natural extension incorporating Su-
persymmetry, in particular there is the Minimal Supersymmetric Standard Model (MSSM):
this scheme requires 128 boson and 128 fermion states in two diffferent sets, the ordinary
particles and the Susy partners. In this report we shall refer mainly to the three forces
of the microworld, excluding gravitation, the graviton, etc. However, some references to
gravity would be unavoidable, mainly in relation to extant Supergravity models. No one
of the Susy partners has been seen so far, and we still lack 5 Higgs bosons to complete the
ordinary set of particles; these are hopefully to be found soon (at least one Higgs!) in the
LHC accelerator, scheduled to start in late 2008.

The question arises whether there is any geometry behind this sharing of particles and
partners, so the 28 states would reflect some hidden pattern of symmetry in Nature. In
some proposed models this symmetry is already apparent. For example, in the old (1978)
11-dimensional SuperGravity theory of Cremmer, Julia and Scherk [1], the supermultiplet
(44, 128, 84, or 44− 128 + 84), explicitly

Graviton h(44)−Gravitino Ψ(128) + 3 ¯ form C(84), (1)

has as underlying geometry the Moufang octonionic plane OP 2, in the following sense
[2]: as a symmetric space, it is OP 2 = F4/B4 where F4 represents the compact form of
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the second exceptional simple Lie group, and B4 is represented by the spin group in nine
dimensions, Spin(9); as the Euler number χ(OP 2) = 3, there are several triplets of repre-
sentations of Spin(9) with matching dimensions, one of them corresponding to the above
splitting (1). We use Cartan´s notation in which Bn stands for the Spin(2n + 1) group
as compact connected and simply connected representative. For the general philosophy of
constructing these “Euler multiplets” and other examples see [3].

However, the connection of this 11d supermultiplet with the particles we see in Nature
in our 4 dimension spacetime is very remote, to say the least; to begin with, it is a super-
gravity multiplet, whereas we aim first to understand the non-gravitation forces. But the
number of required states (128 = 27) is not far from the observed helicity states of known
particles (123), and this is the inspiration for the considerations which follow.

A few remarks on the geometry underlying (1) are in order. Pengpan and Ramond
[4] found several of the triplets referred to above, but these really come from the SO(16)
group, where 16 = dim OP 2 and dim Spin(16) = 216/2−1 = 128, and it turns out that
under the reduction Spin(9) ⊂ SO(16), we have 128 − 128 = (44 + 84) − 128, that is,
our field content in (1). A further remark, anticipated in [1], is the orthosymplectic group
OSp(1|32) as invariance supergroup of the action related to (1).

2 The MSSM multiplets

The simplest supersymmetry is perhaps the pattern {(8, 8) ≡ (8 − 8)} of vector 8v and
(one of the two) spinor 8s representations of O(8), part of triality, corresponding (in the
Ramond-Kostant language of [2]) to the sphere S8 = OP 1 = Spin(9)/Spin(8); indeed,
by squaring this doublet |8v − 8s|2 we get the 11d triplet of above, once we ascend to 11
dimensions and M-Theory (the 8 dimensions here are just the transverse dimensions of the
10d superstring theory, of course). It is remarkable that squaring the square, say |8v−8s|4,
and ascending to 12 = (10, 2) dimensions, it gives a putative matter content for F -Theory
[5].

The particles of the Standard Model are: spin-1 “gaugeons”, carriers of the three
microscopic forces, spin-1/2 fermions (divided into quarks and leptons), and putative spin-
0 Higgses, only 3 “seen” at the moment in the form of longitudinal degrees of the carriers
of the weak force. Do we see any symmetry pattern in the masses and groupings of the
corresponding helicity states? Yes, perhaps. We have, for gaugeons 24 degrees of freedom:

♯spin ¯ 1 states = 2·(♯SU(3) + ♯SU(2) + ♯U(1)) = 2·(8 + 3 + 1) = 24 (2)

Of course, 24 is a dear number to mathematicians (if only for Dedekind’s η-function or
the Leech lattice), and to string theorist (if only for the bosonic string). This numbering
counts the three massive gaugeons as massless (and hence counting 4, not 1; or 8, not 5
Higgses, later). One can also entertain 27 helicity states for gaugeons and one minimal

2



Higgs; indeed, 27 is also a distinguished number (fundamental representation of E6, and
some curve intersections in algebraic geometry).

Of course, superstrings include gravitation and live in 10 = 8+2 = (9, 1) dimensions; so
we cite here more reasons why the number 24 is favoured, besides the bosonic string. (a):
in R4, the maximum number of identical spheres touching each other (the kissing number)
is 24 [6]. (b) The Leech lattice, just mentioned, optimizes the sphere packing in dimension
24, and links up also with another important mathematical construct, the Monster group
(or largest sporadic finite simple group). The relation is this: the kissing number for the
Leech lattice is 196 560. Now there are four classes of sporadic (i.e. non-generic) finite
simple groups; besides de “ pariah” class, there are three consecutive levels: the Mathieu-
group(s) level M24, related to the exceptional automorphism of the symmetric group S6;
the Conway-group(s)level, associated to the automorphism group of the Leech lattice, and
the Monster-group level. The Monster group itself, of order 8 × 1053 approximately, is
constructed (Lepowski; Borcherds) with vertex operators from string theory; it first faith-
ful irreducible representation (irrep) has dimension 196 883, number tantalizing close to
the kissing number of the Leech lattice. It presents also the “Moonshine phenomenon”:
simple combinations of the dimensions of the irreps give the coeficients of a very important
modular function, the so-called J(τ) function. See [7].

For fermions we have leptons and quarks in three generations:

♯spin ¯ 1/2 states = leptons + quarks = 4·(2× 3) + 3·4·(2× 3) = 24 + 72 = 96 (3)

where (3) is for generations, (2) for isospin, 4· for massive Dirac states and 3· for color.
Again, this supposes three sets of massive Dirac neutrinos, what still is to be confirmed
experimentally (as the absence of neutrinoless double beta decay, for example), which is
for the moment uncertain.

We shall see below what to do with the big number, 96 = 24·(1 + 3).

In the SM it is enough a single complex doublet of Higgses, but we need two doublets
in the MSSM, even in the “ordinary” sector, because (among other reasons) up- and down-
type quarks couple differently. Accepting this, we have

♯spin ¯ 0 states = Higgses in the MSSM = 2·2·2 = 8 (4)

where two complex doublets make up the 8. Again, 8 is a special number (if only because
the dimension of the last composition algebras!).

Now, in the Susy partners sector, separated from the ordinary one by the so-called
R−symmetry, and with Susy broken in order to prevent unseen mass coincidences between
ordinary and Susy particles, we have to have
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Spin-1/2 gauginos (24), Spin-1/2 Higgsinos (8); Spin-0 squarks (72) and sleptons (24)

So 32 fermions and (72+24 = 96) bosons with R-number, to match the opposites in
the ordinary sector. Notice 32 = 25 appears in strings again (the gauge group O(32) in
heterotic and open strings); note also the satisfactory feature that the Susy partners do
not introduce new forces, because there are no more expected spin-1 fields.

3 The Polytopes

From the above counting the reader should keep mainly the numbers 24 and 96 = 24·(1+3)
in mind. We seek for some discrete exceptional mathematical objects where these numbers
would appear. Discreteness is obvious, and exceptional because we subscribe to the phi-
losophy that the mathematical model of Nature is likely to be exceptional, not generic, as
WE are unique(!).

Polytopes are generalization of 2d polygons and 3d polyhedra to higher dimensions; they
were systematically investigated first by Schläfli around 1850, and are thoroughly studied
in the book of Coxeter [8]. Starting with the triangle T2 and the square H2 in the plane R2,
there is a straightforward generalization in arbitrary dimension n to the regular generic

n-polytopes lying in Rn: hyper-tetrahedron Tn, which is self-dual (=palindromic in the
arrangement of vertices, edges, ..., cells), and hypercube Hn, with dual hyper-octahedron
H∗

n. In even dimensions 2n, their simplices (vertices V , edges A, faces F ,..., cells, etc.)
make up a “supersymmetric” alternate sum (to zero) because the Euler number of odd
spheres S2n−1 is zero; for example

in 2d : H2 is (4− 4); in 6d : T6 is (7− 21 + 35− 35 + 21− 7) (5)

If one includes “1” for the vacuum (with dimension −1!) and another “1” for wholeness
(the solid body), there is also “supersymmetry” for n odd, of course, as (+2) is the Euler
number for even spheres; for instance

3d : H∗
3 (1− 6 + 12− 8 + 1); 5d : T5 (1− 6 + 15− 20 + 15− 6 + 1). (6)

This counting works because projecting the simplices to the circumsphere of the poly-
tope tessellates the sphere.

Besides these generic regular polytopes there a few exceptional regular polytopes: ev-
erybody knows of polygons of p sides, with p any integer > 2, with “Susy” of type
(p − p or 1 − p + p − 1). The Greeks constructed the icosahedron Y (12, 30, 20) and -
with more effort- its dual dodecahedron Y ∗ (20, 30, 12); and Schläfli determined that there
are only a few more exceptions, all in dimension four; see also [9]. Today we understand all
these exceptions as related to the complex numbers (dimension 2) and to the quaternion
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numbers (dim 4, descending to 3). For example, p-sided regular polygons lying in R2 are
related to the group SO(2) = U(1) being abelian and divisible (injective in the category
of abelian groups); see [10], [12].

For example, one can inscribe a regular polygon in a circle S1 = U(1), with rotation
symmetry Zn; now U(1)/Zn ≈ U(1), as U(1) is injective in the category of abelian groups
(or Z-modules), in the same way that Z is projective; for these elementary notions of
homological algebra consult [11]. For an alternative viewpoint, in which the division (com-
position) algebras come first, see [12].

Clearly the regular polytopes Πn have a center, and two related groups: a rotation
symmetry group Rot(Πn) ⊂ SO(n) and an isometry group Iso(Πn) ⊂ O(n), where the
index [O : SO] = 2; for example Iso(Tn) = Sn+1, and Rot(Tn) = An+1, the alternating
subgroup of the symmetric group. Examples for other polytopes are (where ≺ means
semidirect product)

Rot(H3) = (Z2 × Z2) ≺ S3. Rot(Y = Y3) = A5. ♯Iso(Hn) = 2n × n! (7)

Coxeter explains wonderfully the concept of truncation, which produces some interme-
diate, quasiregular polytopes by “cutting corners”; for example, the ordinary cube H3 and
the ordinary octahedron H∗

3 are dual of each other; so starting e.g. from the cube we get
an hybrid, named cubeoctahedron H∗H3, with counting (12, 24, 14), which is a quasiregular
polyhedron with 6 squares and 8 triangles as faces, known from antiquity. The process
generalizes to arbitrary dimensions and polytopes.

4 The MSSM and the “Octacube”

We focus here in the ONLY case in which the cube-octahedron mixing of above produces a
regular polytope, the so-called 24-cell or (3,4,3) in Schläfli (p, q, r) notation; its Coxeter di-
agram is that of the Lie group F4; A. Ocneanu [13] calls it Octacube, living in 4 dimensions,
which we shall write H∗H4. The reason why is a regular polytope is related (besides its
origin in the quaternions) to the fact that the distance from the centre of the hypercube H4

to the vertices is the length of the edges, as
√
1 + 1 + 1 + 1 = 2. The 4-cube H4 is (16, 32,

24, 8) and the 4-octahedron H∗
4 is the dual; the hybrid H∗H4 becomes (24, 96, 96, 24): is

regular and selfdual! It is the 24-cell, and beautiful projections of it to 3 and 2 dimensions
are drawn in [8]; see also [13].

The automorphism (isometry) group of the 24-cell is the Weyl group of the Dynkin dia-
gram for the exceptional Lie group F4 (again!), of order 1152 = 384 ·3, where 384 = 24 ·4! =
order of Automorphism group of H4; notice ♯Rot(24 ¯ cell) = 1152/2 = 576 = 242, where
24 = ♯Rot(H3), as Rot(H3) = S4; this is a reminder that Spin(4) =Spin(3)× Spin(3), [10].
This enhanced symmetry, the factor of 3, in the H∗H4 with respect to H4, does not occur
in the other cubeoctahedra, and it will be nice if it could be related, through triality, to

5



the number of generations in particle physics!

Now 96 and 24 are the same numbers as fermions (96) and gaugeons (24) in Nature.
Even repeated, as required for the R-sector! Is this coincidental? Perhaps, but let us play
the game:

If “24” correspond to the gaugeons and “96”= 24 + 24 · 3 to leptons and quarks, what
about the Higgses? We venture to associate them to the two “1” missing in the whole
Susy pattern of the 24-cell (1 − 24 + 96 − 96 + 24 − 1), except that the “1” must be “8”:
we have 8 Higgs and 8 Higgsinos; perhaps the mismatch 1 vs. 8 has something to do with
octonions, but granted, this is a point we lack understanding. Accepting that suggestion,
however, the pattern of the 256 expected helicity states in the MSSM would look like (with
± for Bose/Fermi)

-1(8) +24 -96 +96 -24 +1(8)

H̃ g q + ℓ q̃ + ℓ̃ g̃ H
Higgsinos Gaugeons Quarks & Leptons sQuarks & sLeptons Gauginos Higgs
Spin 1/2 Spin 1 Spin 1/2 Spin 0 Spin 1/2 Spin 0

Table 1: Supposed correspondence of the MSSM with the 24-cell.

That is our correspondence; it goes without saying this pure speculative scheme is
meant only to stimulate further thoughts and works; in particular, it does not help at
all to understand the pattern of masses we see. The idea is only that the same type of
“palindromic” symmetry of the 24-cell polytope is present in the spectrum of elementary
particles in the MSSM; we are not yet aiming at the deeper reasons for that.

We stress finally the four features we find fairly unique in our suggestion: first, the
main numbers 24 and 96 are present naturally; second, the repeated pattern (twice of
each) approaches duplication between particles and their Susy partners. Third, the 24-cell
polytope is absolutely unique, rather than only exceptional. Fourth, there is a hint for
family triplication, as the group F4, with 3-Torsion, is related to octonion triality; for ex-
ample, in the ”Mercedes” Dynkin diagram for O(8) triality is manifest; adding to Spin(8)
the three equivalent representations, we reach F4; [14].

After the first draft of the paper was sent off, we became aware of the (now famous)
preprint of G. Lisi [15]. In fact, we subscribe unconsciously to the Pati-Salam “ leptons as
the fourth color” philosophy, as Lisi does; he also uses polytopes and the F4 group, and
hints to a relation between triality and generations. He is more ambitious, though, as he
considers gravitation as well, but does not adhere to supersymmetry.
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5 Concluding Remarks

We are fully aware of the incompleteness of our approach. As said, gravitation has been
deliberately left over in this essay. Also, as we believe octonions should play a role in the
“final theory” (see e.g. [16]), the preliminary and provisional aspects of our considerations
should be evident: the largest exceptional group E8 appears conspicuously in theoretical
constructions (e.g. in the heterotic string by duplicate, as the gauge group in M-Theory
[17], etc.); of course, it plays a major role in Lisi theory [15]. In fact, octonions spring from
the triality of the Spin(8) group, although this phenomenon does not lead to new regular
polytopes but to some very special lattices (Gosset, 1897). So we feel the two omissions
(gravitation and octonions, in particular E8) should go together. As E6 ⊂ E8 naturally, is
worth to recall that F4 is the subgroup of E6 fixed by the involutory automorphism of it,
a kind of complex conjugation. In fact, there is a whole chain of groups/subgroups from
E8 to SU(2) which includes triality, duality, automorphisms, etc. [18].

As a final trait of our incompleteness, we mention that the primes 2 and 3 enter through
duality and triality in e.g. SU(3), F4 or E6 as center, conjugation or torsion. The prime
5 appears only in E8 as torsion, and the possible relevance of this “5” for physics escapes
totally from us. In this context, see [19].
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