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ARTICLE OPEN

Robust observations of land-to-atmosphere feedbacks using
the information flows of FLUXNET
Tobias Gerken 1,2,6*, Benjamin L. Ruddell2, Rong Yu3, Paul C. Stoy 1,7 and Darren T. Drewry 4,5

Feedbacks between atmospheric processes like precipitation and land surface fluxes including evapotranspiration are difficult to
observe, but critical for understanding the role of the land surface in the Earth System. To quantify global surface-atmosphere
feedbacks we use results of a process network (PN) applied to 251 eddy covariance sites from the LaThuile database to train a
neural network across the global terrestrial surface. There is a strong land–atmosphere coupling between latent (LE) and sensible
heat flux (H) and precipitation (P) during summer months in temperate regions, and between H and P during winter, whereas
tropical rainforests show little coupling seasonality. Savanna, shrubland, and other semi-arid ecosystems exhibit strong responses in
their coupling behavior based on water availability. Feedback couplings from surface fluxes to P peaks at aridity (P/potential
evapotranspiration ETp) values near unity, whereas coupling with respect to clouds, inferred from reduced global radiation,
increases as P/ETp approaches zero. Spatial patterns in feedback coupling strength are related to climatic zone and biome type.
Information flow statistics highlight hotspots of (1) persistent land–atmosphere coupling in sub-Saharan Africa, (2) boreal summer
coupling in the central and southwestern US, Brazil, and the Congo basin and (3) in the southern Andes, South Africa and Australia
during austral summer. Our data-driven approach to quantifying land atmosphere coupling strength that leverages the global
FLUXNET database and information flow statistics provides a basis for verification of feedback interactions in general circulation
models and for predicting locations where land cover change will feedback to climate or weather.

npj Climate and Atmospheric Science            (2019) 2:37 ; https://doi.org/10.1038/s41612-019-0094-4

INTRODUCTION
The terrestrial land surface and atmosphere are coupled through a
complex set of interactions and feedbacks that determine the
fluxes of mass and energy between the two systems. Weather and
climate are well known to determine the productivity of terrestrial
ecosystems, but the functioning of the land surface can likewise
modify weather and climate patterns.1–4 In some cases, the
influence of one of these systems can propagate through the
other to influence itself, establishing a feedback. An understanding
of land–atmosphere feedbacks is essential for determining the
regional impacts of climate variability and change on the
ecosystem services humanity has come to depend, but remains
a major challenge as analytical tools to quantify feedbacks have
only recently been developed.4–10 Feedback processes in nature
are difficult to directly observe and to infer, as cause and effect
relationships may become obscured or break down when a
process influences itself through an intermediary,11 as is often the
case in the Earth System. Feedback processes amplify or buffer
inputs, resulting in exaggerated or muted responses to perturba-
tions, the latter of which can be difficult to identify. The most
severe uncertainties in our climate models are believed to feature
feedback.12–14 These challenges necessitate the development and
application of novel methods to quantify feedback processes in
the Earth System. This study presents direct observations of global
land to atmosphere information flow through the use of a global
network of surface energy flux and meteorological observations,

introducing a statistical approach to characterize temporal and
spatial variability in land–atmosphere coupling strength.
Energy exchange between the land surface and atmosphere

provides a primary method of interaction — and thereby
feedback — between the two systems. Downwelling solar energy
absorbed by the land surface warms the soil and vegetation and
drives fluxes of sensible and latent heat between the land surface
and atmosphere. These energy fluxes modify the composition of
the atmospheric boundary-layer (ABL) and drive convective
processes that deepen the ABL and result in entrainment of air
from the free troposphere.15–19 These changes then impact near-
surface temperature and humidity as well as precipitation
processes, resulting in potential feedbacks through ecosystem
physiological response to favor subsequent latent or sensible heat
fluxes that in turn impact ABL processes.20 Such feedback
processes may intensify with future climate changes,21 with the
potential to impact critical functions such as water availability22

and ecosystem resilience,23 and to intensify phenomena such as
heat waves,24–26 drought,27–29 and local convective precipita-
tion.30,31 Likewise, the impact of canopy photosynthesis and
evapotranspiration on cloud development— and the potential for
future climate change to further these effects32–34 — make
understanding land–atmosphere feedback processes central to
predictions of the future availability of ecosystem services.
These examples illustrate the complexity of the coupled

land–atmosphere system. Disentangling the presence and
strength of positive and negative feedbacks is an ongoing
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challenge in understanding how ecosystems and their manage-
ment impact Earth System processes. Feedback is inherently
nonlinear, and its study therefore calls for methods free from
assumptions of linear proportionality, simple correlation, or
isolated causes and effects.4 Likewise, and despite the sophistica-
tion of global climate models, our current model-based assess-
ments almost certainly miss key feedback processes or scales of
interaction, because they represent hypotheses about poorly
understood processes, and not real-world observations of those
processes. To robustly measure feedback and critique these
hypotheses, we therefore require a method for direct, in situ, and
relatively assumption-free (nonlinear and empirical) observation of
directional functional couplings.
Process Networks (PNs) characterize the state of a system as a

pattern of flows of mass, energy, and/or information that
correspond to key system functions.11 Information flow statistics
are a robust and mature method for delineating PNs, and have
been previously applied to the direct and explicit measurement of
feedback between the land surface and atmosphere using flux
tower observations.35–39 PNs have been shown to accurately
diagnose interactions between turbulent fluxes and the atmo-
sphere in ecohydrological systems,35–37,40 and have accurately
described functional differences between starkly diverse land
surface ecosystems at continental scales.35,41,42 This paper’s choice
of Transfer Entropy to delineate PNs43 is ideal to measure
directional, scale-specific, and nonlinear couplings that character-
ize land-to-atmosphere feedbacks.
To investigate feedback between land and atmosphere, we

focus on relationships among land surface turbulent energy fluxes
of sensible (H) and latent heat (LE) and three atmospheric
variables: downward global shortwave radiation (Rg) as an
indicator of cloud cover, air temperature (Ta), and precipitation
(P). Analysis of these terms provides a core set of surface flux and
atmospheric variables that link land and atmosphere through
turbulent flux exchange. The strength of the process coupling is
quantified through the information flow as given by the normal-
ized transfer entropy (T′). T′(X→ Y, τ) is a measure of the
predictability of the time series Y from time series X at a time
lag of τ. While characteristic τ for significant T′(X→ Y, τ) depend on
the variable pair, sub-daily timescales are believed to be the
primary timescales for flux-based land–atmosphere feedbacks and
the average T′ for τ from 0.5 to 18 h (T′Avg) is used here to capture
the functional relationships for land–atmosphere interactions.
Statistically significant values of information flow and feedback

(p < 0.05) are established using the method of shuffled surrogates
where surrogate T′ values are calculated using randomly shuffled
time series of Xt and Yt to remove any correlation between
variables. These surrogates are then compared to the observed
T′.11,44 The fraction of instances during which significant process
coupling is observed at any τ (FSig) is calculated as

FSig X ! Yð Þ ¼ NSig X ! Yð Þ
NTot X ! Yð Þ ; (1)

where NSig represents the total number of observations during
which T′(X→ Y, τ) is significant at any τ while NTot is the total
number of observations taken into account. When FSig approaches
1, a coupling process is robustly significant, but when it
approaches zero, the process is weak or absent.
The recent development of regional networks of co-located

meteorological and carbon dioxide, water, and energy flux
measurements provides a new opportunity to assess
land–atmosphere coupling across terrestrial biomes and climate
space globally. Here we leverage the LaThuile FLUXNET data-
base,45 which provides globally distributed, to a degree standar-
dized observations of land–atmosphere fluxes of energy and
water using the eddy covariance technique spanning 251 sites
(Supplementary Fig. 1) and representing 11 major IGBP

(International Geosphere-Biosphere Programme) vegetation
classes (Supplementary Table 1) across a large range of aridities,
and over 10000 site months. We use these data to calculate
information flows from land surface fluxes to atmosphere (i.e.
coupling strength) and then train an artificial neural network
(ANN) of land–atmosphere coupling strength across the terrestrial
surface. The use of observational “big data” represents a unique
approach to characterizing temporal and spatial variability in
land–atmosphere coupling and feedback without a priori assump-
tions about underlying processes that is capable of directly
observing and resolving critical processes at the interface between
surface, vegetation, and convective ABL. Our approach therefore
complements large-scale climate models and reanalysis products,
for which these processes and feedbacks currently remain
parameterized due to their comparatively coarse resolution. Given
that our information flow PN methodology quantifies the
presence, strength, direction, and significance of land-to-
atmosphere coupling using a large sample of in situ flux tower
observations, it can be used as in independent control for existing
models and theory, in addition to providing unique insights into
these difficult-to-observe processes. In this work, we focus on the
land-to-atmosphere portion of land–atmosphere coupling, by
investigating the directional information flow from H and LE to
future states of atmospheric variables.
Several studies have identified global land–atmosphere cou-

pling strength and associated “coupling hotspots” using climate
models5,21,46 and reanalysis data,47,48 primarily focused on soil
moisture–precipitation feedbacks. Here we examine these
hypothesized feedback hotspots in the context of an empirical
data-driven analysis, broadening coupling mechanisms to the
specific surface fluxes (latent and sensible heat) that are directly
measured through FLUXNET, and which are directly responsible
for convection and changes in the near-surface atmosphere that
impact ecosystem function. Given that PNs are a methodological
distinct tool for the analysis of environmental data, they can serve
as a validation tool for process-based models and more
conventional observational analysis.

RESULTS
There is pronounced seasonality in the magnitude of land-to-
atmosphere coupling (Figs 1, 2) and seasonal patterns differ
between the six coupling pairs considered in this work. Pairs
(LE→ Ta), (LE→ P), and (H→ Ta) exhibit low Fsig during winter
months in temperate regions compared to high coupling strength
during summer, whereas the seasonality is reversed for (LE→ Rg)
and (H→ Rg). The coupling process (H→ P) shows significant
coupling during both winter and summer. Tropical regions exhibit
little seasonality, except for (H→ Rg) and (LE→ Rg). These are
much stronger during June through August, which also broadly
coincides with the dry season in Amazonia. As expected, the
increase in feedback coupling between winter and summer within
temperate regions also coincides with a strong increase in
vegetation density and greenness, represented here as the
Normalized Difference Vegetation Index (NDVI).
Spatial patterns in feedback coupling strength are related to

IGBP biome type (Fig. 3). The lack of a clear annual cycle for (H→
P), visible in Fig. 2, stems mainly from forest ecosystems (mixed
forest, MF; deciduous broad leaf forest, DBF; evergreen needle leaf
forest, ENF; evergreen broad leaf forest, EBF), which are abundant
in FLUXNET, and closed shrubland (Fig. 3, see Supplementary
Table 1). EBF, which encompasses tropical rainforests, exhibits
strong coupling with little seasonality except for (LE/H→ Rg),
where it follows the general trend of low coupling during boreal
summer. Savanna and shrubland type systems (savanna, SAV;
woody savanna, WSA, open shrubland, OSH; closed shrubland,
CSH) also show pronounced land–atmosphere feedback dynamics
that deviate from seasonal cycles found in other biomes. Strongly

T. Gerken et al.

2

npj Climate and Atmospheric Science (2019)    37 Published in partnership with CECCR at King Abdulaziz University

1
2
3
4
5
6
7
8
9
0
()
:,;



increased (LE→ Rg) and reduced (LE→ P) during summer, and
strong (LE→ Ta) throughout the year for these generally semi-arid
to arid ecosystems, highlight the importance of interactions
between biome and prevailing climate in governing land to
atmosphere coupling behavior. The amplitude in coupling
strength for annual cycles approaches 0.8–1.0 for all couplings
except (LE→ Rg) for which the amplitude tends to be less than 0.5.
There is a great deal of variability in land-to-atmosphere

feedback coupling strength between biomes, climate zones, and
seasons. To aid interpretation, we plot the feedback coupling
strengths described above against monthly values of Ta and
monthly aridity (P/ETp) (Figs 4, 5). There is an increasing increasing
trend of increasing feedback strength (T′Avg) with increasing
monthly Ta across all biomes. Land–atmosphere coupling is largely
absent at Ta < 0 °C, which can be expected given that energy
inputs and ecosystem activity are generally minimized under
these conditions. Savanna and shrubland type ecosystems exhibit
the lowest coupling originating from LE at high monthly
temperatures (Ta > 20 °C), whereas the situation is reversed with
high coupling originating from H when Ta > 20 °C.
The behavior of T′Avg is more complex with respect to P/ETp.

There is little relationship between T′Avg(LE→ Ta) and aridity, but a
clear relationship emerges for T′Avg(H→ Ta), in which feedback
originating from H increases with aridity for all vegetation types.
The feedback coupling from surface fluxes to P peakes at P/ETp
values near unity and WSA, OSH, and CSH exhibit the strongest

feedbacks of all vegetation types in that range of P/ETp. For the
coupling between surface fluxes and cloud cover as indicated by
Rg, we find that there is little feedback for P/ETp > 1. Savanna (SAV
and WSA) and shrub (CSH and OSH) vegetation classes generally
exhibit the highest feedback for Ta and Rg for low P/ETp. While we
chose to present T′Avg as the coupling metric in this work, there is
considerable variation in coupling timescales between variable
pairs (Supplementary Figs 4–6), which in itself shows dependence
on T and P/ETp and may be related to the timescales needed to
effectively connect land-surface and atmospheric processes. For
example, the dominant coupling timescales in the order of 6–12 h
between surface fluxes and P or Rg show substantial time-lags in
the atmosphere’s response to surface fluxes, which are consistent
with timescales typically found in convective boundary layers.
The extrapolation of observed feedback strength (T′Avg) from

FLUXNET sites to the global map reveals several hotspots of
land–atmosphere coupling that stand out from global average
feedback strength (Fig. 6; see Supplementary Figs 7–12 for
monthly data). The ANN models had R2 values of 0.69 to 0.92 for
(H→ P) and (H→ Rg), respectively (Supplementary Table 2), with
no evidence of overfitting, so the model’s extrapolation is robust
when tested against the 251 FLUXNET sites and over 10,000
observed site-months. We find strong land-to-atmosphere feed-
back in sub-Saharan Africa (LE→ Ta and LE→ P), the central and
southwestern US during summer (H→ Rg and H→ Ta), the
southern Andes, South Africa and Australia during DJF (H→ Rg),

Fig. 1 The fraction of significant surface to atmosphere interaction as determined by a process network (PN) with respect to latent heat flux
(LE), FSig (blue colorscale), for 251 sites of the FLUXNET LaThuile dataset and calculated as average across DJF (northern hemisphere winter) (a,
c, e) and JJA (northern hemisphere summer) (b, d, f). Larger circles indicate more years of tower data considered for calculation of FSig. The
background image is DJF and JJA NDVI from MODIS for 2016 (dark colorscale). When FSig approaches 1, a significant coupling is present, and
when it approaches 0 the coupling is weak or absent
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Amazonia (LE→ P and LE→ Rg), agricultural areas in eastern Brazil
(H→ Ta and H→ Rg), the African Rift Valley (LE→ Ta and H→ Rg) as
well the Congo, where strong coupling persists throughout the
year, but switches from (LE→ Rg) in DJF to (H→ Rg and LE→ Ta) in
JJA. This plot is thematically similar to the soil moisture based
results from Koster et al.5

DISCUSSION
PNs and other empirical methods based on information theory
applied to environmental “big data” provide a wealth of
information about land–atmosphere coupling. Specifically, PNs
provide information about functional relationships between
ecosystem variables that can be used to investigate processes
such as land–atmosphere coupling and feedbacks as well as their
response to environmental change. Using an ANN to extrapolate
these couplings to the global scale, we identified several hotspots
of land–atmosphere coupling (Fig. 6). Monthly data are presented
in Supplementary Figs 7–12. Unlike previous studies e.g. 5,46 which
used process-based models, the ANN is based on empirical
extrapolation of observations and does not include a priori
assumptions about functional relationships to demonstrate the
existence of feedbacks. It can therefore be used to complement
global models, which require (i) process relationships to be known
and (ii) may require parameterizations to include processes that
are under-resolved due to their global nature.
We investigated six couplings between turbulent fluxes and

atmospheric/near surface properties by taking advantage of
databases that incorporate observations of a wide range of

surface meteorology and fluxes. Couplings of H and LE to P and Rg
are directly related to the hydrologic cycle, in contrast to the
coupling with temperature, which is more related to near surface
conditions and cover type. The ANN trained on PN results
identifies feedback hotspots in the southwestern and central US
similar to,5 but does not reproduce the hotspot on the Indian
subcontinent. However, for the southern African hotspot we find
that the coupling signal is strongest for H, LE, and Ta rather than
precipitation, and is more pronounced in DJF. For the US hotspot,
we find a stronger signal for H, LE, and Rg rather than P. The ANN
also detects the hotspots in the Congo Basin, South Africa,
Australia and to some extent Brazil (for H to Rg and Ta), in
agreement with Notaro and Zeng et al.46,48 Similarly, several
regional studies highlighted the strong coupling between surface
and air temperatures for semi-arid regions in the US and
Europe,6,49 which is reflected in the PN results for the southwest
US and to some extent for the Iberian peninsula. Compared to
previous studies, we find a stronger coupling of LE to Rg and P in
Amazonia, further highlighting the importance of tropical rain-
forest function for cloud development and regional precipita-
tion.50 We find Rg to exhibit much clearer land to atmosphere
coupling than P, which can be expected given that not all clouds
produce precipitation. The reduced coupling could also indicate
that models are overly sensitive with respect to their precipitation
response or that the PN has problems detecting feedback in P due
to the sparseness of precipitation events. While the latter cannot
be excluded, global and even regional models rely on cumulus
parameterizations for precipitation generation, which have well-
known difficulties in producing realistic precipitation.51,52

Fig. 2 Same as Fig. 1, but for sensible heat flux (H)
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Extrapolation of empirical PN results to the global scale shows
two distinct advantages compared to global scale modeling
approaches. As a statistical method, global results at a high
resolution (e.g. 0.25°) are computationally cheaper than running
an Earth System Model, while also providing detailed information
on land–atmosphere coupling on spatial and seasonal scales. Also,
through considering multiple land–atmosphere feedback path-
ways, PNs are capable of providing information that can be used
to improve process-level understanding of feedbacks not acces-
sible in more complex models. At the same time, data-driven
approaches such as PNs and ANNs are not constrained by
physically realistic limitations and cannot prove cause–effect
relationships. This should not be considered a limitation but as a
feature. Combined with domain expertise, data-driven methods
can be very useful in guiding research toward regions and
processes that merit further scientific attention.
The PN and ANN reveal that dryland ecosystems exhibited the

strongest ecosystem–atmosphere feedback due to variability in
available water (Figs 3–6). We find the highest couplings between
surface fluxes and precipitation at P/ETp ~ 1, highlighting the
importance of sufficient water supply and soil moisture in
controlling land–atmosphere interactions.53,54 Interestingly, for
savannas, high monthly mean temperatures (Ta > 20 °C) are
associated with low T′Avg(LE→ P), indicating the water limited
state of these systems during the dry season and the associated
absence of coupling. Similarly transition periods between wet and
dry seasons and monsoon circulations are important for soil
moisture–precipitation coupling.47,49 Vegetation response to
water limitations occurs on a continuum from isohydric (plants
closely regulate transpiration through stomatal conductance in
response to atmospheric vapor pressure deficit) to anisohydric
(plants have little regulation of stomatal conductance). From these
species-level traits, ecosystem-level drought responses
emerge.28,55 Grasses, which were thought to be mostly anisohydric,
often exhibit isohydric behavior in semi-arid environments,56–58

supporting the notion that semi-arid grasslands can exhibit

substantial feedbacks with the atmosphere. The resulting interplay
between vegetation, surface-energy flux partitioning and atmo-
spheric control also influences the development of local convec-
tion, which can be an important ecosystem moisture source.31,59–62

Substantial feedbacks between biosphere and precipitation were
recently reported for semi-arid and monsoonal regions,63 high-
lighting the need of an accurate representation of the biosphere’s
response to temperature, radiation, and water availability for
predicting hydrometeorological and climatological feedbacks.
The strong coupling between turbulent fluxes and P for semi-

arid systems (i.e. savannas, Figs 5, 6) is particularly interesting in
the light of their pronounced seasonality. Given the fact that the
analysis covers monthly system state, and precipitation inputs are
highly pulsed, intermediate P/ETp might correspond to rapidly
changing moisture supplies at the surface that elicit responses in
the land–atmosphere system. The increase in coupling between
LE and H to Ta and Rg for small P/ETp further highlights the
importance of convective processes that impact ABL growth and
present multiple avenues for feedbacks mediated by the
surface–ABL system.15–19

PNs applied across aridity gradients can be used to better
understand potential changes to land–atmosphere interactions
and ecosystem functioning across temporal and spatial scales.
Given that semi-arid ecosystems are critical to the carbon cycle
and climate,64–66 and are likely to expand67 and deteriorate68

under climate change, the ability of PNs to quantify their coupling
to the atmosphere is of particular importance. Additionally,
projected changes in aridity are expected to exhibit complex
changes across the globe,69,70 increasing the uncertainty for
land–atmosphere interactions and feebacks.
This study is not without limitations related to data availability

and uncertainty. This study relies on near surface observations as a
proxy for land–atmosphere coupling rather than direct observa-
tions of boundary-layer processes that mediate these couplings
and feedbacks due to a lack of continuous and spatially
distributed ABL observations, which needs to be addressed by
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the community.4 Also, PNs allow for the detection of coupling
relationships irrespective of assumptions of linearity or sign of the
relationship. At the same time, this means that PNs do not provide
information about exact nature of coupling relationships, which
can then be explored with more conventional methods. Similarly,
turbulent flux measurements as collected by FLUXNET do not
close the surface energy balance40,71–74 and it is unclear whether
H and LE are similarly affected and to what extent this impacts the
results generated by statistical methods applied to this database.
Also, FLUXNET does not systematically cover all global biomes,
and tends to under-sample remote and harsh environments. The
southern hemisphere, northern Africa, and central Asia are
particularly under-represented, limiting our ability to assess the
systems’ responses to global environmental change and implica-
tions for surface–atmosphere feedbacks. This has the potential to
limit generalizability of our results to the globe as indicated by
negative (i.e. non-physical) T′Avg values in some remote areas.
Similarly, the extrapolation of PN results using an ANN relies on
the use of climatological averages. FLUXNET LaThuile contains
251 sites with approximately 1000 site months, which translates to
on average 3.5 site years per site and may thus lead to
mismatches between climatological states and flux observations,
which may result in biases for the extrapolated ANN.
H and LE flux dynamics are closely coupled through the surface

energy balance but observed couplings of H and LE diverge (e.g.
there is significant coupling between H and Ta, in a given region
but not for LE and Ta or vice versa). This behavior of the PN is likely
due to the fact that despite their correlation, H and LE are rarely of
the same magnitude. The PN is implicitly sensitive to the absolute
magnitude and the time rates of change in the time series and
thus acts as a low-pass filter on information flow from flux
variations (see Supplemental Note 1 for additional details).
Despite its limitations, given the PNs good agreement with

previous studies in diagnosing feedback hotspots and its coupling
response with respect to Ta and P/ETp (Figs 4, 5), which is in line
with ecohydrological expectations,53 we have confidence that
observed information flow from the growing body of

environmental big data — through networks such as FLUXNET
— can be used to provide unique insights on land–atmosphere
feedbacks from an empirical perspective and can serve as
independent empirical verification for process-based climate
models, potentially driving progress in the improvement of
climate models toward the representation of critical processes
for projecting land–atmosphere interactions and feedbacks.
In conclusion, we demonstrate that PN results can be used as

independent validation for process-based models based on
observed information flows between the land surface and
atmosphere. As hypothesized by prior models and research,
savanna, shrubland, and other semi-arid ecosystems exhibit a
strong response in their atmospheric feedback behavior based on
seasonal water availability and aridity. Information flow from
surface to atmosphere for other variables exhibited seasonal
variability with the exception of tropical rainforests and was a
strong function of air temperature. In the light of dryland
expansion their vulnerability to climate change, this might
strongly impact land–atmosphere coupling including important
precipitation processes.

METHODS
Observations
Observed variables were obtained from the FLUXNET LaThuile synthesis
dataset, which encompasses data from 251 sites representing nearly
1000 site years at a temporal resolution of 0.5 h. To ensure data quality, we
(i) used only original data and gap-filled data of high quality, as indicated
by the data-quality flag provided by FLUXNET; (ii) excluded site years with
less than 50% available data; (iii) excluded outliers that were identified by
exceeding six standard deviations compared to detrended data which had
the diurnal cycle removed using a periodic anomaly (except for P); and (iv)
excluded site-months with <500 observations (out of ~1400 possible per
month). This resulted 10398 site-months being used for this analysis.
Monthly T′ was then calculated across sites that represent 11 major IGBP
vegetation classes (Supplementary Table 1). Monthly potential evapotran-
spiration (ETp) values, which are calculated from the Penman–Monteith
equation using FLUXNET measurements and provided as part of the
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Fig. 4 Average transfer entropy (T′Avg) of latent heat (LE) to air temperature (Ta), precipitation (P), and global radiation (Rg) as a function of
environmental conditions for temperature (a–c) and aridity index P/ETp (d–f) (note the logarithmic x-axis) and separated by land cover type.
Values are binned into 10 categories with equal number of members for each bin, and then averaged. The black lines and gray shaded areas
give the mean and standard deviations across all data. The normalized standard deviation for each bin is presented in Supplementary Fig. 2.
Higher transfer entropies indicate stronger land-to-atmosphere information flow
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LaThuile dataset, are used to quantify the aridity of the sites through the
ratio P/ETp.

Process network (PN)
Functional relationships between ecosystem and atmospheric variables are
calculated using a PN employing the open source package ProcessNetwork
version 1.4.75

Transfer entropy (T) was calculated as11,43

T Xt ! Yt ; τð Þ ¼
X

yt ; yt�1 ;xt�τ

p yt; yt�1;; xt�τ

� �
log

p yt j yt�1; xt�τð Þð Þ
p ytjyt�1ð Þ ; (2)

where the predictability of time series Yt based on knowledge of time
series Xt at time lag τ is calculated using yt-1 as the immediate history of Yt
and xt-τ as the history of Xt at τ. The p denotes the corresponding
probability density functions. T is bounded between 0 and log(m), wherem
is the number of discrete microstates y taken by variable Yt. We normalize T
to a unit-less fraction by division with its upper limit [log(m)], yielding the
normalized transfer entropy (T′). T′(X→ Y, τ) was calculated for 0.5 h
increments of τ from 0.5 to 18 h and then averaged across all 36
increments to yield T′Avg (Supplementary Figs 4, 5 present additional
information on the underlying significant timescales of T′Avg).
In order to achieve a balance between entropy estimation accuracy and

limited observations in the numerical estimation of p(y), m= 20 was used
dividing H and LE into 20 bins (referred to as microstates in information
theory nomenclature) of equal width. Note that these microstates do not
have a physical significance, but serve as the basis for determining the
underlying relationship between X and Y. T(X→ Y, τ) measures additional
information that is provided by knowledge of X at time-lag τ in addition to
information provided by the history of Y itself. It is a statistical index for
physically causal and directional coupling (not correlation), albeit with
limitations. The reader is also referred to previous works11,44 for details on
PN calculation methodology.

Artificial neural network (ANN)
To extrapolate results from site level to the entire land surface, artificial
neural networks (three-layer feed forward) were trained for each flux
coupling. The ANN was trained to extrapolate T′Avg values from FLUXNET
using gridded data at 0.25° resolution. ANN training inputs were monthly
Ta, Rg, P, ETp, the enhanced vegetation index (EVI), IGBP class, elevation,
and absolute latitude. ANN outputs were monthly T′Avg values for each
coupling at 0.25° resolution using the auxiliary datasets described at the
end of the methods section.

ANNs have been widely used for climate change and ecosystem
research and, given their skill in dealing with noisy and unbalanced
datasets,76 they are well suited for PN research as they do not require
geographically well distributed training sites and are robust to uneven
distribution in IGBP classes or climates in the training dataset. To minimize
overfitting, which ANNs are sensitive to, we employed Bayesian
regularization backpropagation as the training function in a three-layer
feed-forward ANN. This improves generalization for small and noisy
datasets.77 We divided the training dataset randomly into training (70%)
and test (30%) datasets and the performance of the ANN was evaluated on
the test set using the Pearson’s R coefficient (Supplementary Table 2). The
ANN analysis was performed with the Neural Network Toolbox in
Matlab2014b.

Auxiliary data for ANN extrapolation
In addition to FLUXNET site level data (Ta, Rg, P, and ETp), the ANN was
trained using IGBP (provided by FLUXNET), elevation above sea level, and
the EVI. For elevation, we used data provided by FLUXNET, if present. In the
absence of site provided data or if only an approximate height was
provided, United States Geological Survey (USGS) Global Multi-resolution
Terrain Elevation Data 2010 (GMTED2010) was substituted using a nearest
neighbor approach. EVI from the Moderate Resolution Imaging Spectro-
meter (MODIS) Monthly L3 Global V006 (Terra: MOD13C2; Aqua: MYD13C2)
was assigned to the sites using the following procedure:

1. If both MODIS Terra and Aqua 0.05-degree data was available for the
given month and year, their mean was used applying a nearest
neighbor approach.

2. If either MODIS Terra or Aqua were available, the available data
was used.

3. If neither were present (e.g. for site months before the Terra and
Aqua launch dates) the long-term mean for Terra and Aqua for that
location and month were used.

4. The value was set to missing, if no acceptable EVI values could be
calculated (e.g. snow and ice cover during winter for all years).

Information about the gridded datasets used for the ANN can be found
in Supplementary Table 3. The IGBP landcover was assigned using the
dominant land cover class (as percent cover within the 0.25° × 0.25° grid
cell) from the MODIS MCD12C1 product. Data availability for EVI is shown
in Supplementary Fig. 13. Global monthly mean meteorological data (Ta,
Rg, P, and ETp) for ANN extrapolation are obtained from GLDAS (Global
Land Surface Data Assimilation System) V2.1 at 0.25° resolution. We use the
30-year climatological average (1981–2010) for ANN extrapolation. On
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Fig. 5 Same as Figure 5, but for T′Avg of H to Ta, P, and Rg. The normalized standard deviation for each bin is presented in Supplementary Fig. 3
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overview about total data availability for training of the ANN is given in
Supplementary Fig. 14.

DATA AVAILABILITY
PN and ANN results are available from the corresponding author upon reasonable
request.

CODE AVAILABILITY
The Process Network code is published as: ProcessNetwork/ProcessNetwork_Software
—File Exchange —MATLAB Central Available at: http://www.mathworks.com/
matlabcentral/fileexchange/41515-processnetwork-processnetwork-software
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