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Abstract—We consider DNA codes based on the nearest-
neighbor (stem) similarity model which adequately reflects the
”hybridization potential” of two DNA sequences. Our aim is to
present a survey of bounds on the rate of DNA codes with respect
to a thermodynamically motivated similarity measure called an
additive stem similarity. These results yield a method to analyze
and compare known samples of the nearest neighbor ”thermo-
dynamic weights” associated to stacked pairs that occurred in
DNA secondary structures.

I. INTRODUCTION

Single strands of DNA are represented by oriented se-
quences with elements from alphabet A � {������ �}.
The reverse-complement (Watson-Crick transformation) of a
DNA strand is defined by first reversing the order of the
letters and then substituting each letter � for its complement
��, namely: � for �� � for � and vice-versa. For exam-
ple, the reverse complement of AACG is CGTT. For strand
x � ����� � � � ��−���� ∈ A� � {������ �}�, let

x̃ � �������−� � � � ������� ∈ A� � {������ �}� (1)

denote its reverse complement. If y � x̃, then x � ỹ for
any x ∈ A�. If x � x̃, then x is called a self reverse
complementary sequence. If x �� x̃, then a pair �x � x̃� is
called a pair of mutually reverse complementary sequences.
A (perfect) Watson-Crick duplex is the joining of oppositely
directed x and x̃ so that every letter of one strand is paired
with its complementary letter on the other strand in the double
helix structure, i.e., x and x̃ are ”perfectly compatible.” How-
ever, when two, not necessarily complementary, oppositely
directed DNA strands are ”sufficiently compatible,” they too
are capable of coalescing into a double stranded DNA duplex.
The process of forming DNA duplexes from single strands is
referred to as DNA hybridization. Crosshybridization occurs
when two oppositely directed and non-complementary DNA
strands form a duplex.

In general, crosshybridization is undesirable as it usually
leads to experimental error. To increase the accuracy and
throughput of the applications listed in [1]-[4], there is a desire
to have collections of DNA strands, as large and as mutually
incompatible as possible, so that no crosshybridization can

take place. It is straightforward to view this problem as one
of coding theory [5].

DNA nanotechnology often requires collections of DNA
strands called free energy gap codes [6] that will correctly
”self-assemble” into Watson-Crick duplexes and do not pro-
duce erroneous crosshybridizations. When these collections
consist entirely of pairs of mutually reverse complementary
DNA strands they are called DNA tag-antitag systems [3] and
DNA codes [6]-[12].

The best known to date biological model, which is com-
monly utilized to estimate hybridization energy is the ”nearest-
neighbor thermodynamics” (see, references in [1]). Roughly,
it implies that hybridization energy for any two DNA strands
should be calculated as a sum of thermodynamic weights of all
stems that were formed in the process of hybridization. Stem
is defined as a pair of consecutive DNA letters of either of
the strands, which coalesced with a pair of consecutive DNA
letters of the other DNA strand. This biological model leads
to a special similarity function on the space A�.

First known to authors constructions of DNA codes were
suggested in [8]-[9]. They were based on conventional Ham-
ming distance codes. Some methods of combinatorial coding
theory have been developed [13]-[14] as a means by which
such DNA codes can be found. From the very beginning it
was understood that hybridization energy for DNA strands
should be somehow simulated with the similarity function
for sequences from A�. But it can be easily noticed, that
Hamming similarity does not in the proper degree inherit the
idea of ”nearest-neighbor” similarity model. Thus there is no
wonder that further exploration activities primarily focused on
the search of appropriate similarity function.

One example of such function was proposed in [15], where
it was calculated as the sum of weights of all elements,
constituting the longest common Hamming subsequence. Later
attempts included deletion similarity [7], which was earlier
introduced by Levenshtein [16] and block similarity [11]-[12].
Both functions are non-additive which allowed for consider-
ation of such cases as shifts of DNA sequences along each
other. Nevertheless, all of them still did not catch the point of
”nearest-neighbor” similarity model.
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In 2008 we published our first work [17], devoted to the
study of stem similarity functions. There we considered the
simplest case, when similarity between two sequences from
A� is equal to the number of stems in the longest common
Hamming subsequence between these two sequences. The
common stem is understood as a block of length 2 which
contains two adjacent elements of both of the initial sequences.

In [18], we introduced the concept of an additive stem �-
similarity for an arbitrary weight function � � ���� �� � �,
defined for all 16 elements ���� ∈ A�, called stems. To
calculate the additive stem �-similarity between two DNA
sequences one should add up weights of all stems in the
longest common Hamming subsequence between them (see,
below Definition 1). Finally, our recent works [19]-[20] deal
with non-additive stem �-similarity function, previously in-
troduced in [6]. The given model also implies counting the
weights of all formed stems between two DNA sequences
with only difference that these stems are contained not in
Hamming common subsequence but in subsequence in sense
of Levenstein insertion-deletion metric. To find more detailed
discussion of applicability of proposed constructions for mod-
eling DNA hybridization assays please refer to work [6].

In current report we will summarize main results of [18] in
study of asymptotic behavior of DNA codes maximal size for
additive stem �-similarity function. We will show how these
results lead to the development of possible criteria called a
critical relative �-distance of DNA codes for distinguishing
between weight samples ���� �� found in different experi-
ments. We will also explain, how our consideration prompts
the algorithms for composing DNA ensembles of optimal size
for the given length of DNA strands.

II. ADDITIVE STEM �-SIMILARITY MODEL

A. Notations and Definitions

The symbol � denotes definitional equalities and the symbol
��� � {�� �� � � � � �} denotes the set of integers from 1 to �.
Let � � ���� �� � �, �� � ∈ A, be a weight function such
that

���� �� � ��	�� 	��� �� � ∈ A� (2)

Condition (2) means that ���� �� is an invariant function under
Watson-Crick transformation.

Definition 1: [6],[18]. For x� y ∈ A�, the number

S��x� y� �
�−�∑
���

��� �x� y�� where

��� �x� y� �
{
���� �� if 	� � 
� � �� 	��� � 
��� � ��

� otherwise�
(3)

is called an additive stem �-similarity between x and y.
Function S��x� ỹ� is used to model a thermodynamic simi-

larity (hybridization energy) between DNA sequences x and y.
In virtue of (2)-(3) the function

S��x� y� � S��y� x� ≤ S��x� x�� x� y ∈ A� (4)

In addition,

S��x� ỹ� � S��y� x̃�� x� y ∈ A�� (5)

Identity (5) implies the symmetry property of hybridization
energy between DNA sequences x and y [6]-[12].

Example 1: In [17] we considered constant weights � �
���� �� ≡ �, �� � ∈ A, for which the additive stem �-similarity
S��x� y�, � ≤ S��x� y� ≤ S��x� x� � � − �, is the above-
mentioned number of stems in the longest common Hamming
subsequence between x and y.

Example 2: Table 1 shows a biologically motivated collec-
tion of weights ���� �� � ���� �� called [1] unified weights:

���� �� � � � � � 
 � � � � � �

� � � 1.00 1.44 1.28 0.88
� � 
 1.45 1.84 2.17 1.28
� � � 1.30 2.24 1.84 1.44
� � � 0.58 1.30 1.45 1.00

.

Table 1: Unified weights ���� ��, 1998.
The given values ���� �� are based on weight samples which
come from [1] and [4] and are the nearest neighbor ”thermo-
dynamic weights” (e.g., free energy of formation) associated
to stacked pairs that occurred in DNA secondary structures.
See [2] for an introduction to the nearest neighbor model.

Taking into account inequality (4), we give
Definition 2: [6],[18]. The number

D��x� y� � S��x� x� − S��x� y� �
�−�∑
���

��� �x� y��

��� �x� y� � ��� �x� x�− ��� �x� y� ≥ �� (6)

is called an additive stem �-distance between x� y ∈ A�.
Let x��� � �	����	���� � � � 	����� ∈ A�, � ∈ �� �, be

codewords of a �-ary code � � {x���� x���� � � � � x���} of
length � and size � , where � � �� 
� � � � is an even number.
Let �, � � � ≤ ��


x∈A�

S��x� x�, be an arbitrary positive

number.
Definition 3: [6],[18]. A code � is called a DNA code of

distance � for additive stem �-similarity (3) (or a ������-
code) if the following two conditions are fulfilled. ���. For
any integer � ∈ �� �, there exists �′ ∈ �� �, �′ �� �, such that

x��′� � x̃��� �� x���. In other words, � is a collection of ���
pairs of mutually reverse complementary sequences. ����. The
minimal �-distance of code � is

D���� � ���
� ���′

D� �x���� x��′�� ≥ �� (7)

Let ������� be the maximal size of DNA ������-codes
for distance (6). If � � � is a fixed number, then

����� � ���
�→∞

���� ����� ���

�
� � � �� (8)

is called a rate of DNA ��� ����-codes for the relative
distance � � �.
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B. Construction

Theorem 1: If � � ��� �, � � �� �� � � � , then

����� �− �� � ���

Proof: Codewords of ��� �−���-code should not con-
tain any common stems with each other. Note, that |A�| � ��
and hence for any ��� �− ���-code � � {x���� � � � x���}

| {������������� � ∈ �� 	} | ≤ |A�| � ���

Thus,
����� �− �� ≤ ���

Obviously, for odd �, the set A� doesn’t contain self reverse
complementary words. For stem � � ������ ∈ A�, define

x��� � ��������� � � � ��������� ∈ A�. Code


�� � {
x���� � ∈ A�}� � � ��� �� � � �� �� � � �

constitute a DNA ��� � − ���-code of size | 
��| � �� � ��
for additive stem �-similarity.

Example 3: For instance, if � � �, 	 � �−� � � , then 

pairs of mutually reverse complementary codewords of code

�� are:

�




� ����� �� �
�
�
� �
�
� ��

������� 




�� ��
�
�� 
�
�
��

�




� ����� �� �
�
�
� �
�
� ��

��
�
�� 
�
�
�� ������� 




��

Remark 1: Note that for any weight function �, the additive
stem �-similarity S� �
x���� 
x���� � �, ��� ∈ A�, � �� �.
Hence, the minimal �-distance (7) of code 
�� is

D�� 
��� � ���
�∈A�

S� �
x���� 
x���� ≥ ��− �� · ��

where � � ���
���∈A

���� ��. Thus, for any weight function �,

the code 
�� is also a ��� �� − �� · ���-code. For example,
for the additive stem � -similarity of Example 2, the number
� � �. Therefore, the code 
�� is a ��� �− ��� -code.

C. Bounds on Rate �����

Let � � { ���� ��� �� � ∈ A} be an arbitrary joint probability
distribution on the set of stems ���� ∈ A�, i.e.,∑

���∈A
���� �� � �� ���� �� ≥ � for any �� � ∈ A�

To describe bounds on the rate �����, we will consider
joint probability distributions �, such that the corresponding
marginal probabilities coincide, i.e., for any � ∈ A

����� �
∑
�∈A

���� �� �
∑
�∈A

���� �� � ����� � � (9)

and, in addition, function ���� ��, as well as weight func-
tion (2), is invariant under Watson-Crick transformation, i.e.,

���� �� � ���� �� for any �� � ∈ A� (10)

Let

����|�� � ���� ��

�����
� ����|�� � ���� ��

�����

denote the corresponding conditional probabilities. It is easy
to check, that for distributions � with properties (9)-(10), and
for the corresponding conditional probabilities, the following
equalities hold true for any �� � ∈ A:

����� � ����� � ����� � ������ ����|�� � ����|��� (11)

For a fixed weight function (2), introduce values

�� � ���
���

������

����� �
∑
���∈A

(
���� ��− ����� ��

)
���� ��� (12)

where the maximum is taken over all distributions � for
which condition (9) hold true. Note, that if weight function is
invariant under Watson-Crick transformation, then maximizing
distribution of (12) will satisfy conditions (10)-(11).

Applying an analog of the conventional Plotkin bound [5],
one can prove

Theorem 2: [18] If � ≥ ��, then ����� � �.

Let x � ����� � � � ��� ∈ A� be the stationary Markov chain
with initial distribution �����, � ∈ A, and transition matrix
� � ‖����|��‖, �� � ∈ A, i.e.

��{�� � �} � ������ ��{���� � �|�� � �} � ����|�� (13)

for any �� � ∈ A and � ∈ ��− �	.
Let a distribution � satisfy (9) and let also the following

Markov condition M be fulfilled: transition matrix � must
define such Markov chain x � ����� � � � ���, that for any pair
of states �� � ∈ A there exists an integer � ∈ ��	 such that
the conditional probability ��{���� � �|�� � �} � �.

Theorem 3: [18] For any probability distribution �, satis-
fying condition ��� and Markov condition M, and any relative
distance �, � � � � �����, the rate ����� � �.

Theorem 3 is established using the ensemble of random
codes where independent codewords x � ����� � � � ���
are identically distributed in accordance with the Markov
chain (13) and, in virtue of (11), the corresponding reverse
complement codewords x̃ � �������−� � � � ������� have the same
distribution (13) as well. In addition, the proof of Theorem 3
is based on the Perron-Frobenius theorem (see [21], Theo-
rem 3.1.1).

Let ����� be defined by (12) and

�M
� � ���

����M
������ (14)

If �� � �M
� , then the corresponding weight function

� � ���� �� is called regular, and non-regular otherwise. If a
weight function � � ���� �� is regular, then �� is called the
critical relative distance of ��� ����-codes.

From Theorem 2 and 3 it follows
Corollary 1: [18] If a weight function � � ���� �� is

regular, then the maximal size of ��� ����-codes increases
exponentially with increasing � if and only if � � � � ��.
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Remark 2: Results of Theorem 3 prompts an idea, that the
ensemble of optimal random DNA codes for non-additive stem
�-similarity should be based on a generator of independent
Markov chains with transition matrix � and initial distribu-
tion �����, such that the corresponding distribution � affords
maximum in (14).

III. WEIGHT SAMPLE ANALYSIS BASED ON CRITERION

OF CRITICAL RELATIVE DISTANCE

In this section, we will discuss samples of weight function
(or, briefly, weight samples) � � ���� ��, �� � ∈ A, taken
from SantaLucia (1998) (see Table 1 in [1]). In Tables 2-8, we
present weights ������ � ���� � � and samples of relative
weights �̃��� �� with respect to ������, i.e., for any �� � ∈ A,

�̃ � �̃��� �� � ���� ��

������
� �̃��� �� � �̃���� ���	 (15)

Pure numbers �̃��� �� are comfortable for a mutual comparison
and for the comparison with unified weights of Table 1.

������ � �	�� � � � � � 
 � � � � � �

� � � �	�� 			
 �	�� �	��

� � 
 		�	 		
� �	�
 �	��

� � � 		�� �	
� 		
� 			


� � � �	
� 		�� 		�	 �	��

Table 2: Gotoh, 1981.

������ � �	
� � � � � � 
 � � � � � �

� � � �	�� �	�
 �	
	 �	��

� � 
 �	
� �	
� 			� �	
	

� � � �	�� 			� �	
� �	�


� � � �	

 �	�� �	
� �	��

Table 3: Vologodskii, 1984.

������ � �	�� � � � � � 
 � � � � � �

� � � �	�� �	�� �	�
 �	��

� � 
 �	�
 		�� 		�� �	�


� � � �	�� 		�� 		�� �	��

� � � �	�� �	�� �	�
 �	��

Table 4: Blake, 1991.

������ � �	�� � � � � � 
 � � � � � �

� � � �	�� �	�� �	�� �	
�

� � 
 �	�
 �	
� �	�� �	��

� � � �	�
 		�	 �	
� �	��

� � � �	�
 �	�
 �	�
 �	��

Table 5: Benight, 1992.

������ � �	�	 � � � � � 
 � � � � � �

� � � �	�� �	�� �	�� �	�	

� � 
 �	�
 �	�� 		�
 �	��

� � � �	�� 			� �	�� �	��

� � � �	
� �	�� �	�
 �	��

Table 6: SantaLucia, 1996.

������ � �		� � � � � � 
 � � � � � �

� � � �	�� �		
 �		
 �	�


� � 
 �	�	 �	�
 		�� �		


� � � �		
 �	�	 �	�
 �		


� � � �	�
 �		
 �	�	 �	��

Table 7: Sugimoto, 1996.

������ � �	�� � � � � � 
 � � � � � �

� � � �	�� �	�
 �	
� �	�	

� � 
 �	�
 �	�� �	�
 �	
�

� � � �	

 �	�� �	�� �	�


� � � �	�� �	

 �	�
 �	��

Table 8: Breslauer, 1986.

A. Analysis of Tables 1-8 for Additive �̃-Distance

Analysis of Table 1 and Tables 3-7: The given weight
samples are regular and the maximum in (12) is attained when
���� �� � � if stem ���� ∈ ��, where the set �� of forbidden
stems in the Markov chain (13) maximizing (12) has the form

�� � {��� �� ����� ����� ��� �}	 (16)

Below, in Table 1’ and Tables 3’-7’, we present the estimated
values of joint probabilities ���� �� and marginal probabilities
����� for which the maximum in (12) is attained. Values of
the critical relative distance �

�̃
are given as well.

���� �� � � � � � 
 � � � � � � �����

� � � � 	�

� 	��
� � 	���

� � 
 	���� 	�
�� 		��
 	��
� 	���

� � � 	���� 		��� 	�
�� 	�

� 	���

� � � � 	���� 	���� � 	���

Table 1’: Unified weights 
��� ��. �� � �	

.

���� �� � � � � � 
 � � � � � � �����

� � � � 	���� 	��
� � 	��


� � 
 	���
 	���� 		�
� 	��
� 	�		

� � � 	���� 	��
� 	���� 	���� 	�		

� � � � 	���� 	���
 � 	��


Table 3’: Vologodskii, 1984. �
�̃
� �	��.

���� �� � � � � � 
 � � � � � � �����

� � � � 	���� 	���� � 	��


� � 
 	���� 	�
�
 		��� 	���� 	��	

� � � 	�	�� 		�

 	�
�
 	���� 	��	

� � � � 	�	�� 	���� � 	��


Table 4’: Blake, 1991. �
�̃
� �	��.

���� �� � � � � � 
 � � � � � � �����

� � � � 	���
 	���� � 	�
	

� � 
 	���
 	��	� 			�� 	���� 	��


� � � 	���� 	�
�� 	��	� 	���
 	��


� � � � 	���� 	���
 � 	�
	

Table 5’: Benight, 1992. �
�̃
� �	

.
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���� �� � � � � � � � � � � � � �����

� � � � 	���� 	���� � 	�	�

� � � 	��
� 	
��� 	���	 	���� 	�
�

� � � 	���	 	�
�� 	
��� 	���� 	�
�

� � � � 	���	 	��
� � 	�	�

Table 6’: SantaLucia, 1996. �
�̃
� 
	��.

���� �� � � � � � � � � � � � � �����

� � � � 	���	 	�
�� � 	���

� � � 	���� 	
��
 	��
	 	�
�� 	�
�

� � � 	���
 	���
 	
��
 	���	 	�
�

� � � � 	���
 	���� � 	���

Table 7’: Sugimoto, 1996. �
�̃
� 
	��.

Analysis of Table 2: The given weight sample is regular
and the maximum in (12) is attained when ���� �� � � if stem
���� ∈ 
�, where the set 
� of forbidden stems in the Markov
chain (13) maximizing (12) has the form


� � {��� �� ����� ����� ��� �� ����� ��� �}	 (17)

Below, in Table 2’, we present the estimated values of joint
���� �� and marginal ����� probabilities for which the maxi-
mum in (12) is attained. The estimated value of critical relative
distances �

�̃
� �	�� is given as well.

���� �� � � � � � � � � � � � � �����

� � � � 	���
 � � 	���

� � � 	���� 	
��	 	��
� � 	��


� � � 	�
�	 	���
 	
��	 	���
 	��


� � � � 	�
�	 	���� � 	���

Table 2’: Gotoh, 1981. �
�̃
� �	��.

Analysis of Table 8: The given weight sample �̃ is a
non-regular weight sample because the maximum in (12) is
attained (with the maximal value �

�̃
� 
		�) for probability

distribution �′��� ��, ���� ∈ A�, which does not satisfy
Markov condition M and has the form:

�′��� �� � � � � � � � � � � � � �′
�
���

� � � 	�
�� � � � 	�
�

� � � � 	�
�� 	���� � 	���

� � � � 	���� 	�
�� � 	���

� � � � � � 	�
�� 	�
�

Table 8’: Breslauer, 1986. � ′
�̃

� 
		�.
This implies that for weight sample �̃ from Table 8, we cannot
estimate the critical relative distance of optimal DNA codes
based on additive stem �̃-similarity.

B. Conclusion

For regular weight samples from Tables 1-7 (T1-T7), the
descriptive analysis and comparison of critical parameters are
summarized as follows:

T1 T2 T3 T4 T5 T6 T7


 
� 
� 
� 
� 
� 
� 
�

�
�̃


	�� �	�� 
	�
 
	�	 
	�� 
	�� 
	��
.

These results confirm the main conclusion of paper [1] about a
consensus agreement among the parameters determined from
six laboratories (see, Table 2-7). In addition, there is an
excellent agreement between parameters of Table 3, Tables 5-7
and unified parameters (see, Table 1) suggested in [1].
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