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Little islands recording global events: late Quaternary sea level
history and paleozoogeography of Santa Barbara and Anacapa

Islands, Channel Islands National Park, California

DANIEL R. MUHS1,* AND LINDSEY T. GROVES2

1U.S. Geological Survey, MS 980, Box 25046, Federal Center, Denver, CO 80225
2Department of Malacology, Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007

      ABSTRACT.—Marine terraces are common on the Pacific Coast of North America and record interglacial high-sea
stands superimposed on either stable or tectonically rising crustal blocks. Despite many years of study of these land-
forms in southern California, little work on terraces has been conducted on the two smallest of the California Channel
Islands, Santa Barbara Island (SBI) and Anacapa Island (ANA). Presented here are new field and laboratory data on the
ages, paleontology, and sea level history of marine terraces of these two islands. On both islands, the lowest marine
terraces have shoreline angle elevations of ~11 m above sea level. Amino acid geochronology shows that terrace
deposits on both islands host fossils of two ages, one group dating to the ~120-ka high-sea stand and the other group
likely dating to the ~100-ka high-sea stand. A mix of fossil ages is consistent with the paleontology as well, with SBI in
particular showing a faunal assemblage that includes both extralimital southern and southward-ranging species (inferred
to be from the ~120-ka high-sea stand) and extralimital northern and northward-ranging species (inferred to be from the
~100-ka high-sea stand). Fossil mixing from these two high-sea stands supports the hypothesis that glacial isostatic
adjustment (GIA) processes have left a strong imprint on the geologic record of sea level history in southern California.
Nevertheless, the elevations of these terraces and that of a low terrace on Santa Cruz Island indicate that modeled GIA
estimates of paleo-sea level for the peak of the last interglacial period at ~120 ka could be too high. Future development
of models of GIA effects on the Pacific Coast of North America will need to consider geologic records, such as those
from SBI and ANA, in refining reconstructions of sea level history.

      RESUMEN.—Las terrazas marinas son comunes en la costa del Pacífico de América del Norte, estas registran posiciones
interglaciares superpuestas de alta mar, ya sea en bloques corticales estables o tectónicamente ascendentes. A pesar de
muchos años de estudio de estos accidentes geográficos en el sur de California, se han realizado pocos estudios en las
terrazas de las dos islas más pequeñas del Canal de California, la Isla Santa Bárbara y la Isla de Anacapa. En este estu-
dio presentamos nuevos datos de campo y de laboratorio sobre las edades, la paleontología y la historia del nivel del mar
de las terrazas marinas de estas dos islas. En ambas islas, las terrazas marinas más bajas presentan una elevación del
ángulo de la línea de costa de ~11 m sobre el nivel del mar. La geocronología de aminoácidos muestra que los depósitos
de terrazas en ambas islas albergan fósiles de 2 edades: un grupo que data de ~120 ka y el otro grupo que probablemente
data del ~100-ka de altura del nivel del mar. Una mezcla de edades fósiles también es consistente con la paleontología
de la Isla Santa Bárbara, en particular mostrando un ensamblaje faunístico que incluye tanto especies con distribuciones
en los límites más sureños (~120-ka de altura) y especies con distribuciones en los límites más norteños (~100-ka de
altura). La mezcla de fósiles de estos dos rodales de alta mar respalda la hipótesis de que los procesos de ajuste isostático
glacial (GIA, por sus siglas en inglés) han dejado una fuerte huella en el registro geológico de la historia del nivel del
mar en el sur de California. No obstante, las elevaciones de estas terrazas y de una terraza baja en la Isla Santa Cruz,
indican que las estimaciones basadas en los GIA del nivel de paleo-mar, según el pico máximo del último período inter-
glaciar de ~120 ka, podrían ser demasiado elevadas. El desarrollo futuro de los modelos de efecto de los GIA en la costa
del Pacífico de América del Norte necesitará considerar los registros geológicos, tales como los de la Isla Santa Bárbara y
los de la Isla Anacapa, para perfeccionar la reconstrucción de la historia del nivel del mar.

      ABBREVIATIONS.—AAL, Amino Acid Laboratory (University of Colorado, Boulder); ANA, Anacapa Island; CORS, Con-
tinuously Operating Reference Station; GIA, glacial isostatic adjustment; GPS, Global Positioning System; IPPC, Intergov-
ernmental Panel on Climate Change; ka, kilo anno; LIG, last interglacial; MIS, marine isotope substage; LACM, Natural
History Museum of Los Angeles Co.; NPS, National Park Service; ODP, Ocean Drilling Project; Qc, Quaternary coluvium;
Qm, Quaternary marine terrace deposits; SBI, Santa Barbara Island; SLA, shoreline angle; SOPAC, Scripps Orbit and Per-
manent Array Center; SST, sea surface temperature or temperatures; Tv, Tertiary volcanic rocks; U-series, uranium-series.
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    With the prospect of a warmer Earth in the
future, there is concern that polar ice sheets
will lose mass and global sea level will rise.
The latest Intergovernmental Panel on Climate
Change (IPCC) report has identified some of
the most important problems to investigate
related to forecasting sea level change that is
likely to occur within the near future (Church
et al. 2013, Masson-Delmotte et al. 2013). One
of these problems is identifying and under-
standing periods in the relatively recent geo-
logic past when sea level was higher than the
present. The period of time that has most
commonly been studied for this is the peak
of the last interglacial (LIG), known in the
foraminiferal oxygen isotope record of deep-
sea cores as marine isotope substage (MIS)
5e (Shackleton and Opdyke 1973) or MIS 5.5
(Martinson et al. 1987). Based on uranium-
series (U-series) dating of corals from emer-
gent marine deposits, MIS 5.5 occurred from
~130 ka (ka = kilo anno = 1000 years) to
~115 ka (see reviews in Muhs 2002, Dutton
and Lambeck 2012, and Murray-Wallace and
Woodroffe 2014). Uranium-series dating of
corals from marine deposits of MIS 5.5 age
has taken place both on tectonically active
coasts such as southern California, including
the Channel Islands (Muhs et al. 2002a, 2006,
2012, 2014a), and on tectonically stable coasts
such as the Bahamas (Thompson et al. 2011),
the Florida Keys (Muhs et al. 2011), Australia
(O’Leary et al. 2013), and the Seychelles
(Dutton et al. 2015). In tectonically stable
regions, emergent marine deposits dating to
MIS 5.5 are found above present sea level by
amounts ranging from ~3 m to ~10 m (Murray-
Wallace and Woodroffe 2014). This implies
that the mass of polar ice on the planet during
MIS 5.5 was significantly less than at present,
requiring smaller-than-present masses of the
Greenland ice sheet, the West Antarctic ice
sheet, or both. Because of this higher sea level,
the LIG has been specifically identified by
the IPCC as a possible analog to a future,
higher sea level (Church et al. 2013, Masson-
Delmotte et al. 2013).
    One potential challenge to the use of the
LIG as an analog to a future Earth is the hy -
pothesis that thermal expansion from warmer
oceans could have played a role in the higher-
than-present sea level at that time. This
hypothesis can be tested using a variety of
paleoclimate proxies from the marine record,

including foraminifera, radiolarians, diatoms,
coccoliths, and alkenones. Two studies using
such proxy data from deep-sea cores have
shown that on a global scale, average sea sur-
face temperatures (SST) during the LIG were
only slightly warmer than present (Turney
and Jones 2010, McKay et al. 2011). However,
the same studies showed that there were sig-
nificant regional differences from the global
average. Specifically, in the middle to high
latitudes (30° N to 70° N) of both the Atlantic
Ocean and the Pacific Ocean, SST during the
LIG may have been significantly warmer than
present, by up to ~4 °C.
    Paleoclimatic data from shallow marine
invertebrate fossil records dated to MIS 5.5
support the reconstruction of warmer-than-
present SST. Particularly important in this
regard are extralimital species. Extralimital
species are those taxa that in fossil form are
found at localities well outside of their modern
ranges. For the study areas considered here,
these would be species that now live well to
the north or south of Santa Barbara Island
(SBI) and Anacapa Island (ANA). Extralimital
species of mollusks and corals, indicating
warmer SST during MIS 5.5, have been doc-
umented in the Indian Ocean along the
western coast of Australia (Kendrick et al.
1991), around New Zealand and the southern
coast of Australia (Murray-Wallace et al. 2000),
along the Bering Sea and Arctic Ocean coasts
of Alaska (Brigham-Grette and Hopkins 1995),
in the eastern Atlantic Ocean and Mediter-
ranean (Meco et al. 2002, Muhs et al. 2014c),
in the Pacific Ocean along the shores of Oahu
in the Hawaiian Islands (Kosuge 1969, Muhs
et al. 2002b), along the central and southern
California coast (Kennedy 2000, Muhs et al.
2002a, 2012, 2014a, 2014b), and in Baja Cali-
fornia (Lindberg et al. 1980, Emerson et al.
1981). Thus, the importance of thermal expan-
sion during the LIG may have been greater
than the studies of Turney and Jones (2010)
and McKay et al. (2011) imply.
    On the California coast, LIG sea level his-
tory is more complicated than it is on many
other coastlines. Although the peak of the
LIG period is considered to be the high-sea
stand at ~130–115 ka, there were two younger
high-sea stands during MIS 5, at ~100 ka
and ~80 ka. These two younger high-sea
stands are represented by uplifted coral reef
terraces on a number of tropical coastlines,
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such as Barbados, Haiti, and New Guinea
(Broecker et al. 1968, Mesolella et al. 1969,
Bloom et al. 1974, Dodge et al. 1983, Gallup
et al. 1994, Edwards et al. 1997). They are
also apparent in the oxygen isotope record of
foraminifera recovered from deep-sea cores as
MIS 5c (or 5.3) at ~100 ka and MIS 5a (or 5.1)
at ~80 ka (Shackleton and Opdyke 1973, Mar-
tinson et al. 1987). Erosional marine terraces
of these younger high-sea stands are also
represented in the geologic record of coastal
California and Baja California (Kennedy et
al. 1982, Rockwell et al. 1989, Muhs et al.
1994, 2002a, 2006, 2012, 2014a, 2015). Based
on such records, however, the apparent sea
level history of the Pacific Coast of North
America differs from that obtained from
coastlines in the tropics.
    Large ice sheets that covered much of North
America during the most recent glacial periods
exerted powerful effects on the continental
crust and lithosphere of North America and
the surrounding oceans. These processes—
collectively referred to as glacial isostatic
adjustment (GIA) effects—include changes in
the direct gravitational attraction of the time-
varying ice-plus-ocean load and perturbations
in both crustal and sea-surface heights in
response to load-induced deformation (Mitro-
vica and Peltier 1991, Mitrovica and Milne
2002, Potter and Lambeck 2004, Milne and
Mitrovica 2008, Tamisiea and Mitrovica 2011).
The cumulative result of these processes is that
apparent sea level history, based on geologic
records such as marine terraces, will differ
from coast to coast depending on proximity to
large ice sheets. In North America, GIA
effects are significant because the Laurentide
and Cordilleran ice sheets covered much of
the continent during the last glacial period
and previous glacial periods. Glacial isostatic
adjustment effects on apparent sea level will
generate a geologic record that departs from
a purely eustatic one most dramatically on
coastlines near such ice sheets (“near-field”
localities or “intermediate-field” localities,
such as California), whereas coastlines distant
from ice sheets (“far-field” localities, such as
Barbados and New Guinea) will record a more
purely eustatic sea level history. A combina-
tion of field studies and modeling shows that
GIA effects have been important on the
Pacific Coast of North America (Muhs et al.
2012, Clark et al. 2014, Creveling et al. 2015,

2017, Reeder-Meyers et al. 2015, Simms et
al. 2016).
    Although SBI and ANA are by far the small-
est of the California Channel Islands (Fig. 1),
previous studies have shown that their coast-
lines host multiple marine terraces that are fos-
siliferous (Scholl 1960, Valentine and Lipps
1963, Lipps 1964, Lipps et al. 1968). The pres-
ence of fossils means that these terraces have
the potential to be dated and thus can be com-
pared to the late Quaternary sea level record.
Marine fossils also have the potential for
reconstruction of past SST using paleozoogeo-
graphic interpretations. Previous work on SBI
and ANA by the investigators cited above indi-
cates that the fossil assemblages are largely
from what were rocky intertidal marine envi-
ronments. In assessing the paleozoogeographic
aspects of such assemblages, it is uncommon
for investigators to make comparisons to fossil
assemblages of the same age from protected,
quiet-water (“bay”) environments where differ-
ent marine invertebrate taxa thrive. Thus, it
can be hypothesized that paleoclimatic inter-
pretations could differ from one marine envi-
ronment to another. In order to investigate this
issue further, a locality relatively close to SBI
and ANA was sought where a protected, quiet-
water fossil assemblage that is likely the same
age might be studied. Fossil marine deposits
found in San Pedro, California (Fig. 1) fit these
requirements, based on previous work by
Woodring et al. (1946). Finally, little work has
been done on the western end of neighboring
Santa Cruz Island, although terraces have
been mapped there (Pinter et al. 1998, 2003).
Therefore, reconnaissance work was also con-
ducted in the Fraser Point area of westernmost
Santa Cruz Island, complementary to the stud-
ies on the two smaller islands. Indeed, the
Fraser Point area of Santa Cruz Island was
likely a small island itself during the LIG.
    Given the overall low uplift rates reported
for many of the other California Channel
Islands (Muhs et al. 2012, 2014a), it is
hypothesized that low-elevation terraces on
SBI, ANA, and Santa Cruz Island likely date
to some part of the LIG complex, MIS 5. It is
further hypothesized that given the previous
studies showing a complex history of MIS
5.5, 5.3, and 5.1 (equivalent to MIS 5e, 5c,
and 5a, respectively, of Shackleton and
Opdyke 1973) as seen in the marine terrace
record elsewhere on the California coast
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(Muhs et al. 2002a, 2012, 2014a, 2014b),
there could be a similarly complex history
recorded in the terraces and their fossils on
these small islands. To test these hypotheses

in the present effort, field and laboratory
studies were conducted, including terrace
mapping and elevation measurements, geo -
chronology of fossils from the terraces, and
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paleontology and paleozoogeography of the
fossil assemblages.

METHODS

Field and GPS Methods

    Marine terraces were mapped in the field
on SBI. The spatial extent of these units was
determined by initial mapping on aerial pho-
tographs and topographic maps, refined by
field examination of terrace geomorphology,
exposures in sea cliffs, and outcrops in shore-
normal-trending canyons (Fig. 2). On Middle
Anacapa Island, Scholl (1960) previously
mapped marine terrace deposits, and field
studies herein agree with his mapping. Thus,
the marine terrace map presented for this

island (Fig. 3) is reproduced largely from his
work, with modest additions. Possible marine
terraces on East Anacapa Island and West
Anacapa Island were identified by old, high-
elevation but low-relief surfaces with gentle
seaward slopes, identifiable in the field and on
aerial photographs and topographic maps that
lack definitive evidence of marine deposits
(rounded, pholad-bored gravels and marine
fossils). These surfaces are sometimes backed
on their landward margins by what appear to
be paleo-sea cliffs and have platforms that
dip gently seaward, interpreted as wave-cut
benches. The platforms have elevations that
are concordant from island to island or with
other low-relief surfaces bounded by adjacent
drainages. On some of these surfaces, Johnson
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(1979) reported the occurrence of marine ter-
race sediments, supporting such an origin.
    In addition to mapping terrace boundaries,
accurate and precise determinations of the
elevations of geomorphic features that mark
past sea levels are critical to the present work.
On high-wave-energy coastlines such as Cali-
fornia, the best paleo-sea level indicator is the
shoreline angle, defined as the junction of
the wave-cut platform and the former sea cliff
found at the landward edge of the wave-cut
platform (see Fig. 2 in Muhs et al. 2004). Some
examples of shoreline angles of emergent
marine terraces on ANA and SBI are shown in
Fig. 4. Elevations of most localities studied
were determined using differential Global Posi-
tioning System (GPS) measurements. Lati-
tude/longitude data and elevations were ascer-
tained using a portable differential GPS instru-
ment connected to a handheld computer. At
each location, data were collected from at least
four satellites (and usually six to eight) for at
least 500 s to obtain consistent 3D geometry.
The data were post-processed using Trimble®

GPS Pathfinder® Office software in which
GPS field data were differentially corrected
against five to eight base stations in the Con-
tinuously Operating Reference Station (CORS;
Strange and Weston 1997) and Scripps Orbit
and Permanent Array Center (SOPAC; Bock
et al. 1997) networks, located within 200 km of
the study areas. A comparison of GPS-derived
elevations with benchmarks and taped eleva-

tions shows good agreement, within the limits
of instrumental uncertainty (<0.5 m). In a few
localities topographic barriers did not permit
good satellite geometry. Where this was a
problem, elevations were measured with a
hand level and tape and tied to GPS locations
where satellite geometry was favorable.

Amino Acid Geochronology/
Aminostratigraphy of Marine 

Terrace Mollusks

    Uranium-series geochronology yields nu -
mer ical ages of terrace fossils, but this method
requires corals, which are among the few
marine invertebrates that incorporate uranium
from seawater into their skeletons during
growth. No corals were found in the deposits
on ANA and only a few corals were recovered
on SBI and Santa Cruz Island. Uranium-series
dating of corals from the latter two islands is
still in progress. Although mollusks cannot be
used for U-series dating, there is an alterna-
tive method available for these organisms that
yields relative or correlated ages. Amino acid
dating of fossil mollusks from emergent marine
deposits is an important geochronological
tool in marine terrace studies, and detailed
reviews can be found in Wehmiller (1982,
1992, 2013a, 2013b) and Miller et al. (2013).
The technique is based on the conversion of L
enantiomers of amino acids to D enantio -
mers—a process called racemization—after
the death of an organism. For this purpose the
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present study utilizes the common rocky
intertidal gastropod Chlorostoma (formerly
Tegula [McLean 2007]), usually Chlorostoma
funebralis (Adams 1855); the bivalve Epilucina
californica (Conrad 1837); and species of the
bivalve Chione (C. californiensis, C. undatella,

and C. fluctifraga). Previous studies have shown
that Chlorostoma is a reliable genus for amino
acid geochronology, while Epilucina is per-
haps not quite as robust an age indicator
(Wehmiller et al. 1977, Muhs, 1983, 1985, Muhs
et al. 1992, 2014a). The general reliability of
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these two genera is demonstrated later in this
paper. There are fewer data available for
Chione, but based on analyses of coexisting
specimens, Wehmiller et al. (1977) note that
fossil Chione has D/L values similar to coexist-
ing fossil Leukoma (formerly Protothaca) and
Saxidomus, two genera that have been utilized
extensively on the Pacific Coast of North Amer-
ica for amino acid geochronology (Kennedy et
al. 1982, Wehmiller 1982, 1992, 2013a, 2013b).
    Relative abundances of D and L enantio -
mers of the amino acids valine and glutamic
acid were measured in fossil specimens of these
genera using reverse-phase liquid chroma -
tography (Kaufman and Manley 1998) at the
Amino Acid Laboratory (AAL) of the University
of Colorado, Boulder. Interlaboratory compari -
sons of this facility’s results with others can
be found in Wehmiller (2013c). Ratios of D to
L values for valine and glutamic acid were
measured using peak heights. A comparison of
D/L values computed by both peak heights
and peak areas by Muhs et al. (2014a) for
Chlorostoma and Epilucina and by Muhs et
al. (2018) for Callianax shows no significant
differences. Nevertheless, somewhat better
run-to-run agreement was achieved with
peak-height ratios. Therefore, this method
was used in the present study for D/L values
in both glutamic acid and valine.
    In addition to the racemization of L enan-
tiomers of amino acids to D enantiomers,
another process that occurs after the death of
an organism is epimerization of L-isoleucine to
D-alloisoleucine; thus, ratios of D-alloisoleucine
to L-isoleucine are complementary to D/L val-
ues of other amino acids. Peak heights of D-
alloisoleucine to L-isoleucine in Chlorostoma
and Chione fossils from ANA, SBI, and other
localities were also measured. Many of the
ratios of these two amino acids were also mea-
sured by reverse-phase liquid chromatography,
as above, but older data used here, reported
by Muhs (1985) and Muhs et al. (1992), were
measured by conventional liquid chromatog-
raphy (Miller 1985). Measurements of D-
alloisoleucine to L-isoleucine by the two meth-
ods give comparable results. Peak-height ratios
for all new analyses of individual shells (as
well as geographic, geologic, and other docu-
mentary information) are tabulated in Appen-
dixes 1, 2, 3, and 4.
    Amino acid racemization and epimerization
are temperature-dependent processes, with

lower rates occurring in cooler climates
(Wehmiller 1982, 2013a, 2013b, Wehmiller
and Miller 2000, Miller et al. 2013). In com-
paring amino acid data from fossil mollusks of
the Channel Islands, D/L values were mea-
sured in Chlorostoma and Epilucina fossils
and compared to similar ratios in specimens
from other dated marine terrace localities in
California and Baja California. These collec-
tions were made from localities along a
roughly northwest–southeast temperature gra-
dient from central California to northern Baja
California (slightly modified from Fig. 3 of
Muhs et al. 2014a). The localities host deposits
containing corals that have been dated inde-
pendently through U-series methods to ~80 ka
(MIS 5.1) and either ~120 ka (MIS 5.5) or a
mix of ~100 ka (MIS 5.3) and ~120 ka (MIS
5.5) ages, based on studies by Muhs et al.
(1994, 2002a, 2006, 2012, 2014a, 2015). For
values of D-alloisoleucine to L-isoleucine in
Chione fossils of unknown age (from ANA, San
Pedro, and Puerto Peñasco), we also measured
similar ratios in Chione fossils from marine
deposits that were independently dated.
    Under favorable conditions, D/L values of
amino acids or values of D-alloisoleucine/
L-isoleucine in shells from deposits of the
same age show northward-decreasing values
along a north-to-south-trending coastline (in
the Northern Hemisphere). This trend, when
presented graphically (D/L values vs. latitude or
temperature), forms an isochron line or band
called an “aminozone” (see examples in Ken -
nedy et al. 1982, Wehmiller 1982, Murray-
Wallace et al. 2000, Muhs et al. 2014a). Shells
of younger deposits should yield a parallel or
subparallel aminozone line or band of D/L
values below those defined by an older suite
of shells. Thus, D/L values in shells of a
deposit of unknown age can be plotted on
such latitudinal arrays for the purpose of cor-
relation to independently dated deposits.
Deviations from this idealized trend can be
due to a variety of factors, including different
burial depths (and therefore variable thermal
histories), reworking of older fossils, and
exchange of amino acids from through-flowing
soil or sediment pore waters (Wehmiller et al.
1977, Wehmiller 1982, 2013a, 2013b, Kosnik
and Kaufman 2008). The potential of such
problems in the present study was assessed
using methods outlined in Kosnik and Kauf-
man (2008).
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Paleontology and Paleozoogeography

    Fossils collected on SBI and ANA were
identified at the Natural History Museum of
Los Angeles County (LACM), California,
which hosts an extensive reference collection
of modern and fossil marine invertebrates from
the eastern Pacific Ocean. Paleozoogeographic
reconstructions are based on comparisons with
the modern ranges of the taxa identified
because all of the species examined (with one
exception, Calicantharus fortis) are extant
forms. Of particular significance in paleo -
climatic interpretations is the presence of
extralimital taxa (i.e., species that now live well
to the north or south of SBI and ANA). In
addition to strictly extralimital taxa, paleo -
climatic interpretations can also be based in
part on species whose range endpoints occur at
or near the two islands. Such taxa are re ferred
to as northward-ranging or southward-ranging
forms. Thus, a southward-ranging taxon may
presently live at or around a given study local-
ity but is found no farther north. Determina-
tion of whether species are extralimital, north-
ward-ranging, or southward-ranging is based
on modern geographic distributions of these
taxa from collections in the Malacology Section
of the LACM. In addition, the following
sources were also used for this purpose: Coan
et al. (2000) and Coan and Valentich-Scott
(2012) for bivalves; Keen (1971), Abbott (1974),
McLean (1978, 2007), Abbott and Haderlie
(1980), and Bertsch and Aguilar Rosas (2016)
for gastro pods; and Haderlie and Abbott (1980)
and Eernisse et al. (2007) for polyplacophora.

RESULTS

Marine Terraces on Santa Barbara Island

    Santa Barbara Island is composed almost
completely of mafic volcanic rocks (Norris
1991, Dibblee 2001). Chemical analyses pre-
sented by Weigand et al. (1998), Weigand and
Savage (2002), and Muhs et al. (2008) show
that the rocks vary in composition from basalt
to basaltic andesite. A whole-rock 40Ar/39Ar
age from basalt on SBI is 15.5 +– 1.0 Ma
(Luyendyk et al. 1998) and confirms the
interpretation of earlier researchers that the
rocks are of Miocene age. Some of the rocks
are vesicular pillow basalts; the pillow struc-
ture indicates that the eruptions that formed
the rocks occurred under water (Norris 1991,
Dibblee 2001).

    In six trips to SBI, marine terraces were
mapped, terrace elevations were measured,
and terrace fossils were collected. Lipps et al.
(1968) reported that there may be as many as
six terraces on the island, although one of
these is found at an elevation of ~1.5 m and
could be simply a storm bench. These investi-
gators also reported higher terraces at eleva-
tions of ~7–8 m, ~15 m, ~40 m, and ~76 m.
In the present study, evidence was found for
at least four and possibly five marine terraces
on SBI. The lower three terraces have shore-
line angles exposed near Webster Point, as
illustrated by Lipps et al. (Fig. 3 in Lipps et al.
1968) and observations presented here (Fig.
5a). The lowest terrace at Webster Point has a
shoreline angle elevation of 11 m. What is
interpreted to be the outer edge of the same
terrace is exposed on the eastern side of the
island between Graveyard Canyon and Cat
Canyon (Figs. 2, 5b). At this locality, the shore-
line angle is exposed but inaccessible (Fig. 5b),
and the outer edge of the wave-cut bench has
an elevation of 4.3 m. The second terrace in
the Webster Point area (Fig. 5a) has a shore-
line angle elevation of ~30 m; what is inter-
preted to be the same terrace has a shoreline
angle elevation of ~33 m at Arch Point (Fig.
4a). The third terrace has a shoreline angle
elevation between ~44 m (highest bench) and
~51 m (lowest cliff) at Webster Point and an
elevation of 49.4 m on the eastern side of the
island where it is exposed in the walls of Cave
Canyon (Fig. 2). The shoreline angle of the
fourth terrace is exposed in the sea cliff on the
western side of the island ~1 km southeast of
Webster Point. The precise location of the
shoreline angle, while visible, is inaccessible,
but about two-thirds of the way down the col-
luvial wedge that covers it, an approximate
elevation of 82 m was measured, a maximum-
limiting estimate. The outer edge of the ter-
race has an elevation of ~66 m, a minimum
figure, so the shoreline angle must lie at an
elevation between these two values and is
probably closer to the maximum figure. On
the eastern side of the island, what is inter-
preted to be an outer bench of the fourth ter-
race with overlying, fossiliferous marine deposits
(SBI-2 on Fig. 2) has an elevation of 68 m.
Finally, what is interpreted as a former sea cliff
extends north to south, parallel to the long axis
of the island. The inner edge of a probable
fifth terrace may lie just to the east of this
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former sea cliff (Fig. 2). No shoreline angles
for this terrace were observed, but the inner
edge lies at an elevation of ~120 m where it
was measured. This is clearly a maximum ele-
vation for the possible terrace because the
measurements were taken on the surface of a
colluvial wedge of unknown thickness that
covers the bench and shoreline angle. Thus,
we recognize at least four certain terraces with

shoreline angle elevations of 11 m, 30–33 m,
44–51 m, and 66–82 m, with a probable fifth
terrace at some elevation between perhaps
100 and 120 m. Fossiliferous marine deposits
(Fig. 2) overlie the first terrace (11 m) on the
southeastern side of the island (LACMIP
localities [locs.] 326, 327, 329 [= LACMIP loc.
42324], 5068 [= LACMIP loc. 42325]), the
second terrace (30–33 m) at Arch Point
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(LACMIP loc. 328), on the outer edge of the
third terrace (49 m) between Cave Canyon
and Middle Canyon and between Middle
Canyon and Graveyard Canyon (LACMIP
locs. 5066 and 5067), and on the outer edge of
the fourth terrace (~68 m) above Landing
Cove (SBI-2 on Fig. 2).

Marine Terraces on Anacapa Island

    Anacapa Island actually consists of three
small islets (East, Middle, and West Anacapa)
separated by very shallow gaps (Fig. 3). Vol-
canic rocks dominate the bedrock of all three
islands (Norris 1995). Mapping by Scholl (1960)
and Dibblee (2001) indicates that the rocks
consist of the Santa Cruz Island Volcanics
and/or the Conejo Volcanics units of middle
Mio cene age. Geochemistry reported by Muhs
et al. (2008) indicates that the rocks on East
Anacapa Island are andesites and basaltic
andesites. On Middle and West Anacapa
Islands there are also beds of the San Onofre
Breccia (Norris 1995). Muhs et al. (2008) also
report very small outcrops of San Onofre
Breccia exposed on the west side of Cathedral
Cove on East Anacapa Island. This unit con-
tains clasts of quartzite or vein quartz, blue -
schist, shale, and sandstone. Luyendyk et al.
(1998) report 40Ar/39Ar ages on plagioclase
separates from ANA rocks of 16.2 +– 0.2 Ma
and 16.3 +– 0.2 Ma, confirming the Miocene
age assignments of Scholl (1960), Lipps (1964),
and Norris (1995).
    Scholl (1960) recognized two marine ter-
races on the Anacapa Islands. The highest one
was recorded at ~183 m on West Anacapa and
the lower one was at ~76 m on Middle and
East Anacapa. Fossils are abundant in the
deposits of the 76-m terrace on Middle
Anacapa Island and were studied by Valentine
and Lipps (1963). Miller et al. (1961) reported
a lower terrace on West Anacapa, estimated to
be ~8 m above sea level. Lipps (1964) studied
the deposits and fossils of this terrace and
reported about a dozen species, two of which
are southward-ranging taxa. Johnson (1979)
confirmed the fossiliferous deposits on the
~76-m terrace on Middle Anacapa and the ~8-m
terrace on West Anacapa. In addition, Johnson
(1979) reported that nonfossiliferous marine
deposits are found at the highest elevations of
West Anacapa near Camel Peak (~247 m) and
Summit Peak (~285 m), but these occurrences
have not been confirmed in the present study.

Pinter et al. (2003) reported new elevation
measurements of some of the higher terraces
on all three of the Anacapa Islands.
    During eight trips to the Anacapa Islands,
the marine terraces and their deposits and fos-
sils were studied. The likely extent of marine
terraces on the three islands (Fig. 3) was
determined using interpretation of stereo aer-
ial photo graphs and topographic maps, as well
as field observations; we stress that these are
approximations because marine terrace expo-
sures are few. East Anacapa Island has a mesa-
like appearance and has likely been shaped
almost entirely by marine terrace formation.
The andesite bedrock of East Anacapa is also
cut by a number of faults. Sea caves, surge
channels (a shore-normal channel cut into
bedrock by waves), and arches have formed
where these faults occur. Marine terrace expo-
sures on East Anacapa Island are rare, but
based on the topography of the surface of the
island, more than one terrace may be present.
Wave-cut benches are visible in sea cliff and
surge channel exposures with their outer edges
on the northern side of the island ranging in
elevation from ~36 m to ~60 m. The eastern
side of Arch Rock may consist of a highly de -
graded marine terrace, with a shoreline angle at
~12–14 m backed by a sea cliff rising to ~25 m
(Fig. 4b). On Middle Anacapa Island, two
marine terraces were identified. The higher ter -
race, also recognized in previous studies, forms
much of the upland topography of Middle
Anacapa Island; this terrace has an outer bench
elevation of ~70 m and is overlain by marine
and nonmarine deposits up to an elevation of
83 m (Fig. 6a). Although Scholl (1960), Miller
et al. (1961), and Lipps (1964) did not report a
low-elevation terrace on Middle Anacapa Island,
one was observed in the present study with an
outer bench elevation of ~4 m to ~5 m and an
estimated inner edge elevation of perhaps 10
to 11 m (Fig. 6a). Marine terrace deposits on
this bench are ~0.5 m thick and are overlain
by several meters of colluvium. The colluvium
is undated but is likely of late Pleistocene age,
based on the presence of abundant bones from
the extinct flightless goose Chendytes lawi in
similar colluvium overlying the low-elevation
bench on West Anacapa Island (Miller et al.
1961, Lipps 1964).
    The low terrace on Middle Anacapa Island
can be traced discontinuously to West Anacapa
Island where it is prominently displayed at
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Frenchys Cove, the locality studied by Lipps
(1964). On West Anacapa Island, the shoreline
angle of this low terrace is exposed at an ele-
vation of 11 m (Fig. 6b). The marine terrace
deposits here are overlain by thick deposits of
colluvium (Fig. 6b; see also Fig. 3 of Lipps
1964), as is the case on Middle Anacapa
Island. Curiously, there is no apparent source
for this colluvium at present because the

uppermost part of the colluvial wedge is near
the summit of this part of the island. This is
interpreted to mean that much of the island
that once existed landward (i.e., southward)
and above this marine terrace has been
eroded since terrace formation and emer-
gence. Fossils are rare in the marine terrace
deposits on the ~11-m terrace shown in Fig.
6b but are abundant in laterally traceable
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deposits a short distance to the west, ~4–5 m
above the modern cobble beach at Frenchys
Cove (Fig. 3). The higher terraces on West
Anacapa Island were not studied in any detail
and previous work (Scholl 1960, Johnson 1979)
indicates that deposits of these higher terraces
do not contain fossils.

Reconnaissance of Marine Terrace Deposits
at Fraser Point, Santa Cruz Island

    Marine terraces on Santa Cruz Island (Fig. 1)
are most prominently displayed on the western
part of the island between West Point and
Fraser Point (Figs. 7, 8) and have been studied
by Pinter et al. (1998, 2003). These investigators
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recognized three terraces: T1, T2, and T3 (from
youngest to oldest). The T1 terrace is found
near Fraser Point but was also mapped by Pin-
ter et al. (1998) between Kinton Point and
Punta Arena, farther south (Fig. 7). Uranium-
series analyses of fossil corals from a locality
close to Near Point gave ages of ~120 ka, cor-
relating this terrace with the peak of the LIG,
or MIS 5.5 (Pinter et al. 1998). Although the
same terrace is mapped near Fraser Point

(Pinter et al. 2003), no age estimates or fossil
data for this part of the island have been
reported previously.
    The lowest two terraces were mapped in a
small area of the Fraser Point area and several
new fossil localities were found on the T1 ter-
race (Figs. 7, 8). Marine terrace deposits in the
Fraser Point area are exposed in sea cliff walls
and along surge channel walls. The deposits
range in thickness from ~0.5 to ~1.0 m, and
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consist of sands and gravels. The shoreline
angle of the T1 terrace is exposed at three
places in the Fraser Point area. At LACMIP
locs. 42332 and 42333, the shoreline angle was
measured at 7.2 m above present sea level. The
outer edge of the T2 terrace above it is 9.8 m
above present sea level. The shoreline angle of
T1 at LACMIP loc. 42336, which is exposed in
a large surge channel, was measured at 7.5 m
above present sea level. Here the outer edge
of the T2 terrace above T1 lies at an elevation
of 17.2 m above sea level. At two localities, the
shoreline angle is not ex posed but can be con-
strained by the highest bench elevation of
the T1 terrace and the lowest elevation of the
paleo-sea cliff above it. At LAC MIP loc.
42334, the highest bench is 8.3 m above pres -
ent sea level and the lowest cliff above it is at
8.8 m. At LACMIP loc. 42335, the T1 terrace
is ~20 m wide, but overlying alluvium has
obscured any possible exposures of the shore-
line angle. Nevertheless, the outer bench is
4.2 m above present sea level and the lowest
cliff above it is 11.4 m, in broad agreement
with the measurements of ~7.2 to ~8.5 m
above present sea level at the other localities.
    Chlorostoma fossils were collected from
several of the fossil localities for amino acid
geochronology. In addition to the localities
described above, fossils were collected be -
tween Near Point and Morse Point on Santa
Cruz Island (LACMIP locs. 42338 and 42339;
Fig. 7b), very close to the coral-bearing local-
ity of Pinter et al. (1998). In addition, the late
D.L. Johnson of the University of Illinois
found a fossil locality in the Fraser Point area
in 1978 (not previously published, but now
registered as LACMIP loc. 42337) and a col-
lection from it was given to the authors. We
confirmed Johnson’s locality in the field and
made new collections as well. Fossils within
the sediments are typical rocky-shore assem-
blages containing the bivalves Mytilus, Epilu-
cina, and Glans and the gastropods Haliotis,
Chlorostoma, Fissurella, Callianax, Thylacodes,
Littorina, Californiconus, and Acmaea.

Aminostratigraphy of Low Terrace 
Deposits on Santa Barbara Island, Anacapa

Island, and Western Santa Cruz Island

    As pointed out by Wehmiller (1982, 1992,
2013a, 2013b) and Miller et al. (2013), one of
the most effective tests of the suitability of a
given taxon for amino acid geochronology is to

determine whether D/L values of amino acids
(or D-alloisoleucine / L-isoleucine values) in
fossils are higher in older deposits, where a
relative-age sequence of deposits can be
found. Marine terraces of successively higher
elevations form a morphostratigraphic frame-
work for such a test. Two of the genera used in
the present study, Chlorostoma and Epilucina,
have been studied previously for amino acid
geochronology (Wehmiller et al. 1977, Muhs
1985, Muhs et al. 1992). Presented here are
mean values and standard deviations of D-
alloisoleucine / L-isoleucine in both genera
shown as a function of relative terrace age on
topographic profiles from San Nicolas Island,
California, using data from Muhs (1985), Muhs
et al. (1992), and new Chlorostoma data from
the present study for the fourth terrace on this
island (Fig. 9a). Both genera show increases
in mean values with higher (older) terraces,
confirming their utility for amino acid geo -
chronology. Further, both genera show the
ability to discriminate dated, late Pleistocene
(120 ka to 80 ka) terrace deposits from older,
middle-to-early Pleistocene terrace deposits.
    Although a particular genus may be estab-
lished as having the potential for geochron -
ology, assessing the integrity of D/L values in
amino acids (or values of D-alloisoleucine /
L-isoleucine) in individual shells is not
always simple because many of the diagenetic
processes in host sediments that could affect
amino acids are not well understood. Some
of the potential problems and methods for
assessing them have been identified by Kosnik
and Kaufman (2008) and Kosnik et al. (2008)
and are utilized here. Because the amino acid
serine is relatively unstable and tends to be
depleted over geologic timescales, the pres-
ence of high amounts of serine in a fossil shell
indicates contamination by modern amino
acids. Samples analyzed here were screened
for this problem and none showed excessive
serine concentrations. Another method of
assessing fossil shell integrity and identifying
outlier shells is accomplished with a simple
procedure that identifies possible diagenetic
gain or loss of amino acids. Kosnik and Kauf-
man (2008) point out that each amino acid
racemizes independently of all others and at
different rates. In principle, then, if a shell
has experienced a closed-system history with
respect to amino acids, D/L values of two
amino acids should increase systematically
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over time together. Shell integrity can there-
fore be assessed by a simple plot of D/L values
of two amino acids against each other from a
suite of fossil shells. Kosnik and Kaufman
(2008) demonstrate the utility of this method
by identifying shells that deviate from regres-
sion lines in bivariate plots of D/L aspartic
acid versus D/L glutamic acid (see their Fig.
3). In the present study, both Chlorostoma and
Epilucina were assessed in this fashion by
plotting D/L glutamic acid versus D/L valine
(Fig. 10). Amino acid data from Muhs et al.
(2014c) were evaluated independently and then
aggregated with new data from the present
study. Results show that linear fits to the data

have high correlation coefficients, and few or
no data points appear as obvious or extreme
outliers. This exercise implies that shells of
both genera in the present study have likely
experienced closed-system histories with respect
to at least glutamic acid and valine.
    In the studies of fossils from the marine
terrace deposits of SBI, West Anacapa Island,
and western Santa Cruz Island presented here,
the aminostratigraphic framework presented
by Muhs et al. (2014a, 2018) that extends along
the coast of North America from northern Baja
California to central California was utilized in a
modified form. Uranium-series ages of corals
from marine terrace localities studied by Muhs
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et al. (1994, 2012, 2014a, 2015) and Pinter et
al. (1998) are used to define aminozones of
different ages. Presented here are latitudinal
plots of D/L values for glutamic acid and
valine for both Chlorostoma and Epilucina
and D-alloisoleucine / L-isoleucine in Chloros-
toma and Chione for these dated localities
along with new data from SBI, West Anacapa
Island, and Santa Cruz Island (Figs. 11–13).
    Glutamic acid and valine D/L values in
Chlorostoma samples from SBI and West
Anacapa Island show much more variability
than values in shells from other southern Cali-
fornia localities. Indeed, D/L values in Chloros-
toma shells from these two islands appear to fall
into two groups. For both glutamic acid and
valine, two or more shells from each island
have D/L values that fall within or close to the
~120-ka aminozone while the others fall into
the ~80-ka aminozone (Fig. 11). For D-
alloisoleucine / L-isoleucine, we also observe
two groupings of values for West Anacapa
Island, but the values in Chlorostoma shells in
the higher group on SBI fall within the 100-ka
to 80-ka aminozone (Fig. 12a). The mean of five
Epilucina shells analyzed from SBI falls within

the ~80-ka aminozone for both glutamic acid
and valine but with a high amount of variability
(Fig. 13). On West Anacapa Island, only three
Epilucina shells were found. Mean values for
both glutamic acid and valine in these three
shells fall between the ~120-ka and ~80-ka
aminozones. Because there are no obvious out-
liers in the D/L glutamic acid versus D/L
valine plots (Fig. 10), this variability is inter-
preted to reflect real differences in age.
    On Santa Cruz Island, from the locality
near Pinter et al.’s (1998) coral-bearing site
be tween Near Point and Morse Point (LAC -
MIP loc. 42339; Fig. 7b), Chlorostoma D/L
values for glutamic acid and valine and D-
alloisoleucine to L-isoleucine all plot within
the ~120-ka aminozone (Figs. 11, 12a), consis-
tent with the U-series ages on coral of ~120 ka
from these deposits. At Fraser Point farther
west, we obtained D/L values for Chlorostoma
from two localities (LACMIP loc. 42335 and
LACMIP loc. 42337), one exposed to the
south and one exposed to the north (Figs. 7, 8).
For all three ratios in Chlorostoma (D/L glu-
tamic acid, D/L valine, and D-alloisoleucine /
L-isoleucine), values plot squarely within the
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~120-ka aminozone, correlating this terrace
with the dated locality (LACMIP loc. 42339)
on southern Santa Cruz Island and other
southern California localities (Figs. 11, 12a).
    A third genus, Chione, was utilized for
amino acid geochronology. Fossils of this taxon
were not found on SBI or Santa Cruz Island,
but a number of fossil specimens of this genus
were found on West Anacapa Island. Because
all species of this genus are southward rang-
ing, many of the localities for independent age
control lie to the south of West Anacapa
Island. The southernmost lo cality is Mulegé,
Baja California Sur (Fig. 1a). Ortlieb (1978,
1987) described the geology of this area, and
Ashby et al. (1987) reported U-series ages of
~120 ka on coral from this locality. Ortlieb
(1987) reported amino acid data for Chione
from Mulegé. His analyses were conducted in
the Amino Acid Geochronology Laboratory of
the University of Colorado, so his data are
directly comparable to those presented here.
Uranium-series analyses on coral have been
conducted at some other localities; we report
new amino acid analyses of Chione from these
localities, taken either from collections made
by the authors or from collections archived in
the Department of Invertebrate Paleontology
at the Natural History Museum of Los Ange-
les County (LACMIP). These other locations
include Bahía de Magdalena, Baja California
Sur, where Omura et al. (1979) report U-series
analyses on coral, and Newport Bay, Orange
County, California, where Grant et al. (1999)
also report U-series analyses on coral, yielding
ages of ~120 ka. There is one Chione-bearing
locality of LIG age that lies well to the north
of West Anacapa Island at Toms Point in Toma-
les Bay, Marin County, California, ~67 km
northwest of San Francisco (Fig. 1a). Marine
deposits here (called the Millerton Formation)
were described by Johnson (1962) and were
dated using thermoluminescence techniques
to ~130 ka by Grove et al. (1995). Thus, along
a south-to-north temperature gradient, a suite
of independently dated Chione-bearing locali-
ties that bracket West Anacapa Island were
obtained.
    In addition to estimating the age of the
low terrace on West Anacapa Island, ratios of
D-alloisoleucine to L-isoleucine in Chione are
also the basis of our comparison of a pro-
tected, quiet-water fossil fauna on the main-

land California coast with fauna of the rocky
intertidal environments of ANA and SBI. In
the San Pedro area of Los Angeles County,
California, Woodring et al. (1946) reported
that one of the most widespread late Quater-
nary marine deposits is the Palos Verdes Sand
(Fig. 14). No corals suitable for U-series dating
have been reported in this deposit nor were
any found in the present study, but D/L values
and oxygen isotope values in Leukoma staminea
(formerly Protothaca staminea) led Muhs et
al. (1992) to conclude that the Palos Verdes
Sand in at least northern San Pedro could
date to the ~120-ka high-sea stand (MIS 5.5).
Because specimens of Chione spp. from the
Palos Verdes Sand at the same locality in
northern San Pedro (LACMIP loc. 12576; see
Fig. 14) are abundant, we analyzed shells of
this taxon from this site. Finally, another local-
ity where Chione fossils are abundant but
where no independent ages exist is within
marine deposits a few meters above modern
sea level near Puerto Peñasco, Sonora, in the
upper Golfo de California (Fig. 1), described
by Davis et al. (1990). Dr. Nicholas Lancaster
of the Desert Research Institute, Reno, Nevada,
kindly collected some Chione specimens from
this locality for us.
    Results show that, similar to Chlorostoma
and Epilucina, fossil Chione shells show de -
creasing values of D-alloisoleucine to L-
isoleucine from south to north in deposits
known by independent dating to be of similar
age (Fig. 12b). The results presented here for
Chione are similar to those reported by Weh -
miller et al. (1977), Wehmiller and Emerson
(1980), Kennedy et al. (1982), and Wehmiller
(1982) using Protothaca and Chione amino
acid data for Toms Point, San Pedro, New -
port Bay, and Bahía de Magdalena. D-
alloisoleucine / L-isoleucine values in Chione
shells from West Anacapa Island fall within
the aminozone defined by these dated locali-
ties, correlating the deposits on that island
with the ~120-ka high-sea stand. Ratios of D-
alloisoleucine to L-isoleucine in Chione from
the Palos Verdes Sand at San Pedro also fall
within this aminozone, supporting the earlier
conclusion of Muhs et al. (1992) that this
deposit, at least in northern San Pedro, corre-
lates to the ~120-ka (MIS 5.5) high-sea stand.
Similarly, Chione shells from the low-elevation
marine deposits at Puerto Peñasco, Sonora,
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    Fig. 11. (a) Plot of mean D/L values in glutamic acid (vertical axis) in Chlorostoma fossils from dated (filled circles)
and undated (open circles) marine terraces on the California and Baja California coast shown as a function of latitude
(horizontal axis) as a proxy for long-term temperature history (cooler in the northwest, warmer in the southeast). Error
bars are –+1 SD based on D/L values in 3 to 6 individual shells from the same deposit. The red and blue bands (“amino-
zones”) indicate a correlation between fossil localities of the same age, anchored by U-series dating of corals. Terrace
name abbreviations: SMI = San Miguel Island, SRI = Santa Rosa Island, SCRZI = Santa Cruz Island, N = Nestor, BR
= Bird Rock, PDM = Paseo del Mar, G = Gaffey, SC = Sea Cave, and L = Lighthouse. See Muhs et al. (1994, 2002a,
2006, 2014a, 2015) for terrace stratigraphic names and U-series ages. Data from Santa Cruz Island–West, Anacapa Island,
Santa Cruz Island–South, and Santa Barbara Island (shown in bold green text along the top horizontal axis) are from the
present study; other data are from Muhs et al. (2014a). (b) Same type of data as in (a) but for mean D/L values in valine.

    Fig. 12. See page 559. (a) Plot of mean D-alloisoleucine to L-isoleucine (vertical axis) in Chlorostoma fossils from dated
(filled circles) and undated (open circles) marine terraces on the California and Baja California coast shown as a function of
latitude (horizontal axis) as a proxy for long-term temperature history (cooler in the northwest, warmer in the southeast).
Error bars are –+1 SD based on D/L values in 3 to 6 individual shells from the same deposit. The red and blue bands
(“aminozones”) indicate a correlation between fossil localities of the same age, anchored by U-series dating of corals. Ter-
race name abbreviations: SCRZI = Santa Cruz Island, N = Nestor, BR = Bird Rock, PDM = Paseo del Mar, G = Gaffey,
SC = Sea Cave, and L = Lighthouse. See Muhs et al. (1994, 2002a, 2006, 2014a, 2015) for terrace stratigraphic names and
U-series ages. See Fig. 14 for the location of fossil sites on the PDM and G terraces in the San Pedro area. Data from Point
San Luis, Santa Cruz Island–West, Anacapa Island, Santa Cruz Island–South, Santa Barbara Island, and Point Loma are
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from the present study and were derived by reverse-phase liquid chromatography (Kaufman and Manley 1998); other data,
with one exception, are from Muhs et al. (1992) and were derived by conventional liquid chromatography (Miller 1985).
The value shown for the low (~7 m) first terrace on San Clemente Island is from Muhs (1983); although derived via liquid
chromatography, the method differs somewhat from the conventional liquid chromatography in use at the University of
Colorado laboratory since 1985 (see discussion in Miller 1985). (b) Plot of mean D-alloisoleucine to L-isoleucine (vertical
axis) in Chione fossils from dated (filled circles) and undated (open circles) marine terraces on the California and Baja Cali-
fornia coast shown as a function of approximate present mean annual air temperature (horizontal axis). Error bars are –+1 SD
based on D/L values in 4 to 6 individual shells from the same deposit. U-series ages of ~120 ka on coexisting corals are
from the following sources: Mulegé, Baja California Sur (B.C.S.), from Ashby et al. (1987); Bahía Magdalena, B.C.S., from
Omura et al. (1979); and Newport Bay, California, from Grant et al. (1999). Luminescence age of ~120–130 ka from Toma-
les Bay is from Grove et al. (1995). Chione shells from Tomales Bay, Anacapa Island, and San Pedro were collected by the
authors; shells from Newport Bay and Magdalena Bay are from collections in the Invertebrate Paleontology Section at
the Natural History Museum of Los Angeles County. The collection from Puerto Peñasco was made by Nicholas Lancaster
and analyzed by the authors. Data from Mulegé are from Ortlieb (1987), but amino acid analyses in Chione from this author
were derived in the laboratory at the University of Colorado and thus are directly comparable to the other data. For the
locations of Mulegé, Bahía Magdalena, Puerto Peñasco, San Pedro, Newport Bay, and Tomales Bay, see Figs. 1 and 16.
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    Fig. 13. (a) Plot of mean D/L values in glutamic acid (vertical axis) in Epilucina californica fossils from dated (filled
circles) and undated (open circles) marine terraces on the California and Baja California coast shown as a function of
latitude (horizontal axis) as a proxy for long-term temperature history (cooler in the northwest, warmer in the southeast).
Error bars are –+1 SD based on D/L values in 1 to 5 individual shells from the same deposit. The red and blue bands
indicate a correlation between fossil localities of the same age based on U-series dating of corals. Terrace name abbrevia-
tions: SMI = San Miguel Island, SRI = Santa Rosa Island, PDM = Paseo del Mar, G = Gaffey, SC = Sea Cave, and L =
Lighthouse. See Muhs et al. (1994, 2002a, 2006, 2014a, 2015) for terrace stratigraphic names and U-series ages. Data
from Anacapa Island and Santa Barbara Island (shown in bold green text along the top horizontal axis) are from the
present study; other data are from Muhs et al. (2014a). (b) Same type of data as in (a) but for mean D/L values in valine.
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have values that fall between those of Bahía
de Magdalena and Mulegé, correlating these
deposits with the ~120-ka high-sea stand as
well. The Chione amino acid results from
both San Pedro and Puerto Peñasco are im -
portant for paleozoogeographic comparisons
discussed later.

Paleontology of Marine Terrace Deposits

    On both SBI and ANA, an observation
made is absence of an extinct gastropod, Cali-
cantharus fortis, on the 11-m-high terraces of
both islands, though this species is present on
higher terraces. On SBI, C. fortis was found
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on what is mapped as the second, third, and
fourth terraces. On Middle Anacapa Island,
C. fortis is present within the deposits of the
70-m-high terrace, as reported by Valentine
and Lipps (1963) and confirmed in the present
study. This taxon has also been found in
deposits of high-elevation marine terraces on
San Miguel Island, Santa Rosa Island, San
Nicolas Island, and San Clemente Island.
Thus far, C. fortis has not been reported in any
marine terrace deposit dated to as young as
~120 ka, with two exceptions. One of these is
the Palos Verdes Sand (thought to be of LIG
age) in San Pedro, but Woodring et al. (1946)
interpreted this as an isolated case of an older
shell reworked, perhaps by hermit crabs, into
younger deposits. On San Nicolas Island, a
single specimen of C. fortis was reported from
a terrace dated to ~120 ka (Muhs et al. 2012),
but also is interpreted to be derived from
higher terrace deposits where the species is
commonly found (Vedder and Norris 1963).
Thus, it is inferred that C. fortis is likely older
than the LIG period (MIS 5.5) and is one of
the few Pleistocene species that serves as an
effective biostratigraphic marker, making it
possible to separate pre-LIG deposits from
older Pleistocene deposits. The presence of
C. fortis on the higher terraces and its absence
on the 11-m-high terraces of SBI and ANA
reinforce the aminostratigraphic interpreta-
tion that these low terraces date to ~120 ka
or younger high-sea stands. The low (6–8 m)
marine terrace deposits at Fraser Point on
Santa Cruz Island also lack C. fortis, in agree-
ment with the aminostratigraphic correlation
to the LIG period.
    Fossils in deposits of the 11-m-high first
marine terrace of eastern SBI are dominated
by mollusks that are typical of high-wave-
energy, rocky-shore assemblages (McLean 1978,
Coan et al. 2000). This observation derives
from both new collections made in the pres ent
study (Table 1) and a reexamination of collec-
tions made by Lipps et al. (1968) and E. Wil-
son (LACMIP loc. 5068; Fig. 2) that are
archived at LACMIP. At locality LACMIP
loc. 42324 (at or near Lipps et al.’s [1968]
LACMIP loc. 329), common taxa in the deposit
are the bivalves Cumingia, Epilucina, and Glans
and the gastropods Acmaea, Chlorostoma,
Crepidula, Fissurella, Haliotis, Littorina, and
Thylacodes, as well as sea urchin (Strongy -
locentrotus sp.?) plates and spines, barnacles

(Balanus sp.?), and the solitary coral Bal-
anophyllia elegans. A significant number of
the Epilucina valves are paired. These taxa are
all in dicative of an exposed, high-energy,
rocky intertidal environment. Many of these
taxa are also found in the other collections
archived at LACMIP and newly examined in
the present study (Table 1). These include
species from LACMIP localities 326, 327, 329,
and 42325 [= LACMIP loc. 5068], all of which
are on the same 11-m-high terrace (Fig. 2).
Most of the species found at all five localities
on this terrace have modern geographic ranges
that extend well to the north and south of SBI.
There are exceptions to this, however, and
those are discussed in more detail later.
    On West Anacapa Island there is a much
less diverse fossil fauna in deposits of the
11-m terrace than on the 11-m terrace of SBI
(Table 2). The overall character of the fauna is
also a rocky intertidal assemblage with the
bivalves Epilucina californica and Mytilus
californianus and species of the gastropods
Acmaea, Chlorostoma, Crepidula, Haliotis, Lit-
torina, Lottia, and Mitra. Nevertheless, there
is also a significant element in the fauna that is
more typical of a quiet-water, sandy or muddy
“bay” environment (McLean 1978, Coan et
al. 2000) with bivalve species such as Chione
californiensis, Crassadoma gigantea, Leopecten
die gensis, Ostrea lurida, Saxidomus sp., and
Tresus nuttallii. Again, the majority of taxa
have modern ranges that extend well to the
north and south of ANA, with some important
exceptions discussed below.

DISCUSSION

Correlation of Marine Terraces on 
Santa Barbara Island, Anacapa Island, 
and Western Santa Cruz Island with 
Last Interglacial Sea Level History

    Although U-series ages on corals from both
SBI and ANA are lacking, aminostratigraphic
methods make possible the correlation of the
terraces on these two islands with U-series-
dated deposits from other localities. Based on
D/L values in Chlorostoma, Epilucina, and
Chione, the terraces on SBI and ANA correlate
broadly with the LIG complex MIS 5. This
correlation is supported by the fact that the
11-m-high terrace deposits on both islands do
not contain the extinct gastropod Calicantharus
fortis, which is found only in deposits of
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    TABLE 1. Marine terrace fossils from Santa Barbara Island, California.

                                                                                                                              LACMIP locality number                                                                                                ___________________________________________________
Taxon                                                                                        326                 327                 329          42325, 5068         42324

MOLLUSCA

Gastropoda
    Acanthinucella punctulata (Sowerby I, 1835)                                                                                         x                       
    Acanthinucella spirata (Blainville, 1832)                                                    x                                                                   
    Acmaea mitra Rathke, 1833                                                                         x                     x                     x                      x
    Acteocina sp.                                                                                                x                                                                   
    Actonia oldroydae (Bartsch, 1911)                                                              x                                                                   
    Aesopus chrysalloides (Carpenter, 1864)                                                    x                                                                   
    Alia carinata (Hinds, 1844)                                                                          x                                                                  x
    Alvinia cosmia (Bartsch, 1911)                                                                    x                                                                   
    Alvinia purpurea (Dall, 1871)                                                                      x                                                                   
    Amphissa versicolor Dall, 1871                                                                   x                                           x                      x
    Amphithalamus tenuis Bartsch, 1911                                                          x                                                                   
    Antisabia panamensis (C.B. Adams, 1852)                                                  x                                           x                      x
    Assiminea californica (Tryon, 1865)                                                             x                     x                                             
    Astyris tuberosa (Carpenter, 1864)                                                                                                          x                       
    Barbarofusus sp.                                                                                           x                                           x                       
    Barleeia haliotiphila Carpenter, 1864                                                         x                     x                                             
    Barleeia sp.                                                                                                                                                                       x
    Caecum californicum Dall, 1885                                                                 x                                                                   
    Californiconus californicus (Reeve, 1844)                                                                        x                    x                      x
    Callianax biplicata (Sowerby I, 1825)                                                                                                     x                      x
    ?Calliostoma sp.                                                                                                                                       x                       
    Cerithiopsis antefilosa Bartsch, 1911                                                          x                                                                   
    Chlorostoma funebralis (A. Adams, 1855)                                                   x                     x                                             
    Chlorostoma gallina (Forbes, 1852)                                                             x                     x                     x                      x
    Crepidula adunca (Sowerby I, 1825)                                                           x                                           x                      x
    Crepidula perforans (Valenciennes, 1846)                                                  x                                                                  x
    Crepidula sp.                                                                                                x                     x                     x                       
    Crepipatella lingulata (Gould, 1846)                                                           x                                                                  x
    Crockerella conradiana (Gabb, 1866)                                                         x                                                                   
    Diodora arnoldi McLean, 1966                                                                                                                                       x
    Discurra insessa (Hinds, 1842)                                                                    x                                           x                      x
    Epitoniid indet.                                                                                            x                                                                   
    Eulithidium sp.                                                                                             x                                                                   
    Fartulum orcutti (Dall, 1885)                                                                       x                     x                                             
    Fissurella volcano Reeve, 1849                                                                   x                     x                     x                      x
    Granulina margaritula (Carpenter, 1857)                                                   x                                                                  x
    Haliotis cracherodii Leach, 1814                                          x                    x                     x                     x                      x
    Haliotis rufescens (Swainson, 1822)                                                                                  x                    x                      x
    Haliotis sp.                                                                                                                                                                        x
    Harfordia harfordii (Stearns, 1871)                                                                                                         x                       
    Harfordia sp.                                                                                                x                                                                   
    Hima mendica (Gould, 1849)                                                                                                                   x                       
    Hipponix tumens Carpenter, 1864                                                                                     x                    x                      x
    Homalopoma luridum (Dall, 1885)                                                              x                     x                     x                       
    Homalopoma radiatum (Dall, 1918)                                                            x                                                                  x
    Lacuna unifasciata Carpenter, 1857                                                            x                                                                   
    Lirobittium attenuatum Carpenter, 1864                                                    x                                                                   
    Lirobittium quadrifilatum (Carpenter, 1864)                                                                    x                                             
    Lirobittium sp.                                                                                              x                     x                     x                      x
    Lirularia sp.                                                                                                  x                                                                  x
    Littorina keenae Rosewater, 1978                                                                x                     x                                             
    Littorina scutulata Gould, 1849                                                                   x                     x                     x                      x
    Lottia limatula (Carpenter, 1864)                                          x                    x                     x                                             
    Lottia pelta (Rathke, 1833)                                                                          x                     x                     x                       
    Lottia scabra (Gould, 1846)                                                                                               x                    x                      x
    Lottia sp.                                                                                                       x                     x                     x                      x
    Megastraea undosa (Wood, 1828)                                                                                                            x                       
    Melanella thersites (Carpenter, 1864)                                                          x                                                                   
    Mexacanthina lugubris (Sowerby I, 1822)                                                  x                                            
    Mitra idae Melvill, 1893                                                                                                                          x                       
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    TABLE 1. Continued.

                                                                                                                              LACMIP locality number                                                                                               ___________________________________________________
Taxon                                                                                        326                 327                 329          42325, 5068         42324

    Neobernaya spadicea (Swainson, 1823)                                                                                                   x                       
    Norrisia norrisi (Sowerby I, 1838)                                                              x                     x                     x                       
    Ocinebrina atropurpurea (Carpenter, 1865)                                                                                           x                       
    Ocinebrina lurida (Middendorff, 1848)                                                       x                                           x                       
    Ocinebrina sp.                                                                                              x                                                                  x
    Odostomia lucca Dall & Bartsch, 1909                                                      x                                                                   
    Odostomia nota Dall & Bartsch, 1909                                                        x                                                                   
    Odostomia oregonensis (Dall & Bartsch, 1907)                                          x                                                                   
    Opalia borealis Keep, 1881                                                                          x                                                                   
    Perimangelia interfossa (Carpenter, 1864)                                                  x                                                                   
    Petaloconchus montereyensis Dall, 1919                                                                                                x                       
    Petaloconchus sp.                                                                                         x                                                                   
    Plesiocysticus politulus (Dall, 1919)                                                            x                     x                                             
    Pseudodiala acuta (Carpenter, 1864)                                                           x                                                                   
    Pseudomelatoma penicillata (Carpenter, 1864)                                                                 x                                             
    ?Pseudomelatoma sp.                                                                                                         x                                             
    Schwartziella californica (Bartsch, 1915)                                                   x                                                                   
    Seila montereyensis Bartsch, 1907                                                              x                                                                   
    Siphonaria brannani Stearns, 1872                                                                                                                                 x
    Tectura paleacea (Gould, 1853)                                                                   x                                                                   
    Teinostoma supravallatum (Carpenter, 1864)                                             x                                                                   
    Thylacodes squamigerus (Carpenter, 1857)                          x                    x                     x                     x                      x
    Trimusculus reticulatus (Sowerby I, 1835)                                                 x                                                                   
    Triphora pedroana (Bartsch, 1907)                                                              x                     x                                            x
    Truncatella californica Pfeiffer, 1857                                                                                x                                            x
    Volvarina taeniolata Mörch, 1860                                                               x                                                                   
    Xerarionta sp. [land snail]                                                                                                                                                x
Bivalvia                                                                                                                                                                                  
    Bernardina bakeri Dall, 1910                                                                      x                                                                   
    Chama arcana Bernard, 1976                                                                                                                  x                       
    Cumingia californica Conrad, 1837                                                                                                         x                      x
    Epilucina californica (Conrad, 1837)                                                           x                     x                     x                      x
    Glans carpenteri (Lamy, 1922)                                                                     x                                           x                      x
    Grippina californica Dall, 1912                                                                   x                                                                   
    Lasaea adansoni (Gmelin, 1791)                                                                 x                     x                                             
    ?Nutricola sp.                                                                                               x                                                                   
    Saxidomus sp.                                                                                                                                           x                       
    Septifer bifurcatus (Conrad, 1837)                                                              x                     x                     x                      x
    ?Trachycardium sp.                                                                                      x                                                                   
    indet. bivalve                                                                                                x                                                                   
Polyplacophora                                                                                                                                                                      
    Callistochiton sp.                                                                                          x                                                                   
    Chaetopleura sp.                                                                                          x                                                                   
    Chiton plates                                                                                                x                     x                                            x
    Cryptochiton stelleri (Middendorff, 1847)                                                                                              x                       
    Cyanoplax sp.                                                                                               x                                                                   
    Ischnochiton sp.                                                                                           x                                                                   
    Mopalia sp.                                                                                                   x                     x                     x                       
    Nuttallina sp.                                                                                                x                                                                   
ARTHROPODA                                                                                                                                                                          
    Barnacle fragments                                                                                      x                     x                     x                      x
    Crab claws                                                                                                                          x                                            x
ECHINODERMATA                                                                                                                                                                   
    Echinoid spines and plate                                                                                                  x                    x                      x
CNIDARIA                                                                                                                                                                                
    Balanophyllia elegans Verrill, 1864                                                                                   x                                            x
ANNELIDA                                                                                                                                                                               
    Polychaete tube?                                                                                                                 x                                             
VERTEBRATA                                                                                                                                                                           
    Fish bones                                                                                                                                                                         x
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    TABLE 2. Marine terrace fossils from West Anacapa Island, California.

                                                                                                                                                  LACMIP                                                                                                            _____________________________________________
Taxon                                                                                                    42323, 331                   42322, 331                       42321

MOLLUSCA

Gastropoda                                                                                                                                                                             
    Acmaea mitra Rathke, 1833                                                                    x                                                                        
    Alia carinata (Hinds, 1844)                                                                     x                                                                        
    Amphissa versicolor Dall, 1871                                                                                                   x                                    
    Amphissa sp.                                                                                            x                                                                        
    Antisabia panamensis (C.B. Adams, 1852)                                              x                                                                        
    Barleeia haliotiphila Carpenter, 1864                                                     x                                                                        
    Caecum californicum Dall, 1885                                                             x                                                                        
    Californiconus californicus (Reeve, 1844)                                              x                                   x                                    
    Callianax biplicata (Sowerby I, 1825)                                                     x                                   x                                    
    Chlorostoma gallina (Forbes, 1852)                                                        x                                                                        
    Crepidula perforans Valenciennes, 1846                                                x                                                                        
    Crepidula sp.                                                                                            x                                                                        
    Crossata californica (Hinds, 1843)                                                          x                                   x                                    
    Discurra insessa (Hinds, 1842)                                                               x                                                                        
    Fissurella volcano Reeve, 1849                                                               x                                   x                                    
    Haliotis cracherodii Leach, 1814                                                            x                                   x                                    
    Haliotis rufescens (Swainson, 1822)                                                        x                                   x                                    
    Haliotis sp.                                                                                               x                                   x                                   x
    Harfordia kobelti                                                                                                                          x                                    
    Hima mendica (Gould, 1844)                                                                                                       x                                    
    Hipponix tumens Carpenter, 1864                                                                                               x                                    
    Lirobittium sp.                                                                                                                              x                                    
    Littorina sp.                                                                                              x                                                                        
    Lottia scabra (Gould, 1846)                                                                     x                                                                        
    Lottia spp.                                                                                                x                                   x                                    
    Mexacanthina lugubris (Sowerby I, 1822)                                                                                  x                                    
    Mitra idae Melvill, 1893                                                                          x                                   x                                    
    Neobernaya spadicea (Swainson, 1823)                                                                                      x                                    
    Ocinebrina sp.                                                                                                                              x                                    
    Thylacodes squamigerus (Carpenter, 1857)                                            x                                   x                                   x
Bivalvia                                                                                                                                                                                   
    Chione californiensis (Broderip, 1835)                                                                                        x                                    
    Chlamys sp.                                                                                                                                  x                                    
    Crassadoma gigantea (Gray, 1825)                                                          x                                   x                                    
    Epilucina californica (Conrad, 1837)                                                      x                                                                       x
    Leopecten diegensis (Dall, 1898)                                                             x                                   x                                    
    Leukoma sp.                                                                                             x                                                                        
    Mytilus californianus Conrad, 1837                                                        x                                   x                                    
    Ostrea lurida                                                                                                                                x                                    
    Pseudochama exogyra (Conrad, 1837)                                                    x                                                                        
    Saxidomus sp.                                                                                           x                                                                        
    Trachycardium quadragenarium (Conrad, 1837)                                   x                                   x                                    
    Tresus nuttallii (Conrad, 1837)                                                                x                                                                        
Polyplacophora                                                                                                                                                                      
    Chiton plates                                                                                            x                                                                        
ARTHROPODA                                                                                                                                                                          
    Barnacle fragments                                                                                  x                                   x                                    
    Crab claws                                                                                                x                                                                        
ECHINODERMATA                                                                                                                                                                    
    Echinoid spines and plates                                                                     x                                   x                                    
ANNELIDA                                                                                                                                                                               
    Polychaeta                                                                                                                                                                          
    Indet. polychaete tube                                                                                                                 x                                    
VERTEBRATA                                                                                                                                                                            
    Bones (bird and fish)                                                                               x                                   x                                    
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Pliocene age (e.g., Groves 1991a, 1991b) and
early and middle Pleistocene age (e.g., Wood -
ring et al. 1946). In contrast, deposits of higher
terraces on both islands do contain this taxon
(Figs. 2, 3).
    In addition to a simple correlation to the
broader LIG period sensu lato (all of MIS 5),
D/L values in Chlorostoma permit an inter-
pretation of two ages of fossils in the terrace
deposits on both SBI and ANA. Fossils with
higher D/L values fall within the ~120-ka
aminozone whereas those with lower ratios
fall within the ~80-ka aminozone (Figs. 11,
12a). Glutamic acid and valine D/L values in
Epilucina from SBI fall entirely within the
~80-ka aminozone for this taxon (Fig. 13).
Only three Epilucina shells were found on
ANA, and although variability is high within
this group, the mean value falls between the
~120-ka and ~80-ka aminozones (Fig. 13).
Finally, values of D-alloisoleucine to L-iso -
leucine in Chione from ANA and the Palos
Verdes Sand in San Pedro fall along a linear
northward-decreasing trend defined by this
ratio in Chione from independently dated
deposits of ~120 ka from elsewhere in Califor-
nia and Baja California (Fig. 12b). Therefore,
amino acid values in Chione are interpreted to
indicate that shells of this genus from ANA
and the Palos Verdes Sand in San Pedro also
date to the ~120-ka high-sea stand.
    Results of Chlorostoma data from the Fraser
Point area of westernmost Santa Cruz Island
are more straightforward than results for the
two small islands. Mean D/L values for both
glutamic acid and valine fall clearly within the
~120-ka aminozone (Figs. 11, 12a). Although
the Santa Cruz Island data indicate that the
low terrace at Fraser Point correlates with
the ~120 ka high-sea stand, the collective
results from SBI and ANA indicate that two
separate high-sea stands may be represented
by the fossil assemblages in deposits on those
islands. This apparently contradictory set of
results can be examined in light of what is
known about late Quaternary sea level history
from both global and regional perspectives.
    Much of our present understanding of
eustatic sea level history in the late Quaternary
comes from tectonically active (specifically
uplifting) coasts located in far-field regions
with respect to GIA processes. Studies going
back several decades on Barbados (Broecker
et al. 1968, Mesolella et al. 1969, Gallup et al.

1994, Edwards et al. 1997) and New Guinea
(Bloom et al. 1974, Chappell et al. 1996, Cut-
ler et al. 2003) show that constructional coral
reef terraces on both coasts date to high-sea
stands at ~80 ka, ~100 ka, and ~120 ka, also
represented in the marine oxygen isotope
record of foraminifera as MIS 5.1, 5.3, and 5.5,
respectively (Martinson et al. 1987). Assuming
a constant uplift rate and a paleo-sea level of
+6 m during the ~120-ka high-sea stand, the
terrace studies from these far-field localities
show that sea levels during the ~100-ka and
~80-ka high-sea stands were ~15 m to ~20 m
below present.
    On San Nicolas Island, California (Fig. 9),
corals from the three lowest-elevation terraces
date to ~120 ka (38-m terrace), ~120 ka and
~100 ka (33-m terrace), and ~80 ka (10-m ter-
race) based on U-series analyses by Muhs et
al. (2006, 2012). Muhs et al. (2012) interpret
the intermediate 33-m terrace as representing
the ~100-ka high-sea stand, but that paleo-sea
level was locally high enough to erode the
outer part of the 38-m terrace and to rework
fossils from its deposits into the deposits of
the ~100-ka terrace. Similar results with a mix
of ~120-ka corals and ~100-ka corals have
been reported for a low terrace near Cayu-
cos, San Luis Obispo County, California
(Stein et al. 1991, Muhs et al. 2002a), and the
Nestor terrace on Point Loma near San
Diego, California (Ku and Kern 1974, Muhs
et al. 2002a). Using the far-field sea level
history with sea stands at −15 m to −20 m at
~80 ka and ~100 ka, it is not possible for the
~100-ka high-sea stand to have submerged
and eroded the ~120-ka terrace, even in
areas with a low uplift rate, such as at Cayu-
cos. Such a “capture” of a marine terrace
dating to ~120 ka by the subsequent ~100-ka
sea stand would require a paleo-sea level
much closer to the present than is indicated
by the far-field paleo-sea level estimates.
    Reconciliation of the vastly different esti-
mates of paleo-sea level on the California
coast from the far-field localities is possible by
considering GIA processes. During a glacial
phase and subsequent interglacial phase of a
climate cycle, GIA-induced effects on sea
level lead to departures from eustasy that have
a complex geometry and history. In near-field
or intermediate-field localities, the differences
in apparent sea level history compared to far-
field localities can be significant. A dramatic

566 WESTERN NORTH AMERICAN NATURALIST (2018), VOL. 78 NO. 4, PAGES 540–589

Downloaded From: https://bioone.org/journals/Western-North-American-Naturalist on 04 Sep 2019
Terms of Use: https://bioone.org/terms-of-use Access provided by University of Nebraska at Lincoln



example of GIA effects on apparent sea level
history can be found along the Atlantic Coastal
Plain of the United States and the island of
Bermuda to the east. Compared to Barbados,
well to the south, the Atlantic Coastal Plain–
Bermuda region is situated much closer to
where the former Laurentide ice sheet of
North America advanced during the past two
glacial periods (MIS 2 and 6). Thus, even
though the Atlantic Coastal Plain and Bermuda
are considered to be tectonically stable, ~80-ka
(MIS 5.1) marine deposits are well dated and
are found there at elevations of a meter to a
few meters above present sea level (Muhs et
al. 2002b, Wehmiller et al. 2004). Potter and
Lambeck (2003) explain these higher-than-
expected elevations at northern localities to be
the result of GIA effects, which are minimal
on Barbados but increase slightly moving
northward to the Florida Keys and increase
dramatically at the Atlantic Coastal Plain of
the United States and the island of Bermuda.
    Coastal California, though not near large
ice sheets during the last glacial period, is
situated within an intermediate field region
of North America where GIA effects are still
expected to be significant because the region
is on a continent that hosted large ice sheets.
Modeling of GIA effects for San Nicolas
Island (and applicable elsewhere on the Cali-
fornia coast) by J.X. Mitrovica (in Muhs et al.
2012) shows that both the ~80-ka (MIS 5.1)
and ~100-ka (MIS 5.3) sea stands are predicted
to record higher relative paleo-sea levels on
the California coast than on far-field coast-
lines. The geologic record of high-sea stands
from terraces 1 (~10 m), 2b (~33 m), and 2a
(~38 m) dated to ~80 ka, ~100 ka + 120 ka,
and 120 ka, respectively, on San Nicolas
Island agree with the GIA model results.
Thus, paleo-sea level estimates for the south-
ern California coast are, relative to present,
−11 m to −12 m at ~80 ka and +2 m to +6 m
at ~100 ka (Muhs et al. 2012). With these
higher sea level estimates, it is not difficult
to envision how a high-sea stand at ~100 ka
could overtake at least the outer part of a
~120-ka marine terrace in a tectonically stable
area or even an area with a modest uplift rate.
The evidence cited earlier of mixes of ~100-ka
and ~120-ka corals from single terraces at
Cayucos (San Luis Obispo County), Point
Loma (San Diego County), and San Nicolas
Island, California, supports the interpretation

that such a sequence of events occurred during
the LIG complex.
    Nevertheless, amino acid data reported
here pres ent a potential problem: D/L values
in both Chlorostoma and Epilucina imply that
the younger population of mollusks in the
deposits of SBI and ANA could correlate to
the ~80-ka high-sea stand. Even with a sea
level as high as 11–12 m below the present at
~80 ka, it is not likely that the younger high-
sea stand would overtake even the outer edge
of a marine terrace dated to ~120 ka that has
ex perienced uplift (even at a modest rate) for
some 40 ka. Furthermore, such a scenario
would also require complete erosion of any
terrace that formed during the ~100 ka (MIS
5.3) high-sea stand.
    A simpler explanation is that the younger
groups of shells on both SBI and ANA actually
date to the ~100-ka high-sea stand and that
D/L values in Chlorostoma and Epilucina may
not always be able to discriminate between
shells that are ~80 ka and ~100 ka. There are
two possible reasons for this lack of discrimi-
nating ability. First, there is only a 20 ka dif -
ference in age between these two high-sea
stands, which may not be a sufficient time
period for significant additional racemization.
Second, in southern California the period
between these two high-sea stands (MIS 5.2,
or 5b, at ~95–85 ka) likely was relatively cool,
not only in the ocean (Kennett and Venz 1995)
but on land as well (Heusser 2000). Thus,
racemization and epimerization rates during
this period were likely commensurately lower
(see discussion in Wehmiller 2013a, pp. 7–9).
Thus, the preferred interpretation is that on
both SBI and ANA, Chlorostoma and Epilu-
cina shells with higher D/L glutamic acid and
valine values and higher D-alloisoleucine/
L-isoleucine values correlate with the ~120-ka
high-sea stand and those with lower values
correlate with the ~100-ka high-sea stand.
This interpretation is consistent with those
made from terrace deposits containing a mix-
ture of ~100-ka and ~120-ka corals at Cayu-
cos, California, and on Point Loma and San
Nicolas Island, California (Muhs et al. 2002a,
2012).

Identification of Extralimital and Southward-
Ranging and Northward-Ranging Species

    If two high-sea stands are represented in
the deposits of the 11-m-high terraces of SBI
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and ANA, there are implications for what
should be expected with regard to the thermal
aspects of the terrace faunas. Ocean Drilling
Project (ODP) site 893A in the Santa Barbara
Basin (Fig. 1) has one of the most complete
planktonic foraminiferal records of marine
paleoclimate off southern California. The site
is very close to ANA and therefore should
record paleoceanographic conditions that
affected the island. The record at site 893A
goes back to ~160 ka, well past the peak of
the LIG at ~120 ka (Kennett 1995, Kennett
and Venz 1995, Hendy 2010). Planktonic for -
aminifera from this core show that conditions
as warm as or warmer than the present can be
identified by the abundance of dextral-coiled
Neogloboquadrina pachyderma (now referred
to as N. incompta; see Hendy 2010), one of
the dominant species living today in the
Santa Barbara Basin. Neogloboquadrina in -
compta prefers water temperatures warmer
than ~10 °C (Kennett and Venz 1995). In
waters cooler than ~10 °C, the sinistral-coiled
taxon N. pachyderma increases in abundance;
this species is dominant in water temperatures
cooler than ~6 °C. In addition to N. incompta,
there are four other warm-water species that
are useful for paleoclimatic interpretations
in the eastern Pacific Ocean: Globigerinoides
ruber, Neogloboquadrina dutertrei, Globoro-
talia inflata, and Orbulina universa (Kennett
and Venz 1995).
    These warm-water indicators in the Santa
Barbara Basin record show that MIS 1 (the
Holocene) and MIS 5.5 (~120 ka) are by far
the two warmest periods of the past ~160 ka,
with high abundances of N. incompta and
other warm-water forms (Kennett and Venz
1995). Glacial periods represented by MIS 6,
4, and 2 generally show low abundances of
N. incompta. The records for MIS 5.3 (~100 ka)
and MIS 5.1 (~80 ka), however, also show very
low abundances of N. incompta, indicating
that although sea level was relatively high
compared to full-glacial periods or even inter-
stadial periods, water temperatures were gen-
erally cool. Elsewhere on the Channel Islands
and mainland California, faunas from deposits
dated to MIS 5.1 (~80 ka) include a number
of extralimital northern or northward-ranging
species (Kern 1977, Kennedy et al. 1982, Muhs
et al. 2002a, 2006, 2012), whereas deposits
with fossils dated solely to MIS 5.5 (~120 ka)
contain a number of extralimital southern or

southward-ranging species (Lindberg et al.
1980, Rockwell et al. 1989, Muhs et al. 2002a,
2012). These observations are consistent with
the planktonic foraminiferal record of the
Santa Barbara Basin. Because of GIA effects,
however, a number of low-uplift-rate localities
in central and southern California (Cayucos,
Point Loma, and San Nicolas Island) contain
corals with both MIS 5.3 (~100 ka) and MIS
5.5 (~120 ka) ages and host molluscan faunas
that have species with both northern and
southern aspects. Still other localities (New-
port Bay, San Miguel Island, Santa Rosa
Island, and San Clemente Island) have yielded
only ~120-ka coral ages but are suspected to
have fossils dating to ~100 ka based on low
uplift rates for these islands and molluscan fau-
nas that host both northern and southern forms
(Kanakoff and Emerson 1959; Muhs et al.
2014a, 2014b). With the amino acid evidence
that the low terraces on SBI and ANA contain
fossils that could date to both the ~100-ka and
~120-ka high-sea stands, fossils with both
northern (~100 ka) and southern (~120 ka)
affinities are expected in these deposits.
    This hypothesis was tested by examining
the geographic ranges of all species found in
the terrace faunas whose range endpoints fall
close to the latitudes of the two islands. Results
indicate that on SBI, a large number of
species in deposits of the first marine terrace
are presently found primarily or entirely to
the south of the island and are thus considered
southward-ranging or extralimital southern
species (Fig. 15a). Two species of gastropods,
Schwartziella californica and Mexacanthina
lugubris, have modern northern range end-
points to the south of SBI and thus are true
extralimital southern species. Schwartziella
californica is apparently a rare species, both in
the fossil record and at present. Modern speci-
mens of this taxon have been found only on
Santa Catalina Island, California; around Islas
Coronados, Baja California (Bartsch 1915);
and around Isla de Guadalupe (Chace 1958).
The occurrence of Mexacanthina lugubris is
not unusual in the fossil record of southern
California (see review in Muhs et al. 2002a),
but SBI is well north of its modern northern
range endpoint. Indeed, M. lugubris is rarely
found as far north as San Diego (Radwin
1974). Issues related to the modern zoogeog-
raphy of this taxon are discussed in more
detail later, but Bertsch and Aguilar Rosas
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(2016) report that M. lugubris presently lives
on the Pacific Coast from San Diego to Cabo
San Lucas and on the eastern Golfo de Cali-
fornia coast from Bahía Kino, Sonora, to
Mazatlán, Sinaloa. Based on this very recent
reference, M. lugubris is interpreted as an
extralimital southern species with respect to
its occurrence on SBI.
    There are a number of southward-ranging
species on SBI. These include the bivalve
Grippina californica and the gastropods Aeso-
pus chrysalloides, Alvinia cosmia, Bittium quad -
rifilatum, Crockerella conradiana, Odostomia
nota, Pseudomelatoma pencillata, Thylacodes
squamigerus, Siphonaria brannani, and Trun-
catella californica. McLean (2007) pointed out
that members of the Siphonariid family, such
as Siphonaria brannani, occur mostly in tropi-
cal waters. Interestingly, although S. brannani
has a living population around SBI today,
the species has not been reported around the
other Channel Islands or mainland localities
in southern California (Littler 1980). The spe -
cies has been reported as far south as Islas San
Benito (~28.3° N), Baja California (CAS-IZ
6128.00), and may have, until recently, lived as
far south as Cabo San Lucas, Baja California
Sur (Keen 1971). It is possible, therefore, that
S. brannani has a southward-ranging but dis-
junct distribution. Three other species of gas-
tropods (Chlorostoma gallina, Norrisia norrisii,
and Volvarina taeniolata) have modern north-
ern range endpoints a short distance north
of SBI at Point Conception, Santa Barbara
County (Fig. 1b), and also can be considered
southward-ranging species.
    In addition to the warm-water forms de -
scribed above, the first terrace on SBI also con -
tains a number of cool-water forms (Fig. 15a).
In collections made by Lipps et al. (1968) and
reexamined in the present study, as well as in
new collections, specimens of the gastropod
Cerithiopsis antefilosa were found. This species
presently lives only as far south as SBI. Two
other taxa, the gastropod Haliotis rufescens
and the chiton Cryptochiton stelleri, have
southern range endpoints south of SBI, but
both taxa are only rarely found south of Point
Conception and can be considered northward-
ranging species. A fourth northward-ranging
species, Chlorostoma montereyi, was reported
as a fossil on SBI by Lipps et al. (1968), but
this could not be confirmed in the present
study. If this species is indeed present among

the fossil assemblages of the first terrace on
SBI, it is also a cool-water indicator. Chloros-
toma montereyi has a present range from
Bolinas Bay, Marin County, California, to SBI
(Abbott and Haderlie 1980), but possibly also
to San Pedro (LACM 57941) and San Nicolas
Island (LACM 147862). However, Chloros-
toma montereyi is only rarely found south of
Point Conception. Finally, Harfordia harfordii
is an extralimital northern species of gastro -
pod from the first terrace on SBI. Based on
museum records, this species has a modern
distribution from Hope Island, British Colum-
bia (Abbott 1974), south to Cormorant Cove,
Mendocino County, California (LACM 94-
4.30). There are very few fossil occurrences of
this extralimital northern species, but it is
reported in deposits of the ~120-ka marine
terrace of San Miguel Island (Muhs et al.
2014a) and the ~80-ka terrace of San Nicolas
Island (Muhs et al. 2012).
    There are fewer extralimital or southward-
ranging species of mollusks in deposits of the
11-m terrace on West Anacapa Island. The low-
terrace deposits on this island host the afore-
mentioned Mexacanthina lugubris, a distinctly
extralimital southern species. Southward-
ranging species include Chlorostoma gallina
and Thylacodes squamigerus, which are also
found on SBI as noted above, and the bivalve
Chione californiensis, also reported by Lipps
(1964). Chione californiensis is one of three
species of this genus that occur in southern
California. Chione is typically a tropical genus
and all three species that occur in southern
California are at their northernmost modern
limit in the vicinity of Santa Barbara, Califor-
nia, very close to West Anacapa Island (Coan
et al. 2000, Coan and Valentich-Scott 2012).
Another southward-ranging species is the gas-
tropod Harfordia kobelti, which, based on
LACM records, is found only from Santa Rosa
Island south to Cortes Bank, ~80 km south-
west of San Clemente Island. The only cool-
water form found on West Anacapa Island is the
northward-ranging species Haliotis rufescens,
also found on SBI.

Hypotheses for the Origin of 
Thermally Anomalous Faunas

    The mix of species with cool-water, north-
ern affinities and warm-water, southern affini-
ties within the same deposit on SBI (and to a
lesser degree on West Anacapa Island) is an

570 WESTERN NORTH AMERICAN NATURALIST (2018), VOL. 78 NO. 4, PAGES 540–589

Downloaded From: https://bioone.org/journals/Western-North-American-Naturalist on 04 Sep 2019
Terms of Use: https://bioone.org/terms-of-use Access provided by University of Nebraska at Lincoln



example of what have been referred to as
“thermally anomalous” faunas. Thermally anom -
alous faunas have been recognized in Quater-
nary marine deposits along the Pacific Coast
of North America for more than a century. Roy
et al. (1995) and Muhs et al. (2014b) review
various hypotheses that have been proposed
to explain these mixes of fossils. These include
mechanisms such as changes in water tempera-
tures over time, fossil reworking, spe cies com -
petition, upwelling, storm wave transport,
changes in coastal geography, physiological
changes in species, temporary current changes,
and greater seasonality.
    An additional explanation for thermally
anom alous faunas on the Channel Islands is
that the fossils date to a single interglacial
period but that the assemblage as a whole rep-
resents a long period within that interglacial,
including a period of peak warmth and a later
period when cooling had begun but sea level
had not yet fallen. This explanation was offered
for the mix of extralimital-southern “Sene-
galese” species and extralimital-northern Medi -
terranean species coexisting in marine deposits
dated to MIS 5.5 (~120 ka) on the Canary
Islands (Muhs et al. 2014c). In this orbitally
forced scenario for the eastern Atlantic Ocean,
higher insolation early in the LIG period
brought about not only direct warming but
also a northward migration of the intertropi -
cal convergence zone, decreased trade winds,
and decreased upwelling. The resultant warm
ocean temperatures around the Canary Islands
therefore allowed migration of the tropical
Senegalese species northward. Later within
the same interglacial period, diminished inso-
lation brought about decreased direct warm-
ing, southward migration of the inter tropical
convergence zone, reestablishment of the
trade winds, and upwelling. The cooler ocean
temperatures resulting from this brought
about local extinction of the Senegalese fauna
and allowed southward migration of Mediter-
ranean species.
    There are some similarities between the
Channel Islands and the Canary Islands, so it
is pertinent to consider whether the explana-
tion for the LIG fossil record on the Canary
Islands could also apply to the Channel Islands.
Both island chains are in the subtropics and
are influenced by cold, southward-moving,
eastern boundary currents (the California
Current and the Canaries Current). The sce-

nario above, however, attractive as it sounds
for its simplicity, does not explain the D/L
values in mollusks (this study) or the U-series
ages of corals (Muhs et al. 2002a, 2012) that
indicate two ages of fossils in marine terrace
deposits in California. Furthermore, while
GIA modeling indicates that higher relative
sea levels and fossil mixing are expected in
California and on other North American coast-
lines, they are not expected in the farther-field
location of the Canary Islands (see Fig. 1 and
Table 1 in Creveling et al. 2015).
    The preferred interpretation is that two
groups of fossils of different ages are repre-
sented on SBI and ANA, one deposited during
an early warm period (~120 ka) and the other
de posited during a later cool period (~100 ka).
The ~100-ka high-sea stand, if it was above
present sea level as GIA modeling suggests,
would have reworked the ~120-ka fossils into
the younger deposits. This explanation is con-
sistent with other localities in central and south-
ern California where ~100-ka and ~120-ka
corals within the same deposit also host mol-
lusks with northern and southern affinities.

Rocky Intertidal Faunas versus Protected Bay
Faunas during the Last Interglacial Period

    As discussed above, the faunas from both
SBI and (to a lesser degree) ANA have a
species composition that is typical of exposed,
rocky-shore intertidal environments. Kennedy
(2000) points out that marine deposits of LIG
age in more protected bay environments could
have been more favorable environments for
warm-water mollusks and therefore could
host more extralimital southern species and
southward-ranging species. This hypothesis
was tested by examining the record of fossils
recovered at the Palos Verdes Sand locality in
San Pedro (Fig. 14; LACMIP loc. 12576) and
archived at LACMIP. Based on D/L values
in Chione discussed earlier (and amino acid
data on Leukoma staminea in Muhs et al.
1992), the deposits at this locality are the same
age as the older (MIS 5.5) deposits on ANA
and SBI. From our examination of the Palos
Verdes Sand deposit in the field (33°45.89790�N,
118°16.94856� W; elevation ~13 m), it seems
likely that the marine sediments were laid
down in a protected bay type of setting. In
contrast to the poorly sorted marine terrace
sands and gravels that are typical of rocky
intertidal environments on the high-energy
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coasts of the Channel Islands, the deposits at
LACMIP loc. 12576 consist of ~10 m of clean
well-sorted sands, indicative of quiet-water
bay sedimentation. Santa Barbara Island and
San Pedro are situated at similar latitudes
(Fig. 1b), allowing a direct comparison of fossil
faunas from exposed, rocky intertidal environ-
ments (SBI) to those from protected, quiet-
water bay environments (San Pedro).
    The paleozoogeography of the fossils from
LACMIP loc. 12576 (Fig. 15b) was determined
based on modern species ranges after an exam-
ination of the fossils archived at LACMIP.
There are no extralimital northern species nor
even any northward-ranging species at this San
Pedro locality. There are, however, several
extralimital southern species and a large num-
ber of southward-ranging species. Extralimital
southern gastro pods at LACMIP loc. 12576
include Nassarius cerritensis, which today lives
only on the outer Baja California coast and in
the Golfo de California (Keen 1971), and
Crepipatella dorsata, which today lives only
from Isla Cedros, Baja California, to Chile
(LACM collections and Keen 1971). Extralimi-
tal southern bivalves include Trachycardium
(Mexicardia) procerum, which ranges from the
Golfo de California and Oaxaca, Mexico, to
Chile (Keen 1971); Diplo donta sericata, which
has been reported from Santa Cruz Island and
San Diego but likely only has permanent popu-
lations from Laguna San Ignacio, Baja Califor-
nia Sur, to Tumbes, Peru (Coan et al. 2000);
and Chioneryx squamosa (formerly Chione
picta), which ranges from Baja California Sur’s
Pacific Coast (northern limit at Laguna Ojo de
Liebre, 27.8°N) through the Golfo de Califor-
nia and south to Peru (Coan and Valentich-
Scott 2012). In addition, another half-dozen-
or-so species in this collection today range no
farther north than Los Angeles, California, and
about a dozen more species today range no far-
ther north than Santa Barbara or Point Con-
ception (Fig. 15b). We agree with Kennedy
(2000) that it seems likely that protected,
quiet-water bay environments such as north-
ern San Pedro provided particularly favorable
settings for the northward migration of south-
ern species of mollusks, whereas the rocky
intertidal environments of the Channel Islands
apparently provided less favorable environ-
ments. The reason for this intriguing differ-
ence is unknown but may be a fruitful area for
further research.

Regional Evidence of Last Interglacial
Warming and the Issue of Thermal Expansion

    Earlier in this paper, thermal expansion
was mentioned as a mechanism that explains
at least a part of the higher sea level during
MIS 5.5 (Turney and Jones 2010, McKay et
al. 2011). McKay et al. (2011) concluded that
on a global scale, SST during MIS 5.5 was
not significantly different from the present.
These investigators inferred that thermal ex -
pansion likely played only a minor role, if any,
in the higher-than-present sea level during
MIS 5.5. However, as the same investigators
also pointed out, some regions are exceptions
to this generalization. Examples were cited
from the shallow-marine molluscan and coral
fossil record of warmer-than-present waters
during the LIG from Australia, Alaska, Califor-
nia, Hawaii, and the eastern Atlantic Ocean
and Mediterranean. If the interpretation is
correct that the southern species on SBI and
ANA date to the ~120-ka high-sea stand, it is
interesting to examine the regional context of
these records. Two examples are offered here,
the occurrence of Chione californiensis (as well
as other species of this genus) and Mexacan-
thina lugubris on ANA and SBI. Two maps are
presented, one for each taxon, showing the
modern ranges and the fossil occurrences of
each taxon in deposits dated to the ~120-ka
high-sea stand either by U-series on coral or
amino acids on mollusks (Fig. 16).
    At present, Chione californiensis, C. unda -
tella, and C. fluctifraga live mainly in the
warm, tropical-to-subtropical Golfo de Cali-
fornia waters and south along the Mexican
mainland and extend north only a limited dis-
tance along the Pacific Coast of California,
with the Santa Barbara area as the modern
northern range endpoint for all three species
(Coan et al. 2000, Coan and Valentich-Scott
2012). Fossil occurrences of Chione dating to
~120 ka are found in the Golfo de California,
along the Pacific coast of Baja California, and
at several localities in southern California
including ANA (this study), where it is very
close to its northern limit, and San Miguel
Island (Muhs et al. 2014a), which is just
beyond its northern limit. Farther north, a
marine terrace dated to ~120 ka in San Luis
Obispo County is reported to host Chione
undatella (Kennedy 2000). Because specific
localities were not given in Kennedy (2000),
we visited a locality in San Luis Obispo
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    Fig. 16. Map of southern California and Baja California showing the modern northern limits of 2 warm-water taxa,
(a) Chione spp. and (b) Mexacanthina lugubris, and terrace deposits containing these species that date or probably date
to ~120 ka. See text for sources of modern limits. 
    Terrace faunas of last-interglacial age that contain Chione spp. (a) are from the following sources. (1) Tomales Bay:
faunal data (C. undatella) from Johnson (1962) and this study; age data from Grove et al. (1995) and this study. (2) San
Luis Obispo area: faunal data (C. undatella) from Kennedy (2000); age data from Muhs et al. (1994). (3) San Miguel
Island (SMI): faunal (Chione sp.) and age data from Muhs et al. (2014a). (4) Anacapa Island: faunal data (C. californiensis)
from Lipps (1964) and this study; age data from this study. (5) San Pedro (Palos Verdes Sand at LACMIP locality 12576):
faunal (C. californiensis, C. undatella, and C. picta) and age data from this study. (6) Newport Bay: faunal data (C. cali-
forniensis, C. undatella, C. fluctifraga, C. picta, C. gnidia, and C. cortezi) from Kanakoff and Emerson (1959); age data
from Grant et al. (1999). (7) Point Loma: faunal data (C. californiensis) from Kern (1977); age data from Muhs et al. (2002a).
(8) Isla Guadalupe: faunal data (C. squamosa) from Lindberg et al. (1980); age data from Muhs et al. (2002a). (9) Bahía de
Tortugas: faunal data (C. californiensis, C. picta, and C. gnidia) from Emerson (1980); age data from Emerson et al.
(1981). (10) Bahía de Magdalena: faunal data (Chione spp.) from Jordan (1936); age data from Omura et al. (1979). (11) Cabo
Pulmo: faunal data (C. californiensis) from Squires (1959); age data from Muhs et al. (2002a). (12) Isla Coronados (IC):
faunal data (C. californiensis) from M.E. Johnson (written communication 17 February 2017); age data from Johnson et
al. (2007) and Muhs et al. (2014a). (13) Mulegé (M): faunal data (Chione sp.) from Ortlieb (1987); age data from Ashby
et al. (1987). (14) Punta Chivato (PC): faunal data (C. californiensis) from Johnson et al. (2007); age data from Johnson et
al. (2007) and Muhs et al. (2014a). (15) Punta Ballena (PB): faunal data (C. californiensis) from Johnson et al. (2017), with
tentative age assignment to the last interglacial period by the authors of this paper. (16) Puerto Peñasco: faunal and age
data from the present study, but also see Davis et al. (1990); Chione samples used in the present study were collected by
Nicholas Lancaster.
    Terrace faunas of last-interglacial age that contain Mexacanthina lugubris (b) are from the following sources. (1) Santa
Barbara area: age and faunal data from Kennedy et al. (1992). (2) Anacapa Island: faunal and age data from this study.
(3) San Pedro area: faunal data from Valentine (1962); age data from Muhs et al. (1992). (4) Santa Barbara Island (SBI): fau-
nal data from Lipps et al. (1968) and this study; age data from this study. (5) Newport Bay: faunal data from Kanakoff and
Emerson (1959); age data from Grant et al. (1999). (6) San Clemente Island (SCI): faunal data from Muhs et al. (2014b); age
data from Muhs et al. (2002a). (7) Point Loma: faunal data from Kern (1977); age data from Muhs et al. (2002a). (8) Punta
Banda: faunal data from Rockwell et al. (1989) and Muhs et al. (2002a); age data from Muhs et al. (2002a). (9) Camalú:
faunal data from Valentine (1980); age data from Valentine (1980) and Wehmiller and Pellerito (2015). (10) Bahía de
Tortugas: faunal and age data from Emerson et al. (1981). (11) Bahía de Magdalena: faunal data from Jordan (1936); age
data from Omura et al. (1979). (12) Mulegé (M): faunal data from Ortlieb (1987); age data from Ashby et al. (1987).
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County, Shell Beach, where Stein et al. (1991)
reported three U-series ages on coral of ~120 ka
for a terrace whose outer edge is ~20 m above
modern sea level. Using the U-series data on
coral in Stein et al. (1991), ages were recalcu-
lated to be 121.6 +– 1.8 ka, 122.5 +– 2.0 ka, and
126.7 +– 3.4 ka for their Shell Beach samples
MS-40, 41, and 43, respectively, using the
new half-lives reported in Cheng et al. (2013).
At the Shell Beach locality (35°09�09.5� N,
120°39�40.2�W), we collected molluscan fossils
and found Chione sp. among the taxa, confirm-
ing the presence of this genus in San Luis
Obispo County during the LIG period. Still
farther north, Chione undatella is reported to
be in the Millerton Formation marine deposits
(Johnson 1962) where they are exposed along
the shores of Tomales Bay (Fig. 1a). The pres-
ence of this species in the Millerton Formation
along Tomales Bay was also confirmed by our
collections. As discussed earlier, Grove et al.
(1995) reported that luminescence dating indi-
cates that the Millerton Formation is of MIS
5.5 age. Thus, the occurrences of Chione in
marine deposits of LIG age on ANA and San
Miguel Island—though these fossils are at or
only slightly beyond the modern limits—are
part of an even more extensive LIG northward
migration of this genus, close to 500 km north
of its modern northern range endpoint.
    The other example offered here is for the
gastropod Mexacanthina lugubris and repre-
sents a revision of what was reported in an
earlier paper (Muhs et al. 2014b). In the previ-
ous paper, a map was presented indicating that
this species currently lives from San Diego
(Hertz 1995) south along the coast of Baja Cali-
fornia and throughout the Golfo de California.
This was based in part on range limits given
by Keen (1971) for the Pacific Coast of Baja
California and in part on col lections from the
Golfo de California archived at LACM (locali-
ties at Bahía San Luis Gonzaga, Isla Tiburón,
and San Felipe, all in the upper part of the
Golfo de California) and the Museum of Com-
parative Zoology at Harvard University (locali-
ties at San Luis Gonzaga and northwest of
Puerto Peñasco, also in the upper gulf region).
Early studies by Steinbeck and Ricketts (1941)
also reported M. lugubris from the Golfo de
California. Studies of DNA by Marko and Ver-
meij (1999) indicate that what they refer to
as M. lugubris lugubris (on the Pacific Coast of
Baja California) and M. lugubris angelica (in

the Golfo de California) could be two distinct
species. Fenberg et al. (2014) did not con-
sider M. lugubris lugubris to be present in the
Golfo de California and thought that all occur-
rences of this genus in that region were 
M. lugubris angelica. In collections at LACM,
however, these two forms are archived sepa-
rately. They are also distinguished from one
another in the recent volume on marine inver-
tebrates by Bertsch and Aguilar Rosas (2016)
who report that M. lugubris presently lives
from San Diego to Cabo San Lucas on the
Pacific Coast and from Bahía Kino, Sonora
(latitude 28.8° N), to Mazatlán, Sinaloa (lati-
tude 23.2° N), on the eastern Golfo de Califor-
nia coast. We have used this distribution along
with specimen localities at LACM and the
Museum of Comparative Zoology at Harvard
University to generate a new range map. It is
important to note that the modern range of
Mexacanthina lugubris may have expanded
slightly north of San Diego in the past few
decades (see discussion in Fenberg et al.
2014). Fossil occurrences of Mexacanthina
lugubris in deposits dated to ~120 ka are
found all along this taxon’s modern Pacific
Coast distribution from Bahía de Magdalena,
Baja California Sur, to Point Loma near San
Diego. The two occurrences reported here
for SBI and ANA, however, are ~200 km and
~250 km north, respectively, of the modern
range endpoint for M. lugubris. Only one
other LIG fossil of this taxon, which was found
along the coast west of Santa Barbara, is
known to be farther north (Kennedy et al.
1992). Although warmer waters during the
LIG period allowed Chione to migrate north
of its modern range by several hundred kilo-
meters, Point Conception was apparently a
barrier to northward migration of M. lugubris
beyond the Santa Barbara region.
    In contrast to McKay et al. (2011), the obser-
vations made here from both high-energy
rocky-shore environments (at SBI and ANA)
and a protected, quiet-water bay environment
(San Pedro) indicate that the Pacific Coast of
Baja California and California likely experi-
enced a SST during MIS 5.5 that was con -
siderably warmer than at present. Whether
this warming was sufficient for thermal expan-
sion effects on sea level is beyond the scope
of this paper, but the observations made here
indicate that further work on this topic is
merited.
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Implications for Late Quaternary 
Glacial Isostatic Adjustment Models 

of Sea Level History

    The elevation and age data reported here
have implications for models of the effects of
GIA processes on the sea level record of
coastal southern California. In this discussion,
consideration is made not only of SBI and
ANA, but also the Fraser Point area of western
Santa Cruz Island. Worldwide the peak of the
LIG period at ~120 ka (MIS 5.5) is considered
to have had a eustatic sea level somewhere
between ~3 m and ~10 m above present, with
a value of 6 +– 3 m commonly quoted (see
review in Murray-Wallace and Woodroffe 2014).
These values were obtained from tectonically
stable locations, distant from plate boundaries,
that serve as “high-water marks” for this major
interglacial period. As discussed earlier, how-
ever, a complicating factor is the effect that
GIA processes can have on such estimates.
For regions close to continents that hosted
major ice sheets, there are departures from
solely eustatic sea levels, as shown for the
~80-ka and ~100-ka high-sea stands. It is per-
tinent, then, to investigate whether geologic
records on the California coast are consistent
with modeling of the ~120-ka high-sea stand.
In a recent study by Creveling et al. (2015),
sea level at ~127 ka to ~120 ka is estimated to
have been as high as ~11 m above present
(assuming a purely eustatic sea level of +6 m)
to ~13 m above present (assuming a purely
eustatic sea level of +8 m) on the southern
California coast. These values are in good
agreement with those of another modeling
study where LIG (~120 ka) paleo-sea level
estimates of +12 m to +13 m relative to pres -
ent were reported for much of the Pacific
Coast of North America, from northern Cali-
fornia to northern Baja California (Simms et
al. 2016).
    The GIA estimates of paleo-sea level pre-
sented by Creveling et al. (2015) and Simms et
al. (2016) can be assessed from the geologic
records of the LIG period for SBI, ANA, and
Santa Cruz Island presented here. Based on
the amino acid data discussed previously, we
assume that the initial formation of the low-
elevation terraces on all three islands dates to
the peak of the LIG period (MIS 5.5) at ~120 ka.
The next-highest terraces on all three islands
are at considerably higher elevations than the
lowest terraces (Figs. 2, 3, 5, 6). Furthermore,

at least on both Santa Barbara Island and
Anacapa Island, the higher terraces contain
the extinct gastropod Calicantharus fortis,
which is absent on the lower terraces. From
this it can be inferred that all higher terraces
on both islands are older than ~120 ka. On
both SBI and West Anacapa Island, the shore-
line angle of the lowest terrace lies at an ele-
vation of ~11 m. If the paleo-sea level esti-
mates of +11 m in the GIA models cited
above are correct, then there would have been
no uplift at all on these islands in the past
~120,000 years. If the paleo-sea level esti-
mates of +12 to +13 m are considered, then
both islands would have to have subsided a
meter or two in the past ~120,000 years. On
western Santa Cruz Island, the shoreline
angle elevations of the T1 terrace in the Fraser
Point area are ~7 m to ~8 m, as measured
both in the pres ent study and by Pinter et al.
(2003). Based on the amino acid data pre-
sented here, fossils in the terrace deposits on
this part of the island indicate correlation with
the ~120-ka high-sea stand. The shoreline
angle elevations at Fraser Point combined
with the modeled GIA estimates of paleo-sea
level at ~120 ka would re quire ~3 to ~6 m of
subsidence since the LIG high-sea stand.
    The geomorphology of all three islands does
not support the concept that these crustal
blocks have subsided in the past ~120 ka. The
presence of higher marine terraces on all
three islands indicates that the long-term tec-
tonic history has been one of uplift, not subsi-
dence. Indeed, uplift has probably been in
progress on the islands since the Miocene,
because Miocene marine sedimentary rocks
(on Santa Cruz Island and ANA) and Miocene
pillow lavas (on SBI) are well above modern
sea level on these crustal blocks. Moreover, no
credible structural evidence exists for a mech-
anism of subsidence, such as the islands being
situated on the downthrown sides of normal
faults. Therefore, it is inferred that the long-
term tectonic character of these three islands
has been one of uplift.
    Another possibility is that the 11-m-high ter -
races on both SBI and ANA contain fossils
from both the ~120-ka and ~100-ka high-sea
stands but that the shoreline angle elevations at
11 m reflect only the sea level position at ~100
ka. In this hypothetical scenario, fossils that
are ~120 ka were reworked by sea-cliff retreat
(rather than simple terrace reoccupation)
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during the ~100-ka high-sea stand from a
slightly higher terrace that formed during the
~120-ka high-sea stand but that was com-
pletely eroded away. If we assume the local
paleo-sea level from San Nicolas Island at
~100 ka, which is estimated to have been +4 m
(+– 2 m) relative to present (Muhs et al. 2012),
the shoreline angle elevations at 11 m on SBI
and ANA would imply a tectonic uplift rate of
0.07 m/ka since the ~100-ka high-sea stand. At
that rate, the amount of uplift in ~120 ka
would be ~8.4 m. If the GIA-modeled esti-
mates of a paleo-sea level of +11 to +13 m at
~120 ka are correct, we should expect to see
terraces on both SBI and ANA with shoreline
angle elevations of ~19 m to ~21 m above pres -
ent sea level. On western Santa Cruz Island
we should see a terrace with a shoreline angle
elevation of ~16 m to ~18 m. No terraces at
these elevations were observed in the present
study. It is possible that such terraces could
have existed prior to the ~100-ka high-sea
stand and were eroded away completely by
sea-cliff retreat during the ~100-ka high-sea
stand on all 3 islands. While this scenario
remains a possibility, a simpler explanation is
terrace reoccupation at ~100 ka, accompanied
by mixing fossils of ~100 ka and ~120 ka age.
    Another method of testing GIA modeling
for the LIG is to examine the record from a
tectonically stable location within the region.
Although locations that should be tectonically
stable, based on first principles of plate set-
tings, are rare on the Pacific Coast of North
America, one such locality does exist and has
marine terrace data that allow such a test. Isla
Guadalupe, off the coast of Baja California,
(Figs. 1a, 16a) is distant from any plate bound-
ary, has no active faults nearby, has no active
volcanoes on or near it, is bounded on its east-
ern side by a seafloor with undisturbed marine
sediment, and has no history of recent strong
earthquakes (Gonzalez-Garcia et al. 2003).
Marine deposits on Isla Guadalupe contain
corals with U-series ages of ~120 ka (Muhs et
al. 2002a). Lindberg et al. (1980) report that
emergent marine deposits on Isla Guadalupe
have elevations ranging from 1 m to 8 m above
sea level, with most localities described as
1–6 m above sea level. If sea level were truly
+11 to +13 m above present during the LIG
period (as the models of Creveling et al. 2015
and Simms et al. 2016 indicate for this island
as well), Isla Guadalupe would have to have

experienced significant subsidence in the past
~120 ka. Given its geologic setting, there is
simply no apparent mechanism that would
have brought about late Quaternary subsi-
dence. Considering all of the evidence pre-
sented here, the simplest explanation is that
the modeled GIA estimates of paleo-sea level
for the peak of the LIG period are too high.

CONCLUSIONS

    Studies of marine terraces on the two small -
est islands within Channel Islands National
Park lead to a number of conclusions. The
lowest-elevation terraces on SBI and ANA
have shore line angle elevations at ~11 m
above sea level. Fossil mollusks on these ter-
races have amino acid D/L values that allow
correlation to the peak of the LIG period
(MIS 5.5), ~120 ka. In addition, however,
terrace deposits of both islands also contain
fossils with significantly lower D/L values,
indicating a younger age; these values fall
within an aminozone of marine terrace fossils
from southern California that have been inde-
pendently dated to ~80 ka (MIS 5.1). When
temperature history and sea level history are
taken into consideration, we conclude that it is
more likely that the younger fossils date to the
~100-ka high-sea stand (MIS 5.3). If this
interpretation is correct, it is consistent with
observations of other terrace localities in Cali-
fornia where mixes of ~120-ka and ~100-ka
fossils have been re ported. Glacial isostatic
adjustment processes and their effects on rela-
tive sea levels are invoked to explain this fossil
mixing through terrace reoccupation.
    Fossil mollusks are abundant within the
marine terrace deposits on SBI and, to a
lesser degree, ANA and indicate a rocky inter-
tidal environment at the time the organisms
were alive, similar to the modern rocky-shore
environments of these islands. However, the
molluscan faunas, particularly on SBI, contain
both extralimital southern and northern species,
as well as southward-ranging and northward-
ranging species. Based on comparisons to
other marine terrace localities in southern
California with independent ages (~120 ka
and ~100 ka) and similar mixes of faunas with
contrasting thermal aspects, the warm-water
forms are interpreted to correlate with the
~120-ka high-sea stand and the cool-water
forms are interpreted to correlate with the
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~100-ka high-sea stand. This interpretation is
consistent with planktonic foraminiferal data
from Santa Barbara Basin. Thus, the paleozoo-
geographic aspects of the terrace faunas are
also consistent with the amino acid data,
which indicate that the marine terraces on
these islands are composite features, formed
from two high-sea stands. Such a mechanism
is possible because, according to GIA models,
the sea level at ~100 ka was likely above pres -
ent and this high-sea stand “captured” the
marine terrace that formed at ~120 ka.
    Other data presented here disagree with
some GIA modeling of sea level during the
earlier ~120-ka high-sea stand. Recent GIA
modeling studies that indicate that the peak
LIG sea level at ~120 ka was 11–13 m above
present are not consistent with shoreline angle
elevations of ~11 m (at SBI and ANA) and
~7–8 m (at the western part of Santa Cruz
Island). If sea level at ~120 ka was really as
high as 13 m above present sea level, then all
three islands would have to have experienced
subsidence. There is no geomorphic or struc-
tural evidence to support this, and we conclude
that the modeled paleo-sea levels at ~120 ka
are likely too high. The present study demon-
strates that sea level modeling must be tested
with field evidence, such as the marine terrace
data presented here for the Channel Islands.
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