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Abstract

Methods for spectrally based mapping of river bathymetry have been developed and

tested in clear‐flowing, gravel‐bed channels, with limited application to turbid, sand‐

bed rivers. This study used hyperspectral images and field surveys from the dynamic,

sandy Niobrara River to evaluate three depth retrieval methods. The first regression‐

based approach, optimal band ratio analysis (OBRA), paired in situ depth measurements

with image pixel values to estimate depth. The second approach used ground‐based

field spectra to calibrate an OBRA relationship. The third technique, image‐to‐depth

quantile transformation (IDQT), estimated depth by linking the cumulative distribution

function (CDF) of depth to the CDF of an image‐derived variable. OBRA yielded the

lowest depth retrieval mean error (0.005 m) and highest observed versus predicted R2

(0.817). Although misalignment between field and image data did not compromise the

performance of OBRA in this study, poor georeferencing could limit regression‐based

approaches such as OBRA in dynamic, sand‐bedded rivers. Field spectroscopy‐based

depthmaps exhibited amean error with a slight shallow bias (0.068m) but provided reli-

able estimates for most of the study reach. IDQT had a strong deep bias but provided

informative relative depth maps. Overprediction of depth by IDQT highlights the need

for an unbiased sampling strategy to define the depth CDF. Although each of the tech-

niques we tested demonstrated potential to provide accurate depth estimates in sand‐

bed rivers, each method also was subject to certain constraints and limitations.
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1 | INTRODUCTION

Because depth exerts an important control on flow patterns, sediment

transport, and in‐stream habitat, bathymetric information is useful for

numerous applications, such as habitat mapping (e.g., McKean, Isaak, &

Wright, 2008; Tamminga, Hugenholtz, Eaton, & Lapointe, 2014). Iden-

tifying morphological units can also help predict where contaminants

might accumulate (Marcus, Legleiter, Aspinall, Boardman, & Crabtree,

2003). In a geomorphic context, depth mapping enables study of bed

configurations, bar patterns, and sediment transport. Repeat bathy-

metric surveys can be used to identify patterns of erosion and deposi-

tion, construct morphological sediment budgets, and infer bed material

transport rates (e.g., Gaeuman, Schmidt, & Wilcock, 2003).

Morphological budgets can help inform resource management by pro-

viding insight on impacts of natural and anthropogenic disturbances,

such as floods and bed material extraction (e.g., Fuller & Basher, 2013).

Remote sensing of river channel geometry and fluvial processes has

advanced from exploratory case studies (e.g., Lane,Westaway, & Hicks,

2003; Lejot et al., 2007; Winterbottom & Gilvear, 1997) to mature

methodologies suitable for addressing applied management questions

(e.g., Carbonneau, Fonstad, Marcus, & Dugdale, 2011; Whited, Kimball,

Lorang, & Stanford, 2013). Advantages of remote sensing over conven-

tional field surveys include the potential to quantify river morphology

with high resolution over larger areas, longer time periods, and with

greater frequency than conventional field methods (Marcus & Fonstad,

2008). In the context of live‐bed, sandy rivers, aerial imaging provides
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instantaneous snapshots of a transient channel morphology that cannot

be characterized accurately or efficiently by much slower ground‐based

surveys. Remote sensing thus is uniquely capable of capturing spatial

distributions of depth over timescales much shorter than the timescale

of bed deformation in complex (i.e., intricate, multi‐scalar), dynamic (i.e.,

rapidly evolving) sand‐bed rivers. Further developing this capability

would benefit rivermanagers, particularly in the vast Great Plains region

of the Central United States, where wide, shallow, unstable sand‐bed

rivers are the predominant channel type.

The river characteristic most readily derived from passive optical

images is water depth. Numerous studies have demonstrated the abil-

ity to infer depth but most have focused on clear‐flowing, shallow,

gravel‐bed rivers (Legleiter, Roberts, & Lawrence, 2009). The higher

turbidity of sand‐bedded rivers complicates depth retrieval by increas-

ing light scattering within the water column, which diminishes the con-

tribution of bottom‐reflected radiance to the total radiance signal. A

study on the Platte River in Nebraska using both field spectroscopy

and radiative transfer modelling to test the feasibility of depth

retrieval under turbid conditions found that depth estimates in such

environments might be limited to shallow water (<0.5 m) and are sub-

ject to greater uncertainty (Legleiter, Kinzel, & Overstreet, 2011). To

more fully realize the potential for remote sensing to support river sci-

ence, depth retrieval techniques must be extended to sandy channels.

The mobility of the bed in these rivers implies that the bathymetry is a

moving target most effectively captured by a synoptic, instantaneous

imaging approach.

Such applications motivated our assessment of image‐based

bathymetric mapping techniques for sand‐bed rivers. The objective

of this study is to test various depth retrieval methods in a complex,

dynamic, sediment‐laden channel, the Niobrara River, and thus iden-

tify the most suitable approach for sand‐bed rivers. This analysis will

help to expand the range of conditions where remote sensing might

facilitate river research and management.

2 | STUDY AREA AND METHODS

2.1 | Study area and images

The Niobrara River is a large tributary to the Missouri River, draining a

rural basin of approximately 35,000 km2, mostly in northern Nebraska

and dominated by agriculture and ranching (Alexander, Zelt, &

Schaepe, 2009). The Niobrara gains substantial base flow as seepage

from the High Plains aquifer, and much of the basin is undammed;

despite some hydrologic alteration, the Niobrara maintains a relatively

natural flow regime. The mean annual flow at the nearest U.S. Geolog-

ical Survey gaging station (#06461500) since 1964, when a tributary

was dammed, is 21 m3/s (Alexander et al., 2009) with a 1.5‐year recur-

rence interval flow of 52 m3/s (Schaepe, Alexander, & Folz‐Donahue,

2016). The river occasionally flows over bedrock, but bed material is

dominated by sand originating from the surrounding Nebraska

Sandhills and breakdown of the Cenozoic sedimentary bedrock under-

lying much of the basin (Alexander, Zelt, & Schaepe, 2010). Median

bed material grain size for samples collected at four locations along

the Niobrara ranged from 0.1 to 0.69 mm (Alexander et al., 2010).

This study focused on a 27‐km segment of the Niobrara National

Scenic River beginning approximately 30 km east of Valentine,

Nebraska (Figure 1). The segment has a complex, dynamic sand‐bed

braided channel, dominated by actively migrating sandbars under most

flow conditions (Alexander et al., 2010). Mean active channel width in

the study area is approximately 160 m (Schaepe et al., 2016), but up to

half of this width can be exposed as sand bars during base‐flow condi-

tions. The active flood plain in the study area has two primary levels: a

higher level consisting of riparian woodlands dominated by cotton-

wood (Populus spp.), willow (Salix spp.), and dogwood (Prunus spp.)

and a lower level consisting of shrublands dominated by sandbar wil-

low (Salix exgua), indigo (Amorpha spp.), and bluegrass (Cornus spp.;

Alexander et al., 2010; Johnsgard, 2007).

The Niobrara presents several management challenges. This river-

ine ecosystem provides high‐quality habitat for turtles, fish, and three

federally listed bird species. Canoeing and tubing are popular, and rec-

reation is an important source of revenue to the local economy

(Johnsgard, 2007). However, the Niobrara's substantial base flow also

makes the river a valuable source of irrigation water during the late

summer dry season (Alexander et al., 2009). Balancing protections of

the physical, ecological, and recreational qualities of the Niobrara with

agricultural interests requires a robust means of characterizing channel

morphology and riverine habitat.

Hyperspectral images of the Niobrara River study reach were

acquired under base‐flow conditions using a Compact Airborne Spec-

trographic Imager (CASI) 1500H manufactured by ITRES and deployed

from a manned, fixed‐wing aircraft. Image data were collected on

November 8, 2012, August 15, 2016, and August 18, 2016, by ITRES

under clear sky conditions as a series of parallel, along‐channel flight

strips that required approximately 2 hr, centred on local solar noon,

to complete (Legleiter, 2017). Flight plans were designed to minimize

sun glint from the water surface and shadows from adjacent banks

and riparian vegetation. Sensor configurations are summarized in

Table 1, along with flow conditions and turbidity values measured dur-

ing each flight. All image and field data sets used in this study are avail-

able through a series of data releases accessible via the U.S. Geological

Survey ScienceBase Catalogue (Legleiter, 2017; Legleiter & Kinzel,

2017; Legleiter, Kinzel, Alexander, & Dilbone, 2017).

2.1.1 | Image preprocessing

ITRES radiometrically calibrated the CASI images to convert raw digital

counts to spectral radiance. The images also were georeferenced by

ITRES using global positioning system (GPS) and inertial motion data

collected on‐board the aircraft. The final deliverable from ITRES thus

consisted of georeferenced radiance images, and we conducted all

subsequent analyses using the MATLAB and ENVI software packages.

Initial alignment of the 2012 image with field data was poor, with an

offset of approximately 10 m evident as image seams. To correct this

error, we iteratively adjusted parameters describing the sensor's

mounting geometry until alignment between imagery and field data

improved. For the August 18, 2016, image, a smaller 3‐m misalignment

was observed. To improve alignment for this image, we shifted the

field data points relative to the image to minimize the number of

observations located outside the channel as depicted on the image.
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TABLE 1 CASI 1500 sensor characteristics, image attributes, and flow and turbidity for 2012 and 2016 data sets from the Niobrara River

Image date November 8, 2012 August 15, 2016 August 18, 2016

Number of spectral bands 31 48

Wavelength range (nm) 414.4–984.0 376.61–1,046.36

Full‐width half maximum (nm) ±9.5 ±7.15

Flying height above ground level (m) 1,228 1,023

Pixel size (m) 0.6 0.5

GCP RMSE [number of GCP] (m)a 2.20 [8] 0.67 [20] 2.22 [20]

Discharge (m3/s)b 17.0 14.2 13.4

Turbidity (NTU)c 13.2 11.2 6.5

Note. CASI = Compact Airborne Spectrographic Imager; GCP = ground control point; NTU = nephelometric turbidity unit; RMSE = root mean square error.
aGround control point root mean squared error is a metric of image georeferencing accuracy based on tarps surveyed in the field and visible in the images;
see text for details.
bMean daily discharge recorded at the nearest U.S. Geological Survey gaging station (#06461500), relative to mean annual discharge of 21 m3/s
(Alexander et al., 2009).
cTurbidity measurements were made directly in the field during each flight using a Eureka Manta‐2 multiprobe in 2012 and a WetLabs EcoTriplet in 2016.

FIGURE 1 (a) Location of the Niobrara River study site in north central Nebraska, USA. (b) Subset of the August 18, 2016, Compact Airborne
Spectrographic Imager (CASI) image with field measurements collected on that day. Flow direction is from left to right. (c) Ground photograph
looking downstream from the county road bridge in the middle of the study area. ADCP = acoustic Doppler current profiler; GPS = global
positioning system; RTK = real‐time kinematic [Colour figure can be viewed at wileyonlinelibrary.com]
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This procedure avoided the more complex process of transforming

and resampling pixels that was required for the 2012 image. To eval-

uate georeferencing accuracy, we placed tarps in the field during each

flight, two tarps in 2012 and five in 2016, and surveyed all four cor-

ners of each tarp. Comparing the coordinates of the tarps in the

images to their field‐surveyed locations resulted in the root mean

square error values in Table 1, which were based on 8 ground control

points in 2012 and 20 in 2016.

Images were subset to the spatial extent of the field data, and a

binary mask was used to exclude non‐water portions of the image.

Channel masks were created using the longest wavelength band to

identify a threshold that distinguished between water and terrestrial

surfaces. Additional manual editing of masks was performed as

needed. Finally, a Weiner spatial smoothing filter was applied within

a 3 × 3 pixel moving window to reduce image noise.

2.2 | Field measurements of depth

To calibrate depth retrieval algorithms and evaluate their accuracy, in

situ measurements of flow depth are necessary. During each image

acquisition, we surveyed topography along a 1.5‐km reach centred

on a county road bridge near a bedrock knick point locally known as

Norden Notch (Legleiter et al., 2017). Bed elevations were measured

by establishing a local base station and wading the channel with

real‐time kinematic (RTK) GPS rovers. These RTK surveys consisted

of systematic transects spaced approximately every 100 m, as well

as points along the crests and bases of migrating sandbars (Figure 1

b). Water surface elevation (WSE) measurements were made along

banks and where transects intersected islands. During 2016, we also

used a SonTek River Surveyor S5 acoustic Doppler current profiler

(ADCP) with the vertical beam as the primary depth reference

(Mueller, Wagner, Rehmel, Oberg, & Rainville, 2013). The ADCP was

mounted on a kayak, and the draft of the sensor below the water sur-

face was measured carefully. We used the ADCP to survey deeper

areas of the channel on along‐stream profiles and thus supplement

the lower density RTK wading measurements. For the August 15,

2016, image, RTK surveys were not conducted until several hours

after image acquisition, so we only used ADCP data collected during

image acquisition to avoid potential alignment errors resulting from

bed deformation during this time period.

We used the RTK survey data to calculate water depth as the dif-

ference between water surface and bed elevations. For cross sections,

an automated process was used to calculate depths by fitting a tran-

sect through each cross section and subtracting bed elevations from

the mean of the nearest WSE pair (Legleiter et al., 2011).

To estimate WSE on bars, we transformed all WSE points from

channel edges and islands to a channel‐centred coordinate system

with an s axis increasing in the downstream direction. Using the

streamwise coordinates, we produced a surface relating WSE to

streamwise distance, extracted WSE values at bar survey points, and

calculated depths by subtracting bed elevations. For the 2016 data,

the low density of WSE measurements recorded along the left bank

at the downstream end of the reach resulted in an unrealistic WSE

surface and negative depth estimates for some bars. For this reason,

bar surveys were excluded from the 2016 field data set (Table 2).

Pixel‐scale mean depths were calculated from the original survey

points and randomly split into two subsets: one for calibrating depth

retrieval algorithms and the other for assessing the accuracy of the

resulting bathymetric maps. These data sets were produced by ran-

domly assigning each field observation to either the calibration or val-

idation subset, resulting in two equally sized data sets drawn from the

same parent distribution of depths.

2.3 | Field spectroscopy and reflectance retrieval

On August 15 and 18, 2016, ground‐based reflectance measurements

were taken directly above the water surface using an analytical spec-

tral devices FieldSpec3 spectroradiometer (Legleiter & Kinzel, 2017).

Prior to data collection, the instrument was optimized using a 100%

reflectance reference panel and reflectance spectra recorded relative

to this standard. At each spectral measurement site, bed elevation

was measured via RTK GPS and nearby WSE points used to calculate

depth. On August 15 and 18, respectively, 38 and 42 field spectra

were collected with depths ranging from 0.05 to 0.81 m.

Field spectra also were used to convert the 2016 images from radi-

ance to reflectance by performing an empirical line calibration. This

technique uses field spectra from calibration targets within the image

to develop regression models that relate at‐sensor radiance to surface

reflectance. Our calibration spectra included a cement bridge and black,

white, and blue tarps placed on riverbanks on August 15 and 18, 2016.

2.4 | Depth retrieval methods

Standard approaches to spectrally based bathymetric mapping require a

relationship between depth d and some remotely sensed quantityX.We

tested three previously published methods for establishing X versus d

relations to evaluate which approach might be most effective for map-

ping the bathymetry of dynamic, sand‐bed rivers such as the Niobrara.

The first two techniqueswere variants of the optimal band ratio analysis

(OBRA) framework introduced by Legleiter et al. (2009): one based on

spectra extracted from the CASI images and the other using reflectance

TABLE 2 Summary of the number and type of field‐based depth measurements associated with each of the hyperspectral images

November 8, 2012 August 15, 2016 August 18, 2016

Total number of points 1,144 8,738 7,036

RTK cross‐sections 895 0 240

RTK bar surveys 249 0 0

ADCP 0 8,738 6,796

Note. ADCP = acoustic Doppler current profiler; RTK = real‐time kinematic.

DILBONE ET AL. 433



spectra measured directly in the field. The third, more recent method is

based on distributions of depths and image pixel values and is called

image‐to‐depth quantile transformation, or IDQT (Legleiter, 2016).

2.4.1 | Method 1: OBRA of image data

A common way to define X is a ratio‐based transformation of image

pixel values:

X ¼ ln
R λ1ð Þ
R λ2ð Þ

� �
; (1)

where R (λ) are reflectance values for spectral bands centred at wave-

lengths λ1 and λ2. This algorithm isolates the effect of depth on the

total radiance signal and reduces the influence of other complicating

factors such as the reflectance of the streambed (Dierssen,

Zimmerman, Leathers, Downes, & Davis, 2003). The first method we

evaluated involved calculating X by extracting image spectra at the

locations of all surveyed depths in the calibration data set. The OBRA

algorithm was used to identify the best combination of bands to

define X for each image. OBRA regresses depth measurements d

against X for all possible band ratios and identifies the optimal band

ratio as that for which the resulting values of X explain the greatest

amount of the variance in d and thus has the highest coefficient of

determination R2. The d versus X regression equation associated with

the optimal band ratio is applied to each image pixel to produce a map

of depth (Legleiter et al., 2009). As in previous applications of OBRA,

we used linear and quadratic regressions but also considered an alter-

native local estimation, or lowess, model (Helsel & Hirsch, 2002) to

improve the fit of the d versus X relationship. The term lowess is short

for “locally weighted scatter plot smooth,” as the method uses locally

weighted linear regression with a linear polynomial to smooth data.

We performed this analysis using the MATLAB function “smooth”

with the “lowess” fit type and a span set to 20% of the total number

of data points (Mathworks, 2017).

2.4.2 | Method 2: Calibration of OBRA using field
spectra

The second method we tested involved using ground‐based reflec-

tance measurements, rather than image pixels, to define X (Equation 1)

and calibrate an OBRA relation. Whereas these field spectra were

essentially continuous, with a reflectance measurement every

nanometre from 400 to 900 nm, the image data consist of a smaller

number of discrete, broader spectral bands. To use a d versus X rela-

tion based on field spectra to predict depth from a CASI image, the

optimal wavelengths identified by OBRA of the field spectra must cor-

respond with specific image bands. To account for this issue, we used

the matrix of R2 values produced via OBRA of the field spectra to

select a pair of wavelengths that coincided with a pair of discrete

bands in the CASI image. As a criterion for selecting an appropriate

pair of CASI image bands for the ratio, we ensured that the wave-

lengths of the two bands from the CASI image yielded an R2 value

as close as possible to that of the optimal pair of wavelengths identi-

fied via OBRA of the continuous field spectra. The d versus X regres-

sion coefficients associated with the selected band ratio were then

applied throughout the reflectance image to estimate depth.

2.4.3 | Method 3: Image‐to‐depth quantile
transformation

The third method we tested is a more recently introduced technique,

known as IDQT, that was developed for use where simultaneous field

measurements of depth from the time of image acquisition are not

available, sparse, or of poor quality (i.e., not georeferenced). Unlike

regression‐based approaches that rely on pairing surveyed depths to

specific image pixel values, IDQT predicts depth by linking the cumu-

lative distribution function (CDF) of the image‐derived quantity M to

the CDF of depth d. M is defined by extracting pixel values from a sin-

gle‐band image, which can be obtained via various transformations of

the original image data or by taking a band ratio. The CDF of d was

defined using the same data sets used for OBRA, consisting of pixel‐

scale mean depths. For each pixel, M and d are scaled by their

reach‐averaged mean values <M> and <d>, resulting in the normalized

variables M/<M> and d/<d>. The quantile transformation phase of

IDQT determines the CDF probability of the M/<M> value of each

pixel and then identifies the d/<d> value on the depth CDF that corre-

sponds to this probability. These scaled variables can be used to pro-

duce a relative depth map (d/<d>) that shows where depths are

greater or less than the reach‐averaged mean depth. An absolute

bathymetric map can be obtained by multiplying d/<d> values for each

pixel by <d> (Legleiter, 2016).

Depth retrieval via IDQT requires that the image‐derived quantity

M be monotonically related to depth. We tested two different

approaches for defining M. First, we applied Lyzenga's (1978) deep‐

water correction to the images to isolate the bottom‐reflected portion

of the radiance signal. The resulting images were then processed using

a minimum noise fraction (MNF) transformation (Green, Berman, Swit-

zer, &Craig, 1988).We retained the firstMNFband to defineM because

this band captured the largest amount of variability within the image

data. The second approach to definingM involved selecting a band ratio

image produced using Equation 1. We considered multiple band combi-

nations and evaluated their correlation with depth by visually assessing

whether spatial patterns of image brightness were consistent with our

field observations of channel morphology. We intentionally did not

defineM by using OBRA to identify the optimal band ratio because reli-

ance on OBRAwould diminish IDQT's primary advantage of not requir-

ing survey data concurrent with image acquisition.

2.5 | Accuracy assessment and method comparison

For all three calibration methods, depth retrieval errors were calcu-

lated using the validation subset of the field‐surveyed depths as

ε jð Þ ¼ df jð Þ−di jð Þ; (2)

where ε (j) is the error at location j, df(j) is the pixel‐scale mean depth,

and di(j) is the depth predicted for the corresponding image pixel. For

each method and image date, we computed the mean, median, and

standard deviation of the depth retrieval errors. The mean and median

errors provided an indication of bias: systematic overprediction or

underprediction of depth from an image. The standard deviation of

the errors quantified depth retrieval precision. Error maps also allowed

us to examine the spatial distribution of errors throughout the reach.
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Algorithmperformance alsowas evaluated by performing observed

versus predicted (OP) regressions between field‐surveyed depths (df)

and image‐derived estimates (di; Piñeiro, Perelman, Guerschman, &

Paruelo, 2008). If the depth retrieval algorithm perfectly predicted

depth, this regression would result in an intercept of 0 and slope of 1.

OP regression coefficients and R2 values indicate how far depth predic-

tions deviate from the 1:1 line of perfect agreement.

3 | RESULTS

Using hyperspectral images of the Niobrara, we evaluated three depth

retrieval techniques in a sandy, dynamic river environment. We applied

eachmethod to all three CASI images except for the field spectra‐based

calibration because no ground‐based reflectance data were collected in

2012. Below, we assess the accuracy of each algorithm separately.

3.1 | Method 1: OBRA of image data

For the first method, OBRA of image data, we also considered a local

estimation model as an alternative to standard regression.

3.1.1 | Regression‐based OBRA

Althoughwe performedOBRA using both linear and quadratic formula-

tions, in all cases, the quadratic version with an X2 term produced the

highest R2 values, and we thus focus on quadratic OBRA. The results

of this analysis are summarized in Figure 2, with the optimal band ratio

for each image yieldingR2 values of 0.81, 0.81, and 0.83. Thematrices of

R2 values shown in Figure 2 represent howmuch of the variability in d is

explained by X. For all three images, strong correlations occur in the

upper left region of the R2 matrices, where a numerator band in the

blue‐green portion of the spectrum (450 < λ1 < 600 nm) is paired with

a red denominator band (600 < λ2 < 710 nm). This broad region of high

R2 values suggests that several other band ratios would have yielded d

versus X relationships nearly as strong as the optimal combination.

Accuracy assessment of the OBRA‐based bathymetric maps con-

firmed this technique's ability to retrieve depth on the Niobrara River.

OP regression R2 values were high, ranging from 0.81 to 0.83 and

averaging 0.817 (Table 3). The slope and intercept of these regression

equations were also near 1 and 0, respectively, indicating that OBRA‐

based depth estimates generally were unbiased. For all three images,

mean and median depth retrieval errors were <1 cm. These small error

FIGURE 2 Results of optimal band ratio analysis for all three images [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Summary of accuracy assessment for all three depth retrieval techniques

OBRA of image data OBRA based on field spectra IDQT

Minimum predicted depth (m) −0.121 −2.600 0

Maximum predicted depth (m) 2.681 7.555 1.697

Minimum error (m) −0.595 −0.290 −0.839

Maximum error (m) 0.596 1.068 0.527

Mean error (m) −0.005 0.068 −0.204

Median error (m) 0.003 0.104 −0.209

Standard deviation of error (m) 0.104 0.155 0.133

First quartile of error (m) −0.051 0.006 −0.270

Third quartile of error (m) 0.051 0.157 0.120

OP R2 0.817 0.725 0.753

OP slope 0.992 1.6 0.824

OP intercept 0.006 −0.156 −0.101

Note. For regression‐based OBRA of image data and IDQT, values from the three images analysed were averaged. OBRA based on field spectra was only
evaluated for the two images acquired in 2016 because no field spectra were collected in 2012; the results for this method thus are averages for the two
2016 images. For OBRA of image data, the results reported in this table are for standard regression models, but local estimation models produced very
similar results.

IDQT = image‐to‐depth quantile transformation; OBRA = optimal band ratio analysis; OP = observed versus predicted.
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values suggest that even in turbid, dynamic channels, a simple d versus

X relationship can yield accurate, unbiased depth information when

field measurements of depth concurrent with image acquisition are

available for calibration.

The spatial distribution of depth retrieval errors can be visualized

by mapping prediction errors on the CASI images (Figure 3). For all

three images, large errors often occurred along channel edges. For

the November 8, 2012, image, large errors also occurred at bar survey

points. Figure 3 shows depth retrieval errors for the 2012 image and

illustrates the concentration of the largest errors at both bar crests

and channel margins. Despite low mean errors, OBRA did not capture

the full range of depths present within the channel. For all three

images, the minimum OBRA‐predicted depth was on average 0.11 m

larger than the minimum depth surveyed in the field. This result

implies that the quadratic d versus X relation overpredicts depth for

the shallowest areas of the channel.

3.1.2 | Local estimation‐based OBRA

As an alternative to the quadratic regression between X and d, we

used a local estimation, or lowess, model to fit the d versus X relation-

ship with the goal of improving the range of OBRA‐based depth pre-

dictions. Differences between the quadratic and lowess fits for the

August 18, 2016, image are illustrated in Figure 4. The most notable

difference between the models is that the slope of the quadratic func-

tion changes from positive to negative towards the lower limit of X,

erroneously implying an increase in depth for the smallest X values

and resulting in minimum predicted depths that are greater than the

shallowest depths observed in the field. In contrast, the lowess model

accurately depicts a direct relationship between X and d over the

entire range of X. This difference is manifested by the minimum depth

predicted by the lowess and quadratic models. For the August 18,

2016, image, the minimum depth predicted by lowess (0.13 m) is

closer to the minimum surveyed depth (0.008 m) than that of the qua-

dratic fit (0.21 m), suggesting that lowess‐based OBRA could predict

shallow depths with greater accuracy than quadratic OBRA. Despite

improvement to the range of depths predicted by OBRA, the overall

accuracy of lowess‐based OBRA was similar to quadratic OBRA.

Values of R2 for the lowess and quadratic d versus X regression rela-

tions were both 0.83, and the error statistics and OP regressions for

lowess were very similar to standard OBRA (Table 4). Because the

lowess fit did not yield significantly greater depth retrieval accuracy,

we used the results from standard quadratic OBRA for comparison

with the other depth retrieval methods we evaluated.

3.2 | Method 2: OBRA based on field spectra

To estimate depths from the 2016 images using a relationship based

on field spectroscopy, we defined X using ground‐based reflectance

measurements as input to OBRA. R2 values resulting from the d versus

X regression of every possible combination of wavelengths (λ1, λ2) are

illustrated in Figure 5 for the August 15 and 18 data sets. For the field

spectra, linear regression performed just as well as the more complex

quadratic formulation of OBRA, with the optimal band pair yielding R2

values of 0.98 and 0.88 for the two dates. These findings confirmed a

strong relationship between depth and reflectance and implied that

depth could be predicted from hyperspectral images calibrated to

units of surface reflectance.

As described in Section 2.4.2, the optimal wavelengths identified

by OBRA of the continuous field spectra did not necessarily corre-

spond with a specific pair of CASI image bands, so we chose an alter-

native band ratio that matched the centre wavelengths of two

particular bands in the image. The field spectroscopy‐based OBRA

matrices demonstrated that a wide range of wavelength combinations

was strongly related to depth, so selecting a pair of wavelengths that

matched specific CASI band centres was not difficult. The alternative

band ratios selected for the August 15 and 18 images were 562/705

and 577/605 nm, respectively.

Overall, field spectroscopy‐based OBRA exhibited a slight shal-

low bias and was less accurate than image‐based OBRA, with mean

FIGURE 3 Depth retrieval error map for optimal band ratio analysis‐based bathymetric map produced from the November 8, 2012 image. Error
values were calculated using Equation 2 [Colour figure can be viewed at wileyonlinelibrary.com]
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(median) error values of 0.068 (0.026) and 0.14 (0.11) m for the

August 15 and 18 images, respectively. OP regressions had R2 values

of 0.71 and 0.74, respectively; however, OP regression slopes >1 and

intercepts <0 indicated a systematic depth retrieval bias. This bias is

further confirmed by a difference between the range of depths pre-

dicted and those observed in the channel. Both the August 15 and

18 depth maps did not capture the deepest areas of the channel.

The depth maps also contained large negative estimates that lead to

large positive error values. These erroneous depth predictions

occurred mainly in small, concentrated areas, but most of the field

spectra‐based bathymetric maps provided realistic representations

of depth.

3.3 | Method 3: Image‐to‐depth quantile
transformation

3.3.1 | Comparing IDQT of different M inputs

IDQT involves linking the CDF's of an image‐derived variable M and

field‐surveyed depth d. The critical assumption made in this process

is that M is monotonically related to d. We tested the strength of

the relationship between M and d for two different ways of defining

M. Because IDQT is designed to avoid having to pair field‐surveyed

depths with specific pixels, we only used the field‐surveyed depths

to quantify the strength of the agreement between d and the various

candidates for defining M. In practice, the strength of d versus M rela-

tions could be based on a qualitative visual inspection of potential M

images. Using the Lyzenga and MNF transforms to define M resulted

in R2 values of 0.47 and 0.57 for the 2016 images and 0.73 for the

2012 image. This poor correlation, particularly for the 2016 images,

motivated us to assess an alternative approach: defining M as a band

ratio image produced via Equation 1. For each image date, we exam-

ined multiple band ratio combinations before selecting one that

appeared to correspond most closely with patterns of depth. Table 5

summarizes all the tested band ratio combinations for each image

and their resulting correlation with depth. For the two images

acquired in 2016, defining M using band ratios rather than MNF band

1 improved the R2 values of the M versus d regressions to 0.73–0.78.

We thus used band ratios to define M for those two images: 477/662

and 490/719 nm for the August 15 and 18 images, respectively. We

used MNF band 1 to define M for the 2012 image because its corre-

lation with depth was reasonably strong, with an R2 value of 0.73,

nearly as high as the band ratios we considered (Table 5).

3.3.2 | Depth retrieval by IDQT

OP regressions for IDQT‐based bathymetric maps yielded R2 values

ranging from 0.70 to 0.79. The slopes of these OP regression equa-

tions were <1 for all images, and intercepts were <0 for the 2016

images, implying that depths predicted via IDQT were biased deep.

All three images had negative mean errors that indicated overpredic-

tion of depth via IDQT. The strongest deep bias was observed for

the August 2016 images, both having mean and median error values

<−0.20 m. This bias was less apparent for the November 2012 image,

with a mean (median) error of −0.099 (−0.087) m.

TABLE 4 Comparison of depth retrieval errors and OP regression
statistics for optimal band ratio analysis of the August 18, 2016, image
based on standard quadratic regression and a lowess fit

Quadratic Lowess

Mean error (m) −0.0003 0.0020

Minimum error (m) −0.6299 −0.6181

Maximum error (m) 0.7080 0.6821

Median error (m) −0.0077 −0.0089

Standard deviation of error (m) 0.1117 0.1096

First quartile of error (m) −0.0597 −0.0586

Third quartile of error (m) 0.0487 0.0466

OP R2 0.83 0.83

OP slope 1 1

OP intercept −0.0012 −0.0022

Note. OP = observed versus predicted.

FIGURE 4 Calibration of the X versus d relationship using a (a) quadratic and (b) local estimation (lowess) model for the August 18, 2016, data
set. OBRA = optimal band ratio analysis [Colour figure can be viewed at wileyonlinelibrary.com]
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4 | DISCUSSION

Most prior studies evaluating the ability to infer depth from passive

optical images have focused on clear‐flowing, gravel‐bedded rivers

(Marcus & Fonstad, 2008). In contrast to these favourable conditions,

the reduced water clarity and high mobility of sand‐bedded channels

make spectrally based bathymetric mapping not only more difficult

(Legleiter et al., 2011) but also more important because the mobile‐

bed conditions all but preclude capturing a “frozen,” instantaneous

spatial snapshot of the bed topography via conventional field surveys.

The purpose of this study was to assess the performance of different

depth retrieval methods developed on clear‐flowing rivers for

predicting depth in more turbid and dynamic sand‐bed rivers. Each

of the three bathymetric mapping methods we considered demon-

strated potential to provide useful depth information from sandy,

live‐bed channels. However, each method also was subject to certain

limitations. When selecting the best method for remote sensing of

sand‐bed rivers, one must consider the available data, project budget,

and intended use of the bathymetric maps. Below, we compare the

performance of the three techniques and summarize the advantages

and drawbacks of the algorithms individually.

4.1 | Algorithm comparison

A summary of depth retrieval error statistics, OP regressions, and

range of depths predicted by bathymetric maps is shown for each

method in Table 3.

Summary values were calculated by averaging individual statistics

across the three image dates. On average, OBRA of image data using

quadratic regression provided the most accurate depth predictions,

with a mean error value closest to zero (−0.005 m) and the smallest

range of depth retrieval errors. In comparison, IDQT had a systematic

deep bias, and field spectra‐based OBRA had a shallow bias, with

mean error values of −0.204 and 0.068 m, respectively. Despite these

differences in mean error, the standard deviations of error for each

method were similar, ranging from 0.104 to 0.155 m, implying that

the precision of the three methods was comparable.

An important advantage of IDQT over regression‐based calibra-

tion methods was the absence of negative depth estimates. Because

depth predictions obtained via IDQT are bounded by the input CDF

of depths, in our case based on surveyed depths, IDQT more effec-

tively captures the full range of depths present in the channel. How-

ever, these advantages are countered by the deep bias of IDQT‐

based bathymetric maps. Among all three methods, IDQT had the larg-

est negative mean and median depth retrieval errors (−0.204 and

−0.209 m). Figure 6a shows a side‐by‐side comparison of IDQT and

OBRA‐based bathymetric maps and resulting errors for the August

18, 2016, image and illustrates differences between the two methods.

For example, the more extensive dark blue tones in the IDQT‐based
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FIGURE 5 Optimal band ratio analysis of field spectra collected on August 15 and 18, 2016. (a and b) These R2 matrices summarize the strength
of the relationship between X and d. (c and d) Calibration plot of X, defined using the optimal band ratio, and field‐surveyed depth [Colour figure
can be viewed at wileyonlinelibrary.com]

TABLE 5 Band ratio combinations tested in defining the log‐band
ratio M image for IDQT analysis and R2 values yielded from corre-
sponding d versus M regression

Numerator band
λ1 (nm)

Denominator band
λ2 (nm) R2

November 8, 2012 547.50 661.40 0.77
528.50 699.30 0.77
547.50 756.30 0.71

August 15, 2016 476.63 661.95 0.78a

533.70 718.90 0.72
505.17 647.71 0.78

August 18, 2016 490.91 718.90 0.73a

547.96 733.13 0.6
505.17 690.42 0.73

Note. For the 2012 image, we used minimum noise fraction band 1, which
yielded an R2 value just as high as any of the band ratio images.

IDQT = image‐to‐depth quantile transformation.
aThe band ratio ultimately selected to define M for IDQT.
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map indicated overpredictions of depth, but this map also more effec-

tively captures shallow margins than the OBRA‐based map, which

lacks dark maroon colours representing depths near zero. The more

negative first quartile of error for IDQT (−0.36 m) versus OBRA

(−0.06) also confirms the greater deep bias of the IDQT‐based bathy-

metric map (Figure 6b).

4.2 | Quadratic regression‐ and local estimation‐
based OBRA

The original development and testing of OBRA occurred on clear‐

flowing, gravel‐bedded rivers (Legleiter et al., 2009). Given the more

turbid, complex, and dynamic nature of the Niobrara River, the accuracy

of OBRA could be limited in this type of river environment. Specifically,

because OBRA relies upon exact alignment of ground‐based depth

measurements and the corresponding image pixels, migration of bed

forms in the time between field surveys and image acquisition could

interfere with the pairing of remotely sensed and field‐measured quan-

tities. The initial image georeferencing errors detailed in Section 2.1.1

and summarized in Table 1 suggested misalignment between field and

image data might have limited the accuracy of depth retrieval via OBRA

for our data set. Despite these obstacles, OBRA yielded the smallest

overall depth retrieval error of the threemethods and therefore offered

the most reliable means of bathymetric mapping on the Niobrara.

Although the mean and median error values for OBRA were near 0 m,

the quadratic formulation ofOBRA resulted in negative depth estimates

and overprediction of depth in the shallowest areas of the channel.

Given that these shallows provide critical aquatic habitat for local fish

species (Peters &Holland, 1992) and foraging habitat for federally listed

bird species (Le Fer, Fraser, & Kruse, 2008), accurate depth retrieval in

these regions is important. Using a local estimation (lowess) model in

place of the quadratic regression provided a more realistic fit in that d

increased with X over the entire range of X values.

The concentration of large depth retrieval errors along channel

margins for OBRA‐based bathymetric maps could be explained in part

by the existence of mixed pixels containing both water and surrounding

terrestrial land cover. The inclusion of non‐water surfaces in such pixels

would cause the d versus X relation to fail. Additionally, lingering

misalignment issues between field and image data would be most prob-

lematic at channel margins where in‐channel survey points could fall

outside of the channel as represented in the image. These alignment

issues were also apparent in the large error values along bar faces.

Where depth is changing rapidly, such as the steep slope of bar faces,

achieving co‐registration of image pixels and depth survey points is

more difficult. Additionally, pixels in areas with steep bed slopes could

encompass a range of depths, such that any misalignment could result

in a large change in d (and X) and thus create another source of error

for OBRA.

Although most of the Niobrara consists of shallow water <1.5 m,

saturation of the radiance signal in deeper water is a general problem

FIGURE 6 (a) Comparison of image‐to‐depth quantile transformation (IDQT)‐based bathymetric map (top) and optimal band ratio analysis
(OBRA)‐based bathymetric map (bottom) for the August 18, 2016, Compact Airborne Spectrographic Imager image. Maps share a common
colour scale bar. (b) Histograms of depth retrieval errors and summary statistics for each bathymetric map [Colour figure can be viewed at
wileyonlinelibrary.com]

DILBONE ET AL. 439

http://wileyonlinelibrary.com


encountered in the remote sensing of rivers. Before applying OBRA,

one must also consider the potential for the d versus X relationship

to saturate in deep areas of sediment‐laden channels. Perhaps the

largest drawback of OBRA is the requirement of an extensive in‐chan-

nel topographic survey during image acquisition. The field work

required to survey the channel is laborious and expensive and might

not be a realistic option for many projects. Moreover, the necessity

of ground‐based data undermines one of the main attractions of

remotely sensed bathymetric mapping: the ability to reduce, if not

eliminate, field data collection. An important topic for further research

is evaluating the number, density, and spatial configuration of ground‐

based depth measurements required to establish an OBRA relation-

ship. If reasonably accurate depth predictions can be obtained based

on only a small field data set, OBRA could have significant value as a

“survey multiplier.”

4.3 | Field spectra‐based OBRA

If in situ depth measurements cannot be obtained concurrently with

image acquisition and the bed is highly mobile, field spectroscopy

could offer a simpler, less fieldwork‐intensive option. Depths can be

measured directly at the same time the field spectra are recorded,

and these coupled observations of depth and reflectance used to

calibrate a general d versus X relation that could then be applied

to a reflectance image. Although the overall accuracy of the field

spectra‐based depth retrieval was inferior to image‐based OBRA,

the field spectra‐based depth maps were spatially coherent. In some

areas, large negative and unrealistically large depths were predicted,

but these errors were not extensive and potentially could be

reduced by implementing a more rigorous atmospheric correction

approach. In this study, we used an empirical line calibration to

convert the hyperspectral images to units of surface reflectance

because this method is relatively simple and computationally

efficient. However, a more complex radiative transfer model might

have provided more accurate reflectance images and hence depth

estimates. Because the reflectance images were not used in the

image‐based OBRA and IDQT analyses, these methods had the

advantage of not being subject to the potential error introduced by

atmospheric correction.

4.4 | Image‐to‐depth quantile transform

IDQT offers an alternative strategy to standard regression‐based

approaches to depth retrieval that rely upon pairing field observations

and pixel values. In contrast to OBRA, IDQT avoids negative depth

estimates and is insensitive to misalignment errors between image

and field data (Legleiter, 2016). Given the difficulty of conducting

topographic surveys and achieving precise georeferencing in dynamic

channels such as the Niobrara, IDQT has the potential to facilitate

depth retrieval in such environments. However, our results indicated

that IDQT also will face some challenges. Among all three CASI

images, IDQT overpredicted depth by >0.20 m. Because of this deep

bias, a more useful IDQT output might be a relative depth map (d/

<d>), where absolute depth values d are scaled by the reach‐averaged

depth <d>. By showing the general pattern of deep and shallow areas

of the channel, this relative depth map might be useful for some river

management applications where knowledge of absolute depth is not

critical. For example, relative depth maps could be used to identify

broad habitat units, as well as bar forms in the context of sediment

transport studies.

One explanation for the deep bias of IDQT is that the field survey

used to characterize the probability distribution of depth did not ade-

quately represent all depths present within the channel. Ideally,

ground‐based depth surveys would maximize channel coverage and

fully sample the channel morphology in an unbiased manner. In this

study, the large proportion of ADCP data included in the 2016 depth

data sets could have led to over‐representation of deep regions in the

depth CDF since ADCP data collection concentrated on deeper areas

that were inaccessible by wading. These findings highlight the sensi-

tivity of IDQT to the field sampling strategy and to fully realize the

value of IDQT in sand‐bedded rivers. Similarly, over‐representation

of deeper areas might have affected the results of image‐based OBRA,

which would depend to some degree on the distribution of depths

used to calibrate d versus X regressions. Further investigation and

testing of an unbiased means of quantifying the channel's depth distri-

bution thus is needed.

5 | CONCLUSION

This study showed that multiple methods of depth retrieval from pas-

sive optical image data can provide reliable bathymetric information

for sediment‐laden, dynamic channels. Although the standard,

image‐based d versus X calibration approach via OBRA yielded the

most accurate depth predictions, this method comes with some

constraints that are particularly apparent in dynamic, sandy channels

such as the Niobrara. Exact alignment of field and image data and

simultaneous collection of field and image data are prerequisites to

OBRA that are not necessary for such approaches as IDQT and field

spectroscopy‐based calibration. Using field spectra to define the

radiometric quantity X in defining an OBRA relationship produced

bathymetric maps that were less accurate than traditional OBRA

but still spatially coherent. Although IDQT exhibited a strong deep

bias in this study, IDQT‐produced depth maps still provided

information on the general distribution of depth. The potential for

IDQT to improve the practicality of remotely sensing river bathyme-

try highlights the need for additional testing and refinement of this

technique, especially characterization of the distribution of depths

within the channel.
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