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Abstract 
Exemplary models to inform novice instruction and the development of graduate teach-
ing assistants (TAs) exist. What is missing from the literature is the process of how 
graduate students in model professional development programs make sense of and 
enact the experiences offered. A first step to understanding TAs’ learning to teach is to 
characterize how and whether they link observations of student work to hypotheses 
about student thinking and then connect those hypotheses to future teaching actions. 
A reason to be interested in these connections is that their strength and coherence 
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determine how well TAs can learn from experiences. We found TAs can connect obser-
vations and future teaching, but that the connections vary in quality. Our analysis sug-
gests future revisions to TA development programs, which we discuss in the conclusion. 

Keywords: Post-secondary professional development, Mathematics teacher growth, 
Reflective practitioner, Graduate teaching assistants, TA development 

MSC Codes: 97B99, 97B50, 97-xx, 97Axx, 97B40 

1 Introduction 

One theory for how instructors learn from their own and others’ teach-
ing experience is that learning occurs through deliberately connecting 
future teaching plans and prior experience. Specifically, instructors cre-
ate opportunities to learn when they articulate future actions in terms 
of observations based on previous experience (e.g., Hall & Horn, 2012; 
Horn, Kane, & Wilson, 2015). Under this theory, enhancing the ability 
to learn from experience requires both improving how instructors con-
ceive of teaching and tightening connections between future plans and 
current thinking. 

Our goal is to improve TAs’ ability to learn by reflecting on their ex-
periences. We report on a study of novice mathematics graduate stu-
dent teaching assistants (TAs), who were teaching college algebra and 
intermediate algebra and were all enrolled in a seminar as part of a TA 
development program. The program aims to help TAs to teach from the 
principles that: (a) student learning occurs through the student’s lens, 
and observation of student learning occurs through the observer’s lens; 
(b) understanding the experiences that shape students’ thinking is im-
portant to teaching; and (c) learning occurs through building on prior 
knowledge. Our study explored the question: 

How do these TAs connect observations and beliefs about their 
students, hypotheses about student thinking, and proposed 
next teaching actions? 

We open this chapter with one TA’s reflections about her students’ 
learning, based on a paper written as part of the TA development pro-
gram. We use this TA’s work to illustrate how we model TA thinking so as 
to study the opportunities they created to learn from experience. After 
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describing our model for TA thinking, we discuss the literature inform-
ing our work and the context in which this study took place. We then 
describe how we collected and analyzed data to study TA thinking. Fi-
nally, we describe paths of TA thinking that we found useful in consid-
ering how to improve our TA development program. We reflect on our 
future actions in terms of observations and beliefs about TAs and hy-
potheses about TA thinking. 

2 Modeling TA Thinking 

2.1 One TA’s Reflection 

At the time of the study, TA12 was a first time instructor who taught Col-
lege Algebra. She had recently assigned this quiz problem: 

Determine whether the following function is a rational function: 

f (x) = 1 –  6   +    –2
                                                                      x3      x + 4 

If it is a rational function, write it in the form f (x) = p(x)/q(x) , 
where p(x) and q(x) are polynomials. 

On the same quiz, she had also asked her students to express the 
following as a single fraction: 

1 –  6  +  – 4
                                                                 8        6  

In a report of her students’ performance, TA12 first explained that 
she had designed the quiz purposefully: the fraction expression is equiv-
alent to evaluating the function f at x = 2 . She then observed that most 
students simplified the expression in mathematically valid ways; a typ-
ical solution was: 

1 – 6 + –4 = 1 – 3 + –2  =  12 –  9 +  –8  = 12 – 9 –8 = –5  
                       8      6            4      3       12    12     12            12          12 
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However, many students—including some who had performed a valid 
calculation for fractions—simplified the rational expression as follows: 

f(x) = 1 – 6  +  –2x    =  1 – 6 + –2x
                                                       x3     x + 4         x3(x + 4) 

She hypothesized that students’ thinking about rational functions did 
not draw on their experiences with fractions: 

While there are some students who struggle with combining 
these fractions, most of my students are able to do so success-
fully. That shows me that they are familiar with and able to use 
fraction operations, so the root of the misconception in this 
case is not that they have misconceptions concerning the frac-
tion operations … For some reason, the introduction of vari-
ables into the fraction numerator and/or denominator causes 
a breakdown in their reasoning, which I believe is the root of 
the misconception. (TA12 Final paper, p. 4) 

In TA12’s interpretation, students have productive knowledge to build 
upon, because they can work with closely related numerical expressions 
in mathematically valid ways. At the same time, students may separate 
their knowledge of fractions from their knowledge of rational expres-
sions. TA12 then speculated how her own teaching or others’ instruction 
may enforce this separation, calling out the role of emphatically distin-
guishing operations with numbers from operations with variables (e.g., 
stressing that 3 + 2 = 5 , but 3a + 2b ≠ 5ab ). TA12 thus hypothesized that 
students may benefit from experiences in which they explicitly connect 
operations on fractions with operations on rational functions. 

As a next step, TA12 proposed to hold a structured conversation with 
her students. TA12 scripted a hypothetical conversation, a portion of 
which follows: 

T: Now, even though we used mathematical operations spe-
cifically to combine fractions, the truth is that we can use 
these mathematical operations with any ratio. What exactly 
are the mathematical operations we used to combine the 
fractions? 
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S: First we found a common denominator. Then we changed 
each individual fraction so that it had the common denom-
inator. Last we added together the changed numerators to 
get one faction. 

T: Exactly! Let’s see if we can use those same operations to 
solve the problem we started with. How could we find a 
common denominator? 

S: I don’t really know. 
T: How did you find a common denominator of (1, 3, and 4)? 
S: I multiplied them together. 
T: Exactly! So, you actually did this previously, but we could 

find the common denominator in our problem by multiply-
ing the denominators together. Just because they have vari-
ables in them doesn’t change our process. What would our 
new common denominator be? 

S: x3 (x + 4) 
T: Correct! So, think back to the second operation you said you 

used for combining fractions: “change each individual frac-
tion so that it has the common denominator.” How do you 
think we could do this with our problem with variables? 

S: We could figure out what we need to multiply each fraction 
by to get the common denominator! 

TA12 envisioned guiding the student in identifying fraction opera-
tions used while working with different denominators, and then build-
ing concrete connections between fractions and rational expressions. 
TA12 emphasized that plan was not to stick to the script but rather to 
ask “purposeful, guiding questions” that allowed as much as possible for 
“the students to … generate as much knowledge on their own” (TA12 Fi-
nal paper, p. 8). 

2.2 Modeling TA Thinking 

To explain how we model TAs’ thinking about instruction, we use TA12’s 
reflection as an example. Our model has four components: data, student 
thinking, hypothesis, and future teaching actions. Figure 1 displays this 
model. We define data to consist of written and oral expressions made 
by students that are observed by an instructor. In the case of TA12, the 
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data are her students’ performance on a quiz. Student thinking is an in-
terpretation of the data. For example, TA12 interprets the combination 
of mathematically valid work with fractions and mathematically incor-
rect work with rational expressions as an indication that her students 
did not draw on their knowledge of fractions when working with ratio-
nal expressions. A hypothesis is a conjecture about likely experiences 
that have shaped or could shape the student thinking. TA12’s hypothe-
sis is that students may benefit from explicit connections between oper-
ations on fractions and on rational functions. Future teaching actions de-
scribe how the instructor might work with students in the future, given 
their interpretation of student thinking. TA12 proposed to hold a struc-
tured conversation in which she would guide students toward describ-
ing properties of rational functions based on properties of fractions, and 
then give students an opportunity to use these properties. 

We use TA12’s reflection as an example because it shows how the 
components of the model fit together, even if there are places where the 
reflection can be improved or may be unrealistic. The interpretation of 
the data is reasonable: students are not applying their knowledge of nu-
meric fraction operations to fractions that have variables. The hypothe-
sis addresses the interpretation directly: TA12 interprets that student do 
not use their knowledge of fractions when working with rational func-
tions, even though this knowledge is useful, and so TA12 proposes that 
students construct and then use parallels between fractions and ratio-
nal expressions. The future teaching actions are envisioned to elicit the 
relevant similarities between fractions and rational expressions. There 
are places where the dialogue may seem contrived or where the instruc-
tor may be appearing to do too much of the students’ work. TA12’s inter-
pretation that the students separate their knowledge of fractions from 
rational expressions may be overly simplistic. However, in making these 
judgments, we should keep in mind that TA12 is a first time instructor, 
and that on the whole, the components do lead from one to the other. 
As we discuss later in this chapter, there are examples of TA reflections 
whose components are not as well connected. 

Fig. 1. Model for TA thinking
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3 Literature Informing the Study 

In this section we summarize the literature informing our model for 
TA thinking and the rationale for drawing on results from K-12 teacher 
education and professional development. The goal of our model is to 
describe TAs’ claims about future teaching actions as potential oppor-
tunities to learn. Thus, our model connects two literature bases: one 
on argumentation and the other on teachers’ opportunities to learn 
from teaching. 

3.1 Literature on Argumentation 

Toulmin (1958) is a foundational reference about modeling argumen-
tation. Toulmin originally created his model to analyze legal arguments, 
and it has since been used for other fields, including mathematics edu-
cation (e.g., Inglis et al., 2007). The three key components of Toulmin’s 
model are: the grounds, the claim, and the warrant. The grounds are the 
evidence on which the claim is made, and the warrant is the reason that 
the grounds support the claim. Toulmin uses the following claim as an 
example: “I am a British citizen.” Possible grounds for this argument in-
clude, “I was born in Bermuda;” a warrant could be, “British law states 
that persons born in Bermuda are British citizens.” In our model, we 
consider both the data and the interpretation to be the grounds of the 
TA’s argument. The future teaching actions are a claim about what in-
struction may be beneficial. The warrant is the hypothesis about expe-
riences that might shape or have shaped the students’ understanding. 
The way we map our model to Toulmin’s components is consistent with 
the cognitive theory that learning involves the interpretations a person 
ascribes to their experiences and the inferences made from these inter-
pretations (see Thompson, 2016 for an overview of this theory, which 
is based on work of the psychologist Piaget). 

3.2 Literature on Opportunities to Learn from Experience 

Our model is also shaped by studies of K-12 teachers, especially the re-
search of Horn and colleagues (e.g., Hall & Horn, 2012; Horn et al., 2015). 
Their work focuses on describing the “opportunities to learn” that teach-
ers create in conversation about student data and previous experiences, 
including how some opportunities may be stronger than others. 
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3.2.1 Opportunities to Learn 

In the theory developed by Horn and her colleagues described in the pa-
pers cited above, learning opportunities for improving one’s teaching are 
strongest when: teachers marshal observations and stances about teach-
ing experiences to mobilize themselves for future plans, and these plans 
represent skillful teaching. “Stances” refer to what the teachers believe 
is important for them to know about learning and teaching, and how to 
come by this knowledge. To put this in terms of our model, when the 
data and interpretation are strongly linked to the hypothesis and future 
teaching actions, in a way that is consistent with what is known about 
teaching quality, there is greater opportunity to learn. 

3.2.2 Features of Skillful Teaching 

In our view, which is consistent with the writing of Horn and colleagues, 
skillful teaching includes: responsiveness to and respect for student 
thinking; providing opportunities for students to articulate their think-
ing and respond to others’ thinking; maintaining cognitive demand (e.g., 
if an assigned question is challenging, the teacher helps the student work 
on the question without stripping away the difficulty); focusing students 
on core mathematical ideas, especially the meaning behind expressions 
and procedures; and inclusiveness (all students are attended to). Addi-
tionally, when students work on problems based on real-world scenar-
ios, the instructor helps the students understand the real-world context, 
how mathematics could model this context, and develop common terms 
to refer to key ideas in the context. Our views are informed by studies of 
teaching complex tasks (e.g., Jackson et al., 2013; Stein et al., 1996); stud-
ies linking qualities of teaching to student outcomes (Learning Math-
ematics for Teaching Project, 2011); and studies that identify and de-
scribe components of tasks of teaching (Boerst et al., 2011; Sleep, 2012). 

3.3 Parallels Between K-12 and Post-Secondary Education 

Commonalities between pre-calculus courses at the undergraduate level 
and the high school level make it reasonable to hypothesize that re-
sults from K-12 teacher education and professional development are 
also promising for development of instructors of undergraduates. After 
all, K-12 teachers and undergraduate course TAs share some challenges, 
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especially when TAs teach a course such as college algebra. Students 
typically enroll in college algebra through requirement rather than by 
choice; often they are placed in the course through a combination of as-
sessments and previous coursework. Students are likely to need many 
opportunities to break unproductive habits. College algebra is also a 
gateway to many courses needed for scientifically-oriented careers. 

We now discuss the particular TA development context in which we 
collected data on TAs’ thinking. 

4 Context, Data, and Method 

4.1 Context 

The TAs in this study were enrolled in a seminar on teaching and learn-
ing mathematics at the post-secondary level. The TAs all taught college 
algebra or intermediate algebra in sections of approximately 40 stu-
dents, consisting primarily of first-year college students. With few ex-
ceptions, every college algebra or intermediate algebra TA participates 
in the seminar. Each TA is the sole instructor for his or her section. The 
lessons in all sections feature small group discussions and small group 
work led by the TAs. Each beginning TA teaches only one section of the 
course; in subsequent years TAs would teach two courses in the fall and 
one in the spring. There are a few adjunct instructors (mostly former or 
current high school mathematics teachers), who teach college algebra, 
but TAs teach the majority of the sections. The adjunct instructors do 
not participate in the TA development program. 

The seminar met two hours per week in the fall semester, when the 
study was conducted. To help develop language for reflecting on teach-
ing, TAs read educational literature describing examples and theories for 
understanding student learning. These include Erlwanger’s (1973) clas-
sic account of a child’s arithmetic understanding, and Tsay and Hauk’s 
(2013) exposition of constructivism. In the seminar, TAs were asked to 
discuss teaching experiences in terms of the readings. 

4.2 Data 

We collected final papers written by all 16 TAs enrolled in the seminar. 
In these papers they were asked to (a) report on student performance 
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on a quiz they assigned, (b) interpret student thinking in the quiz per-
formance, (c) hypothesize about experiences that contributed to the stu-
dents’ thinking, and (d) propose future teaching actions to refine student 
thinking. In the assignment, the TAs were asked to focus on interpreting 
student work that was not mathematically valid. 

4.3 Rationale 

Recall that our aim is to study TAs’ thinking, and that we model TA think-
ing with four components (as shown in Fig. 1): data, interpretation, hy-
pothesis, and future teaching actions. The intention of the assignment 
was for TAs to hypothesize how or why students may have found their 
way to mathematically invalid reasoning, and for TAs to describe future 
teaching actions that are built on productive ways of thinking and pro-
vide settings where new ways of thinking might be useful. The assign-
ment is designed to elicit TA thinking for each component and how it 
related to the previous component: (a) data (b) interpretation (c) hy-
pothesis (d) future teaching actions. 

4.4 Analysis 

We analyzed the TAs’ papers in two parts. First, we examined the com-
ponents of the model represented, including whether TAs articulated 
the components and their connections clearly or if components were 
missing or conflated with other components, and to what degree they 
represented skillful teaching (as described in Sect. 3.2.2). Second, we 
examined the internal consistency or inconsistency (i.e., at least two 
components contradict each other) of the components. As discussed 
previously (in Sect. 2), TA12’s paper is an example of an internally con-
sistent paper. The paper written by TA13 (discussed in more detail in 
Sect. 5) provides an example of inconsistency as well as conflated com-
ponents. TA13 interpreted that students see equations as “a string of 
symbols to memorize.” Later TA13 stated several hypotheses, including 
“When my students see an equation, their first thought is that they have 
to memorize it” and that students were “uncomfortable” with function 
notation (TA13 Final paper, pp. 1–2). Thus the hypothesis and interpre-
tation are conflated. Furthermore, she then described future teaching 
actions that deliberately avoided addressing or using function notation. 
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These future teaching actions are inconsistent with the hypothesis and 
interpretation, because they seek to address students’ use of function 
notation without opportunities for students to use function notation. 

We compared the consistency and connectedness of papers relative 
to each other, rather than to an external standard. The reasons for this 
approach were twofold. First, to our knowledge, there is no widely-ac-
cepted rubric for judging the coherence of pedagogical argument, though 
there are theories about the components of such an argument (which 
we used as a foundation for this study, as discussed in Sect. 3.2). Second, 
it is a well-established cognitive science result that people are more re-
liable comparing impressions against one another than judging an im-
pression of quality in isolation (Laming, 1984; Thurstone,1927). The 
relative comparisons can then be used to sort objects into categories of 
relative quality and identify attributes contributing to the impression of 
quality (e.g., McMahon & Jones, 2015). We classified papers into “high”, 
“medium”, and “low” connectedness by consensus, in which at least four 
of the chapter authors weighed in on each paper, with more authors dis-
cussing controversial papers. Highly connected papers articulated all 
four components with internal consistency. Papers with medium con-
nectedness conflated components (for instance, TA13) and were not en-
tirely internally consistent. Low connectedness papers did not specify 
the reasoning between each component, for instance leaping from data 
to future teaching actions (as is the case with TA02, to be discussed fur-
ther in Sect. 5). 

During this analysis, we discovered a highly connected paper that did 
not feature a coherent argument. Although we agreed that the TA at-
tempted to connect all components, and we also agreed on the specific 
weaknesses of the argument, we disagreed on the plausibility of the con-
nections, and we never resolved our disagreement. We called this type 
“highly connected with low coherence.” We classified two other papers 
in this way. 

5 Results 

We asked: How do TAs connect observations and beliefs about their 
students, hypotheses about student thinking, and proposed next teach-
ing actions? Table 1 summarizes the TAs’ papers by category. Figure 2 
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shows the connectedness paths exhibited in our data. We now illustrate 
each path with an example paper. To retain anonymity of the TAs, we use 
the same pronoun, “she”, to refer to all TAs. (Of the 16 TAs in the cohort 
studied, nine were female.) 

Table 1. TA papers by category

Connectedness  Which TAs’ final papers exhibited this connectedness

High  TA04, TA05, TA08, TA11, TA12, TA15
High, with low coherence  TA02, TA10, TA14
Medium  TA01, TA06, TA13, TA16
Low  TA03, TA07, TA09

Fig. 2. Connectedness of TA papers. Key: D = data; ST = student thinking; H = hypoth-
esis; FT = future teaching actions; X = component absent; ⊕ = conflated components; 
•—• = link was attempted and satisfied criteria; •—?    •  = no consensus from research 
team on whether link is plausible; • − / − • = future teaching actions do not plausibly 
address student thinking identified in data.



L a i  et  a l .  i n  M at h e m at i c s  E d u c at i o n  ( 2 0 1 6 )       13

5.1 Illustrations of Paths of TAs’ Thinking 

5.1.1 High Connectedness (H1 in Fig. 2; TA12) 

TA12’s paper (described in Sect. 2) is highly connected. She described 
all four components, and the components and her reasoning from one 
to the next were internally consistent. 

5.1.2 High Connectedness with Low Coherence (H’1; TA02) 

TA02 posed the quiz problem, “How would you find the y-intercept of 
a function f ? Explain why your method gives the y-intercept.” Several 
students responded similarly to: “You would plug in a zero into the x. 
By putting zero into the x, the y-intercept would be the only thing left.” 
TA02 concluded, “It seems that they view ‘plug in 0 for x’ as a way to get 
rid of the x, rather than a consequence of the fact that if a point is on the 
y-axis, its x-value must be 0” (TA02 Final paper, p. 2). As a result, TA02 
hypothesized, “They see the graph and the equation as two distinct ob-
jects—related, because you can sketch the graph given the equation, 
but not exactly representing the same mathematical relationship. The 
confusion about how to find the y-intercept is probably a special case of 
this disconnect” (p. 2). TA02’s interpretation and hypothesis are plau-
sibly linked to the data. 

TA02 proposed that in the future, she would design a worksheet that 
asked students to sketch a graph of a given function, complete an input/
output table, and sketch vertical lines on the graph. The intention would 
be for students to experience finding outputs of a function both using its 
defining equation and using intersecting the graph of the function with 
vertical lines. While the worksheet does link to the hypothesis, it did not 
plausibly address the TA’s interpretation of student thinking. The first 
worksheet question asked students to graph a function defined by an 
equation. However, assuming TA02’s interpretation of student thinking, 
the student most likely would struggle with graphing. It is possible that 
the remainder of the worksheet would have helped the student recog-
nize the connection between graphs and equations, but this assumes 
that the student would be able to begin the work. We classified this pa-
per as an example of an H’1 pathway where despite plausible links be-
tween components, the argument still does not hold together. 
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5.1.3 Medium Connectedness (M1; TA13) 

Using data from a unit exam question involving revenue, profit, and cost 
(denoted R(n), P(n), C(n) respectively), TA13 observed: 

… many of them seemed to think that an equation was a string 
of symbols to memorize, as opposed to something that they 
were capable of understanding or even constructing on their 
own. … During the exam I had students raise their hands and 
tell me, ‘I forgot the formula from class!’ They wrote down 
things like P(n) = R(n)+ C(n), P(n) = C(n) − R(n) , … This was 
very surprising because I am confident that every one of them 
has an intuitive understanding of the concept of ‘net gain’. This 
reminded me very much of the situation described in the pa-
per Mathematics in the Streets and in Schools [Carraher et al., 
1985], in which kids were perfectly capable of doing arithme-
tic in the marketplace, but when handed pencil and paper and 
asked to work the same problems out symbolically, were fre-
quently flummoxed. (TA13 Final paper, p. 1) 

To address the students’ conception of equation, TA13 proposed to 
use a story about a renter saving up money for an upcoming vacation to 
derive a formula involving rent R, living expenses L, monthly income I, 
savings S, and the cost T of round trip plane tickets. As the students ar-
rived at expressions to solve the problem, TA13 would ask students to 
justify their findings. TA13 explained that this task 

requires students to create something, as opposed to manip-
ulating a formula that is given … It would get students used to 
the idea that equations are not divinely inspired, can be written 
by ordinary people, and used as shorthand to describe events 
that are entirely understandable (p. 4). 

Prior to describing these future teaching actions, TA13 put forth sev-
eral hypotheses, including students’ discomfort with the terms “reve-
nue” and “profit,” with function notation, and with the notion of inputs 
and outputs of a function. However, these hypotheses do not link plau-
sibly to the future teaching actions; TA13 notes that she purposefully 
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designed the worksheet to avoid function notation, even if there are vari-
ables used. There is also no mention of revenue and profit. 

TA13 proposed one more hypothesis that she emphasized as the most 
probable cause: “When my students see an equation, their first thought 
is that they have to memorize it” (p. 1). TA13 described other situations 
where schooling mandated memorization because the information was 
in some sense arbitrary, such as naming the 50 states and their capitals. 
Although this last hypothesis does connect to the future teaching ac-
tions proposed, it only restates the interpretation of student thinking. 

TA13 interpreted student thinking in a way that was consistent with 
the data. The future teaching actions are connected to the interpretation 
of student thinking and the data. Although she attempted to describe 
experiences that shaped student thinking, the only applicable hypothe-
sis restated the description of student thinking. In other words, TA13’s 
paper conflated interpretation of student thinking and hypothesis. For 
these reasons, we categorized TA13’s paper as an example of medium 
connectedness. 

5.1.4 Low Connectedness (L2; TA03) 

On a quiz given by TA03, students were unable to articulate the dif-
ference between the word “constant” and the phrase “constant rate of 
change.” Concerned that the students may not understand that these 
terms denote fundamentally different ideas, TA03 allowed students time 
to discuss the difference between the terms in groups. However, confu-
sion persisted. TA03 attributed this misunderstanding to lack of preci-
sion in language and grammar, leading students to gloss over verbal dif-
ferences between the two terms. TA03 went on to suggest that lack of 
precision causes students to group together similar looking functions, 
even to the extreme of “glossing over the distinction between lines with 
slope zero and lines with nonzero slope” (TA03 Final paper, p. 1). Gen-
erally, TA03 was concerned that imprecise language leads to confused 
mathematical thinking. 

TA03 then proposed that in the future, she would ask students to 
graph the monthly profits of two businesses in a story problem, one 
whose monthly profits are a constant function of time ($1000 each 
month), and the other whose monthly profits have a constant (nonzero) 
rate of change over time ($1000, $1200, $1400, etc.). TA03 reasoned, 
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“Get students to admit that the second business is much different than 
the first; in fact, it’s much better! Then, and only then, broaden out the 
discussion to include the actual words ‘constant’ and ‘constant rate of 
change’. … By building a common starting point through discussing 
which business is doing better than the other, the teacher can buy them-
selves enough goodwill to introduce the more abstract terminology” (p. 
3). This activity targets the confusion encountered in class with regard 
to the two terms. However, the activity neither addresses precision of 
language or precision in a students’ view of functions in any significant 
way. That is, this activity does not build on the hypothesis. Hence, the 
future teaching actions are connected to the data, but not to any com-
ponent between data and future teaching actions, despite an effort on 
the part of TA03 to do so. We speculate that one source of this issue for 
TA03 is that she genuinely believes that addressing precision of language 
in general would solve many problems. Perhaps this view pervaded her 
thinking so strongly that TA03 struggled to identify a hypothesis that 
provided more guidance for future teaching actions. 

5.2 Summary of Findings 

We modeled TAs’ final papers as a practical argument with four com-
ponents. We found that components could be present, absent, or con-
flated, and we found that connections could be present, absent, inter-
nally consistent, or internally inconsistent. In some cases, we found TAs 
connected components that were non-adjacent in our model without 
connecting adjacent components. We also found one final paper in which 
the research team arrived at consensus on weaknesses of the TA’s argu-
ment but could not arrive at consensus on whether links were plausible. 
In total, our data of the 16 TAs’ final papers exhibited 12 paths in four 
categories. We illustrated one example path for each category. 

6 Reflections on TA Education 

As we specifically analyzed TAs’ written reflections to an assignment 
from the TA pedagogy course, we detected different levels of TA reflec-
tion, as well as different patterns of components and connections. We 
were able to categorize papers as high connectedness, high connected-
ness with low coherence, medium connectedness, and low connectedness. 
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We believe these results are valuable for TA development. First, in 
terms of research, they extended theory from the K-12 teacher educa-
tion literature on opportunity to learn to post-secondary instruction. 
As far as we know, theorizing on opportunity to learn in the context of 
TA development is novel. Second, more practically, our results support 
research into TA learning by describing ways in which TAs may, or may 
not, connect their experiences to future teaching. 

Learning from experience is the goal of many TA development pro-
grams, but as the research in K-12 teacher education and our own results 
show, the potential for TAs to learn from experience can vary. What we 
have added to this conversation is particular examples of how TA learn-
ing opportunities can vary, even when the TAs are asked to do similar 
tasks. TAs whose papers were categorized as high connectedness were 
able to clearly articulate the four assignment components, as well as ex-
plicit links and connections among the components. TAs in this category 
have illustrated their capacity to act as reflective practitioners, and use 
their understanding of student thinking to support student learning. 
TAs whose papers were categorized as high connectedness with low co-
herence were able to articulate components, but the links were weaker 
or implicit. These TAs were on their way to becoming more reflective as 
teachers: they have the components, but need to learn to better artic-
ulate connections or links among those components. Given the limita-
tion of analyzing written reflections, we can only conclude the TAs did 
not write about the connections among the components; it may be the 
TAs did see those connections, but need further practice in expressing 
teaching reflections in writing. 

Other TAs were still at a stage in which written reflections did not cap-
ture the type of components and connections intended, but instead re-
vealed the struggles of novice instructors trying to make sense of student 
thinking and determining how to respond. These TAs at the mid and low 
connectedness prompt us to think about how we might better support 
TAs in being explicit in their writing, and help TAs to both see and ex-
press connections among the components. When we do not see explicit 
links or components, we do not always have enough information to judge 
whether the omission was truly a reflection of the TAs’ maturity as a prac-
titioner, or instead, a reflection of the TAs’ skills in reporting their thoughts 
and actions in a written reflection. We sometimes find TAs who are pur-
suing doctorates in mathematics profess to “not be good at writing” and 
who struggle to express their thoughts in coherent written paragraphs. 
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In considering what we have learned and others who might learn 
from our experience, we turn to our model of TA thinking. In this meta 
analysis, the data are the TAs’ final papers. We interpret that while TAs 
are invested in helping their students learn and are committed to helping 
students construct knowledge, their proposed teaching actions do not al-
ways align with their interpretations of student thinking. We hypothesize 
that seminar discussions, in which TAs practiced describing their expe-
riences in terms of literature on constructivism, fostered the TAs’ dedi-
cation to giving students experiences to develop their own mathemati-
cal knowledge. Across the cohort of TAs, we saw this evidenced in their 
proposed teaching. We also hypothesize that these seminar discussions 
did not support TAs in selecting hypotheses or connecting components 
because they emphasized the components rather than the connections. 
Several TAs suggested hypotheses that they did not design instruction 
to address. In each of these cases, the hypotheses were general state-
ments about students’ ways of doing mathematics that would be diffi-
cult to mediate in the span of a lesson, rather than hypotheses that spe-
cifically applied to student performance on quiz problems. 

We propose that in the future, TAs continue to read literature that 
encourages them to see the value of students discovering mathemat-
ics. We also propose that TAs hold seminar discussions in front of their 
peers, where they make explicit the connections between future teach-
ing actions to hypotheses. In these discussions, the facilitator and peers 
would help revise one TA’s hypotheses and teaching actions to be bet-
ter defined and more strongly connected. This public revision is remi-
niscent of discussions between mentor and mentees to design action re-
search, where the goal is to define addressable research questions and 
design data collection and analysis that address the research questions. 
In this analogy, research question is to hypothesis as data collection and 
analysis are to future teaching actions. Holding a public discussion aligns 
with research on K-12 teachers’ learning suggesting that when groups of 
teachers reflect on experience, they create a “collective zone of proximal 
development” (Engeström, 1987) where they learn more than would be 
possible individually. 

Finally, we comment that it is reasonable to wonder whether hav-
ing TAs focus on student error is productive: will that reinforce deficit-
views of student thinking? In our experience, many TAs enter graduate 
school believing that students’ mathematical thinking is either right or 
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wrong, and student learning can be accomplished by exposure to “right” 
ways. For instance, when discussing why students might struggle with 
composition of functions, TAs at the beginning of the semester have of-
ten proposed, “The students just need to learn the rule.” We have found 
that discussing student errors has helped TAs move away from black 
and white judgments of student thinking. The TAs’ final papers, even 
those of low connectedness, displayed more potential for sensitivity to 
student thinking than at the start of the semester. We also have the im-
pression that the cohorts have become more sensitive to student think-
ing over time, which we attribute in part to new graduate students en-
tering a culture where a critical mass of TAs hold a more constructivist 
orientation. We are optimistic that this trend will grow in the future. To 
continue encourage this trend to continue, we propose two changes. The 
first is to focus seminar discussions and assignments on unexpected cor-
rect solutions to complex tasks, and the second is focusing TAs’ hypoth-
eses more explicitly on what about the student thinking can be built on 
in future teaching actions. 
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