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Abstract

Linear structure and invariant subspaces of nonlinear dynamics are revealed, extending

the superposition principle and invariant subspaces from linear dynamics. They are achieved

by considering dynamics in its dual space and the local spectral Koopman theory. The

Koopman eigenfunctions constitute invariant subspaces under the given dynamic system,

providing convenient bases for the linear structure. On the other hand, the locality and

infinite dimensionality are identified as two unique properties of nonlinear dynamics, where

the former refers to the spectral problem is locally defined, and the latter refers to Koopman

spectrums are recursively proliferated by nonlinear interaction.

Koopman spectral theory is studied. For a linear time-invariant (LTI) system, its lin-

ear spectrum is a subset of Koopman spectrums. High order Koopman spectrum can be

obtained for nonlinear observables using the proliferation rule. For a linear time-variant

system (LTV), Koopman decomposition is obtained by the eigenvalue problem of its fun-

damental matrix. Besides the general LTV, the periodic LTV system is studied using the

Floquet theory. The Floquet spectrums are found to be Koopman spectrums. For a non-

linear system, a local Koopman spectrum problem is defined for a parameterized semigroup

Koopman operator, and the simple local spectra are found to be conditionally continuous

from the operator perturbation theory. The proliferation is found to recursively applicable

to nonlinear dynamics. Moreover, the hierarchy structure of the Koopman decomposition

of nonlinear systems is discovered, by decomposing dynamics into base and perturbation on

top of it.

The numerical algorithm, dynamic mode decomposition (DMD), is examined for its ap-

plicability to capture the spectra and modes for a variety of dynamic systems. A more

robust and efficient framework based on generalized eigenvalue problem (GEV) is proposed,

which is then solved by a least-square solution (LS) or a total least square solution (TLS).



Therefore, two algorithms, DMD-LS and DMD-TLS algorithm, are developed. DMD-LS

algorithm is mathematically equivalent to the standard DMD algorithm first proposed by

Schmid (2010) but more robust. DMD-TLS is more accurate for noise data. A residue-based

criterion is developed to choose dynamically important or true DMD modes from trivial or

spurious modes that often appear in DMD computations.

Linear structure via Koopman decomposition is first applied to a linear dynamic system

and an asymptotic nonlinear system, for example. Then flow past fixed cylinder of a Hopf

bifurcation process is numerically studied via DMD technique. The equivalence of Koopman

decomposition to the GSA is verified at the primary instability stage. The Fourier modes,

the least stable Floquet modes, and their high-order derived Koopman modes are found to

be the superposition of countable infinite Koopman modes when the flow reaches periodic by

considering continuity of Koopman spectrum and the invariance of Koopman modes to the

nonlinear transition process. The nonlinear modulation effects, namely, the modulation of

the mean flow and the resonance phenomena is explained similarly. The coherent structures

are also found to be related to the decomposition.

A DMD based model order reduction method is implemented based on Galerkin projec-

tion. The model reduction approach is applied to both the transitional and the periodic

stages of flow passing a fixed cylinder. Accurate dynamics and frequencies are rebuilt.
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Chapter 1

Introduction

No man ever steps in the same river twice, for it’s

not the same river and he’s not the same man.

Heraclitus (Greek), 544-483 BC

1.1 Introduction of dynamic systems

The Greek philosopher Heraclitus believed that the cosmos was undergoing constant chang-

ing, as day became night and hot became cold. To him, the constant changing of reality was

one fundamental constancy. All things were always in flux, and the only thing that did not

change was changing itself.

Nowadays, what Heraclitus described is known as dynamic systems, which study the

changing of objects. Their research topics range from the motion of the smallest scales atoms

to the motion of the largest scale celestial objects, or from the growth of living embryo to

the mechanical motion of machinery, or from deterministic systems to the highly nonlinear

systems which may subject to unpredictable factors such as economics. In short, it studies

variables changing with time

x = x(t). (1.1)

For example, the trajectory of a raindrop falling on a valley, as illustrated in figure 1.1
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is a dynamic system.

Hengjiang River

Pond

Mount Qiyun

Figure 1.1: Water drop dynamics on a landform at the valley of Qiyunshan, Anhui, China.
Photo courtesy Dr. Tianxiang Xia.

A water drop subjects to the gravity and the constraint of landform. From one’s expe-

rience, it is not difficult to conjecture the possible trajectory. For example, a raindrop that

falls sufficiently close to the river will flow into it and travel within it, as indicated by the

red vectors. Water drops sufficiently close to the water pond may flow into the pond, as

illustrated by blue vectors. Alternatively, some raindrops fall on the Qiyun mountain will

first travel to the mountain creek and eventually flow into the Hengjiang River, as shown by

the yellow arrows.

The above example shows some essential characters of a complex dynamic system. First,

a dynamic system is usually quite simple in a local area. It can be joined piece-wisely to give

the overall dynamics as the piecewise trajectory shown in figure 1.1. Secondly, the landform

represents several key features of a dynamic system. For example, the water pond acts as

the attraction basin, and water surrounds it will flow in and stay there. On the contrary,

the mountain acts as a repellent from which water flows away. The river represents another

phenomenon. It is unstable in one direction, but stable in others.
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Though it is easy to find the trajectories for a dynamic system equipped with a convenient

geographical view, however, not all dynamic systems are so. Moreover, the crude linearized

trajectories may not provide enough accuracy for our needs. A modern dynamic system is

usually described by the differential equations following Newton and Leibniz, and dynamics

are obtained by solving it

ẋ = f(x, t). (1.2)

Here ẋ = ∂x
∂t

is the time change rate of the quantities of interested. f(x, t) is the function of

current status and current time.

Unfortunately, without the geographic map, it is hard to obtain the ‘bird view’ as we

did in figure 1.1. Also, the analytical solution is even harder to obtain. Though sometimes

the above piecewise study can be carried out, it is usually restricted to the linear stability

analysis around specific equilibrium points. A more practical approach is to study the

specific trajectory starting from some given initial points. However, in this approach, our

understanding of the system is still limited. From time to time, the ‘bird view’ of the problem,

instead of specific trajectories, is needed. To build such a map is the initial motivation for

this work.

Though the techniques we developed in this work apply to general dynamic systems, we

mainly study the fluid dynamic system, which is introduced in the next section.

1.2 Fluid mechanics and Navier-Stokes equation

Now I think hydrodynamics is to be the root of all physical science

and is at present second to none in the beauty of its mathematics.

William Thomson (Lord Kelvin), 1824-1907

Lord Kelvin was right when addressing George G. Stokes in a letter in 1857, remarking the

status of fluid mechanics. Especially if one recalls the 200 years’ development of mechanics

since Newton published the famous ‘Philosophia Naturalis Principia Mathematica’ in 1687,

the foundation of classical mechanics.
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The study of fluid mechanics dates back to the Greek mathematician Archimedes (287-

212 BC) provided an exact solution to the fluid-at-rest problem and the expression for the

buoyant force on various bodies. The progress is stagnant until the Renaissance genius,

Leonardo da Vinci (1452-1519), deduced the conservation of continuity of incompressible

flow in one dimension. Moreover, he left detailed descriptions and sketches of the smooth

and eddy motions of water up to 121 pages in his notebook (Gad-el Hak, 1998). Even today,

his notion, such as coherent structure, eddies, eddying motions are still used in the same

way. Besides the interest of water, he also studied aerodynamic. He designed parachutes,

jets, helicopters, and wind vanes.

(a) Water jet from square hole to pond (b) Water separated by bluff body

Figure 1.2: Water motion sketched by Leonardo da Vinci

Fluid mechanics comes to its summit when the fluid dynamics equations are developed.

The principle of fluid mechanics is summarized in the Navier-Stokes equation. Notable

names shine during the development of these equations. Navier (1823), Cauchy (1828),

Poisson (1829), Saint Venant (1843), and Stokes (1845) provided an excellent model for

both laminar and turbulent flows. The set of equations were written

∂ρ

∂t
+

∂

∂xk
(ρuk) = 0, (1.3)

ρ

(
∂ui
∂t

+ uk
∂ui
∂xk

)
=
∂τki
∂xk

+ ρgi, (1.4)

ρ

(
∂e

∂t
+ uk

∂e

∂xk

)
= −∂qk

∂xi
+ τki

∂ui
∂xk

. (1.5)
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where ρ is the fluid density, uk is the velocity in x, y, z-direction respectively. τki is the

second order stress tensor. gi is the body force per unit mass in three dimensional, and e is

the internal energy per unit mass. qk is the heat flux due to conduction and radiation.

However, the flow equation is not closed. The number of unknowns (17) is greater

than that of equations (5). To close the Navier-Stokes equations, some efforts need to be

undertook. If fluid is Newtonian, isotropic, ideal gas(for gas), and assume Fourier law for

heat flux and symmetry of stress tensor, the Navier-Stokes equations are reduced to the

following simplified form.

∇ · u = 0, (1.6)

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u. (1.7)

These are non-dimensional equations, where x = x∗

L
, y = y∗

L
, z = z∗

L
, t = t∗

L/U
, u = u∗

U
,

v = v∗

U
, w = w∗

U
, p = p∗

1
2
ρU2 . (·)∗ are dimensional variables and (·) is the corresponding

non-dimensional ones. L is the characteristic length and U is the reference velocity.

Re =
ρUL

µ
(1.8)

is called Reynolds number in honer of Osborne Reynolds for his classic experiments in 1883,

which revealed the flow instability phenomena.

The above equations are nonlinear. Only a few simple cases can be solved analytically.

In practice, people usually observe the experimental result or search the numerical solution

with the aid of computers.
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1.3 A linear dynamic system example

1.3.1 The superposition principle

It is well known a linear system has superposition principle, that is, net response of a linear

system to multiple excitation is the linear sum of each caused by the excitation individually.

For instance, water ripples in figure 1.3 on a pond look like one superimposes on another, as

wave on water surface is described by linear wave equation (Dean and Dalrymple, 1991).

Figure 1.3: Water ripples. Photo courtesy of Jim Simandl, Golden Gardens Park, Seattle.

More specifically, putting above relation in equation, for a linear system

ẋ = f(x), (1.9)

where f(ax1 + bx2) = af(x1) + bf(x2) for any x1, x2, a, b ∈ R. If x1, x2 both satisfy the

equation, then ax1 + bx2 is also its solution, since

d

dt
(ax1 + bx2) = aẋ1 + bẋ2 = af(x1) + bf(x2) = f(ax1 + bx2). (1.10)

The principle of superposition provides great advantage to solving and understanding linear

dynamics.
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1.3.2 The invariant subspace

Linear dynamics can be decomposed into invariant subspaces, which can be illustrated by a

linear time-invariant (LTI) system

ẋ = Ax, x(0) = x0. (1.11)

x ∈ Rn and A ∈ Rn×n. If A is diagonalizable, and A = V ΛV −1, the solution of to

equation (1.11) is given

x(t) = V eΛtV −1x0 = c1e
λ1tv1 + · · ·+ cne

λntvn, (1.12)

λi is the eigenvalue, and vi is the eigenvector. c = V −1x0 is the initial condition. Therefore,

the solution is decomposed into a set of independent and invariant subspaces spanned by

the eigenvectors

Si = Span{vi}, (1.13)

since Avi = λivi ∈ Si. Additionally, each invariant subspaces has exponential dynamics.

The invariant subspaces give extra convenience for dynamics analysis.

1.4 Model decomposition and spectral Koopman de-

composition

In the study of the nonlinear dynamic systems, one hardly obtains the dynamics by analyt-

ically solving the dynamic equation. Instead, experimental or numerical observation of the

dynamics is usually adopted. However, the large volume of data collected can be formidable

for such task. The observation is usually more fruitful if the dynamics are decomposed into

some finite-dimensional modes since a small number of them is enough to capture the most of

the dynamics. The bases or modes for modal analysis are an important topic in dynamic sys-

tem study. One type of selection is the predetermined modes such as the Fourier series, the
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Chebyshev series, the Bessel series, or other trigonometry or polynomial series determined

by the Sturm-Liouville theory (Marchenko, 1977). Another type is the dynamics induced

modes, often termed empirical modes, usually extracted from snapshots of the dynamic sys-

tem. They are more efficient than the predetermined modes since fewer modes are needed

to produce the equivalent reconstruction. For instance, proper orthogonal decomposition

(POD) can efficiently capture the dynamics of turbulent flow (Holmes et al., 1996a). How-

ever, POD was criticized for not capturing some essential dynamics. Thus a modification

called balanced POD or BPOD based on balanced truncation is proposed (Ilak and Rowley,

2008). Dynamic mode decomposition (DMD) (Schmid, 2010) based on the eigendecomposi-

tion of a linear approximation system constitutes another option. Other options are available

but not listed here.

Among them, DMD, the one based on linear invariant space of the dynamic system, is of

particular interest as the dynamics follow the simple exponential law. This technique works

for a linear time-invariant (LTI) system. However, its extension to a linear time-variant

(LTV) system and a nonlinear dynamic system is not straightforward. There is no rigorous

definition of spectrum for a nonlinear system, not to mention that nonlinearity has the noto-

rious reputation of making the nonlinear dynamic systems more complicated. For example,

nonlinearity creates more complicated modes by the interaction of flow structures. Also,

it modulates the base flow or other flow structures or changes the otherwise simple linear

exponential growth (Landau and Lifshitz, 1959). Moreover, from the theory for nonlinear

dynamic systems, they admit more complicated equilibrium points such as stable or unstable

nodes, spirals, limit cycle solutions, or even multiple of them, or other complicated solutions

such as strange attractor, chaos (Strogatz, 2018).

1.4.1 Koopman operator and spectral decomposition

The study of Koopman operator (Koopman, 1931) on nonlinear dynamic systems can date

to the 1920s and 1930s when mathematical physicians are interested in the mathematical

formulation for the second law of thermodynamics. They need to describe and identify
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“microscopically any system approaches an equilibrium state.” (Reed and Simon, 1972)

From the macroscopic point of view, the thermal statement of approaching equilibrium

is obvious. However, from a microscopic point of view, a system approaches equilibrium is

surprising since microscopically, there is no steady state. Therefore, a microscopic justifi-

cation of thermodynamics must be able to explain the macroscopic second thermodynamic

law.

The explanation comes when realizing thermodynamical systems undergo fluctuations.

The equilibrium of the thermodynamic system is not an absolute statement about the system

at a fixed time, but rather is the statement made over periods long for some characteristic

times. Therefore, the equilibrium of thermodynamics should deal with average measurements

of observables during time Tc.

The average of some observable defined on the dynamic system over the periodic Tc

reaches some equilibrium is given by

lim
N→∞

1

N

N∑

i=1

f(T ix) = f ∗, (1.14)

assuming in Tc period, the system evolves N steps. The induced operator U by the map T

Uf(x) = f(Tx), (1.15)

is called Koopman operator. Thus the second thermodynamic law is related to the fixed

point of Koopman operator.

A fixed point is closely related to the spectra of U . There is a theorem which says

the map T is ergodic if and only if 1 is a simple eigenvalue of U , and the corresponding

eigenfunction f ∗(x) is a constant function. A similar but stronger statement for the ‘mixing’

is also proved (Reed and Simon, 1972, (see, chap. VII.4)).

The previous works focus on the particular spectrum (λ = 1) of the dynamic systems.

Mezić (2005), on the other hand, studied the spectral decomposition of the induced unitary

Koopman operator acting on some measure-preserving systems. His study sheds light on
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the nonlinear dynamic systems in that the spectral decomposition of the linear yet infinite-

dimensional Koopman operator (Mezić, 2005; Rowley et al., 2009) providing bases for dynam-

ics decomposition. This linear operator captures full dynamic information of the nonlinear

systems and is applied to various applications. Mezić (2005) studied the Koopman spec-

trum of a nonlinear dynamic system working around an attractor by harmonic averaging

or discrete Fourier transform. Rowley et al. (2009) numerically studied the spectrum of jet

flow. The Koopman spectrum can be obtained by studying its adjoint, the Frobenius-Perron

operators (Frobenius et al., 1912; Perron, 1907), of which, Bagheri (2013) computed the

Koopman spectrum of Kármán vortex.

The mathematical physicians studied the spectrum of Koopman operator in the global

sense, while dynamics oriented researchers studied the spectrum in a local sense (focusing

on some particular stages). In this work, a local spectrum definition is given and used to

analyzing nonlinear dynamics.

1.5 Highlight of the work

The main contribution of this research is in the following four aspects.

1. A local Koopman spectrum problem is proposed for nonlinear dynamic systems.

(a) The point spectrums are due to nonlinearity.

(b) The point spectrums are extended to global domain by employing operator per-

turbation theory

(c) The hierarchy structure of Koopman decomposition is discovered for nonlinear

dynamics.

2. Linear structure of nonlinear dynamics is proposed.

(a) The linear structure is due to the completeness of dual space of the dynamics.

(b) Universal properties of dynamics are linear structure and invariant subspaces.
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(c) Nonlinear dynamics have unique properties as locality and infinite-dimensionality.

(d) Other decomposition techniques are found to be related to linear structure.

3. A new framework based generalized eigenvalue problem for DMD algorithm is pro-

posed.

(a) Generalized eigenvalue problem provides a robust algorithm for DMD algorithm.

(b) The generalized eigenvalue problem is solved in a projection approach.

(c) DMD-LS and DMD-TLS algorithms based on least-square and total least-square

problem are developed.

(d) A residue-based mode selection criterion is developed.

4. A nonlinear transition process is studied by the Koopman decomposition. The follow-

ing are explained by Koopman decomposition.

(a) Fourier expansion.

(b) Floquet theory.

(c) Resonance effect.

(d) Coherent structure

1.6 Contents of this work

The following summarizes the content of this work.

The Koopman operator and its local spectrums are introduced in chapter 2. We first

study the Koopman spectrum of an LTI system. Generalization is made to the local spec-

trum (in time) for an LTV system. The local spectrum is further extended to the nonlinear

autonomous dynamic systems. The hierarchy of Koopman decomposition for nonlinear dy-

namics is introduced. A proliferation rule is derived for the nonlinear observable, which

applies recursively to the nonlinear systems. Discussion of continuity of these point Koop-

man spectrum is undertaken.
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Koopman modes are discussed in chapter 3. They are state-independent if the local

spectrum is continuous. Koopman modes of linear systems are first analyzed. A multiple-

scale analysis and the asymptotic expansion are performed on a nonlinear system. Koopman

decomposition provides a full solution of global stability analysis and carries rich information

about the dynamic systems.

DMD, a data-driven technique, is examined its applicability to capture the spectrum and

modes of various dynamic systems in chapter 4. A new and general framework based on

generalized eigenvalue problem (GEV) for DMD algorithm is proposed. The GEV is then

transformed into a solvable form by projection, resulting in the projected-GEV. Two related

algorithms, DMD-LS and DMD-TLS algorithm, are proposed. A residue-based process to

identify the Koopman modes is introduced.

The linear structure of nonlinear dynamics is explained in chapter 5. Particularly, we

discussed the significance of Koopman decomposition for dynamic analysis. Moreover, other

bases for the linear structure are discussed.

The numerical algorithm for simulating fluid dynamics is introduced and benchmarked

in chapter 6.

The newly developed projected-DMD algorithm is benchmarked at chapter 7. The dy-

namics of Kármán vortex after a fixed cylinder is studied and compared with the literature.

The DMD-TLS is shown to be more accurate for noisy data.

Dynamic systems with constant spectra are studied in chapter 8. A mass-spring linear

system is first studied using a modified DMD-TLS algorithm. The second example studies

an asymptotic nonlinear system. Though simple, it illustrates that Koopman decomposition

is ideal for modal analysis or instability analysis of nonlinear systems.

The nonlinear transition of a Hopf bifurcation problem is studied in chapter 9. The

transition from the fixed unstable equilibrium to the stable limit cycle is studied using

the linear structure via Koopman decomposition. The study provides an insight into the

transition of the nonlinear systems.

The locality of Koopman decomposition requires an efficient algorithm to provide the

global dynamics, reduced-order modeling based on Koopman modes by Galerkin projection
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is then presented in chapter 10.
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Chapter 2

Koopman operator and Koopman

spectrum

After endless mountains and rivers that leave doubt whether there is a path out,

suddenly one encounters the shade of a willow, bright flowers and a lovely village.

Lu You (China), 1125 - 1210

The Chinese Southern Song Dynasty poet Lu You described his pleasant journey to

a country village 800 years ago after a frustrating struggle for a route. Those trials are

rewarding, as there might be a delightful experience awaiting us.

2.1 Introduction to Koopman operator and Koopman

spectrum

Considering the following dynamic system evolving on a manifold M such that ,

xk+1 = f(xk), (2.1)

xk ∈ M. f is the map from M to itself evoluting the dynamics one step forward, and k

is an integer index. (Though a somewhat different definition for the continuous differential
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system will be given later, we will focus on the discretized form as if the continuous one can

be reasonably discretized. )

An observable g is a function defined on the manifoldM, g :M→ R. The use of observ-

able to study dynamics introduces more flexibility for many applications. Moreover, for some

systems, the trajectories x may not always be available or of interest. For example, Lasota

and Mackey (2013) studied the probability density function (PDF) instead of the sensitive

chaotic trajectory to understand the dynamics of the nonlinear deterministic system.

The Koopman operator U (Koopman, 1931) is a linear operator defined on the observable,

such that it evolves the observable one-step forward.

Ug(xi) = g(xi+1) = g(f(xi)). (2.2)

Koopman operator is linear, since

U(αg1 + βg2)(xi) = αg1(xi+1) + βg2(xi+1) = αUg1(xi) + βUg2(xi). (2.3)

The linearity of Koopman operator facilitates the spectrum analysis. In fact, the Koopman

operator admits a unique decomposition into the singular and regular part (Mezić, 2005;

Reed and Simon, 1972).

U = Us + Ur (2.4)

Us, Ur are the singular and regular operator defined on the same domain as U . Us has pure

discrete spectrums while Ur has continuous spectrums. For simplicity this work consider

the singular part such that U = Us. Following Mezić (2005), the spectrums of Koopman

operator

Uφi(x) = ρiφi(x), i = 1, 2, · · · , (2.5)

where φi(x) :M→ R is the Koopman eigenfunction, and ρi ∈ C is the Koopman spectrum.

However, continuous spectrums are not uncommon in many systems. For a bounded

domain or discrete system, its spectrum is usually expected to be discrete. While for the
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unbounded system, such as Bénard convection between infinite horizontal planes and plane

Poiseuille flow, the spectrums of the linearized perturbation equation are found to be contin-

uous (see Drazin et al., 1982, topic 49), which provide the continuous Koopman spectrums.

The infinite dimensional eigenfunctions φi(x) then provide a set of bases for functional

analysis. A function, or more specifically the observable on M, can be expanded by

g(x) =
∑

i

aiφi(x) + r(x). (2.6)

If φ(x)s are complete bases for mappingM→ R, then the residue r(x) is zero. The evolution

of this observable, residing on the dynamics system, is obtained by applying the Koopman

operator

g(xn+1) = Ug(xn) = U

(∑

i

aiφi(xn) + r(xn)

)
=
∑

i

Uaiφi(xn) + Ur(xn)

=
∑

i

aiρiφi(xn) + r(xn+1)

(2.7)

The above equation switched the Koopman operator and summation operator by the linear

property of Koopman operator. Moveover,

g(xn) = Ung(x0) =
∑

i

aiρ
n
i φi(x0) + r(xn) =

∑

i

aiρ
n
i (2.8)

by absorbing the constant φi(x0) to ai and assuming φi(x)s are complete. On the bases

of Koopman eigenfunction, the dynamics evolve like a linear system. The difficulty with

Koopman decomposition is the theory is non-constructive, nothing about these Koopman

spectrums and eigenfunctions are told.
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2.2 Koopman spectrum of LTI systems

A continuous linear time-invariant dynamic system is given by

ẋ = Ax. (2.9)

Its discretized form evolving at a constant time interval τ is given by (Boyce et al., 1992)

xn+1 = eτAxn = A′xn. (2.10)

The matrix exponential eτA is defined by

eτA = I + τA+
τ 2A2

2!
+ · · ·+ τnAn

n!
+ · · · . (2.11)

It is easy to see A and eτA share the same eigenvectors, and the spectrums (λ of A and ρ of

eτA) are related by

ρ = eτλ. (2.12)

For a continuous LTI system (2.9), Koopman operator is then defined on the discretized

equation (2.10).

2.2.1 Spectrum for the linear observable

A linear observable studied by (Rowley et al., 2009)

φ(x) = (x,w), (2.13)

is found to be the Koopman eigenfunction

Uφ(x) = (A′x,w) = (x, A′∗w) = (x, ρ̄w) = ρ(x,w) = ρφ(x). (2.14)
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The corresponding Koopman spectrum ρ is the spectrum of linear matrix A′. Here w is the

left eigenvector of A′ (A′∗w = ρ̄w), and (·, ·) is the inner-product.

To the continuous form, the Koopman spectrum computed from (2.12) (λ = ln(ρ)
τ

) equals

to the spectrum of A. For distinguishing purpose, we will call the spectrum of the discrete

form (ρ) the Koopman multiplier and the spectrum of the continuous form (λ) the Koopman

exponent.

The above completes the Koopman spectrums of a linear system for linear observables.

2.2.2 Spectrum of the nonlinear observable

If quadratic observable such as xTMx is given, we may define a quadratic observable to

obtain the corresponding spectrums and eigenfunctions

φ(x) = (x,wi)(x,wj). (2.15)

The above function is the Koopman eigenfunction since

Uφ(x) = φ(A′x) = (A′x,wi)(A
′x,wj) = ρiρj(x, wi)(x, wj) = ρiρjφ(x). (2.16)

Thus if ρi, ρj is spectrum of A′, ρiρj is the Koopman multiplier corresponding the quadratic

observable. Or λi+λj is the Koopman exponent for the continuous dynamic system. Similar

conclusion was also drawn by a couple of authors, for example, Budǐsić et al. (2012) under

the term ‘algebraic structure of eigenfunction under products’. The derived spectrum reflects

the dynamics of the quadratic observable.

Another type of nonlinear observable is 1
x

. Then a rational of (xn,w) can be defined

φ(x) =
1

(x,w)
. (2.17)
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The defined observable is the Koopman eigenfunction since

Uφ(x) = φ(A′x) =
1

(A′x,w)
=

1

ρ
φ(x). (2.18)

As a result, if xn is not orthogonal to w and ρ is the spectrum of A′, 1
ρ

is the Koopman

multiplier of the discrete dynamic system. Alternatively, −λ is the Koopman exponent.

We call (2.16) and (2.18) the proliferation rule of Koopman spectrum since new spec-

trum is produced by nonlinearity. Other nonlinear observables can be first decomposed by

the Taylor expansion, or rational series if needed. Koopman eigenfunctions and Koopman

spectrums are then obtained by the proliferation rule accordingly.

2.3 Koopman spectrum of LTV systems

2.3.1 The local spectrum of an LTV system

For the linear time-variant system

ẋ = A(t)x, x(t0) = x0, (2.19)

x ∈ RN and A(t) ∈ RN×N . It is evident that the spectrums are no longer constant and do

not reflect the global (in the sense of time) property of the system. Instead, it should be

defined in a local sense. However, the spectrum problem is not defined on the matrix A(t),

since it ignores the influence of time-varying A(t) on dynamics.

Instead, the spectrum of fundamental matrix of the linear dynamic system is adopted.

We call Ψ(t) ∈ RN×N the fundamental matrix of system (2.19) if each column of Ψ(t)

satisfies (2.19) and Ψ(t) is not singular (Boyce et al., 1992). The fundamental matrix provides

useful dynamics and stability information, and dynamics of LTV systems only relate to the

fundamental matrix but not the transient spectrums of A(t) (Wu, 1974). Moreover, the

fundamental matrix provides global (in the sense of time) stability indicator of the system

but not A(t). Wu (1974); Zubov (1962) further gave examples where even with the constant
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negative/positive eigenvalue of A(t), the system was unstable/stable.

As Ψ(t) is non-singular, a particular fundamental matrix Φ(t) is defined

Φ(t, t0) = Ψ(t)Ψ(t0)−1. (2.20)

It is found Φ(t0, t0) = I, and the solution to LTV system (2.19) is given by

x(t) = Φ(t, t0)x0, (2.21)

since x(t) satisfies the LTV system (2.19) and the initial condition x(t0) = x0.

The discretized form of LTV (2.19) is written

xn+1 = Φ(tn+1, tn)xn, (2.22)

where Φ(tn+1, tn) is the matrix (2.20).

Koopman operator can be similarly defined on the dynamic system (2.22) to evolve the

dynamics of observable g(x). The eigenvalue ρ(tn) of matrix Φ(tn+1, tn), and the function

φ(x, tn) = (x,wn), (2.23)

are the Koopman eigenvalue and eigenfunction, since

Uφ(x, tn) = φ(Φ(tn+1, tn)x, tn) = (Φ(tn+1, tn)x,w(tn)) = (x,Φ(tn+1, tn)∗w(tn))

= (x, ρ̄(tn)w(tn)) = ρ(tn)φ(x, tn).

(2.24)

wn is the right eigenvector of Φ(tn+1, tn). The time-dependent Koopman spectrum ρ(tn)

provides the growth or decay rate for the corresponding eigenmode during period tn to tn+1.

After obtaining the transient spectrum and eigenspace, the one-step evolution of dynam-
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ics is achieved by Koopman decomposition

g(xn+1) = Ug(xn) = U

(
∞∑

i=1

ai(tn)φi(xn, tn)

)
=
∞∑

i=1

ai(tn)ρi(tn)φi(xn, tn), (2.25)

where the observable g is decomposed by the Koopman eigenfunction at time tn

g(x) =
∞∑

i=1

ai(tn)φi(x, tn). (2.26)

The Koopman exponent for the underlined continuous system is then defined by

λ(tn) =
ln ρ(tn+1, tn)

tn+1 − tn
, (2.27)

tn+1 − tn → 0 will provide the instant spectrum. Two following special cases exist.

τ = t− t0 goes to ∞

A special case is τ →∞, and if the limit exist,

λ(t0) = lim
τ→∞

ln ρ(t0 + τ, t0)

τ
. (2.28)

λ(t0) decides the exponential stability (ES) of the dynamic system. Re(λ(t0)) ≤ 0 is stable,

otherwise unstable. The ES can derive the well known asymptotic stable (AS). If λ(t0) is

further independent on t0, the uniform asymptotic stable (UAS) is obtained (Antsaklis and

Michel, 2007; Zhou, 2016), which is an uniform global stability indicator.

Another important case is when A(t) is periodic.

2.3.2 Periodic LTV systems

For periodic A(t)

ẋ = A(t)x, A(t+ T ) = A(t) and x(t0) = x0 (2.29)
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T is the smallest positive value for above relation. The dynamic system is the Floquet system

and described by the following theory (Coddington and Levinson, 1955):

Theorem 1. If Θ is a fundamental matrix for (2.19 and 2.29), then so is Ψ, where

Ψ(t) = Θ(t+ T ), (−∞ < t <∞).

Corresponding to every such Θ, there exist a periodic nonsingular matrix P with period T ,

and a constant matrix R (eTR is called the monodromy matrix) such that

Θ(t) = P (t)etR. (2.30)

In the periodic LTV case, let τ = tn − tn−1 = T and notice e0R = I. The fundamental

matrix Φ(t, t0) is

Φ(t, t0) = Θ(t)Θ(t0)−1 = P (t)etRP (t0)−1. (2.31)

The discrete form of the periodic LTV can be derived by

xn+1 = Φ(tn+1, t0)x0

= P (t0 + (n+ 1)T ) e(t0+(n+1)T )RP (t0)−1x0

= P (t0)eTRe(t0+nT )RP (t0)−1x0

= P (t0)eTRP (t0)−1
(
P (t0 + nT )e(t0+nT )RP (t0)−1x0

)

= Φ(tn+1, tn)xn.

(2.32)

Here Φ(tn+1, tn) is

Φ(tn+1, tn) = P (t0)eTRP (t0)−1. (2.33)

The above derivation used the properties that P (t) is T-periodic, nonsingular(as the result

of fundamental matrix Θ(t)), and the properties of matrix exponential which are not hard

to found from matrix textbook.

Therefore the Floquet multiplier ρ (the eigenvalue of eTR), is also the Koopman multiplier,
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which can be easily derived if substituting (2.33) to (2.24). Floquet exponent

λ =
ln ρ

T
(2.34)

is then the Koopman exponent. Thus the Koopman spectrums of Periodic LTV system are

constant if the discrete time interval τ is taken the period T .

Koopman decomposition for the T-periodic discretized system

Different from the general LTV systems, the periodic LTV system which evolves at period T

has constant evolving matrix like the LTI systems. Therefore, the Koopman eigenfunction

is

φi(x) = (x,wi) (2.35)

where wi is the right eigenvector of Φ(tn, tn−1) and tn − tn−1 = T , since

Uφi(x) = (Φ(tn, tn−1)x,wi) = (x,Φ(tn, tn−1)∗wi) = (x, ρ̄iwi) = ρφi(x). (2.36)

Similary, the observable g(x) can be decomposed by Koopman decomposition by the infinite

expansion

g(x) =
∞∑

i=1

aiφi(x). (2.37)

Thus the dynamics of the observable can be obtained by evolving the Koopman operator

g(xn) = Ung(x0) =
∞∑

i=1

aiρ
n
i φi(x0). (2.38)

This is similar LTI system. However, this decomposition only works for fixed discretization

time interval T , other discretization time does not have this convenient property.
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The solution of continuous periodic LTV system

The above discrete spectrum is obtained by considering the dynamics of at every other T

instance (one period). In the continuous form (2.29), richer information on the dynamics

will be obtained.

From Floquet solution (2.31), we have

x(t) = Φ(t, t0)x0 = P (t)e(t−t0)RP (t0)−1x0. (2.39)

Consider the simple case when R is diagonalizable (V −1RV = Λ).

x(t) = P (t)V︸ ︷︷ ︸
Q(t)

e(t−t0)Λ
︸ ︷︷ ︸

Diag

V −1P (t0)−1x0︸ ︷︷ ︸
c0

=
n∑

i=1

cie
µi(t−t0)qi(t). (2.40)

P (t) is periodic, so are Q(t) and q(t) (the column vector of Q(t)). ci is component of c0.

Therefore, the Floquet solution contains the exponential growth part eµt and periodic part

q(t). We then expand qi(t) by Fourier series

x(t) =
n∑

i=1

cie
µi(t−t0)

∞∑

l=−∞

qile
jlωt =

n∑

i=1

∞∑

l=−∞

cie
(µi+jlω)tqil. (2.41)

Here j =
√
−1 and ω = 2π

T
. The eµit0 is absorbed into ci in the final result.

Equation (2.40) expands the Floquet solution by Floquet modes qi(t) with time coefficient

eµit, while equation (2.41) expands the Floquet solution further by Fourier expansion, with

qil as the modes and e(µi+jlw)t time coefficient. It is interesting to know if they are the

Koopman modes and eigenvalues.
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The Koopman spectrums and eigenfunction for continuous periodic LTV system

Use the same notation as previous section, and let

Q−1(t) =




wH
1 (t)

...

wH
n (t)



. (2.42)

Define the observable

φi(x, t) = (x,wi(t)) = wH
i (t)x. (2.43)

Then

U τφi(x, t) = φi(x(t+ τ), t+ τ) = wH
i (t+ τ)x(t+ τ)

= wH
i (t+ τ)P (t+ τ)V e((t+τ)−t)RV −1P−1(t)x(t)

= wH
i (t+ τ)Q(t+ τ)eτR

(
Q−1(t)x(t)

)

= eHi e
τRφ(x, t)

= eµiτφi(x, t)

(2.44)

proves φi(x, t) is the Koopman eigenfunction corresponding Koopman exponent µi. On the

other hand, from Appendix B, the Koopman eigenfunctions defined by

φ(x) = V −1P−1(t)x (2.45)

is actually two consecutive coordinates transformations from x to the invariant subspaces.

Figure 2.1: Coordinate transformation of periodic LTV.
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We can further define the observable

φil(x, t) = ejlωtφi(x, t). (2.46)

Then

Uφil(x, t) = φil (x(t+ τ), t+ τ) = ejlω(t+τ)φi (x(t+ τ), t+ τ)

= ejlω(t+τ)wH
i (t+ τ)x(t+ τ)

= ejlω(t+τ)wH
i (t+ τ)P (t+ τ)V e((t+τ)−t)ΛV −1P−1(t)x(t)

= ejlω(t+τ)wH
i (t+ τ)Q(t+ τ)eτΛQ−1(t)x(t)

= ejlω(t+τ)eHi e
τΛφ(x, t)

= ejlω(t+τ)eµiτφi(x, t)

= e(µi+jlω)τejlωtφi(x, t)

= e(µi+jlω)τφil(x, t)

(2.47)

proves φil(x, t) and µi + jlω are the Koopman eigenfunction and exponent.

2.3.3 The continuity of local Koopman spectrum for LTV

The local Koopman spectrums defined In chapter 2.3.1 were used to advance the dynamics

from time tn to tn+1. Such local analysis can be joined together to give the overall dynamics

for {t0, t1, · · · , tn, · · · }. Before doing that, we need to consider the continuity properties of

the Koopman spectrum, which may be stated as the following question.

”Does the φi(x, tn) and φi(x, tn+1) the same eigenfunction?”

Otherwise, at every time step, we have a set of totally different Koopman modes, which

makes tracing the dynamics very hard. They can change in a continuous manner at most.

The matrix perturbation theory (Wilkinson, 1965) provides the solution towards above

question. If Φ(t, t0) is the fundamental matrix of the LTV system (2.19), and if Φ(t, t0) is
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continuous with respect to t, the continuity allows

Φ(t+ δt, t0) = Φ(t, t0) + δtH. (2.48)

The perturbation matrix H is some finite norm matrix. From matrix perturbation theory,

the eigenvalues and eigenvectors of Φ(t+ δt, t0) are arbitrarily close to the Φ(t, t0), which is

to say the eigenvalues of Φ(t, t0) is continuous, at least for the simple ones.

The continuity of a spectrum plays a vital role in studying the dynamics. The continuous

spectrum shows that the dynamics persist along with specific Koopman modes, and the

continuous evolvement of the spectrum further tells the evolution of dynamics during the

transition. Moreover, the discontinuity is of its own interested, which may mean old dynamics

disappear, and new ones emerge. However, a complete theorem regarding the discontinuity

of the spectrum of matrix Φ(t, t0) is lacking.

2.4 Koopman spectrum for nonlinear system

2.4.1 Global and local Koopman spectrum

For an autonomous nonlinear dynamic system with initial condition

ẋ = f(x), x(0) = x0, (2.49)

the Koopman spectrum defined in equation (2.5) gives the global dynamic characteristics.

This global spectrum (independent of x) are more familiar with mathematical physicians,

who relate the ergodic system and spectrum of Koopman operator by the theory which says

the system is ergodic if and only if all fixed points of U are constant functions (Lasota and

Mackey, 2013, (see, chap. 4.2)). That is, λ = 1 is the spectrum for the discretized system,

and the corresponding eigenfunction is an everywhere constant function.

We noticed two difficulties when applying above global Koopman spectrum for dynamics

analysis. First, the above global Koopman spectrums and eigenfunctions are hard to find, if
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they exist. Another difficulty is that some important spectrums characterizing the dynamics

are not included in the global Koopman spectrum. For example, in a Hopf bifurcation

problem, the spectrums around the unstable equilibrium are not. Otherwise, we could find a

particular initial condition, where only components associated with the growing spectrums

nontrivial. From this particular initial condition, the system exponentially grows without

bound, which is contradictory to the physical system we have.

However, the spectral decomposition of the Koopman operator is still of interest to dy-

namics study. The local spectrums of Koopman operator are usually computed, though

several authors may or may not point it out (Bagheri, 2013; Mezić, 2005; Schmid, 2010).

Semigroup Koopman operator

As spectrums vary from point to point, for an approximate discretized system, they must

depend on the time step of the discretization. To include this effect, it would be wise to

consider such a time-parameterized Koopman operator.

In this case, a semigroup operator is defined on the system (2.49) such that the solution

to the autonomous nonlinear system is given by

x(t) = T tx0 (2.50)

for ∀t ∈ [0,∞). T t is the semigroup operator which satisfy the following two requirement

• the initial condition: T 0 = I,

• time-translation invariance: T t+s = T tT s

The first requirement is easy to check. For the second, it is straight forward

T t+sx0 = x(t+ s). (2.51)
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Notice the system is autonomous

T tT sx0 = T t(T sx0) = T t(x(s)) = x(t+ s). (2.52)

From the uniqueness of solution of system (2.49), the second requirement is satisfied.

The induced semigroup Koopman operator is defined such that

U tg(x) = g(T tx). (2.53)

It can be checked U t is linear and satisfies the two semigroup operator requirements. Here

we drop the suffix 0 of equation (2.49) to indicate it can take arbitrary initial condition.

t ∈ [0,∞) is the parameter for the evolution interval. In the following application, we

will assume t is a fixed value of τ ; that is, we will discretize the system (2.49). For simplicity,

we drop the parameter τ and write the semigroup Koopman operator in the usual way U .

Local Koopman spectrum

To make the local spectrum idea clear, its definition is given as follows: ∀x ∈M

Uφ(x) = ρφ(x), x ∈ D(x) (2.54)

Here D(x) is an open domain covering x. λ is the local spectrums and φ(x) is the corre-

sponding eigenfunction. It can be seen the local spectrum is backward compatible with the

global spectrum. In that case, D(x) is the domain of Koopman operator M.

2.4.2 Hierarchy of local Koopman spectrum

Koopman spectrums for arbitrary nonlinear systems pose a significant challenge. Currently,

only a few particular dynamic systems are studied analytically.

A clear vision towards Koopman eigenspaces is its hierarchy structure. That is, the

dynamics can be decomposed into the base and small magnitude perturbation, and then the

29



spectrum is divided into the base and perturbation naturally. This insight originates from

the linearity of the Koopman operator.

The spectrum of base

For simple base flow, its Koopman spectrum can be obtained analytically. For instance, the

nonlinear system at a fixed equilibrium state, such as the stable/unstable nodes/spirals or

the saddle points. The base flow is the fixed equilibrium state. The dynamics of this base

flow are merely given by a fixed spectrum of ρ = 1 or λ = 0 (discretize or continuous system).

Another example is the periodic solution embedded in the limit cycle solution of a non-

linear dynamic system. The Fourier expansion provides the spectrums of the periodic base

flow, that is, Fourier spectrums.

One more complicated example is quasiperiodic motion. The base is then decomposed

into the superposition of several periodic solutions, and the Koopman spectrum is the union

of these Fourier spectrums.

For a more general dynamic system, where above simple base flow is not available, a

practical choice of base flow is the real trajectory u(t). We may resort to numerical techniques

like DMD to reveal the spectrum of the base.

If failed to provide a real trajectory, fake spectrums may be introduced. Such an example

pointed out by Rowley et al. (2009) is that mean subtraction introduces the fake Fourier

spectrum when the mean flow is not the solution of the dynamic system. However, if the

system is ergodic and the sampling is long enough, the mean is the fixed point of a unitary

operator U , whose spectrums indeed includes the Fourier spectrums (Mezić, 2005). Thus

removing the mean flow will not change the spectrum. Besides data are time-resolved,

Fourier spectrums are obtained, no contradiction thereafter.

A somewhat interesting example is to subtract the snapshots from itself. If real trajectory

X = {x1, · · · ,xN+1} of a dynamic system is given, we can construct the perturbation

X ′ = {x′1, · · · ,x′N}, and perform DMD algorithm on X ′

x′i = xi+1 − xi. (2.55)
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Though this procedure does not provide new information (compared to data X), it pro-

vides a method to subtract the base dynamics from the data and focus on the spectrum of

perturbation.

The spectrum of perturbation

We now shift the focus to the spectrum of the small magnitude perturbation. Since the

dynamics is decomposed into base and perturbation,

u = U + u′ (2.56)

where U is the base flow satisfying U̇ = f(U). u′ is the small magnitude perturbation deviate

from the base flow and ||u′|| � ||U ||. Then the dynamics of the perturbation is described

by the nonlinear perturbation equation

u′ = Au′ +N (u′) (2.57)

for a steady equilibrium solution U , A = ∂f
∂u
|U , or

u′ = A(U(t))u′ +N (u′), (2.58)

for unsteady equilibrium solution U(t), A(U(t)) = ∂f
∂u
|U(t). N (u′) is the terms for the non-

linear interaction of u′. It is not hard to see the spectrums of the underlined linear systems

(u̇′ = Au′ or u̇′ = A(t)u′ considered in § 2.2 or 2.3) provide a subset of local spectrums of

the Koopman operator since u′ → 0, N (u′)→ 0.

From the nonlinear perturbation equation (2.57) or (2.58), u′ is a nonlinear function of

itself, so it is the nonlinear observable. If the nonlinear term N (u′) can be expanded by

Taylor series, such that

N (u′) = N2u
′2 +N3u

′3 + · · · . (2.59)

We should be able to use the proliferation rule to obtain derived spectrums for the nonlinear
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observable. Here Niu′i is the symbolic notation, which should be understood as tensor

product of order i tensor ui and order i + 1 tensor Ni. For each component Niu′i, the

proliferation rule applies accordingly. Moreover, the proliferation rule should be applied in

a recursive manner, since the nonlinear relation is implicit. In contrast, the linear dynamics

system with a nonlinear observable only admits one proliferation, as shown in section 2.2.

2.4.3 Proliferation of spectrum

Since each spectrum represents the dynamics of each particular mode, therefore, it is useful

to consider the proliferation of them.

Self interaction

For example if λ is the Koopman exponent for the underlined linear system of

ẋ = Ax+N2x
2, (2.60)

by the recursive proliferation rule, the following are also Koopman spectrum.

λ, λ+ λ, (λ+ λ) + λ, ((λ+ λ) + λ) + λ, · · ·

The spectrua are shown in figure 2.2a and they fall on an affine line.

0 Re

0

Im

(a) λ > 0

0 Re

0

Im

(b) Im(λ) 6= 0

0 Re

0

Im

(c) limit cycle system

Figure 2.2: Self interaction of Koopman spectrum. The filled circle shows the original
linear spectrum, high order are shown by hollow circle.
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If complex conjugate λ, λ̄ are the spectrums of the underlined linear system of (2.60), by

the recursive proliferation rule, the Koopman spectrums proliferated by them build a chain

of triad shown in figure 2.2b.

Another example is the following time-dependent system

ẋ = A(t)x+N2x
2,

A(t) is periodic. From Floquet theory the linear part provide the base spectrum λ ± jmw,

where j =
√
−1 and m is the integer. After considering the nonlinear proliferation, the

lattice distribution of Koopman spectrums are obtained

nλ± jmw,

and shown in figure 2.2c. n is a positive integer. Bagheri (2013) drew the same conclusion

by analytically computing the Koopman spectrum for the Kármán vortex.

All the self-interacted spectrum has the same positive or negative real part as their

parental spectrums λ and λ̄. Therefore, N2x
2 term does not change the stability of the

dynamic system in the asymptotic case, neither other Nix′i nonlinearity. In this sense,

the spectrums of the linearized perturbation equation determine the stability of nonlinear

perturbation.

Cross interaction

Except the self-interaction between one mode and its complex conjugate, it is possible differ-

ent modes interact with each other. If λ1, λ2 are two different linear spectrums, and if they

both have positive or negative real part, then the derived spectrum should have the same

positiveness or negativeness. But if they are of different sign, it may be possible to excite

some unstable derived modes as illustrated by figure 2.3. In either case, Re(λ1 + λ2) > 0 or

Re(λ1 + λ2) < 0, there will be unstable derived children spectrums.
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0 Re

0

Im

(a) Re(λ1 + λ2) > 0

0 Re

0

Im

(b) Re(λ1 + λ2) < 0

Figure 2.3: Cross interaction of Koopman modes. The filled circle shows the original
spectrum, high order derived spectrums are shown by the hollow circle. Part of the cross
interaction spectrum are shown by the red cross.

Rational nonlinear terms

For the rational nonlinearity 1
x

, the system has the derived Koopman spectrum shown in

figure 2.4, which indicate it is always unstable at the neighborhood of x.

0 Re

0

Im

(a) λ > 0

0 Re

0

Im

(b) Re(λ) > 0 and Im(λ) 6= 0

Figure 2.4: Self interaction for 1
x

.
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Fluid dynamics system

For fluids dynamics, the nonlinearity usually comes from the convection, written as ui
∂uj
∂xi

,

which gives the N2u
2 expansion. Therefore, the nonlinear interaction will create children

spectrum as shown in figure 2.2 and figure 2.3. The derived modes (studied in the next

chapter), particularly the unstable ones, may develop into the complex flow pattern and make

the nonlinear dynamic system much more complicated. The nonlinear interaction generating

new modes was discovered and documented by many authors, for instance, resonant wave

interaction by Drazin et al. (1982, (see §51)) and three-wave interaction by Schmid and

Henningson (2012, (see §5.4)) and others but not listed here. Now it is apparent they are all

described by the proliferation rule of Koopman spectrums.

2.5 The linear properties of nonlinear system

We expressed the desire to analyze the nonlinear dynamics using the linear properties (super-

position and invariant subspaces if they exist in the nonlinear dynamic system) in chapter 1.3.

Now the idea is more clear, to use the Koopman decomposition.

Let T (M,R) to be the collection of function M → R. Then the observable g(x) and

the eigenfunctions φi(x) are the element of T (M,R). The eigenfunctions clearly form some

invariant subspaces of the dynamic system T t, since the induced linear Koopman operator

U has

Uφi(x) = φi(T
t(x)) = λiφi(x). (2.61)

However, unlike the linear system ẋ = Ax where each eigenvector is totally decoupled from

others, the Koopman eigenfunctions for the nonlinear system are still entangled. Since if φi

and φj are the Koopman eigenfunction, φiφj is also Koopman eigenfunction, which means

some eigenfunction depends on others.

To better express the idea, we define the atom Koopman spectrum to be the one not de-

rived from other Koopman spectrums, such as those solid spectrums shown in figure 2.2a, 2.2b

or 2.3. The rest of them are called the derived spectrums from the atom ones. Note some
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of the solid circles in figure 2.2c are the atom Koopman spectrums, and rest are not, which

will be in explained chapter 9.2.1. Correspondingly we can define the atom Koopman eigen-

function.

Then the invariant subspace is the union of some atom Koopman eigenfunctions and

all their derived eigenfunctions. For example, a single atom Koopman eigenfunction and

its derived eigenfunctions form an invariant subspace. The corresponding spectrums form

an affine dot line, as shown in figure 2.2a. If two complex conjugated atom eigenfunctions

are encountered, they and the interaction of them also form an invariant subspace, and the

corresponding spectrums are shown in figure 2.2b. If multiple complex conjugated pairs

of atom eigenfunctions are used, they and the interaction of them also form the invariant

subspace, where their spectrums are shown in figure 2.3.

Then observable g(x) in T (M,R) is uniquely decomposed into the invariant subspace

g(x) =
∑

aiφi(x) + r(x), a ∈ D(x) (2.62)

For vector valued observable the decomposition is carried out element-wisely.

After above Koopman decomposition, the ‘one-step’ step dynamics is given by the linear

superposition of components from the invariant subspace.

g(T tx) = Ug(x) =
∑

aiλiφi(x) + r(T tx). (2.63)

With vector observable g(x) = x, we have the dynamics of the nonlinear system.

We shall not be frustrated by the complexity of the dynamics (2.63) expressed by the

daunting space spanned by all the atom Koopman eigenfunctions. Most often, only a few

of the above atom Koopman eigenfunctions are important. Therefore we usually ignore

many of them and related invariant subspaces. It greatly simplifies the solution space and

introduces the topic of reduced-order modeling. Besides, the dynamics of the remaining

bases are described by their spectrums, making the analysis of dynamics tractable.

We must emphasize the ‘one-step’ in equation 2.63 since the spectrums are local. Af-
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ter mapping T t, the system no longer works at point x, therefore the perturbation theory

developed in the next section is useful to expand the dynamics to the whole domain M.

2.6 The continuity of local Koopman spectrum

2.6.1 The global spectrums theory for the linear space

Continuity of the local Koopman spectrum plays an essential role in analyzing the transi-

tion of dynamics. We need this information to consider the transition process of nonlinear

dynamics. Unfortunately, this is ongoing research. Part of its difficulty comes from non-

linearity or unbounded differential operator (Reed and Simon, 1972) or the more complex

Hilbert space, also contribute to its complexity.

We now focus on the linear measured space equipped with the inner product operation to

facilitate the previous definition of Koopman eigenfunction. The Hilbert space is a complete

inner product space. A bounded operator from a normed linear space 〈V1, || · ||1〉 to a normed

linear space 〈V2, || · ||2〉 is a map T , which satisfies

1. T (αv + βw) = αT (v) + βT (w), (∀v, w ∈ V1 and ∀α, β ∈ R or C),

2. Exists some C ≥ 0, ||T (v)||2 ≤ C||v||1, ∀v ∈ V1.

The spectrum for bounded operator is well studied. The spectrum is known not empty on

the more general Banach space (Reed and Simon, 1972, (see, chap. VI.3)). The spectrums

for the unbounded operator is more complex (Reed and Simon, 1972, (see, chap. VIII)).

Unfortunately, the Koopman operator defined on Navier-Stokes equation may not always

bounded. Figure 2.5 shows two possible examples. The first is a shockwave problem in the

hyperbolic problem. The differential operator ∂
∂x

in the Navier-Stokes equation incur ∞
at the discontinuity, which may result in the failure of the second condition of bounded

operator. The second example is a moving solid in the incompressible flow. As it moves, the

differentiation at the position initially occupied by solid but filled with fluids later (or vise

versa) incurs infinite differential, resulting the failure of second condition.
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(a) shock wave (b) moving body

Figure 2.5: Discontinuity and unbounded operator. (a) Shock wave. (b) Moving body.

2.6.2 The local spectrums theory and continuity property

The global spectrums theory addressed in various references provides a subset of the local

spectrums discussed in this paper. We do not have the rigorous proof of the existence of

other local spectrums. Instead, we point such local spectrums do exist in a lot dynamic sys-

tems (Bagheri, 2013; Mezić, 2005; Rowley et al., 2009; Schmid, 2010). Besides, the continuity

extends local spectrums to the global domain.

The perturbation theory of linear operator provides the valuable tool to study the con-

tinuity of the local spectrums. Let us consider a simple case where g and T τ are analytic

and their ‘derivative’ are uniform continuous. We then consider the local spectrums at the

two infinitesimally close state x and x+ h, where h→ 0. The Koopman operator at state

x+ h can be viewed as the perturbed Koopman operator at x such that

Ug(x+ h) = g(T τ (x+ h)) = g(T τx+ T ′τh+O(h2))

= g(T τx) + g′(T ′τh) +O(h2)

≈ (U τ + V τ )g(x).

(2.64)

Here T ′τ is the differential of T τ at x and g′ is the differential of g at T τx. And V τ is the

perturbation operator defined by

V τg(h) = g′(T ′τ (h)). (2.65)
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In the condition that g and T τ is continuous differentiable and uniform bounded,

||V τg(h)|| = ||g′(T ′τ (h))|| ≤ C||h||. (2.66)

From perturbation theory (Reed and Simon, 1978, (see, chap. XII)), the simple local spec-

trum is not only continuous but also analytic.

2.6.3 Continuity and global decomposition

In the following discussion, we assume the flow and the observable are uniformly continuous

differentiable. Thus the simple Koopman spectrum is continuous. Then we can glue equa-

tion (2.54) piece-by-piece, then the global eigen-relations of the Koopman operator acting

on the whole domain hold

Uφi(x) = ρi(x)φi(x), x ∈M. (2.67)

ρi(x) is the continuous state-dependentent spectrum, and φi(x) is the eigenfunction. The

observable g(x) is then decomposed by the Koopman eigenfunctions

g(x) =
∞∑

i=0

aiφi(x), x ∈M. (2.68)

Notice the decomposition coefficients ais are constants. Therefore, the dynamics of the

observable is obtained by

g(xn) = Ung(x0) = Un

∞∑

i=0

aiφi(x0) =
∞∑

i=0

aiφi(x0)
n−1∏

k=0

ρik, (2.69)

where ρik = ρi(xk) are the local spectrums. We thus expand the overall dynamics using the

local Koopman spectrums and eigenfunctions.
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2.6.4 Discontinuity and local decomposition or state-dependent

modes

Besides the continuous spectrums case mentioned above, we are also interested in the more

general conditions where the domain M is the Hilbert space H, which allows discontinuity

such as shockwave in the hyperbolic Navier-Stokes systems, or moving body problem.

Two issues arise. The first one is the existence of such a spectrum, and the second one

is the continuity of it.

The spectrum for unbounded operator may provide some insight for the first problem,

alternatively we can consider the spectrum for the more flexible compact operator. We

refer reader to the discussion of compact operator to Reed and Simon (1972, see, chap.

VI.5). However, if such discontinuous local spectrum exist, we won’t have the convenient

relation (2.67) for whole domain. But the local spectrum may be still valuable for studying

the transient dynamics in a local manner

g(x) =
∞∑

i=0

ai(x)φi(x), x ∈ D(x). (2.70)

Unfortunately, this gives state-dependent Koopman decomposition and only hold locally

around x.
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Chapter 3

Koopman modes

3.1 Koopman modes and its invariant property

In many application, the observable is usually a vector valued function defined on the dy-

namic system, such that

g(x) =




g1(x)

...

gn(x)



. (3.1)

Koopman decomposition for this observable is obtained by expanding each component of g

by the Koopman eigenfunction φi(x) by equation (2.6)

g(x) ≈
∑

viφi(x) (3.2)

Here vi is the Koopman mode.

For constant Koopman spectrum system, such as LTI system, or the asymptotic system

around fixed equilibrium point or periodic or quasi-periodic system, the evolution of the

observable is given similar as (2.8)

g(xn) ≈
∑

viρ
n
i (3.3)
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Similar result is obtained for the periodic LTV in chapter 2.3.2 or nonlinear system considered

in chapter 2.6.3

g(xn) =
∞∑

i=0

aiφi(xn) =
∞∑

i=0

a′i

n∏

k=0

ρik. (3.4)

A remarkable feature of Koopman modes is that they are state independent for autonomous

nonlinear system.

Koopman modes reveal the structure of the given observable, thus differs by observables.

They can provide rich information about the given dynamic system, especially when the

full-state observable x is investigated. In the following discussion, we consider Koopman

modes for the full-state observable x.

The following examples demonstrate the eigenvectors for the linear system.

3.1.1 Example 1. Koopman modes of LTI system

Consider the dynamic system

xn+1 = Axn, A ∈ Rn×n. (3.5)

Let A diagonalizable and A = V ΛV −1. Let λi, ri, li are the eigenvalue, right and left

eigenvector. The observable x is decomposed by

x = V V −1x =

(
n∑

i=1

ril
H
i

)
x =

n∑

i=1

ril
H
i x =

n∑

i=1

riφi(x), (3.6)

where φ(xi) is the Koopman eigenfunction defined in chapter 2.2.1. Therefore the right

eigenvectors of A are the Koopman modes for the full-state observable x.

The dynamics of observable x is evaluated by the Koopman operator

xk = Ukx0 =
n∑

i=1

riρ
k
i φi(x0), (3.7)
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which gives the solution of (3.5) since

xk =
n∑

i=1

riρ
k
i φi(x0) = V ΛkV −1x0 = Akx0. (3.8)

3.1.2 Example 2. Koopman modes of LTV system

Similarly for LTV system

xk+1 = Akxk, Ak ∈ Rn×n. (3.9)

Assuming matrix Aks are diagonalizable and rk, lk are the right and left eigenvectors. The

full-state observable x can be decomposed by

x = VkV
−1
k x =

(
n∑

i=1

rki l
kH
i

)
x =

n∑

i=1

rki l
kH
i x =

n∑

i=1

rki φi(x, t = k). (3.10)

φi(x, t = k) is the eigenfunction (2.35) for the LTV system, therefore the time-variant rki s

are the Koopman modes for observable x.

3.1.3 Example 3. Koopman modes of periodic LTV system

The Koopman modes for a periodic LTV system were mentioned in chapter 2.3.2. We

summarize the results and provide the proof.

For the T-periodic discretized system. The Koopman modes are given by the column of

matrix Q(t0)

Q(t0) = P (t0)V. (3.11)

For the continuous periodic LTV system, Koopman modes corresponding eigenfunction

φi(x, t) (2.43) is obtained by

x = Q(t)Q−1(t)x =
n∑

i=1

qi(t)φi(x, t). (3.12)

Therefore, the columns of Q(t), also known as the Floquet modes, are the Koopman modes.
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For eigenfunction φil(x, t) (2.46) the corresponding Koopman mode is obtained by ex-

panding the solution (2.40)

U τx(t) = x(t+ τ)

= P (t+ τ)V e((t+τ)−t)ΛV −1P−1(t)x(t)

= Q(t+ τ)eτΛQ−1(t)x(t)

=

(
∞∑

k=∞

Qke
jkω(t+τ)

)
eτΛφ(x, t)

=
n∑

i=1

∞∑

k=−∞

qkie
jkω(t+τ)eτµiφi(x, t)

=
n∑

i=1

∞∑

k=−∞

qkie
(µi+jkω)τ

(
ejkωtφi(x, t)

)

=
n∑

i=1

∞∑

k=−∞

qkie
(µi+jkω)τφik(x, t).

(3.13)

qki, the i-th column of k-th Fourier component of Q(t) provides the Koopman modes.

3.2 Koopman modes of nonlinear asymptotic system

Multi-scale assumption and asymptotic expansion

For a nonlinear system, it is not straightforward what the Koopman modes are. We follow

the hierarchy discussion introduced in section 5.3.2 and decompose the dynamics to base

and perturbation and obtain the Koopman modes contained in each part.

In the following section, a fluid system is considered. Koopman modes generated from

nonlinear self-interaction will be derived. A perturbation technique, known as multiple-scale

analysis, will be used. This technique is based on the observation that the dynamics of such

small perturbation usually characterized by disparate time scale motion. One is a fast scale

oscillating motion. One is a much slower time scale motion describing the slow changing

of its magnitude. The multiple-scale analysis is accomplished by introducing a fast-scale t
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and a slow-scale τ (τ = εt) as two independent variables. In the solution process of the

perturbation problem, the additional freedom, introduced by a new independent variable τ ,

is used to remove the unwanted secular terms. The latter put constraints on the approximate

solution, which are called solvability conditions (Kevorkian and Cole, 2012).

After introducing the multiple-scale, we proceed to expand the dynamics by the following

asymptotic expansion

q(t) = q0 + εq1(t, τ) + ε2q2(t, τ) + ε3q3(t, τ) + · · · . (3.14)

q0 is the base flow, here is assumed to be the fixed equilibrium point of the dynamics system.

qi(t, τ) is small perturbation with intensity of εi. Substituting above asymptotic expansion

into original dynamic equation, and taking into account that the slow time scale τ , the

following differential relation is obtained

∂

∂t
=

∂

∂t
+ ε

∂

∂τ
. (3.15)

Expanding the dynamic equation and collecting terms according the different order of ε, a

set of equations are obtained, which then asymptotically solve the dynamics system.

A caveat here is the successful application of multiple-scale analysis relies on the implicit

assumption that the time scale is disparate. Thus this technique may fail for more general

cases. However, some of the conclusions draw here which conform to Koopman decomposi-

tion are still valid to describe the dynamics.

Fluid dynamic system

To give a concrete example, the above asymptotic expansion is carried out on the incom-

pressible viscous fluid system

∂u

∂t
+∇u · u = −∇p+

1

Re
∇2u,

∇ · u = 0.

(3.16)
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u is the velocity of fluids and p is the pressure. Re is the dimensionless Reynolds number.

Let

q =



u

p


 . (3.17)

The global stability analysis

A proper example for multiple-scale analysis in fluids is the Hopf bifurcation occurred in

many flows, where the original steady flow develops periodic oscillation after an increasing

or decreasing of some critical parameter. For instance, Stuart (1960) found Reynolds number

controls the bifurcation of flow when he studied two-dimensional Poiseuille flow. He found

the linear growth rate at Re > Rec (Re− Rec � 1, Rec is the critical Reynolds number) is

of order ε2 (ε2 is a small parameter characterizing weak nonlinear effects)

ε2 =
1

Rec
− 1

Re
, (3.18)

whereas the time scale on which nonlinear interactions affect the evolution of the fundamental

mode is of order (linear growth rate)−1. The second time scale is introduced

τ ≡ ε2t. (3.19)

τ is the slow time scale, and affects the time derivative by

∂

∂t
=

∂

∂t
+ ε2

∂

∂τ
(3.20)

Substituting the asymptotic expansion into the incompressible Navier-Stokes equation,

a series of equations at various orders of ε are obtained.
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(i). At order ε0, a steady Navier-Stokes equations at Re are obtained

∇u0 · u0 = −∇p0 −
1

Re
∇2u0,

∇ · u0 = 0.

(3.21)

These equations take the original boundary condition, and have a fixed equilibrium solution,

which is then chosen as the base flow for asymptotic expansion q0 = [uT0 , p0]T . Here the

Koopman spectrum is λ = 0, and q0 is the corresponding base Koopman mode.

(ii). At order ε1, an homogeneous linear systems are obtained




∂
∂t

+∇() · u0 +∇u0 · ()− 1
Re
∇2 ∇

∇T 0


 q1 = 0 (3.22)

with a homogeneous boundary condition. This is an eigenvalue problem. Its solution, is

dominated by the most unstable modes q1

q1 =



u1

p1


 = A(τ)eiwtv1 + c.c. (3.23)

v1 is the most unstable mode, and A(τ) is its magnitude varying on the slow time scale τ ,

at initial stage A(τ) grows at eε
2t or eτ . Therefore, we know A(τ)eiwt provide the Koopman

eigenfunction and v1 is the Koopman mode.

(iii). At order ε2, inhomogeneous linear equations will be obtained with homogeneous

boundary condition.




∂
∂t

+∇() · u0 +∇u0 · ()− 1
Re
∇2 ∇

∇T 0


 q2 =



|A|2F |A|22 + A2e2iwtF A2

2 + Ā2e−2iwtF Ā2

2

0




(3.24)

Left hand side contains the same linear differential operator similar to that at order ε1, and

the right side contains the forcing terms aroused by nonlinear interaction of q1. |A|2, A2, Ā2
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representing the increasing forcing magnitude. The F terms are

F
|A|2
2 = −∇uA1 · uĀ1 −∇uĀ1 · uA1

F A2

2 = −∇uA1 · ∇uA1

F Ā2

2 = −∇uĀ1 · uĀ1

where uA1 and uĀ1 are the solution of equation (3.22) on ε1 expansion. It is expected for the

forced LTI system, the solution would have the following component

q2 = A(τ)|A|
2

v|A|
2

+ A(τ)A
2

ei2wtvA
2

+ A(τ)Ā
2

e−i2wtvĀ
2

.

v(·) is the symbolic spatial mode. A(τ)(·) is the symbolic representation for slow varying

magnitude. einwt is its pulsation. The modes v(·) are Koopman modes, the slow varying

magnitude A(τ) and pulsation einwt together provide the Koopman eigenfunction.

(iv). Higher-order εi expansions can be further carried out to derive the linear equations,

which generate the high order Koopman modes. In those equations, we will have the same

left-hand side linear differential operator with almost periodic but increasing forcing terms

on the right-hand side. The particular solution of these forced linear dynamic system then

provides higher-order Koopman modes and Koopman eigenfunctions.

Some comments are followed:

1) Degenerated cases occur on the ε3 or other ε2i+1 order expansions, where secular terms,

which contains eiwt or e−iwt pulsation occurs in the right-hand side as the forcing term. A

compatibility condition is required to remove them, which derives the well-known Stuart-

Landau equation (Stuart, 1960). On ε3 expansion, it is

∂A

∂τ
= σA− l|A|2A. (3.25)

It provides a good approximation of the magnitude of the critical normal mode v1.

2) The above asymptotic expansion is similar to the one used by various authors (Meliga

48



and Chomaz, 2011; Sipp and Lebedev, 2007) to study the Hopf bifurcation of wake after

blunt bodies at the critical Reynolds number but with some difference. We expand the

Navier-Stokes equation at Re, while the above authors expand at Rec ( 1
Rec
− 1

Re
� 1) to

study the bifurcation. The difference was characterized by a base flow modification of u1
2 (in

Sipp’s notation). Moreover, as the slight difference in base flow, the eigenvalue problem is

slightly different. However, as the Re is so close to Rec, it will be shown later, the Koopman

modes numerically computed by the current authors are very similar to the modes computed

by Sipp and Lebedev (2007) and Meliga and Chomaz (2011).

3) Moreover, information transfer is directional ; that is, the information transfer from

the low order Koopman modes to higher-order Koopman modes. From expansion at ε2 or

higher, equation (3.24), for example, the coupling of low order Koopman modes occur in the

right-hand side, and the higher-order modes are generated on the left hand. This direction

is also described by the proliferation rule, that is, λi, λj → λi + λj and only summation

operation allowed.

The directional transformation of information may provide a framework to describe the

energy cascading. On the one hand, information transfers from low-frequency modes to high-

frequency ones such as λi → nλi, typical energy cascading route. On the other hand, the

information can transfer back from high frequency to low frequency such as λi, λ̄i → 2Real(λ),

resulting the so-called the backscattering phenomena (Pope, 2001).

4) The Koopman modes originate from the forced terms. As we know, the linear differen-

tial operator has its natural frequency, under which the magnitude would be amplified. That

is, some frequencies and modes are much easier amplified than others. It will be illustrated

in more detail later.

5) If the underlined base flow is time-variant and let q0(t) the time-variant base flow, q0

is substituted by q0(t) in the asymptotic expansion (3.14). Then at all orders of εi, a linear

time-variant coefficient system is obtained, and the analysis can proceed accordingly. For

example, if q0(t) is periodic, at order ε0, an unsteady Navier-Stokes equation is obtained

and solved by q0(t). At ε1 order, homogeneous periodic coefficient linear equations with

homogeneous boundary conditions are obtained. Therefore a Floquet system is to be solved.
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On higher-order (ε2 or higher), periodic linear differential systems with varying magnitude

periodic forcing terms need to be solved. The exact solution of these equations is too complex

to consider here. The reader is referred to monographs such as Bittanti and Colaneri (2009);

Kuchment (2012); Shmaliy (2007) for more detail. More general u(t) may also be considered

similarly, but not addressed here.

3.3 Modal decomposition using Koopman modes

In the modal analysis, one is interested in finding the most efficient modes that capture the

dynamics of the system, for example, the POD and DMD method.

For a linear system, the eigenvectors may provide a set of complete bases to describe the

dynamics. A common understanding of completeness is that it contains a set of independent

eigenvectors, and the rank is full.

However, for nonlinear system, the basis are the Koopman eigenfunction, not the Koop-

man modes, see equation (2.5), (2.26) and (2.67). The completeness Koopman spaces require

the Koopman eigenfunctions are complete in the mapping space: M→ R. M is the mani-

fold of the dynamics system. Therefore the completeness of Koopman modes does not help

to describe the dynamics system. In chapter 2.5, we talked the reduced-order can be carried

efficiently by directly throw away some unimportant atom Koopman function and related

invariant subspaces. In a real application, usually, a small subset of the Koopman eigen-

functions provides an adequate basis. Moreover, Koopman modes may not even form linear

independent bases at all.

The difference between LTI and the nonlinear system is bridgeable since the Koopman

operator also unifies the linear system.

The asymptotic expansion shows an example where a subset Koopman modes (containing

the base flow, the critical unstable normal modes v1 and v̄1, and the high order derived

modes) dominate the suitably perturbed flow. Therefore it might be plausible to conjecture

if other normal modes were initially perturbed, or they are unstable, then Koopman modes

constitute by these normal modes, and their derived Koopman modes are needed to describe

50



the transient stage.

Since the role of Koopman modes for modal analysis, it is desired to obtain them by some

method. For example, the DMD algorithm detailed in the next chapter or the generalized

Laplace analysis (GLA) method (Budǐsić et al., 2012), which requires the knowledge of

Koopman eigenfunction. None of these techniques require explicit knowledge of dynamic

equations. Instead, they apply to snapshots.
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Chapter 4

Dynamic mode decomposition

The artisan, who wishes to do his work well, must first sharpen his tools.

Confucius (China), 551 - 479 BC

The wise Chinese mentor Confucius told his students to prepare good tools for their work.

In this chapter, we introduce an efficient and robust DMD algorithm to perform Koopman

analysis.

4.1 DMD algorithm review

Dynamic mode decomposition (DMD) (Schmid, 2010) is a data-driven technique to extract

dynamic relevant information from time-resolved snapshots provided either by experiments

or numerical simulations. Its data-driven nature makes it convenient to extract information

such as dominant frequencies and spatial structures from fluid flows (Rowley et al., 2009;

Schmid, 2011) without pre-knowledge of the complex physics behind it. DMD provides a way

to extract coherent structures from fluid flows (Frederich and Luchtenburg, 2011; Schmid

et al., 2009; Seena and Sung, 2011; Zhang et al., 2014), and provide base functions for

the construction of reduced-order models (ROM) (Bistrian and Navon, 2015; Tissot et al.,

2014; Zhang and Wei, 2017). Therefore, it has been gaining popularity, along with the well-

known proper orthogonal decomposition (POD) (Holmes et al., 1996b; Wei and Rowley,
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2009a), among data analysis and model reduction techniques. DMD is also known as a

numerical approximation of the spectral of Koopman operator (Mezić, 2005; Rowley et al.,

2009), a linear and infinite-dimensional operator, that can be defined in non-linear dynamic

systems. The data-driven nature of DMD leads to its application of fields other than fluid

flows. Erichson et al. (2015); Grosek and Kutz (2014) apply DMD to real-time video to

subtract background for surveillance and recognition purpose. DMD is found to be effective

and efficient in analyzing spatial-temporal data to study the infectious disease dynamics

and plan intervention (Proctor and Eckhoff, 2015). Brunton et al. (2016) adapted DMD

to analyze the coupled spatial-temporal neuron recording data to study the sleep spindle

networks of human.

Despite the mentioned success, DMD still faces its difficulties in computation. For in-

stance, generating the approximation matrix is time-consuming, and the operation to invert

a matrix suffers from the singularity when data is rank deficient or nearly rank deficient.

To avoid the singularity issue, a manual truncation of singular value is usually adopted by

setting an artificial threshold (Schmid, 2010). However, the influence of truncation is not

fully understood. Besides, it becomes more contradicting to one’s expectation that the sin-

gularity comes from more data sampling with the intention for better accuracy. There are

also concerns regarding the dynamic interpretation of some DMD modes. Efforts, such as

optimized DMD (Chen et al., 2012) or sparsity promoting DMD (Jovanović et al., 2014),

have been taken to reduce or remove spurious DMD modes.

Currently there are several numerical procedures available to identify dynamic relevant

information, for example, the standard DMD algorithm by Schmid (2010), the companion

matrix approach adopted by Rowley et al. (2009), a least square fitting approach (Tu et al.,

2014) or a total-least-square fitting approach (Hemati et al., 2017), the Koopman operator

and its associated numerical methods (Williams et al., 2015). All the above approaches

involve computing an approximate matrix of the mapping explicitly, and the computation is

achieved by having a singular value decomposition (SVD) of input data followed by matrix in-

version. Even though SVD, as a typical operation used by many numerical algorithms (Golub

and Kahan, 1965), is a backward stable procedure, the step of matrix inversion proposes nu-
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merical challenges when the matrix is singular or nearly singular.

In the current work, to deal with the challenge in solving the mapping matrix, we avoided

the mapping matrix entirely. Instead, a generalized eigenvalue (GEV) problem is formulated

and solved without obtaining the mapping matrix (or its approximation) directly. The

solution of GEV allows extracting dynamic information in the same way as being provided

by the standard DMD method. This paper though entirely treating the DMD algorithm,

the GEV-projection approach can be equivalently applicable to other dynamics information

extraction techniques (Hemati et al., 2017; Tu et al., 2014; Williams et al., 2015). This

approach avoids singularity issues, and projection onto different spaces generates different

DMD algorithms, for example, the DMD-LS or DMD-TLS algorithm.

4.2 DMD in the formulation of GEV

4.2.1 The standard DMD algorithm

The standard DMD algorithm (Schmid, 2010) was introduced to extract dynamic relevant

information form time-resolved snapshots, and is summarized below for comparison.

Let {x1, x2, · · · , xM , xM+1} be a collection of dynamic variables from a dynamic system,

where xi = x(t0 + i∆t) ∈ RN . t0 is the initial time, i ∈ N is integer and ∆t is the sampling

time interval. An projection of the linear mapping onto data space is given

Axi = xi+1. (4.1)

Let X = [x1 x2 · · · xM ], Y = [x2 x3 · · · xM+1], so X, Y ∈ RN×M . In matrix form, the above

relations is written

AX = Y. (4.2)

On the other hand, a least-square approximation between data X, Y can be given

Y = XC + reTM (4.3)
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and C is the companion matrix and has the form

C =




0 a1

1 0 a2

. . . . . .
...

1 an



. (4.4)

eM ∈ RM and eM = [0, 0, · · · , 1]T . r is the residue of the following least-square problem.

x1a1 + x2a2 + · · ·+ xNaN = xN+1 (4.5)

and a1, a2, · · · , aN are the least square solution of above equation. By solving the eigenvalue

problem of companion matrix C

Cv = λv, (4.6)

DMD eigenvalues and eigenvectors are given by λ and Xv.

A(Xv) = Y v ≈ XCv = λXv. (4.7)

The least square problem is normally in good condition. However, the companion matrix

C is usually ill-conditioned for eigenvalue problem (Trefethen, 1991), resulting in a large de-

viation from the correct eigenvalues even under small perturbation. A more stable algorithm

is to decompose data X by SVD (Schmid, 2010)

X = UΣV T , (4.8)

and project A onto space spanned by X by

Ã , UTAU = UTY V Σ−1, (4.9)
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which is used to compute the Ritz value and vector of A.

Ãv = λv (4.10)

DMD eigenvalue and eigenvector are approximated by the eigenpair (λ, Uv). When X is

singular, the direct inverse of matrix Σ is replaced by the pseudo-inverse (Moore-Penrose

inverse). The inverse operation (including the pseudo-inverse) is numerical stable when any

non-zero singular value of X is much larger than 0. Ironically, the Ritz value and Ritz vector

become a good approximation of the true ones if the following residue goes to zero (Sorensen,

1992),

AU = UÃ+ reTr , (4.11)

where

reTr =
(
I − UUT

)
Y V Σ−1, (4.12)

which further requires the snapshots in {x1, x2, · · · , xM , xM+1} to be nearly linearly de-

pendent. However, it contradicts to the requirement the nonsingular value of X to be isolate

from 0. Though accurate SVD algorithms for small singular values may alleviate above

paradox, they are usually expensive. Schmid (2010) suggested truncating the singular values

by some artificial threshold. However, the influence of such truncation is unclear, and the

appropriate threshold is empirical. Some alternative DMD algorithms are available but they

more or less suffer the same issue stated here.

4.2.2 The GEV formulation for DMD

The algorithm proposed here to avoiding the above issue is to use the generalized eigenvalue

problem to capture dynamic relevant information.

Assume the same collection of data and matrix notation as in the previous section and

the same linear relation given by (4.1). We further assume X to be a good sampling of

the dynamic system, such that any interested system state v can be represented by a linear
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combination of X. Then the following generalized eigenvalue problem

Y v = λXv (4.13)

captures the dynamic information such as frequency and growth rate by λ, and dynamic

modes by Xv. That is

A(Xv) = Y v = λ(Xv). (4.14)

It is readily verifiable that the eigenpairs of GEV (4.13) satisfy the standard eigenvalue

problem (SEV) of (4.14). To make it a sufficient condition, we assumed X to be a good

sampling of the dynamic system. Then the interested eigenvector can be expressed by the

linear combination of X. Let us say (λ, Xv) is the eigenpair of A. Substituted into the

standard eigenvalue problem of A and make use of linear relation (4.1), we derived the

GEV (4.13), thus proved the reversed statement is conditionally true.

The assumption of ‘good’ sampling can be further relaxed. If only the eigenvector repre-

sentable by the data space is interested, the GEV formulation still computes correct eigenvec-

tors. The relaxation may be useful in the case when X is a partial sampling of the dynamic

system, but only some dominant flow structures and frequencies are desired.

The GEV formulation (4.13) captures the same dynamic relevant information as the stan-

dard DMD algorithm. It is a ‘matrix-free’ method, and the generalized eigenvalue problem

circumvents the singularity issue by its definition.

However, the GEV problem is more complicated than the SEV problem. To better

understand the structure of eigenpairs of GEV and prepare for the numerical solution, the

following section introduces the relevant theories.

4.3 Solution to GEV problem

GEV is different from the SEV problem in several aspects. This section introduces some

related definitions and theories. In compliance with the most mathematic monographs, we
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use A, B for Y , and X, respectively.

4.3.1 Introduction of GEV

The eigenvalue of matrix pair (A,B) is also known as the eigenvalue of matrix pencil A −
λB (a family of matrices parameterized by λ) in many matrix theory monographs. The

generalized eigenvalue problem is to find the λ such that the pencil A− λB is rank deficient

and corresponding kernel if required.

(A− λB)v = 0, (4.15)

Not like the SEV, where a full set of finite eigenvalues is guaranteed if counting the

algebraic multiplicity, GEV does not guarantee the existence of eigenvalues or eigenvectors

at all. An illustrative example is given by

A =




1

α


 , B =




1

β


 . (4.16)

If α 6= β, there is no eigenvalue for pencil A − λB. The concept of an invariant subspace

is central to the SEV problem. The invariant subspace gives the solution of the eigenvalue

problem. A generalization of invariant subspace to the GEV is the deflating subspace. Let

(A,B) be a matrix pair, and let (S,U) be a pair of subspaces of Cn and of the same dimension

k. Then (S,U) is called a deflating pair for (A,B) if AS ⊆ U and BS ⊆ U . A necessary

condition for (4.13) is the existence of non-empty deflating subspace.

Another difference is that GEV generalizes eigenvalue to include infinity numbers. For

example, if B is singular, see equation (4.15), c is in the kernel of B and Ac is nontrivial.

We call (∞, c) the eigenpair of the (4.13). In fact, eigenvalue λ is generalized as the ratio of

two variables α, β in numerical computation (K̊agström and Poromaa, 1996), such that the

GEV is written

βAv = αBv. (4.17)
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And the finite eigenvalues are given by the ratio

λ = α/β, β 6= 0. (4.18)

Otherwise, if β = 0, B must be rank deficient(column). In this case,

• if v is in the kernel of only matrix B, λ = α/β =∞,

• if v is in the kernel of both A and B, λ = α/β admits all values in C. Under this

situation, the eigenvalues are the full complex plane, no meaningful eigenvalues can be

calculated. This is the ill-posed problem and should be avoided.

At this stage, let us introduce the essential definition revealing the structure of eigenpairs,

the regular pencil or singular pencil and the relevant theory (Gantmakher, 1998).

Definition 1. A pencil of matrices A− λB is called regular if

• A and B are square matrices of the same order n.

• The determinant |A− λB| does not vanish identically.

In all other cases (m 6= n, or m = n but |A− λB| ≡ 0), the pencil is called singular.

4.3.2 Regular matrix pencil

By the definition of regular pencil, a pencil is regular only if it is square. So either |A| 6= 0

or |B| 6= 0 makes a regular pencil. But it is possible that |A| = |B| = 0 makes a regular

pencil. For example,

A =




1 0

0 0


 , B =




0 0

0 1


 ,

|A−λB| = λ vanishes only at λ = 0. It can be verified that 0 and∞ are the two eigenvalues.

[0, 1]T , [1, 0]T are the corresponding eigenvectors. In fact, regular pencil requires the square

matrices A and B to share empty kernel.
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For regular pencil, there exist a full set of eigenvalues if counting the infinite eigenvalues

and algebraic multiplicities (Wilkinson, 1979). The eigenvalue is revealed by the following

generalized Schur theorem.

Theorem 2 (generalized Schur theorem). Let A,B ∈ Cn×n. Then there exist unitary Q,Z ∈
Cn×n and upper triangular T, S ∈ Cn× such that A = QTZ∗ and B = QSZ∗. Z∗ is the

Hermitian of Z. In other words,

A− λB = Q(T − λS)Z∗

Then eigenvalue is calculated by λi = tii/sii, i = 1, · · · , n, if sii 6= 0. tii, sii are the

diagonal elements of T and S. λi is infinite if sii = 0. Schur theorem is non-constructive,

it can not be used directly to solve eigenvalues and eigenvectors. Some popular eigensolvers

are using QZ algorithm (Moler and Stewart, 1973) or Arnoldi iterative method (Sorensen,

1997).

4.3.3 Singular matrix pencil

Compare to a regular pencil, the eigenstructure of a singular pencil is more complicated.

The illustrative example (4.16) shows the situation when eigenvalue does not exist. The

singular pencil case deserves more attention since for DMD problem, the data X and Y

usually rectangular, forms the singular pencil.

In SEV, the structure of eigenpair is revealed by reducing the matrix to the Jordan canoni-

cal form (JCF). The Kronecker canonical form (KCF) is its generalization to GEV (Van Dooren,

1981).

Theorem 3 (Kronecker canonical form). Any matrix pencil λB − A can be reduced to

S(λB − A)T = diag{Ll1 , · · · , Lls , LTr1 , · · · , LTrt , λN − I, λI − J} (4.19)

i) S, T are constant invertible row and column transformations, ii) Lk is the (k + 1) × k
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bidiagonal pencil, iii) N is nilpotent, and both N and J are in Jordan canonical form.

Lk =




λ

−1
. . .

. . . λ

−1



.

The Jordan block λI−J reveals the finite eigenvalue of the system, while nilpotent block

λN − I computes the infinite eigenvalues. The corresponding eigenvectors are obtained by

solving the eigenvectors of the corresponding block and then do a coordinate transformation.

A detailed description of Kronecker canonical form using the elementary divisors is given

by Gantmakher (1998, (see, ch. XII)). An intuitive explanation regarding the solution of the

linear differential equation is given by Wilkinson (1978).

Direct calculating KCF poses the same numerical difficulties as the Jordan form. A

numerically stable algorithm that unitarily transforms two matrices to low triangular blocks

called the pencil algorithm is given by Van Dooren (1979). The eigenvalues and eigenvectors

can be computed by the corresponding blocks in the resultant decomposition.

4.3.4 Solution regarding perturbation of data

Though the eigenpair of a rectangular matrix pencil can be solved by the so-called pencil

algorithm, equation (4.16) shows a critical issue that eigenpair is very sensitive to the matrix

element. Any perturbation on α or β, the eigenpair may disappear. Such a GEV solution is

useless for flow analysis unless we can find some solutions which are robust to perturbation.

To mitigate the influence of noise or machine precision, several techniques is proposed.

One of them is to define the eigenvalue in a minimal perturbation approach (Boutry et al.,
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2005), to find the eigenpair of a slightly modified pair (A0, B0) such that

min
{A0,B0,{λk,vk}nk=1}

||A0 − A||2F + ||B0 −B||2F

subject to {(A0 − λkB0)vk = 0 and ||vk||2 = 1}nk=1

(4.20)

As mentioned by Chu and Golub (2006), this is still an opening research and has no explicit

solution.

Another possibility is to solve the pseudospectra (Trefethen and Embree, 2005). The

pseudospectra is introduced as an alternative for the spectral of nonnormal matrix. The

ε-pseudospectra of A is defined as

Λε(A) = {z ∈ C : ||(zI − A)−1|| ≥ ε−1}. (4.21)

The ε-pseudospectra is a closed region in the complex plane. Generalization of pseudospec-

tra to matrix pencil is done by Embree and Trefethen (2001); Wright and Trefethen (2002).

A package based Krylov subspace iterative method to compute pseudospectra is given

by Wright and Trefethen (2001).

The minimal perturbation approach or pseudo spectrum provides two frameworks to

calculate eigenvalues that are robust to noise. However, they both have difficulties. First,

the computation is expensive. Secondly, the minimal perturbation approach does not have

an explicit solution, while pseudospectra does not provide meaningful eigenvectors. These

factors limit the data-driven approach to flow analysis.

4.4 DMD by approximate solution of GEV

In this section, the GEV is solved robustly and efficiently by projecting it into some subspace.

This approach will capture the true eigenpairs if they exist and give good approximation

otherwise.
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4.4.1 Projection

A direct solution of GEV (4.13) in the large space RN is difficult, if possible, it is easier

to restrain the solution in some reduced subspace. To do that, let’s introduce the idea of

projection.

P : x→ y, x ∈ RN , y ∈ D ⊂ RN , rank(D) = M.

D is the subspace to project to. Its dimension is usually much smaller, M � N . The

projector can be written in the matrix form P . The projection matrix has the following

properties.

P 2 = P , (4.22)

rank(P ) = M . (4.23)

If

P = P T (4.24)

P is called the orthogonal projector. The orthogonal projection gives the unique vector in

D that is closest to v (Meyer, 2000, (see, chap. 5.13)). That is

min
p∈D
||v − p||2 = ||v − PDv||2. (4.25)

Here PD represent the orthogonal projection to space D.

An orthogonal projection is illustrated by figure 4.1. Space D has two orthonormal basis

q1 and q2, a vector v projected into space D is denoted by PDv. The residue v −PDv is of

minimum 2-norm.

The orthogonal projection gives the unique solution of a least square problem, for exam-

ple, equation (4.5) is solved by

Xa = PXxM+1. (4.26)

a = [a1 · · · aM ]T . PXxM+1 denotes orthogonal projection of xM+1 onto space spanned by
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Figure 4.1: Orthogonal projector onto subspace D. q1, q2 are the orthonormal basis. Pv
is the projection of v onto space D ⊂ RN

column vector of X.

If Q = [q1, q2, · · · , qM ] ∈ RN×M is a set of orthonormal basis of D.

PD = QQT (4.27)

defines an orthogonal projector.

4.4.2 Solving the GEV by projecting to lower-order subspace

Projecting the GEV into subspace D, we obtain

PDY v = λPDXv, (4.28)

X, Y ∈ RN×M , PD ∈ RN×N .

If Q is a set of orthonormal basis of D, PD is given by equation (4.27). Taking equal of

the abscissa the above projected GEV is reduced to

Y ′v = λX ′v, (4.29)
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X ′ and Y ′ are the abscissa on basis Q

X ′ =QTX,

Y ′ =QTY.

The eigenpairs of GEV (4.13) is a subset of the of projected one (4.29), thus will be captured

by (4.29). The projection transforms the GEV from size N×M to M×M , reducing the size

when N > M . The small square matrix pencil is simple both in theoretical and numerical

aspect. The simplest projection comes by let P to be X or Y . (If X is linear independent

but not orthonormal, P is defined by PX = X
(
XTX

)−1
XT . The projected system is then

X ′ = XTX, Y ′ = XTY .) Since X is assumed a good sampling for the state variables, let

P = X, the projection XTX, XTY only takes 2Nm2 multiplication operation counts.

As for the robustness, we notice if |X| 6= 0, |P TX| 6= 0. By the continuity property

of determinant, we know there exist δ and a matrix ||E|| < δ, E ∈ RN×M , such that

|P T (X +E)| 6= 0. Then the eigenpairs exist and continuously change with the perturbation.

Thus our approach is robust to small perturbation for nonsingular X.

To show the accuracy, the projected GEV is reformulated to be

PD(Y v − λXv) = 0. (4.30)

The residual vectors are orthogonal to the subspace D. Therefore increasing the dimension

of D will increase the projection accuracy.

4.4.3 Residue criterion for filtering spurious mode

Two issues perplex the application of above DMD algorithm. One issue associating the

projection is that it admits spurious eigenvalues and eigenvectors since the eigenpair of

projected GEV (4.29) is not limited to the ones of original GEV (4.13). To filter out those
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spurious modes the residue is calculated.

||r|| = ||Y v − λXv||||Y v|| (4.31)

Another issue is the clustering of eigenpairs; that is, several similar eigenvalues and

eigenvectors exist in the solution. To be specific, we notice when data covers multiple periods,

say p periods, the eigenvalues usually clustered around some values in the complex plane with

each cluster contains p eigenvalues. Multiplicities happen especially when sampling interval

aligns with a period of the dynamic system. That is, there exists an integer q, such that the

sampling interval ∆t and period of the system T has relation q∆t ≈ T . The phenomenon

was also observed in Chen et al. (2012), where the authors tried to optimize redundant ones

out.

When such multiplicitiness occurs, a convenient criterion to assess the quality of those

eigenpairs is the residue (Watkins, 2007, (see, chap. 2.7)). The tiniest residue among the

clustered eigenpairs indicates it subjects to least perturbation compared to others, thus the

corresponding eigenpair can be taken as a good approximation to the true eigenpair. This

can be illustrated with a SEV problem, if

r = Av − λv (4.32)

is the residue. Let ||v|| = 1, then the following equation holds

(A+ rvT )v = λv. (4.33)

E , rvT is the perturbation towards matrix A to obtain eigenpair (λ,v). ||r|| = ||E||
measures the perturbation magnitude. Thus a small residue magnitude means the eigenpair

is subject to less perturbation. Therefore the residue defined for the projected GEV

||r′|| = ||Y
′v − λX ′v||
||Y ′v|| , (4.34)
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measures the quality of each eigenpair. Since tiny r′ usually indicate tiny r, besides r′

removes the possible multiplicities, r′ is used as the criterion to pick the good eigenpairs.

Additionally, a low condition number indicates error is not sensitive to perturbation. The

product of condition number κ and perturbation magnitude ||r′|| gives an error estimation

εi = κi||r′i||. (4.35)

ε can be used instead when condition number is available. By this criterion, we can pick

modes perturbed by least noise and not sensitive to perturbation.

4.4.4 DMD-LS: the least square solution

In the previous section, the projection was assumed to carry out onto subspace span(X).

From section 4.4.1, the orthogonal projection is equivalent to seek the least-square solution

of a linear relation (4.5) using given snapshots. Here, we consider the efficiency and stability

of this projection and give a practical algorithm for DMD.

Since XTY and XTX suffer overflow or underflow issues, a stable algorithm is given by

decomposition of X by QR or SVD first and uses the resultant Q or U for the projection.

Theoretically, two matrixes give the same orthogonal projection, thus producing the same

eigenvalues and eigenvectors for the GEV. However, they differ in efficiencies. The typical

operation counts for QR is of 2NM2 − 2
3
M3 (Anderson et al., 1999), slightly heavier than

the direct projection by X, but cheaper than SVD. The coefficients of projected GEV (4.29)

are

X ′ =QTX = R, (4.36)

Y ′ =QTY (4.37)

X = QR is the QR decomposition. We call this DMD-LS algorithm.

The DMD-LS algorithm is equivalent to the standard DMD algorithm. To see that, let
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the projection P = UUT and U is from the SVD of X. X = UΣV T . The projected GEV is

UTY v = λΣV Tv. (4.38)

A coordinate transformation e = ΣV Tv makes the GEV to SEV

UTY V Σ−1e = λe, (4.39)

where UTY V Σ−1 is the projection matrix calculated by DMD algorithm, see equation (4.9).

Since U and Q are the basis of the same subspace and the projection is unique. It can be

derived DMD-LS algorithm is equivalent to standard DMD.

DMD-LS algorithm has several advantages over the standard DMD algorithm (4.9). First,

this algorithm computes a QR decomposition instead of SVD decomposition. It is much ef-

ficient when the data is large. Secondly, it is robust even when the input snapshots are

singular or nearly singular. The QZ algorithm can elegantly handle such near-singular

matrix (Moler and Stewart, 1973). Alternatively, the iterative method based on Arnoldi

procedure (Sorensen, 1997) has a null space purification built in to resolve such an issue.

As a data analysis technique, the capability of parallelization is also important for ana-

lyzing large or distributed data. The projected GEV method can be easily parallelized since

the parallel QR decomposition (Buttari et al., 2008; Demmel et al., 2012) and parallel GEV

solver (Maschhoff and Sorensen, 1996; Stewart, 1987) are the only components needed.

4.4.5 DMD-TLS: the total least-square solution

Total least-square for unbiased estimation

The DMD-LS algorithm implicitly assumes that error occurs only in the last snapshot,

xM+1. However, every snapshot may contain noise as they were collected by the same

experimental instruments or numerical algorithms. Therefore an algorithm that removes the

noise simultaneously from every snapshot is desired.
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This is accomplished by considering the following problem. Let S = [x1 · · · xM xM+1] is

the data subject to noise.

S = Ŝ + ∆S, (4.40)

where Ŝ is the noise-free data and ∆S is the noise. We then resolve equation 4.5 with the

restriction that every snapshots are subject to noise xi = x̂i + ∆xi. Rewriting equation 4.5

in augmented form

[x1 · · · xM xM+1]




a1

...

aM

−1




= 0 + r. (4.41)

Here [a1 · · · aM − 1]T is the solution of unperturbed system

a1x̂1 + · · ·+ aM x̂M − x̂M+1 = 0. (4.42)

And

r = a1∆x1 + · · ·+ aM∆xM −∆xM+1

is the noise.

The pursued solution should be nontrivial, and the residue should be minimized. These

requirements is usually written into the following optimization problem

min
Ŝ∈RN×(M+1)

x̂M+1∈span(Ŝ)

||∆S||2. (4.43)

The optimization problem is solved by the total least-square solution (Van Huffel and Van-

dewalle, 1991). To obtain the solution, ∆S is taken as

∆S = σM+1uM+1v
T
M+1,
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where σM+1, uM+1, vM+1 are from SVD of S

S = UΣV T = [u1 · · · uM+1]




σ1

. . .

σM+1




[v1 · · · vM+1]T . (4.44)

||∆S||2 = σM+1 is of the minimum value to make Ŝ rank deficient. And

[a1, · · · , aM ,−1]T =
−1

vM+1,M+1

vM+1, (4.45)

is the TLS solution. vM+1,M+1 6= 0, otherwise, the non-generic TLS solution is applied (Van Huf-

fel and Vandewalle, 1991).

DMD-TLS algorithm solves the generalized eigenvalue problem by projecting it to the

modified data space spanned by the first M singular vectors.

Ŝ = span(u1, · · · ,uM) (4.46)

Notice the noise ∆S are in the direction of uM+1, which is orthogonal to space Ŝ. This

suggests the total least-square makes the residue of every snapshot to be orthogonal to

the modified data space, thus minimizes the total error of all snapshots. After projecting

GEV (4.29) to the modified data space, X ′ and Y ′ are

X ′ =




σ1

. . .

σM







v11 · · · v1M

...
. . .

...

vM1 · · · vMM




T

, (4.47)

Y ′ =




σ1

. . .

σM







v21 · · · v2M

...
. . .

...

vM+1,1 · · · vM+1,M




T

, (4.48)
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vij is given by SVD (4.44).

TLS provides an unbiased estimation of a system with noised data. Van Huffel and

Vandewalle (1991) pointed out TLS was effective when the noise was independent, of zero

mean and of equal variance.

E(ri) = 0, E(rirj) = σδij,

r is the noise added to the data. Otherwise, it may not provide better solution than LS

method.

The total-least-square solution was used with DMD to identify dynamic information by

several authors (Dawson et al., 2016; Hemati et al., 2017). DMD-TLS differs with them

in the sense that DMD-TLS applies to state variables thus reveal the dynamics in state

space Axi = xi+1, while the mentioned algorithm applied to the system transfer matrix

yi = Axi, where (xi, yi) is the input and output pair of the dynamic system, thus reveals the

dynamics therein. Besides, the augmented snapshots constructed by DMD-TLS is half the

size of the mentioned algorithm, which is beneficial for big data analysis. The DMD-TLS

algorithm is somewhat similar to the dynamic information extraction technique developed

by Liu and Shepard Jr (2005). However, DMD-TLS algorithm is different from above meth-

ods by avoiding calculating explicitly the solution of [a1, · · · , aM ,−1]T , thus circumvents the

numerical issue that TLS may be sensitive to perturbation (Golub and Van Loan, 1980) and

the numerical instability when computing the eigenvalue of a companion matrix.

An illustrative example of TLS

It might be useful to understand the modified data space by the following example. Consider

three consecutive vectors shown in figure 4.2

x1 =




1

0

0



, x2 =




0

1

0



, x3 =




0

cos θ

sin θ



,
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Figure 4.2: TLS and LS solution of S.

from a dynamic system, 0 < θ � π/2. In DMD-LS algorithm, all dynamics was projected to

the x-y plane, thus solving a dynamic problem using (x1,x2,x
′
3). While DMD-TLS project

dynamics into the shaded plane constructed by two main singular vectors of the snapshots.

To determined it, decompose snapshots by SVD

S = [x1,x2,x3]

=



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The modified space is then

Ŝ = span







0

cos θ
2

sin θ
2



,
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0
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



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This is shown as the shaded plane. The vectors used to determine the dynamics by DMD-

TLS algorithm is (x1, x̂2, x̂3). The residue of each snapshots is along u3 =
[
0,− sin θ

2
, cos θ

2

]T

and orthogonal to the modified space Ŝ.
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Noise filtering by SVD

It is often hard to obtain the modes by standard DMD technique for noise snapshots, as

the noise intensity may on the same energy level of some modes. Without filtering the

noise, modes obtained by DMD algorithm can be useless. To obtain reasonable DMD modes

and maximize the signal-to-noise ratio (maximum MSNR), data is often filtered by the

SVD (Van Huffel and Vandewalle, 1991, (see, chap. 3.6)). In this approach, only singular

vectors with eigenvalue larger than Rv are kept

σ1 ≥ σ2 ≥ · · · ≥ σr ≥ Rv ≥ σr+1 ≥ · · · ≥ σM+1. (4.49)

Rv is so-called rank determinant provided either by the user or by the following formula

Rv =
√

2 max {N,M + 1}σNoise, (4.50)

M is the snapshots number and N is snapshot size. σNoise is the intensity of noise.

Notice the DMD-TLS decompose data by SVD. It is convenient to compute DMD modes

by following formula

Xv ≈ [u1, · · · ,ur]




x′11 x′1M
. . .

x′r1 x′rM







v1

...

vM




(4.51)

where x′ij is from equation (4.47). r ∈ N and is determined by (4.49). v is the eigenvector.

4.5 DMD algorithm and Koopman decomposition

DMD algorithm can effectively approximate the spectra and modes of systems with constant

spectra. However, it may fail to capture the spectrum of the LTV system or nonlinear system,

except for the following particular case.
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1. The transient spectrum: If the observation period is much smaller than the character-

istic time T of the dynamics system, DMD algorithm may be useful to compute the

transient spectrums and modes.

2. The infinity spectrum: If the observation duration is large enough such that τ →∞ in

equation (2.28) is approximately satisfied, λ(∞, t0) defined in equation (2.28) will be

approximated. If the system is further UES (or UAS), the spectra are time-independent

and can be computed correctly by the DMD algorithm.

3. The periodic system: As stated earlier, a Floquet system has constant Koopman spec-

trums. DMD algorithm will correctly reveal the Koopman modes and spectrum.

In practical application, the transient spectrum may still cumbersome to compute. We

may save trouble by noticing Koopman mode is invariant for some cases. Therefore we

first compute the Koopman modes at the asymptotic case, then using the techniques such

as the least square solution to obtain the decomposition. However, this approach may

produce unsatisfactory results since Koopman modes are non-orthogonal. What is more,

this approach requires that the modes to be ‘atomic’, that is, they are not the superposition

of several modes as will be talked in chapter 9.2.

DMD only reveals dynamics implied by the data, which requires the snapshots to con-

tain both base and the perturbation to reveal their spectra. For example, if only periodic

snapshots are given, the spectrum for the perturbation cannot be obtained.
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Chapter 5

Linear structure of nonlinear

dynamics

If I have seen further it is by standing on the shoulders of giants.

Issac Newton (English), 1642-1726

5.1 Introduction

Dynamic systems are widely studied in fields such as mathematics, physics, engineering,

chemistry, biology, economics, etc. For instance, the dynamics of particles subject to external

forces is usually described by differential equations following Newton’s law

ẋ = f(x). (5.1)

If f(x) is a linear function of x (where f(αx+ βy) = αf(x) + βf(y), α, β ∈ R, x ∈ Rn), the

dynamic system is linear, otherwise nonlinear.

The categorization of linear and nonlinear dynamics is of practical importance. Lin-

ear systems are theoretically well-studied and straightforward. However, most systems are

inherently nonlinear. On the other hand, nonlinear systems are usually approximated by
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linear ones through linearization, such as the linear stability analysis. Unfortunately, this

only works for short term prediction. Lorenz (1963) published a numerically work on solv-

ing a nonlinear modal system and revealed the remarkable fact that nonlinear dynamics

could have chaotic solution for specific parameters and initial conditions. Many more works

showed that nonlinear dynamics could be chaotic, unpredictable, or counter-intuitive con-

trasting with linear systems (Feigenbaum, 1983; May, 1987; Ruelle and Takens, 1971; Russell,

1844; Strogatz, 2018; Winfree, 1967).

Despite the dramatic difference between linear and nonlinear dynamic systems, efforts

exist to reduce the nonlinear dynamics to some form of linear ones. For instance, by defining

Koopman operator (Koopman, 1931), or its adjoint Frobenius-Perron operator (Frobenius

et al., 1912; Perron, 1907) on nonlinear dynamic systems, researchers instead studied dy-

namics of functionals defined on the systems and evolved by the linear operators (Lasota

and Mackey, 2013; Reed and Simon, 1972). Recently, spectral Koopman decomposition was

introduced to study dynamics of ergodic systems and fluid systems (Bagheri, 2013; Mezić,

2005; Rowley et al., 2009). Our work continues these efforts. A direct motivation is to under-

stand various decomposition techniques, such as Fourier decomposition, proper-orthogonal

decomposition (POD) (Holmes et al., 1996a), and dynamic mode decomposition (DMD) al-

gorithms (Schmid, 2010) on nonlinear dynamics which lacks superposition principle. It is

found that completeness of dual space of dynamic state introduces what we called linear

structure of dynamics, resulting in the various decomposition techniques mentioned above.

Further, by considering the local Koopman spectrum problem, invariant subspaces of nonlin-

ear dynamics are introduced, an analog to the linear dynamics. Following the linear structure

via Koopman decomposition, two unique properties of nonlinear dynamics are identified, the

locality and infinite-dimensionality of Koopman spectrums. By this understanding, the gap

between dynamics and various mathematical oriented decomposition techniques is bridged.
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5.2 The universal and unique properties of nonlinear

dynamic systems

Chapter 1.3 summarized two important properties of linear dynamic systems. They have

superposition principle and invariant subspaces. In the following chapter, these universal

properties are extended to nonlinear dynamics. Besides, two unique properties of nonlinear

dynamics are revisited.

5.2.1 Linear structure

Unfortunately, the superposition principle does not hold for nonlinear dynamics. One would

ask how to understand those decomposition techniques, such as Fourier decomposition, POD,

DMD without superposition principle. If nonlinear dynamics are not decomposable, one has

to take them as a magic black box and has difficulty understanding them. Fortunately, the

linear-sum capability of nonlinear dynamics comes from what we called the linear structure

of dynamics. To explain that, let us introduce some definitions from operator theory (Reed

and Simon, 1972).

• A complete normed linear space is called a Banach space.

• A bounded linear transformation (or bounded operator) from a normed linear space

< V1, || ||1 > to a normed linear space < V2, || ||2 > is a function, T , from V1 to V2

which satisfies the following two conditions

(1) T (αv + βw) = αT (v) + βT (w),

(2) For some c ≥ 0, ||Tv||2 ≤ c||v||1.

The smallest such c is called the norm of T

||T || = sup
||v||1=1

||Tv||2 (5.2)

• The set of bounded linear transformations from one Banach space X to another Y is

itself a Banach space, noted by L(X,Y). In the case where Y is the complex numbers,
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this space L(X,C) is denoted by X∗ and called the dual space of X.

Therefore, the dual space X∗ contains all the Lipschitz continuous functionals of X.

Since the completeness of Banach space, any element g(x) in the dual space can find a

Cauchy sequence such that

g(x) = lim
∞∑

i=0

fi(x). (5.3)

Then dynamics g(x)(t) is transferred to dynamics of the bases fi(x)(t) and then sum all

these sub-dynamics together. That is, the linear summation in the decomposition tech-

niques stems from the linearity and completeness of dual space X∗. Since it is different

from the superposition principle of linear systems, we call it linear structure of dynamics for

differentiation.

Apply the linear structure to state variable x

x = lim
∞∑

i=0

cif
′
i(x). (5.4)

f ′i(x) is some functional of X∗, and ci is corresponding coefficient. If x is a vector, the above

expansion is carried elementwisely, then ci are vectors and called modes. In short, the linear

structure makes use of functional analysis, and decomposes the dynamic variables by a series

of functionals, and studies sub-dynamics of the functionals.

5.2.2 Invariant subspaces

Various choices of Cauchy sequence may be available and result in different decomposition

techniques. However, the choice may significantly affect dynamics analysis. Motivated by

the LTI system and the recent development of linear time-variant (LTV) systems (Wu, 1974;

Zhou, 2016), it is desired to use similar linearly independent and invariant bases if available

for nonlinear dynamics.

Unfortunately, extending the invariant subspace to the nonlinear dynamic system is not

straightforward. No spectral theory is defined on nonlinear dynamic systems to the authors’

knowledge. An attractive idea is to look into the dynamics in its dual space since the
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dynamics system defines a linear yet infinite-dimensional map on a linear space (Lasota and

Mackey, 2013; Reed and Simon, 1972), known as Koopman operator. Recently, the spectral

decomposition is introduced to dynamics study by Mezić and Rowley, as the linear operator

defined on linear space naturally raises the spectral problem.

However, the spectrum theory of linear operator is a non-trivial extension to the finite-

dimensional matrix spectral problem, partly because of the infinite-dimensionality of the

operator. It is known only bounded operator is guaranteed bounded spectrum. Other than

that, unbounded operators may or may not have spectrum (Reed and Simon, 1972). As a

result, previous researchers focused on some particular dynamic system. For example, the

ergodic system results in a unitary operator, one type of well-propertied bounded opera-

tor Mezić (2005).

In part I we proposed to relax the definition to the local spectrum as there were signs

they depended on the state of the system for nonlinear dynamics. Consider the dynamics

of an observable g(x) under the dynamics T τ , where T τ represents the dynamic mapping

T τ : X→ X for a given time interval τ . And the Koopman operator U evolutes the dynamics

of g(x) by

Ug(x) = g(T tx) (5.5)

The Koopman operator is linear (Reed and Simon, 1972; Rowley et al., 2009). Therefore,

the local Koopman spectrum is defined by

φ(T τx) = Uφ(x) = λ(x)φ(x), x ∈ Dx0 . (5.6)

The local eigenvalue problem is only required to hold in a neighborhood around the state

x0.

Further, utilizing the perturbation theory of operator (Kato, 2013; Reed and Simon,

1978), the local spectral λ(x) and eigenfunction φ(x) can analytically extend to the whole

space under the condition that the Koopman and perturbation operator is bounded. The

requirements can be satisfied by many practical dynamic systems. With this extension, both
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the eigenvalue λ(x) and the eigenfunction φ(x) will be continuous and analytical in X∗. The

resulting eigenfunctions φ(x)s constitute bases for the linear structure.

The newly defined local Koopman is backward-compatible to the global Koopman spec-

tral that appeared in previous literature. Under this situation, the domain D is the whole

space X, for example, the LTI system.

5.2.3 Unique properties of nonlinear dynamics

The locality Koopman spectrum

For an LTI system, the Koopman spectrum problem is globally defined, and the Koopman

spectrums are constant. They are independent of the state. However, for nonlinear systems,

it was found that the spectrums were no longer constant and are state-dependent. Therefore,

the local Koopman spectrum problem is defined. Notice that general LTV systems usually

represent linearized nonlinear systems, the time-variant spectrum are consistent with the

state-dependent Koopman spectrum.

Nonlinear interaction and infinite-dimensionality of nonlinear dynamics

Another fundamental difference between linear and nonlinear dynamics is the dimensional-

ity. For linear systems, dynamics are decoupled into invariant subspaces and no interaction

among them. However, for nonlinear dynamics, interaction exists among its sub-dynamics.

These recursive interaction promotes the system to infinite-dimensional. Under Koopman

decomposition, this effect is conveniently summarized by the recursive proliferation rule.

For instance, some critical Koopman spectrum generated by self-interaction are shown in fig-

ure 2.2. By the interaction, each Koopman eigenfunction can generate an infinite-dimensional

Koopman eigenfunctions grouping all the nonlinear interaction. This infinite-dimensionality

results in many important phenomena in nonlinear dynamics as will be illustrated later.
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5.3 Examples of linear structures via Koopman decom-

position

5.3.1 A linear dynamic system

Let’s take the LTI systems (1.11) for an example. Assuming A is diagonalizable

A = V ΛW (5.7)

where V and W contains the right and left eigenvectors of A, the diagonal elements of Λ are

the spectrum, so AV = V Λ and WA = ΛW . From part I, it is known for LTI systems, the

eigenfunction is given by the inner-product of the left eigenvectors and state variable.

x = VWx = V




f1(x)

f2(x)

...

fn(x)




=




v11f1 + · · · v1nfn

v21f1 + · · · v2nfn
...

vn1f1 + · · · vnnfn




(5.8)

where W = [w1 · · · wn]T , and fi(x) = wTi x. We therefore obtain the Koopman decompo-

sition. The dynamics of x(t) is transferred to the components fi(x(t)). Though literally

complex, fi(x(t)) is of the simple form cie
λit for LTI systems. It is then easier to trace the

dynamics through these eigenfunctions fi(x). For instance, the dynamics of x1, the first

component of vector x, is given by

x1 = v11f1 + · · · v1nfn. (5.9)

Each subcomponent has the dynamics fi(x(t)), and the total dynamics is given by the

linear sum (5.9). Moreover, the dynamics of fi(x)(t) are linearly independent and invariant,

therefore each sub-dynamics is totally decoupled from others.

Sometimes nonlinear observables may be presented, for instance, the total kinetic energy
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ẋ0 = A(t)x

<latexit sha1_base64="KouiboXy7MK3zc10Up3bWeU5oxs=">AAAB+XicbVDLSgMxFM34rPU16tJNsIh1U2aqYDdCxY3LCvYB7VAyaaYNzWSG5E5pGfonblwo4tY/ceffmLaz0NYDFw7n3Jvce/xYcA2O822trW9sbm3ndvK7e/sHh/bRcUNHiaKsTiMRqZZPNBNcsjpwEKwVK0ZCX7CmP7yf+c0RU5pH8gkmMfNC0pc84JSAkbq23elFkI6nF/gW3xXhcty1C07JmQOvEjcjBZSh1rW/zBM0CZkEKojWbdeJwUuJAk4Fm+Y7iWYxoUPSZ21DJQmZ9tL55lN8bpQeDiJlSgKeq78nUhJqPQl90xkSGOhlbyb+57UTCCpeymWcAJN08VGQCAwRnsWAe1wxCmJiCKGKm10xHRBFKJiw8iYEd/nkVdIol9yrUvnxulCtZHHk0Ck6Q0XkohtURQ+ohuqIohF6Rq/ozUqtF+vd+li0rlnZzAn6A+vzB+CRkno=</latexit>

Nonlinear part

LTI Periodic 
LTV

General 
LTV

Nonlinear proliferation
x2 : �i, �j ! �i + �j

<latexit sha1_base64="FWgaS4iZMZMsYPR6xS8QlqOwIBY=">AAACMnicbVBJS8NAGJ3UrdYt6tHLYBEEpSRVsHgqeNFbBbtAU8NkMm3HThZmJmoJ+U1e/CWCBz0o4tUf4TQNVVsfDDze+7Z5TsiokIbxouXm5hcWl/LLhZXVtfUNfXOrIYKIY1LHAQt4y0GCMOqTuqSSkVbICfIcRprO4GzkN28JFzTwr+QwJB0P9XzapRhJJdn6hZXOiB2G8CCJ76/L8BRaTA1wkU0PJ/QGWpz2+hJxHtz9FBxM/MTWi0bJSAFniZmRIshQs/Unyw1w5BFfYoaEaJtGKDsx4pJiRpKCFQkSqqtQj7QV9ZFHRCdOz03gnlJc2A24er6Eqfq7I0aeEEPPUZUekn0x7Y3E/7x2JLuVTkz9MJLEx+NF3YhBGcBRftClnGDJhoogzKm6FeI+4ghLlXJBhWBOf3mWNMol86hUvjwuVitZHHmwA3bBPjDBCaiCc1ADdYDBA3gGb+Bde9RetQ/tc1ya07KebfAH2tc3cjqq2w==</latexit>

Fixed point 
x0

<latexit sha1_base64="K+sO0CuDWJkgv9fRUwtth9Na9Gc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9R3++WKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/NTp+TMKgMSxsqWNGSu/p7IaKT1JApsZ0TNSC97M/E/r5ua8NrPuExSg5ItFoWpICYms7/JgCtkRkwsoUxxeythI6ooMzadkg3BW355lbRqVe+iWru7rNRreRxFOIFTOAcPrqAOt9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AEGqo2T</latexit>

Periodic base 
xb(t) = xb(x + T )

<latexit sha1_base64="JXY8q7hv7u0ki8HylMhRSh1VtBY=">AAAB+nicbZDLSsNAFIZPvNZ6S3XpZrAILUJJqqAboeDGZYXeoA1hMp22QycXZibaEvsoblwo4tYncefbOGmz0NYfBj7+cw7nzO9FnEllWd/G2vrG5tZ2bie/u7d/cGgWjloyjAWhTRLyUHQ8LClnAW0qpjjtRIJi3+O07Y1v03r7gQrJwqChphF1fDwM2IARrLTlmoWJ65VUGd2gFCbnjbJrFq2KNRdaBTuDImSqu+ZXrx+S2KeBIhxL2bWtSDkJFooRTmf5XixphMkYD2lXY4B9Kp1kfvoMnWmnjwah0C9QaO7+nkiwL+XU93Snj9VILtdS879aN1aDaydhQRQrGpDFokHMkQpRmgPqM0GJ4lMNmAimb0VkhAUmSqeV1yHYy19ehVa1Yl9UqveXxVo1iyMHJ3AKJbDhCmpwB3VoAoFHeIZXeDOejBfj3fhYtK4Z2cwx/JHx+QOsq5JF</latexit>

xb(t)
<latexit sha1_base64="CAbJoKaZMuZV9fojYlsFfe9fzqI=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoMQL2E3CnoMePEYwTwgWcLsZDYZMzu7zPSKIeQfvHhQxKv/482/cZLsQRMLGoqqbrq7gkQKg6777eTW1jc2t/LbhZ3dvf2D4uFR08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwupn5rUeujYjVPY4T7kd0oEQoGEUrNZ96QRnPe8WSW3HnIKvEy0gJMtR7xa9uP2ZpxBUySY3peG6C/oRqFEzyaaGbGp5QNqID3rFU0YgbfzK/dkrOrNInYaxtKSRz9ffEhEbGjKPAdkYUh2bZm4n/eZ0Uw2t/IlSSIldssShMJcGYzF4nfaE5Qzm2hDIt7K2EDammDG1ABRuCt/zyKmlWK95FpXp3WapVszjycAKnUAYPrqAGt1CHBjB4gGd4hTcndl6cd+dj0Zpzsplj+APn8wfwQo6o</latexit>

0 Re

0

Im

0 Re

0

Im

…

Figure 5.1: The hierarchy of Koopman decomposition.

is expressed as

e =
1

2

∑

i

ẋ2
i =

∑

k

∑

l

blkflfk (5.10)

where blk is the element of B = 1
2
ΛTV TV Λ. flfk is the Koopman eigenfunction given by the

multiplication of fl(x) and fk(x), as described by the proliferation rule in part I. The dy-

namics of the total kinetic energy is obtained simply replacing fl(x)fk(x) by fl(x(t))fk(x(t)).

5.3.2 Hierarchy of nonlinear dynamics

Unfortunately, general formulation of Koopman spectrum or Koopman eigenfunctions are

not available for nonlinear dynamic system. However, hierarchy structure discussed in part

I made it easier to understand and compute Koopman decomposition. The hierarchy is

illustrated by figure 5.1.

The hierarchy structure decomposes dynamics into base dynamics and perturbation. The

base dynamics are required to be a real trajectory of the system such that it will not introduce

fake spectrums into the system. Typically, they are simple dynamics such as a fixed point,

or a periodic solution whose spectrum are already studied, or the real trajectory whose
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spectrum is numerically studied by the DMD algorithm. The perturbation is described by

the nonlinear perturbation equation, whose linear part was studied by the spectrum of LTI

system or periodic/non-periodic LTV system in part I. Further, the nonlinear perturbation

terms are obtained by recursively applying proliferation rule. Then all the spectrum and the

decomposition is obtained.

5.4 Linear structure and other decomposition techniques

As discussed in chapter 3.2, linear structure via Koopman decomposition was found to

provide a foundation for global stability analysis. In fact, the linear structure provides not

only bases for stability analysis, but also many other decomposition techniques as well.

5.4.1 Understanding the DMD and POD techniques

DMD and POD are both data-driven techniques for dynamics analysis, and often compared

to each other. DMD is the data-driven tool for Koopman decomposition, or more accurately,

a time-averaged approximation to the local Koopman spectrum since the sampled data last

some time. For instance, data collected at the approximate linear stage provides an excellent

approximation to the primary stability or secondary stability spectrum, see Part I.

Linear structure provide foundation for POD as well, but relies on a different set of bases,

the eigenfunctions of the second order correlation function of the dynamics

Rx(t, t
′) =

∫

Ξ

x(ξ, t)x(ξ, t′)dξ (5.11)

where t, t′ is the time lapse of observation, ξ is the spatial coordinate for the dynamic system.

The correlation has the following properties: symmetry as Rx(t, t
′) = Rx(t

′, t), continuous as

long as x(ξ, t) is continuous, and positive semi-definite, since for any nonzero function ψ(t)

∫ b

a

ψ2(t)dt > 0, (5.12)
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satisfies the following relation

∫ b

a

∫ b

a

Rx(t, t
′)ψ(t)ψ(t′) =

∫ b

a

∫ b

a

∫

Ξ

x(ξ, t)x(ξ, t′)ψ(t)ψ(t′)dξdtdt′

=

∫

Ξ

(∫ b

a

u(ξ, t)ψ(t)dt

)2

dξ ≥ 0.

(5.13)

The continuous, symmetry, positive semi-definite kernel Rx(t, t
′) satisfies the Mercer’s

theorem (Mercer, 1909), also known more generally as Fredholm eigenvalue problem (Ed-

munds and Evans, 2018), therefore can be expanded by series

Rx(t, t
′) =

∞∑

i=1

λiei(t)ei(t
′) (5.14)

where the functions ei(t) are the eigenfunctions of the following eigenvalue problem.

∫ b

a

Rx(t, t
′)exi(t

′)dt′ = λxiexi(t). (5.15)

The eigenfunction exi(t) may then act as the bases for duration from a to b. We may then

take limit b− a→ 0 to define the functional at x

φi(x) = lim
b→a

eix(t) (5.16)

and use the functionals φi(x) for linear structure, which results in the POD decomposition.

As Rx(t, t
′) is symmetrical, the eigenvalues are all real numbers and therefore naturally

ordered by corresponding eigenvalues. which then givens the POD decomposition. It is

noticed by taking limit of above Fredholm problem, a local spectrum is defined.

It is well known that the POD gives the most efficient decomposition as it captures

the most energy with the same amount of modes. It is seen in the Mercer’s theorem, the

eigenfunctions corresponding to the largest eigenvalue and the eigenfunctions are orthogonal

to each other. However, POD decomposition has disadvantages. First, these eigenfunctions

are not the eigenfunctions of the dynamics system, therefore not invariant under the dynamics

84



Nonlinear dynamics

Linear structure

Koopman 
eigenfunction

Mercer’s 
eigenfunction xk

<latexit sha1_base64="V8HHnWRkcL73A91EcrXaTqENutU=">AAAB+nicbVA9SwNBEJ3zM8avqKUgh0GwCnexMJ0BG8sEzQckZ9jb7CVLdveO3T0xnCktbbW3E1uLVP4PW1v/hJuPwiQ+GHi8N8PMPD9iVGnH+bKWlldW19ZTG+nNre2d3czeflWFscSkgkMWyrqPFGFUkIqmmpF6JAniPiM1v3c58mt3RCoaihvdj4jHUUfQgGKkjXR9f9trZbJOzhnDXiTulGQvPofln8ejYamV+W62QxxzIjRmSKmG60TaS5DUFDMySDdjRSKEe6hDGoYKxInykvGpA/vEKG07CKUpoe2x+nciQVypPvdNJ0e6q+a9kfif14h1UPASKqJYE4Eni4KY2Tq0R3/bbSoJ1qxvCMKSmltt3EUSYW3Smdni80HahOLOR7BIqvmce5bLl51ssQATpOAQjuEUXDiHIlxBCSqAoQNP8Awv1oP1ar1Z75PWJWs6cwAzsD5+AadjmME=</latexit>

sin(kx), cos(kx)
<latexit sha1_base64="iWL3ABsb6qvx3d/pwfkrZXmSbDU=">AAACDHicbZDLSsNAFIYnXtt6i3YjuAkWoUIpSV3YZdGNywr2Ak0pk+mkHTozCTMTMYaCT+AruNWtuBO3voPgyidx0nZhW3848PGfcziH3wspkcq2v4yV1bX1jc1MNre1vbO7Z+4fNGUQCYQbKKCBaHtQYko4biiiKG6HAkPmUdzyRpdpv3WLhSQBv1FxiLsMDjjxCYJKWz0z70rCi6O705JbclEgU+yZBbtsT2QtgzODQu3w/jv78HpR75k/bj9AEcNcIQql7Dh2qLoJFIogisc5N5I4hGgEB7ijkUOGZTeZPD+2TrTTt/xA6OLKmrh/NxLIpIyZpycZVEO52EvN/3qdSPnVbkJ4GCnM0fSQH1FLBVaahNUnAiNFYw0QCaJ/tdAQCoiUzmvuisfGOR2KsxjBMjQrZeesXLnW6VTBVBlwBI5BETjgHNTAFaiDBkAgBk/gGbwYj8ab8W58TEdXjNlOHszJ+PwFLeKdkw==</latexit>

……

Pre-determined basesDynamics induced bases

POD

Koopman decomposition

DMD
Global stability analysis

Figure 5.2: The linear structure and bases

mapping. Secondly, POD eigenfunctions do not support the proliferation rule, and the sub-

dynamics are coupled. Further, Koopman spectrum problem only requires the Banach space

with a norm defined, while the POD requires the Hilbert space with inner-product defined

such that its application may be further limited. Therefore, Koopman decomposition may

be more suitable for dynamic analysis.

Both the Koopman eigenfunctions and eigenfunctions of Mercer’s theorem are dynamics

induced bases. Besides them, there exists fixed bases as well, see figure 5.2, such as poly-

nomials 1, x, x2, · · · or the trigonometric series, where the former was extensively used to

derive the proliferation rule. Though these bases are readily available, they may subject the

same disadvantages as Mercer’s eigenfunctions.
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Chapter 6

Fluid dynamic system, numerical

algorithm and benchmark

After introducing Koopman spectrum theory and DMD algorithm, let us consider a physical

problem, the fluids past a fixed cylinder. The flow phenomena, instability mechanism, and

numerical simulation algorithm are discussed in this chapter.

6.1 Flow past fixed cylinder, the physical problem

The flow passing a fixed cylinder is chosen as a classical benchmark problem for its simple

configuration and geometry and rich dynamics. The non-dimensional Reynolds number

Re = ρUD
µ

influences the instability of wake. U is the incoming flow velocity, D is the

diameter of the cylinder, and µ is the viscosity of the fluids. For low Reynolds number,

such that Re < Rec1 ≈ 6 (Jackson, 1987), viscosity effect dominates. The flow is laminar,

steady and does not separate from the cylinder. Above Rec1, the flow separates from the

cylinder surface and rejoins in the wake, creating a recirculating zone with two counter-

rotating vortices. At this time, the flow is still symmetry, steady and laminar. Experimental

show at around Rec2 ≈ 50 (Roshko and for Aeronautics, 1954; Tritton, 1959), the wake will

break symmetry. The original two steady vortices will shed alternatively off the cylinder,
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creating the well-known Kármán vortex street. Further increasing the Reynolds number, it

is observed at some point, after Rec3 ≈ 190 (Williamson, 1988), there is a sharp drop in the

lift, drag, and shedding frequency, indicating a transition occurs. At this Reynolds number,

the original two-dimensional Kármán vortex begins to wobble in the spanwise direction, and

eventually develops the three-dimensional wake. The above phenomena are summarized in

figure 6.1.

Primary
instability

Secondary
instability

Turbulent

Rec1 Rec2 Rec3 Rec4

Figure 6.1: Cylinder wake for different Reynolds number.

Above instability phenomena are all attributed to the linear instability mechanism. To

perform linear stability analysis, we decompose the flow into an equilibrium base flow and

perturbation on top of it and substitute them into the Navier-Stokes equations. After can-

celing the base flow and nonlinear perturbation terms, a linear perturbation equation is

obtained. In the range of Rec2 < Re < Rec3, the linearized homogeneous Navier-Stokes

equation around the steady base flow will provide a pair of unstable complex conjugate nor-

mal modes (Jackson, 1987). They grow exponentially when the perturbation is small and

later are saturated by the nonlinear effect. The oscillation of paired unstable modes breaks

the symmetry of flow and eventually leads to the alternatively shedding vortices. This wake

developing process corresponds to the Hopf bifurcation (Provansal et al., 1987). That is,

flow in the primary instability range has two critical elements co-existing: an attracting

limit cycle and an unstable equilibrium.

Further increasing the Reynolds number, the primary modes keep growing and distorting

the mean flow. When Re exceeds the critical Rec3, a three-dimensional secondary wave is

formed and superimposed on the primary wave (Landahl, 1972). Orszag and Kells (1980)

expanded the three-dimensional perturbation around the essential two-dimensional periodic

base flow and obtained the Floquet system for the perturbation. The exponential growth
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of three-dimensional perturbation is thus attributed to the linear stability mechanism and

analyzed using the Floquet theory. The universal of secondary instability for the various

wall-bounded shear flow was confirmed by Orszag and Patera (1983). Other flow, such

as boundary layer, was inspected by Herbert (1988), and blunt bodies wake was studied

by Barkley and Henderson (1996).

The secondary instability for the wake past cylinder mentioned in the previous section

is around Re = 180 ∼ 190. The Strouhal number St is usually checked for this tran-

sition. Roshko and for Aeronautics (1954) found it increased steadily except after some

critical number Rec, where the coefficients experienced a sudden drop. More dedicated ex-

periments (Miller and Williamson, 1994; Prasad and Williamson, 1997; Williamson, 1988,

1992) confirmed the above observation and found two discontinuities existed instead of one.

They found in the range Rec3A < Re < Rec3B, a three-dimensional wave with a spanwise

wavelength of Lz ≈ 3D appeared, they call it the mode A instability. Further increasing

Re, a fine-scale pattern with Lz ≈ 1D occurred, and the St increased abruptly. It is the

so-called mode B instability. The transition is hysteretic and two critical Reynolds number

is Rec3A = 180 ∼ 190 and Rec3B = 230 ∼ 260. Linear stability analysis based on Flo-

qeut theory reveals that mode A and mode B corresponds to two distinct unstable Floquet

modes (Barkley and Henderson, 1996). They also determined that the onset of mode A

secondary instability occurred at Rec3A = 188.5, and the wavelength was Lz = 3.96D. And

the mode B secondary instability occurred at Rec3B = 259 and Lz = 0.82D.

Since the well-known mechanism and relatively simple flow dynamics, We choose this

physical problem as our study subject. The research objective is two-fold.

The first one is the desire to study the instability via the data-driven approach. The

primary and secondary instability are studied by the DMD algorithm. Two cases, Re =

50 and Re = 200, are chosen. The study will focus on the initial development of small

perturbation and will be presented in chapter 9.1 and chapter 8.2.

The second objective is to study the nonlinear dynamics by the Koopman decomposition.

The focus is the full Hopf bifurcation transition process. The result will be presented in

chapter 9.2.
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6.2 Numerical simulation algorithm for incompressible

Navier-Stokes equation

Computational fluid dynamics (CFD) provides rich information on the flow field. Our data

is numerically collected by integrating the governing equations. In the following chapter, the

numerical algorithm to solve Navier-Stokes equations is introduced.

In chapter 1.2, the incompressible Navier-Stokes equations are introduced.

∇ · u = 0, (6.1)

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u. (6.2)

where u, v, w are the velocity, p is the pressure and Re is the Reynolds number.

6.2.1 Time discretization scheme

A second order, time-discrete semi-implicit form of Eqn. (6.1, 6.2) is given by

∇ · un+1 = 0

un+1 − un
∇t = − [(u · ∇)u)]n+ 1

2 −∇pn+ 1
2 +

1

Re
∇2(un+1 + un)

(6.3)

This is a second order center scheme at time t + 1
2
. However, the implicit nature requires

solving a coupled system of un+1, pn+1, which is cumbersome.

Before proceeding any further, let us re-examine the incompressible Navier-Stokes equa-

tions. Equation (6.1) enforces the divergence free constraint to the momentum equation (6.2),

which can be rewritten as

∂u

∂t
+∇p = −(u · ∇)u+

1

Re
∇2u. (6.4)

Therefore, role of pressure in the momentum equation is to enforce the divergence free

constrain in the velocity field. In fact, equation (6.4) is the hodge decomposition and can be
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written
∂u

∂t
= P

[
−(u · ∇)u+

1

Re
∇2u

]
. (6.5)

P represents the divergence-free projector.

Projection methods pioneered by Chorin (1968) for numerically integrating Eqn. (6.1,

6.2) are based on above observation. It approximates the solution of the coupled system

by first solving an analog to the discretized Eqn. (6.3) without considering the divergence

constraint on the intermediate velocity u∗. After that, the intermediate velocity is projected

onto a space of divergence-free, yielding un+1. To be specific, this procedure is given in the

following steps.

• Step 1: Solve for the intermediate field u∗

u∗ − un
∆t

= [−(u · ∇)u]n+ 1
2 −∇pn+ 1

2 +
1

Re
∇2(u∗ + un),

u∗|∂Ω = un+1
b .

(6.6)

• Step 2: Perform the divergence free projection

u∗ = un+1 + ∆t∇φn+1,

∇ · un+1 = 0,

(6.7)

by solving the following Poisson equation

∇2φn+1 =
∇ · ũ
∆t

,

(n · ∇φ)n+1

∣∣∣∣
∂Ω

= 0,
(6.8)

where ũ = u∗ − un, and obtain un+1 = u∗ −∆t∇φn+1 = ũ+ un −∆t∇φn+1 to finish

the divergence free projection.
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• Step 3: Update the pressure

pn+ 1
2 = pn−

1
2 + φn+1 − ∆t

2Re
∇2φn+1. (6.9)

Some comments are followed.

1. The convective term is approximated by the second-order-explicit Adams-Bashforth

scheme

[−(u · ∇)u]n+ 1
2 =

3

2
[−(u · ∇)u]n − 1

2
[−(u · ∇)u]n−1 . (6.10)

2. The semi-implicit Crank-Nicholson method applied on the viscous term in Eqn. (6.6)

eliminates the numerical viscous stability restriction, which is particularly severe for

low-Reynolds number and stretched grids (Kim and Moin, 1985) considered in this

work.

3. ∇pn+ 1
2 in the momentum equation (6.6) is approximated by∇pn− 1

2 to reach the second-

order temporal accuracy. A more accurate approximation would interpolate ∇pn+ 1
2 by

∇pn+ 1
2 = 2∇pn− 1

2 −∇pn+ 3
2 . (6.11)

4. Boundary conditions for intermediate velocity u∗ in Eqn. (6.6) are compatible for un+1

and pn+ 1
2 to achieve second order temporal accuracy up to boundary (Brown et al.,

2001).

5. The last term on the right-hand side of Eqn. (6.9) is essential for pressure to achieve

second-order temporal accuracy (Brown et al., 2001).

6.2.2 Staggered grid and spatial discretization

Staggered grid is adopted to avoid ‘checkerboard’ decoupling of velocity and pressure (Harlow

and Welch, 1965). Velocity variables u, v, w are placed on the surface of the cell. Pressure
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p and the variable φ are placed at the center of the cell. A two-dimensional arrangement is

shown in figure 6.2.

Figure 6.2: Staggered grid configuration and location of velocities and pressure

In the staggered grid, the momentum u, v and the variable φ are evaluated by different

stencils, which are illustrated in figure 6.3. To achieve second order accuracy in space, the

derivatives are evaluated by central difference scheme, except for some flux terms on the

right hand side, which are interpolated to the required position.

(a) u stencil (b) v stencil (c) p or φ stencil

Figure 6.3: 2D stencils for evaluating momentum/pressure. Red cross label the grid (i, j).

Momentum equation

ũ− λ∇2ũ = RHS (6.12)

is solved by the approximate factorization (Kim and Moin, 1985). RHS = − [(u · ∇)u]n+ 1
2−

∇pn+ 1
2 + 2

Re
∇2un and λ = ∆t

Re
.

(
I − λ ∂

2

∂x2

)(
I − λ ∂

2

∂y2

)(
I − λ ∂

2

∂z2

)
ũ = RHS. (6.13)
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The discretized poisson equation (6.8) (2D)

(li,j−1φi,j−1 + li,jφi,j + li,j+1φi,j+1)+(mi−1,jφi−1,j +mi,jφi,j +mi+1,jφi+1,j) = RHSi,j (6.14)

is solved by cyclic reduction (Buneman, 1969), which is implemented by FISHPACK (Adams

et al., 1980). The third-dimension (z-direction) of Poisson equation is converted to Fourier

space (
∂2

∂x2
+

∂2

∂y2
− k2

)
φ̂ = R̂HS, (6.15)

k is the wave number in spanwise direction. Then the Helmholtz equation is further solved

by cyclic reduction mentioned above.

6.2.3 Cartesian Grid and IBM method

The simulation uses the Cartesian gridy. It is the nonconforming grid if solid is presented

in the computational domain. In that case, an immersed boundary method (IBM) is imple-

mented. In this study, a sharp interface IBM (Mittal et al., 2008) is used.

Instead of applying BC on the whole solid boundary, the sharp interface method enforce

the conformal of boundary condition at a set of Lagrangian points, the boundary interception

points (BP), which is illustrated in figure 6.4.

cb

a

Fluid Solid GP BP IP

Figure 3: Schematic for ghost point methodology: the solid interface is plotted

by and the Cartesian grid mesh is plotted by .

and use discrete forcing approach to represent the solid boundary.

In the frame of immersed boundary method, the velocity boundary condition

ũ(j+1)(s, t) = V(j+1)(s, t) can be implemented by setting the body forcing term on

the solid boundary,

f (j+1) =
V(j+1) − u(j)

∆t
− RHS(j+1). (8)

However the underlying Cartesian grid is not necessarily conformal to the solid

boundary, therefore we apply (8) on the Cartesian grid nodes nearby solid interface

and replace boundary velocity V with reconstructed velocity Vr using information

from the boundary and the surrounding velocity field. The ghost-cell methodology

[52] is used for the reconstruction, which is shown in Figure 3 and summarized as

following,

13

Figure 6.4: The immersed boundary method. GP: ghost point; BP: boundary point; IP:
image point.

The following steps summarize the procedure.
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1. First, we categorize the Cartesian nodes in solid to be solid nodes and the rest to be

fluid nodes.

2. The ghost points (GP) are determined to be solid nodes who at least have one neighbor

fluid node.

3. For each GP, the closest boundary facet is determined. The boundary point (BP) is

obtained by orthogonally projecting the GP to the facet.

4. The image point (IP) is determined by mirroring the GP through the boundary facet.

5. The value for u, v, φ on the GP is reconstructed from IP, the later is interpolated by

surrounding fluid nodes. To enforce the no-slip velocity condition

VGP = 2VBP − VIP . (6.16)

Here VBP is the velocity at point BP. For Neumann BC of φ,

φGP =
∂φ

∂n

∣∣∣∣
BP

∆l + φIP . (6.17)

∂φ
∂n

is the derivative in the normal direction at point BP, and ∆l is the length from

GP to IP. VIP and φIP are values at IP and obtained by bilinearly or (trilinearly for

3D) interpolated from the surrounding fluids nodes by the method provided by Mittal

et al. (2008).

More detailed information can be found in the reference (Mittal et al., 2008)

6.3 Simulation configuration

Since the focus is to study the instability or transition of flow past cylinder at Re = 50 or

200, and three-dimensional secondary instability starts after the critical Reynolds number

Rec3 ≈ 187, therefore, a two-dimensional simulation for Re = 50 < Rec3 is sufficient to reveal
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the dynamics of primary instability. A three-dimensional simulation is only performed at

Re = 200 ≥ Rec3 for secondary instability.

Two more cases will be computed. A two-dimensional simulation at Re = 100 is con-

ducted to benchmark our code as abundant experiments and numerical simulation data are

available. Another one is the two-dimensional simulation at Re = 200. It has two purposes.

One is to estimate the domain size and grid resolution for the three-dimensional simulation

at Re = 200. Another one is to provide a perfect initial flow field for three-dimensional

instability simulation.

Since truncated domain is used for the simulation, the artificial boundary conditions have

to be applied. In general, those artificial BCs cannot provide the exact flow at the boundary,

inevitably introducing error to the simulation. A large enough domain may solve the problem,

but a proper domain size can effectively reduce computational resources. Figure 6.5 shows

the configuration for the simulation.

Figure 6.5: Configuration for numerical simulation of 3D cylinder.

The upstream Lup, downstream Ldown, and height H are affected by both the Re and

BC used. A summary of the reference lengths is provided in table 6.1. As the incoming

boundary is set to be uniform, it is required the boundary to be far away from the cylinder.

The downstream length is mainly affected by the outflow boundary condition used. The

height H of the domain is influenced by the solid in the domain. The solid, up and bottom

boundaries together created a narrow ‘channel’, which can block the flow and increase drag on

the cylinder. The spanwise length is related to the most critical three-dimensional secondary

wave.
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Table 6.1: The reference domain size from various research.

Re Lup/D Ldown/D H/D Lz/D Note Reference

100 10 2D Norberg et al. (1995)
100 20 Neumann Behr et al. (1991)
100 10 convective Park et al. (1998)
100 16 free stream BC Behr et al. (1995)

24 symmetric BC
190 44 Barkley and Henderson (1996)
200 80 Posdziech and Grundmann (2007)
188.5 8∼9 lz = 4 Barkley and Henderson (1996)

For two-dimensional simulation, Lz is not required. For three-dimensional simulation,

periodic BC is applied along the spanwise direction, and Lz is chosen the wavelength of most

critical mode Lz = 4D (Barkley and Henderson, 1996).

For velocity boundary, Dirichlet BC is applied to the inlet, top and bottom boundary,

periodic in the z-direction. The inviscid convective BC is applied at the outlet

∂u

∂t
+ U

∂u

∂x
= 0. (6.18)

Neumann BC is applied at all the boundary for the variable φ

∂φ

∂n

∣∣∣∣
∂Ω

= 0. (6.19)

Stretched grid is used as shown in figure 6.6 for efficiency. Uniform grid is adopted

around the solid. The stretch ratio is smaller than 1.05 and continuous changes by the

hyper-tangential law to avoid large stretching or sudden change of grid ratio.

6.4 Numerical simulation results

Simulation results compared with references are presented in this section.
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Figure 6.6: Stretched grid for simulation

6.4.1 Re = 100, 2D

Two-dimensional simulation at Re = 100 is performed primarily to understand the developed

code, such as the domain, grid, or CFL dependence. Some reference data is compiled in

table 6.2. The reference range of CD is 1.25 ∼ 1.36 and CRMS
L is between 0.2 ∼ 0.28.

Table 6.2: Reference data at Re = 100 for Strouhal number St, CRMS
L , C̄D from various

sources. Experiments are label with *. For numerical study, the discretization method is FD:
finite difference; CD: compact difference; B-SP: B-spline spectral method based on Galerkin
method. (̄·) for averaged values and (·)RMS for rooted-mean-square values

St CRMS
L C̄D Grid Resolution Method Reference

0.164 - - - Exp Williamson (1996)*
- - 1.25 - Exp Tritton (1959)*
0.163 0.223 1.3123 - SP Posdziech and Grundmann (2007)
0.173 0.25 1.425 0.1667 FD Zhang et al. (1995)
0.165 0.078 1.253 0.077 FV Persillon and Braza (1998)
- 0.28 - - FE Li et al. (1991)
0.164 0.24 1.36 0.02 FD Beaudan and Moin (1994)
0.164 0.2 1.32 0.004 FD Tang and Aubry (1997)
0.164 0.22 1.31 0.0314 CD/4/6-2 Visbal and Gaitonde (1999)
0.165 0.24 1.35 96× 128 FD Liu et al. (1998)
0.164 0.22 1.314 0.0035 B-SP Kravchenko et al. (1999)

Unfortunately, some of the results in table 6.3 suggest our code is sensitive to the domain

size, which may be because the relative simple BC used. Among the computed values, the

Strouhal number St is not sensitive to the domain size or grid resolution, but CD and CL

does.
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Table 6.3: 2D simulation results for Re = 100. Strouhal number St, CRMS
L , C̄D with

different domain length and grid resolution. CFL ∼ 0.6. Nx, Ny is the total grids in x and
y direction. ∆x and ∆y is the grid resolution around the cylinder.

CASE Lup Ldown H Nx Ny ∆x ∆y St CRMS
L C̄D

I 20 40 40 600 400 0.01 0.02 0.167 0.188 1.404
II 20 40 40 600 420 0.01 0.01 0.166 0.181 1.544
III 20 40 60 600 500 0.01 0.01 0.166 0.181 1.539
IV 20 40 40 800 640 0.005 0.005 0.169 0.195 1.672
V 20 40 80 800 700 0.005 0.005 0.167 0.211 1.589
VI 40 40 80 600 440 0.01 0.01 0.167 0.192 1.482
VII 40 80 80 600 440 0.01 0.01 0.167 0.192 1.482
VIII 40 40 80 800 340 0.005 0.02 0.167 0.198 1.353
IX 40 40 80 800 440 0.005 0.01 0.166 0.190 1.419
X 20 40 80 850 800 0.0044 0.005 0.167 0.205 1.634
XI 20 40 80 920 840 0.004 0.004 0.167 0.198 1.571

Increasing the height H, the CRMS
L approaches to reference values, as seen from case II,

III, IV, and V. Meanwhile, the drag coefficient C̄D also drops to the reference range. So a

height H = 80 is chosen.

Increasing the upstream length Lup to 40 improves CRMS
L and C̄D, which can be seen

from case II, VI. Ldown = 40 seems to be large enough, as shown by case VI, VII.

The influence of grid resolution is subtle. Increasing grid resolution may favor CL but be

adverse for CD. For example, case I vs. IV, and VIII vs. IX, these simulations suggest some

optimum grid resolution with better accuracy and efficiency.

CFL number has significant influence on the result. As shown in table 6.4, decreasing CFL

number (by decreasing integration step ∆t), the CRMS
L and C̄D are improved simultaneously,

see figure 6.7. A further investigation shown in figure 6.11 indicates the algorithm is almost

first-order accurate in time for CL and CD.

6.4.2 Re = 50, 2D

To study the instability problem (Re in the range Rec2 < Re < Rec3), a 2-D simulation at

Re = 50 was carried out. Some of the reference values for Re = 50 are shown in table 6.5.

Our study closely matches the experimental data as well as other numerical simulations.
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Table 6.4: Simulation results at Re = 100 by 2D simulation with different CFL number.
The domain size and grid is the same as case VI in the previous tables.

CFL ∆t St CRMS
L Cmean

D

0.6 0.012 0.167 0.192 1.482
0.5 0.010 0.167 0.197 1.459
0.4 0.008 0.165 0.204 1.437
0.2 0.004 0.167 0.215 1.388
0.1 0.001 0.167 0.220 1.359

��� ���

���

Figure 6.7: CFL influence on simulated CL and CD at Re = 100.

For the low Re case, the domain dependence is not severe as the previous (Re = 100) case,

thus a smaller domain is adopted. As the CFL dependence revealed in previous section,

CFL = 0.3, 0.2, 0.1 is tested and result is shown in table 6.6. CFL = 0.1 provides good

match to the reference St, CRMS
L , CD which is already listed in table 6.6.

The domain size was 60D × 40D to minimize the effects of domain dependence. A total

number of 450× 300 = 135, 000 grids was used. The grid was non-uniform, with a minimum

interval of 0.0333 around the cylinder. The CFL number was 0.1 and the non-dimensional

step time was ∆t = 0.00333. To minimize the influence of non-important normal modes, we

first obtained the equilibrium solution by setting a symmetry restriction of the field through

the central plane of the cylinder. After the flow reached the equilibrium, we removed the

symmetry restriction and added white noise at the incoming flow, which had an intensity
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Table 6.5: Reference for Re = 50, Strouhal number, CL, CD from various sources. Experi-
ments are label with *.

Cmean
D CRMS

L St Source

1.45 ∼ 1.38 - - Tritton (1959)*
- - 0.125 Williamson (1996)*
- - 0.127 Barkley and Henderson (1996)
- - 0.123 Berger and Wille (1972)

1.43 0.035 0.125 This study

Table 6.6: Simulation results at Re = 50 by 2D simulation with different CFL number.

CFL Lup Ldown H Nx Ny dx dy St CRMS
L C̄D

0.3 20 40 40 450 300 0.033 0.033 0.125 0.034 1.470
0.2 20 40 40 450 300 0.033 0.033 0.125 0.035 1.452
0.1 20 40 40 450 300 0.033 0.033 0.125 0.035 1.432

of 10−3. The perturbation was removed after a short time excitation, and the simulation

continued until it reached the periodic solution.

Time history for lift and drag coefficient is shown in figure 6.8. After the initial exponen-

tial growth, those values are stabilized at a certain level. Figure 6.9 shows the unperturbed

and fully developed vortex of the wake.

6.4.3 Re = 200, 2D/3D

Table 6.7 lists some reference values for case Re = 200. Our three-dimensional simulation

results match well with the reference. Here, the two-dimensional simulation is carried out

merely for the three-dimensional simulation.

2D simulation

Several simulations with CFL = 0.1 are conducted and the result are list in table 6.8.

Refining the grid resolution from 0.01 to 0.008 does not improve the result, as seen from case

II and IV. Bigger domain slightly improves the result, which can be seen from case I and II

in table 6.8, and figure 6.10.
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Figure 6.8: Time history of CL and CD at Re = 50. CFL = 0.1 in table 6.6

(a) initial field (b) fully-developed field

Figure 6.9: Vortex of initial and fully developed stage for Re = 50. CFL = 0.1 in table 6.6
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Table 6.7: Reference values for Re = 200.

Cmean
D CRMS

L St Note Source

1.26 - - Tritton (1959)*
- - 0.184 Williamson (1992)*
1.28 - 0.187 Henderson (1997)
1.321 0.301 0.198 2D simulation Persillon and Braza (1998)
1.306 0.254 0.181 3D simulation Persillon and Braza (1998)
1.24 0.358 0.182 Posdziech and Grundmann (2001)
1.32 0.48 0.19 Zhang and Dalton (1998)
1.3086 0.4676 0.1940 Posdziech and Grundmann (2007)
1.377 0.457 0.198 2D simulation This study
1.325 0.329 0.181 3D simulation This study

Table 6.8: Domain size and grid resolution for 2D simulation of Re = 200. CFL = 0.1

CASE Lup Ldown H Nx Ny dx dy St CRMS
L C̄D

I 20 40 60 600 500 0.01 0.01 0.200 0.462 1.385
II 40 40 60 600 500 0.01 0.01 0.200 0.457 1.376
III 40 40 60 600 500 0.008 0.008 0.203 0.462 1.402
IV 40 40 60 700 500 0.008 0.008 0.198 0.457 1.377

The comparison in figure 6.10 clearly indicates the biggest influence come from CFL. By

decreasing the integration step ∆t, the lift and drag coefficient are improved significantly.

A further study indicates the accuracy for the CL and CD is approximately first order, as

illustrated in figure 6.11. The fully developed 2D Karman vortex is shown in figure 6.12.

�

���

���

�

���

���

Figure 6.10: CFL influence on simulated result and reference values for CD and CL at
Re = 200 using two-dimensional simulation.
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Figure 6.11: The numerical error
in logscale, Re = 200, 2D

Figure 6.12: Fully developed Kármán vortex at
Re = 200, 2D.

3D simulation

The final configuration for three-dimensional simulation is shown in figure 6.13.

Figure 6.13: The configuration of domain size and stretched grid (coarsen for illustration)
for 3-D flow past a fixed cylinder.

The three-dimensional simulation at Re = 200 was carried out in the following manner to

capture the secondary instability. First, a two-dimensional cylinder flow was simulated until

it reached periodic (see figure 6.12). Then the two-dimensional flow was interpolated to three-

dimensional field, using it as the initial flow for the three-dimensional simulation. A short

time three-dimensional simulation was carried out until it settled down to a periodic solution

(in case there were errors introduced by the interpolation). We then added a line perturbation

immediately above and below the cylinder. The perturbation was sine wave which had the
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form u′ = A cos
(

2π
Lz
z
)
δ(x− 0.5)δ(y − 0.5)δt and u′ = −A cos

(
2π
Lz
z
)
δ(x− 0.5)δ(y + 0.5)δt.

A was the magnitude of perturbation and chosen 10−3. The pulse excitation in x, y, and

t would arouse full wavelength response in these directions, but only the unstable modes

would grow and develop.

Two-dimensional simulation reaches almost grid independence when Lx×Ly = 80D×60D

with a grid size of 600× 500. The minimum grid interval around the cylinder is 0.01× 0.01.

Barkley and Henderson (1996) had shown for an infinitely long cylinder, the unstable Floquet

mode had a continuous spectrum. For the sake of simulation, a truncated domain has to be

adopted in the spanwise direction. The truncation would induce the continuous spectrum

collapsing to some discrete spectrum, therefore suitable for DMD analysis. The domain

length in the spanwise direction was determined to be the wavelength of the most unstable

Floquet mode. Several researches (Barkley and Henderson, 1996; Williamson, 1988, 1992)

had suggested Lz = 4D for Re = 200. A uniform grid was used in the spanwise direction,

with a total of 160 grids. The grid resolution at the spanwise direction was 0.025. Periodic BC

was applied in the spanwise direction, and Fourier transform was adopted in this direction.

Simulation with two different CFL number is carried out and the results are listed in

Table 6.9, where apparently CFL = 0.1 case provide better match to the reference shown

in table 6.7. The corresponding time history of drag is shown in figure 6.14. The initial

change of CD is slow due to the small growth rate of the secondary instability and the small

perturbation. However, after t = 200, the flow undergoes a rapid change, and CD drops

rapidly to a lower level. The rapid drop of CL and St from two-dimensional simulation to

three-dimensional simulation is in table 6.7.

Table 6.9: Simulation results at Re = 200 by 3D simulation with different CFL number.

CFL ∆t Lup Ldown H Lz Nx Ny Nz dx dy dz St CRMS
L C̄D

0.3 0.003 40 40 60 4 440 440 160 0.01 0.01 0.025 0.201 0.409 1.385
0.1 0.001 40 40 60 4 600 500 160 0.01 0.01 0.025 0.181 0.329 1.325

Figure 6.15 shows the fully developed vortex, repeated 1 time in the spanwise direction (z-

direction) for better view. Figure shows except the original Kármán vortex, spanwise waves
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Figure 6.14: Time history of drag and lift coefficient CD, CL for flow past fixed cylinder at
Re = 200.

were also developed. The main Kármán vortex cores were bended. Small rib vortex grew

from the bend area and stretched downstream connecting the counterrotating vortex pairs.

The simulation shows the same vortex structure experimentally observed by Williamson

(1992).
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Figure 6.15: Fully developed vortex after cylinder at Re = 200 with 3D simulation. Iso-
surface of Q-criterion of fully developed secondary instability wave of three-dimensional flow
past fixed cylinder at Re = 200, repeated 1 time (by periodicity) in spanwise direction to show
the repeated structure. The isosurface is contoured with spanwise vorticity. A top view (x-z
plane) and a side view (x-y plane) are shown.
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Chapter 7

Benchmark DMD algorithm

This chapter tests the accuracy and efficiency of DMD-LS and DMD-TLS algorithm.

7.1 DMD-LS algorithm for noise-free data

Bagheri (2013) studied the Koopman spectrum of Kármán vortex. By investigating the

Perron-Frobenius operator (Lasota and Yorke, 1982), the adjoint operator of Koopman op-

erator, he was able to compute the eigenvalue by forming the trace of this linear opera-

tor (Cvitanovic and Eckhardt, 1991). Therefore, we can compare our results with his.

Figure 7.1 presents the DMD eigenvalues. The dimensionless growth rate σ and angular

velocity ω are compared, since

σ + iω = log(λ)/∆t, (7.1)

λ is the DMD eigenvalue, and ∆t is the time interval between snapshots. Frequency f of

DMD modes is related to the angular velocity by

ω = 2πf (7.2)

DMD modes are picked by the residue criterion presented in section 4.4.3, and the com-

puted spectrum are presented in figure 7.1. Alternatively, if an error is admissible, modes
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can be picked by their energy magnitude from our previous report (Zhang and Wei, 2017).

At each harmonic frequency, three of the top DMD modes either picked by tiny residue or

large energy were presented.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

ω

−0.07

−0.06
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−0.04

−0.03

−0.02

−0.01

0.00

0.01

σ

DMD-by residue

DMD-by energy

Koopman

Figure 7.1: The dimensionless eigenvalue ω-σ of flow past cylinder at Re = 50 by DMD-LS
algorithm. • (Black) solid circle represents the Koopman spectral by Bagheri (2013); 2 (red
square) or 4 (blue triangle) indicates values computed by DMD-LS algorithm and picked by
tiny residue or most energy respectively. Three modes around each harmonic frequency are
picked by either criterion.

In this example, the lattice distribution of DMD eigenvalues discovered by Bagheri (2013)

is obtained. Following the notation of Bagheri, the DMD eigenvalues are denoted by

λj,m = σj,m + iωj,m, (7.3)

where i =
√
−1, j-index represents the growth, such that j = 0 corresponds to σ ≈ 0, j = 1

corresponds σ = −0.023, j = 2 corresponds to σ = −0.046 and so on. m-index represent

the frequency, such that m = 0 corresponds to ω = 0, m = 1 corresponds ω = ±0.79 and so

on. Since some of the eigenvalues coincides with others and may be not discernible in the

figure, we list them in table 7.1. We call the modes corresponds j = 0 harmonic, j = 1 the

first transient, and j = 2 the second transient.
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Table 7.1: Growth rate and frequency (σ, ω) of flow past fixed cylinder at Re = 50. The sec-
ond row of harmonic modes indicates high-frequency modes, where +1 indicates the frequency
need to add π.

DMD modes j-index m = 0 m = 1 m = 2

harmonic j = 0 (-0.000, 0.000) (-0.000, 0.786) (-0.000, 1.573)
j = 0 (-0.000, 0.007)+1 (-0.000, 0.779)+1 (-0.000, 1.566)+1

first transient j = 1 (-0.023, 0.000) (-0.023, 0.786) (-0.023, 1.572)
second transient j = 2 (-0.046, 0.000) (-0.046, 0.790) (-0.046, 1.570)

The higher the order of j, the eigenvalue is more sensitive to the input data. Adding or

removing a few snapshots may result in slight movement of (σ, ω) pairs in the complex plane.

However, low order j-index modes are usually not affected. The frequency (the m-index) is

not sensitive to perturbation.

The residue and energy generally consider different aspects of the calculated modes.

However, as enough snapshots are collected, and space spanned by them become linearly

dependent, the dominant eigen-modes are computed more accurately. Therefore, criterion

based on residue or energy usually picks the same modes.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
ω

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

||r
||

by residue

by energy

Figure 7.2: Residue of DMD modes for fixed cylinder at Re = 50. 2 (Red square) labels
those picked by tiny residue and 4 (blue triangle) labels those picked by higher energy.

The residue of DMD eigenpairs is shown in figure 7.2. Smaller value indicates good

quality. The good quality eigenpairs only appear near the integer multiple of shedding

frequency of the vortex. This phenomenon conforms to the fact that only 1 attracting limit
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cycle exists in this flow. The dynamic modes captured are related to the limit cycle. With

the residue or energy criterion, the true dynamic modes are kept. In figure 7.2, only three

of the top eigenvalues at each harmonic frequency picked either by the residue with (red)

square or energy with the (blue) triangle are shown. At each harmonic frequency, the mode

most accurately computed also contains the most significant energy. They are the harmonic

modes and will be presented in figure 7.4a.
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Figure 7.3: The energy of DMD modes for fixed cylinder at Re = 50. 2 (red square) labels
those picked by tiny residue and 4 (blue triangle) labels those picked by bigger energy.

The energy of DMD modes is shown in figure 7.3, the energy definition is the same as

our previous report (Zhang and Wei, 2017). At each harmonic frequency, three of the top

modes picked either by residue or energy criterion are labeled with the same symbols as in

figure 7.1.

The harmonic modes are shown in figure 7.4a. The mean mode (σ = 0.000, ω = 0.000)

captures the most energy of the flow. The first harmonic mode (σ = 0.000, ω = 0.786)

captures the dominant vortex shedding movement in the flow. It is similar to the critical

normal modes obtained by Jackson (1987). These two modes capture more than 99% energy

of the whole flow. They are symmetric with respect to the centerline. The second harmonic

mode σ = 0.000, ω = 1.573 captures an asymmetric mode.

The first set of transient modes are shown in figure 7.4b. The first one is similar to the

shift mode discovered by Noack et al. (2003). It captures the transition from the unstable

110



(a) Harmonic DMD modes. σ = 0 (b) 1st transient DMD modes. σ ≈ −0.024

Figure 7.4: Modes of harmonic and first set of transient DMD modes (figure shows the
stream function). Left column is harmonic DMD modes, right column is the 1st set of
transient DMD modes. From top to bottom ω = 0, 0.786, 1.573

equilibrium to the mean flow. This mode is different from the mean mode and other harmonic

or transient modes. The rest two modes resemble the corresponding harmonic modes but

differ in some detail and energy magnitude.

The second set of transient modes σ ≈ −0.048 are shown in figure 7.5b. The second

set of transient modes resembles those of the first set but captures transient motion with a

faster-decaying ratio.

7.1.1 DMD algorithm and Fourier transform on periodic data

It is proved DMD algorithm applied to periodic data will result in the Fourier trans-

form (Mezić, 2005; Rowley et al., 2009). However, the equivalence works for infinite dimen-

sional analysis but not a finite dimension. It is well known that a finite Fourier transform
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(a) High-frequency harmonic modes. σ ≈ 0 (b) Second set of transient modes. σ ≈ −0.047

Figure 7.5: DMD modes of high-frequency harmonics and second set of transients (figure
shows the stream function). a) Right column shows the high-frequency harmonic modes, from
top to bottom ω ≈ 3.14, 3.92, 4.71. b) Left column shows the second set of transient modes,
from top to bottom ω ≈ 0, 0.78, 1.57.

contains alias error, where the high-frequency components are folded to low frequency.

f(xk) =
∞∑

i=−∞

aie
jiwxk =

∞∑

i=−∞

aie
ji 2π
T
kT
N =

∞∑

i=−∞

aie
jik 2π

N

=
N∑

i=0

a′ie
jik 2π

N

(7.4)

where a′i =
∑∞

l=−∞ ai+lN . The finite dimensional Fourier transform will ‘fold’ the high-

frequency components to low-frequency, increasing their magnitude and contaminating the

Fourier modes. For example, if sampling interval is ∆t, the information in frequency range

[−fc, fc] is captured by discrete Fourier transform (DFT), here fc = 1
2∆t

is the critical

frequency (Nyquist frequency), correspondingly angular frequency is ω = 2πfc ∈ [− π
∆t
, π

∆t
].

However, there is no alias error for DMD, that is, high-frequency modes are separate

from low-frequency ones, and they will not be folded together. To see that, consider the
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eigenvalue problem described by

Av = λv

The eigenpair (λ,v) is distinguishable by both its eigenvalue and eigenvector. Even if fre-

quency λ is equal, the eigenpair can be distinguished by the mode.

The angular frequency of DMD modes is given by

ω =
Im(lnλ)

∆t
∈ [−π − nπ, π + nπ]

∆t
(7.5)

n is some integer to be determined. Unfortunately, it is often taken n = 0 for granted, which

is not correct. To determine the exact value of n, it often needs to consider the energy of

that mode as well as the mode geometry. The correct frequencies for these high-frequency

modes are listed in table 7.1, where we have ‘+1’ indicate the frequency need to add π
∆t

.

In the previous section, a set of high-frequency harmonic DMD modes was revealed by

residue criterion, see figure 7.5a. In the frequency plot (figure 7.1) they were hidden by low

frequency modes as we computed the angular velocity by ω = Im(ln(λ)) ∈ (−π, π]. We

correct the frequencies in table 7.1 by considering their energy and modes geometry. These

high frequency spectrums and modes are confirmed with DMD analysis on data sampled at

high-frequency (∆t = 0.5).

Therefore, DMD is free of alias error for a finite-dimensional analysis. The frequency is

determined up to some constant value. It can capture high-frequency modes higher than the

critical frequency of 1
∆t

. These high-frequency modes are separated modes rather than folded

to the low-frequency ones. Some of these high-frequency modes can be picked by residue

criterion.

7.2 DMD-LS and DMD-TLS algorithm with noise

The previous section demonstrates identifying system dynamical information using DMD-LS

algorithm. In this section, noised data is considered to test the DMD-LS and DMD-TLS
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algorithm. It is found the modified space Ŝ = span(x̂1, · · · , x̂M , x̂M+1) is generally better

than original data space D = span(x1, · · · ,xM) for noise contaminated data.

To obtain the noised data, each snapshot is added with some independent random noise

to mimic the case where noise is introduced by the measuring instruments.

x′i = xi + ∆xi (7.6)

∆x is the noise and follows normal distribution.

E(∆xi) = 0, E(∆xi∆xj) = σ2
Nδij. (7.7)

δij is the Dirac function. σN is the noise intensity (the standard deviation of noise). DMD-LS

algorithm and DMD-TLS algorithm is then applied to data x′.

Figure 7.6 shows the frequency and growth rate of DMD modes subject to three level of

noise, σN = 0, σN = 10−6 and σN = 10−3. In the figure, we label the most important modes

with a red square. For the noiseless data (two plots in the first row), the energy criterion

is used. However, it is switched to the more stable residue criterion for noised data as the

energy criterion becomes unstable.

Without noise, DMD-LS and DMD-TLS compute similar eigenvalues. However, with

noise, the two algorithms give slightly different results. The growth rates of both algorithms

are affected by the noise. They decrease with the increased noise level. However, DMD-TLS

algorithm is more accurate than DMD-LS algorithm on noise data. The frequencies are not

affected by noise.

Modes for noise level σN = 10−3 are shown in figure 7.7. By the maximum MSNR

filtering, modes are correctly captured except a few ones.
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(a) σN = 0

(b) σN = 1.0× 10−6

(c) σN = 1.0× 10−3

Figure 7.6: Eigenvalues of DMD-LS and DMD-TLS algorithm for noise data. The left
column shows the DMD-LS algorithm, and the right column shows the DMD-TLS algorithm.
From top to bottom, the noise intensity is 0, 10−6, 10−3. The first row labels the important
DMD eigenvalues with red square by the energy criterion, the rest rows uses the residue
criterion.

7.3 algorithm efficiency

The efficiency of different DMD algorithm is compared by time used. Two major components,

decomposition and the eigenvalue solver, are shown their time used in figure 7.8. The

standard DMD and DMD-TLS algorithm both used SVD to decompose snapshots, while

DMD-LS used a cheaper QR decomposition. Notice there are multiple SVD procedure

available in LAPACK (Intel, 2007), gesdd (faster) or gesvj (slow but accurate for small
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Figure 7.7: DMD modes by DMD-TLS algorithm, figure shows stream function. From
right to left, top to bottom , the corresponding (ω, σ) are (0.000, 0.000), (0.000,−0.023),
(0.786, 0.000), (0.786,−0.019), (1.570, 0.000), (1.553,−0.020), (2.350, 0.000), (3.140, 0.000).
Modes are filtered by maximum MSNR.

eigenvalues). The latter may suitable for nearly singular data sets. Both subroutines are

used. They are distinguished by ‘DMD(gesdd)’ and ‘DMD(gesvj)’. At the eigensolver side,

SEV uses the QR algorithm and needs O(M3) operation (Watkins, 2007). The QZ algorithm

for a GEV problem needs O(M3) operation.

Our workstation has 2 Intel Xeon CPU E5-2680 installed. A total of 28 cores with

2.40GHz are available. The system is CentOS. The compiler is Intel Fortran with threaded

MKL library. Single-core execution time for each algorithm is in figure 7.8. DMD-LS al-

gorithm is comparable to the cheaper DMD(gesdd) algorithm, while much faster than the
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Table 7.2: Algorithm efficiency for various DMD algorithm and coefficients for A and B
for different component.

component algorithm A B

Decomposition QR 1.21E-5 1.80
SVD 4.54E-5 1.87

Eigensolver QR algorithm for SEV 1.45E-7 2.50
QZ algorithm for GEV 5.56E-8 2.81

318 636 1272
Snapshots

10-1

100

101

102
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e
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Figure 7.8: Time for DMD-LS, DMD(gesdd), DMD(gesvj). Time and snapshots numbers
are in log scale. For each bar, the bottom portion represents the time for decomposition and
the top portion for eigensolver. DMD(gesvj) takes too much time in SVD decomposition not
shown for 1272 snapshots.

DMD(gesvj). The operation count for each DMD algorithm is estimated by fitting the time

used.

t = ANB. (7.8)

t is time used, A and B are two constant. N is the size of the problem. The estimation

of A and B are listed in table 7.2. The DMD-LS algorithm will benefit from the fast QR

decomposition and fit for analysis for big data. Its overall performance is also excellent

compared to the conventional DMD algorithm.
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Chapter 8

Koopman analysis for constant

spectrum systems

Koopman decomposition is applied to a linear system and an asymptotic nonlinear system

as their spectrums are constant.

8.1 System identification for linear system

The linear dynamic system is an essential topic in structural analysis, electronics circuits,

mechanics, and vibration. DMD, based on a linear system, is a perfect tool to identify

dynamic information for the linear system.

8.1.1 High-order linear system and augmented snapshots

We consider a second-order vibration system and derive a system identification technique

based on DMD. The technique considered here should equivally apply to any high-order

linear dynamic system.

M q̈(t) + Cq̇(t) +Kq(t) = f(t), (8.1)
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q(t) ∈ Rn is the displacement of mass system. n is DOF of the vibration system. M, C, K ∈
Rn×n is the inertial matrix, damping matrix and stiffness matrix. To identify the dynamics

of the second-order differential equation using DMD algorithm, we reformulate the above

equation into an augmented first-order linear equations. Let v =



p(t)

q(t)


 , where p(t) =

q̇(t). 

M 0

0 I






ṗ(t)

q̇(t)


 =



−C −K

I 0






p

q


+



f(t)

0


 (8.2)

The first-order formulation indicates DMD algorithm should apply to the augmented snap-

shots vi. Another difference of second-order linear dynamic system is that, a number of

2n eigenvalues and eigenvectors will be obtained instead of n. This conforms to the fact

that vibration system generates the following quadratic eigenvalue problem (Tisseur and

Meerbergen, 2001)

(λ2M + λC +K)v = 0,

where λ is the eigenvalue and v is the corresponding eigenvector.

8.1.2 Modified DMD-TLS algorithm for linear data

Not like the fluid dynamic system, where DMD handles data matrix of tall and skinny shape

X, Y ∈ RN×M with N � M , a linear dynamic system usually contains a small number

of DOF. In this case, N � M may occur. To analyze a linear system with N -DOFs, one

approach is to collect M = N + 1 snapshots and perform the DMD analysis.

To achieve more accurate results, another approach is to assimilate data with more

snapshots by the TLS technique, thus a modified DMD-TLS algorithm is obtained. The

modified DMD-TLS is performed in the following manner. Let X = [x1 x2 · · · xM ], Y =

[x2 x3 · · · xM+1] and a SVD of an augmented matrix is given by

[
XT |Y T

]
= [P1|P2]



S1

S2






Q11 Q12

Q21 Q22


 .
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where S1 = diag(s1, · · · , s2∗DOF ).

A total least-square approximation for X and Y are given by

X̂T = P1S1Q11, Ŷ T = P1S1Q12,

Thus modified data X̂T and Ŷ T are in the column space of P1. The modified DMD-TLS

algorithm gives

λX̂v = Ŷ v

The eigenvector is assumed in the colume space of P1, in the form v = P1y. Substituting X̂

and Ŷ and v into above GEV equation, the final GEV is reduced to

λQT
11(Sy) = QT

12(Sy). (8.3)

λ is the eigenvalue of the dynamic system, and X̂v = QT
11(S1y) produces the corresponding

DMD modes, also known as the normal modes for linear analysis.

8.1.3 A mass-spring example

To illustrate our algorithm, a 2-DOF mass-spring vibration system was investigated, the

configuration is shown in figure 8.1a. Let M1 = M2 = 1, k1 = k2 = k3 = 1, the eigenvalues

are λ1|2 = ±
√

3j, λ3|4 = ±1j, and the corresponding eigenvectors are

v12 =
1

4




−
√

6
√

6

±
√

2j

∓
√

2j



, v34 =

1

2




±1j

±1j

1

1



,

where j =
√
−1.

For DMD analysis, the vibrating system is theoretically computed. The augmented

snapshots are analyzed by the DMD algorithm. Figure 8.1 shows the eigenvalues and the
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(a) A 2-DOF mass-spring system.
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Figure 8.1: DMD analysis for a 2-DOF mass spring vibration system. (a) The configuration
for a 2-DOF mass spring system. (b) Time history of location q1 and q2 for initial condition
q1 = 1, q̇1 = q2 = q̇2 = 0. (c) Eigenvalues of the linear system. Solid (red) circles show
analytic eigenvalues, triangles show value for 5-point DMD analysis, solid square show value
for DMD-TLS analysis. (d), (e) show the normal modes of the analytic and DMD analysis
on the upper right corner and the error of DMD modes at the bottom. As the DMD modes
is close to the analytic value, errors of these modes are scaled by 100. As DMD modes are
complexed conjugate pairs, (d) and (e) show the real and imaginary part separately, with
solid line joining the real part and dashed line for imaginary part.
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eigenvectors. Notice the DOF of the augmented first-order differential equation is 4, with

the ‘N+1’ snapshots approach, DMD analysis is applied on five snapshots. DMD provided

an estimation of eigenvalue within 0.3% error and 0.6% error for the eigenvectors. The

estimation was further improved by incorporating 100 snapshots and using the DMD-TLS

algorithm. Error for eigenvalue and eigenvector is reduced to 0.09% and 0.01%, respectively.

The error was summarized in table 8.1.

Table 8.1: Error by DMD algorithm or modified DMD-TLS for the linear mass-spring
system.

‘N + 1’-DMD DMD-TLS

eigenvalue 0.3% 0.09%
eigenvector 0.6% 0.01%
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8.2 DMD analysis for asymptotic system

The instability of nonlinear systems is critical to many applications. Linear stability theory

(LST) provides an efficient linear approximation. Koopman decomposition, on the other

hand, reveals the whole dynamics, including the nonlinear effects.

The primary and secondary instabilities are two important phenomena, representing the

mechanism for complex flow. The following section studies the secondary instability of

wake after a blunt body by Koopman decomposition, while the primary instability will be

presented in the next chapter where the whole transition is studied.

8.2.1 Secondary instability overview

The primary mode is believed to grow exponentially initially and then saturate to a regular

pattern. It will not break down to irregular turbulent flow directly. Instead, as the Reynolds

number increases, the primary mode continues to grow and distort the mean flow, and a

three-dimensional secondary wave will form and superimpose on the primary wave (Landahl,

1972).

Orszag and Kells (1980) expanded the perturbation around the periodic two-dimensional

base solution, studied the resulting system by Floquet theory, and found the growth of

three-dimensional perturbation to be exponential. Experiments (Miller and Williamson,

1994; Prasad and Williamson, 1997; Williamson, 1988, 1992) confirmed that the secondary

instability for wake after cylinder would start when the Reynolds number reached 180 ∼ 190.

Barkley and Henderson (1996) numerically determined the critical Re = 188.5, and the most

critical wavelength in spanwise direction is Lz = 3.96D, where D is the diameter of the

cylinder.

The secondary instability was numerically computed in chapter 6.4.3. Figure 8.2a shows

the history of drag coefficient. To capture the asymptotic spectrum of the nonlinear fluid-

solid dynamic system around the unstable two-dimensional periodic base flow, we apply the

DMD algorithm to the initial stage of the three-dimensional simulation, from t = 110 to

t = 320. The start and end snapshots used for DMD analysis are in figure 8.2. The isosur-
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face of vorticity is contoured by the spanwise vorticity. The distortion of isosurface shows,

during this period, the three-dimensional perturbation is small in magnitude. Therefore,

these snapshots are suitable for estimating the asymptotic spectrum and eigenvector for the

underlined Floquet system. A total of 701 snapshots are used, and time increment between

snapshots is ∆t = 0.3.
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tU/D
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(a) CD-t

(b) The initial and final snapshots

Figure 8.2: The initial and final snapshots used for secondary instability analysis, (figure
shows The iso-surface of the Q-criterion). The isosurface is contoured with spanwise vor-
ticity. Top view for x-z plane, bottom view for x-y plane. (a) The drag coefficient. (b) The
initial and final snapshots.
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8.2.2 The Floquet analysis for asymptotic system

In chapter 2.3.2, the periodic LTV system is studied by the Floquet theory. Its solution is

the superposition of a finite set of Floquet modes. From the solution (2.40)

x(t) = Θ(t)x0 = P (t)etRP−1(t0)x0

= (P (t)V ) etΛ
(
V −1P−1(t0)x0

)

=
n∑

l=1

∞∑

m=−∞

clqmle
µrl+j(m

2π
T

+µil)

(8.4)

where Q(t) = P (t)V is the T-periodic matrix, and qml is the Fourier component of the

m-th wave of the i-th column of matrix Q(t). The matrix R is assumed to be diagonalizable

R = V RV −1. µr and µi is the real and imaginary part of the eigenvalue µ. c = R−1x0 is

the constant vector.

DMD algorithm will capture the eigenvalues eµrl+j(m
2π
T

+µil) and modes qml, since they

are constant. µrl is the growth rate and m2π
T

+ µil is the corresponding angular frequency.

Floquet solution is then efficiently rebuilt by DMD modes and frequencies, since

q(t) =
∞∑

m=−∞

qmle
j(m 2π

T
+µil)t. (8.5)

Correspondingly µr = 0 captures the periodic Floquet modes, µr > 0 for unstable Floquet

modes and µr < 0 for stable Floquet modes.

From the hierarchy of Koopman decomposition, the DMD algorithm can effectively cap-

ture the Floquet modes of the asymptotic system if the base flow is periodic. The Kármán

vortex flow computed in chapter 7 is decomposed by DMD algorithm following the same

reasoning. The following example applies the DMD algorithm to study the secondary in-

stability where the base flow is the two-dimensional periodic flow, and perturbation is the

superimposed three-dimensional wave.

The periodic LTV system differs from the asymptotic system since the latter is nonlinear.

So the nonlinear proliferation rule applies. Therefore, the proliferated Koopman spectra are
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expected to follow the lattice distribution.

8.2.3 Koopman decomposition for secondary instability

Figure 8.3 shows Koopman spectra for the secondary instability. The lattice distribution

of spectra confirms that the underlined system is a Floquet system. Black dots are the

computed DMD eigenvalues, with low residue ones labeled with a red square.

The modes with σ = 0 capture the periodic base flow. The unstable Floquet mode has a

growth rate σ = 0.017. The corresponding Floquet multiplier e(σT ) = e0.017/0.0181 = 1.098 is

very close to 1.115± 0.005 obtained by a direct Floquet analysis (Abdessemed et al., 2009).

The high order derived modes σ = 0.034 and σ = 0.052 are also captured. Besides these,

a stable Floquet mode with decaying rate σ = −0.044 is captured. It may be due to the

line perturbation to excite the system. After removing the initial perturbation, this stable

Floquet mode eventually damped out.
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ω

Figure 8.3: The Koopman spectrum of 3-D flow past fixed cylinder at Re = 200.

Similar to the 2-D case in chapter 7.1.1, multiple points at some harmonic frequencies

(σ = 0) are because the high frequency modes are truncated into low frequency range

(−π,π]
∆t

= (−10
3
π, 10

3
π] due to the limitation of logrithmatic operation.

Spectrums in figure 8.3 may not exactly follow the lattice distribution predicted by the

proliferation rule. It is because the Koopman spectra are local; however, DMD algorithm
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applies on a piece of data, where the nonlinearity may be significant. This discrepancy

therefore is reflected by figure 8.3.

The Koopman modes are shown in figure 8.4. The base flow is captured by the periodic

modes shown in the first column. They are essential two-dimensionals modes, no wave in

the spanwise direction. The most unstable Floquet mode is shown in column two. These

Koopman modes have the same growth rate σ = 0.017. A remarkable feature of these

unstable modes is that they contain only one wave in the z-direction. The third group

shows the high order derived mode of the unstable Floquet mode. These modes have a twice

growth rate of σ = 0.034 and contain two waves in the spanwise direction. The higher order,

the more wave number is a universal feature, which is found in modes φλ, φ2λ and φ3λ in

figure 9.3 in the next chapter.

With the DMD decomposition, we can reconstruct the Floquet modes by equation (8.5),

which are shown in figure 8.5.
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(a) σ = 0 (b) σ = 0.017 (c) σ = 0.034

Figure 8.4: DMD modes for secondary instability of flow past fixed cylinder. (a) The
first column shows the periodic base flow. (b) The second column shows Koopman modes
corresponding to the most unstable Floquet modes (periodic part) decomposed into Fourier
modes. (c) The third column shows the high order derived Koopman mode of the most
unstable Floquet modes. The figures show the isosurface of Q-criterion and the isosurface is
contoured by spanwise vorticity. For each mode, a top view (x-y plane) and a side view (x-z
plane) are plotted.
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Figure 8.5: Floquet modes in one shedding period, from top to bottom and from left to
right, t = 0T, 0.125T, 0.25T, 0.375T, 0.5T, 0.625T, 0.75T, 0.875T . Figure show isosurface
of Q-criterion and contoured by spanwise vorticity. For each mode, a top view (x-y plane)
and a side view (x-z plane) are plotted.
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Chapter 9

Koopman analysis for nonlinear

systems

9.1 Two asymptotic stages of primary instability

As stated earlier, at the primary instability stage, the normal mode grows exponentially

with a small magnitude. The growth saturates as the perturbation grows and finally reaches

periodic. Thus we divided the 2-D primary instability into two phases. The initial phase

describes the initial growth of perturbation around the unstable equilibrium state. The

final phase described the saturation of perturbation around the stable limit cycle solution.

Koopman spectrums at each phase are studied separately. To help to illustrate the two

phases lift coefficient of the cylinder from the simulation is shown in figure 9.1. The initial

stage is chosen from 0 ∼ 167, and the final stage is chosen from 285 ∼ 1400, the dimensionless

time.

9.1.1 Initial stage

The Koopman spectrum at the initial stage of primary instability is shown in figure 9.2a.

The random perturbation at the incoming flow successfully excited the most unstable mode

with spectrum (0.0136,±0.751). These unstable normal modes and the derived Koopman
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Figure 9.1: The lift coefficient of 2D flow past fixed cylinder at Re = 50.
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Figure 9.2: Koopman spectrum of primary instability of flow past fixed cylinder at Re = 50.
(•) Black dots show all DMD modes. (2) Red square indicates the most significant modes.

modes (in the traid-like chain, all lies in the positive half plane) governs the wake. The

chain of triad-like distribution is predicted by the proliferation rule. The spectrum λ = 0 at

the origin captures the spectrum for the base flow, the fixed equilibrium solution. Besides

these dominant modes, there is a stable mode λ = −0.0810 and two chains of modes starting

from it, and the later is the cross interaction between mode λ = −0.0810 and the unstable

Koopman modes.

Since the time interval between two consecutive snapshots is ∆t = 0.5, the frequency is

in the range Im(ln(λ))
∆t

∈ (−2π, 2π], thus frequency are truncated between (−2π, 2π] as shown

in figure 9.2a.
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φ0 φλ+λ̄

φλ φλ̄

φ2λ φ3λ

φ2λ+2λ̄
φλ<0

u0
uλ+λ̄

vλ u2λ

Figure 9.3: DMD modes captured at the initial stage. First 4 rows show the stream function
of the DMD modes with labels on the left. The streamwise velocity of the u0, uλ+λ̄ and u2λ

and cross flow velocity vλ are also shown in the last two rows for comparison with Sipp and
Lebedev (2007).
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Koopman modes are shown in figure 9.3, the mean flow u0 captures the base flow, the

equilibrium solution at Re. This is the unperturbed state, symmetry with respect to cen-

terline. The critical normal modes uλ and uλ̄ are a complex conjugate pair, so the stream

function φλ and φλ̄ of the real and imaginary part are shown. These normal modes are

confirmed with the ones computed by Jackson (1987), who numerically solved the eigen-

value problem of the homogeneous linearized Navier-Stokes equation by Arnoldi method at

Re = 50. They are also similar to the global modes computed by Sipp and Lebedev (2007)

by solving the homogeneous linearized equation at Rec = 46.6. By definition our mean flow

is different from Sipp et. al. in the sense our mean flow is the combination of their mean

flow and Reynolds modification.

u0 = uSipp0 + εuSipp
F 1
2
.

εuSipp
F 1
2

is the Reynolds modification as the increase of Rec to Re. In practice, as Re is close

to Rec, the normal modes uλ, uλ̄ and the high order derived modes u2λ, u3λ computed here

(Re = 50) are all close to the one obtained by Sipp and Lebedev (2007) and Meliga and

Chomaz (2011) at Re = 46.6 or 47. Mode uλ+λ̄ and u2λ+2λ̄ are the monotonic growing modes

(spectrum with pure positive real part). These are symmetry modes which is generated by

the interaction of uλ, uλ̄ or u2λ, u2λ̄. These monotonic modes’ effect is to ‘modify’ on the

base flow, shorten the recirculation zone after the cylinder until the base flow reaches the

final equilibrium state.

Besides the unstable normal modes and their high order derived modes, a decaying mode

Φλ<0 (λ = −0.0810) is also presented. From the figure, we know this mode has variation

only at the outlet. This monotonic decaying mode is believed caused by the incompatibility

of the initial uniform flow field and the convective outlet boundary condition used in the

simulation
∂u

∂t
+ Uin

∂u

∂x
= 0.

Uin is the incoming flow velocity. This mode disappeared as the incompatibility was reduced
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as the simulation continuous. Though this is an artificial mode, its cross interaction with

the unstable Koopman modes is predicted by proliferation rule and captured by the DMD

algorithm.

9.1.2 Finial stage

(a) σ = 0 (b) σ = −0.023 (c) σ = −0.046

Figure 9.4: DMD modes capture the Floquet modes at finial stage. (a) The first column
for periodic solution of wake after cylinder. (b) The second column for least stable Floquet
modes. (c) The third column captures the high order derived modes.

The Koopman spectra for the final stage are shown in figure 9.2b. Since the base flow

is periodic, it is captured by the periodic modes (σ = 0). Furthermore, the nonlinear

perturbation is dominated by a Floquet system. The least stable Floquet modes is σ =

−0.023. σ = −0.046 captures the high order derived mode of σ = −0.023. The above base

spectrum, the spectrum for an underlined Floquet system, and the children spectrum clearly

show the hierarchy of Koopman eigenstructure for a periodic asymptotic system.

Since the time interval between snapshots is ∆t = 1 for this analysis, the frequencies are

truncated into the range ω = Im(ln(λ))
∆t

∈ (−π, π], as shown in figure 9.2b.
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DMD modes of the asymptotic periodic flow are shown in figure 9.4. Fourier modes of

the periodic base flow, the Least stable Floquet modes, and the high-order derived mode of

the least stable Floquet mode are shown in the first, second, and third columns, respectively.

9.2 Dynamics of nonlinear transition via Koopman de-

composition

So far, the nonlinear system is studied using an asymptotic manner, which is far from the

goal of analyzing the nonlinear transition. Let us consider using properties of local Koopman

spectrum properties mentioned earlier to study the dynamics of the nonlinear system.

Recall the three characteristics of Koopman decomposition from part I. First, the pro-

liferation rule recursively proliferates the spectra, eigenfunction, and modes to infinite di-

mension by the nonlinear interaction. The spectra are orderly organized, and some possible

distributions are shown in figure 2.2. Secondly, from operator perturbation theory, a sys-

tem everywhere continuous differentiable has continuous Koopman spectra. The continuity

extends the local Koopman decomposition to the global domain. As a result, the Koopman

modes are invariant, which is the third convenient property of Koopman decomposition.

The three properties of Koopman decomposition then necessitate the study of dynamics of

complex nonlinear dynamics. We will decompose the observable by Koopman eigenfunction,

track their dynamics using the continuous spectra on the fixed modes.

9.2.1 Fourier expansion for periodic dynamics

For LTI systems, periodic solution results from a center equilibrium point, whose spectrum

has the form ±jω, where j =
√
−1. However, for nonlinear dynamics, the periodic solution

is usually not the result of a center point. One of the examples is the above Hopf bifurcation

process. Therefore, it will be useful to study the formation of nonlinear periodic solution.

As a byproduct, the Fourier decomposition is rediscovered.

Figure 9.2 shows the critical Koopman spectrum λ = 0.0136 ± 0.751j and their derived
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spectrum are unstable at the initial stage. The system then slides away from the unstable

state until it reaches some kind of stable trajectory, the stable periodic solution, whose critical

Koopman spectrum have zero growth rate and all other spectrum has negative real part, see

figure 9.2b. During the nonlinear transition process, the movement of Koopman spectrum

is sketched in figure 9.5. As the growth rate of the critical Koopman modes decreases, all

these Koopman spectrum move to the imaginary axis simultaneously, keeping the triad-chain

formation. As they asymptotically fall on the imaginary axis, periodic solution is obtained.
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Figure 9.5: The nonlinear saturation with decreasing growth rate. From left to right,
the growth rate σ is decreasing. The infinite dimensional Koopman spectra collapse to the
imaginary axis, producing the periodic solution.

It is well known that periodic dynamics can be expanded by the Fourier series. It can

be explained by Koopman decomposition using the Hopf bifurcation case. As all critical

Koopman spectrums fall on the imaginary axis as shown by figure 9.5, there are infinite-

dimensional Koopman spectrums fall on each ±jnω, resulting in the dynamics of e±jnωt.

Therefore, Fourier decomposition is obtained. Notice that Fourier expansion contains high-

frequencies with an integer multiple of the base frequency ω
2π

, which conforms to the prolif-

eration rule.

Fourier modes are then generated by superimposing Koopman modes. As flow reaches

periodic, the growth rate of critical Koopman modes decreases to 0. Modes with spectrum

mσ+jnω, m = 1, · · · , can not be distinguished since they have the same dynamics ejnωt. As

a result, these infinite-dimensional Koopman modes with the same frequency superimposing

on top of another creating a ‘new’ mode, or the so-called Fourier mode.
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Figure 9.6: Modulation of modes as the flow reaches saturation.

For instance there was guess that saturation of Hopf bifurcation was as the result of the

‘nonlinear modulation’ of mean flow (Landau and Lifshitz, 1959; Sipp and Lebedev, 2007).

From current study, the magic ‘nonlinear modulation’ effect is as simple as superposition of

Koopman modes

(φ0)p = φ0 + εφλ+λ̄ + ε2φ2λ+2λ̄ + · · · . (9.1)

where (φ0)p is the mean flow at the final periodic stage. φ0 is the initial base flow, φλ+λ̄,

φ2λ+2λ̄, · · · are monotonic modes (with real spectrum) generated by the critical pair Koop-

man modes (with σ± jω). The ε terms are borrowed from GSA representing the magnitude

of these modes. The superposition on the base flow is illustrated in figure 9.6(a).

Similarly the modulation on the critical modes φλ is also the result of linear superposition
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which is illustrated by figure 9.6(b). By sperposition all the modes with frequency ω
2π

.

(
φλ
)p

= φλ + εφ2λ+λ̄ + ε2φ3λ+2λ̄ + · · · . (9.2)

For the current Hopf bifurcation case showed above, as ε is on the order

ε =

√
Re−Rec
ReRec

� 1

Rec
, (9.3)

see equation 3.18. Koopman modes φ0, φnλ play a dominant role in the final Fourier modes.

Therefore Koopman modes presented in figure 9.3 are very similar to the Fourier modes

showed in figure 9.4 but with slight difference.

For convenience, we call all modes in figure 9.5 the critical Koopman modes. The reason

is twofold. First, they are derived from the critical Koopman mode (the unstable normal

mode (Jackson, 1987)). Secondly, they develop the final periodic base flow (with the base

flow φ0).

9.2.2 Floquet solution around limit cycle dynamics

The solution of a periodic LTV system

ẋ = A(t)x, A(t+ T ) = A(t) (9.4)

is given by Floquet theory (Coddington and Levinson, 1955). Here x ∈ Rn, A(t) ∈ Rn×n, t, T ∈
R and T > 0. The solution is given by

x(t) =
∑

i

eµitfi(t) (9.5)

where µi is the constant complex number called Floquet exponent, and fi(t) is a periodic

function. If there is any Real(µi) > 0, the periodic solution is unstable. This theory is a valu-

able tool to study stability of the limit cycle solution of nonlinear dynamics via linearization.
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Table 9.1: Case for Floquet modes.

λ1 λ2 Floquet modes high-order derived modes

0.2± 0.15j −0.3± 0j case 1 case 2
0.2± 0.15j −0.25± 0.3j case 3 case 4

Among the above Floquet exponents, there is one with µi = 0 providing the periodic base

flow, whose formation is already studied in the previous section. The rest Floquet modes

are generated similarly but with difference.

The Floquet modes are the cross interaction between some other Koopman mode/modes

and the critical Koopman modes in figure 9.5. This is illustrated in figure 9.7. Two cases

generating Floquet modes are studied. Case 1 and case 3 are a real and a complex conjugate

pair modes cross interaction with the critical Koopman modes. Case 2 and 4 studied the

high-order derived modes cross interaction with the critical Koopman modes. These cases

are summarized in Table 9.1.

Case 1 show the interaction between λ1 = 0.2± 0.15j and λ2 = −0.3. Red dots are the

cross interaction spectrum between −0.3 and the critical Koopman modes generated by λ1.

As the growth rate of λ1 decreases from 0.2 to 0, the spectrums of critical Koopman modes

fall on the imaginary axis. At the same time, the cross spectrums fall on the line σ = −0.3,

resulting in the Floquet spectrum. The infinite-dimensional Koopman modes at the same

frequency are superimposed on top of each other, creating the Floquet modes.

It is known that nonlinearity will proliferate the linear Floquet modes to high-order ones.

This is illustrated by case 2 in figure 9.7. The red dots show the interaction of −0.6 (-0.3+-

0.3) with the critical Koopman modes generated by λ1. As the growth rate of λ1 decreases

to 0, all cross spectrums fall on the line σ = −0.6, generating high-order Koopman modes

derived from the Floquet mode in case 1.

Similarly, the cross interaction of a complex conjugate pair with the critical Koopman

modes generating the Floquet modes and their high-order derived modes are illustrated by

case 3 and 4, illustrated in figure 9.7(c) and (d).
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(d) case 4, generation of high-order derived Floquet modes.

Figure 9.7: The formation of Floquet expansion as the growth rate decrease to 0.
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Figure 9.8: The resonance effect

9.2.3 The resonance phenomena

Another inspiring phenomenon is the DMD modes picked by the residue criterion all have

an integer multiple of the base frequency, see figure 9.2. This phenomenon is not answered

by the Floquet theory, where µi can be any complex number.

The discrepancy is the result of resonance and can be explained by figure 9.8. Figure 9.8a

shows cross interaction spectrum by −0.2± 0.75j and 0.11± 0.71j. If two spectrum has no

integer multiple relation, the cross interaction spectrum will scatter in the complex plane,

resulting very weak dynamics, and hard to detect. However, if the two spectrum move

towards some integer multiple relation, these scattered Koopman spectrum will aggregate,

see figure 9.8b and 9.8c, This results in more strong dynamics. In the case the critical

Koopman modes saturates, the above aggregated spectrum will further aggregate, resulting

even aggregated spectrum in figure 9.8d. This further creates even stronger dynamics and

easily detected. This is the reason that residue criterion picked modes with integer multiple

of base frequency.
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Moreover, it is well-known to disturb some systems, a perturbation of the system’s natural

frequency is more efficient, such as Cattafesta et al. (1997); Rathnasingham and Breuer

(1997). It is explained similarly since, by the forced linear differential equation (3.24),

perturbation close to natural frequency can be effectively excited. Thus those effective

perturbations are usually of the same frequency or an integer multiple of the underlined

linear system.

9.2.4 The coherent structure

The discover of coherent structure in turbulent flow has a long history. Leonardo da Vinci

first recorded and sketched the repeated patterns in the fluids, and called them the coherent

structure (Richter et al., 1970). Reynolds (1883) in his classic experiments also observed the

repeated patterns with the help of spark light. Recently, coherent structures are well observed

and documented in turbulence research. For instance, Holmes et al. (1996a) successfully

identified them using the proper orthogonal decomposition (POD) techniques. However,

none of them explained why these coherent structures exist.

Figure 9.9: Reynolds’s experiments and coherent structure. With the spark light, the re-
peated flow pattern is observed in experiment (c).

The coherent structure is simply the invariant Koopman modes. In part I, we used op-

erator perturbation theory, and derived Koopman modes are state-independent for many

‘smooth’ systems. They are the reason for coherent structure in fluid systems. The alternat-

ing patterns are associated with the complex conjugate Koopman modes pair. In turbulent
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flows, they may appear almost periodically.

Even for flow does not fully satisfy the continuity condition, such as the oscillating cylin-

der case (up and down) in figure 9.10. Spatial discontinuity at the boundary resulting

unbounded operator, repeated patterns in the far field is still observed, implying certain

discontinuity only influence local area. Seen from the computed DMD modes, figure 9.10c,

spatial discontinuity may result in significant high-frequency modes, which are only signif-

icant around the moving boundary, similar to the Fourier expansion around discontinuity.

(a) DNS (b) Rebuilt with 20 DMD mode

(c) Three High-frequency modes around moving boundary.

Figure 9.10: DMD decomposition captures dynamics well far away from the moving solid.
Re = 50, St = 0.2

9.2.5 A least-square study for the sub-dynamics of Koopman modes

The nonlinear dynamics of the Hopf bifurcation was studied by Stuart (1958), by considering

decomposition

xn = x0 + {v1A1(t) + v2A2(t) + · · ·+ c.c.} (9.6)
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where x0 is the base flow, vi are the normal modes of the linearized system at the equilibrium

point. Ai(t) are the corresponding coefficients. Let v1 to be the critical normal mode. For

the weak nonlinear cases, A1(t) (or written as A) can be approximated by the Stuart-Landau

equation (3.25). For the highly nonlinear system, high order Stuart-Landau equation can be

used (Schmid and Henningson, 2012, see, chap. 5.3.2)

dA

dτ
= λ1A+ λ2A|A|2 + λ3A|A|4 + λ4A|A|6 + · · · . (9.7)

The temporal coefficients was numerically approximated by the least-square solution of

the whole bifurcation process (the process in figure 9.1) using the mean and unstable modes,

modes in the non-negative half plane shown in figure 9.2a except the (0.008,±4.5) one.

Figure 9.11 shows the results of 5 Koopman modes (φ0, φλ+λ̄, φ2λ+2λ̄, φλ, (φ0)p). Here are

the results.
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Figure 9.11: The time history of modes φ0, φλ+λ̄, φ2λ+2λ̄, φλ (only the real part) shown in
Fig. 9.6 and the first-three-term approximation of (φ0)p in Eqn. 9.1.

First, the base flow φ0 changed magnitude significantly during the nonlinear transition.

As seen from figure 9.11, its magnitude increased during the transition process 200 < tU
D
<

500. The monotonic modes φλ+λ̄ and φ2λ+2λ̄ increased significantly from trivial. However,

the magnitude of the mean flow maintained a constant level as indicated by |atot|

|atot| = ||a0φ0 + aλ+λ̄φλ+λ̄ + a2λ+2λ̄φ2λ+2λ̄||
||φ0||

. (9.8)
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This is because the DMD modes are not orthogonal. It is also noticed even the magnitude

does not change, velocity profile has changed, see figure 9.6a. The critical mode φλ follows

the Stuart-Landau equation as shown in figure 9.11 by aλ
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Chapter 10

Rebuild dynamics use DMD-ROM

method

10.1 Introduction

Numerical simulation for the study of flow dynamics provides flexibility, detail information,

and low cost in its comparison to most experiments. However, the computational cost, in

terms of simulation time, for a large category of practical applications, is still too high for

design and real-time control. The idea of model order reduction (MOD) is to find a reduced-

order model (ROM) at a much lower space to still represent the most important dynamics

of the original high-fidelity simulation model. The low-order model becomes attractive for

its capability to provide both clear physical understanding and fast real-time computation.

One of the most popular approaches for model reduction is POD-Galerkin projection, which

uses proper orthogonal decomposition (POD) modes as base functions to maximize the

energy captured by the same reduced number of modes. There have been many studies

in the application of POD-Galerkin projection for incompressible and compressible flows

(Balajewicz et al., 2013; Barone et al., 2009; Gao and Wei, 2014, 2016; Holmes et al., 1996a;

Qawasmeh and Wei, 2013; Schlegel et al., 2009; Tabandeh et al., 2016; Tran et al., 2015; Wei

and Rowley, 2009b; Wei et al., 2012).
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Dynamic mode decomposition (DMD) is another emerging technique for data decompo-

sition. Originated from the spectral analysis of Koopman operator (Mezić, 2005; Rowley

et al., 2009), DMD algorithm by Schmid (2010) provides a numerical approximation. It

characterizes the nonlinear system through an analysis of the approximate linear system (Tu

et al., 2014). By its definition, the eigenvalues from DMD analysis provide both the fre-

quency and the growth rate of corresponding modes, while the modes often identify coherent

flow structures, like POD modes. Rowley et al. (2009) applied spectral analysis to a large

scale of simulation of a jet in crossflow. Schmid used this method not only for DNS sim-

ulation as well as experimental data from time-resolved PIV data. More recently, there is

a variation on streaming data (Hemati et al., 2014) or dealing with data with noise from

experiments (Hemati et al., 2016).

DMD modes have distinct properties that each mode contains pure frequency. Besides,

DMD modes represent certain similarities to POD modes, at least from the mathematic

point of view, DMD modes a linear combination of POD modes. These motive efforts to

use DMD modes for ROM as an alternative to POD modes. Tissot et al. (2014) combined

DMD formula with a data assimilation technique for flow prediction. Chen et al. (2012)

suggests using equilibrium base flow subtraction instead of mean subtracted flow to satisfy

the boundary condition, to avoid the pitfall of mean subtracted DMD only resulting in

Fourier modes.

The current work focuses on the application of DMD modes and their adjoint modes,

with their bi-orthogonality, to build simple Galerkin models at low-order space. With the

introduction of adjoint modes, DMD based ROM can be obtained readily and result in

similar systems as the POD-ROM method.

10.2 Methodology

The non-orthogonality of DMD poses difficulty for Galerkin projection. In this work, the

adjoint DMD modes are introduced for the projection. As the convectional DMD algorithm

provides better adjoint modes. Therefore, traditional DMD algorithm (Schmid, 2010) is used
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and described below.

10.2.1 Dynamic Mode Decomposition

Assuming a nonlinear system is sampled by a series of data

xk+1 = f(xk), k = 0, · · · , n. (10.1)

A linear approximation of the nonlinear system (10.1) reads

Y = AX. (10.2)

where matrix X and Y are defined by

X , [x0,x1, · · · ,xn−1], (10.3)

Y , [x1,x2, · · · , xn]. (10.4)

Following the DMD algorithm, a best fit for matrix A is

Ã , U∗Y V Σ−1, (10.5)

where U , Σ, V are given by the singular value decomposition (SVD) of X

X = UΣV ∗. (10.6)

(∗) is the matrix Hermitian operator.

DMD eigenvalues λs and modes φs are obtained by solving the eigenvalue problem of Ã.

Ãw =λw (10.7)

φ =Uw (10.8)
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The adjoint DMD modes

φad = U(wl)∗, (10.9)

are obtained similarly by the left eigenvectors of the system

wlÃ = λwl (10.10)

From matrix spectrum theory, DMD and adjoint DMD modes are bi-orthogonal. There-

fore, if normalized,

||φ|| = 1, ||φad = 1||, (10.11)

relation holds

(φadi , φi) = δii. (10.12)

As a result, the temporal coefficients of DMD modes are obtained by

a(i, t) = (xt, φ
ad
i ). (10.13)

A more efficient approach is to use the SVD decomposition (10.6)

a(i, t) = (xt, φ
ad
i ) = (UΣV ∗, Uwli) = (ΣV ∗, wli). (10.14)

A least-square procedure to compute the temporal coefficients is also presented in appendix A

for reference.

10.2.2 DMD modes ranking, selection and the energy criterion

In previous work, a residue-based criterion to select modes was developed. For the purpose

of rebuilding dynamics, an efficient modes ranking technique is required. For this purpose,
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energy of each mode is computed. The kinetic energy reads

||u||2 = (u, u) =

(
N∑

i=1

aiφi,

N∑

j=1

ajφj

)
=

N∑

i=1

N∑

j=1

aiaj(φi, φj). (10.15)

Because of non-orthogonality, energy are distributed in a matrix manner, a correlation matrix

C and an energy distribution matrix E are defined as

Cij , (φi, φj), (10.16)

Eij ,
∫ L

0

(aiφi, ajφj)dt = Cij

∫ L

0

aiajdt. (10.17)

(0, L) is the sampling period. Energy of each mode is obtained by summation all the asso-

ciated terms.

Ei =
1

2

N∑

j=0

(Eij + Eji) , i = 0, · · · , N. (10.18)

Ei is the energy-based criterion for DMD modes ranking.

10.2.3 Reduced order modeling using Galerkin projection

Galerkin projection method is a process of projecting full-system dynamics onto a set of

modes and studying the dynamics on them. This transformation reduces a system usually

described by partial differential equations to a simpler system described by ordinary differen-

tial equations. Here we consider model order reduction onto DMD modes for incompressible

flow described by Navier-stokes equations

∇ · u =0, (10.19)

∂u

∂t
=−∇p+

1

Re
∇2u− (u · ∇)u. (10.20)

For simplicity, the above equations are projected onto the adjoint DMD modes,

(φadi ,
∂u

∂t
) = (φadj ,−∇p+

1

Re
∇2u− (u · ∇)u), i = 0, · · · , r., (10.21)
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where the dynamics is replaced by DMD decomposition

u(x, t) =
r∑

i=0

ai(t)φi(x). (10.22)

The resulting ODEs are

∂ai
∂t

= Gi(P ) +
r∑

j=0

1

Re
lijaj −

r∑

j=0

r∑

k=0

qijkajak, i = 0, · · · , r. (10.23)

with coefficients lij , (φadi ,∇2φj) and qijk , (φadi , (φj · ∇)φk)).

10.2.4 Continuity, boundary condition and pressure term

Since DMD modes are the linear combination of the sampled data, they satisfy continuity

equation automatically since the continuity equation is linear.

Chen et al. (2012) suggested to use a base flow that satisfied the boundary condition,

and other modes have a homogeneous boundary to perform ROM. An equilibrium flow is

suggested for this purpose. However, a separate flow solver for the equilibrium state is

required for this purpose.

In this work, an approximate mean flow which satisfies the boundary condition is auto-

matically obtained. DMD algorithm is applied on the unmodified snapshots rather than the

base-flow-subtracted ones. It can be found, the mean flow is a fixed point of the system,

since

Axmean =A
x0 + x1 + · · ·+ xn−1

n

=
x1 + x2 + · · ·+ xn

n

=1 · xmean +
xn − x0

n
.

As N → 0, the mean flow is the fixed point of the system. We therefore call it mean mode.

For periodic data set xn = x0, this equation is satisfied exactly.
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Noack et al. (2005) studied the pressure term

Gi(p) = (φadi ,∇p) = qpijkajak.

Their results showed for ‘closed’ flow, or the Couette flow which had periodic boundary

condition in streamwise and spanwise direction, and Dirichlet boundary condition in the

wall-normal direction, the pressure term was exactly zero. For other open flow, such as

the two-dimensional mixing layer, this term could be nontrivial for long term prediction.

However, its effect on short term prediction, especially for three-dimensional applications,

was small. Therefore, it is neglected in this study.

After applying the boundary condition and ignoring pressure term, the DMD-ROM equa-

tions (10.23) are reduced to:

∂ai
∂t

=
r∑

j=0

1

Re
lijaj −

r∑

j=0

r∑

k=0

qijkajak, i = 1, · · · , r, (10.24)

where a0 is a constant number, so a0φ0 satisfied the boundary condition, and ais (i =

1, · · · , r) are the unknowns.

10.3 Application: flow passing a fixed cylinder

A two-dimensional fixed cylinder flow is used as a benchmark problem for its simple geometry

and complex flow phenomenon.

10.3.1 Problem setup

The fix cylinder problem is configured as Fig. 10.1. The computational domain is lx × ly =

(−5, 15)×(−5, 5). A unit cylinder is placed at the origin. The streamwise and spanwise is 20

and 10 times the cylinder diameter correspondingly. Uniform grid of size Nx×Ny = 401×201

is used. Grid resolution in both direction is dx = dy = 0.05. Reynolds number based on

incoming velocity and cylinder diameter is 200.
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Figure 10.1: Flow passing fixed cylinder at Re = 200.

10.3.2 Result of numerical simulation

A velocity probe is placed at point (5, 0). The history of velocity component v is shown in

Fig. 10.2. The simulation contains two stages, the wake starting stage, and the periodic wake

shedding stage. When fully developed, the shedding frequency is 0.181. The benchmark is

applied to both of these stages. For the periodic stage, three shedding periods are chosen from

t = 160 ∼ 176.4 for DMD analysis and ROM rebuilt. For the developing stage, snapshots

from 70 ∼ 83.1 are sampled.

v

t

Figure 10.2: Velocity history v from probe.
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10.4 DMD-ROM results

10.4.1 Periodic wake shedding stage

DMD analysis

At the periodic stage, the eigenvalues of DMD modes and their corresponding energy are

shown in Figure 10.3. Eigenvalues on the unit circle represent periodic modes. The energy

of DMD modes shown in Fig. 10.3b indicate DMD modes are also efficient in the view of

energy, which makes them suitable for reduced-order modeling.

(a) DMD eigenvalues (b) frequency spectrum of DMD modes

Figure 10.3: DMD analysis for periodic wake shedding stage. Red color indicates the most
energetic modes.

Matrix energy shown in figure 10.4 are diagonal dominant, which means the cross terms

(φi, φj), i 6= j contains much smaller energy than (φi, φi) term.

The mean flow and mean mode are compared in figure 10.5. Except the sign difference

(due to eigensolver), two flow are almost identical.

DMD modes and adjoint DMD modes

Some of the leading DMD modes are shown in Fig. 10.8. The real and imaginary parts of

the DMD modes are presented. They are similar to those obtained by Noack et al. (2003).

The adjoint DMD modes are shown in Fig. 10.9, respectively.
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Figure 10.4: Pixel plot for energy matrix. Values are in log scale.

(a) Mean mode (b) Mean flow

Figure 10.5: Comparison of mean mode and mean flow.

Temporal coefficients from DMD-ROM

Table 10.1: DMD modes selected for ROM

mode# frequency mode# frequency

0 0.000
1 0.222 5 1.108
2 0.443 6 1.330
3 0.665 7 1.551
4 0.886 8 1.773

Seventeen modes (one mean mode and 8 paired complex-conjugated DMD modes) are

used for dynamics rebuilt. Their frequency information is in Table 10.1. ROM results are

shown in Fig. 10.6. DNS results of DMD temporal coefficients are obtained by projecting

onto DMD modes. ROM correctly reproduced the original dynamics. However, there exists

slight error in the frequency for some high-frequency modes. We believe that was because a
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finite number of DMD modes introduced accumulated error.
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Figure 10.6: ROM result for first 8 modes. Solid line from DNS result, and dots for ROM.
Red for real part and blue for imaginary part.
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10.4.2 Wake developing stage

Previous section successfully applied the DMD-ROM method to the periodic flow. In this

section, the ability of DMD-ROM to reconstruct the nonlinear transition is explored. A 2.5

shedding period is investigated for this purpose.

DMD analysis of wake starting stage

DMD decomposition on the data from dimensionless time t = 70 ∼ 83 is obtained. Eigen-

values are shown in Fig. 10.7a. For the wake developing stage, many growing modes present.

They are modes with spectrum outside the reference unit circle. Most of them are high-

frequency modes with trivial temporal coefficients. However, there are a few dominant

low-frequency ones. The corresponding energy are shown in Fig. 10.7b and 10.7c.

The leading 11 modes are shown in Fig. 10.11, including a mean mode and five complex-

conjugate pairs. The corresponding adjoint DMD modes are shown in figure 10.12.

ROM rebuilt using DMD modes for wake starting period

29 DMD modes are used for flow dynamics reconstruction. Frequencies of them are listed in

Table 10.2.

Table 10.2: Most dominant modes frequency for periodic wake shedding

mode# frequency mode# frequency mode# frequency

0 0.000 5 0.369 10 0.625
1 0.186 6 0.300 11 0.773
2 0.039 7 0.424 12 0.706
3 0.130 8 0.574 13 0.833
4 0.226 9 0.511 14 0.976

The comparison of DNS and ROM results is shown in Fig. 10.10. ROM was able to

reproduce the dynamics of the developing wake after the cylinder. However, some high-

frequencies was not captured well by DMD-ROM.
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Figure 10.7: The DMD eigenvalue of wake developing stage. (a). an overview of DMD
eigenvalue. (b) frequency energy. (c) energy distribution matrix sorted by energy distribution,
energy is in color and taken log10
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Figure 10.8: Normalized stream function of first 4 pairs DMD modes at periodic wake
shedding stage. The left column is the real part, and right column is for the imaginary part.
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Figure 10.9: Normalized stream function of first 4 pairs adjoint DMD modes at periodic
wake shedding stage.
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Figure 10.10: ROM result for the first 8 modes. Solid line from DNS result, and dots for
ROM. Red for real part blue for imaginary part.
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Figure 10.11: Normalized stream function of first 9 DMD modes for wake developing stage.
The first row is mean mode (left) and mean flow (right). The following are φ1, φ2, φ3, φ4.
The left column is the real part, and right for the imaginary part.
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Figure 10.12: Normalized steam function of first 9 adjoint DMD modes for wake developing
stage.
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Chapter 11

Conclusion

In this work, we discussed the linear structure and invariant subspaces properties of dy-

namics, both linear and nonlinear, via spectrum Koopman decomposition. The nonlinear

dynamics differ the linear dynamics in two ways, the locality of Koopman eigenfunction and

spectrum and the infinite-dimensionality as nonlinear interaction, the later is conveniently

described by the proliferation rule under spectrum Koopman decomposition, making the

study of nonlinear dynamics easier.

Spectrums of Koopman operator defined on nonlinear dynamics is studied, and the local

Koopman spectrum problem is introduced. Various systems are studied. For an LTI system,

its spectrums provide the Koopman spectrum. For an LTV system, the spectrums of the

fundamental matrix provide the Koopman spectrum, and the spectrums for periodic LTV

system are found to be the Floquet exponents. Proliferation rule was developed for nonlinear

observables. For a nonlinear dynamic system, the local spectrum problem is defined through

the time-parameterized semi-group Koopman operator acting on it. The hierarchy structure

of the nonlinear system is revealed. Dynamics, as well as the eigenvalues, are decomposed into

the base and perturbation on top of it. Moreover, proliferation rule recursively proliferates

eigenspaces into infinite dimensions because of the nonlinearity. The hierarchy structure is

confirmed by the Koopman spectrum distribution in the numerical examples. The continuity

of local Koopman spectrums is studied and found to be conditional continuous for the LTV
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and nonlinear system, by which the local knowledge of dynamics is extended to the global

domain. Using above understanding, the invariant subspaces of the nonlinear systems are

the spaces spanned by Koopman eigenfunctions.

For an LTI system, the Koopman decomposition for both linear and nonlinear observables

is explicitly obtained by solving the eigenvalue problem of the linear system. For a nonlinear

system without an explicit formulation, the hierarchy structure is employed for understand-

ing and computing the Koopman decomposition, by which, the dynamics are decomposed

into base dynamics and nonlinear perturbation. The base dynamics can be studied either

analytically or numerically. Furthermore, the perturbation is decomposed into a linear and

nonlinear part. The linear part is studied via the linear system, then the spectrums are

recursively proliferated the nonlinear part. We further demonstrated the GSA technique

could be used to compute the Koopman decomposition by assuming small perturbation and

separate time scales, or numerically computed by DMD algorithm, a time-averaged version

of Koopman decomposition. POD algorithm provides a numerical and time-averaged al-

gorithm for linear structure via Mercer’s eigenfunction, which is by solving the eigenvalue

problem of the second-order statistics kernel of dynamics.

DMD, a data-driven technique to extract Koopman modes and spectrum, is considered.

This method can effectively apply to dynamic systems with constant spectrums. For systems

with the variant spectrum, it may be used to capture the transient spectrums, the asymptotic

spectrums. In this work, a new framework based generalized eigenvalue problem to extract

dynamic relevant information such as frequency, growth, or decaying rate, is developed. This

data-driven technique is matrix-free and avoids calculating a linear approximating system

as conventional DMD algorithm. Therefore, it avoids the singular or nearly singular issues.

An efficient projection approach was developed to transfer the otherwise singular GEV to

a regular pencil. Current eigensolver can efficiently solve the regular problem. Different

projection subspaces lead to different solutions – a least-square solution projects GEV to the

unmodified data space suitable for data with no noise. The resulting DMD-LS algorithm

is equivalent to the standard DMD algorithm but numerically more robust. On the other

hand, the total least-square solution projects the GEV problem to the modified data space,
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performing an unbiased estimation of the dynamic system when data is contaminated with

random noise. Since above-proposed projection is orthogonal, projection error is orthogonal

to the projected subspace. Increasing data space by including more samplings will reduce

the error, therefore more accurate eigenvalues and eigenvectors. The residue of the computed

eigenpair of the original GEV problem is proposed to assess the quality of DMD eigenpairs,

which is a by-product of generalized DMD formulation. Our algorithm is simple and can be

easily parallelized for big or distributed data analysis.

We numerically analyzed examples of primary and secondary instability using the DMD

algorithm on the simulated data. Besides the instability modes that appear in linear stability

analysis, other nonlinear modes are revealed by those high-order Koopman modes. This work

numerically studied the transition process of fluid passing a fixed cylinder at Re = 50, when a

Hopf bifurcation occurs. The flow system transits from the unstable equilibrium point to the

stable limit cycle is examined. During this process, the spectrum of critical Koopman modes

(complex conjugate pair) and their high-order derived modes asymptotically falls on the

imaginary axis, resulting in infinite-dimensional Koopman modes with the same frequency

folding on top of each other, generating the Fourier decomposition of the periodic solution.

The Floquet solution is explained similar, by folding the cross-interactions of some Koopman

modes with the previous critical group of Koopman modes as the growth rates decrease to 0,

the Floquet modes are obtained, as well as their high-order derived ones. Therefore, both the

Fourier and Floquet modes are the superposition of infinite-dimensional Koopman modes.

The linear structure theory can easily explain some of the exciting flow phenomena. Besides

the periodic solution and Floquet solution demonstrated above, the coherent structurer in

turbulent flow is simply the invariant Koopman modes. The resonance effects occurred

in nonlinear dynamics. The energy cascading from low frequency to high one, or energy

backscattering merely is the nonlinear interaction of different Koopman modes.

A method for computing reduced-order models for incompressible flow has been developed

based on DMD modes. We proposed the usage of the adjoint DMD modes to simplify the

resulting Galerkin projection equations. The mean mode is suggested as a straightforward

approach to satisfy the boundary condition. We solved the DMD modes ranking and selecting
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by the introduction of energy criterion, and also notice the non-orthogonality of DMD modes

requires more modes to rebuilt the dynamics. Two cases of different stages of a fixed cylinder

flow were presented to demonstrate our method. ROM results show that the rebuilt system

keeps the same dynamics of the original.

11.1 Future work

The reason to introduce the local Koopman spectrum is to include those important spectrums

that appear in nonlinear dynamic systems. However, without developing a thorough theory

for the local Koopman spectrum problem, the newly developed theory is only rigorous for

bounded operators, which may limit its application. My future work is to develop a rigorous

mathematic framework for the local Koopman spectrum problem, which involves the work

on perturbation theory for unbounded operator and may require close collaboration with

other experts in the field of applied math.

The extension of current work may also involve an extension of its application to practical

but more complicated problems, such as using DMD analysis on turbulent flows in engineer-

ing problems with complex geometry and various flow conditions. Such analyses may lead

to better understanding of flow mechanism and provide suitable flow control strategies.
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Appendix A

An alternative of model selection

method

We noticed Jovanović Jovanović et al. (2014), uses the sparsity-promoting DMD for ranking

and selecting the DMD modes. We find their method can be used to minimize the decom-

position error. This optimization procedure is detailed below. We include it here not only

because it gives an optimized method to calculate temporal coefficients of DMD modes, but

also an alternative way to rank DMD modes, as alpha in the diagonal matrix can represent

corresponding mode’s ’influence’.

This approach is based on the DMD decomposition of each snapshots

xi =
N−1∑

k=0

φkλ
i
kα0 (A.1)
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in matrix form

X = [x0, x1, · · · , xN−1] = [φ0, φ1, · · · , φN−1]︸ ︷︷ ︸
Φ




α0

α1

· · ·

αN−1




︸ ︷︷ ︸
Dα




1 λ0 · · · λN−1
0

1 λ1 · · · λN−1
1

...
... · · · ...

1 λN−1 · · · λN−1
N−1




︸ ︷︷ ︸
Vand

(A.2)

Where Φ is DMD modes; Vand is the time coefficients and diagonal matrix Dα is the magni-

tude of each modes. If we drew analogous this form (A.2) with POD. Dα is can be viewed

as the ’influence’ of each modes and can be used to rank DMD modes as for POD.

An optimal Dα will give the minimal error.

J(α) = ||X − ΦDαVand||2F = α∗Pα− q∗α− α∗q + s (A.3)

where

P , (W ∗W ) ◦ (VandV ∗and), q , diag(VandV Σ∗W ), s , trace(Σ∗Σ).

W is the eigenvector matrix from (10.7), and V is from (10.6). The (◦) operator is Hadamard

product for matrix. We noticed the two sides of Hadamard product are positive-definite

matrix. Following Schur product theorem Zhang (2006) , P is also positive-definite. Then

the quadratic minimization problem is well determined and have a unique solution:

α0 = P−1q (A.4)

As an result, we can obtain an error-minimized DMD temporal coefficients (A.5).

a(i, t) = α0
iλ

t
i (A.5)

To distinguish with our projection method, we call it optimization method.
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Appendix B

Floquet system and coordinate

transformation

From Floquet theory in chapter 2.3.2, the periodic LTV system

Ẋ(t) = A(t)X(t), A(t+ T ) = A(t) (B.1)

has the solution

X(t) = P (t)etR. (B.2)

Substitute the solution into original equation, the relation of P (t), R and A(t) is obtained

Ṗ (t)etR + P (t)RetR = A(t)P (t)etR. (B.3)

detR

dt
= RetR is derived from equation 2.11. Times e−tR from both side

Ṗ (t) = A(t)P (t)− P (t)R (B.4)

The time-dependent coordinate transformation

X(t) = P (t)Y (t) (B.5)

185



transfer the LTV system to

Ṗ (t)Y (t) + P (t)Ẏ (t) = A(t)P (t)Y (t) (B.6)

substitute B.3 into above equation

(A(t)P (t)− P (t)R)Y (t) + P (t)Ẏ (t) = A(t)P (t)Y (t) (B.7)

canceling A(t)P (t)Y (t) from both side and time P (t)−1 from left on both side

Ẏ = RY (B.8)

Thus the X(t) = P (t)Y (t) transfer the periodic LTV to LTI system.

If we further assume R is diagonalizable and R = V ΛV −1, let

Z(t) = V −1Y = V −1P (t)−1X(t) (B.9)

Then Z(t) satisfy the equation

Ż(t) = ΛZ(t) (B.10)

which gives the solution

Z(t) = V −1P (t)−1X(t)

= etΛZ(0) = etΛV −1P (0)−1X(0)

(B.11)

which can be reformulated to

X(t) = P (t)V etΛV −1P (0)−1X(0). (B.12)

186



Appendix C

Multi-scale asymptotic expansion for

Navier-Stokes equation

The Navier-Stokes equation can be solve by the asymptotic expansion, which is usually

performed to study the nonlinear dynamics. As stated in chapter 3.2, for weakly nonlinear

case, it is often found the dynamics exhibit disparate time scale motion, the fast time scale

osciallation and slow scale change of magnitude. Stuart (1960) found the time scale to be

τ ≡ ε2t (C.1)

where ε2 = 1
Rec
− 1

Re
. Thus the time derivative will be modified as

∂

∂t
q(t, τ) =

∂

∂t
q(t, τ) + ε2

∂

∂τ
q(t, τ) (C.2)

The asymptotic expansion is given by

q(t) = q0 + εq1(t, τ) + ε2q2(t, τ) + ε3q3(t, τ) + · · · . (C.3)

where q =



u

p


.
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Substitute equation (C.2) into the incompressible Navier-Stokes equation

∂u

∂t
+∇u · u = −∇p+

1

Re
∇2 · u,

∇ · u = 0.

(C.4)

We have

∂ (
∑∞

i=0 ε
iui)

∂t
+∇

(
∞∑

i=0

εiui

)
·
(
∞∑

i=0

εiui

)
= −∇

(
∞∑

i=0

εipi

)
+

1

Re
∇2

(
∞∑

i=0

εiui

)
,

∇ ·
(
∞∑

i=0

εiui

)
= 0.

(C.5)

Expand the time derivative term in equation (C.3)

∂ (
∑∞

i=0 ε
iui)

∂t
= 0 + ε

(
∂u1

∂t
+ ε2

∂u1

∂τ

)
+ ε2

(
∂u2

∂t
+ ε2

∂u2

∂τ

)
+ · · · (C.6)

The convective term is expand by

∇
(
∞∑

i=0

εiui

)
·
(
∞∑

i=0

εiui

)
= ∇u0 · u0

+ ε (∇u0 · u1 +∇u1 · u0)

+ ε2 (∇u0 · u2 +∇u1 · u1 +∇u2 · u0)

+ ε3 (∇u0 · u3 +∇u1 · u2 +∇u2 · u1 +∇u3 · u0)

· · ·

(C.7)

We then insert equations (C.6) and (C.7) into equation (C.5) and collect terms according

the order of ε.

On ε0, we have

0 +∇u0 · u0 = −∇p0 +
1

Re
∇2 · u0,

∇ · u0 = 0.

(C.8)

188



This is the steady Navier-Stokes equation. After applying the original boundary condition,

the steady base flow (u0, p0) is obtained.

On ε1 order
∂u1

∂t
+∇u0 · u1 +∇u1 · u0 = −∇p1 +

1

Re
∇2 · u1,

∇ · u1 = 0.

(C.9)

It can be rewritten into the form




∂
∂t

+∇() · u0 +∇u0 · ()− 1
Re
∇2 ∇

∇T 0


 q1 = 0. (C.10)

This is the first-order homogeneous equations, with homogeneous boundary (q1 is the ex-

pansion for perturbation). This is an eigenvalue problem, whose solution can be written

q1 =



u1

p1


 = A(τ)eiwt



U 1

P1


+ c.c. (C.11)



U 1

P1


 is the most unstable mode, and A(τ) is its magnitude varying on the slow time scale

τ , at initial stage A(τ) grows at eε
2t or eτ .

On ε2 order

∂u2

∂t
+∇u0 · u2 +∇u1 · u1 +∇u2 · u0 = −∇p2 +

1

Re
∇2 · u2,

∇ · u2 = 0.

(C.12)

where ∇u1 · u1 is the forcing term. We can rewrite the above equations to




∂
∂t

+∇() · u0 +∇u0 · ()− 1
Re
∇2 ∇

∇T 0


 q2 =



|A|2F |A|22 + A2e2iwtF A2

2 + Ā2e−2iwtF Ā2

2

0




(C.13)
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where the forcing terms ∇u1 · u1 is expanded by solution (C.11), and the F s are given by

F
|A|2
2 = −∇UA

1 ·U Ā
1 −∇U Ā

1 ·UA
1

F A2

2 = −∇UA
1 · ∇UA

1

F Ā2

2 = −∇U Ā
1 ·U Ā

1

(C.14)

For each forcing term, the solution is in the following formA1
2(τ)U 1

2, AA
2

2 U
A2

2 ej2ωt, AĀ
2

2 U
Ā2

2 e−j2ωt.

On ε3 order

∂u3

∂t
+
∂u1

∂τ
+∇u0 · u3 +∇u1 · u2 +∇u2 · u1 +∇u3 · u0 = −∇p3 +

1

Re
∇2 · u3,

∇ · u3 = 0.

(C.15)

Now ∇u1 ·u2 +∇u2 ·u1 is the forcing term on momentum equation. Moreover, the derivative

∂u1

∂τ
appears in above equation, and the forcing term include the secular term which has the

eigenvalue λ = σ + jω. We thus assume the ∂u1

∂τ
will equival to those secular terms. Since

∇u1 · u2 +∇u2 · u1 =∇
(
AejωtU 1 + Āe−jωtŪ 1

)
·
(
A1

2U
1
2 + AA

2

2 U
A2

2 ej2ωt + AĀ
2

2 U
Ā2

2 e−j2ωt
)

+

∇
(
A1

2U
1
2 + AA

2

2 U
A2

2 ej2ωt + AĀ
2

2 U
Ā2

2 e−j2ωt
)
·
(
AejωtU 1 + Āe−jωtŪ 1

)

=ejωt
(
AA1

2∇U 1 ·U 1
2 + ĀAA

2

2 ∇Ū 1 ·UA2

2 + AA1
2∇U 1

2 ·U 1 + ĀAA
2

2 ∇UA2

2 · Ū 1

)

+ ej3ωt
(
AAA

2

2 ∇U 1 ·UA2

2 + AAA
2

2 ∇UA2

2 ·U 1

)

+ c.c

(C.16)

Those ejωt terms are the secular term of the system, which is then removed from above

equation with ∂u1

∂τ
, resulting the Stuart-Landau equation. The remaining terms give the

equation




∂
∂t

+∇() · u0 +∇u0 · ()− 1
Re
∇2 ∇

∇T 0


 q3 =



ej3ωt

(
AAA

2

2 ∇U 1 ·UA2

2 + AAA
2

2 ∇UA2

2 ·U 1

)
+ c.c.

0




(C.17)
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We can continue the expanding into high order of ε, such as




∂
∂t

+∇() · u0 +∇u0 · ()− 1
Re
∇2 ∇

∇T 0


 qi =



f i + c.c.

0


 (C.18)

However, the detailed discussion is beyond the scope of this work.
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