
ar
X

iv
:0

70
5.

45
74

v1
  [

as
tr

o-
ph

] 
 3

1 
M

ay
 2

00
7

Mon. Not. R. Astron. Soc. 000, 1–?? (2002) Printed 2 November 2018 (MN LATEX style file v2.2)

On the reconstruction of a magnetosphere of pulsars

nearby the light cylinder surface

Z. Osmanov
1⋆

G. Dalakishvili
2
and G. Machabeli

1,2

1Georgian National Astrophysical Observatory, Kazbegi str. 2a, Tbilisi, 38006, Georgia
2Department of Physics, Faculty of Exact and Natural Sciences, Tbilisi State University, Chavchavadze ave 1, Tbilisi, 0128, Georgia

Accepted 1988 December 15. Received 1988 December 14; in original form 1988 October 11

ABSTRACT

A mechanism of generation of a toroidal component of large scale magnetic field,
leading to the reconstruction of the pulsar magnetospheres is presented. In order to
understand twisting of magnetic field lines, we investigate kinematics of a plasma
stream rotating in the pulsar magnetosphere. Studying an exact set of equations de-
scribing the behavior of relativistic plasma flows, the increment of the curvature drift
instability is derived, and estimated for 1s pulsars. It is shown that a new parametric
mechanism is very efficient and can explain rotation energy pumping in the pulsar
magnetospheres.
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1 INTRODUCTION

The aim of the present work is to investigate generation of
a toroidal component of the magnetic field nearby the light
cylinder surface (LCS) (a hypothetical surface, where the
linear velocity of rotation equals the speed of light).

The work we consider in this paper is closely related to
the pulsar wind problem. Studying the magnetic field of the
Crab nebula, Piddington (1953) was first who has suggested
the presence of a central object in the nebula, with frozen
magnetic field inside. It has been supposed that rotation of
the central body provokes generation of the toroidal com-
ponent of magnetic field. Further investigations have shown
that this kind of magnetic field characterizes magnetized
star winds (Weber & Davis 1967). These results have been
generalized for relativistic flows in a region close to the LCS:
(Michel 1969; Kennel et al. 1983; Kennel & Coroniti 1984;
Begelman & Li 1992). Despite success of developed models,
they encounter a number of difficulties, when one attempts
to extrapolate the wind back to the source: the pulsar mag-
netosphere. For large distances the wind is specified in the
approximation: σ ≡ B2/(4πmc2nγ) ≪ 1, where B is the
magnetic field induction, m and n- the electron mass and
density respectively and γ the Lorentz factor of relativis-
tic electrons. In this case, change of magnetic field’s con-
figuration is defined only by plasma motion. This circum-
stance simplifies a possibility of analytical consideration of
a plasma. But in the pulsar magnetospheres, a situation is
opposite, the energy density of magnetic field exceeds by
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many orders of magnitude the energy density of the plasma
σ ≫ 1, therefore a need of consideration of this specific case
is essential. Close to the light cylinder area the magnetic field
drags behind itself the rotating electron-positron plasma and
the question which arises is: how the magnetosphere is re-
constructed nearby the light cylinder surface? It is obvious
that close to this region, rigid rotation is impossible and
consequently magnetic field lines must deviate, lagging be-
hind the rotation of the pulsar. Implementing special MHD
codes in a series of works (Michel & Krause-Polstorff 1984;
Krause-Polstorff & Michel 1985; Smith et al. 2001) pulsar
wind physics has been numerically studied and improved
by Spitkovski & Arons (2002) and Spitkovski (2003) where
plasma dynamics in 3D was presented and it has been shown
that the flow goes through the LCS into the wind zone. In
these papers a principal assumption is the current generated
by the electric drift:

−→
VE = c

−→
E ×

−→
B/B2 (Blandford 2002).

Obviously for a plasma composed of equal numbers of posi-
tive and negative charges, the current is not generated (the
electric drift does not ”feel” charges), although for the pulsar
plasma a primary electron beam is composed of only elec-
trons and therefore the electric drift generates the current,
leading to creation of electromagnetic fields.

In (Rogava et al. 2003) a particle moving along a curved
rotating channel has been considered and it was shown that
for a certain shape of curved trajectories one may avoid
the light cylinder problem. Therefore one has to understand
what is a mechanism responsible for the process of twisting
of field lines when the condition σ ≫ 1 is satisfied.

According to observations it is clear that the energy of
emission is very high. An observed pulsar luminosity lies in
the range: [1031 − 1038]erg/s (Tores & Nuza 2002), on the
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other hand the only source of pulsar radiation can be ro-
tational energy Iω2/2, where I is moment of inertia of the
pulsar, and ω - the angular velocity of rotation. As observa-
tions show the spin down luminosity is of the same order of
magnitude as the radiation luminosity, therefore it is reason-
able to suppose that all pulsars emit due to rotation energy
decrease (Sturrock 1970). The problem concerns the ques-
tion: how the rotation energy is transformed into pulsar ra-
diation. According to standard models, due to electric field,
the charged particles uproot from a surface of the neutron
star and accelerate by the electric force which results in the
radiation process. The origin of this emission is supposed to
be in the magnetosphere of pulsars. These models introduce
a vacuum gap, inside of which the particles experience strong
electric field and accelerate. But the problem arises concern-
ing the gap size which turns out to be not enough for energy
gain of charged particles (Ruderman & Sutherland 1975).

In order to resolve this problem and enlarge the
gap size (which will provide increase of an acceler-
ation length scale) many attempts have been done,
applying different approaches: (Arons & Sharleman 1979;
Muslimov & Tsygan 1992; Ruderman & Sutherland 1975),
but no approach was able to get the efficient acceleration
enough for producing observed radiation.

A new mechanism of acceleration has been introduced
in (Machabeli & Rogava 1994) where a bead moving inside a
straight rigidly rotating pipe has been studied. It was shown
that the centrifugal force can be very efficient and if one ap-
plies this method for the pulsar magnetospheres it will pro-
vide high Lorentz factors of particles. Therefore the amount
of energy contained within the e+e− plasma is very high. If
one finds mechanisms for the conversion of at least a small
fraction of this energy into the variety of waves or instabil-
ities - one might witness a number of well-pronounced and
bona fide observational signatures in the pulsar radiation
theory. In (Machabeli & Rogava 1994) it has been found
that the radial component of velocity for relativistic particles
behaves in time as c cos(Ωt) (c is the speed of light), which
gives a possibility of parametric energy pumping from the
mean flow into instabilities (see (Machabeli et al. 2005)). In
(Machabeli et al. 2005) the e+e− plasma has been studied
and the increment of an instability of the Lengmuire waves
was estimated. It has been demonstrated that the centrifu-
gal acceleration might have been efficient enough for the
observed spin down luminosity. We have shown that the lin-
ear stage was so efficient that it was very short in time, and
nonlinearities were turned in soon.

In the present paper we generalize the previous work
and study the parametric mechanism of the curvature drift
instability driven by the centrifugal acceleration. We con-
sider a two component plasma: a) the basic plasma flow
(bulk flow) with the concentration npl and the Lorentz fac-
tor γpl and b) the beam component with the concentration
nb and the Lorentz factor γb. It is known that in the pul-
sar magnetosphere the drift velocity is to be important for
plasma dynamics. The drift velocity may influence processes
in the plasma and especially may affect an evolution of insta-
bilities. Unlike (Spitkovsky & Arons 2002; Spitkovsky 2003)
where the processes are considered nearby the pulsar sur-
face, in the present paper we investigate instabilities close
to the light cylinder area, where effects of centrifugal accel-
eration should be extremely efficient. In (Spitkovsky 2003)
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Figure 1. Here we show geometry in which we consider our sys-
tem of equations. By eφ, er and ex unit vectors are denoted, note
that ex ⊥ er,φ. C is the curvature center.

it has been noted that the structure of pulsar magneto-
spheres could not be solved analytically, whereas in the
present paper, we show that an initial stage of the recon-
struction process of magnetospheres can be considered ana-
lytically, starting by appropriate initial conditions. Another
difference is that in our model we study a plasma, which
is bound by rigidly rotating straight magnetic field and the
force free condition applied in (Spitkovsky & Arons 2002;
Spitkovsky 2003) is not valid, because as it is shown in
(Shapakidze et al. 2000) the force free condition can be pro-
vided only if the magnetic field has a configuration simi-
lar to the one of a differentially rotating Couette flow. The
principally different assumption in the present paper is that
instead of considering the electric drift, we study the cur-
vature drift investigating the possibility of generation of the
toroidal component Br, which is a key step in understanding
the reconstruction of the pulsar magnetosphere nearby the
LCS.

The work is organized as follows. In §2 we derive the dis-
persion relation, in §3 the corresponding results are present
and in §4 we summarize the results.

2 THEORY

Throughout the work it is supposed, that magnetic field lines
are almost straight and due to the frozen-in condition the
plasma particles follow the magnetic lines and accelerate.
Geometry in which we consider the problem is shown in
Fig. 1 (Lyutikov et al. 1999).

Our system is governed by the Euler equation
(Machabeli et al. 2005):

∂pi

∂t
+ (vi∇)pi = −γα∇α+

e

m
(E+ vi ×B) , (1)
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i = pl, b,

the continuity equation:

∂ni

∂t
+∇(nivi) = 0, (2)

and the induction equation, which closes the system:

∇×B =
1

c

∂E

∂t
+

4π

c

∑

i=pl,b

Ji, (3)

where Ji (i = pl, b) is the current of plasma and beam com-
ponents.

We start our analysis by introducing small deviations
around the equilibrium state:

Ψ ≈ Ψ0 +Ψ1, (4)

where Ψ = (n,v,p,E,B).
Since we are interested in the generation of the toroidal

component of magnetic field, it is interesting to study the
curvature drift wave (when ω ∼ kux), because it is char-
acterized by the following conditions: Br ≫ Bφ, Eφ ≫ Er

(Kazbegi et al. 1991) that show an importance of Br on the
one hand and closes the system by the second condition on
the other hand.

We consider the equilibrium state with a drift velocity
along the x-axis

u0x =
γv20φ
ωBRB

. (5)

where γ is the Lorentz factor, ωB = eB0/(mec) and
RB is the curvature radius of the magnetic field lines
(e and m are the charge and mass of electron and B0-
the magnetic induction). Along φ, due to the centrifugal
acceleration one has a relativistic flow with the velocity
(Machabeli & Rogava 1994):

v0φ = c cos(Ωt). (6)

If one expresses the perturbation of physical quantities
by following:

Ψ1(t, r) ∝ Ψ1(t) exp [i (kr)] , (7)

then considering only x components of the Euler and induc-
tion equation, it is easy to show that for curvature drift
waves, propagating perpendicular to magnetic filed lines
(kφ ≪ kx), Eqs. (1,2,3) can be reduced into the form:

∂p1ix
∂t

− i(kxu0x + kφu0φ)p
1
ix =

e

c
v0φB

1
r , (8)

∂n1
i

∂t
− i(kxu0x + kφu0φ)n

1
i = ikxni0v

1
x, (9)

− ikφcB
1
r = 4πe

∑

i=pl,b

(ni0v
1
ix + n1

i vi0x). (10)

In Eq. (8) we have used an approximate expression of
velocity along the r-axis: v1r ≈ cE1

x/B0φ. If we choose p1ix
and n1

i to have the form:

v1ix ≡ Vixe
ikAi(t), (11)

n1
i ≡ Nie

ikAi(t), (12)

where

Ax(t) =
Uixt

2
+

Uix

4Ω
sin(2Ωt), (13)

Aφ(t) =
c

Ω
sin(Ωt), (14)

Uix =
c2γi0
ωBRB

, (15)

then one obtains from Eqs. (8,9):

v1ix =
e

mγi0
eikAi(t)

∫ t

e−ikAi(t
′)v0φ(t

′)Br(t
′)dt′, (16)

n1
i =

ien0ikx

mγi0
eikAi(t)

∫ t

dt′
∫ t′′

e−ikAi(t
′′)v0φ(t

′′)Br(t
′′)dt′′.

(17)

Substituting Eqs. (16,17) into Eq. (10) it reduces to the
form:

−ikφcB
1
r (t) =

∑

i=pl,b

ω2
i

γi0
eikAi(t)

∫ t

e−ikAi(t
′)v0φ(t

′)Br(t
′)dt′+

i
∑

i=pl,b

ω2
i

γi0
kxu0ixe

ikAi(t)

∫ t

dt′
∫ t′′

e−ikAi(t
′′)v0φ(t

′′)Br(t
′′)dt′′,

(18)

where ωi =
√

4πni0e2/m is the plasma frequency. In or-
der to solve this equation one has to take the Fourier time
transform. For this reason if one uses the following identity:

e±ix sinΩt =
∑

s

Js(x)e
±isΩt, (19)

one can reduce Eq. (18):

Br(ω) = −
∑

i=pl,b

ω2
i

2γi0kφc

∑

σ=±1

∑

s,n,l,p

Js(gi)Jn(h)Jl(gi)Jp(h)

ω + kxUix

2
+ Ω(2s+ n)

×

×Br (ω + Ω(2[s − l] + n− p+ σ))

[
1−

kxUix

ω + kxUix

2
+ Ω(2s+ n)

]

+
∑

i=pl,b

ω2
i kxUix

4γi0kφc

∑

σ,µ=±1

∑

s,n,l,p

Js(gi)Jn(h)Jl(gi)Jp(h)(
ω + kxUix

2
+Ω(2[s + µ] + n)

)2×

×Br (ω +Ω (2[s − l + µ] + n− p+ σ)) , (20)

where

gi =
kxUix

4Ω
,

h =
kφc

Ω
.

3 DISCUSSION

One can see from the dispersion relation that the system
is characterized by two different kinds of resonance, which
come from the first and second terms of the right hand side
of Eq. ( 20):

ω +
kxUix

2
+ Ω(2s + n) ≃ 0 (21)

c© 2002 RAS, MNRAS 000, 1–??
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Figure 2. Dependence of the increment on λ nearby the LCS.
The set of parameters is P = 1s, γb ∼ 108, λφ = 1000Rlc.

and

ω +
kxUix

2
+ Ω(2[s + µ] + n) ≃ 0, (22)

s, n = {0,±1,±2...},

µ = ±1.

As we will see later, a resonance frequency from the first
condition Eq. (21) does not influence the corresponding res-
onance from the second expression, because if the first term
is valid, the second condition is not satisfied and vice versa,
when the second resonance works, the first one is not valid.

Since we are studying the mechanism of energy pumping
from pulsar’s rotation and a natural consequence, that mag-
netic field lines must be twisted nearby the light cylinder and
the twist should have a direction opposite to the rotation,
one can suppose that a frequency responsible for this process
must be small compared the angular velocity of the pulsar.
On the other hand, assuming λ ∼ 6 × 1010 − 3 × 1011cm
(where λ ≈ λx is the wave length) for second pulsars it is
straightforward to check that |kxUix/2| ∼ 0.02− 0.1, which
for any values of s and n is much less than Ω(2s + n) for
s, n 6= 0 (see Eq.21). Thus the only possibility which pro-
vides low frequency waves from the first resonance condition
is:

2s+ n = 0. (23)

Here we have assumed that RB ∼ Rp ∼ 106cm (Rp is
the pulsar radius). Unlike this case, second resonance condi-
tion does not provide low frequencies (see Eq.(22)), because
even for vanishing s and n, µ is not vanishing and hence it
does not contribute in the process of magnetic field line’s
twisting.

Let us consider the dispersion relation near the beam
resonant condition expressed by Eq. (21). Then only reso-
nant terms will be preserved and Eq. (20) will reduce:

Br(ω0) ≈ −
ω2
bkxUbx

2γb0kφc

∑

σ=±1

∑

s,l,p

Js(gb)J−2s(h)Jl(gb)Jp(h)

∆̃2
×

×Br (ω0 + Ω(−2l − p+ σ)) , (24)

where

ω0 ≈ −
kxUbx

2
(25)

and the frequency has been expressed by the form:

ω ≡ ω0 + i∆̃. (26)

Here ∆̃’s imaginary part ∆ ≡ Im(∆̃) is related to the
increment of the instability. Since a dominant term in Eq.
(24) comes from low frequencies (ω0 ≪ Ω), then the only
terms contributed in a time average will have p equal to
Ω(2(s− l)+n+σ), because all other terms with Br(ω0+Ωq)
(q 6= 0) give zero due to an oscillative character with very
big values of frequencies. Taking into account this condition,
one gets:

Br(ω0) ≈ −
ω2
bkxUbx

2γb0kφc

∑

σ=±1

∑

s,l

Js(gb)J−2s(h)Jl(gb)J−2l+σ(h)

∆2
×

×Br(ω0). (27)

From here one can easily express the increment by fol-
lowing:

∆ ≈

[
−
ω2
bkxUbx

2γb0kφc
Σ1(gb, h)Σ2(gb, h)

] 1
2

, (28)

where

Σ1(gb, h) ≡
∑

s

Js(gb)J−2s(h), (29)

Σ2(gb, h) ≡
∑

σ=±1

∑

l

Jl(gb)J−2l+σ(h). (30)

Strictly speaking Σ1 and Σ2 are functions of gb and h
and one can show, that these summations are convergent
(see Appendix).

It is interesting to investigate the increment versus fol-
lowing physical quantities: λx (for the fixed, and very big
in comparison with λx values of λφ). On the other hand
one has to compare results with an observational evidence.
As we have already mentioned the only source that may
provide energy for radiation is the slowdown of the pulsar:
Ẇ ≈ IΩΩ̇, here I is moment of inertia of the pulsar. The
rate of rotation energy loss can be estimated by following
ratio: Ẇ/W ≃ 2Ω̇/Ω = 2Ṗ /P , where P is rotation period
of the pulsar. The given ratio is different for different pul-
sars and ranges from 10−11 sec−1 (PSR 0531) to 10−18 sec−1

(PSR 1952+29). Therefore the increment of the instability
must not be less than 2Ṗ /P .

We investigate the instability rate nearby the light
cylinder, because the centrifugal acceleration should be most
efficient in this region. In Fig. 2 we show dependence of the
increment on: λx nearby the LCS. The set of parameters is
P = 1s, γb ∼ 108, λx ≈ λ, λφ = 1000Rlc and it is supposed
that kx < 0 and Ubx > 0 (otherwise the resonance frequency
is unphysical - negative). Here Rlc is the light cylinder ra-
dius. Such a choise of λφ provides almost perpendicular (to

c© 2002 RAS, MNRAS 000, 1–??
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the equatorial plane) propagation of waves. One can see that
the increment reaches the value ∼ 10−2, which is more by
many orders of magnitude than typical values of 2Ṗ /P . The
linear stage will be very efficient and short in time strongly
indicating the non linear regime of the phenomenon. A need
of non linear saturation is seen also from the fact that Br,
which is responsible for twisting of magnetic field lines, oscil-
lates with frequency ω0, due to this oscillation, Br not only
will lag behind the rotation, which is physically reasonable,
but also will advance it, therefore the need of non linear sat-
uration of the instability increment is essential. Therefore
initially created small perturbations will rapidly increase in
time and thanks to the instability process, it will extract
energy from the background flow into the energy of electro-
static waves.

4 SUMMARY

(i) Considering the relativistic plasma flow composed of
the primary and secondary (beam) components, we have
studied the role of the centrifugal acceleration in the curva-
ture drift instability.

(ii) Making the linear analysis of equations, we have de-
rived the dispersion relation and a new mechanism of the
parametric instability responsible for rotation energy pump-
ing has been found.

(iii) Considering low frequencies, which are responsible
for twisting of magnetic field lines, an expression for the
instability increment has been obtained.

(iv) Studying dependence of increment on λx, it has been
found that the instability was very efficient and increments
were more than pulsar spin down rates by many order of
magnitude indicating the need of the non linear considera-
tion of the problem.

As we have seen, the analysis indicated the importance of
the non linear stage in dynamics of the instability, therefore
it is essential to study the same problem numerically by
implementing a special relativistic MHD code, which will
comprise one more step closer to the real scenario.
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APPENDIX A:

In this section we would like to show that the sum:

Σ1(gb, h) ≡
∑

s

Js(gb)J−2s(h), (A1)

is finite.
In order to prove the convergence of (A.1) we use the

following inequality:

|Jν(x)| ≤
1

Γ(ν + 1)

(
x

2

)ν

eIm[x]. (A2)

Here: ν ≥ − 1
2
.

Then for the term in Σ1(gb, h), one can write:

|Js(gb)J2s(h)| ≤
1

(s+ 1)!(2s+ 1)!

(
gb
2

)s (h

2

)2s+1

. (A3)

where we have used the well known equivalence:

J−ν(x) = (−1)νJν(x). (A4)

This condition shows that Cs ≡ |Js(gb)J2s(h)| ≤ Us,
where:

Us =
1

(s+ 1)!(2s + 1)!

(
gb
2

)s (h

2

)2s+1

. (A5)

Let us prove that the Us is convergent using the Dalam-
ber criterion, by introducing the following ratio:

Us+1

Us

=
(
gb
2

)(
h

2

)2 1

(s+ 2)(2s+ 2)(2s+ 3)
. (A6)

It is obvious that one can find s0 for which
Us0+1

Us0

≡ q <

1. We see that the expression in Eq. (A6) decreases with an
increasing value of s, i.e:

Us+1

Us

< q =
(
gb
2

)(
h

2

)2 1

(s0 + 2)(2s0 + 2)(2s0 + 3)
< 1, (A7)

s ≥ s0.

This means that the sequence Us is convergent, and
hence for s ≥ 0 the summation Σ1(gb, h) is finite.

When considering the case s < 0 and formally intro-
ducing a new index m ≡ −s, one obtains an expression:

|Jm(gb)J2m(h)|, (A8)

similar to a corresponding term in Eq.(A3) for s ≥ 0 and
hence, the summation for negative values of s is also con-
vergent.

The proof for convergence of the second summation
Σ2(gb, h) (see Eq. (30)) does not principally differ from the
one we have already considered and therefore we do not show
it here.
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