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Symmetry breaking in non-commutative cut-off
field theories
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Abstract. The relation between symmetry breaking in non-commutativecut-off field theories and
transitions to inhomogeneous phases in condensed matter and in finite density QCD is discussed.
The non-commutative dynamics, with its peculiar infrared-ultraviolet mixing, can be regarded as
an effective description of the mechanisms which lead to inhomogeneous phase transitions and a
roton-like excitation spectrum.
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The relation between symmetry breaking in quantum field theory and phase transi-
tions in condensed matter is well known. The previous correspondence is usually re-
stricted to the case of constant order parameter because this guarantees the translational
and rotational invariance of the field theory. On the other hand, in condensed matter
and, more recently, in high density QCD one considers transitions from homogeneous
to inhomogeneous phases with non-constant order parameters. For a bosonic system,
according to [1], this kind of transition is associated withan order parameter which for
large distances is an oscillating function and with a roton-like behavior of the excitation
spectrum. For the fermionic systems it is possible to build inhomogeneous supercon-
ducting states, with energy lower than the BCS state, where the particle-particle (p-p)
Cooper pairs or the particle-hole (p-h) pairs have non-zerototal momentum and then the
corresponding fermionic condensates are not uniform. The former phase is described in
condensed matter systems by the LOFF state [2] and in QCD is related with a diquark
condensation with interesting theoretical and phenomenological implications [3, 4]. The
latter has been originally proposed in condensed matter by Overhauser [5] (the (p-h) in-
stability is called spin density wave) and in QCD the corresponding phase, called chiral
density wave, can compete with the QCD-BCS phase in the strong coupling regime and
in an intermediate region of the chemical potential [6].

In [7, 8, 9, 10, 11] it has been shown that the previous condensed matter and
QCD inhomogeneous transitions are also typical features ofquantum field theory with
non-commutative coordinates,[xµ ,xν ] = iθµν . As discussed in this talk, in the non-
commutative generalization ofλφ4 theory [7, 8, 11] the spontaneous symmetry breaking
occurs for a non-uniform stripe phase and in the non-commutative Gross-Neveu (GN)
model there is an inhomogeneous chiral symmetry breaking corresponding to spin den-
sity waves [9]. These results are mainly due to the infrared/ultraviolet (IR/UV) connec-
tion which characterizes the non commutative field theories(for a review see [12]).

We shall first discuss the relation between the symmetry breaking in non-commutative
self-interacting scalar field theory and the roton excitation in BEC and then we consider
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the fermionic systems. On general grounds, in a bosonic condensate the roton spec-
trum is due to a non-local interatomic potentialV (~r−~r ′), with a momentum dependent
Fourier transform. Since the BEC with the local (pseudo)potentialδ (~r−~r ′) is analogous
to the spontaneous symmetry breaking inλφ4 theory, one can assume that some relevant
physical effects due to the non-local repulsive interaction can be described by general-
izing the self-interacting field theory in such a way to introduce an effective non-local
coupling.

A simple approach is to consider the non-commutativeλφ4 theory with action

S(φ) =
∫

d4x

(

1
2

∂µ φ ∂ µ φ − 1
2

m2φ2− λ
4!

φ4∗
)

(1)

where the star (Moyal)product is defined by (i, j = 1, .,4)

φ4∗(x) = φ(x)∗φ(x)∗φ(x)∗φ(x) =

exp

[

i
2∑

i j
θµν ∂ µ

xi
∂ ν

x j

]

(

φ(x1)φ(x2)φ(x3)φ(x4)
)
∣

∣

∣

xi=x
(2)

The “deformation” of the self-interaction term by the Moyalproduct gives a momentum
dependent repulsive effect which is responsible, as we shall see below, for the roton
spectrum and for the phase transition to an inhomogeneous background. In [8], forθi j =

εi jkθ k with ~θ = (0,0,θ), the spontaneous symmetry breaking for the theory in Eqs. (1)
and (2) has been analyzed with the following results:1) the transition occurs to a stripe
phase where the order parameter isφ(~x) = Acos~Q ·~x; 2) A,Q and the energy excitation
ω(p) are fixed by minimizing the energy;3) ~Q is orthogonal to~θ and Q is small
for largeθ ; 4) the excitation spectrum can be approximated byω2(~p) = p2 +M2(~p)
where the functionM(~p) will be discussed later. As discussed in detail in [8], sinceQ is
small, the inhomogeneous background is a smooth function ofx and then, the breaking
of translational (smooth) and rotational invariance is approximated by a translational
invariant propagator with a momentum dependent mass term. In the particular case
~Q = (Q/

√
2,Q/

√
2,0) and large values ofθΛ2 (Λ is the UV cut-off), it turns out that

Q2/Λ2 = (λ/24π2)1/2(1/θΛ2) and thatM(~p), for smallp, is given by

M2(~p) |p→0 ∼ α +
λ

6π2

1

|~p×~θ |2
(3)

whereα is a constant and× indicates the usual vector product. The peculiar behavior
for small p of the last term in the previous equation is due to the IR/UV connection of
the non-commutative field theory and gives a divergent mass term in the IR region and
a minimum in the irreducible two-point function. However the effective theory has a
natural self-generated IR cut-offQ where it is more correct to cut the small momenta
and then the excitation spectrum should be correctly identified for p ≥ Q by the previous
expressions forω(p) andM2(p). It has a roton-like dip at a typical scale of orderQ.

The Moyal-deformed term in Eq. (1) can mimic effective interactions which are
non-local and globally repulsive. Then, the previous results of the non-commutative
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theory can describe some interesting physical effects of the Bose -Einstein trapped
condensates where the non-contact repulsive interaction is dominant. This analysis has
been performed in detail in ref. [10] where the correlation between roton-like spectrum
and non-uniform background of the non commutative theory has been compared with
the results obtained for BE trapped condensates, in analogous dynamical conditions.

Let us now consider the informations coming from non-commutative effective field
theories for fermionic systems. In [9] the transition from homogeneous to inhomoge-
neous phase has been obtained by generalizing the GN model, in four dimensions, to the
non-commutative case with lagrangian

L(x) = iψ̄α∂/ψα +gψ̄α ∗ψα ∗ ψ̄β ∗ψβ −gψ̄α ∗ ψ̄β ∗ψα ∗ψβ . (4)

For g larger than some critical value, one finds, as in tha commutative case, chiral
symmetry breaking but, this time, in an inhomogeneous phasewhere the pair corre-
lation function has a dependence on a total momentum,~P of the ("Cooper") pair, with
P/Λ ≃ (1/θΛ2).The order parameter turns out to be an oscillating functionof ~x and
one has the breaking of translational, rotational and chiral invariance :< ψ̄(x)ψ(x) >=
[1+ cP2cos(Px)] < ψ̄ψ >0, where< ψ̄ψ >0 is the constant order parameter of the
commutative case andc is a numerical constant. Also in this case [9] the spectrum has
roton-like dip in the plane orthogonal to~θ and one recovers the dynamical relation with
the non-uniform ground state [1]. The previous field theoretical model is then analogous
to a system with a non-local, strong four-fermion interaction, with an inhomogeneous
phase where the particle-hole (p-h) pairs have non-zero total momentum.As discussed,
this phase in QCD has an energy close to the BCS phase only for strong coupling , cor-
responding to intermediate value of the density, that is before entering the perturbative
regime where the QCD- LOFF phase is realized.

Finally, the non commutative field theoretical results indicate that the phase transitions
to inhomogeneous condensates are first order and one expectssimilar behavior for the
corresponding condensed matter and QCD systems.
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