arXiv:hep-th/0412059v1 7 Dec 2004

Symmetry breaking in non-commutative cut-off
field theories

Paolo Castorina and Dario Zappala

Dept. of Physics, University of Catania and INFN, Sezione di Catania- Italy

Abstract. The relation between symmetry breaking in non-commutatiteoff field theories and
transitions to inhomogeneous phases in condensed matten dinite density QCD is discussed.
The non-commutative dynamics, with its peculiar infrardtlaviolet mixing, can be regarded as
an effective description of the mechanisms which lead tombgeneous phase transitions and a
roton-like excitation spectrum.
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The relation between symmetry breaking in quantum fieldthaod phase transi-
tions in condensed matter is well known. The previous cpoedence is usually re-
stricted to the case of constant order parameter becawgsguhiantees the translational
and rotational invariance of the field theory. On the otherdhan condensed matter
and, more recently, in high density QCD one considers ttiansi from homogeneous
to inhomogeneous phases with non-constant order parané&@r a bosonic system,
according to [1], this kind of transition is associated wathorder parameter which for
large distances is an oscillating function and with a rdtke-behavior of the excitation
spectrum. For the fermionic systems it is possible to builtbmogeneous supercon-
ducting states, with energy lower than the BCS state, wherearticle-particle (p-p)
Cooper pairs or the particle-hole (p-h) pairs have non-ted momentum and then the
corresponding fermionic condensates are not uniform. dhadr phase is described in
condensed matter systems by the LOFF state [2] and in QCDaitedewith a diquark
condensation with interesting theoretical and phenonwgicdl implications [3, 4]. The
latter has been originally proposed in condensed mattentgyl@user [5] (the (p-h) in-
stability is called spin density wave) and in QCD the coroesiing phase, called chiral
density wave, can compete with the QCD-BCS phase in thegtroupling regime and
in an intermediate region of the chemical potential [6].

In [7, 8, 9, 10, 11] it has been shown that the previous coretbmeatter and
QCD inhomogeneous transitions are also typical featuregiahtum field theory with
non-commutative coordinateg,, xy] = i8yy. As discussed in this talk, in the non-
commutative generalization afp* theory [7, 8, 11] the spontaneous symmetry breaking
occurs for a non-uniform stripe phase and in the non-comtiwat&ross-Neveu (GN)
model there is an inhomogeneous chiral symmetry breakinggponding to spin den-
sity waves [9]. These results are mainly due to the infradeg@wiolet (IR/UV) connec-
tion which characterizes the non commutative field thedfasa review see [12]).

We shall first discuss the relation between the symmetnkiorgan non-commutative
self-interacting scalar field theory and the roton exatatn BEC and then we consider
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the fermionic systems. On general grounds, in a bosonicamsate the roton spec-
trum is due to a non-local interatomic potentidlr —r’), with a momentum dependent
Fourier transform. Since the BEC with the local (pseud@pbtéld(F —T”’) is analogous
to the spontaneous symmetry breaking ipf* theory, one can assume that some relevant
physical effects due to the non-local repulsive interactian be described by general-
izing the self-interacting field theory in such a way to ioluge an effective non-local
coupling.

A simple approach is to consider the non-commutaiigé theory with action
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where the star (Moyal)product is defined lbyj(= 1, .,4)
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]

The “deformation” of the self-interaction term by the Moypabduct gives a momentum
dependent repulsive effect which is responsible, as wd shal below, for the roton
spectrum and for the phase transition to an inhomogeneakgiwaind. In [8], for6;; =
eijkek with 6 = (0,0, 8), the spontaneous symmetry breaking for the theory in Egs. (1
and (2) has been analyzed with the following resul)ghe transition occurs to a stripe
phase where the order parametepi{g) = AcosQ-X; 2) A,Q and the energy excitation
w(p) are fixed by minimizing the energy) Q is orthogonal tof and Q is small
for large 8; 4) the excitation spectrum can be approximatedusyp) = p® + M?(j)
where the functioM (p) will be discussed later. As discussed in detail in [8], siQde
small, the inhomogeneous background is a smooth functicreafl then, the breaking
of translational (smooth) and rotational invariance isragpgnated by a translational
invariant propagator with a momentum dependent mass terrthd particular case
Q= (Q/v2,Q/v2,0) and large values aBA2 (A is the UV cut-off), it turns out that
Q?/N? = (A /241)Y?(1/6A?) and thatM (p), for smallp, is given by

A 1

2 A
M (ﬁ) |p—>0 a+ 6712 mx é|2

(3)

wherea is a constant anc indicates the usual vector product. The peculiar behavior
for small p of the last term in the previous equation is due to the IR/U¥reztion of
the non-commutative field theory and gives a divergent nmerss in the IR region and
a minimum in the irreducible two-point function. Howeveetkffective theory has a
natural self-generated IR cut-aff where it is more correct to cut the small momenta
and then the excitation spectrum should be correctly ifledtior p > Q by the previous
expressions fow(p) andM?(p). It has a roton-like dip at a typical scale of ord@r

The Moyal-deformed term in Eqg. (1) can mimic effective iatetions which are
non-local and globally repulsive. Then, the previous rssaf the non-commutative
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theory can describe some interesting physical effects efBbse -Einstein trapped
condensates where the non-contact repulsive interactidaminant. This analysis has
been performed in detail in ref. [10] where the correlatietween roton-like spectrum
and non-uniform background of the non commutative theos/lieen compared with
the results obtained for BE trapped condensates, in anasodynamical conditions.

Let us now consider the informations coming from non-conativé effective field
theories for fermionic systems. In [9] the transition fromnogeneous to inhomoge-
neous phase has been obtained by generalizing the GN moé®lyidimensions, to the
non-commutative case with lagrangian

L(X):i‘ﬁad‘//a‘i‘glﬁa*WG*LﬁB*WB—glﬁa*Lﬁﬁ*Wa*lﬂﬁ- (4)

For g larger than some critical value, one finds, as in tha comnvetatase, chiral
symmetry breaking but, this time, in an inhomogeneous phdsre the pair corre-
lation function has a dependence on a total momenRiof, the ("Cooper") pair, with
P/A ~ (1/8A?).The order parameter turns out to be an oscillating funotib® and
one has the breaking of translational, rotational and thivariance :< (x)(x) >=
[1+ cP?cogPx)] < I >0, Where< (Jiy >¢ is the constant order parameter of the
commutative case aralis a numerical constant. Also in this case [9] the spectrusm ha

roton-like dip in the plane orthogonal thand one recovers the dynamical relation with
the non-uniform ground state [1]. The previous field theéoaémodel is then analogous
to a system with a non-local, strong four-fermion intemactiwith an inhomogeneous
phase where the particle-hole (p-h) pairs have non-zeab todmentum.As discussed,
this phase in QCD has an energy close to the BCS phase onlirdogscoupling , cor-
responding to intermediate value of the density, that isteeéntering the perturbative
regime where the QCD- LOFF phase is realized.

Finally, the non commutative field theoretical results aade that the phase transitions
to inhomogeneous condensates are first order and one espedts behavior for the
corresponding condensed matter and QCD systems.
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