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Cardiovascular disease is the leading cause of deaths worldwide, and

one of the ways to treat patients with congestive heart failure is to perform a

heart transplant. As the demand for this procedure rises, the disproportion-

ate availability of suitable donors needs to be countered with ways to care and

sustain patients who are waiting for a transplant. In this regard, the use of

left ventricular assist devices (LVAD) has increased. The research conducted

in this Thesis is primarily concerned with the TORVAD TM (Windmill Car-

diovascular Systems In., Austin , TX), a rotary blood pump type LVAD. The

load faced by the left ventricle during ejection of blood is termed as Systemic

Vascular Resistance (SVR), and is an important parameter that can indicate

cardiovascular health. Abnormalities in SVR have been found to be a good

indicator of hypertension, heart failure, shock and sepsis. A consistently low

SVR can even be a predictor of mortality.
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The goal of this Thesis is to investigate ways of recursively estimating

SVR in a patient, by using measurements that the TORVAD TM provides. The

Extended Kalman Filter is used to develop an estimation algorithm based on

a reduced order model of the cardiovascular system. The estimation accu-

racy of the algorithm is tested by generating data through simulations of a

computational model of the cardiovascular system, and by collecting measure-

ments from the TORVAD TM while it operates in a mock circulation loop. The

algorithm is found to estimate SVR satisfactorily using the available measure-

ments, and is robust to different initial conditions.
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Chapter 1

Introduction

Cardiovascular diseases are the leading cause of deaths globally, and

accounted for 31% of the global mortality in the year 2016 [29]. Often a patient

with congestive heart failure needs to undergo a heart transplantation. As the

demand for heart transplants is increasing, there is a shortage of donors [20].

As a result, there is a wait time during which the heart patient must receive

mechanical circulatory support. Technological advancements have made it

possible to move away from bulky equipment to implantable devices. Of these,

the category of devices that assist the left ventricle by borrowing some blood

and pumping it into the Aorta appear to be the most promising [12]. With

improvements in the technology of these left ventricular assist devices (LVAD),

there is a rise in their use as bridge to transplant (BTT), destination therapy

(DT) and bridge to recovery (BTR).

The Toroidal Ventricular Assist device (TORVAD TM; Windmill Car-

diovascular Systems In., Austin, TX) is a valveless positive displacement LVAD

that can delivery synchronous pulsatile flow to the Aorta. As opposed to con-

tinuous flow devices, it offers low shear, preserves the native aortic valve flow,

and improves ventricular unloading.[10, 15].
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Figure 1.1: Schematic of the TORVAD, showing different modes of operations.

Figure 1.1 shows a schematic of the TORVAD. In the figure, a cross

section of the device shows two independently controlled pistons within a torus

chamber. The figure also shows the stages involved in one cycle of pumping

for the TORVAD. During stages 2 and 3, one piston is stationary while the

other moves at a controlled angular velocity to pump blood. The pistons

move together during stage 4, and reverse roles by stage 5. The pistons are

at rest in Stage 1, which marks the beginning of the next cycle. When a

patient is on LVAD support, it is important to monitor his cardiac function

and hemodynamic parameters. One such parameter is the Systemic Vascular

Resistance (SVR).

SVR is the quantitative value of the left ventricular afterload. It is the

aggregate resistance to blood flow posed by the systemic circulation. SVR can

be defined by the following equation.

SV R =
MAP − CV P

CO
(1.1)
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In this expression, MAP is the Mean Arterial Pressure (mmHg), CV P is the

Central Venous Pressure (mmHg) and CO is the cardiac output (mL/s). It is

common to report SVR in units of mmHg-s/mL. Abnormalities in the value of

SVR are commonly associated with diseases such as hypertension, congestive

heart failure, shock and sepsis. A consistently low SVR over a 24 hour period

can even be a strong predictor of mortality [23, 17, 19, 25].

Traditionally, SVR measurement requires arterial and venous cannula-

tion to measure pressure and cardiac output. There have been some advances

made in the non invasive measurement of SVR [1, 25], however they require

the patient to be in the clinic, and rely on Doppler or ultrasound based sen-

sors. Considerable research has been done to develop electric analog models of

the cardiovascular system and to estimate their parameters, which in turn can

help estimate hemodynamic parameters, such as SVR [22, 26, 28, 18, 31]. The

research done by Yu et al. [31] and Ruchti et al. [22] is especially of interest,

since they use measurements from the LVAD, along with aortic pressure or

flow measurements to estimate systemic circulation parameters.

Besides monitoring the patients health, estimating SVR could also be

useful in designing feedback controllers for LVADs. Most continuous flow

LVADs are tuned for a certain flow rate by physicians in the clinic. In the

case of the TORVAD TM, the controller tracks predefined trajectories for each

piston. In the future, if these devices are to be used for permanent implan-

tation, it is necessary to design a feedback controller that can sense hemody-

namic variables, such as SVR, and adjust the pump’s operation to mimick the
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physiological response of a natural heart. For instance, in the natural heart,

a consequence of increased ventricular afterload (indicated by increased SVR)

is an increase in the cardiac output due to the Frank Starling mechanism [14].

There is ongoing research in designing closed loop control systems for LVADs,

some of which rely on estimates of SVR [24, 30, 5, 2].

The goal of this Thesis is to investigate recursive estimation of SVR

using only the measurements provided by the TORVAD TM. The estima-

tion algorithm follows methodology developed by Yu et al. [31], and uses an

Extended Kalman Filter (EKF) based on a reduced order model of the car-

diovascular system. The EKF is chosen for its ability to estimate states and

parameters of a system, and also quantify the error in these estimates, thereby

giving us a measure of the confidence in estimates. Chapter 2 introduces a re-

duced order model that is used to design the EKF algorithm. It also discusses

a higher order model that will be used to generate simulated measurements

for testing the EKF algorithm. Chapter 3 develops the equations of the EKF

algorithm when it is applied to the reduced order model derived in Chapter 2.

For deterministic systems, the ability to reconstruct states from output mea-

surements is analyzed using principles of observability. However, for systems

riddled with process and measurement noise, these concepts must be replaced

with ones of stochastic observability [8]. Chapter 4 uses concepts of Identifi-

ability [13] to determine the ability to estimate SVR by using measurements

provided by the TORVAD TM. The use of stochastic observability concepts

to study the Estimability [3] of the EKF algorithm is also discussed in this

4



Chapter, thereby gauging its ability to estimate system states and parame-

ters. Chapter 5 and 6 show results from simulation studies, and experiments

conducted using a mock circulation loop that runs a 12-state computational

model [11] of the cardiovascular system. Chapter 7 is the final chapter and

summarizes the performance of the EKF algorithm while estimating SVR, and

presents possible extensions of the work in future.
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Chapter 2

Electric Analog of the Cardiovascular System

It is very common to represent the cardiovascular system (CVS) using

electrical elements. Table 2.1 summarizes the analogy between these elements

and physiology of the CVS [30].

Electric Element CVS analogy
Resistors (R) Viscous dissipation in blood flow
Capacitors (C) Elastic properties of vessel walls
Inductors (L) Inertial properties of blood flow
Diodes (D) Unidirectional heart valves

Table 2.1: Analogy between electric elements and physiology of CVS

Two models with varying levels of complexity are used in this Thesis.

The more complex model comprises of 12 states, and is used to simulate mea-

surements of differential pressure and VAD flow. The EKF algorithm discussed

in Chapter 3 however, is designed around a reduced order model comprising

of 4 states. Each of these models is discussed in the following sections.

2.1 Computational model

It is becoming increasingly common to simulate the cardiovascular sys-

tem on a mock circulation loop. Such a setup offers the advantage of con-

6



necting an LVAD, and performing hardware in the loop tests, thereby accel-

erating development and testing of algorithms to be deployed on the LVAD.

The models that need to run on such a mock circulation loop, are typically

of high fidelity so as to replicate most nuances of the actual cardiovascular

system. One such model is reported by Gohean et al. [11], and has been found

to replicate the dynamics of the cardiovascular system satisfactorily. A circuit

representation of the model, hereby referred to as the ‘computational model’

is shown in figure 2.1.

Figure 2.1: Electric circuit representation of the computational model

In the computational model, each heart chamber generates pressure

that is made up of an active, and a passive component. The LVAD is treated

as a flow source, and both systemic and pulmonary circulation circuits are

represented by a network of electrical elements. The value of each element is

summarized in Appendix A. For this Thesis, the computational model is sim-

ulated in the commercial software MATLAB Release 2018b (The MathWorks,

Inc., Natick, Massachusetts, United States). Data collected from this simula-

tion is used to run tests described in Chapter 5. The TORVAD TM is then

7



connected to a mock circulation loop which runs the computational model,

and data from this experiment is used for tests described in Chapter 6.

2.2 Reduced order model

The EKF algorithm needs a model of the system to propagate states

and their error covariances. It then uses measurements to correct these es-

timates using a ‘measurement update’ step. The selection of the model is

important and requires careful trade off between fidelity and computational

ease. The computational model replicates CVS dynamics well, but is not the

ideal choice for an algorithm that is intended for deployment on an embedded

controller. Since we only have one measurement (differential pressure ∆P ), we

must seek a model that has minimal number of states, and delivers satisfactory

dynamics for the purpose of estimation.

Several reduced order models of the CVS are available in the literature.

In most of these models, the systemic circulation is represented by a Wind-

kessel, with 2,3, or 4 elements [28, 6]. The four element Windkessel has been

found to satisfactorily replicate necessary dynamics of the Systemic Circula-

tion over a considerable range of frequencies (3 - 12 Hz). In these models, the

pulmonary circulation has been modeled either as a pressure source [30], or

as a constant capacitor [31]. The electric model used for the EKF algorithm

formulation in this Thesis is based on Yu et al. [31], with the key difference

being the absence of an explicit model of the LVAD. This is possible because

of the TORVAD’s TM embedded controller being able to estimate both pump

8



flow (Qvad) and differential pressure (∆P ) without the use of additional sen-

sors [9]. This model, hereby referred to as the ‘reduced order model’, is shown

in figure 2.2. The specific meaning of each element in the model is summarized

in table 2.2.

Cr

Dm Rm

Clv

Da Ra Rs Ls

Cs

Rsvr

QV AD

Figure 2.2: Electric circuit representation of the reduced order model

Electric Element CVS analogy
Da, Dm Aortic and mitral valves modeled as ideal diodes
Ra, Rm Aortic and mitral valve resistance
Qvad Known flow source
Rs Characteristic resistance of the aorta
Ls Aortic inductance
Rsvr Systemic Vascular Resistance
Cr Pulmonary circulation compliance
Cs Systemic circulation compliance
Clv Left ventricle as time varying capacitor

Table 2.2: Reduced order model elements and their meaning

The presence of ideal diodes in the model necessitates the need to switch

between discrete stages of the cardiac cycle. Each stage corresponds to a

9



specific configuration of the diodes. A diode that is on (Da or Dm = 1),

results in flow of blood. A diode that is off (Da or Dm = 0), blocks the flow

of blood. The model for each stage has the same state vector, which can be

written as follows

x =
[
Vs Vr Vlv Qao

]T
(2.1)

In the above equation, Vs, Vr and Vlv represent the volume of blood in the

systemic circulation, pulmonary circulation and left ventricle respectively. Qao

represents the aortic blood flow rate. Pressures can be calculated using these

states by using equation (2.2).

Ps =
Vs
Cs

Pr =
Vr
Cr

(2.2)

Table 2.3 summarizes diode values and switching criteria for each stage.

Stage Diodes Switching criteria
Ejection Da = 1, Dm = 0 Plv > Pao, Plv > Pr, Qao > 0
Filling Da = 0, Dm = 1 Plv ≤ Pao, Plv ≤ Pr, Qao ≤ 0
Isovolumic expansion/contraction Da = 0, Dm = 0 Pr ≤ Plv <≤ Pao,Qao ≤ 0

Table 2.3: Switching criteria and stages for reduced order model

2.2.1 Left Ventricle Pressure

Based on the approach taken by Yu et al. [31], the left ventricle in the

reduced order model is represented by a time varying capacitor. The pressure

10



is then calculated using equation (2.3).

Plv = E(t)(Vlv − V0) (2.3)

In the above equation, V0 represents the volume of blood in the unstressed

left ventricle, and is kept at 5 mL [11]. The elastance value at any given time

is obtained by scaling a normalized elastance curve (figure 2.3) in time, and

amplitude. Given the heart rate (HR), we can scale the current time t to

normalized time tn by using equation 2.4.
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Figure 2.3: Normalized elastance curve

tn = mod(t, tc) (2.4)
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In the above equation, mod represents the modulo function and cal-

culates the remainder when two numbers are divided. tc represents the time

required for one cardiac cycle and is given by equation 2.5.

tc =
60

HR
(2.5)

Elastance is then calculated using equation 2.6.

E(t) = (Emax − E0) e(tn) + E0 (2.6)

In the above equation, Emax and E0 are the maximum and minimum

values of the left ventricle elastance and are fixed at 3.25 mL/mmHg and

0.0068 mL/mmHg respectively for a healthy heart. e(tn) represents the value

of the normalized elastance at the normalized time, and is calculated using

equation 2.7 [11].

e(tn) =



1

2
− 1

2
cos

(
3πtn
2ts

)
if 0 ≤ tn <

2

3
ts

1

2
+

1

2
cos

(
3πtn
ts
− 2π

)
if

2ts
3
≤ tn < ts

0 if tn > ts

(2.7)

In the above equation, ts is ventricular contraction time, and is given by equa-

tion (2.8) [11]:

ts =
550− 1.75 HR

1000
(2.8)
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Equation (2.3) makes it possible to calculate the normalized elastance

in real-time, without the need of interpolating a curve as is the case in Yu et

al [31].

2.2.2 Ejection

During ejection, the aortic valve is open (Da = 1) and the mitral valve

is closed (Dm = 0). A bond graph of this stage is shown in figure 2.4.

0

C

1

R

0 1

I

R

0 1

C

R1

Sf

C

V̇lv

Qvad

Qao V̇s V̇r

: Clv : Ra : Ls

: Rs

: Cs : Cr

: Rsvr

Figure 2.4: Bond graph of the reduced order model during ejection

State equations for this stage can be written as follows.

V̇s = Qao −
1

Rsvr

(
Vs
Cs

− Vr
Cr

)
V̇r =

1

Rsvr

(
Vs
Cs

− Vr
Cr

)
V̇lv = −Qao

Q̇ao =
1

Ls

(E(t)(Vlv − V0)−Ra(Qao −Qvad)−RsQao − Ps)

(2.9)

Measurement of differential pressure can be represented by the following equa-
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tion.

∆P = Ra(Qao −Qvad) (2.10)

2.2.3 Filling

During the filling stage, the aortic valve is closed (Da = 0), and the

mitral valve is open (Dm = 1). A bond graph of this stage is shown in figure

2.5.

0

C

1

R

0

C

1

Sf

1

I

R

01 C

R

: Cr : Rm : Clv : Ls

: Rs

: Cs

: Rsvr

V̇r V̇lv Qvad

V̇s

Figure 2.5: Bond graph of reduced order model during filling

The model dynamics are governed by the following state equations dur-

ing this stage.

V̇s = Qvad −
1

Rsvr

(
Vs
Cs

− Vr
Cr

)
V̇r =

1

Rsvr

(
Vs
Cs

− Vr
Cr

)
− 1

Rm

(
Vr
Cr

− E(t)(Vlv − V0)
)

V̇lv =
1

Rm

(
Vr
Cr

− E(t)(Vlv − V0)
)
−Qvad

Q̇ao = Q̇vad

(2.11)
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Measurement of differential pressure can be written as follows.

∆P = E(t)(Vlv − V0)− (LsQ̇vad +RsQvad + Vs/Cs) (2.12)

2.2.4 Isovolumic Expansion/Contraction

During the isovolumic contraction or expansion stage, both the aortic

and mitral valves are closed (Da = 0 and Dm = 0). A bond graph of this stage

is shown in figure 2.6.

C

0 1

Sf

1

I

R

0

C

1

C

R

V̇lv Qvad Qao V̇s V̇r

: Clv : Ls

: Rs

: CS : Cr

: Rsvr

Figure 2.6: Bond graph of the reduced order model during isovolumic phases

Model dynamics during this stage are governed by the following equa-

tions.

V̇s = Qvad −
1

Rsvr

(
Vs
Cs

− Vr
Cr

)
V̇r =

1

Rsvr

(
Vs
Cs

− Vr
Cr

)
V̇lv = −Qvad

Q̇ao = Q̇vad

(2.13)

Measurement of differential pressure can be written as follows.

∆P = E(t)(Vlv − V0)− (LsQ̇vad +RsQvad + Vs/Cs) (2.14)

15



2.2.5 Selection of nominal parameter values - Impedance Analysis

Before we simulate the reduced order model and test the accuracy of

the estimation algorithm in predicting parameter values, we need to ensure

that we have a good sense of the actual nominal values of these parameters.

These values must be selected such that the reduced order model generates

pressures and volumes as close as possible to the computational model. The

level of confidence to placed on the model can be tuned in the EKF algorithm,

and deviations from the computational model are expected to be corrected by

utilizing information from the measurements to update parameter and state

estimates.

The parameter values were tuned by matching the impedance of the

systemic circulation circuit of the computational and reduced order model.

This process allows for tuning of systemic circulation compliance Cs, charac-

teristic aortic resistance Rs and aortic inductance Ls. The value of SVR was

calculated using equation (1.1). The pulmonary circulation compliance Cr and

mitral valve resistance Rm were kept same as in Yu et al [31]. The aortic valve

resistance, Ra, was taken from Gohean et al [11].

Qao
Rs Ls

CS

Rsvr

CrPao

Figure 2.7: Systemic circulation circuit of reduced order model
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For the reduced order model, the systemic circulation circuit shown

in figure 2.7 can be used to calculate the effective impedance faced by the

left ventricle while ejecting blood. The transfer function between the aortic

pressure Pao and aortic flow Qao can be expressed as follows.

Pao(s)

Qao(s)
=
a1s

3 + a2s
2 + a3s+ 1

b1s2 + b2s
(2.15)

Where
a1 = LsRsvrCsCr

a2 = RsvrRsCsCr + LsCs + LsCr

a3 = RsCs +RsCr +RsvrCr

b1 = RsvrCsCr

b2 = Cs + Cr

(2.16)

The impedance can then be expressed as :

Zred(jω) =

∣∣∣∣Pao(jω)

Qao(jω)

∣∣∣∣ (2.17)

Figure 2.8 shows the systemic circulation circuit of the computational

model. The transfer function between the aortic pressure Pao and aortic flow

Qao can be expressed as follows.

Pao(s)

Qao(s)
=

p1s
3 + p2s

2 + p3s+ p4
q1s4 + q2s3 + q3s2 + q4s+ 1

(2.18)
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Qao

Csa Rsa Lsa Cst

Rst

CsvRsv

Pao

Figure 2.8: Systemic circulation circuit of computational model.

Where

p1 = CstCsvLsaRstRsv

p2 = CstLsaRst + CstLsaRsv + CsvLsaRsv + CstCsvRsaRstRsv

p3 = Lsa + CstRsaRst + CstRsaRsv + CsvRsaRsv + CsvRstRsv

p4 = Rsa +Rst +Rsv

q1 = CsaCstCsvLsaRstRsv

q2 = CsaCstLsaRst + CsaCstLsaRsv + CsaCsvLsaRsv + CsaCstCsvRsaRstRsv

q3 = CsaLsa + CsaCstRsaRst + CsaCstRsaRsv + CsaCsvRsaRsv

+ CsaCsvRstRsv + CstCsvRstRsv

q4 = CsaRsa + CsaRst + CsaRsv + CstRst + CstRsv + CsvRsv

(2.19)

The transfer function is given by a similar expression as equation (2.17).

All the values obtained are summarized in table 2.4. Figure 2.9 shows the

18



impedance curves of the reduced order model and the computational model

with these parameters, for a healthy person and one with critical heart failure.

Element Healthy Heart Failure Units
Rs 0.02 0.0398 mmHg-s/mL
Ra 0.0025 0.0025 mmHg-s/mL
Rm 0.005 0.005 mmHg-s/mL
Rsvr 0.975 1.07 mmHg-s/mL
Ls 0.0002 0.0005 mmHg-s2/mL
Cr 4.4 4.4 mL/mmHg
Cs 1.5 0.65 mL/mmHg

Table 2.4: Values of the reducced order model parameters used for a healthy
person
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Figure 2.9: Impedance curves for a (a) healthy person and a person with (b)
critical heart failure

2.2.6 Simulation of reduced order model

The state equations for the reduced order model were simulated in

MATLAB Release 2018b (The Mathworks, Inc., Natick, Massachusetts, United
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States) using Euler integration and a time step of 0.0001 ms. The reduced

order model is found to sufficiently replicate all necessary dynamics of the

computational model. The left ventricle pressure, aortic pressure, atrial pres-

sure, aortic flow and left ventricle volume are shown in figure 2.10. The initial

conditions used for the states of the reduced order model for each simulation

run are summarized in Appendix B.

(a) (b)

Figure 2.10: Pressures, Left ventricle volume and aortic flows for a (a) healthy
human at 80 bpm, and (b) critical heart failure at 90 bpm simulated without
VAD support.
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2.3 Summary

This chapter introduced two models of the CVS that will be used

throughout the Thesis. The first model, termed the ‘Computational Model’,

comprises of 12 states. This model will be simulated with a continuous VAD

flow rate, and the differential pressure generated will be treated as measure-

ment data. These measurements will then be corrupted by additive white

Gaussian noise before they are used in the Extended Kalman Filter. Chapter

5 and 6 discuss the tests done on the EKF algorithm using simulated and

experimentally collected measurements.

A second model, termed as the ‘Reduced order model’ was also dis-

cussed. This model is used to formulate the EKF equations, as described in

Chapter 3. The reduced order model has 4 states and is able to satisfactorily

replicate the dynamics of the computational model. This chapter also derived

the model equations, which are different for each stage of the cardiac cycle.

The state of the heart valves dictates the stage of the cardiac cycle, and for

each stage, a bond graph representation of the system was shown. The pa-

rameters to be used for the reduced order model were tuned by matching the

impedance as seen by the left ventricle, in the computational and reduced or-

der model. This was done for a healthy heart, and one with critical failure,

without VAD support. Finally, results from a simulation of the reduced order

model were shown.
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Chapter 3

Extended Kalman Filter for SVR estimation

The Extended Kalman Filter (EKF) is an extension of the Kalman

filter for non linear dynamic systems. It has been used successfully in many

applications for both state and parameter estimation [16]. For such problems,

EKF is the most optimal linear estimator. It must be noted, however, that

there could be nonlinear estimators more optimal than the EKF.

The algorithm uses knowledge of the model dynamics to propagate the

mean and covariance of the states, conditioned on past measurements. It can

then update these statistics by using the most recent measurement, thereby

giving us the most likely value of the states (used as the state estimate) and the

level of confidence on these values. It allows us to tune the amount of process

uncertainty present in the form of noise and modeling errors, and measurement

uncertainties, to produce an overall estimate that is more accurate than just

the process or measurements. Being recursive in nature, the algorithm is

well suited for implementation in a real time environment, such as a micro-

controller. The following sections discuss the equations of the algorithm in

further detail.
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3.1 EKF equations

The continuous-discrete form of the EKF is used for this Thesis. The

continuous dynamics of the model are used to propagate the states and covari-

ance forward in time, and discrete measurements are used to correct them with

a ‘measurement update’ step. The equations for the algorithm are summarized

in table 3.1 [8].

System Model ẋ(t) = f(x(t), t) +w(t); w(t) ∼ N(0, Q(t))

Measurement Model zk = hk(x(tk)) + vk; k = 1, 2, . . . ; vk ∼ N(0, Rk)

Initial Conditions x(0) ∼ N(x̂0, P0)

Other Assumptions E
[
w(t)vTk

]
= 0 for all k and t

State Estimate Propagation ẋ(t) = f(x̂(t), t)

Error Covariance Propagation Ṗ (t) = F (x̂(t), t)P (t) + P (t)F (x̂(t), t)T +Q(t)

State Estimate Update x̂+
k = x̂−

k +Kk[zk − hk(x̂−
k )]

Error Covariance Update P+
k = [I −KkHk(x̂−

k )]P−
k

Gain Matrix Kk = P−
k H

T
k (x̂−

k )
[
Hk(x̂−

k )PkHk(x̂−
k )T +Rk

]−1

Definitions
F (x̂(t), t) =

∂f(x(t), t)

∂x(t)

∣∣∣∣∣
x(t)=x̂(t)

Hk(x̂−) =
∂hk(x(tk))

∂x(tk)

∣∣∣∣∣
x(tk)=x̂−

Table 3.1: Continuous - Discrete EKF equations.

The reduced order model of the CVS, as introduced in Chapter 2, is

linear. In order to estimate unknown parameters of the model, the state vector

can be augmented by adding an additional state for the parameter, that has

no dynamics [8].
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Ṙsvr = 0 (3.1)

xaug =
[
Vs Vr Vlv Qao Rsvr

]T
(3.2)

The addition of this state, makes the model nonlinear. When the EKF

equations shown above are used for the reduced order model, the states vec-

tor is xaug. The nonlinear system dynamics can then be represented by the

following state space representation :

ẋaug(t) = f(xaug(t), u(t), t)

y(t) = h(xaug(t), u(t), t)
(3.3)

To ensure faster convergence of the filter, the total volume of blood in

the model was held constant at a value represented by Vtotal [31]. At each

measurement update step, the following equations were used to adjust the

volume in the pulmonary circulation represented by the capacitor Cr.

V̂r = V̂r + (Vtotal − Vsum)

Vsum = V̂s + V̂r + V̂lv

(3.4)

The linearized matrices F and Hk govern the dynamics of the linearized

system, which can be represented by the standard linear state space form.

ẋaug(t) = Fxaug(t) +Bu(t)

yk = Hkxaug(t) +Dku(t)
(3.5)

Note that during each time step, the value of the left ventricle elastance, E(tk)

is held constant. The functions and matrices involved in eqs. (3.3) and (3.5)

are summarized below.

24



3.1.1 Ejection

The nonlinear functions f , h, and the linearized matrices F and Hk for

this stage are as follows.

f =



− 1

Rsvr

(
Vs
Cs

− Vr
Cr

)
+Qao

1

Rsvr

(
Vs
Cs

− Vr
Cr

)
−Qao

1

Ls

(
E(tk)(Vlv − V0)−Ra(Qao −Qvad)−RsQao −

Vs
Cs

)
0


h = Ra(Qao −Qvad)

F =



− 1

CsRsvr

1

CrRsvr

0 1 − 1

R2
svr

(
Vr
Cr

− Vs
Cs

)
1

CsRsvr

− 1

CsRsvr

0 0
1

R2
svr

(
Vr
Cr

− Vs
Cs

)
0 0 0 −1 0

− 1

CsLs

0
E(tk)

Ls

−Ra +Rs

Ls

0

0 0 0 0 0


Hk =

[
0 0 0 Ra 0

]
(3.6)
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3.1.2 Filling

The nonlinear functions f , h, and the linearized matrices F and Hk for

this stage are as follows.

f =



− 1

Rsvr

(
Vs
Cs

− Vr
Cr

)
+Qvad

1

Rsvr

(
Vs
Cs

− Vr
Cr

)
− 1

Rm

(
Vr
Cr

− E(tk)(Vlv − V0)
)

1

Rm

(
Vr
Cr

− E(tk)(Vlv − V0)
)
−Qvad

Q̇vad

0


h = E(tk)(Vlv − V0)− (LsQ̇vad + Vs/Cs)

F =



− 1

CsRsvr

1

CrRsvr

0 0 − 1

R2
svr

(
Vr
Cr

− Vs
Cs

)
1

CsRsvr

− 1

CrRm

− 1

CrRsvr

E(tk)

Rm

0
1

R2
svr

(
Vr
Cr

− Vs
Cs

)
0

1

CrRm

−E(tk)

Rm

0 0

0 0 0 0 0
0 0 0 0 0


Hk =

[
−1/Cs 0 0 Ra 0

]
(3.7)
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3.1.3 Isovolumic expansion / contraction

The nonlinear functions f , h, and the linearized matrices F and Hk for

this stage are as follows.

f =



− 1

Rsvr

(
Vs
Cs

− Vr
Cr

)
+Qvad

1

Rsvr

(
Vs
Cs

− Vr
Cr

)
−Qvad

Q̇vad

0


h = E(tk)(Vlv − V0)− (LsQ̇vad +RsQvad + Vs/Cs)

F =



− 1

CsRsvr

1

CrRsvr

0 0 − 1

R2
svr

(
Vr
Cr

− Vs
Cs

)
1

CsRsvr

− 1

CrRsvr

0 0
1

R2
svr

(
Vr
Cr

− Vs
Cs

)
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


Hk =

[
−1/Cs 0 0 Ra 0

]

(3.8)

3.2 Process and Measurement Noise

Since the EKF operates on stochastic system models, we assume that

the reduced order model is corrupted with process noise characterized by a

zero mean Gaussian process with covariance Q(t). In other words, the noise is

assumed to be white Gaussian in nature. The same is true for measurement

noise which is characterized by zero mean Gaussian process with covariance

Rk. The overall performance of the EKF algorithm depends strongly on the
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choice of these noise covariances. The measurement noise covariance is readily

available from the specifications of the sensor that provides the data. In the

case of the TORVADTM, the measurements of differential pressure are esti-

mated by an embedded Kalman Filter [9], and have a noise of ±5 mmHg.

This information is used to set the measurement noise covariance as follows -

Rk(t) = 25

Ideally, the process noise covariance would be characterized by collecting suffi-

cient data from the real process and performing statistical analysis. However,

in the absence of such data, the process noise covariance Q(t) needs to be

tuned heuristically to give the best EKF performance. Some researchers have

discussed a more methodical approach to deriving the EKF covariances, based

on the normalization of the algorithm [4], however this approach is not used

in this Thesis and is left as a possible step to be taken in the future. For

the reduced order model, iterative and heuristic tuning results in the following

process noise covariance -

Q(t) =


12 0 0 0 0
0 12 0 0 0
0 0 12 0 0
0 0 0 12 0
0 0 0 0 0



3.3 Initial Error Covariance

The EKF needs initial values of the states (x0) and the error covariance

(P0). The value of P0 is indicative of the confidence we have in the initial state
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x0. For the reduced order model, we are fairly certain of the initial conditions

and the parameters. This allows us to simulate the EKF with different initial

conditions, and test the limits of the algorithm. For the reduced order model,

the algorithm is found to perform well with a standard deviation of around

±30% in the initial state and parameters.

3.4 Summary

This chapter discussed the Extended Kalman Filter, and how it can be

used for parameter estimation. The equations for the filter were summarized,

and the nonlinear functions (f and h) and linearized matrices (F and Hk)

were presented for each stage of the cardiac cycle. Satisfactory performance of

the EKF depends on careful tuning of the process noise covariance Q(t) and

measurement noise covariance Rk(t). The process of selecting these covariance

was discussed. Since we have reasonably good knowledge of the initial condi-

tions for the reduced order model, we can change the initial covariance and

states to test the EKF performance under varying initial uncertainty. The

initial uncertainty for the best performance of the EKF was summarized.

The EKF algorithm, as described in this chapter, is used to run sim-

ulation tests for Chapter 5, and experimental tests for Chapter 6. The next

chapter performs Identifiability and Estimability analysis on the EKF algo-

rithm to gauge its ability to estimate states and SVR using the measurements

available from the TORVADTM.
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Chapter 4

Identifiability and Estimability

The ability to identify parameters by utilizing knowledge of the inputs

and outputs of a system depends on the measurements available, and the model

dynamics. If a change in the value of the parameters results in a detectable

change in the output of the system, then those parameters are termed locally

identifiable. A more formal treatment of this topic is presented in Grewal et

al. [13].

Provided the parameters are identifiable, we can use a number of tech-

niques to recover the parameter values with the available measurements. For

this Thesis, the EKF algorithm is used to estimate both states and parameters

of the reduced order model. For non-stochastic linear and non-linear observers,

which can also estimate states and parameters albeit non-optimally, we have

deterministic observability and controllability tests. These tests can reliably

predict the stability and convergence of these estimators. However, it has been

pointed out, that the same techniques might not apply to the case of stochastic

systems [8]. There is a need to look into concepts of ‘Stochastic observability’

and ‘Stochastic controllability’. An approach similar to the deterministic case

of observability and contrallibility for stochastic linear systems is discussed in
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Baram et al. [3], and is used to analyze the EKF used in this Thesis.

The following sections perform Identifiability analysis, and Estimability

analysis to confirm the ability of the EKF algorithm presented in Chapter 3,

to estimate states and SVR with the available measurements of differential

pressure from the TORVADTM.

4.1 Identifiability Analysis

A linear system can consist of unknown, or uncertain parameters in

its dynamic equations. If the value of the parameters are sufficiently known,

drifts in their values over time are possible. For the CVS, the value of SVR

can change over time, depending on cardiovascular health. If the deviated pa-

rameters result in an output that is distinguishable from the output generated

for the old parameters, then the parameters are said to be locally identifiable

[13]. Non linear systems can be linearized about an operating point, and if

the outputs of this linearized system are distinguishable when the parameters

change, then those parameters are locally identifiable as well [13]. For the

latter case, not only is the linearized system locally identifiable, but so is the

nonlinear system [13].

The reduced order model, as it is shown in Chapter 2 eqs. (2.9), (2.11)

and (2.13), is linear time variant. As pointed out previously, the value of the

left ventricle elastance, E(t) is held constant between discreet time steps. If

this simplification is made, then the system can be treated as time invariant

between consecutive time steps. We can then use tests of identifiability on
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a linear time invariant system as presented in [13], to find a minimum set of

parameters, including Rsvr, that are locally identifiable during each stage of

the cardiac cycle using differential pressure as the measurement, and the VAD

flow (Qvad) as input.

For a linear time invariant system, the Markov parameter matrix is

given by [13] :

GT (θ) =
[
DT (θ) (CB(θ))T (CAB(θ))T (CA2B(θ))

T
. . . (CA2n−1B(θ))

T
]

(4.1)

The constant n in equation 4.1 represents the number of states. For the

reduced order model, n = 4. The parameter vector θ represents the unknown

/ uncertain parameters to be identified. The system matrices A,B,C and D

can be obtained from the state equations shown in Chapter 2 eqs. (2.9), (2.11)

and (2.13), and are summarized below.
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4.1.1 Ejection

The linear matrices for this stage are summarized below.

A =



− 1

CsRsvr

1

CrRsvr

0 1

1

CsRsvr

− 1

CrRsvr

0 0

0 0 0 −1

− 1

CsLs

0
E(tk)

Ls

−Ra +Rs

Ls


B =

[
0 0 0 Ra/Ls

]T
C =

[
0 0 0 Ra

]
D = 0

(4.2)

4.1.2 Filling

The linear matrices for this stage are summarized below.

A =



− 1

CsRsvr

1

CrRsvr

0 0

1

CsRsvr

− 1

CrRm

− 1

CrRsvr

E(tk)

Rm

0

0
1

CrRm

−E(tk)

Rm

0

0 0 0 0


B =

[
1 0 −1 0

]T
C =

[
−1/Cs 0 E(tk) 0

]
D = 0

(4.3)
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4.1.3 Isovolumic expansion / contraction

The linear matrices for this stage are summarized below.

A =



− 1

CsRsvr

1

CrRsvr

0 0

1

CsRsvr

− 1

CrRsvr

0 0

0 0 0 0

0 0 0 0


B =

[
1 0 −1 0

]T
C =

[
−1/Cs 0 E(tk) 0

]
D = 0

(4.4)

The parameters θ are locally identifiable if the rank of the Jacobian

of the Markov parameter matrix is equal to the number of parameters (q) to

identify, i.e, the rank of the Jacobian is equal to the length of θ [13]. This can

be expressed mathematically as follows :

rank

(
∂GT (θ)

∂θ

)
= q (4.5)

For the reduced order model, the following set of parameters is found

to be locally identifiable, i.e equation (4.5) results in a rank of 4, for all stages

of the cardiac cycle in presence of available measurements.

θ =
[
Rsvr Cs Cr Rs

]T
(4.6)

It must be noted that the value of the left ventricle elastance, E(tk)

is always nonzero because the last term, E0 in equation (2.6) is nonzero for
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the healthy and critical heart failure cases. If all the parameters shown above

are identifiable, then Rsvr is certainly identifiable if we assume reasonable

knowledge of other parameters. Although this Thesis is only concerned with

the estimation of SVR, a future extension of the work could include all of the

parameters from equation (4.6) in the estimation algorithm.

4.2 Estimability Analysis

A system is said to be estimable, if when estimating its states from

available measurement yk (k ≥ no. of states n), the posterior error covariance

is strictly smaller than the prior state covariance [3], i.e

E
{

[x(t)− x̂+(t)][x(t)− x̂+(t)]T
}
< E

{
[x(t)− x̂−(t)][x(t)− x̂−(t)]T

}
(4.7)

After the kth measurement is done, the EKF algorithm (table 3.1) produces

the kth estimate of states, x̂+(t). The error in estimating the true state can

be written as :

x̃ = x(t)− x̂+(t) (4.8)

The covariance of this error, is then expressed as :

Px̃x̃ = Ψx̃x̃ +mx̃m
T
x̃

= E
{

[x(t)− x̂+(t)][x(t)− x̂+(t)]T
}

+mx̃m
T
x̃

(4.9)

Since the EKF is an unbiased estimator [8], the last term in equation (4.9)

goes to zero, i.e, mx̃ = 0. We can then represent the error covariance as :

Px̃x̃ = E
{

[x(t)− x̂+(t)][x(t)− x̂+(t)]T
}

(4.10)
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Before the kth measurement, the conditioned mean of the states is propagated

using the system dynamics, and is represented by x̂−(t). The prior covariance

of the states can then be written as :

Px̂−x̂− = E
{

[x(t)− x̂−(t)][x(t)− x̂−(t)]T
}

(4.11)

We note that in the EKF equations of table 3.1, Px̃x̃ = P+
k , and Px̂−x̂− = P−

k .

Hence, we can rewrite equation (4.7) as :

P+
k < P−

k (4.12)

For the reduced order model, estimability can be analyzed by studying the

results of the ‘Error Covariance update’ step. We shall test estimability of

each state computationally, by running the EKF with the values of covariances

and initial conditions discussed in Chapter 3. For each state, we will calculate

‘δ’, the difference between the posterior and prior covariance.

δ = P−
k − P

+
k (4.13)

The estimability for the state will be tested using this variable based on the

following criteria :
δ > 0⇒ State is estimable

δ ≤ 0⇒ State is not estimable
(4.14)

The simulation is run for a continuous VAD flow of 5 L/min, and a

healthy human. We find that the values of δ are always strictly greater than

0. To better visualize these values, they are plotted on a log scale against

time (for k ≥ n) for one cardiac cycle. The system states can be deemed
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Figure 4.1: Value of log(δ) of the covariance of (a)Vs (b)Vr (c)Vlv (d)Qao and
(e)Rsvr

estimable if their log(δ) value exists (δ > 0). Figure 4.1 shows these values for

each state, and it is clear that the states are estimable in presence of available

measurements from the TORVADTM.

The actual covariances of each state of the reduced order model, and

SVR are shown in Figure 4.2. It is clear that the error covariance of SVR is

driven down in each stage of the cardiac cycle, until it reaches a steady state

value.
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Figure 4.2: Covariances of each state and SVR for a typical simulation of the
EKF algorithm.

4.3 Summary

This chapter focused on studying the EKF algorithm’s ability to esti-

mate the states, and SVR value of the CVS reduced order model. Through

Identifiability analysis, it was shown that SVR, systemic circulation capaci-

tance, pulmonary circulation capacitance and characteristic resistance of the

aorta can all be identified from the output measurements of differential pres-

sure. Estimability analysis was then done on the EKF algorithm to ensure

that each measurement step brings down the error covariance, thereby helping
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the algirhtm estimate states and SVR throughout the cardiac cycle.

The next two chapters will present results from simulation and experi-

mental tests that demonstrate SVR estimation using the EKF algorithm. The

tests will include results representative of healthy humans, and those with

critical heart failure.
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Chapter 5

Simulation Results

This chapter presents results from a simulation test of the EKF algo-

rithm for SVR estimation as described in Chapter 3. Based on the Identifia-

bility and Estimability analysis discussed in Chapter 4, we expect to be able

to estimate SVR with the available measurements. The computational model

was first simulated using Euler integration with a time step of 0.0001 s, and

the values of parameters in the model were set to simulate a healthy and criti-

cal failure heart [11]. The value of each parameter is summarized in Appendix

A. For the healthy case, the VAD flow rate was a constant, while for critical

heart failure, pulsatile VAD flow was simulated using the following equation

[11] :

Qvad =


2SV

TST

(
1

2
− 1

2
cos

(
2π(tn − TD)

TST

))
; if TD ≤ tn < TD + TST

0 ; Otherwise
(5.1)

In the above equation, SV represents the stroke volume, and was set

to 35 mL. TST is the ejection time for a complete stroke, and was set to 0.3 s.

TD is the time delay between the R wave, and the beginning of ejection. On

the TORVADTM, this parameter can be programmed to synchronize the start
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of ejection to any point in the cardiac cycle. Its value was set to 0.24 s for

both healthy and heart failure cases. tn represents the normalized time, and

is already described in Chapter 2 equation (2.4).

The differential pressure (∆P ) and VAD flow rate (Qvad) at each time

step during the simulation of the computational model were saved. Additive

white Gaussian noise was then added offline, to simulate a 5% standard devi-

ation in both the ‘virtual sensor’ readings. The noisy measurement data from

simulating the computational model was then provided to the EKF algorithm.

The reduced order model requires calculation of the derivative of VAD flow.

The following section describes the calculation of this derivative.

The noisy measurement of VAD flow was first passed through a lowpass

filter with the cutoff frequency set to one tenth of the sampling frequency.

The filtered signal was then numerically differentiated, and smoothed using a

moving average of 300 samples.

A block diagram representing the simulation of the algorithm is shown

in Figure 5.1. For the healthy and heart failure cases, two tests were performed

to gauge the performance of the algorithm. In the first test, the initial value

of all states was shifted by some percentage ‘s’ of their true value, as shown

in the equation below.

x̂aug0 = xaug0

(
1 +

s

100

)
(5.2)

In the second test, the initial conditions were sampled from a Gaussian

distribution with mean as the true value of each state, and a standard deviation
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Figure 5.1: Block diagram of EKF algorithm simulation

of σ.

x̂aug,0 = N(xaug0, σ
2) (5.3)

Note that eqs. (5.2) and (5.3) both describe the initial conditions on the aug-

mented state vector xaug as described in equation (3.2). Within each test, the

time it took for the Rsvr estimate to settle within 2% of its final value was

calculated as the ‘2% settling time’. The aboslute value of error was calculated

using the following equation :

|Error %| = 100
R̂svr −Rsvr

Rsvr

(5.4)

Where R̂svr represents the mean of the last 50 estimates of Rsvr. The results

from each test, as well as a figure showing the esitmates of all states and Rsvr

will be presented in the following sections. The initial value of the elements of

the augmented state vector xaug are summarized for each test in Appendix B.
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5.1 Test with parameters set to a healthy heart

For this test, the parameters of the reduced order model were set as

per table 2.4. The VAD flow rate was set to a constant value of 5 L/min.

Figure 5.2 shows the measurements of Qvad after addition of Gaussian white

noise with mean 0 and covariance Rk as described in 3.2. It also shows the

derivative, Q̇vad.
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Figure 5.2: VAD Flow and derivative of VAD flow

5.1.1 Initial Conditions sampled from a Gaussian distribution

The results presented in table 5.1 convince us of the robustness of the

algorithm, when the initial conditions are sampled from a Gaussian distribu-
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tion with standard deviation as high as 50 units. The initial conditions are

set according to equation (5.3). The EKF algorithm is able to estimate the

value of Rsvr within 1.75 % in all cases. The tests with the best and worst

estimation accuracies are highlighted in green and brown respectively.

σ | Error %| 2% Settling time (s) Final Estimate
5 0.1015 3.36 0.9760
10 0.4201 1.8539 0.9791
20 1.3845 2.648 0.9885
30 1.7557 4.0891 0.9579
40 0.4690 3.1355 0.9704
50 1.2899 4.8817 0.9624

Table 5.1: Robustness test ICs sampled from a Gaussian distribution with
standard deviation σ

Figure 5.3 shows Rsvr estimates from a run with σ = 30 while figure 5.4 com-

pares the estimated states and measurements with the computational model.
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Figure 5.3: SVR Estimation for a healthy heart with σ = 30
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5.1.2 Initial Conditions shifted by some percentage of base value

Table 5.2 summarizes results from setting the initial conditions accord-

ing to equation (5.2), with different values of s. For each of the cases, the EKF

algorithm performs with an error % of 2 or below.

s(%) | Error %| 2% Settling time (s) Final Estimate
5 1.9974 1.1014 0.9945
10 0.1869 3.3490 0.9768
20 1.9665 4.6421 0.9558
30 0.0104 4.0951 0.9751
40 1.0455 3.8942 0.9648
50 0.3116 4.0737 0.9780

Table 5.2: Robustness test - ICs by s % of their base value

Figure 5.5 shows the SVR estimate for s = 30 %, and figure 5.6 shows the

estimated states and measurements compared to the computational model.
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Figure 5.5: SVR Estimation for a healthy heart with s = 30 %
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5.2 Test with parameters set to critical heart failure

For this test, the parameters of the reduced order model were set to

the case of critical heart failure from table 2.4. The VAD flow rate was set

to pulsatile, and was calculated using equation (5.1). Figure 5.7 shows the

measurements of Qvad after addition of zero mean Gaussian white noise with

the same covariance as the previous section. The derivative, Q̇vad is also shown.
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Figure 5.7: VAD flow and derivative of VAD flow used for EKF algorithm in
critical heart failure simulation

48



5.2.1 Initial Conditions sampled from a Gaussian distribution

The results presented in table 5.3 demonstrate the robustness of the

algorithm for the heart failure case, when the initial conditions are sampled

from a Gaussian distribution with standard deviation as high as 40 units. The

EKF is able to estimate the value of Rsvr within 2.11 % in all cases.

s(%) | Error %| 2% Settling time (s) Final Estimate
5 0.5646 6.3271 1.0640
10 0.0438 6.3546 1.0695
20 0.0764 6.3381 1.0692
30 2.1138 6.3832 1.0926
40 0.8861 6.3459 1.0605

Table 5.3: Robustness test - ICs sampled from a Gaussian distribution with
standard deviation σ

Figure 5.8 shows Rsvr estimates from a run with σ = 30 while figure 5.9 com-

pares the estimated states and measurements with the computational model.
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and (d) aortic flow for a healthy heart, σ = 30, b Estimated vs measured
differential pressure for critical heart failure, ICs initialized randomly
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5.2.2 Initial Conditions shifted by some percentage of base value

Table 5.4 summarizes results from setting the initial conditions accord-

ing to equation (5.2), with different values of s. The EKF algorithm performs

with a maximum error % of 2.21.

s(%) | Error %| 2% Settling time (s) Final Estimate
5 0.0554 6.3301 1.0694
10 2.2140 6.3820 1.0937
20 1.7220 6.4094 1.0884
30 1.1629 6.4145 1.0576
40 1.7797 6.3695 1.0510

Table 5.4: Robustness test - ICs sampled from a Gaussian distribution with
standard deviation σ

Figure 5.10 shows Rsvr estimates from a run with s = 30 while figure 5.11

compares estimated states and measurements with the computational model.
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5.3 Summary

This chapter described simulation tests done on the EKF algorithm to

prove robustness and accuracy. The computational model was run to generate

‘virtual sensor’ readings of VAD flow and differential pressure. These signals

were then corrupted with additive Gaussian noise. Both healthy heart and

critical heart failure was simulated. These measurements were then provided

to the EKF algorithm, and the initial conditions and Rsvr estimate was varied.

The variation was either sampled from a Gaussian distribution, or was set to

a fixed percentage from the base values. For the healthy heart case, the EKF

algorithm was found to estimate Rsvr an accuracy ranging between 0.0104 to 2

%. For this case, the algorithm converge for a wide range of initial conditions.

For critical heart failure, the EKF algorithm was found to estimate Rsvr with

an accuracy ranging between 0.0438 to 2.21 %. For this case as well, the

algorithm converged for a large range of initial conditions.

It must be noted that the successful convergence of the EKF algorithm

relies on setting the heart rate accurately in the simulation. From the per-

spective of practical implementation, this information can be derived from the

ECG signals that are available to the TORVADTM.

The next chapter will demonstrate SVR estimation using the EKF al-

gorithm with measurement data collected from a mock circulation loop that

is connected to the TORVADTM.
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Chapter 6

Experimental Results

This chapter presents results of SVR estimation performed on data

collected from the TORVADTM when connected to a mock circulation loop

(MCL) which simulates the computational model. The MCL used for this

experiment comprised of two chambers to emulate the left ventricle and aortic

pressures, a re-circulation pump, and a flow interface to connect the LVAD.

Such a setup allows us to operate the TORVADTM in an emulated cardiovas-

cular environment that is as close as possible to reality. The control loop in

the MCL, along with its parameters, can be tuned to emulate different heart

conditions. For the experiment presented in this Chapter, conditions for criti-

cal heart failure were emulated. All the data used for this test was provided by

Windmill Cardiovascular Systems In. (Austin, TX). This chapter is organized

into five sections. The first section describes the collection of data from the

TORVADTM, and the processing done on it before using it for the estimation

algorithm. The second section discusses the selection of initial conditions for

the states and Rsvr used for the EKF algorithm. A description of the initial

values of the error covariance matrix is also given. The third section shows

results of SVR estimation from the experiment. The fourth section shows the

robustness of the algorithm to different initial values of SVR. The last section
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summarizes the experiment and results discussed in this chapter.

6.1 Description of the Experiment

As discussed earlier, the TORVADTM has the capability to estimate

differential pressure and VAD flow using embedded Kalman Filters [9], and

can log the data to a computer at a rate of 450 Hz. An experiment was

performed and the data collected from the TORVADTM was interpolated using

1-D linear interpolation to emulate a sampling rate of 10 kHz. The interpolated

differential pressure (∆P ) was used as a measurement for the EKF algorithm,

and the VAD flow rate (Qvad) was used as an input. The same low pass

filtering and smoothing as described in Chapter 5, was applied to numerically

differentiate VAD flow rate to obtain Q̇vad.

Figure 6.1 shows a block diagram describing collection of data from the

TORVADTM, and the EKF algorithm for estimating SVR. In the figure, ‘VC’

represents the voice coils used as actuators to drive pressure in the chambers,

‘LV’ is the left ventricle chamber, ‘AO’ is the aortic chamber, ‘BP’ is the blood

re-circulation pump, and ‘TORVAD’ represents the LVAD device.

During the experiment, the TORVADTM was programmed to operate

in synchronous counter-pulse mode. The mean VAD flow rate recorded was

2.24 L/min. The interpolated VAD flow, and the derivative of VAD flow

(Q̇vad), computed numerically is shown in Figure 6.2. The value of maximum

and minimum left ventricle elastance were set to 0.5 and 0.0466 mL/mmHg

respectively.
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Figure 6.1: Block diagram of the SVR estimation experiment. TORVAD
connected to MCL logs data to a computer. Data is sent to EKF algorithm
after interpolation.

6.2 Initial Conditions

Table 6.1 summarizes the initial conditions used for the states, and

Rsvr while running the EKF algorithm. The actual value of Rsvr used in

the MCL was 1.05 mmHg-s/mL, and the final estimate of the algorithm was

compared against this value. Since the MCL simulates the computational

model, and we can only approximately calculate the initial conditions of the

reduced order model from the initial conditions of the computational model,

the values summarized here are an informed guess at best. For this reason,

the initial error covariance has some uncertainty corresponding to the value of

the initial state estimates.
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Figure 6.2: VAD Flow and derivative of VAD flow.

We assume that the initial states and SVR are deviated by 10 % of their true

value. The initial error covariance (P0) obtained using this assumption is as

follows :

P0 =


148.7 0 0 0 0

0 409 0 0 0
0 0 8100 0 0
0 0 0 0 0
0 0 0 0 0.011

 (6.1)

It is clear from the above equation that the highest uncertainty is placed on

the initial value of Vlv and Vr. The value of the process noise covariance was
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State Initial Value Units
Vs 40.6480 mL
Vr 67.4150 mL
Vlv 300 mL
Qao 0 mL/s
Rsvr 1.1603 mHg-s/mL

Table 6.1: Initial value of the augmented states for the EKF algorithm

the same as that set for the simulation tests described in Chapter 5.

Qk =


12 0 0 0 0
0 12 0 0 0
0 0 12 0 0
0 0 0 12 0
0 0 0 0 0

 (6.2)

6.3 Results

For the initial conditions, error covariance and process noise covariance

set to values described in the previous section, the EKF algorithm achieved an

accuracy of 0.3614 %. SVR estimates were able to settle to 2% of their final

value in a span of 7.48 seconds. The estimated SVR was 1.0538 mmHg-s/mL.

Figure 6.3 shows results of SVR estimation.

Figure 6.4 shows the estimated pressures in the left ventricle, aorta

and left atrium from the last 5 cardiac cycles. It also shows a comparison

between the measured and estimated differential pressure. The aortic flow

and left ventricle volume estimated by the EKF algorithm is shown for the

last 5 cardiac cycles in Figure 6.5.
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Figure 6.3: SVR estimation using measurements obtained from the TORVAD,
which was connected to a MCL.
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Figure 6.4: (a) Estimated pressures in the left ventricle, aorta and left atria.
(b) Comparison of measured and estimated differential pressure.

6.4 Robustness under different initial conditions

To test the robustness of the algorithm, the initial value of SVR was

deviated from its true value. Two types of tests were performed. In both

the tests, the uncertainty in the initial value of states of the reduced order

model was kept same. The nature of these tests was the same as described in

Chapter 5. In the first test, initial SVR was deviated by a some percentage s

of its true value. In the second test, initial SVR was sampled from a Gaussian
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Figure 6.5: (a). Aortic flow estimated by the EKF algorithm. (b) Left ventricle
volume estimated by the EKF algorithm.

distribution with mean equal to the true value of SVR set in the MCL, and a

standard deviation of σ.

6.4.1 SVR initialized with some percent shift

The results from this test are summarized in table 6.2. The algorithm

was able to estimate SVR with a best case accuracy of 0.3614 % for s = 10

%, and worst case accuracy of 6.4345 % for s = 50 %. The SVR estimation

results shown in section 6.3 in Figure 6.3 are for the case of s = 10 %.

ssvr(%) | Error %| 2% Settling time (s) Final Estimate
5 3.7029 7.4880 1.0889
10 0.3614 7.4891 1.0538
20 1.7314 7.4830 1.0318
40 4.7846 7.4734 0.9998
50 6.4345 7.4686 0.9824

Table 6.2: Robustness test - initial Rsvr deviated a fixed percentage s from its
true value.
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6.4.2 SVR initialized from a Gaussian distribution

The results from this test are summarized in table 6.3. The algorithm

was able to estimate SVR with a best case accuracy of 3.0790 % for σ = 20, and

worst case accuracy of 5.4124 % for σ = 50. Figure 6.6 shows SVR estimates

σsvr | Error %| 2% Settling time (s) Final Estimate
5 3.7415 7.4879 1.0893
10 2.3959 7.4952 1.0752
20 3.0790 7.4981 1.0823
30 5.1409 7.5001 1.1040
40 5.2915 7.4718 0.9944
50 5.4124 7.4715 0.9932

Table 6.3: Robustness test - initial Rsvr sampled from a Gaussian distribution
with standard deviation σ and mean as true Rsvr.
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Figure 6.6: SVR Estimation for σ = 10

from a typical ensemble with σsvr = 10. Figure 6.7 shows the estimated

pressures in the left ventricle, aorta and left atria for the last 5 cycles, while

Figure 6.8 shows the estimated aortic flow and left ventricle volume.
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Figure 6.7: (a) Estimated pressures in the left ventricle, aorta and left atria,
(b) Comparison of measured and estimated differential pressure for σ = 10
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Figure 6.8: (a) Estimated aortic flow, (b) Estimated left ventricle volume for
σ = 10

6.5 Summary

This chapter described an experiment where SVR estimation was done

using data collected from the TORVADTM while it was connected to a mock

circulation loop. The MCL was tuned to simulate conditions for critical heart

failure, and the embedded Kalman Filter of the TORVADTM logged the esti-
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mates of differential pressure and VAD flow to a computer at the rate of 450

Hz. This data was then interpolated to a rate of 10 kHz and used in the EKF

algorithm described in Chapter 3.

The initial condition for the states of the reduced order model were

kept fixed during all tests, while the initial value of SVR was deviated from

its true value to test the robustness of the algorithm. Two types of tests were

performed - in the first test, the initial value of SVR was shifted from its true

value by some percent s, and in the second test it was sampled from a Gaussian

distribution with mean equal to the true value, and standard deviation of σ.

The algorithm was found to converge, and estimated SVR with an overall

best case accuracy of 0.3614 % (s = 10), and a worst case accuracy of 6.4345

% (s = 50). The results demonstrate the satisfactory performance of the

estimation algorithm when applied to experimental data collected from the

TORVADTM.

This chapter marks the end of this Thesis. The next chapter con-

cludes and summarizes the Thesis, and discusses future work that can be

done to improve SVR estimation, or extended it for higher level control of the

TORVADTM.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Systemic Vascular Resistance (SVR) is the aggregate resistance to blood

flow faced by the left ventricle during ejection. The primary goal of this The-

sis was to investigate methods of recursively estimating SVR, using measure-

ments provided by an implantable rotary left ventricular assist device, the

TORVADTM (Windmill Cardiovascular Systems In., Austin, TX). The abil-

ity to estimate this parameter recursively could pave the way for embedded

real-time estimation of SVR. Tracking the trends of SVR over time can help

catch abnormalities in the physiology of the cardiovascular system of a per-

son, thereby helping diagnose disease and in some cases predict mortality

[24, 30, 5, 2]. An Extended Kalman Filter (EKF) was used in this Thesis

to estimate SVR by using differential pressure (∆P ) as measurements and

VAD flow rate (Qvad) as a known input. This approach is similar to the one

taken in Yu et al. [31]. The EKF algorithm uses a model to propagate the

conditional mean and error covariance of the model states forward in time,

and uses measurements to update both these values. The updated conditional

mean (conditioned on the latest measurement) can then be treated as the

‘most likely’ estimate of the states, while the error covariance represents the
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confidence we can place on these estimates.

The first part of this Thesis, comprising of Chapters 2 and 3, focused

on modeling of the cardiovascular system, and developing the EKF algorithm.

Chapter 2 focused on introducing two models - the computational model, and

the reduced order model. The reduced order model contains 4 states, and was

used to design the EKF algorithm, while the computational model contains 12

states, and was used to generate ‘simulated sensor measurements’ of ∆P and

Qvad. The design of the EKF algorithm was discussed in Chapter 3.

The second part of the Thesis, consisting of Chapter 4, focused on per-

forming Identifiability analysis on the reduced order model, and Estimability

analysis on the EKF algorithm designed in Chapter 3. According to Gre-

wal et al. [13], a set of parameters of a dynamic system are identifiable if, a

change in their values results in a distinguishable change in the outputs. For

the reduced order model, if we were to treat the VAD flow rate as input, and

differential pressure as output, then the SVR (Rsvr), systemic circulation com-

pliance (Cs), pulmonary circulation compliance (Cr) and characteristic aortic

resistance (Rc) are all identifiable. This Thesis focussed on SVR alone. For

deterministic dynamic systems, the ability to reconstruct system states from

output measurements can be gauged by studying its observability. For stochas-

tic systems, the ability to estimate states by using avaiable measurements must

be gauged by using stochastic observability [8]. According to Baram et al.,

‘estimability’ can hold as a good test of stochastic observability, and this test

is performed for the EKF algorithm designed for the reduced order model. We
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find that the system states (including SVR) are estimable.

The third and final part of the Thesis, comprising of Chapters 5 and 6,

focused on testing the accuracy of SVR estimation using the EKF algorithm.

Chapter 5 presented results of simulations where the measurements were gen-

erated by simulating the computational model, and the measurements were

corrupted by additive Gaussian white noise. The tests were run for a healthy

heart, and for critical heart failure. Within each case, tests were performed

where initial conditions were either shifted by a percentage of their true value,

or were sampled randomly from a Guassian distribution. Chapter 6 presented

experimental results for SVR estimation. The measurements were collected

from the TORVADTM, which was connected to a mock circulation loop. The

MCL was propgrammed to emulate critical heart failure. These measurements

were then fed to a simulation of the EKF algorithm. For this chapter as well,

tests were done where the initial SVR value was either deviated by a per-

centage of its true value, or sampled from a Gaussian distribution. Table 7.1

summarizes the accuracy of the algorithm for all cases.

Test Best case Worst case
Accuracy (%) Accuracy (%)

Healthy (Simulation) 0.0104 1.9974
Critical HF (Simulation) 0.0438 2.2140
Critical HF (Experiment) 0.3614 6.4345

Table 7.1: Summary of EKF algorithm accuracy
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7.2 Future Work

The EKF algorithm designed in this Thesis estimates the states of the

reduced order model, along with SVR. However, identifiability analysis per-

formed in Chapter 4 revealed that parameters other than SVR could possibly

be identified by using differential pressure as an output measurement, and

VAD flow rate as the input. If an EKF algorithm was designed to estimate

these parameters as well, estimability analysis on such an algorithm could be

done in the future to study the feasibility and accuracy in estimating each

parameter.

The inclusion of SVR to augment the state vector for the reducecd order

model makes the system nonlinear, and this motivates the use of the EKF for

estimation. In recent years, the Unscented Kalman Filter (UKF) has been

developed for nonlinear systems and has been found to perform better than

the EKF in some cases [27]. A comparison of the accuracy of SVR estimation

between the EKF and UKF could be done in the future.

The EKF algorithm discussed in this Thesis was simulated on the com-

mercial software MATLAB Release 2018b (The MathWorks, Inc., Natick, Mas-

sachusetts, United States). If the algorithm must run on an embedded micro-

controller or a real-time environment, it must be modified slightly and tested

for numerical stability. For instance, the microcontroller might not be capa-

ble of data acquisition at the rate of 10 kHz, which was the rate used during

simulations. An emulation study with slower sampling rates could be done

in simulations to test the algorithm. It is also common for micro-controllers
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to use fixed point algebra, as opposed to floating point algebra used by the

processors in modern computers. The dynamic equations shows in this The-

sis could be discretized, and adapted for fixed point algebra for this purpose.

Such an approach has been taken by Dhaouadi et al. for EKF based state

estimation of a permanent magnet synchronous motor [7].

Finally, a possible extension of the work presented in this Thesis could

be utilization of SVR estimates for higher level physiological control of the

TORVADTM, remote diagnostics and event based alarming. Figure 7.1 shows

a block diagram of the possible ways of utilizing SVR estimates.
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Figure 7.1: Physiological Control, remote diagnostics and event based alarming
through real-time SVR estimation.
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7.3 Summary

This Thesis developed an EKF algorithm based on a reduced order

model of the cardiovascular system for the purpose of estimating Systemic

Vascular Resistance by using measurements from a left ventricular assist de-

vice. The algorithm enables recursive estimation, and hence is well suited for

adapting to real-time application on an embedded micro-controller. The pa-

rameters of the reduced order model were tuned by matching the impedance

of the systemic circulation circuit with that of a higher order computational

model. Identifiability and Estimability analysis was performed on the algo-

rithm to ensure that we could estimate SVR by using the measurements avail-

able from the LVAD. Tests were performed for a healthy heart and a critical

heart. In simulation tests, the measurements were generating by simulating

the computational model, and adding additive Gaussian White noise to the

measurements. An experiment was also performed where measurements were

taken from the TORVADTM when it was connected to an MCL. Finally, possi-

ble work and extensions of the work done in this Thesis were discussed. These

included estimating more parameters, comparison with the UKF algorithm,

discretization for implementation on a micro-controller and utilizing SVR es-

timates for higher level control and diagnostics.
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Appendix A

Values of elements of computational model

The following table summarizes the values of each parameter of the

computational model.

Parameter Description Value Units
Rt Valve resistance 0.0025 mmHg-s/mL
Emax Maximum left ventricle elastance 3.25 (0.30) mmHg/mL
E0 Minimum left ventricle elastance 0.0068 (0.046) mmHg/mL
V0 Unstressed volume in left ventricle 5 mL
Rsa Systemic artery resistance 0.15 mmHg-s/mL
Csa Systemic artery compliance 1.25 (0.65) mL/mmHg
Lsa Systemic artery inertance 0.0022 mmHg-s2/mL
Rst Systemic arterial tree resistance 0.8 (0.9) mmHg-s/mL
Cst Systemic arterial tree compliance 2.0 (1.5) mL/mmHg
Rsv Systemic venous resistance 0.025 mmHg-s/mL
Csv Systemic venous compliance 20 mL/mmHg
Rpa Pulmonary aratery resistance 0.07 mmHg-s/mL
Cpa Pulmonary artery compliance 7.5 mL/mmHg
Lpa Pulmonary artery inertia 0.0018 mmHg-s2/mL
Rpt Pulmonary arterial tree resistance 0.04 mmHg-s/mL
Cpt Pulmonary arterial tree compliance 0.5 mL/mmHg
Rpv Pulmonary venous resistance 0.003 mmHg-s/mL
Cpv Pulmonary venous compliance 20 mL/mmHg

Table A.1: Parameters used in the computational model. Values in paranthesis
represent conditions for heart failure.
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Appendix B

Initial Conditions for the reduced order model

B.1 Simulation without VAD support

The initial conditions for the reduced order model when simulating

healthy heart conditions without VAD support are summarized below.

State Initial Value Units
Vs 148.2756 mL
Vr 4.9841 mL
Vlv 88.6363 mL
Qao 83.2676 mL/s

Table B.1: Initial values of the reduced order model for healthy heart condi-
tions and no VAD support

The initial conditions for the reduced order model when simulating

critical heart failure conditions without VAD support are summarized below.

State Initial Value Units
Vs 32.4040 mL
Vr 59.8169 mL
Vlv 293.6323 mL
Qao -0.4611 mL/s

Table B.2: Initial values of the reduced order model for critical heart failure
and no VAD support
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B.2 Estimation using simulated measurements

The initial conditions used for simulation test for a healthy heart de-

scribed in Chapter 5 are summarized below.

State Initial Value Units
Vs 146.2351 mL
Vr 4.8887 mL
Vlv 86.5762 mL
Qao 83.1969 mL/s
Rsvr 0.975 mmHg-s/mL

Table B.3: Initial values of the reduced order model for healthy heart simula-
tion test

THe initial conditions used for simulation test for critical heart failure

conditions in Chapter 5 are summarized below.

State Initial Value Units
Vs 55.9645 mL
Vr 57.6267 mL
Vlv 279.8088 mL
Qao -0.5161 mL/s
Rsvr 1.07 mmHg-s/mL

Table B.4: Initial values of the reduced order model for critical heart failure
simulation test
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