
Copyright

by

Madhumitha Sakthi

2019

Speech Recognition model compression

APPROVED BY

SUPERVISING COMMITTEE:

Ahmed Tewfik, Supervisor

Raymond J. Mooney

Speech Recognition model compression

by

Madhumitha Sakthi

REPORT

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

May 2019

Dedicated to my Amma and Appa.

Acknowledgments

I would first of all want to thank my supervisor Dr. Ahmed Tewfik. He

gave me the right combination of freedom to explore and independently work

and at the same time guided me through whenever I was stuck. He guided me

all through and it was great learning experience working with him. I am very

grateful to be advised by him.

I would like to thank Prof. Raymond J. Mooney, for being the second

reader for my report, giving me his valuable time and feedback.

I would also like to thank my friend Aastha Tripathi, for providing her

comments, for the discussions on the topic and for the enormous moral sup-

port throughout my report work.

I would like to thank my parents for always being supportive of all my

goals.

Finally, I would like to thank God for giving me an this opportunity

v

Abstract

Speech Recognition model compression

Madhumitha Sakthi, M.S.E.

The University of Texas at Austin, 2019

Supervisor: Ahmed Tewfik

Speech recognition models are widely deployed in mobile and embed-

ded devices. However, the base architecture with which these models are

developed is usually made of neural networks with bigger size and millions of

model parameters. In this report, we investigate three compression schemes for

these neural network architecture with a trade-off on accuracy and compressed

model size. Also, we perform sensitivity analysis on the network parameters

with known perturbations to determine the best compression scheme for a

particular layer. The first compression scheme deployed is k-means clustering.

This helps in generating clusters which are used for weight sharing and hence

reduction in the total number of parameters required. Secondly, we employ

svd based compression on various network layer parameters and achieve the

best compression using svd in the case of a large vocabulary continuous speech

recognition model. Finally, a two-stage compression scheme using k-means and

vi

Huffman coding is proposed. We have investigated these compression schemes

on keyword spotter speech recognition system and the Baidu’s DeepSpeech

large vocabulary continuous speech recognition model and have shown 58.3%

reduction in size for only a 3.4% drop in accuracy and 45% reduction in size

for only a 1.21% drop in accuracy respectively.

vii

Table of Contents

Acknowledgments v

Abstract vi

List of Tables x

List of Figures xi

Chapter 1. Introduction 1

Chapter 2. Related work 3

Chapter 3. Model Architecture & compression algorithm 7

3.1 Keyword spotter . 8

3.2 LVCSR: DeepSpeech . 10

3.3 Compression schemes . 15

3.3.1 Singular value decomposition compression 15

3.3.2 k-means clustering . 17

3.3.3 K-means & Huffman compression 19

3.4 Model compression in hardware 20

Chapter 4. Sensitivity Analysis 22

4.1 Key-word spotter . 22

4.2 DeepSpeech . 27

Chapter 5. Experiments 37

5.1 Keyword spotter . 37

5.1.1 SVD compression . 37

5.1.2 K-means & Huffman compression 39

viii

5.2 DeepSpeech . 40

5.2.1 SVD compression . 41

5.2.2 K-means & Huffman compression 42

Chapter 6. Limitations & Future Improvements 44

Chapter 7. Conclusion 46

Bibliography 48

ix

List of Tables

4.1 The amount of perturbation vs. accuracy for feedforward layer
parameters . 24

4.2 The amount of perturbation vs. accuracy for LSTM layer pa-
rameters . 29

5.1 The number of parameters across the layers of a keyword spotter
is shown in the above table . 38

5.2 SVD compression on Keyword spotter model 38

5.3 K-means & Huffman compression on keyword spotter model . 40

5.4 The number of parameters across the layers of a DeepSpeech
model is shown in the above table 40

5.5 SVD compression on DeepSpeech model model 41

5.6 K-means & Huffman compression on Deep Speech model . . . 43

x

List of Figures

3.1 Speech recognition architecture 9

3.2 Key-word spotter graph generated from tensorboard 11

3.3 Traditional Speech recognition model architecture 13

3.4 DeepSpeech model architecture 14

3.5 Compression algorithm . 16

3.6 Singular value decomposition of a Matrix M 17

3.7 K-means compression-decompression of a matrix M 18

3.8 K-means & Huffman compression - decompression of matrix M 19

3.9 K-means & Huffman compression - decompression of matrix M 20

4.1 Histogram plot of final layer parameters 23

4.2 Histogram plot with 4 bins of final layer parameters 25

4.3 Histogram plot with 6 bins of final layer parameters 27

4.4 Histogram plot of LSTM layer parameters 28

4.5 Histogram plot of perturbed LSTM layer parameters with max value 30

4.6 Histogram plot of perturbed LSTM layer parameters with min value 31

4.7 Histogram plot of perturbed LSTM layer parameters with gaus-
sian noise of mean 0 and standard deviation 0.025 32

4.8 Histogram plot of perturbed LSTM layer parameters with gaus-
sian noise of mean 0 and standard deviation of 0.75 33

4.9 The quantized value for LSTM layer parameters 35

xi

Chapter 1

Introduction

Recent advancements in deep learning have facilitated its usage in many

day-to-day utilities. One such application is in Speech recognition. It is a

problem where a user would give in voice commands or queries and the sys-

tem would recognize the text. However, deploying such systems in embedded

and mobile devices requires the models to be compact and yet accurate on var-

ious noise conditions. Hence, in this report, we have investigated the usage of

three compression schemes on key-word spotter and DeepSpeech speech recog-

nition architecture. The compression schemes proposed in this report does not

require re-training. Therefore, accelerating the process of deployment of com-

pressed models to mobile devices without much loss in accuracy.

In this report, the model parameters were compressed using k-means

clustering and svd compression. As a two-stage compression scheme, we have

evaluated k-means followed by Huffman coding as a third compression tech-

nique. Also, by performing sensitivity analysis on the model parameters we

determined the level of perturbation the model could handle without much

loss in accuracy. The parameters were perturbed with Gaussian noise, by a

fraction of itself, followed by a value higher than the initialization values be-

1

fore training. Finally, based on sensitivity analysis, it is determined that the

unique model parameter values could be sorted into bins of a histogram and

the values in the bin, replaced with the mean value does not affect the model

performance. We have shown that this scalar quantization method helps in

representing the values with 2 bits instead of 32 bits to save memory require-

ment.

In chapter 2, we discuss related work. In chapter 3, we discuss the

model architecture and the compression algorithms are explained. In chapter

4, we have shown the experimental results and discussed the limitations and

future work in chapter 5. Finally, chapter 6 outlines the conclusions of the

report.

2

Chapter 2

Related work

In recent years, with the development of deep learning, speech recogni-

tion architectures are deployed using deep learning models rather than Hidden

Markov models [1]. Large, multi-layer deep learning architectures have been

successful in computer vision, classification tasks [2]. These architectures typ-

ically have a few million parameters in a size range of a 200 to 300 MB. To

deploy the compressed architectures with minimal decrease in accuracy, previ-

ous papers have investigated knowledge distillation thoroughly [3]. However,

with knowledge distillation, it is imperative to train the models from scratch

and determine the best parameter choices for the particular task. Also, it is a

sequential training process where, the student neural network, learns to mimic

the teacher neural network’s output and hence would take a longer time to

train the model. In [4], they proposed a compression scheme for RNN lay-

ers. Particularly, they propose a projection layer by compressing the recurrent

layer using singular value decomposition and retaining only the top few sin-

gular values. This leads to size reduction at the projection layer and hence,

they achieve parameter reduction. But, this method requires additional fine-

tuning to achieve better performance with an increase in compression. In [5],

they have proposed a multi-stage compression scheme, where they performed

3

singular value decomposition compression followed by quantization. Using

quantization, they reduce the 32bit representation to 8-bit representation and

achieve 4 times reduction in size. However, this method is prone to drastic

changes in the model parameters. We have utilized scalar quantization based

on the parameter distribution and retained the float values. This way, even

though the float representation remains intact, the number of unique values is

decreased and hence, they are mapped to uint8 integers for storage.

In the recent paper [6], using voice data of approximately 15000 hours,

they performed three compression techniques. Knowledge distillation, low-

rank matrix factorization and finally, pruning to LSTM layers while training.

Pruning the LSTM layers gave the maximum compression for a word error

rate of 6.4 %. Pruning is a method wherein while training the less salient

connections in the neural network are removed and hence, it generated sparse

weight matrices. Compression is achieved by reducing the model size by stor-

ing a sparse matrix. As an addition to the above methods, [7] has shown that

knowledge distillation and pruning achieved 14.59× parameters reduction, 5×

storage size reduction. Also, using layer normalization, they could acceler-

ate convergence. When knowledge distillation is applied on a 6 layered, 1024

hidden size Deep Neural Networks, it was reduced to a 3 layered, 512 hidden

size architecture with just 2% loss in accuracy. Therefore, with knowledge

distillation, when the network parameters are jointly trained, it is possible to

achieve more than 4x compression rate for a minimal loss in accuracy. So far,

there have been various compression schemes on speech recognition models.

4

However, these methods require either model re-training or fine-tuning. In ad-

dition, there have been compression techniques introduced in the vision deep

learning models. One such compression scheme[8] utilized k-means clustering

on the convolutional kernels. Starting from a pre-trained model, representa-

tive 2D kernel centroids are extracted using k-means clustering. ResNet-18

even outperforms its uncompressed counterpart at ILSVRC 2012 classifica-

tion task with over 10x compression ratio. Combined with pruning, the com-

pressed VGG-16 achieves over 30x compression ratio with only 0.01% accuracy

drop on the CIFAR-10 dataset. However, even in this method, the model is

fine-tuned after applying k-means clustering to the convolutional kernels. In

another Deep Neural Networks compression paper[9], they have performed a

three-stage compression process of pruning, trained quantization ,and Huff-

man coding, and reduced the storage requirement of neural networks by 35×

to 49× without affecting the model performance. Quantization was performed

by clustering and weight sharing. On the ImageNet dataset, this method re-

duced the storage required of AlexNet by 35×, from 240MB to 6.9MB, without

loss of accuracy.

In this report, to the best of our knowledge, this is the first method to

have k-means clustering followed by Huffman coding implemented on speech

recognition models. Also, we have implemented a k-means clustering based

compression and singular value decomposition compression scheme. This is the

first method to explore a thorough sensitivity analysis on the model parame-

ters with various noises. We have also proposed a scalar quantization based

5

compression scheme based on the sensitivity analysis results. Also, in addi-

tion to the above, we have shown the change of memory requirement across

the hardware platform when the model is compressed for storage reduction

and decompressed for inference. Finally, the compression schemes proposed in

this report work without model retraining or fine-tuning. Therefore, the best

compression scheme is decided based on the trained models and the objective

is to reduce the model size while the network remains robust.

6

Chapter 3

Model Architecture & compression algorithm

In this section, two speech recognition model architectures and their

corresponding compression algorithms are explained. The first speech recog-

nition model is the keyword spotter. It is a simple classifier network of 10

distinct speech sounds, each 1 second long. This is trained on the command

and control dataset[10]. The second model is the large vocabulary continuous

speech recognition system based on DeepSpeech[11] architecture. This model

is capable of recognizing speech sentences.

As shown in figure 3.1, to train a speech recognition model, the input

speech data is pre-processed as a spectrogram or MFCC features. These fea-

tures are used to train the model based on a particular loss function. The

last layer consists of a classifier layer with a softmax activation. This layer

predicts the class probabilities. In the key-word spotter recognition system,

the model is trained to directly predict the ten keywords along with unknown

and silence. Whereas in the case of DeepSpeech model, it predicts the charac-

ters with blank and unknown characters. Therefore, the predicted characters

are combined to words using the blank symbol and hence, words are decoded.

Similar to a typical deep learning system, the model parameters such as the

7

number of layers and the number of units in each hidden layer is determined

while training.

3.1 Keyword spotter

The dataset used for this architecture is Google’s speech command

dataset with over 60,000 instances of 30 words. The twenty core command

words are spoken at least 5 times by each speaker. Whereas, the other 10 are

auxiliary words spoken just once by each speaker. In this report, we trained

the key-word spotter to recognize 10 core command words[10], 1 unknown

symbol and 1 silence symbol. The total number of classes predicted by the

model is 12.

The audio is sampled at 16000 kHz sampling rate. The pre-processing

step extracts Mel-frequency cepstral coefficients(MFCC) from the audio data.

To extract the MFCC features, a pre-emphasis filter is applied to the speech

data, followed by framing and windowing. On these frames, Fourier transform

is applied and Mel-scale filter banks are applied on the Fourier transformed

signal. Finally, Discrete Fourier transform is applied to decorrelate the filter

bank coefficients to obtain the MFCC features.

While training, the audio data is corrupted with the background noise

of 10% volume. This helps the model to be robust in varying background noise

conditions. The model architecture[12] consist of two convolutional layers

followed by a feed forward layer and it is trained with a cross-entropy loss

function. ReLU activation function is used as the activation function for the

8

Figure 3.1: Speech recognition architecture

9

hidden layers. The MFCC features, extracted from the speech signal, frame the

1-D speech data into a 2-D frame data. Hence, similar to a vision application,

CNN neural network architecture as the hidden layer. The feedforward layer

contains the maximum number of model parameters which account for almost

87% of the model size. This model is trained for 18000 steps. The first

15000 steps are trained with a learning rate of 0.001 and the last 3000 steps

are trained with a learning rate of 0.0001. At the end of the training, the

model has a test accuracy of 87.5% and a model size of 3.7 MB with 926860

parameters.

As shown in figure 3.2, the input wav data is preprocessed in the first

three nodes, the input is reshaped in such a way that the first convolutional

layer can process it. Followed by that, a randomly initialized bias is added to

the processed input and sent to the next convolutional layer. The feature map

size of the convolutional layers is 64. The output from the second convolutional

layer is passed through the ReLU activation function and finally given to the

linear layer. The linear layer has the output dimension of 12, which is predicted

as class probabilities after a softmax layer. Hence, any given input frame is

classified as one among the 12 output symbols.

3.2 LVCSR: DeepSpeech

The dataset used to train the model was Fisher [13], switchboard [14]

and Librispeech [15]. The model is tested on the test set of Librispeech dataset.

MFCC pre-processing was applied to the speech dataset. The LVCSR archi-

10

Figure 3.2: Key-word spotter graph generated from tensorboard

11

tecture[11] consist of 5 hidden layers. The first three layers are not recurrent

layers. The fourth layer is a bi-directional LSTM which consists of forward

and backward recurrent layers. The fifth non-recurrent layer takes input from

both forward and backward units and the final layer is a softmax layer which

predicts character probabilities.

The loss function is Connectionist Temporal Classification (CTC) loss

function [16] [17]. Unlike the previous architectures which required phoneme

level annotation of speech, using CTC loss function, the model can decode

speech to characters directly. Initially, using a HMM[1][18] or a Deep Neural

Networks architecture for a phoneme level classification required phoneme an-

notations. The loss functions used were typically cross-entropy loss. Also, the

speech recognition architecture was divided into the acoustic model, pronun-

ciation dictionary and a final language model as shown in figure 3.3 . Using

the recent deep neural network architectures and loss functions, these three

components are combined into a single architecture.

The Connectionist temporal classification loss function does require

phoneme level or character level annotation of the speech data. This is be-

cause CTC loss directly computes the conditional probability of the output

character given the input frame and this is done by marginalizing over all pos-

sible alignments of the output. Therefore, the CTC loss is capable of taking

input frame length higher than the output character length to be predicted.

These characters are later combined as words and hence the WER and Char-

acter error rate (CER) are calculated. The final WER for this model is 18%

12

Figure 3.3: Traditional Speech recognition model architecture

and a CER of 9%. Also, with the CTC decoder, sometimes, an external lan-

guage model is not utilized for fine-tuning the output word predictions. But,

to achieve comparable performance without using the language model, the

speech recognition model should be trained with large amounts of data. In

which case, the model can be trained to directly predict word outputs using

CTC [19].

As shown in figure 3.4, the input speech feature is passed through three

linear layers, followed by a bi-directional LSTM layer. The bi-directional layer

interacts within the layer itself and has information about the past and the

future. The final layer takes input from both the forward layer and the back-

ward layer and predicts the output from a final softmax classifier. However,

the bi-directional recurrent neural networks are expensive to train.

13

Figure 3.4: DeepSpeech model architecture

14

3.3 Compression schemes

In this section, three compression schemes are explained. The first com-

pression scheme is a singular value decomposition. The second compression

scheme is k-means clustering. Finally, as a two-stage compression scheme,

Huffman coding is applied to the labels generated by the k-means clustering

and the size if further reduced without loss in model performance.

The compression scheme can be chosen based on the sensitivity analysis

and the dimension of the layer’s parameter matrix. Mainly, in this report,

we have chosen the layer with the maximum number of model parameters to

achieve the maximum benefit of compression. As shown in figure 3.5, the layer

with the maximum parameter is compressed based on the sensitivity of that

layer in the model.

3.3.1 Singular value decomposition compression

The singular value decomposition involves decomposing the matrix

A = UΣV T (3.1)

The eigenvectors of AAT form the columns of U and the eigenvectors of ATA

forms the columns of V. The sigma values are the square root of the singular

values of the above matrices. The singular values are all real numbers and

are arranged in descending order. Using Singular value decomposition, an

8000 x 8000 matrix can be reduced to having only 400 components. Where,

the decomposition would become 8000 x 400, 400x400, 400 x 8000 and hence

15

Figure 3.5: Compression algorithm

16

Figure 3.6: Singular value decomposition of a Matrix M

reduces the number of the parameter in the matrix. Therefore, Singular value

decomposition is an effective compression scheme for a 2-D matrix. However,

for a higher dimensional data, it can be reshaped to a 2-d matrix and then

Singular value decomposition can be applied to that matrix. The compression

based on the number of components is limited to the rank of the matrix.

As shown in figure 3.6, the matrix A is decomposed into three matrices.

However, the number of parameters is reduced when the dimension of r is less

than the dimension on the m. This way, the components that do not contribute

to much information of the matrix are removed without much loss in the model

performance.

3.3.2 k-means clustering

In k-means clustering, ’k’ is determined by experiments. The algorithm

takes k as input and the values to the cluster. Based on the value of ’k’, k

17

Figure 3.7: K-means compression-decompression of a matrix M

random cluster centroids are assigned. As an iterative step, the values are as-

signed to the nearest centroid based on Euclidean distance. For each centroid,

the mean of the values of all the points belonging to it is calculated. The mean

is the new centroid value. The above two steps are repeated until there is no

change in the centroid value.

As shown in 3.7, matrix A, after model compression generates two

matrices labels and centroids. These are combined again to form the recon-

structed matrix of the same dimension as that of matrix A. However, the size

of the storage is reduced by storing only the labels and centroids while the

actual matrix is reconstructed on-the-fly for inference.

When k-means clustering is applied to a 2-d matrix, typically it is most

effective for a nxm matrix where n¿m. For each row, k-cluster centroids are

calculated. These cluster centroids are calculated for each row leading to a

kxm matrix. A separate label matrix of size nx1 has the label information.

Therefore, for a nxm matrix, the final model parameters to be stored are kxm

+ n parameters.

18

3.3.3 K-means & Huffman compression

After k-means clustering based compression, the label parameters are

integers. For a large nx1 matrix, the elements are one among k label values.

Therefore, this repetition of label information can be compressed using Huff-

man coding. In Huffman coding, the frequency of occurence of each number is

obtained and sorted in descending order. These numbers are used to build the

tree with the least frequent numbers being farthest from the node. Parsing

through the tree, the encoding and decoding of these numbers are performed.

This creates a bit code for each integer. Leading to the most frequent inte-

ger having the least number of bits and the least frequent number gets the

longest bit encoding. The corresponding tree is saved for decoding the bits to

numbers. Hence, this two-stage compression scheme helps in achieving max-

imum compression using k-means with no loss in accuracy after a Huffman

compression stage.

Figure 3.8: K-means & Huffman compression - decompression of matrix M

As shown in figure 3.8, matrix A is compressed using k-means compres-

sion. This generates labels and centroids matrix. The label matrix is encoded

19

using Huffman coding. While reconstructing the matrix, the Huffman encoded

label matrix is decoded and then used for reconstructing the matrix A with

the centroids information.

3.4 Model compression in hardware

The proposed compression schemes decreased the model size at the

hardware flash level. Flash memory retains the data in the absence of power

supply. Normally, in mobile and embedded devices, the model is stored in

the flash memory. At the time of usage of the model as an application, the

model is loaded from the flash memory to the DDR memory. The multi-core

processor would fetch the model from the DDR memory to perform inference.

The size of the model before and after compression is shown in figure 3.9

Figure 3.9: K-means & Huffman compression - decompression of matrix M

20

The before compression stage represents the original trained model of

size X. This is usually in the order of 200 to 300 MB. However, after com-

pression, this size is reduced to 50 to 150 MB using the above-mentioned

compression schemes. The compressed model of size Y is decompressed at the

DDR memory for inference.

21

Chapter 4

Sensitivity Analysis

The compression of layer parameters involves a change in the value

of the parameter. Therefore, in this section, we analyze the sensitivity of the

trained network parameters to known perturbations. The value of the network

parameters was perturbed with a particular value (max value, min value), with

Gaussian noise and with a percentage of the individual number itself on both

key-word spotter and DeepSpeech model. Finally, based on the sensitivity

analysis, the value of the parameters were binned based on the histogram plot

and hence, a scalar quantization of the values leads to decrease in the number

of bits required while losing minimal accuracy.

4.1 Key-word spotter

The key-word spotter consists of 2 hidden CNN layers and a final feed-

forward layer. The feedforward layer is of [62720,12] dimension. Figure 4.1

shows the distribution of the model parameters after training. The original

model accuracy is 87.5%. Even after training for 18000 iterations, the final

model parameter distribution remains Gaussian in nature. However, the stan-

dard deviation of the parameter distribution is less and the values are skewed

22

towards zero. Therefore, we hypothesize that any compression scheme which

can retain this distribution would not reduce the model accuracy.

Figure 4.1: Histogram plot of final layer parameters

The maximum value of the above distribution is 0.045 and the minimum

value is -0.044. The following perturbations as shown in table 4.1 were applied

to the feedforward layer.

The weight values were perturbed with a percentage of itself. That

is, M = M + 0.1M . So, 10% of its own value was added to the model pa-

rameters. However, the accuracy of the model was around 87.5%, comparable

to the original model’s accuracy. Therefore, this indicated that a perturba-

23

Variable Perturbation Accuracy [%]

All ±10,±20,±30,±40,±50 [%] 87.5%
All ±max value, ±min value 87.5%
All Gaussian: (0,0.005)(0,0.01)(0,0.015)(0,0.02) 87.1%, 86.2%, 84.1%,82%
Row 1, Row2,.. 1 8.3%

Table 4.1: The amount of perturbation vs. accuracy for feedforward layer
parameters

tion value relative to the original value did not affect the performance of the

model.Therefore, k-means compression technique would work the best for this

model parameter.

The model parameters were also perturbed with the max value and

min value. That is, M = M+max value. Since the max value and the

min value of the model was 0.045 and -0.044 respectively, this did not per-

turb the value of the model parameters by a huge volume. Therefore, the

accuracy is still comparable to the original 87.5%.

Following this, the model was perturbed with gaussian of mean 0 and

various standard deviations. As shown in table 4.1, with the increase in the

standard deviation, the accuracy of the model decreased. As we had hypoth-

esized initially, the training of the model decreased the standard deviation of

the parameter values. The Gaussian noise with a higher standard deviation

would distort the structure of the distribution and hence, the performance of

the model decreases.

Finally, when a certain row of the matrix was set to 1, the accuracy

24

went down to 8.3%. However, most predictions were driven towards class 1 if

the 1st row set to 1. Therefore, a significantly high value such as 1, relative to

the other values in the model parameters drives the prediction towards that

class achieving an accuracy of 8.3%.

Motivated by the fact that perturbation of the parameter by a fraction

of itself did not lead to a drop in accuracy, we performed scalar quantization

on the model parameters.

Figure 4.2: Histogram plot with 4 bins of final layer parameters

As shown in Figure 4.2, 4 bins were chosen from the parameter distribu-

tion. All the values in the distribution were replaced by the mean value of the

25

bin’s starting and ending value. Therefore, 752640 parameters were replaced

with 4 distinct values. The accuracy after binning quantization was 87.1%.

Therefore, instead of having 32 bits to represent each value of the parameter,

it can be represented with only 2 bits. However, these 4 unique values can

be mapped to 2 bits. Also, we performed another scalar quantization with

6 bins, retaining 6 unique values. However, this was asymetric quantization,

where, the bins were concentrated towards zero, with a finer representation.

As shown in figure 4.3. This method gave an accuracy of 87.3%. Unlike the

regular quantization technique of decreasing the number of bits and performing

inference on the quantized parameter, with this technique, the floating point

number can be stored as 2-bit values while, at inference, these can be mapped

back to the floating point number using a dictionary mapping. Hence, this

would retain a much higher accuracy than the quantization of the parameter

values directly.

26

Figure 4.3: Histogram plot with 6 bins of final layer parameters

4.2 DeepSpeech

The DeepSpeech model consists of 3 linear layers followed by a LSTM

forward, backward layer and then a linear layer. The LSTM consists of the

maximum number of model parameters. The dimension of this layer’s model

parameter is [4096,8192]. The word error rate of the original model is 18%

and the character error rate is 9%. The max value is 3.24 and the min value

is -4.03. The distribution of the model’s parameter value after training is

Gaussian with a low standard deviation, as shown in figure 4.4. Similar to the

key-word spotter distribution, most values in the layer are skewed towards 0.

27

Forming a very narrow distribution.

We hypothesize that such a network would be very sensitive to even a

small perturbation of the values. Unlike the previous case, the perturbation of

the values with the max value and min value would drastically shift the mean

of the distribution and would affect the network performance.

Figure 4.4: Histogram plot of LSTM layer parameters

Similar to the key-word spotter model, the parameters were perturbed

with a known value(min and max value), a fraction of itself, followed by Gaus-

28

Variable Perturbation WER/CER [%]

All ±10 [%] (19.84,9.78;18.57,9.35)
All ±20 [%] (19.84,9.78;18.57,9.35)
All ±30 [%] (24.05,11.91;33.53,22.15)
All ±40 [%] (26.86,13.48;68.60,58.05)
All ±50[%] (29.73,15.06;92.85,88.02)
All ±max value,

±min value
100, 100

All Gaussian:
(0,0.025)(0,0.075)

(23.51,12.53),(95.90,91.31)

All Gaussian:
(0,0.125)(0,0.25)

(98.17,98.97)(98.70,100)

Table 4.2: The amount of perturbation vs. accuracy for LSTM layer
parameters

sian noise.

As shown in table 4.2, with an increase in the perturbation of the pa-

rameter value by itself, the word error rate and character error rate increases.

Unlike the previous key-word spotter model, this model is not robust to most

perturbations. A max value and min value perturbation lead to a character

error rate and word error rate of 100%. As shown in the figure 4.5 and figure

4.6 , perturbation with the max value or min value perturbs the mean of the

distribution by a large fraction. Therefore, the model is not robust to a pertur-

bation of high value. As shown in the histogram plot of parameter distribution,

the values are concentrated towards zero. The Gaussian perturbation with a

standard deviation of 0.025 has an accuracy comparable to the original model

accuracy since the parameter distribution is still skewed towards 0, as shown

29

Figure 4.5: Histogram plot of perturbed LSTM layer parameters with
max value

in figure 4.7. Any perturbation above that distorts the value and the accuracy

drops, increasing the character error rate and WER. The model parameters

have low sensitivity because, Gaussian noise with a standard deviation of 0.75,

distorts the confined standard deviation of the trained model, as shown in 4.8

and leads to a character error rate of 100% and word error rate of 100%.

Since the model parameters are very sensitive to the perturbation of a

fraction of itself, a finer histogram binning was used for the scalar quantization

30

Figure 4.6: Histogram plot of perturbed LSTM layer parameters with
min value

31

Figure 4.7: Histogram plot of perturbed LSTM layer parameters with gaussian
noise of mean 0 and standard deviation 0.025

32

Figure 4.8: Histogram plot of perturbed LSTM layer parameters with gaussian
noise of mean 0 and standard deviation of 0.75

33

of this model parameter. As shown in figure 4.9, after scalar quantization,

the parameter values were replaced with 12 unique values. The word error

rate for the quantized model is 28.34% and the character error rate is 15.27%.

Therefore, using scalar quantization, without much loss in model performance,

the size of the model can be reduced. The bins were chosen in such a way

that at the concentrated portions of the distribution, finer quantization was

performed. Whereas, at the tail of the distribution, only one bin was allocated.

In this case, a bin was allocated for values between -4 and -1. Similarly, a bin

was allocated between 1 and 3.5. Therefore, this manual allocation of bins

based on distribution can be automated using the histogram plot of having

finer bins at a region corresponding to 60 - 70% of the parameters.

34

Figure 4.9: The quantized value for LSTM layer parameters

Therefore, to deploy our scalar quantization method to an arbitrary

model, the distribution of the model parameter should be determined. Fol-

lowed by that, at the most concentrated parts of the distribution, finer bins can

be allocated. At the least concentrated parts of the distribution, such as the

tail of the distribution, coarser bins can be allocated. This is an asymmetric

scalar quantization which could be modified based on the network parameter

being quantized. However, to determine the concentration of the distribution,

the histogram of the values should be plotted. Also, this distribution should be

35

in such a way that it is concentrated around the center. If it is a multi-modal

distribution, this can also be handled by having finer bins at the modes and

coarser bins at the other parts of the distribution.

36

Chapter 5

Experiments

In this section, the experimental results with svd compression, k-means

compression and a two-stage svd & k-means clustering is reported for keyword

spotter and DeepSpeech speech recognition models.

5.1 Keyword spotter

The keyword spotter consist of two hidden layers followed by a final

feed forward layer. The number of model parameters is shown in table 5.1. In

this model architecture, the feedforward layer occupies the maximum memory.

Therefore, the compression techniques are applied to the parameters of this

layer. The original model accuracy is 87.5% and the model size of 3.7MB.

5.1.1 SVD compression

Singular value decomposition is applied to the feedfoward layer of the

keyword spotter model. However, the number of components is limited 12,

the rank of the matrix. Therefore, 5,6,7 were chosen to be the number of

components for SVD. As the number of components is increased, the number

of model parameters stored also increased. For 7 components, we obtain the

37

Variable Dimension Elements

First layer weights [20,8,1,64] 10240
First layer bias [64] 64
Second layer weights [10,4,64,64] 163840
Second layer bias [64] 64
Final layer weights [62720,12] 752640
Final layer bias [12] 12

Table 5.1: The number of parameters across the layers of a keyword spotter
is shown in the above table

n-components Parameters Size bene-
fit

Accuracy reduction
in size[%]

reduction in
accuracy[%]

5 313665 1.97 MB 69.6% 46.7% 20.57%
6 376398 2.22 MB 76.3% 40% 12.8%
7 439131 2.45 MB 79.1% 33.7% 9.6%

Table 5.2: SVD compression on Keyword spotter model

maximum accuracy of 79.1% with a size of 2.45MB. When the number of

components is decreased to 5, the model size is 1.97 MB, leading to a size

reduction of 46.7%. Therefore, with the increase in n-components, accuracy

increased. However, the reduction in size decreases. The number of parameters

for 5 components is 313665 compared to the original 752640. This is more than

2 times reduction in the number of parameters of this layer. For 6 components,

the size is decreased to 2.22 MB from 3.7 MB whereas, the final accuracy is

76.3%. Therefore, the best utilization of SVD is achieved for a number of

components of 6 with a 40% reduction in model size and 76.3% accuracy.

38

5.1.2 K-means & Huffman compression

The number clusters for k-means clustering is chosen to be 128, 256

and 512. As the number of clusters increased, model accuracy increased along

with model size. But, for a cluster size of 128, there is a size reduction benefit

of 58.3% while the reduction in the size of only 3.4%. However, with 512

clusters, there is an incremental increase in accuracy while the reduction in

size decreased 52.9%. Therefore, for k-means clustering, the optimal cluster

size is 128. The increase in the number of clusters gave an incremental increase

in the accuracy while leading to decrease in size reduction. For 512 clusters,

the final model size is 1.74 MB compared to the original model size of 3.7 MB.

Whereas, the model accuracy is 85.2% which is comparable to the original

model accuracy of 87.5%.

The k-means clustering generated labels and cluster centroids. The

labels are integers in the range of 1 to n clusters. Huffman compression is

applied to the labels to further reduce the size of storage of these clusters and

labels. After k-means clustering, as the second stage of compression, Huffman

coding decreases the model size from 1.54MB to 1.07 MB. However, this two

stage compression is effective only for a matrix of NXM , N >> M . For 128

clusters, this two-stage compression technique yields a model size of 1.07 MB

while the accuracy is at 84.5%. This is a 0.43 MB drop in model size for no

drop in accuracy using Huffman coding. Similarly, for 256 components, the

two-stage compression technique yields a model size of 1.09 MB for accuracy

of 85.1%. Therefore, the two-stage compression technique is most effective for

39

n-clusters Size bene-
fit

Accuracy reduction in
size[%]

reduction in
accuracy[%]

Huffman
size

128 1.54 MB 84.5 % 58.3% 3.4% 1.07 MB
256 1.63 MB 85.1 % 55.9% 2.7% 1.09 MB
512 1.74 MB 85.2% 52.9 % 2.6% 1.12 MB

Table 5.3: K-means & Huffman compression on keyword spotter model

Variable Dimension Elements

h1 [498,2048] 1019904
b1 [2048] 2048
h2,h3,h5 [2048,2048] 12582912
b2,b3,b5 [2048] 6144
LSTM fused cell-kernel [4096,8192] 33554432
LSTM fused cell-bias 8192 8192
h6 [2048,29] 59392
b1 [29] 29

Table 5.4: The number of parameters across the layers of a DeepSpeech
model is shown in the above table

the keyword spotter algorithm. Also, based on the analysis, we conclude that

k-means clustering compression is a better technique for feedforward layer.

5.2 DeepSpeech

The Deepspeech model has 5 hidden layers and final feedforward classi-

fication layer. The first 4 hidden layers are linear layers and the fifth layer is an

LSTM forward-backward layer with the maximum number of model parame-

ters. The number of model parameters for each layer is shown in table 5.4. As

shown in table 5.4, the LSTM forward-backward layer consists of a maximum

40

n-components Parameters Size bene-
fit

WER,CER reduction
in size[%]

reduction in
accuracy[%]

500 6144500 79 MB 25%,13% 58% 8.5%
750 9216750 91.5 MB 21%/10% 51% 3.65%
1000 12289000 103.8 MB 19%/9% 45% 1.21%

Table 5.5: SVD compression on DeepSpeech model model

number of model parameters. Therefore, compression techniques are applied

to this layer. The model size is 188.89 MB. The character error rate (CER) is

18% on Librispeech[15] test dataset. The word error rate (WER) is 9%.

5.2.1 SVD compression

The Singular value decomposition compression is applied to the layer of

size [4092,8192]. When the number of components is chosen as 500, the total

number of parameter of this layer is reduced to 6144500 with a final size of 79

MB. This amounts to a 58% decrease in size for only 8.5% reduction in WER.

As the number of components is increased, the size of the model increased while

the reduction in accuracy decreases. For 750 components, the final model size

is 91.5 MB with a reduction in accuracy of 3.65%. This accounts for a size

reduction benefit of 51%. For DeepSpeech model, optimal compression using

SVD is obtained using 1000 components. Whereas, the reduction in accuracy

is only 1.21% whereas, the size is reduced by 45%. The number of components

is restricted by the rank of the matrix.

41

5.2.2 K-means & Huffman compression

The two-stage compression scheme of K-means and Huffman compres-

sion is applied to the LSTM forward/backward layer of the Deepspeech model.

As shown in table 5.6, the accuracy of the original model is maintained for

a cluster size of 3500. However, there is only a 10.52% reduction in size. As

the number of clusters is decreased to 2048, there is a size reduction benefit of

35.94%. However, there is huge reduction of accuracy of 70.73%. For a cluster

size of 3000, the final model size is 153 MB, while the reduction in accuracy

is only 9.75%. While the reduction in size is 19% which is twice the reduc-

tion in accuracy. The further Huffman compression of the labels generated by

k-means compression decreased the size of the final model by a few thousand

Bytes. Hence, the same model size is reported.

The k-means clustering is effective for a NXM matrix where the size of

N is higher than M. Whereas, svd is most effective when the size of rows and

columns of the matrix are comparable. Also, Huffman coding is most effective

when the size of N is higher. In the case of keyword spotter mode, the size of

N was 62720. Whereas, in the case of DeepSpeech model, the size of N is only

4096. Therefore, the benefit of Huffman coding is only incremental in saving

storage requirements.

Therefore, for DeepSpeech model, the most effective compression tech-

nique is Singular value decomposition technique. This is mainly because the

matrix is sensitive to perturbations more than the keyword spotter model and

the size of the n,m dimensions of the matrix is almost similar compared to the

42

n-clusters Size bene-
fit

WER,CER reduction in
size[%]

reduction in
accuracy[%]

Huffman
size

2048 121 MB 76% ,58% 35.94% 70.73% 121 MB
3000 153 MB 26%, 14% 19% 9.75% 153 MB
3500 169 MB 20% ,10% 10.52% 2.43% 169 MB

Table 5.6: K-means & Huffman compression on Deep Speech model

feedforward layer of the keyword spotter of size [62740,12]. From the above

analysis, we could conclude that, svd would perform better when the size of

n,m of the matrix is almost the same. Whereas, k-means is most effective for

single dimensional, long data, to identify the appropriate clusters for compres-

sion.

43

Chapter 6

Limitations & Future Improvements

In this report, we proposed three compression schemes for a key-word

spotter speech recognition architecture and a large vocabulary speech recogni-

tion system architecture. However, the proposed k-means, svd and two-stage:

k-means and Huffman compression schemes were not effective on both the

models. In the case of key-word spotter architecture, the most effective method

was k-means and Huffman compression scheme. Whereas, for DeepSpeech

model, the most effective compression scheme was svd based compression.

Therefore, for an arbitrary model, it is imperative to apply all the

compression schemes and then pick the best based on model robustness and

size reduction. The proposed compression scheme, on the hardware level,

helps in reducing the model size only at the flash memory level. The proposed

compression schemes do not reduce the memory requirements at the DDR

level. One potential future work is to perform a partial decompression at the

DDR and save on the memory requirement at the DDR level. However, this

would involve changes of the parameters in the previous layers which may

require retraining.

The sensitivity analysis proposed in this report performs thorough anal-

44

ysis of the amount of perturbation for the layer being compressed. However,

the scalar quantization based on sensitivity analysis required manual binning

of the trained network parameter to achieve performance comparable to the

original model, while decreasing the number of bits required for storage. As

future work, the scalar quantization technique can be automated based on the

concentration of the network parameters. That is, provide finer bins at the

area of the distribution where 60-70% of the values are present and coarser

bins for the rest of the distribution.

In addition to the scalar quantization, as future work, network prun-

ing can be performed to sparsify the model and hence store a spare matrix.

This would increase the model compression by multiple folds since the storage

requirement of a sparse model is less compared to a full matrix.

45

Chapter 7

Conclusion

Speech recognition model compression is vital for deploying these mod-

els on mobile and embedded devices. The advancements in deep learning

techniques have made the models more robust to various noise conditions and

input conditions. Therefore, in this report, we have proposed three com-

pression schemes. The first compression scheme is SVD, where the network

parameter’s layer matrix is decomposed into components. These components

consume lesser space for storage compared to the original model. SVD com-

pression scheme was most effective in the DeepSpeech mode, achieving a size

reduction benefit of 45% while the performance drops only by 1.21%.

The second compression technique is k-means clustering. This method

forms clusters on the input layer parameter which helps in weight sharing and

hence reduction on the number of parameters. The k-means compression was

most effective on the key-word spotter speech recognition model, achieving a

size reduction of 58.3% while the reduction in accuracy is only 3.4%.

The third compression technique is a two-stage k-means and Huffman

compression. The labels generated by k-means are further reduced in size

using Huffman coding. This technique is most effective on the keyword spotter

46

recognition system with an accuracy of 84.5% compared to the original 87.5%

while the final size of the model is 1.07 MB.

The sensitivity analysis helped in understanding the amount of per-

turbation the model parameters can handle while retaining the model perfor-

mance. Based on the sensitivity analysis, a scalar quantization based com-

pression scheme is proposed to reduce the number of bits required to represent

the values from 32 to 4.

Therefore, to achieve the best compression while maintaining the model

accuracy, the layer with the maximum number of parameters were chosen and

the above-mentioned compression schemes were applied.

47

Bibliography

[1] K. Markov and T. Matsui, “Robust speech recognition using generalized

distillation framework,” pp. 2364–2368, 09 2016.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification

with deep convolutional neural networks,” Commun. ACM, vol. 60,

no. 6, pp. 84–90, 2017. [Online]. Available: http://doi.acm.org/10.1145/

3065386

[3] J. D. Geoffrey Hinton, Oriol Vinyals, “Distilling the Knowledge in a Neu-

ral Network.” NIPS 2014 Deep Learning Workshop, 2015.

[4] A. B. I. M. Rohit Prabhavalkar, Ouais Alsharif, “ON THE COMPRES-

SION OF RECURRENT NEURAL NETWORKS WITH AN APPLICA-

TION TO LVCSR ACOUSTIC MODELING FOR EMBEDDED SPEECH

RECOGNITION.” ICASSP 2016, 2016.

[5] R. A. M. G. A. K. R. D. R. O. A. H. S. A. G. F. B. C. P. Ian McGraw,

Rohit Prabhavalkar, “Personalized Speech recognition on mobile devices.”

ICASSP 2016, 2016.

[6] R. P. S. G. Y. W. S. Z. C.-c. C. Ruoming Pang, Tara N. Sainath, “Com-

pression of End-to-End Models.” Interspeech 2018, 2019.

48

http://doi.acm.org/10.1145/3065386
http://doi.acm.org/10.1145/3065386

[7] S. X. P. G. B. X. Chenxing Li, Lei Zhu, “Compression of Acoustic Model

via Knowledge Distillation and Pruning.” ICPR 2018, 2018.

[8] S. N. Sanghyun Son and K. M. Lee, “Clustering Convolutional Kernels

to Compress Deep Neural Networks.” ECCV 2018, 2018.

[9] W. J. D. Song Han, Huizi Mao, “DEEP COMPRESSION: COMPRESS-

ING DEEP NEURAL NETWORKS WITH PRUNING, TRAINED QUAN-

TIZATION AND HUFFMAN CODING.” ICLR 2016, 2016.

[10] P. Warden, “Speech Commands: A Dataset for Limited-Vocabulary

Speech Recognition.” arXiv, 2018. [Online]. Available: https:

//arxiv.org/abs/1804.03209

[11] J. C. B. C. G. D. E. E. R. P.-S. S. S. S. A. C. A. Y. N. Awni Hannun,

Carl Case, “Deep speech: Scaling up end-to-end speech recognition.”

arXiv, 2014. [Online]. Available: https://arxiv.org/abs/1412.5567

[12] T. N. Sainath and C. Parada, “Convolutional neural networks for small-

footprint keyword spotting,” in INTERSPEECH, 2015.

[13] C. Cieri, D. Miller, and K. Walker, “The fisher corpus: a resource for the

next generations of speech-to-text,” in LREC, 2004.

[14] J. M. J.J. Godfrey, E.C. Holliman, “Switchboard: telephone speech corpus

for research and development.” IEEE, 1992.

49

https://arxiv.org/abs/1804.03209
https://arxiv.org/abs/1804.03209
https://arxiv.org/abs/1412.5567

[15] D. P. S. K. Vassil Panayotov, Guoguo Chen, “Librispeech: An asr corpus

based on public domain audio books.” IEEE, 2015.

[16] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist

temporal classification: labelling unsegmented sequence data with recur-

rent neural networks,” in Proceedings of the 23rd international conference

on Machine learning. ACM, 2006, pp. 369–376.

[17] A. Graves and N. Jaitly, “Towards end-to-end speech recognition with

recurrent neural networks,” in Proceedings of the 31st International

Conference on International Conference on Machine Learning - Volume

32, ser. ICML’14. JMLR.org, 2014, pp. II–1764–II–1772. [Online].

Available: http://dl.acm.org/citation.cfm?id=3044805.3045089

[18] M. N. Bourlard H., “Connectionist speech recognition: A hybrid ap-

proach.” 1993.

[19] H. Soltau, H. Liao, and H. Sak, “Neural speech recognizer:

Acoustic-to-word LSTM model for large vocabulary speech recognition,”

CoRR, vol. abs/1610.09975, 2016. [Online]. Available: http:

//arxiv.org/abs/1610.09975

50

http://dl.acm.org/citation.cfm?id=3044805.3045089
http://arxiv.org/abs/1610.09975
http://arxiv.org/abs/1610.09975

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1. Introduction
	Chapter 2. Related work
	Chapter 3. Model Architecture & compression algorithm
	Keyword spotter
	LVCSR: DeepSpeech
	Compression schemes
	Singular value decomposition compression
	k-means clustering
	K-means & Huffman compression

	Model compression in hardware

	Chapter 4. Sensitivity Analysis
	Key-word spotter
	DeepSpeech

	Chapter 5. Experiments
	Keyword spotter
	SVD compression
	K-means & Huffman compression

	DeepSpeech
	SVD compression
	K-means & Huffman compression

	Chapter 6. Limitations & Future Improvements
	Chapter 7. Conclusion
	Bibliography

