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Abstract

A three-dimensional thermal finite element model including the effect of the powder-to-

solid transition has been developed to investigate the transient temperature distribution during

laser densification of dental powder bed for the layer-by-layer fabrication. The model

encompasses the effects of the temperature- and porosity-dependent thermal conduction and

radiation as well as the temperature-dependent natural convection. The simulation result is

compared with the experiments which establish the temperature dependence of the dental

porcelain microstructure and utilize this dependence to construct the temperature distribution

profile. It is found that the trend of the simulation result matches the experiments very well.

Keywords: Dental restoration, Laser processing, Finite element modeling, Thermal analyses,

Powder melting and solidification.

I. Introduction

Solid freeform fabrication (SFF) is an automated manufacturing process that builds three-

dimensional complex-shaped structures layer-by-layer directly from CAD data [1]. The recent
advancement of SFF has led to a multi-material laser densification (MMLD) process for dental
restoration [2-4]. Through this approach artificial teeth are expected to be fabricated from a
computer model without part-specific tooling and human intervention, thereby offering the
potential to reduce the labor cost and increase the restoration rate. However, as the densification
of the dental porcelain powder is accomplished via a laser beam, an understanding of the

temperature distribution in the laser-assisted densification process is necessary in order to

understand the phase transformation and microstructural evolution of the dental porcelain

powder during laser densification. The understanding developed will provide the guideline to

optimize the laser processing condition so that the microstructure and thus the mechanical

properties of the laser-densified bodies are similar to those obtained via traditional furnace

annealing process. The approach of finite element modeling (FEM) has been taken in this study

to investigate the temperature distribution during laser densification. The FEM approach is

necessary because the relative density of the workpiece changes continuously with time during
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laser densification until it reaches near full density. As a result, the thermal conductivity of the

workpiece also changes continuously. Thus, the transient temperature field of the workpiece is

too complex to calculate using analytical methods, and numerical simulation becomes necessary.

Many numerical modeling efforts have been carried out to investigate the temperature

field in various SFF processes [5-22]. However, they are not suitable for the laser-assisted dental
restoration process which requires the numerical models to encompass at least the effects of the

powder-to-solid transition, laser power density, closed-loop temperature control, temperature-

dependent thermal convection, and temperature- and porosity-dependent thermal conduction and

radiation. Most of the existing SFF models (e.g., Refs. 5 – 22) are not so sophisticated.

Therefore, in this study we have developed a model that includes (i) a coupled-filed analysis
between temperature and porosity fields, (ii) the incoming laser beam power with Gaussian
distribution, (iii) the optical pyrometer simulation in addition to the closed-loop temperature

control, (iv) powder-to-solid transition, (v) temperature-dependent thermal convection, and (vi)

temperature- and porosity-dependent thermal conduction and radiation. The results from the

numerical simulation have been compared with experiments and found to match the

experimental measurements quite well.

II. Model Description

The model developed is shown in Figure 1 and consists of a dental porcelain powder

compact with a dimension of 10mm length, 6mm width and 2mm height before laser

densification. In simulation the laser beam is modeled as a heat flux, Q, with a Gaussian power

distribution as an incoming heat source, which moves at a constant rate (240 mm/s) along the X-

axis as shown in Figure 1. The heat losses from the six surfaces of the model are assumed to

result from thermal natural convection and the radiation. The dental porcelain powder is

composed of 63.40% SiO2, 16.70% Al2O3, 1.50% CaO, 0.80% MgO, 3.41% Na2O, and 14.19%

K2O (wt%). The material thermal properties for the dense solid porcelain used in the model are

summarized in Table 1. The dental porcelain is assumed to be at a molten state above 1073K

(100K higher than the lower temperature of the forming temperature range of the porcelain) and

no volume shrinkage is considered when powder porcelain converts to dense porcelain.

The modeling is carried out using the ANSYS commercial finite element package. The

thermal element (Solid70), which has eight nodes with a single degree of freedom (i.e.,
temperature) at each node and has a 3D thermal-conduction capability, is used to simulate the

temperature field [23]. Each element near the surface has a size of 0.25 mm length, 0.25 mm

width and 0.2 mm height. The model is first used to calculate the temperature distribution in the

powder bed within a small time step resulting from the heating of a laser beam moving at a

constant rate along the X-axis. The powder elements convert to dense molten elements if their

temperatures are higher than 1073K according to the calculated temperature field, and the

temperature distribution in the powder bed within the next small time step is calculated using the

updated material properties. This simulation loop continues until the total amount of the small

time steps, which is decided by the laser scanning rate, is reached, and then the laser beam moves

stepwise by one element to carry out the next simulation loop. The substrate preheating is
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achieved in the simulation by assigning an elevated temperature (460
0
C) as the nodal

temperature of the bottom surface.

Figure 1. Finite element model developed to simulate the temperature field during laser densification of

the dental porcelain body.

Table 1.  Summary of Thermal Properties of Dental Porcelain [24 – 28]

T (K) 300 520 631 700 830 960 1173 1373 1540 1726 1730 1800

k (W/m-K) 1.11 1.37 1.55 1.67 1.93 2.23 2.82 2.82 2.82 2.82 2.82 2.82

Cp (J/kg-K) 742 1025 1125 1178 1266 1341 1444 1474 1474 1474 1474 1474

a (10
-6

/K) 2.80 3.36 3.87 4.27 5.25 6.54 9.43 9.43 9.43 9.43 9.43 9.43

E (GPa) 70 55.6 48.4 43.9 35.4 26.9 æ æ æ æ æ æ
e 0.7

r (kg/m
3
) 2520

Tm (K) 1573

Tf (K) 973 to1273
n 0.2

*T-Temperature, k-Thermal Conductivity, Cp-Specific Heat, a-Thermal Expansion Coefficient, E - Elastic

Modulus, e -Emissivity, r -Density, Tm - Melting Temperature, Tf - Forming temperature, n -Poisson’s Ratio.

The thermal properties of the powder bed are a strong function of the porosity of the

powder bed. It is assumed that the porosity of the powder bed is temperature independent before

the powder becomes liquid. This is a reasonable assumption because the reduction in porosity

due to solid-state sintering is minimal under the present laser densification condition which

brings the local temperature of the area irradiated by the laser beam to above the forming

temperature of the porcelain in less than 6 seconds. For the region outside the irradiated area, the

time for the region to expose to high temperatures is also relatively short (less than 100 seconds)

because of the scanning rate used. Furthermore, the temperature at the region outside the

irradiated area is also relatively low because of the low thermal conductivity of the powder

compact. As such, the porosity of material has been simplified in two levels, that is, the initial

porosity j0 before the powder converts to liquid, and zero porosity (fully dense) after the powder

Heat Flux Scanning
Rate

Radiation      Convection

Powder Bed

Z

X

Y
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has converted to liquid. The thermal properties of the powder bed, therefore, are treated as a

function of temperature and the initial porosity j0. The details of these functions and thermal

boundary conditions can be found in a recent paper [21] and described briefly as follows.

A. Thermal Conductivity of the Powder Bed

Effective thermal conductivity of the powder bed, k, is estimated by Equation (1) with the

assumption that the particles are spheres and there is no flattening of contact surfaces [29].
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Where, kf and ks are the thermal conductivities of the ambient air and solid particle,

respectively; kr is the thermal conductivity portion of the powder bed due to radiation among

particles and equals to [29,30]

rr xTFk 34 s= (2)

where s is the Stefan-Boltzmann constant, xr is the average diameter of the powder particles, T is

the temperature of powder particles, and F is a view factor which is approximately taken as 1/3

[30].

B. Thermal Radiation of the Powder Bed

The emissivity of the powder bed, e,  is obtained by

SHHH AA eee )1( -+= (3)

where, AH is the area fraction of the surface that is occupied by the radiation-emitting holes, eS

and eH are the emissivities of solid particle and hole, respectively. For a powder bed composed of

randomly packed, single-sized spheres, AH and eH are given by [31]
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C. Thermal Convection around the Powder Bed

The heat transfer coefficient, hc, is temperature and size dependent [32]
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where L is the characteristic length of the specimen, Nu is the Nusselt number, and kf is the

thermal conductivity of the fluid as defined before. Nu is given by [33]
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when 10
-4

< Gr Pr < 4¥10
14

, 0.022 < Pr < 7640, and 0uN  = 0.67 for a plate [33]. Gr and Pr in

Equation (7) are Grashof and Prandtl numbers, respectively [32].
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where g is the gravitational acceleration, rf is the density of the ambient air, bf is the thermal

volumetric expansivity and bf = 1/ T f for idea gases, hf is the viscosity of the air, Cp is the

specific heat of the air. The effect of the variation of air properties with temperature is evaluated

at Tf = 0.5(T +Tamb), where T is the surface temperature of the powder bed, Tamb is the ambient

temperature [32].

D. Thermal Boundary Conditions for Powder, Liquid and Solid

The part being built is assumed to be in contact with air and the heat loss through air is

approximated through the natural thermal convection and thermal radiation between the part and

the ambient air. Since the model includes three kinds of material status (i.e., powder, liquid and

solid), the thermal boundary conditions are very complicated and vary with porosity, phase status

and surface temperature which is the function of incident laser power and laser scanning rate.

Under the assumption of little convection of liquid within the molten pool due to its small size (~

2 mm), liquid and solid have been assumed to have the same thermal convection boundary as the

powder bed, i.e., thermal convection around the surface of liquid pool and solid is determined by

the temperatures of the ambient air and the liquid and solid under consideration [see eqs. (6-9)].

Heat loss qr due to radiation of solid and liquid is described by [32]

( )44

ambsr TTq -= se (10)

where T is the surface temperature of solid and liquid, and es is the emissivity of the dense

porcelain, Tamb is the ambient temperature, and s is the Stefan-Boltzmann constant.
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The model of a moving Gaussian distribution laser beam, pyrometer temperature

simulation, closed-loop temperature control of the laser power are described in detail in the paper

[20] and is described as follows.

E. Heat Input

The heat flux of the laser beam, Q, is related to the power of the laser beam, P, through

the following relation [34]:

Q = 
2

0

22

2

0

2 r

r

a e
r

P -

p

a
(11)

where aa is the absorptivity of the workpiece, 0r  is the radius of the laser beam at which the heat

flux value is 2e-  times of that of the laser beam center, and r is the distance of a point on the

surface of the powder bed measured from the laser beam center. When the center of the laser

beam scans the surface of the powder bed from the starting point (X0, Y0, Z0) to (X, Y0, Z0) point

along the positive X-direction with a constant velocity V for a period time t, r is given by

2

0

2

0

2 )()( ZZVtXXr -+--=    (12)

In the present study, the radius of the incident laser beam, 0r , is 0.5 mm,  the laser

scanning velocity, V, is 0.24 mm/s. The absorptivity of the dental porcelain workpiece, aa , was

varied in the simulation, and a value of 0.41 was needed for the simulated laser input power to

match the experimental values. This absorptivity value is comparable with experimental scatter

for measured values of aa  for sintered SiC near the processing temperatures used here [35].

F. Pyrometer Simulation

In laser-densification experiments, an optical pyrometer continually monitors the

temperature distribution at the surface of the powder bed during laser densification. This

pyrometer temperature is used as the feedback signal in a closed-loop control program to adjust

the incident laser power as needed to achieve a desired constant laser spot temperature. In the

simulation, the pyrometer temperature measurement and the closed-loop control process are

modeled as follows.

The power, E, of the thermal radiation emitted by the laser-heated workpiece that reaches

the pyrometer can be expressed by [35]

dATIE ll D= Ú ),( (13)

where l  is the wavelength of the emitted radiation , lD  is the wavelength band of the emitted

radiation that is sampled by the pyrometer, T is the temperature at a very small area dA through

which the radiation passes to reach the pyrometer, termed the pyrometer sampling area hereafter,

),( TI l  is the spectral distribution of blackbody emissive power and given by Planck’s radiation

law [36]:
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where h is Planck’s constant, c is the speed of light, and s  is Stefan-Boltzmann constant.

Because of the Gaussian heat input and movement of the laser beam, the surface temperature, T,

within the pyrometer sampling area is not uniform, and neither is ),( TI l . Thus, to carry out the

integration of equation (13), approximations are made by dividing the sampling area into n small

areas and assuming that T and I are constant within each small area. With these assumptions,

equation (13) is reduced to

Â
=

DD=
n

i

ii ATIE
1

),( ll (15)

where Ti is the surface temperature of the area DAi and n is the number of the small areas within

the pyrometer sampling area, Ap. To further simplify the computation, it is assumed that every

DAi has the same area, and thus

ip AnA D= (16)

and equation (15) becomes

Â
=

DD=
n

i

ii TIAE
1

),(ll (17)

To relate the thermal radiation power collected by the pyrometer to the pyrometer

temperature reading, an effective temperature, Teff, is introduced as

),( effi TInAE llDD= (18)

Combining equations (14), (17) and (18), it has
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G.  Closed-Loop Temperature Control

Teff in Equation (13) is the effective (nominal) surface temperature of the workpiece as

measured by the pyrometer for a given incident laser power. If Teff differs from the desired laser

spot temperature, Tp, then the incident laser power is adjusted accordingly to simulate the closed-

loop temperature control in the experiment. This is achieved in the simulation by adjusting the

laser power from one simulation step to the next using the following equation
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where Pi and Pi+1 are the incident laser power in the simulation steps i and i+1, respectively. It

can be found that this equation allows the surface temperature of the workpiece, Teff, to quickly

approach the desired laser spot temperature, reproducing in the simulation the closed-loop

temperature control process used in the experiments.

III. Comparison between Simulation and Experimental Results

One of the key criteria for validating the model is to check whether the model can

achieve a constant pyrometer temperature (i.e., a constant temperature on the surface of the

powder bed) by continuously adjusting the laser input power. Figures 2 and 3 show the

comparison between the experimental and simulated pyrometer temperature as a function of the

location of the scanning laser beam with a nominal surface temperature of 900 and 1050
0
C,

respectively. It can be seen that the variations in temperature are less than 4% of the desired

pyrometer temperatures for all four nominal surface temperatures modeled, which indicates that

the closed-loop temperature control in experiments can be simulated with the present model.

Furthermore, the pyrometer temperatures achieved by simulations and experiments match quite

well.
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Figure 2. Comparison between the experimental and simulated values of the pyrometer temperature as a

function of the location of the scanning laser beam with a nominal surface temperature of 900
0
C and

substrate preheating to 460
0
C.

The model established is utilized to predict the temperature distribution in the porcelain

body during laser densification. Figure 4 show the simulation result with a nominal surface

temperature of 1050
0
C and substrate preheating of 460

0
C. It is quite clear that the temperature

distribution obtained is consistent with the expectation that the highest temperature is located at
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the center of the scanning laser beam and the temperature gradually decreases as the location

moves away from the center in all directions within the porcelain body. More importantly, when

compared with the experimental result (Figure 5), it is found that the predicted temperature

distribution pattern matches the measurement quite well. Furthermore, the temperature range

predicted also matches the measurement reasonably well. However, a direct comparison of the

temperature value between the simulation and experiment is not possible at this stage because of

the different laser densification conditions used in Figures 4 and 5. The work on simulations with

the identical laser densification condition as the experiment is currently under way and will be

published in a forthcoming paper [37].

0

200

400

600

800

1000

1200

0 1 2 3 4 5

Location of laser beam (mm)

T
e

m
p

e
ra

tu
re

 o
f 

p
y

ro
m

e
te

r 
(D

e
g

re
e

 C
)

Simulation

Experiment

Figure 3. Comparison between the experimental and simulated values of the pyrometer temperature as a

function of the location of the scanning laser beam with a nominal surface temperature of 1050
0
C and

substrate preheating to 460
0
C.

Figure 4. Temperature distribution in the powder bed at the cross section of x = 6.75mm when the laser

beam scans to this location with a nominal surface temperature of 1050
0
C and substrate preheating to

460
0
C.
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Figure 5. Temperature distribution at the cross section of a porcelain body perpendicular to the laser scan

direction during laser densification with a nominal surface temperature of 1100
0
C and substrate

preheating of 400
0
C [37].

IV. Conclusions and Remarks

A 3D finite element model that encompasses the effects of the powder-to-solid transition,

laser power density, closed-loop temperature control, temperature- and porosity-dependent

thermal conduction and radiation as well as the temperature-dependent natural thermal

convection has been developed to carry out the thermal analysis of laser-densified dental

porcelain bodies. The temperature distribution in the porcelain body during laser densification

has been simulated using this model and is compared with the experiment. The results predicted

by the model matches the experiment well, and the model will be used in the future to provide

guidance for selecting laser processing conditions to obtain the desired microstructure and

geometry of the dense body. This is the first comprehensive model that includes all key

parameters in laser densification of powder lines. The model can be extended to simulate many

other laser materials processing methods that require consideration of phase transformations,

closed loop temperature control, and heat transfer.
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