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 Abstract

This study investigates the dependence of the cross section geometry of extruded dental

porcelain slurries on the rheological property of the slurry and the extrusion conditions. It is

found that a pseudoplastic slurry is a basic requirement for obtaining extruded lines with

rectangular cross sections. The cross section geometry of the extrudate is also strongly affected

by extrusion parameters including the extrusion nozzle height, nozzle moving speed, and

extrusion rate. Proper combinations of these extrusion parameters are necessary in order to

obtain extrudates with near rectangular cross sections. The results obtained have been explained

in terms of the interactions among the rheological properties of the slurry, the shear rate imposed

on the slurry during extrusion, the wettability of the slurry on the substrate, and the forced flow

of the slurry during extrusion.
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I.  Introduction

3D objects fabricated through line-by-line and layer-by-layer approaches require that

each line deposited has a rectangular cross section in ideal cases. Lines with such cross section

geometry can prevent or minimize the formation of voids between lines and layers. This study

investigates the dependence of the cross section geometry of extruded dental porcelain slurries

on the rheological property of the slurry and the extrusion conditions for dental restorations via

the multi-material laser densification (MMLD) process [1-3].

Currently, there are two general routes for preparing pastes and slurries for SFF. One

requires the use of polymers or resins as the binder in order to maintain the shape of the

extrudate [4,5]. These polymers and resins are burned out in the subsequent heat treatment while

contamination may remain in the extrudate. The second route is to prepare aqueous pastes or
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slurries without addition of binders and to control the cross section geometry of the extrudate by

adjusting the pH value, salt concentration, and volume fraction of solid in the paste [6-11]. Using

fine Al2O3 powder, Cesarano, et al [7] have shown that when a slurry is pseudoplastic and drying

rates are appropriate, the lines extruded yield nearly rectangular cross sections with relatively

straight walls and flattened tops. The paste formulation and particle size have also been shown

by Du, et al [11] to have strong effects on the extrudability of thin wall thickness tubes and their

thickness and uniformity.

Although the effects of rheological behavior of pastes and slurries on the cross section

geometry of the extrudate have been studied by several researchers [6-11], the dependency of the

cross section geometry on extrusion parameters has never been systematically investigated. To

address this issue, the effects of extrusion parameters on the cross section geometry of the

extrudate in conjunction with the effects of rheological behavior of dental porcelain slurries have

been investigated in this study. The extrusion parameters investigated include the nozzle height

of the extruder, nozzle moving speed, and extrusion rate, all of which are experimental variables

and thus can be adjusted to achieve the desired cross section geometry. The results indicate that

the effects of these extrusion parameters on the cross section geometry of the extrudate can be

explained in terms of the interactions among the rheological properties of the slurry, the shear

rate imposed on the slurry during extrusion, the wettability of the slurry on the substrate, and the

forced flow of the slurry during extrusion.

II.  Experimental

The dental porcelain powder was provided by Degussa-Ney Dental Inc., Bloomfield, CT.

The chemical composition of the porcelain is confidential; however, it is within 5% of the

nominal composition of the Weinstein patent [12], which has the following composition (wt%):

63.40% SiO2, 16.70% Al2O3, 1.50% CaO, 0.80% MgO, 3.41% Na2O, and 14.19% K2O. The as-

received powder has angular shapes and their equivalent particle sizes range from 1 to 50

micrometers. To reduce the particle size of the porcelain powder to sub-micrometers, ball-

milling process was conducted using a single axis mixer machine loaded with Al2O3 balls. After

milling, the powder was dispersed in de-ionized water and the submicron-sized particles were

separated from coarse particles (> 1 mm) through sedimentation. Only the submicron-sized

particles were used to prepare the slurries.

The porcelain slurries were prepared using de-ionized water as the solvent with a solid

loading of 40 – 50 vol %. Uniform and stable slurries were obtained by gently mixing the slurry

for 24 hours using the mixer machine loaded with Al2O3 balls. The porcelain slurry was extruded

using a MMLD machine designed and constructed at the University of Connecticut. The machine

consists of four major components: (i) the process chamber that can have a vacuum down to 10
-2

torr, (ii) micro-extruders for powder slurry delivery of up to 3 different materials, (iii) a laser

heating system for powder densification with temperature sensing and control system, and (iv) a

X-Y-Z positioning system. The pressure exerted on the porcelain slurry within the micro-

extruder was applied via an electric cylinder (model: NV-BN23-105B). The slurries were

extruded onto SiC plates with a 700mm nozzle. The motion and position control was provided by

a computer through a Galil DMC-1800 multi-axis motion control card. The extrusion variables
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that could be controlled independently and investigated in this study were the nozzle height of

the micro-extruder (i.e., the distance between the nozzle tip and the substrate), the nozzle moving

speed (with respect to the substrate, mm/s), and the extrusion rate (i.e., the volume of the slurry

extruded per unit time, ml/s).

The rheology of the porcelain slurries was measured using a Brookfield DV II digital

viscometer. The zeta potential of the slurries was measured at the National Science Foundation

Engineering Research Center for Particle Science and Technology in the University of Florida

using a Zeta-Reader instrument. The pH value of the slurry was measured using a Denver basic

pH meter. The cross section geometry was defined by the line width and height of the extrudate

and its contact angle with the substrate. To measure these geometrical parameters, the porcelain

lines extruded were encapsulated using epoxy before cutting and polishing after which these

parameters were observed and measured using an optical microscope.

III.  Results and Discussion

3.1 Rheological Behavior of Dental Porcelain Slurries

Figure 1 shows the zeta potential of the dental porcelain powder as a function of the pH

value. It indicates that the iso-electric point (i.e.p.) of the dental porcelain powder is at about 5.0,

which is between the i.e.p. of Al2O3 (8.7) and SiO2 (2.0). Since Al2O3 and SiO2 are the main

components of the dental porcelain [12], the zeta-potential of the porcelain powder appears to be

controlled by a combined interactive effect of these two compounds. It can be inferred from

Figure 1 that slurries with pH < 3.0 or pH > 8.0 should be relatively stable. This is the case

because the surfaces of powder particles with these pH values are mainly positively charged (for

pH < 3.0) or negatively charged (for pH > 8.0) [13,14]; the same charges on their surfaces

provide large repulsive forces between particles, thereby preventing coagulation and thus leading

to stable slurries. In contrast, slurries with pH values between 3.0 and 6.5 would be unstable

because coagulation of particles will happen quickly owing to the zero or near-zero net charge on

the surfaces of these particles.
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Figure 1. Zeta potential of the

dental porcelain powder as a

function of the pH value.
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Based on Figure 1, clearly, a pseudoplastic slurry with moderate viscosity can be

prepared with a pH value near 7.0 – 7.5 because at pH = 5.0 the slurry becomes unstable with

high viscosity and at pH > 8.0 or < 3.0 the slurry is very stable. Slurries with pseudoplastic

(shear thinning) behavior are highly desirable for controlling the cross section geometry of the

extruded line because slurries with shear thinning properties can be extruded with a relatively

low extrusion force and solidify in place once the slurry leaves the nozzle due to the removal of

shear stresses. Thus, most of the extrusion studies presented below are carried out using dental

porcelain slurries with pH = 7.0 – 7.5 unless otherwise mentioned.

Figure 2 compares the cross section geometry of the extrudates with pH values equal to

9.3, 8.0 and 7.0. At pH = 9.3, the slurry is very stable with a relative low viscosity. As a result,

the slurry flows continuously after it leaves the nozzle and thus takes on an arch shape with a low

contact angle of 40 degrees. At pH = 8.0, the viscosity of the slurry increases slightly and thus

the slurry spreads out less on the surface of the substrate, resulting in an increased contact angle

of 60 degrees. At pH = 7.0 (approaching the i.e.p.), the slurry becomes pseudoplastic because the

low electrical charges of the same sign of the particles allows them to approach to each other, but

at the same time prevents them to coagulate. As a result of its shear thinning behavior, the

contact angle of the extrudate with the substrate increases to 95 degrees, clearly indicating nearly

no spreading after the slurry leaves the nozzle of the extruder. With a contact angle near 90

degrees, the cross section of the extrudate is approaching a rectangular shape which is highly

desirable as a “building block” for fabrication of 3-dimensional objects through layer-by-layer

approaches.

pH = 9.3                            pH = 8.0                            pH = 7.0

Contact angle

(degree) 40                                      60                                      95

Figure 2. Cross section photos of extrudates with different pH values.

3.2 Effects of Nozzle Height on the Cross Section Geometry of Extrudates

The distance between the nozzle tip of the extruder and the substrate, termed as the

nozzle height hereafter, greatly influences the cross section geometry of the extrudate. The

distance between the nozzle and the substrate will limit the space within which the slurry can

flow. For a certain slurry extrusion rate and nozzle moving speed, there is a critical nozzle height

(hc) above which the cross section geometry of an extruded single line is mainly controlled by

the rheological behavior of the slurry and the wettability of the slurry on the substrate. When the

nozzle height is lower than hc, the volume of the slurry extruded will be too large for the space

between the nozzle and the substrate. As a result, the slurry is forced to spread in the directions

perpendicular to the deposited line along the surface of the substrate, and the resultant shape of

the extrudate is not only determined by the rheological properties and wettability of the slurry,

500 mm
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but also by the space between the nozzle and the substrate. In contrast, when the nozzle height is

larger than hc, there is enough space for the deposited slurry so that the rheological properties

and wettability of the slurry will determine the cross section geometry of the extrudate.

Our experiments indicate that the critical nozzle height can be estimated using the

following equation:

nn

d

c

Dv

V
h = (1)

where Vd is the volume of the slurry extruded per unit time (called the extrusion rate hereafter),

vn the nozzle moving speed, and Dn the nozzle diameter. The physical meaning of eq. (1) is that

the volume of the slurry extruded per unit time is equal to the volume available per unit time

between the nozzle and the substrate. When the nozzle height is lower than hc, the slurry is

forced to take up the space beyond the volume defined by the product of the nozzle height, the

nozzle diameter, and the distance traveled by the nozzle per unit time.

Nozzle height (mm):        200 330                          670                      1000

Contact angle (degree):    40 65                             85                          95

Figure 3. Cross section of the single lines extruded using a dental porcelain slurry of pH = 7.5 with Vd =

2.5 x 10
-3

 ml/s, Dn = 0.7 mm, vn = 4.25 mm/s, and different nozzle heights as indicated.

Figure 3 shows the cross section of the extrudates deposited with different nozzle heights.

The contact angles of these extrudates with the SiC substrate are measured and presented in

Figure 4. When the nozzle height equals to 200 and 330 mm, the slurries spread widely along the

substrate with low contact angles, which indicates that the nozzle height is lower than hc because

the slurry has been forced to flow beyond the space defined by the nozzle height, the nozzle

diameter, and the distance traveled by the nozzle per unit time. When the nozzle height equals to

670 mm, the contact angle closes to 90 degrees and no spreading is observed. A further increase

in the nozzle height (1000 mm) does not alter the shape of the extrudate much with only a small

increase in the contact angle. The critical nozzle height calculated using eq. (1) for the extrusion

condition shown in Figure 3 is 840 mm which is between 670 mm and 1000 mm tested in the

experiment. These results indicate that when the nozzle height is near the critical nozzle height,

the contact angle of the slurry on the SiC substrate used in this study is about 90 degrees.

Substrate

Extrudate

Wax 500 mm
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However, when the nozzle height is substantially smaller than hc (e.g., the cases of 200 and 330

mm in Figure 3), the forced flow is present and the contact angles will be smaller than 90

degrees.
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Figure 4.  The contact angle as a function of the nozzle height for slurries with pH = 7.5.

3.3 Influence of the Shear Rate on the Cross Section Geometry of Extrudates

Because of the pseudoplastic behavior of the slurry, extrusion conducted with high shear

rates will have relative low viscosity, whereas extrusion with low shear rates will have high

viscosity. In order to investigate the true effects of the shear rate on the cross section geometry of

the extrudate, a set of the experiments have been designed in which both the extrusion rate and

the nozzle moving speed have been increased proportionally in order to keep the critical nozzle

height [see eq. (1)] and the deposition density constant. The deposition density, Dd, is defined as

the volume of the slurry extruded per unit time divided by the product of the nozzle diameter and

the moving speed of the nozzle. When both the critical height and the deposition density are kept

constant, the change in the extrusion rate provides a genuine evaluation of the effect of the shear

rate.

The results from this special set of the experiments are shown in Figure 5. At high

extrusion rates (0.01 ml/s and 0.005 ml/s), the contact angles are smaller than 90 degrees. In

contrast, at low extrusion rates (0.0025 ml/s and 0.00125 ml/s), contact angles are greater than 90

degrees. This is so because high extrusion rates result in high shear rates which in turn leads to

low viscosities. Thus, when high extrusion rates are used, the slurry flows fast after it leaves the

nozzle tip. As a result of the fast flow, the slurry spreads out along the surface of the substrate

before it freezes and a low contact angle results. In contrast, when low extrusion rates are used,

the flow of the slurry after it leaves the nozzle tip is limited because of its high viscosity. As a

consequence of this limited flow, a high contact angle results.

It is noted, however, that in spite of the dependency of the cross section geometry on the

shear rate, the effect of the shear rate on the contact angle is relatively small in comparison with

that of the pH value and the nozzle height. As seen from Figure 5, the variation of the contact
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angle due to the different shear rates investigated is within 20%, which is much smaller than

100% changes achieved by altering the nozzle height (Figures 4 and 5).

Extrusion rate (ml/s):  0.01    0.005                       0.0025         0.00125

Nozzle moving

speed (mm/s): 17.5      8.5 4.25           2.125

hc (mm): 0.84     0.84 0.84            0.84

Deposition density

(mm
3
/mm

2
): 0.84     0.84 0.84            0.84

Contact angle (degree): 85                       90                            95                              105

Figure 5: Cross section of the single lines extruded with different extrusion rates and nozzle moving

speeds as indicated, while keeping all other processing parameters constant.

IV.  Concluding Remarks

The present extrusion study clearly shows that in order to get favorable cross section

geometry of the porcelain powder line in SFF processes, extrusion parameters including the

nozzle height, nozzle moving speed and the extrusion rate should be optimized. However,

optimization can be achieved only when the slurry is pseudoplastic. The latter can be

accomplished by adjusting the pH value of the slurry for the dental porcelain powder to between

7.0 and 7.5. Once the proper slurry is prepared, extrusion conditions can have strong impact on

the cross section geometry of the extrudate. There is a critical nozzle height (hc) for a given set of

the extrusion rate, nozzle moving speed, and the nozzle diameter. When extrusion is carried out

with the nozzle height above the critical nozzle height, the cross section geometry of the

extrudate is mainly determined by the rheological behavior of the slurry and the wettability of

the slurry on the substrate. When the nozzle height is lower than the critical nozzle height, the

resultant shape of the extrudate is not only controlled by the rheological properties and the

wettability of the slurry, but also by the forced flow of the slurry along the surface of the

substrate. A rectangular cross section results when low extrusion rates are used. In contrast, an

arch-shaped cross section with low contact angles is obtained if high extrusion rates are used.
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