
Copyright

by

Sriramkrishnan Muralikrishnan

2019



The Dissertation Committee for Sriramkrishnan Muralikrishnan
certifies that this is the approved version of the following dissertation:

Fast and Scalable solvers for High-Order Hybridized

Discontinuous Galerkin Methods with applications to Fluid

Dynamics and Magnetohydrodynamics

Committee:

Tan Bui-Thanh, Supervisor

Leszek F. Demkowicz

Omar Ghattas

Laxminarayan L. Raja

John N. Shadid

François L. Waelbroeck

Mary F. Wheeler



Fast and Scalable solvers for High-Order Hybridized

Discontinuous Galerkin Methods with applications to Fluid

Dynamics and Magnetohydrodynamics

by

Sriramkrishnan Muralikrishnan

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2019



Dedicated to my mom Valli,

my late great grandmother Rukmani,

and my late grandfather Gopalakrishnan Thiruvankatam.



Acknowledgments

This thesis would not be possible without the following people and I would

like to thank them now. The first person I would like to thank the most is my advisor

Prof. Tan Bui-Thanh. He brought me to UT Austin and gave me this wonderful PhD

opportunity for which I am always grateful. He always encouraged me whenever I

came up with new ideas and results and it gave me the boost to work even harder.

On the other hand, he also pointed out my flaws directly and this helped me to

correct them. I think this is the most important and helpful part, as usually you

don’t get that many people around you who can do this. His passion for research is

incomparable and I always remember the times when we worked for hours together

on proofs, papers and ideas. I don’t know how many advisors would reply 06:00 AM

on a Sunday morning on an idea I sent the previous night. He also used to call me

many times from his car while driving or while waiting in airport because some idea

popped up and this passion inspired me so much. Though at some times it was hard

to work with him especially because of his very high standards for everything, I don’t

think I would have been happier with any other advisor either and in that respect I

am very fortunate. I learnt so many things from him apart from research like physical

fitness and hope I could follow them in my career.

I would like to thank my other committee members Prof. Wheeler, Prof.

Demkowicz, Prof. Ghattas, Prof. Raja, Prof. Waelbroeck and Dr. Shadid for being

a part of it. I am very fortunate to have so many of these world class experts in my

thesis committee and if I am not wrong this is one of the largest PhD committees

I have known so far in UT. I want to thank Prof. Demkowicz for his countless

v



recommendation letters which helped me to get my post-doc position. He is very

kind and also the best math professor I ever had. I am very fortunate that I took his

classes and was able to interact with him closely. I cannot thank him enough for all

the help and I am always grateful for that.

I can only say that I am incredibly lucky to know Prof. Wheeler. She is amaz-

ing and have shown extreme care, affection, encouragement and support throughout

my PhD. She is one of the legends in FEM and her humility and humbleness always

surprises me. She took special care in my research and every time I talk to her I feel

rejuvenated. Her life is an inspiration to everyone including me. Prof. Ghattas’ class

is arguably one of the best classes I have attended in my PhD (even though techni-

cally I audited it). His passion for teaching and research is what I want to follow in

my academic career. I want to thank Dr. Shadid for the MHD part in my thesis. His

knowledge in solvers for MHD especially AMG and plasma physics was very helpful

to me and I am very glad that I got a chance to collaborate with him. I want to thank

Prof. Raja for his kindness and support throughout my PhD and Prof. Waelbroeck

for the fruitful discussions we had regarding fusion energy and plasma sciences.

I want to thank my collaborators Dr. Minh-Binh Tran and Dr. Tim Wildey

for the projects we worked together and it was a great experience. Thanks to Dr.

Wildey for all the recommendation letters which helped me to get my post-doc. I

would like to thank Sue for helping with all the travels, conferences and also for taking

special care towards our graduation. I want to thank Dr. Hari Sundar for sharing

his homg library, on top of which I implemented many of our algorithms. I also want

to thank TACC for processing all our requests so quickly and giving us one of the

world’s fastest supercomputers.

It is time to thank my colleagues and friends. I want to thank Shinhoo Kang

vi



for traveling with me throughout this PhD. He is like a brother to me and we have

seen so much happiness and sadness together. I can only thank God for having him

also join in my group at the same time I joined and now I am very happy that we

are graduating together. He has always been a huge pillar of support to me and I

cannot thank him enough for that. I would like to thank Stephen Shannon for all the

interesting discussions we had, for sharing his code on MHD so that I could implement

my algorithms on top of it.

Among my friends, I would like to thank Premkumar for countless discussions

we had on almost everything. He made me felt that I am back in my home town

as we connect on so many things and he is also a wonderful human being. Prem

and my other dear friends Ashish, Mahesh, Janaki and Vivek made my Austin life so

memorable and beautiful in the past couple of years. I always remember the countless

dinner sessions we had, games we played and other activities we did together and all

those memories will always remain fresh inside me. I want to thank them for all of

this and help me get a social life apart from my PhD. I also would like to thank my

friends Young Joon, Jason and Daiju for all the trips we went and the lunches. My

other friends in Austin/PhD time Harpreet, Sadhika, Gurpreet, Sundeep, Rituparna,

Vinod special thanks to each one of you.

I would like to thank my first year roommates Memo and Sahil. Memo has

helped me in so many ways and especially when I knew no one in Austin he even

picked me up in his car the first day I arrived. He is a kind-hearted man and I wish

him well for his married life. I would like to thank Vishwas for all the help. He is

also like another brother to me and he make sure that I am doing ok all the times. I

cannot thank him enough for all the help during my job search among other things.

I would like to thank my friends in India especially my best friend Manickam.

vii



I am very fortunate to have him as my friend and after I came to US whenever we

talk, for some reason, I felt more connected probably because we are somehow in the

same place in our lives and our thoughts were in the same wavelength. I remember

all the long talks we had and I am looking forward to meeting him again in India.

Last but not the least, I would like to thank my mom, dad, sister, brother-in-

law, my two nephews and the rest of my family for the support they have given me all

along. Thanks Amma (mom) for listening to all my complaints patiently every day

and telling me repeatedly that I will get through everything. Many days when I am

stressed her sense of humor and jokes only relieve me. Saranya, I know we didn’t talk

much as both of us were busy in our own lives but thank you so much for making all

my India visits so memorable and once I return to India I hope we will spend more

time together. Appa (dad), unlike Amma we also didn’t talk much over phone but

I always felt you were there for me in the times I needed the most and that’s what

matters the most. I thank God every day for giving me such an amazing family and

feel very fortunate for that. Thatha (Grandfather) I miss you very much and cannot

believe that you are not there to see me graduating, but I understand this is life and

somehow you prepared me for this long time back itself. I still believe you are there

in my core thoughts of everything and you have taught me a way of living which I will

never forget. This thesis is for you and mom the two special people in my life. This

list is already so long and I hope I have thanked most of the people if not everyone,

If I have left anyone here I sincerely apologize for that and thanks to them and God.

This work was partially supported by DOE grants DE-SC0010518, DE-SC0011118,

DE-SC0018147 and NSF Grant DMS-1620352. I am grateful for the support.

viii



Fast and Scalable solvers for High-Order Hybridized

Discontinuous Galerkin Methods with applications to Fluid

Dynamics and Magnetohydrodynamics

by

Sriramkrishnan Muralikrishnan, Ph.D.

The University of Texas at Austin, 2019

Supervisor: Tan Bui-Thanh

The hybridized discontinuous Galerkin methods (HDG) introduced a decade

ago is a promising candidate for high-order spatial discretization combined with

implicit/implicit-explicit time stepping. Roughly speaking, HDG methods combines

the advantages of both discontinuous Galerkin (DG) methods and hybridized meth-

ods. In particular, it enjoys the benefits of equal order spaces, upwinding and ability

to handle large gradients of DG methods as well as the smaller globally coupled linear

system, adaptivity, and multinumeric capabilities of hybridized methods. However,

the main bottleneck in HDG methods, limiting its use to small to moderate sized

problems, is the lack of scalable linear solvers. In this thesis we develop fast and

scalable solvers for HDG methods consisting of domain decomposition, multigrid and

multilevel solvers/preconditioners with an ultimate focus on simulating large scale

problems in fluid dynamics and magnetohydrodynamics (MHD).

First, we propose a domain decomposition based solver namely iterative HDG

for partial differential equations (PDEs). It is a fixed point iterative scheme, with

ix



each iteration consisting only of element-by-element and face-by-face embarrassingly

parallel solves. Using energy analysis we prove the convergence of the schemes for

scalar and system of hyperbolic PDEs and verify the results numerically.

We then propose a novel geometric multigrid approach for HDGmethods based

on fine scale Dirichlet-to-Neumann maps. The algorithm combines the robustness of

algebraic multigrid methods due to operator dependent intergrid transfer operators

and at the same time has fixed coarse grid construction costs due to its geometric

nature. For diffusion dominated PDEs such as the Poisson and the Stokes equations

the algorithm gives almost perfect hp−scalability.

Next, we propose a multilevel algorithm by combining the concepts of nested

dissection, a fill-in reducing ordering strategy, variational structure and high-order

properties of HDG, and domain decomposition. Thanks to its root in direct solver

strategy the performance of the solver is almost independent of the nature of the

PDEs and mostly depends on the smoothness of the solution. We demonstrate this

numerically with several prototypical PDEs.

Finally, we propose a block preconditioning strategy for HDG applied to in-

compressible visco-resistive MHD. We use a least squares commutator approximation

for the inverse of the Schur complement and algebraic multigrid or the multilevel

preconditioner for the approximate inverse of the nodal block. With several 2D and

3D transient examples we demonstrate the robustness and parallel scalability of the

block preconditioner.
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Chapter 1

Introduction

Computational science and engineering has revolutionized the developments in

almost all fields of science and engineering [131]. With the availability of extreme scale

architectures we now can simulate extremely complex multiphysics applications such

as magnetohydrodynamics (MHD). These applications usually have disparate spatial

and temporal scales which necessitate the use of high-order methods in both spatial

and temporal discretizations to capture the scales accurately. Moreover, the presence

of fast waves in many of these applications necessitates the use of fully implicit or

implicit-explicit time stepping to avoid otherwise overly restrictive small stepsizes

with the explicit methods. High-order methods also make the most efficient use of

the extreme scale architectures because of their high computation to communication

ratio.

Hybridized discontinuous Galerkin (HDG) methods introduced a decade ago

[38] together with high-order implicit time integrators [87] is one of the promising

combinations. HDG methods have now been developed for a wide range of PDEs

including, but not limited to, Poisson-type equation [38, 39], Stokes equation [36,

113, 126], Euler and Navier–Stokes equations [115, 106, 127], wave equations [117,

116, 76, 93]. In [25, 26, 27], an upwind HDG framework was proposed that provides

a unified and a systematic construction of HDG methods for a large class of PDEs.

Roughly speaking, HDG methods combine the advantages of hybrid(ized)

methods [130, 71, 23] and discontinuous Galerkin (DG) discretizations [95, 154, 5, 7].
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In particular, its inherent characteristics from DG include: (i) arbitrary high-order

with compact stencil; (ii) ability to handle complex geometries; (iii) local conserva-

tion; and (iv) upwinding for hyperbolic systems. On the other hand, it also possesses

the advantages of hybrid(ized) methods, namely, (i) having smaller and sparser linear

system for steady state problems or time-dependent problems with implicit time inte-

grators; (ii) hp-adaptivity-ready using the trace space; (iii) facilitating multinumerics

with different hybrid(ized) methods in different parts of the domain; and (iv) when

applicable, providing superconvergence by local post-processing [6, 38].

As any implicit method is as good as the preconditioner/solver available to

solve the resulting linear(ized) system, the main challenge facing HDG methods is,

the construction of scalable solvers/preconditioners. The linear systems resulting

from HDG methods are different from volume based discretizations such as continuous

Galerkin (CG), stabilized finite element methods (FEM) and DG methods in the sense

that, it contains only the trace, or skeletal unknowns, which live on the skeleton of

the mesh. This presents challenges in the construction of solvers/preconditioners as

they are usually developed in the context of volume based discretizations. Moreover,

the high-order aspect of the method makes the linear systems highly non-diagonally

dominant even for simple equations like Poisson [91]. Our main objective in this

thesis is to develop fast, scalable linear solvers/preconditioners for linear systems

arising from HDG discretizations for a wide variety of problems appearing in fluid

dynamics and MHD. We next review some existing efforts that are relevant to the

developments in this thesis.
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1.1 Review on solvers/preconditioners for HDG trace system

The first geometric multigrid solver for HDG methods was introduced in [41].

It is based on the multigrid introduced for hybridized mixed methods [74]. The main

idea is to transfer the residual from HDG skeletal space to linear continuous Galerkin

FEM space, and then carry out the standard geometric or algebraic multigrid algo-

rithm. Even though the algorithm works well for Poisson equation as demonstrated

in [41] there are few issues which needs to be addressed.

First, it is a non-inherited algorithm in the sense that the coarse scale operators

do not inherit all the properties of the fine scale ones. For example, in case of

subsurface flows through porous media one of the important properties which needs to

be satisfied is local conservation [155]. HDGmethods satisfy this property whereas the

CG methods do not have local conservation (but global conservation). The violation

of local conservation leads to non-physical results for CG methods as reported in [155]

and the references therein. Thus in the multigrid algorithm for HDG, transferring

of information from skeletal space to CG space may affect the local conservation

property of the HDG method especially when the tolerance of the iterative solver is

not strict.

Secondly, we can form the coarse grid operators for multigrid methods either

by re-discretizing the equation in the coarse mesh or by means of Galerkin coarse

grid correction [145]. In [91], the authors observed that using the Galerkin coarse grid

operator for the multigrid algorithm in [41] performs much better (in terms of number

of iterations) compared to constructing coarse grid operators by re-discretization in

[41]. However, Galerkin coarse grid operators have limitations in terms of memory,

especially for high orders and large scale problems. Thus with this algorithm one has

to compromise one of the aspects whereas in the classical multigrid algorithm for CG
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methods, since the coarse-grid operators formed through both approaches coincide,

there is no difference and the performance is optimal.

Finally, we know the CG space is not suitable for convection-dominated prob-

lems or for vector equations like Stokes where we need inf-sup stable FEM spaces.

Hence, it is not clear how to extend the multigrid algorithm [41] for these kind of

problems without affecting the stability of coarse grid problems.

In [32], the multigrid algorithm in [41] with few modifications was pursued for

the simulation of high frequency Helmholtz equation discretized by HDG. The main

difference, however, is the authors followed the approach in [55] and used GMRES

as smoother for coarse grids whereas simple smoothers like Jacobi or Gauss-Seidel

are used for the fine grids. The reason is, GMRES being a strong smoother is able

to handle strong indefiniteness of the Helmholtz problem on coarse grids where the

simple smoothers fail. The coarse grid level in which the smoothing is changed from

Gauss-Seidel to GMRES is chosen based on the wavenumber, meshsize and solution

order. The performance of the algorithm was found to be mesh-independent, but

mild dependence with wave-number was observed.

One level Schwarz type domain decomposition algorithms in the context of

HDG and hybridizable interior penalty DG schemes have been studied for elliptic

equation [60, 61, 58] and Maxwell’s equations [96, 78]. In [61, 58], the authors derived

optimized interface coefficients for accelerating the convergence of Schwarz methods

in the context of Poisson equation discretized by hybridizable interior penalty DG

schemes whereas similar efforts have been carried out in [78] for HDG discretization

of Maxwell’s equations. The number of iterations for these schemes still increases

with the increase in sub-domains due to lack of coarse solvers.

A balancing domain decomposition by constraints (BDDC) algorithm for HDG
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was introduced in [49] and studied for Euler and Navier–Stokes equations. BDDC al-

gorithms are capable of delivering iteration counts independent of mesh refinements, if

the subdomain size and meshsize are chosen appropriately. For a range of CFD prob-

lems the algorithm was applied and parallel scaling performance up to 30 processors

was shown.

More recently a block preconditioner for the HDG discretization of Stokes

system was presented in [128]. The authors eliminated only the volume velocity

unknowns from the full HDG system with volume and trace unknowns and hence

the final linear system contains the volume pressure unknowns in addition to the

velocity and pressure trace unknowns. Scalability with respect to mesh refinements

was demonstrated for low order solutions.

1.2 Objective and Contributions

The objective of this work is to develop fast, scalable and robust solvers for

high-order HDG discretizations applied to a wide variety of problems in fluid dynam-

ics and MHD. We consider both steady state problems and time dependent problems

discretized with implicit time integrators. Availability of these solvers is critical for

applicability of high-order HDG schemes for large scale complex multiphysics appli-

cations. In the construction of solvers/preconditioners we make efforts to utilize the

variational structure of HDG methods or more generally hybridized methods as much

as possible. High-order and parallel scalability are two of the most important factors

we take into consideration in the development. The contributions of this thesis are

now briefly summarized:

• A domain decomposition solver namely iterative HDG (iHDG) for

PDEs. It is a fixed point iterative scheme, with each iteration consisting only
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of element-by-element and face-by-face embarrassingly parallel solves. The al-

gorithm is provably convergent and we show the convergence of these schemes

for the transport, the linearized shallow water, the convection-diffusion and the

Poisson equations. The scheme involves only local matrices, has excellent strong

scaling and can also be used as a smoother in multilevel/multigrid schemes.

• A novel geometric multigrid approach for HDG methods based on

fine scale Dirichlet-to-Neumann (DtN) maps. The algorithm combines

the robustness of algebraic multigrid methods due to operator dependent inter-

grid transfer operators and at the same time has fixed coarse grid construction

costs due to its geometric nature. It also avoids explicit upscaling of parameters

as it only uses fine scale DtN maps. It is applicable to both structured and

unstructured meshes and does not require them to be nested. For scalar and

vector diffusion problems the algorithm gives almost perfect hp−scalability even

for flow through porous media with highly heterogeneous and discontinuous

coefficients.

• A multilevel preconditioner for generic hyperbolic system of PDEs.

The algorithm combines the concepts of nested dissection, a fill-in reducing or-

dering strategy, variational structure and high-order properties of HDG meth-

ods and domain decomposition concepts. The performance of the multilevel

preconditioner appears to be independent of the nature of the PDE and mostly

depends on the smoothness of the solution.

• A block preconditioning strategy for the HDG trace systems applied

to the incompressible resistive MHD. The preconditioner uses a least

squares commutator approximation for the inverse of the Schur complement

and algebraic multigrid with GMRES smoother or the multilevel preconditioner
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for the approximate inverse of the nodal block. For several 2D and 3D tran-

sient examples from MHD, including, but not limited to the island coalescence

problem at high Lundquist numbers the preconditioner is robust and scalable.

1.3 Outline

In this thesis we first start with proposing simple fixed point iterative schemes

for HDG in chapter 2. These come under the category of one level domain decom-

position methods. With rigorous energy analysis we prove the convergence of these

schemes for the transport, the linearized shallow water and the convection-diffusion

equations. We present several 2D and 3D numerical results verifying the theoretical

estimates derived. In chapter 3 we improve the scheme introduced in chapter 2 for dif-

fusion dominated equations and system of hyperbolic equations. Again with theoret-

ical and supporting numerical examples we study the performance of the scheme and

also compare it with the scheme in chapter 2. We move on to introduce a geometric

multigrid approach in chapter 4 designed specifically for trace systems resulting from

hybridized methods. We prove the stability of the intergrid transfer operators and

also show that the coarse grid operator formed through Galerkin coarse grid correc-

tion in the algorithm is also a Dirichlet-to-Neumann map on that level. With several

numerical examples from scalar and vector equations we show the hp−scalability of

these schemes. In chapter 5 we introduce a multilevel scheme for HDG combining

the concepts of nested dissection, a fill-in reducing ordering strategy, high-order and

variational properties of the HDG scheme and domain decomposition ideas. We show

that the iterative multilevel algorithm can also be interpreted as a multigrid scheme

with specific intergrid transfer and smoothing operators. We derive the theoretical

complexity of these schemes and compare the performance with several numerical re-

sults. In chapter 6 we develop a block preconditioning strategy for the trace systems
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resulting from HDG discretizations of the incompressible resistive MHD. With several

2D and 3D transient examples from MHD the robustness and parallel scalability of

the preconditioning strategy is demonstrated. Finally, in chapter 7 we summarize our

work in this thesis and also provide possible directions for future research.
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Chapter 2

iHDG: An Iterative HDG Solver for Partial
Differential Equations

2.1 Domain decomposition applied to HDG

In this chapter1, we blend the HDG method and the Schwarz idea [122] to

create an one level domain decomposition iterative solver for HDG discretizations

namely iterative HDG (iHDG). One of the main features of the proposed approach is

that it is provably convergent. From a linear algebra point of view, the method can be

understood as a block Gauss–Seidel iterative solver for the augmented HDG system

with volume and trace unknowns. Usually the HDG system is not realized from this

point of view and the linear system is assembled for trace unknowns only. But for

iHDG, since we never form any global matrices it allows us to create an efficient

solver which completely depends on independent element-by-element calculations.

Traditional Gauss–Seidel schemes for convection-diffusion problems or pure advection

problems require the unknowns to be ordered in the flow direction for convergence.

Several ordering schemes for these kinds of problems have been developed and studied

in [11, 77, 88, 151]. In the context of discontinuous Galerkin methods robust Gauss–

Seidel smoothers are developed in [86] and again these smoothers depend on the

ordering of the unknowns. For a complex velocity field (e.g. hyperbolic systems) it

is, however, not trivial to obtain a mesh and an ordering which coincide with the flow

1The contents of this chapter are largely based on the published manuscript [108]. The con-
tributions of the author in the article ranged from numerical implementation of the algorithm,
participation in the theoretical analysis and writing the manuscript.
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direction. Moreover the point or the block Gauss–Seidel scheme (for the trace system

alone) requires a lot of communication between processors for calculations within an

iteration. These aspects affect the scalability of these schemes to a large extent and

in general are not favorable for parallelization [8, 57].

Unlike traditional Gauss–Seidel methods, which are purely algebraic, the iHDG

approach is built upon, and hence exploits, the HDG discretization. Of importance

is the upwind flux, or more specifically the upwind stabilization, that automatically

determines the flow directions. Consequently the convergence of iHDG is independent

of the ordering of the unknowns. Another crucial property inherited from HDG is that

each iteration consists of only independent element-by-element local solves to com-

pute the volume unknowns. Thanks to the compact stencil of HDG, this is overlapped

by a single communication of the trace of the volume unknowns restricted on faces

shared between the neighboring processors. The communication requirement is thus

similar to that of block-Jacobi methods (for the volume system alone). The iHDG

approach is designed with these properties to suit the current and future computing

systems with massive concurrencies. We rigorously show that our proposed methods

are convergent with explicit contraction constants using an energy approach. Further-

more the convergence rate is independent of the solution order for hyperbolic PDEs.

The theoretical findings will be verified on various 2D and 3D numerical results for

steady and time-dependent problems.

This chapter is organized as follows. Section 2.2 introduces most of the com-

mon notations used throughout this thesis, additional specific notations will be in-

troduced in the subsequent chapters when and where it is required. In section 2.3

we introduce the iHDG algorithm for an abstract system of PDEs discretized by the

upwind HDG discretization [25]. The convergence of the iHDG algorithm for the

scalar and for the system of hyperbolic PDEs is proved in section 2.4 using an energy
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approach. In section 2.5 the convection-diffusion PDE is considered in the first order

form and the conditions for the convergence of the iHDG algorithm are stated and

proved. Section 2.6 presents various steady and time-dependent examples, in both

two and three spatial dimensions, to support the theoretical findings.

2.2 Notation

In this section we first briefly review the upwind HDG framework for a general

system of linear PDEs. To begin, let us consider the following system

d∑
k=1

∂kFk (u) + Cu :=
d∑

k=1

∂k (Aku) + Cu = f in Ω, (2.1)

where d is the spatial dimension (which, for clarity of the exposition, is assumed to

be d = 3 whenever a particular value of the dimension is of concern, but the result

is also valid for d = {1, 2}), Fk is the kth component of the flux vector (or tensor)

F, u is the unknown solution with values in Rm, and f is the forcing term. The

matrices Ak and C are assumed to be continuous2 across Ω. The notation ∂k stands

for the kth partial derivative and by the subscript k we denote the kth component of

a vector/tensor. We will discretize (2.1) using the HDG framework. To that end, let

us introduce notation and conventions used in this thesis.

Let us partition Ω ∈ Rd, an open and bounded domain, intoNT nonoverlapping

elements Tj, j = 1, . . . , NT with Lipschitz boundaries such that Ωh := ∪NTj=1Tj and Ω =

Ωh. Here, h is defined as h := maxj∈{1,...,NT } diam (Tj). We denote the skeleton of the

mesh by Eh := ∪NTj=1∂Tj, the set of all (uniquely defined) interfaces e between elements.

We conventionally identify n− as the outward normal vector on the boundary ∂T of

element T (also denoted as T−) and n+ = −n− as the outward normal vector of

2This assumption is not a limitation but for the simplicity of the exposition.
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the boundary of a neighboring element (also denoted as T+). Furthermore, we use

n to denote either n− or n+ in an expression that is valid for both cases, and this

convention is also used for other quantities (restricted) on a face e ∈ Eh. For the sake

of convenience, we denote by E∂h the set of all boundary faces on ∂Ω, by Eoh := Eh \E∂h
the set of all interior faces, and ∂Ωh := {∂T : T ∈ Ωh}.

For simplicity in writing we define (·, ·)T as the L2-inner product on a do-

main T ∈ Rd and 〈·, ·〉T as the L2-inner product on a domain T if T ∈ Rd−1. We

shall use ‖·‖T := ‖·‖L2(T ) as the induced norm for both cases and the particular

value of T in a context will indicate which inner product the norm is coming from.

We also denote the ε-weighted norm of a function u as ‖u‖ε,T := ‖
√
εu‖T for any

positive ε. We shall use boldface lowercase letters for vector-valued functions and

in that case the inner product is defined as (u,v)T :=
∑m

i=1 (ui,vi)T , and similarly

〈u,v〉T :=
∑m

i=1 〈ui,vi〉T , where m is the number of components (ui, i = 1, . . . ,m)

of u. Moreover, we define (u,v)Ω :=
∑

T∈Ωh
(u,v)T and 〈u,v〉Eh :=

∑
e∈Eh 〈u,v〉e

whose induced (weighted) norms are clear, and hence their definitions are omitted.

We employ boldface uppercase letters, e.g. L, to denote matrices and tensors. We

conventionally use u (v and û) for the numerical solution and ue for the exact solu-

tion. We use the terms “skeletal unknowns” and “trace unknowns” interchangeably

and they both refer to the unknowns on the mesh skeleton.

We define Pp (T ) as the space of polynomials of degree at most p on a domain

T . Next, we introduce two discontinuous piecewise polynomial spaces

Vh (Ωh) :=
{
v ∈

[
L2 (Ωh)

]m
: v|T ∈ [Pp (T )]m ,∀T ∈ Ωh

}
,

Λh (Eh) :=
{
λ ∈

[
L2 (Eh)

]m
: λ|e ∈ [Pp (e)]m ,∀e ∈ Eh

}
,

and similar spaces for Vh (T ) and Λh (e) by replacing Ωh with T and Eh with e. For
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scalar-valued functions, we denote the corresponding spaces as

Vh (Ωh) :=
{
v ∈ L2 (Ωh) : v|T ∈ Pp (T ) ,∀T ∈ Ωh

}
,

Λh (Eh) :=
{
λ ∈ L2 (Eh) : λ|e ∈ Pp (e) , ∀e ∈ Eh

}
.

Following [25], we introduce an upwind HDG discretization for (2.1) as follows:

for each element T , the DG local unknown u and the extra “trace” unknown û need

to satisfy

− (F (u) ,∇v)T +
〈
F̂ (u, û) · n,v

〉
∂T

+ (Cu,v)T = (f ,v)T ∀v ∈ Vh (T ), (2.2a)〈
[[F̂ (u, û) · n]],µ

〉
e

= 0 ∀e ∈ Eoh, ∀µ ∈ Λh (e) , (2.2b)

where we have defined the “jump” operator for any quantity (·) as [[(·)]] := (·)−+ (·)+.

We also define the “average” operator {{(·)}} via 2 {{(·)}} := [[(·)]]. The upwind HDG

flux as introduced in [25] is defined by

F̂ · n = F (u) · n + |A| (u− û) , (2.3)

with3 the matrix A :=
∑d

k=1 Aknk = RSR−1, and |A| := R |S|R−1. Here nk is the

kth component of the outward normal vector n and |S| represents a matrix obtained

by taking the absolute value of the main diagonal of the matrix S.

2.3 The idea of iHDG

The key idea behind the iHDG approach is the following. The approximation

of the HDG solution at the (k + 1)th iteration is governed by the local equation (2.2a)

as

−
(
F
(
uk+1

)
,∇v

)
T

+
〈
F
(
uk+1

)
· n + |A|uk+1 − |A| ûk,v

〉
∂T

+ (Cu,v)T = (f ,v)T ,

(2.4a)

3We assume that A admits an eigendecomposition, and this is valid for a large class of PDEs of
Friedrichs type, for example.
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where the weighted trace |A| ûk (not the trace itself) is computed using information
at the kth iteration via the conservation condition (2.2b), i.e.,

〈
|A| ûk,µ

〉
∂T

=
〈{{
|A|uk

}}
+
{{

F
(
uk
)
· n
}}
,µ
〉
∂T
. (2.4b)

Algorithm 1 summarizes the iHDG approach.

Algorithm 1 The iHDG approach.
Ensure: Given initial guess u0, compute the weighted trace |A| û0 using (2.4b).
1: while not converged do
2: Solve the local equation (2.4a) for uk+1 using the weighted trace |A| ûk.
3: Compute |A| ûk+1 using (2.4b).
4: Check convergence. If yes, exit; otherwise set k = k + 1 and continue.
5: end while

The appealing feature of iHDG, Algorithm 1, is that each iteration requires

only independent local solve (2.4a) element-by-element, completely independent of

each other. The method exploits the structure of HDG in which each local solve is

well defined as long as the trace ûk is given. Furthermore, the global solve via the

conservation condition (2.2b) is not needed. Instead, we compute the weighted trace

|A| ûk face-by-face (on the mesh skeleton) in parallel, completely independent of each

other. The iHDG approach is therefore well suited for parallel computing systems. It

can be viewed as a fixed-point iterative solver by alternating the computation of the

local solver (2.2a) and conservation condition (2.2b). It can be also understood as a

block Gauss–Seidel approach for the linear system with volume and weighted trace

unknowns. However, unlike matrix-based iterative schemes [75, 134], the proposed

iHDG method arises from the structure of HDG methods. As such its convergence

does not depend upon the ordering of unknowns as the stabilization (i.e., the weight-

ing matrix |A|) automatically takes care of the direction. For that reason, we call

it iterative HDG discretization (iHDG). Unlike the original HDG discretization, it

promotes fine-grained parallelism in the conservation constraints. What remains is
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to show that iHDG converges as the iteration k increases, and this is the focus of

Sections 2.4–2.5.

2.4 iHDG methods for hyperbolic PDEs

In this section, we present iHDG methods for the scalar and the system of

hyperbolic PDEs. For clarity of the exposition, we consider the transport equation

and a linearized shallow water system, and the extension of the proposed approach

to other hyperbolic PDEs is straightforward. To begin, let us consider the transport

equation

β · ∇ue = f in Ω, (2.5a)

ue = g on ∂Ω−, (2.5b)

where ∂Ω− is the inflow part of the boundary ∂Ω, and again ue denotes the exact

solution. Note that β is assumed to be a continuous function across the mesh skeleton.

An upwind HDG discretization [25] for (2.5) consists of the local equation for each

element T

− (u,∇ · (βv))T + 〈β · nu+ |β · n| (u− û) , v〉∂T = (f, v)T ∀v ∈ Vh (T ) , (2.6)

and conservation conditions on all edges e in the mesh skeleton Eh:

〈[[β · nu+ |β · n| (u− û)]], µ〉e = 0 ∀µ ∈ Λh (e) . (2.7)

Solving (2.7) for |β · n| û we get

|β · n| û = {{β · nu}}+ |β · n| {{u}} . (2.8)

Applying the iHDG algorithm, Algorithm 1, to the upwind HDGmethod (2.6)–

(2.7) we obtain the approximate solution uk+1 at the (k+ 1)th iteration restricted on
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each element T via the following independent local solve: for all v ∈ Vh (T ),

−
(
uk+1,∇ · (βv)

)
T

+
〈
β · nuk+1 + |β · n|

(
uk+1 − ûk

)
, v
〉
∂T

= (f, v)T , (2.9)

where the trace weighted trace |β · n| ûk is computed using information from the

previous iteration as

|β · n| ûk =
{{
β · nuk

}}
+ |β · n|

{{
uk
}}
. (2.10)

Next we study the convergence of the iHDG method (2.9)–(2.10). Since (2.5)

is linear, it is sufficient to show that iHDG converges for the homogeneous equation

with zero forcing f and zero boundary condition g. Let us define ∂T out as the outflow

part of ∂T , i.e. β · n ≥ 0 on ∂T out, and ∂T in as the inflow part of ∂T , i.e. β · n < 0

on ∂T in.

Theorem 1. Assume −∇ · β ≥ α > 0, i.e., (2.5) is well-posed. The above iHDG

iterations for the homogeneous transport equation (2.5) converge exponentially with

respect to the number of iterations k. In particular, there exist J ≤ NT such that∑
T∈Ωh

∥∥uk∥∥2
−∇·β

2
,T

+
∥∥uk∥∥2

|β·n|,∂Tout ≤
c(k)

2k
∥∥u0
∥∥2

|β·n|,Eh
, (2.11)

where c(k) is a polynomial in k of order at most J and is independent of h and p.

Remark 1. Note that the factor %(k) = kJ

2k/2
, i.e., the largest possible term in c (k),

is a bounded function, which implies c(k)

2
k
2

is also bounded by a constant CJ depending

only on J . As a consequence,

c(k)

2k
≤ CJ

2k/2
k→∞−→ 0.

Proof. Taking v = uk+1 in (2.9) and applying the homogeneous forcing condition

yields

−
(
uk+1,∇ ·

(
βuk+1

))
T

+
〈
β · nuk+1 + |β · n|(uk+1 − ûk), uk+1

〉
∂T

= 0. (2.12)
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Since

(
uk+1,∇ ·

(
βuk+1

))
T

=
(
uk+1,∇ · βuk+1

)
T

+
(
uk+1,β · ∇uk+1

)
T
,

integrating by parts the second term on the right-hand side, we get

(
uk+1,∇ ·

(
βuk+1

))
T

=
(
uk+1,∇ · βuk+1

)
T
−
(
uk+1,∇ ·

(
βuk+1

))
T

+
〈
β · nuk+1, uk+1

〉
∂T
.

Rearranging the terms, we obtain

(
uk+1,∇ ·

(
βuk+1

))
T

=

(
uk+1,

∇ · β
2

uk+1

)
T

+
1

2

〈
β · nuk+1, uk+1

〉
∂T
. (2.13)

Using (2.13) we can rewrite (2.12) as

∥∥uk+1
∥∥2
−∇·β

2
,T

+

〈(
|β · n|+ 1

2
β · n

)
uk+1, uk+1

〉
∂T

=
〈
|β · n|ûk, uk+1

〉
∂T
. (2.14)

On the other hand, (2.10) is equivalent to

|β · n|ûk =

{
|β · n|uk on ∂T out,
|β · n|ukext, on ∂T in,

(2.15)

where ukext is either the physical boundary condition or the solution of the neighboring

element that shares the same inflow boundary ∂T in.

Rewriting (2.14) in terms of ∂T in and ∂T out, we obtain

∥∥uk+1
∥∥2
−∇·β

2
,T

+
3

2

〈
|β · n|uk+1, uk+1

〉
∂T out +

1

2

〈
|β · n|uk+1, uk+1

〉
∂T in

=
〈
|β · n|uk, uk+1

〉
∂T out +

〈
|β · n|ukext, u

k+1
〉
∂T in .

By the Cauchy-Schwarz inequality we have

∥∥uk+1
∥∥2
−∇·β

2
,T

+
3

2

〈
|β · n|uk+1, uk+1

〉
∂T out +

1

2

〈
|β · n|uk+1, uk+1

〉
∂T in

≤ 1

2

〈
|β · n|uk, uk

〉
∂T out +

1

2

〈
|β · n|uk+1, uk+1

〉
∂T out

+
1

2

〈
|β · n|ukext, u

k
ext

〉
∂T in +

1

2

〈
|β · n|uk+1, uk+1

〉
∂T in ,
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which implies

∥∥uk+1
∥∥2
−∇·β

2
,T

+
∥∥uk+1

∥∥2

|β·n|,∂T out ≤
1

2

{∥∥uk∥∥2

|β·n|,∂T out +
∥∥ukext

∥∥2

|β·n|,∂T in

}
. (2.16)

Consider the set T1 of all elements T such that ∂T in is a subset of the physical

inflow boundary ∂Ωin on which we have ukext = 0 for all k ∈ N. We obtain from (2.16)

that ∥∥uk+1
∥∥2
−∇·β

2
,T

+
∥∥uk+1

∥∥2

|β·n|,∂T out ≤
1

2

∥∥uk∥∥2

|β·n|,∂T out , (2.17)

which implies

∥∥uk+1
∥∥2

|β·n|,∂T out ≤
1

2

∥∥uk∥∥2

|β·n|,∂T out ≤ · · · ≤
1

2k+1

∥∥u0
∥∥2

|β·n|,∂T out . (2.18)

From (2.17) and (2.18) we also have

∥∥uk+1
∥∥2
−∇·β

2
,T
≤ 1

2k+1

∥∥u0
∥∥2

|β·n|,∂T out . (2.19)

Next, let us define Ω1
h := Ωh and

Ω2
h := Ω1

h\T1.

Consider the set T2 of all T in Ω2
h such that ∂T in is either (possibly partially) a subset

of the physical inflow boundary ∂Ωin or (possibly partially) a subset of the outflow

boundary of elements in T1. This implies, on ∂T in ∈ T2, ukext either is zero for all

k ∈ N \ {1} or satisfies the bound

∥∥ukext

∥∥2

|β·n|,∂T in ≤
1

2k
∥∥u0

ext

∥∥2

|β·n|,∂T in . (2.20)

Combining (2.16) and (2.20), we obtain

∥∥uk+1
∥∥2

|β·n|,∂T out ≤
1

2k+1

{∥∥u0
∥∥2

|β·n|,∂T out + (k + 1)
∥∥u0

ext

∥∥2

|β·n|,∂T in

}
, (2.21)
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which, together with (2.16), leads to

∥∥uk+1
∥∥2
−∇·β

2
,T
≤ 1

2k+1

{∥∥u0
∥∥2

|β·n|,∂T out + (k + 1)
∥∥u0

ext

∥∥2

|β·n|,∂T in

}
. (2.22)

Now defining Ωi
h and Ti recursively and repeating the above arguments concludes the

proof.

We can see that the contraction constant in this case is 1/2; in our numerical

experiments we found the spectral radius of the iteration matrix to be exactly 1/2,

which confirms the theoretical result. We are in a position to discuss the convergence

of the kth iterative solution to the exact solution ue. For a sufficiently smooth exact

solution, e.g., ue|T ∈ Hs (T ) , s > 3/2, we assume the following standard convergence

result of DG (HDG) methods for the transport equation: let σ = min {p+ 1, s}; we

have

‖u− ue‖2
Ωh
≤ C

h2σ−1

p2s−1
‖ue‖2

Hs(Ωh) , (2.23)

and we refer the readers to, for example, [83, 25] for a proof.

Corollary 1. Suppose the exact solution ue is sufficiently smooth, i.e., ue|T ∈ Hs (T ) , s >

3/2; then there exists a constant C independent of k, h, and p such that

∥∥uk − ue∥∥2

Ωh
≤ C

(
c(k)

2k
∥∥u0
∥∥2

|β·n|,Eh
+
h2σ−1

p2s−1
‖ue‖2

Hs(Ωh)

)
,

where c(k) is a polynomial in k of order at most NT and is independent of h and p.

Proof. The result is a direct consequence of the result from Theorem 1, the HDG

(DG) convergence result (2.23), and the triangle inequality.

Remark 2. For the time-dependent transport equation, we discretize the spatial op-

erator using HDG and time using the backward Euler method (or the Crank–Nicolson
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method or a high-order method if desired). The iHDG approach in this case is al-

most identical to the one for the steady state equation except that we now have an

additional L2-term
(
uk+1, v

)
T
/∆t in the local equation (2.9). This improves the con-

vergence of iHDG. Indeed, the convergence analysis is almost identical except we now

have
∥∥uk+1

∥∥2

−∇·β/2+1/∆t,T
instead of

∥∥uk+1
∥∥2

−∇·β/2,T in (2.16).

Now let us consider the flux given in Nguyen, Peraire, and Cockburn (NPC

flux) [112] and analyze the convergence of the iHDG scheme. The stabilization τ of

the NPC flux is given by

τ = |β · n|1 + sgn(β · n)

2
− β · n, (2.24)

and the trace ûk at the kth iteration is computed as

ûk =

{{
τuk
}}

+
{{
β · nuk

}}
{{τ}}

.

In this case we apply the iHDG algorithm, Algorithm 1, without the weighting

|A| in front of the trace ûk as the stabilization comes from τ .

Theorem 2. Assume −∇ · β ≥ α > 0, i.e., (2.5) is well-posed. There exists J ≤

NT such that the iHDG algorithm with the NPC flux for the homogeneous transport

equation converges in J iterations.4

This theorem shows that for the scalar hyperbolic equation (2.5), iHDG with

the NPC flux converges in a finite number of iterations, which is faster than the

upwind HDG flux. The reason is that the NPC flux mimics the matching of wave

propagation from the inflow to the outflow. However, designing such a scheme for a

system of hyperbolic equations, such as the linearized shallow water system, does not

4The proof is similar to the proof of Theorem 1 and hence is omitted here.
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seem to be tractable due to the interaction of more than one wave. In this sense the

upwind HDG flux is more robust, since it is applicable for other systems of hyperbolic

PDEs as well, as we now show.

We next consider the following system of linear hyperbolic PDEs arising from

the oceanic linearized shallow water system [70]:

∂

∂t

 φe

Φue

Φve

+
∂

∂x

 Φue

Φφe

0

+
∂

∂y

 Φve

0
Φφe

 =

 0
fΦve − γΦue + τx

ρ

−fΦue − γΦve + τy
ρ

 , (2.25)

where φ = gH is the geopotential height with g andH being the gravitational constant

and the perturbation of the free surface height, Φ > 0 is a constant mean flow

geopotential height, ϑ := (u, v) is the perturbed velocity, γ ≥ 0 is the bottom friction,

τ := (τx, τy) is the wind stress, and ρ is the density of the water. Here, f = f0 +

β (y − ym) is the Coriolis parameter, where f0, β, and ym are given constants.

Again, for simplicity of the exposition and the analysis, let us employ the

backward Euler discretization for temporal derivatives and HDG [27] for spatial ones.

Since the unknowns of interest are those at the (m+ 1)th time step, we can suppress

the time index for clarity of the exposition. Furthermore, since the system (2.25)

is linear, an argument similar to that above shows that it is sufficient to consider

homogeneous system with zero initial condition, boundary condition, and forcing.

Also here we consider the case of τ = 0. Applying the iHDG algorithm, Algorithm
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1, to the homogeneous system gives(
φk+1

∆t
, ϕ1

)
T

−
(
Φϑk+1,∇ϕ1

)
T

+
〈

Φϑk+1 · n +
√

Φ
(
φk+1 − φ̂k

)
, ϕ1

〉
∂T

= 0,

(2.26a)(
Φuk+1

∆t
, ϕ2

)
T

−
(

Φφk+1,
∂ϕ2

∂x

)
T

+
〈

Φφ̂kn1, ϕ2

〉
∂T

=
(
fΦvk+1 − γΦuk+1, ϕ2

)
T
,

(2.26b)(
Φvk+1

∆t
, ϕ3

)
T

−
(

Φφk+1,
∂ϕ3

∂y

)
T

+
〈

Φφ̂kn2, ϕ3

〉
∂T

=
(
−fΦuk+1 − γΦvk+1, ϕ3

)
T
,

(2.26c)

where ϕ1, ϕ2, and ϕ3 are the test functions, and

φ̂k =
{{
φk
}}

+
√

Φ
{{
ϑk · n

}}
.

Our goal is to show that
(
φk+1,Φϑk+1

)
converges to zero. To that end, let us define

C :=
A

B
, A := max

{
Φ +
√

Φ

2
,
1 +
√

Φ

2

}
, (2.27)

and

B := min

{(
ch

∆t(p+ 1)(p+ 2)
+

√
Φ− Φ

2

)
,

((
γ +

1

∆t

)
ch

(p+ 1)(p+ 2)
+

(−1−
√

Φ)

2

)}
,

where 0 < c ≤ 1 is a constant. We also need the following norms:

∥∥(φk,ϑk)∥∥2

Ωh
:=
∥∥φk∥∥2

Ωh
+
∥∥ϑk∥∥2

Φ,Ωh
,
∥∥(φk,ϑk)∥∥2

Eh
:=
∥∥φk∥∥2

Eh
+
∥∥ϑk∥∥2

Φ,Eh
.

Theorem 3. Assume that the mesh size h, the time step ∆t and the solution order

p are chosen such that B > 0 and C < 1; then the approximate solution at the kth

iteration
(
φk,ϑk

)
converges to zero; i.e.,

∥∥(φk,ϑk)∥∥2

Eh
≤ Ck

∥∥(φ0,ϑ0
)∥∥2

Eh
,
∥∥(φk,ϑk)∥∥2

Ωh
≤ ∆tA (C + 1)Ck−1

∥∥(φ0,ϑ0
)∥∥2

Eh
,

where C is defined in (2.27).
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Proof. Choosing the test functions ϕ1 = φk+1, ϕ2 = uk+1, and ϕ3 = vk+1 in (2.26),

integrating the second term in (2.26a) by parts, and then summing equations in (2.26),

we obtain

1

∆t

(
φk+1, φk+1

)
T

+
Φ

∆t

(
ϑk+1,ϑk+1

)
T

+
√

Φ
〈
φk+1, φk+1

〉
∂T

+ γΦ
(
ϑk+1,ϑk+1

)
T

=
√

Φ
〈
φ̂k, φk+1

〉
∂T
− Φ

〈
φ̂k,n · ϑk+1

〉
∂T
. (2.28)

Summing (2.28) over all elements yields∑
T

1

∆t

(
φk+1, φk+1

)
T

+
Φ

∆t

(
ϑk+1,ϑk+1

)
T

+
√

Φ
〈
φk+1, φk+1

〉
∂T

+ γΦ
(
ϑk+1,ϑk+1

)
T

=
∑
∂T

√
Φ
〈
φ̂k, φk+1

〉
∂T
− Φ

〈
φ̂k,n · ϑk+1

〉
∂T

=
∑
e∈Eh

〈
2
√

Φ
({{

φk
}}

+
√

Φ
{{
ϑk · n

}})
,
({{

φk+1
}}
−
√

Φ
{{
ϑk+1 · n

}})〉
e
;

by the Cauchy-Schwarz inequality, we could bound the right-hand side as

≤
∑
e∈Eh

√
Φ
(∥∥{{φk}}∥∥2

e
+
∥∥{{φk+1

}}∥∥2

e

)
+ Φ

(∥∥{{φk}}∥∥2

e
+
∥∥{{ϑk+1 · n

}}∥∥2

e

)
+ Φ

(∥∥{{φk+1
}}∥∥2

e
+
∥∥{{ϑk · n}}∥∥2

e

)
+ Φ
√

Φ
(∥∥{{ϑk · n}}∥∥2

e
+
∥∥{{ϑk+1 · n

}}∥∥2

e

)
,

with a little algebraic manipulation we have

≤
∑
∂T

[
Φ +
√

Φ

2

〈
φk, φk

〉
∂T

+
Φ(1 +

√
Φ)

2

〈
ϑk,ϑk

〉
∂T

]

+
∑
∂T

[
Φ +
√

Φ

2

〈
φk+1, φk+1

〉
∂T

+
Φ(1 +

√
Φ)

2

〈
ϑk+1,ϑk+1

〉
∂T

]
. (2.29)

An application of the inverse trace inequality [31] for tensor product elements gives

(
φk+1, φk+1

)
T
≥ 2ch

d(p+ 1)(p+ 2)

〈
φk+1, φk+1

〉
∂T
, (2.30a)(

ϑk+1,ϑk+1
)
T
≥ 2ch

d(p+ 1)(p+ 2)

〈
ϑk+1,ϑk+1

〉
∂T
, (2.30b)
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where d is the spatial dimension, which in this case is 2, and 0 < c ≤ 1 is a constant.

For simplices we can use the trace inequalities in [152] and it will change only the

constants in the proof. Inequality (2.30), together with (2.29), implies∑
∂T

[(
ch

∆t(p+ 1)(p+ 2)
+

√
Φ− Φ

2

)〈
φk+1, φk+1

〉
∂T

+

((
γ +

1

∆t

)
ch

(p+ 1)(p+ 2)
+

(−1−
√

Φ)

2

)〈
Φϑk+1,ϑk+1

〉
∂T

]

≤
∑
∂T

[
Φ +
√

Φ

2

〈
φk, φk

〉
∂T

+
(1 +

√
Φ)

2

〈
Φϑk,ϑk

〉
∂T

]
, (2.31)

which implies ∥∥(φk+1,ϑk+1
)∥∥2

Eh
≤ C

∥∥(φk,ϑk)∥∥2

Eh
,

where the constant C is computed as in (2.27). Therefore,∥∥(φk+1,ϑk+1
)∥∥2

Eh
≤ Ck+1

∥∥(φ0,ϑ0
)∥∥2

Eh
. (2.32)

On the other hand, inequalities (2.29) and (2.32) imply∥∥(φk+1,ϑk+1
)∥∥2

Ωh
≤ ∆tA (C + 1)Ck

∥∥(φ0,ϑ0
)∥∥2

Eh
,

and this ends the proof.

Remark 3. The above theorem implies that, in order to have a convergent algorithm,

we need to have the following relation between ∆t, p, and h :

∆t = O

(
h

Φ(p+ 1)(p+ 2)

)
.

Unlike the convergent result in Theorem 1 for the scalar hyperbolic equation, the

finding in Theorem 3 shows that iHDG is conditionally convergent for a system of

hyperbolic equations. More specifically, the convergence rate depends on the mesh size

h, the time step ∆t, and the solution order p. This will be confirmed by numerical

results in Section 2.6.
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To show the convergence of the kth iterative solution to the exact solution

(φe,Φϑe), we assume that the exact solution is smooth, i.e., (φe,Φϑe)|T ∈ [Hs (T )]3 , s >

3/2. If we define

Ee (t) :=
∑
T

‖φe (t)‖2
Hs(T ) + ‖ϑe (t)‖2

Φ,Hs(T ) ,

results from [27] show that, for γ > 0 and σ = min {p+ 1, s}, we have

‖(φ− φe,ϑ− ϑe)‖2
Ωh
≤ C∆t

h2σ−1

p2s−1
Ee (m∆t) (2.33)

at the mth time step.

Corollary 2. Suppose the exact solution satisfies (φe,Φϑe)|T ∈ [Hs (T )]3 , s > 3/2;

then there exists a constant C independent of k, h, and p such that

∥∥(φk − φe,ϑk − ϑe)∥∥2

Ωh
≤ C∆t

(
A (C + 1)Ck−1

∥∥(φ0,ϑ0
)∥∥2

Eh
+
h2σ−1

p2s−1
Ee (m∆t)

)
,

with σ = min {p+ 1, s}.

2.5 iHDG methods for convection-diffusion PDEs
2.5.1 First order form

In this section we apply the iHDG algorithm, Algorithm 1, to the following

prototypical convection-diffusion equation in first order form:

κ−1σe +∇ue = 0 in Ω, (2.34a)

∇ · σe + β · ∇ue + νue = f in Ω. (2.34b)

We suppose that (2.34) is well-posed, i.e.,

ν − ∇ · β
2
≥ λ > 0. (2.35)
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Moreover, we restrict ourselves to a constant diffusion coefficient κ. An upwind HDG

numerical flux [25] is given by

F̂ · n =


ûn1

ûn2

ûn3

σ · n + β · nu+ τ (u− û)

 . (2.36)

Strongly enforcing the conservation condition yields

û =
1

τ+ + τ−
([[σ · n]] + [[β · nu]] + [[τu]]) ,

with τ being chosen as

τ± =
γ

2

(
α− β · n±

)
, (2.37)

where γ = 1 and α =
√
|β · n|2 + 4 for the upwind flux in [25]. We see that τ±

in general is a function which depends upon β and is always positive. Similar to

the previous sections, it is sufficient to consider the homogeneous problem. Applying

the iHDG algorithm, Algorithm 1 with τ , v as test functions, we have the following

iterative scheme:

κ−1
(
σk+1, τ

)
T
−
(
uk+1,∇ · τ

)
T

+
〈
ûk, τ · n

〉
∂T

= 0 (2.38a)

−
(
σk+1,∇v

)
T
−
(
uk+1,∇ · (βv)− νv

)
T

+
〈
σk+1 · n + β · nuk+1 + τ(uk+1 − ûk), v

〉
∂T

= 0, (2.38b)

where

ûk =
[[σk · n]] + [[β · nuk]] + [[τuk]]√

|β · n|2 + 4
.
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For ε, h > 0 and 0 < c ≤ 1 given, define

C1 :=
3(‖β · n‖2

L∞(∂T ) + τ̄ 2)(τ̄ ε+ 1)

2ε
, C2 :=

3(τ̄ ε+ 1)

2ε
, (2.39)

C3 :=
τ̄ + ‖β · n‖L∞(∂T )

2
, C4 :=

ε

2
, (2.40)

D :=
A

B
, A = max{C1,C2}, E :=

max{C3,C4}
min{κ−1, λ}

, F :=
A

min{κ−1, λ}
, (2.41)

B := min{ 2chκ−1

d(p+ 1)(p+ 2)
− C4,

2chλ

d(p+ 1)(p+ 2)
+ τ∗ − C3}. (2.42)

As in the previous section, we need the following norms:

∥∥(σk, uk)∥∥2

Ωh
:=
∥∥σk∥∥2

Ωh
+
∥∥uk∥∥2

Ωh
,
∥∥(σk, uk)∥∥2

Eh
:=
∥∥σk∥∥2

Eh
+
∥∥uk∥∥2

Eh
.

Theorem 4. Suppose that the mesh size h and the solution order p are chosen such

that B > 0 and D < 1; the algorithm (2.38a)-(2.38b) converges in the following sense:

∥∥(σk, uk)∥∥2

Eh
≤ Dk

∥∥(σ0, u0
)∥∥2

Eh
,
∥∥(σk, uk)∥∥2

Ωh
≤ (ED + F)Dk−1

∥∥(σ0, u0
)∥∥2

Eh
,

where D,E, and F are as defined in (2.41).

Proof. Choosing σk+1 and uk+1 as test functions in (2.38a)-(2.38b), integrating the

second term in (2.38a) by parts, using (2.13) for second term in (2.38b), and then

summing up the resulting two equations, we get

κ−1
(
σk+1,σk+1

)
T

+

(
−∇ · β

2
uk+1, uk+1

)
T

+ ν
(
uk+1, uk+1

)
T
− 1

2

〈
β · nuk+1, uk+1

〉
∂T

+
〈
ûk,σk+1 · n

〉
∂T

+
〈
β · nuk+1 + τ(uk+1 − ûk), uk+1

〉
∂T

= 0. (2.43)

Due to the condition (2.35),

κ−1
(
σk+1,σk+1

)
T

+ λ
(
uk+1, uk+1

)
T

+
〈
τuk+1, uk+1

〉
∂T

≤
〈
τ ûk, uk+1

〉
∂T
− 1

2

〈
β · nuk+1, uk+1

〉
∂T
−
〈
ûk,σk+1 · n

〉
∂T
. (2.44)
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By the Cauchy-Schwarz and Young inequalities and the fact that |β · n| ≤

‖β · n‖L∞(∂Ωh) and letting τ̄ := ‖τ‖L∞(∂Ωh), τ∗ := inf∂T∈∂Ωh τ ,

κ−1‖σk+1‖2
L2(T ) + λ‖uk+1‖2

L2(T ) + τ∗‖uk+1‖2
L2(∂T )

≤ τ̄ ε+ 1

2ε
‖ûk‖2

L2(∂T ) +
τ̄ + ‖β · n‖L∞(∂T )

2
‖uk+1‖2

L2(∂T ) +
ε

2
‖σk+1‖2

L2(∂T ).

Therefore,

∑
T

[
κ−1‖σk+1‖2

L2(T ) + λ‖uk+1‖2
L2(T ) + τ∗‖uk+1‖2

L2(∂T )

]
≤
∑
∂T

τ̄ ε+ 1

2ε
‖ûk‖2

L2(∂T )

+
τ̄ + ‖β · n‖L∞(∂T )

2
‖uk+1‖2

L2(∂T ) +
ε

2
‖σk+1‖2

L2(∂T ). (2.45)

By the Cauchy-Schwarz inequality

‖ûk‖2
L2(∂T ) ≤

3‖[[σk · n]]‖2
L2(∂T ) + 3‖[[β · nuk]]‖2

L2(∂T ) + 3‖[[τuk]]‖2
L2(∂T )

4
,

which implies

∑
∂T

‖ûk‖2
L2(∂T ) ≤

∑
∂T

3‖σk‖2
L2(∂T ) + 3(‖β · n‖2

L∞(∂T ) + τ̄ 2)‖uk‖2
L2(∂T ). (2.46)

Combining (2.45) and (2.46), we get

∑
T

[
κ−1‖σk+1‖2

L2(T ) + λ‖uk+1‖2
L2(T ) + τ∗‖uk+1‖2

L2(∂T )

]
≤

∑
∂T

[
3(τ̄ ε+ 1)

2ε
‖σk‖2

L2(∂T ) +
3(‖β · n‖2

L∞(∂T ) + τ̄ 2)(τ̄ ε+ 1)

2ε
‖uk‖2

L2(∂T )

+
τ̄ + ‖β · n‖L∞(∂T )

2
‖uk+1‖2

L2(∂T ) +
ε

2
‖σk+1‖2

L2(∂T )

]
. (2.47)

By the inverse trace inequality (2.30) we infer from (2.47) that

∑
∂T

[
(

2chκ−1

d(p+ 1)(p+ 2)
− C4)‖σk+1‖2

L2(∂T ) + (
2chλ

d(p+ 1)(p+ 2)
+ τ∗ − C3)‖uk+1‖2

L2(∂T )

]
≤
∑
∂T

[
C1‖uk‖2

L2(∂T ) + C2‖σk‖2
L2(∂T )

]
,
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which implies

∥∥(σk+1, uk+1
)∥∥2

Eh
≤ D

∥∥(σk, uk)∥∥2

Eh
,

where the constant D is computed as in (2.41). Therefore,

∥∥(σk+1, uk+1
)∥∥2

Eh
≤ Dk+1

∥∥(σ0, u0
)∥∥2

Eh
. (2.48)

Inequalities (2.47) and (2.48) imply

∥∥(σk+1, uk+1
)∥∥2

Ωh
≤ (ED + F)Dk

∥∥(σ0, u0
)∥∥2

Eh
,

and this concludes the proof.

Remark 4. For time-dependent convection-diffusion equation, we choose to discretize

the spatial differential operators using HDG. For the temporal derivative, we use im-

plicit time stepping methods, again with either the backward Euler or Crank–Nicolson

method for simplicity. The iHDG approach in this case is almost identical to the

one for the steady state equation except that we now have an additional L2-term,(
uk+1, v

)
T
/∆t, in the local equation (2.38b). This improves the convergence of iHDG.

Indeed, the convergence analysis is almost identical except we now have λ + 1/∆t in

place of λ.

2.5.2 Comment on iHDG methods for elliptic PDEs

In this section we consider elliptic PDEs with β = 0, κ = 1 in (2.34). First,

using the conditions for convergence derived in section 2.5.1, let us analyze the iHDG

scheme with upwind flux (2.37). Now for elliptic PDEs the stabilization τ for upwind

flux reduces to τ = 1, and this violates the condition B > 0 in Theorem 4. Therefore,

for any mesh, the iHDG scheme with upwind flux will diverge, and this is also observed

in our numerical experiments.
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To fix the issue, we carry out an analysis similar to that in section 2.5.1, but

this time without a specific τ . Taking ε = 1
τ̄
, the condition B > 0 dictates the

following mesh-dependent τ for the convergence of the iHDG scheme:

τ̄ > O

(
d(p+ 1)(p+ 2)

4h

)
.

This result shows that the convergence of the iHDG scheme with upwind flux for

elliptic PDEs requires mesh-dependent stabilization. It is also worth noting that

this coincides with the form of stabilization used in hybridizable interior penalty

methods [61] for elliptic PDEs, even though the schemes described in [61] and iHDG

are different.

Guided by the above analysis, we take τ = τ̄ = τ∗ = γ(p+1)(p+2)
h

, where γ > d
4

is a constant we still need to enforce D < 1 for the convergence of the iHDG scheme.

Generally this requires four conditions depending upon minimum and maximum of

constants A,B as in Theorem 4. However, the simple choice of τ = γ(p+1)(p+2)
h

makes

A = C1, and the number of conditions is reduced to two depending on whichever term

in B is minimum. They are given by

h > O

(√
23γd(p+ 1)(p+ 2)

2
√
λ

)
and h > O

(√
24d(p+ 1)(p+ 2)γ√

4γ − d

)
.

We can see that the iHDG scheme as an iterative solver is conditionally con-

vergent for diffusion dominated PDEs: that is if the mesh is too fine, then the above

conditions are violated and the scheme diverges.

2.6 Numerical results

In this section various numerical results supporting the theoretical results are

provided for the 2D and 3D transport equations, the linearized shallow water equation,
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and the convection-diffusion equation in different regimes. In this section we also use

the notation Nel to denote the total number of elements which is same as NT .

2.6.1 Steady state transport equation

The goal is to verify Theorems 1 and 2 for the transport equation (2.5) in 2D

and 3D settings using the upwind HDG and the NPC fluxes.

2.6.1.1 2D steady state transport equation with discontinuous solution

We consider the case similar to the one in [25, 82] where f = 0 and β =

(1 + sin(πy/2), 2) in (2.5). The domain is [0, 2] × [0, 2] and the inflow boundary

conditions are given by

g =


1 x = 0, 0 ≤ y ≤ 2
sin6 (πx) 0 < x ≤ 1, y = 0
0 1 ≤ x ≤ 2, y = 0

.

To terminate the iHDG algorithm, we use the following stopping criterion:

‖uk − uk−1‖L2 < 10−10, (2.49)

i.e., iHDG stops when there is insignificant change between two successive iterations.

The evolution of the iterative solution for the mesh with 1024 elements and

solution order 4 using both upwind and NPC fluxes is shown in figure 2.1. In both

cases, we observe that the iterative solution evolves from inflow to outflow as the

number of iterations increases. Thanks to the built-in upwinding mechanism of the

iHDG algorithm, this implicit marching is automatic; that is, we do not order the

elements to march in the flow direction. As can be seen, iHDG with NPC flux

converges faster (in fact, in a finite number of iterations), as predicted by Theorem

2.
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(a) uk at k = 16 (b) uk at k = 48 (c) uk at k = 64

(d) uk at k = 16 (e) uk at k = 48 (f) uk at k = 196

Figure 2.1: Evolution of the iterative solution for the 2D transport equation using
the NPC flux (top row) and the upwind HDG flux (bottom row).

Nel(2D) Nel(3D) p
2D solution 3D solution

Upwind NPC Upwind NPC
16 8 3 65 9 39 7
64 64 3 91 17 49 12
256 512 3 133 33 79 23
1024 4096 3 209 65 136 47
16 8 4 65 9 35 6
64 64 4 87 17 51 12
256 512 4 129 33 83 24
1024 4096 4 196 64 143 48

Table 2.1: The number of iterations taken by the iHDG algorithm using NPC and
upwind HDG fluxes for the transport equation in 2D and 3D settings.

The fourth and fifth columns of Table 2.1 show the number of iterations re-

quired to converge for both the fluxes with different meshes and solution orders 3 and
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4. We observe that the number of iterations is (almost) independent of solution order5

for both the fluxes, which is in agreement with the theoretical results in Theorems 1

and 2. This is important for high-order methods; i.e., the solution order (and hence

accuracy) can be increased while keeping the number of iHDG iterations unchanged.

2.6.1.2 3D steady state transport equation with smooth solution

In this example we choose β = (z, x, y) in (2.5). Also, we take the following

exact solution:

ue =
1

π
sin(πx) cos(πy) sin(πz).

The forcing is selected in such a way that it corresponds to the exact solution. Here

the domain is [0, 1] × [0, 1] × [0, 1] with faces x = 0, y = 0, and z = 0 as the inflow

boundaries. A structured hexahedral mesh is used for the simulations. Since we know

the exact solution, we use the following stopping criterion:

|‖uk − ue‖L2(Ω) − ‖uk−1 − ue‖L2(Ω)| < 10−10. (2.50)

Figure 2.2 shows the h-convergence of the HDG discretization with the iHDG

iterative solver. The convergence is optimal with rate (p+ 1) for both fluxes. Figure

2.3 compares the convergence history of the iHDG solver in the log-linear scale. As

proved in Theorem 1, the iHDG with upwind flux is exponentially convergent with

respect to the number of iterations k, while the convergence is attained in a finite

number of iterations for the NPC flux, as predicted in Theorem 2. Note that the

stagnation region observed near the end of each curve is due to the fact that for a

particular mesh size h and solution order p we can achieve only as much accuracy as

prescribed by the HDG discretization error and cannot go beyond that. Numerical

5The results for p = {1, 2} are not shown, as the number of iterations is very similar to that of
the p = {3, 4}-cases.
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Figure 2.2: h-convergence of the HDG method using iHDG with upwind and NPC
fluxes.
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Figure 2.3: Error history in terms of the number iterations for solution order p = 3
(left) and p = 4 (right) as the mesh is refined.

results for different solution orders6 also verify the fact that the convergence of the

iHDG algorithm is independent of the solution order p. The evolution of the iHDG

solution in terms of the number of iterations is shown in Figure 2.4. Again, for the

scalar transport equation, iHDG automatically marches the solution from the inflow

6Here the results for p = {1, 2} are omitted for brevity.
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(a) u at iteration = 1 (b) u at iteration = 32 (c) u at iteration = 48

(d) u at iteration = 1 (e) u at iteration = 32 (f) u at iteration = 143

Figure 2.4: Evolution of the iHDG solution in terms of the number of iterations for
the NPC flux (top row) and the upwind HDG flux (bottom row).

to the outflow. We also record in the sixth and seventh columns of Table 2.1 the

number of iterations that the iHDG algorithm took for both the fluxes. As predicted

by our theoretical findings, the number of iterations is independent of the solution

order.

2.6.2 Linearized shallow water equations

In this section we consider (2.25) with a linear standing wave, for which we

set Φ = 1, f = 0, γ = 0 (zero bottom friction), and τ = 0 (zero wind stress). The

domain is [0, 1] × [0, 1], and the wall boundary condition is applied on the domain
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boundary. The following exact solution [70] is taken:

φe = cos(πx) cos(πy) cos(
√

2πt), (2.51a)

ue =
1√
2

sin(πx) cos(πy) sin(
√

2πt), (2.51b)

ve =
1√
2

cos(πx) sin(πy) sin(
√

2πt). (2.51c)
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Figure 2.5: h-convergence of iHDG for 105 time steps with ∆t = 10−6 (left) and the
number of iHDG iterations per time step with ∆t = h

(p+1)(p+2)
(right) for the linearized

shallow water equation.

The iHDG algorithm with upwind HDG flux described in Section 2.4 along

with the Crank–Nicolson method for time discretization is employed in this problem.

The convergence of the solution is presented in Figure 2.5. Here we have taken

∆t = 10−6 as the stepsize with 105 steps. As can be seen, the optimal convergence

rate of (p + 1) is attained. The number of iterations required per time step in this

case is constant and is always equal to 2 for all meshes and solution orders considered.

The reason is due to (i) a warm-start strategy, that is, the initial guess for each time

step is taken as the solution of the previous time step, and (ii) small time stepsize.

Following Remark 3, we choose ∆t = h
(p+1)(p+2)

and report the number of

iterations for different meshes and solution orders in Figure 2.5. Clearly, finer meshes

and higher solution orders, require smaller time stepsizes, and hence a smaller number

of iterations, for the iHDG algorithm to converge.
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2.6.3 Convection-Diffusion Equation

In this section (2.34) is considered with the exact solution taken as

ue =
1

π
sin(πx) cos(πy) sin(πz).

The forcing is chosen such that it corresponds to the exact solution. The domain is

the same as the one in section 2.6.1.2. The Dirichlet boundary condition based on the

exact solution is applied on the boundary faces, and the stopping criterion is same as

in (2.50).

2.6.3.1 Convection dominated regime

Let us consider 10−3 ≤ κ ≤ 10−6, ν = 1, and β = (1+z, 1+x, 1+y). Since the

maximum velocity in this example is O(1), this represents a convection dominated

regime. Figure 2.6 shows the optimal h-convergence of the iHDG method with the

upwind HDG flux7 for κ = 10−3 and κ = 10−6, respectively. The error history for

solution orders p = {3, 4} is given in Figure 2.7. As expected, for κ = 10−6, the iHDG

method with either upwind or NPC flux behaves similarly to the pure convection case.

From Table 2.2 the convergence of the upwind iHDG approach remains the same; that

is, the number of iterations is insensitive to the diffusion coefficient κ. The iHDG

approach with the NPC flux improves as κ decreases. This is because the stabilization

(τ) of the NPC flux contains κ, whereas the stabilization of the upwind flux does not.

2.6.3.2 Mixed (hyperbolic-elliptic) regime

In this regime, we take κ = 10−2, ν = 1, and β = (1 + z, 1 + x, 1 + y). Table

2.2 shows that both upwind and NPC fluxes fail to converge for a number of cases

7The convergence with the NPC flux is similar and hence not shown.
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Figure 2.6: h-convergence of iHDG method with upwind HDG flux for κ =
{10−3, 10−6}.

(“∗” indicates divergence) though the upwind iHDG is more robust. This is due to

the violation of the necessary condition B > 0 in Theorem 4 for finer meshes. From

section 2.5.1, by choosing ε = O
(

1
τ̄

)
for both upwind and NPC fluxes we can estimate

the minimum mesh sizes, and they are shown in Table 2.3. Comparing the second

and third rows of Table 2.3 with the first, third, and sixth columns of Table 2.2 we

see that the numerical results differ from the theoretical estimates by a constant. In

case of the upwind flux the constant is 2, and for the NPC flux it is 4. That is, if

we multiply the second and third rows of Table 2.3 with 2 and 4, respectively, and

compare it with the numerical results in Table 2.2, we can see an agreement.
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h p
Upwind flux NPC flux

κ = 10−2 κ = 10−3 κ = 10−6 κ = 10−2 κ = 10−3 κ = 10−6

0.5 1 24 23 23 10 7 5
0.25 1 30 34 35 21 14 12
0.125 1 50 55 56 94 26 22
0.0625 1 90 94 97 * 52 46

0.5 2 26 24 25 13 8 5
0.25 2 41 42 42 22 15 12
0.125 2 66 67 67 * 26 23
0.0625 2 * 109 110 * 59 46

0.5 3 27 31 31 21 8 5
0.25 3 33 33 38 * 16 12
0.125 3 * 58 60 * 30 24
0.0625 3 * 102 106 * 59 48

0.5 4 26 27 27 73 8 5
0.25 4 50 41 43 * 16 12
0.125 4 * 71 72 * 32 24
0.0625 4 * 123 125 * 71 48

Table 2.2: The number of iHDG iterations for various κ with upwind and NPC fluxes.

Flux p = 1 p = 2 p = 3 p = 4
Upwind h > 0.019 h > 0.0375 h > 0.0625 h > 0.094

NPC h > 0.0225 h > 0.045 h > 0.075 h > 0.1125

Table 2.3: Theoretical estimates on the minimum mesh size for convergence of upwind
and NPC fluxes for κ = 0.01 from section 2.5.1.

2.6.3.3 Diffusion regime (elliptic equation)

As an example for the diffusion limit, we take β = 0 and κ = 1. In order to

verify the conditional convergence in section 2.5.2, we choose three different values

of ν in the set {1, 10, 100}. Recall in section 2.5.2 that the upwind flux does not

converge for κ = 1 and β = 0 (pure diffusion regime). It is true for NPC flux also,

due to lack of mesh-dependent stabilization. From the conditions derived in section

2.5.2 we choose τ = (p+1)(p+2)
h

. The stopping criterion is taken as in (2.50).
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Figure 2.7: Convergence history for the iHDG method with upwind and NPC fluxes
for κ = 10−3 (top row) and κ = 10−6 (bottom row).

In Table 2.4 we compare the number of iterations the iHDG algorithm takes to

converge for ν = {1, 10} cases. Note that “∗” indicates that the scheme either reaches

2000 iterations or diverges. The convergent condition in section 2.5.2 is equivalent

to h > O
(

1√
λ

)
, and since

√
λ =
√
ν we see similar convergence/divergence behavior

for both ν = 1 and 10 (because the lower bound for h is of the same order for these

40



cases). For ν = 100 the lower bound for h is one order of magnitude smaller, and

this allows us to obtain convergence for two additional cases: (i) Nel = 512 and p = 4

with 1160 iterations; and (ii) Nel = 4096 and p = 2 with 1450 iterations.

Nel
ν = 1 ν = 10

p = 1 p = 2 p = 3 p = 4 p = 1 p = 2 p = 3 p = 4
8 4 24 60 98 3 17 54 90
64 37 119 285 569 32 108 249 497
512 158 527 1296 * 130 429 1124 *
4096 1519 * * * 1178 * * *

Table 2.4: The number of iHDG iterations for ν = 1 and ν = 10 with τ = (p+1)(p+2)
h

.
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Figure 2.8: Convergence of the iHDG algorithm for different mesh size h and solution
order p = {3, 4} for 3D elliptic equation with ν = 1 and ν = 10.

Figure 2.8 shows the convergence history for different meshes and solution

orders for ν = 1 and ν = 10. We notice that the convergence trend is different from

the pure convection and convection-diffusion cases; that is, it is exponential in the

number of iterations starting from the beginning, but the rate is less. We also show

in Figure 2.9 the evolution of the magnitude of σ (σ = |σ|) with respect to the
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(a) σ at iteration = 1 (b) σ at iteration = 10 (c) σ at iteration = 20

(d) σ at iteration = 30 (e) σ at iteration = 90 (f) σ at iteration = 569

Figure 2.9: Evolution of σ with respect to the number of iterations for ν = 1.

number of iterations for Nel = 64 and solution order p = 4. Unlike the convection (or

convection-dominated) case, the convergence of the iHDG solution in this case does

not have a preferable direction, as the elliptic nature of the PDEs is encoded in the

iHDG algorithm via the numerical flux.

2.6.4 Time dependent convection-diffusion equation

In this section we consider the following equation:

κ−1σe +∇ue = 0 in Ω, (2.52a)
∂ue

∂t
+∇ · σe + β · ∇ue = 0 in Ω. (2.52b)

We are interested in the transport of the contaminant concentration [112, 12] with

diffusivity κ = 0.01 in a 3D domain Ω = [0, 5] × [−1.25, 1.25] × [−1.25, 1.25] with
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convective velocity field β given as8

β =
(

1− eγx cos(2πy),
γ

2π
eγx sin(2πy), 0

)
,

where γ = Re
2
−
√

Re2

4
+ 4π2 and Re = 100. Starting from t = 0, and for every second

afterward, the same distribution of contaminant concentration of the form

u0 = e
(x−1)2+y2+z2

0.52 + e
(x−1)2+(y−0.5)2+z2

0.52 + e
(x−1)2+(y+0.5)2+z2

0.52

is injected into the flow field. A time stepsize of ∆t = 0.025 is selected and the

simulation is run for 400 time steps, i.e., until T = 10, with the Crank–Nicolson

method. Here, we use the mesh with Nel = 512 elements and solution order p = 4.

On the left boundary, i.e., x = 0,−1.25 ≤ y ≤ 1.25,−1.25 ≤ z ≤ 1.25, the Dirichlet

boundary condition u = 0 is applied, while on the remaining boundary faces, we

employ the homogeneous Neumann boundary condition ∇u · n = 0. The Peclet

number for this problem is 200. This exhibits a wide range of mixed hyperbolic and

parabolic regimes and hence is a good test bed for the proposed iHDG scheme. In

this example, the iHDG algorithm with NPC flux does not converge even for coarse

meshes and low solution orders (this can be seen in section 2.6.3). We therefore

show numerical results only for the upwind HDG flux in Figure 2.10. The scheme

requires approximately 46 iterations for each time step to reach the stopping criterion

‖uk−uk−1‖L2 < 10−6. Since ∇·β = 0, ν = 0 and λ = 1/∆t (see Remark 4), we obtain

from section 2.5.1 the following estimate for the time stepsize: ∆t = O
(

h
(p+1)(p+2)

)
.

Using this estimate, we compare the number of iterations the iHDG algorithm takes

to converge for different meshes and solution orders in Table 2.5. We do not obtain

convergence for Nel = 4096 and solution orders equal to 3 and 4: the main reason

is that this problem is in the mixed hyperbolic and parabolic regime, and the above

setting does not satisfy the conditions for convergence (see Section 2.6.3).

8Here, β is an extension of the 2D analytical solution of Kovasznay flow [90].
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(a) u at t = 0 (b) u at t = 0.75

(c) u at t = 2.0 (d) u at t = 3.0

Figure 2.10: Solution u as a function of time using the iHDG algorithm with the
upwind flux for the contaminant transport problem (2.52).

Nel p = 1 p = 2 p = 3 p = 4
8 12 24 23 22
64 26 26 22 20
512 21 23 17 37
4096 17 18 * *

Table 2.5: The number of iHDG iterations per time step for the contaminant transport
problem with various solution orders and mesh sizes.

2.7 Discussion

In this chapter we have presented an iterative solver, namely iHDG, for HDG

discretizations of linear PDEs. The method exploits the structure of HDG discretiza-

tion and ideas from domain decomposition methods (DDMs). One of the key features

of the iHDG algorithm is that it requires only local solves, i.e., element-by-element
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and face-by-face, completely independent of each other, during each iteration. It can

also be considered as a block Gauss–Seidel method for the augmented HDG system

with volume and weighted trace unknowns. Thanks to the built-in stabilization via

the weighted trace and the structure of the HDG discretization, unlike traditional

Gauss–Seidel schemes, the convergence of iHDG is independent of the ordering of

the unknowns. Using an energy approach, we rigorously derive the conditions under

which the iHDG algorithm is convergent for the transport equation, the linearized

shallow water equation, and the convection-diffusion equation. In particular, for the

scalar transport equation, the algorithm is convergent for all meshes and solution

orders, and the convergence rate is independent of solution order. This feature makes

the iHDG solver especially suitable for high-order DG methods; that is, high-order

(and hence more accurate) solutions do not require more iterations. The scheme in

fact performs an implicit marching, and the solution converges in patches of elements

automatically from the inflow to the outflow boundaries. For the linearized shallow

water equation, we prove that the convergence is conditional on the meshsize and

the solution order. Similar conditional convergence is also shown for the convection-

diffusion equation in first order form. We have studied the performance of the scheme

in convection dominated, mixed (hyperbolic-elliptic), and diffusion regimes and nu-

merically verified our theoretical results.
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Chapter 3

An Improved Iterative HDG Approach for Partial
Differential Equations

3.1 Improvement to the iHDG approach

To reduce the cost of solving the trace system, in chapter 2 [108] we introduced

the iHDG approach the idea of which is to break the coupling between û and u in

(2.2) by iteratively solving for u in terms of û in (2.2a), and û in terms of u in (2.2b).

Let us call it as iHDG-I to distinguish it from the approach developed in this chapter1.

A number of questions need to be addressed for the iHDG-I approach. First,

with the upwind flux it theoretically takes infinite number of iterations to converge for

the scalar transport equation. Second, it is conditionally convergent for the linearized

shallow water system; in particular, it blows up for fine meshes and/or large time

stepsizes. Furthermore, we have not been able to estimate the number of iterations as

a function of time stepsize, solution order, and meshsize. Third, it is also conditionally

convergent for the convection-diffusion equation, especially in the diffusion-dominated

regime.

The approach constructed in this chapter, which we call iHDG-II, overcomes

all the aforementioned shortcomings. In particular, it converges in a finite number of

iterations for the scalar transport equation and is unconditionally convergent for both

1The contents of this chapter are largely based on the published manuscript [109]. The contribu-
tions of the author in the article ranged from numerical implementation of the algorithm, theoretical
analysis and writing the manuscript.
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the linearized shallow water system and the convection-diffusion equation. Moreover,

we provide several additional findings: 1) we make a connection between iHDG and

the parareal method, which reveals interesting similarities and differences between the

two methods; 2) we show that iHDG can be considered as a locally implicit method,

and hence being somewhat in between fully explicit and fully implicit approaches; 3)

for both the linearized shallow water system and the convection-diffusion equation,

using an asymptotic approximation, we uncover a relationship between the number

of iterations and time stepsize, solution order, meshsize and the equation parameters.

This allows us to choose the time stepsize such that the number of iterations is

approximately independent of the solution order and the meshsize; 4) we show that

iHDG-II has improved stability and convergence rates over iHDG-I; and 5) we provide

both strong and weak scalings of the iHDG-II approach up to 16, 384 cores.

We now present a detailed construction of the iHDG-II approach. We define

the approximate solution for the volume variables at the (k + 1)th iteration using the

local equation (2.2a) as

−
(
F
(
uk+1

)
,∇v

)
T

+
〈
F
(
uk+1

)
· n + |A| (uk+1 − ûk,k+1),v

〉
∂T

+
(
Cuk+1,v

)
T

= (f ,v)T , (3.1)

where the weighted trace |A| ûk,k+1 is computed from (2.2b) using volume unknown

in element T at the (k + 1)th iteration, i.e.,
(
uk+1

)−, and volume solution of the

neighbors at the (k)th iteration, i.e.,
(
uk
)+:〈

2 |A| ûk,k+1,µ
〉
∂T

=
〈
|A|
{(

uk+1
)−

+
(
uk
)+
}
,µ
〉
∂T

+
〈
F
{(

uk+1
)−} · n− + F

{(
uk
)+
}
· n+,µ

〉
∂T
. (3.2)

Algorithm 2 summarizes the iHDG-II approach. Compared to iHDG-I, iHDG-II im-

proves the coupling between û and u while still avoiding intra-iteration communica-

tion between elements. The trace û is double-valued during the course of iterations
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for iHDG-II and in the event of convergence it becomes single valued up to a specified

tolerance. Another principal difference is that while the well-posedness of iHDG-I ele-

mental local solves is inherited from the original HDG counterpart, it has to be shown

for iHDG-II. This is due to the new way of computing the weighted trace in (3.2)

that involves uk+1, and hence changing the structure of the local solves. Similar and

independent work for HDG methods for elliptic/parabolic problems have appeared

in [60, 61, 62]. Here, we are interested in pure hyperbolic equations/systems and

convection-diffusion equations. Unlike existing matrix-based approaches, our conver-

gence analysis is based on an energy approach that exploits the variational structure

of HDG methods. Our framework is more general: indeed it recovers the contraction

factor results in [60] for elliptic equations as one of the special cases.

Algorithm 2 The iHDG-II approach.
Ensure: Given initial guess u0, compute the weighted trace |A| û0,1 using (3.2).
1: while not converged do
2: Solve the local equation (3.1) for uk+1 using the weighted trace |A| ûk,k+1.
3: Compute |A| ûk+1,k+2 using (3.2).
4: Check convergence. If yes, exit, otherwise set k = k + 1 and continue.
5: end while

3.2 iHDG-II for linear hyperbolic PDEs

In this section we show that iHDG-II improves upon iHDG-I in many aspects

discussed in section 2.3. The PDEs of interest are the (steady and time dependent)

transport equation, and the linearized shallow water system [108].

3.2.1 Transport equation

Let us start with the (steady) transport equation (2.5), applying the iHDG-

II algorithm 2 to the upwind HDG discretization [25] we obtain the approximate

solution uk+1 at the (k+ 1)th iteration restricted on each element T via the following
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independent local solve:

−
((
uk+1

)−
,∇ · (βv)

)
T

+
〈
β · n−

(
uk+1

)−
+ |β · n|

{(
uk+1

)− − ûk,k+1
}
, v
〉
∂T

= (f, v)T , (3.3)

where the weighted trace |β · n| ûk,k+1 is computed using information from the previ-

ous iteration and current iteration as

2 |β · n| ûk,k+1 =
{
β · n−

(
uk+1

)−
+ β · n+

(
uk
)+
}

+ |β · n|
{(
uk+1

)−
+
(
uk
)+
}
. (3.4)

Next we study the convergence of the iHDG-II method (3.3), (3.4). Since (2.5)

is linear as argued in chapter 2 it is sufficient to show that the algorithm converges

to the zero solution for the homogeneous equation with zero forcing f = 0 and zero

boundary condition g = 0. First, we will prove the well-posedness of the local solver

(3.3).

Lemma 1. Assume −∇ · β ≥ α > 0, i.e. (2.5) is well-posed. Then the local solver

(3.3) of the iHDG-II algorithm for the transport equation is well-posed.

Proof. Taking v =
(
uk+1

)− in (3.3), substituting (3.4) in (3.3) and applying homoge-

neous forcing condition yield

−
((
uk+1

)−
,∇ ·

{
β
(
uk+1

)−})
T

+
1

2

〈(
β · n− + |β · n|

) (
uk+1

)−
,
(
uk+1

)−〉
∂T

=
1

2

〈(
β · n+ + |β · n|

) (
uk
)+
,
(
uk+1

)−〉
∂T
. (3.5)

Since((
uk+1

)−
,∇ ·

{
β
(
uk+1

)−})
T

=
((
uk+1

)−
,∇ · β

(
uk+1

)−)
T

+
((
uk+1

)−
,β · ∇

(
uk+1

)−)
T
,
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integrating by parts the second term on the right hand side

((
uk+1

)−
,∇ ·

{
β
(
uk+1

)−})
T

=
((
uk+1

)−
,∇ · β

(
uk+1

)−)
T

−
((
uk+1

)−
,∇ ·

{
β
(
uk+1

)−})
T

+
〈
β · n−

(
uk+1

)−
,
(
uk+1

)−〉
∂T
,

yields the following identity, after rearranging the terms

((
uk+1

)−
,∇ ·

{
β
(
uk+1

)−})
T

=

((
uk+1

)−
,
∇ · β

2

(
uk+1

)−)
T

+
1

2

〈
β · n−

(
uk+1

)−
,
(
uk+1

)−〉
∂T
. (3.6)

Using (3.6) in (3.5) we get

∥∥∥(uk+1
)−∥∥∥2

−∇·β
2

,T
+
∥∥∥(uk+1

)−∥∥∥2

|β·n|/2,∂T
=

1

2

〈(
β · n+ + |β · n|

) (
uk
)+
,
(
uk+1

)−〉
∂T
. (3.7)

In equation (3.7) all the terms on the left hand side are positive. Since
(
uk
)+ is the

“forcing” for the local equation, by taking
(
uk
)+

= 0 the only solution possible is(
uk+1

)−
= 0 and hence the local solver is well-posed.

Having proved the well-posedness of the local solver we can now proceed to

prove the convergence of Algorithm 2 for the transport equation.

Theorem 5. Assume −∇ · β ≥ α > 0, i.e. (2.5) is well-posed. There exists J ≤ NT

such that the iHDG-II algorithm for the homogeneous transport equation converges to

the HDG solution in J iterations.

Proof. Using (3.7) from Lemma 1 and β · n+ > 0 on ∂T in, β · n+ ≤ 0 on ∂T out we

can write∥∥∥(uk+1
)−∥∥∥2

−∇·β
2

,T
+
∥∥∥(uk+1

)−∥∥∥2

|β·n|/2,∂T
=
〈
|β · n|ukext,

(
uk+1

)−〉
∂T in

. (3.8)
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where ukext is either the physical boundary condition or the solution of the neighboring

element that shares the same inflow boundary ∂T in.

Consider the set T1 of all elements T such that ∂T in is a subset of the physical

inflow boundary ∂Ωin on which we have ukext = 0 for all k ∈ N. We obtain from (3.8)

that ∥∥∥(uk+1
)−∥∥∥2

−∇·β
2

,T
+
∥∥∥(uk+1

)−∥∥∥2

|β·n|/2,∂T
= 0, (3.9)

which implies u1 = 0 on T ∈ K1, i.e. our iterative solver is exact on T ∈ T1 at the

first iteration.

Next, let us define Ω1
h := Ωh and

Ω2
h = Ω1

h\T1.

Consider the set T2 of all T in Ω2
h such that ∂T in is either (possibly partially) a subset

of the physical inflow boundary ∂Ωin or (possibly partially) a subset of the outflow

boundary of elements in T1. This implies, on ∂T in ∈ T2, ukext = 0 for all k ∈ N \ {1}.

Thus, ∀T ∈ T2, we have∥∥∥(uk)−∥∥∥2

−∇·β
2

,T
+
∥∥∥(uk)−∥∥∥2

|β·n|/2,∂T
= 0, ∀k ∈ N \ {1} , (3.10)

which implies u2 = 0 in T ∈ T2, i.e. our iterative solver is exact on T ∈ T2 at the

second iteration.

Repeating the same argument, we can construct subsets Tj ⊂ Ωh, on which

the iterative solution on T ∈ Tj is the exact HDG solution at the j-th iteration. Since

the number of elements NT is finite, there exists J ≤ NT such that Ωh = ∪Jj=1T
j.

It follows that the iHDG-II algorithm provides exact HDG solution on Ωh after J

iterations.
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Remark 5. Compared to iHDG-I [108], which requires an infinite number of iter-

ations to converge, iHDG-II needs finite number of iterations for convergence. The

key to the improvement is the stronger coupling between û and u by using
(
uk+1

)− in

(3.2) instead of
(
uk
)−. The proof of Theorem 5 also shows that iHDG-II automati-

cally marches the flow, i.e., each iteration yields the HDG solution exactly for a group

of elements. Moreover, the marching process is automatic (i.e., does not require an

ordering of elements) and adapts to the velocity field β under consideration.

3.2.2 Time-dependent transport equation

In this section we first comment on a space-time formulation of the iHDG

methods and compare it with the parareal methods studied in [59] for the time-

dependent scalar transport equation. Then we consider the semi-discrete version of

iHDG combined with traditional time integration schemes and compare it with the

fully implicit and explicit DG/HDG schemes.

3.2.2.1 Comparison of space-time iHDG and parareal methods for the
scalar transport equation

Space-time finite element methods have been studied extensively for the past

several years both in the context of continuous and discontinuous Galerkin methods

[84, 4, 118, 89, 52] and HDG methods [125]. Parareal methods, on the other hand,

were first introduced in [99] and various modifications have been proposed and studied

(see [65, 56, 102, 105, 63] and references therein).

In the scope of our work, we compare our methods with the parareal scheme

proposed in [59] for the scalar advection equation. Let us start with the following

ordinary differential equation

du

dt
= f in (0, T ), u(0) = g, (3.11)
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for some positive constant T > 0.

Corollary 3. Suppose we discretize the temporal derivative in (3.11) using the iHDG-

II method with the upwind flux and the elements Tj are ordered such that Tj is on the

left of Tj+1. At iteration k, uk
∣∣
Tj

converges to the HDG solution u|Tj for j ≤ k.

Proof. Since (3.11) can be considered as 1D transport equation (2.5) with velocity

β = 1, the proof follows directly from Theorem 5 and induction.

Note that the iHDG scheme can be considered as a parareal algorithm in which

the fine propagator is taken to be the local solver (3.1) and the coarse propagator

corresponds to the conservation condition (3.2). However, unlike existing parareal

algorithms, the coarse propagator of iHDG-parareal is dependent on the fine propa-

gator. Moreover, Corollary 3 says that after k iterations the iHDG-parareal solution

converges up to element k, a feature common to the parareal algorithm studied in

[59]. For time dependent hyperbolic PDEs, the space-time iHDG method again can

be understood as parareal approach, and in this case, a layer of space-time elements

converges after each iHDG-parareal iteration (see Remark 5). See Figure 3.1 and

Table 3.1 of section 3.4 for a demonstration in 2D where either x or y is considered

as “time”. It should be pointed out that the specific parareal method in [59] exactly

traces the characteristics, and hence may take less iterations to converge than the

iHDG-parareal method, but this is only true if the forward Euler discretization in

time, upwind finite difference in space, and CFL = 1 are used with constant advec-

tion velocity.

3.2.3 iHDG as a locally implicit method

In this section we discuss the relationship between iHDG and implicit/explicit

HDG methods. For the simplicity of the exposition, we consider time-dependent
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scalar transport equation given by:

∂ue

∂t
+ β · ∇ue = f. (3.12)

We first review the implicit/explicit HDG schemes for (3.12), and then compare them

with iHDG-II. The implicit Euler HDG scheme for (3.12) reads(
um+1

∆t
, v

)
T

−
(
um+1,∇ · (βv)

)
T

+
〈
β · num+1 + |β · n|(um+1 − ûm+1), v

〉
∂T

=

(
fm+1 +

um

∆t
, v

)
T

,〈
[[|β · n|ûm+1]],µ

〉
∂T

=
〈
[[|β · n|um+1]] + [[β · num+1]],µ

〉
∂T
. (3.13)

Here, um+1 and ûm+1 stands for the volume and the trace unknowns at the current

time step, whereas um and ûm are the computed solutions from the previous time

step. Clearly, um+1 and ûm+1 are coupled and this can be a challenge for large-scale

problems.

Next let us consider an explicit HDG with forward Euler discretization in time

for (3.12):(
um+1

∆t
, v

)
T

= (um,∇ · (βv))T − 〈β · nu
m + |β · n|(um − ûm), v〉∂T

+

(
fm +

um

∆t
, v

)
T

,

〈[[|β · n|ûm]],µ〉∂T = 〈[[|β · n|um]] + [[β · num]],µ〉∂T ,

which shows that we can solve for um+1 element-by-element, completely independent

of each other. However, since it is an explicit scheme, the CFL restriction for stability

can increase the computational cost for problems involving fast time scales and/or

fine meshes.

Now applying one iteration of the iHDG-II scheme for the implicit HDG for-

mulation (3.13) with um as the initial guess yields
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(
um+1

∆t
, v

)
T

−
(
um+1,∇ · (βv)

)
T

+
〈
β · num+1 + |β · n|(um+1 − ûm,m+1), v

〉
∂T

=

(
fm+1 +

um

∆t
, v

)
T

,〈
[[|β · n|ûm,m+1]],µ

〉
∂T

=
〈
|β · n|

{(
um+1

)−
+ (um)+

}
,µ
〉
∂T

+
〈
β · n−

(
um+1

)−
+ β · n+ (um)+ ,µ

〉
∂T
.

Compared to the explicit HDG scheme, iHDG-II requires local solves since it

is locally implicit. As such, its CFL restriction is much less (see Figure 3.2), while still

having similar parallel scalability of the explicit method.2 Indeed, Figure 3.2 shows

that the CFL restriction is only indirectly through the increase of the number of

iterations; for CFL numbers between 1 and 5, the number of iterations varies mildly.

Thus, as a locally implicit method, iHDG-II combines advantages of both explicit

(e.g. matrix free and parallel scalability) and implicit (taking reasonably large time

stepsize without facing instability) methods. Clearly, on convergence iHDG solution

is, up to the stopping tolerance, the same as the fully-implicit solution.

3.2.4 iHDG-II for system of linear hyperbolic PDEs

In this section, similar to chapter 2 as an example for the system of linear

hyperbolic PDEs, we consider the linearized oceanic shallow water system (2.25).

We study the iHDG-II methods for this equation and compare it with the results in

chapter 2.

Applying the iHDG-II algorithm, Algorithm 2, to the homogeneous system

2In fact, due to local solves, iHDG-II could provide more efficient communication and computation
overlapping.
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gives(
φk+1

∆t
, ϕ1

)
T

−
(
Φϑk+1,∇ϕ1

)
T

+
〈

Φϑk+1 · n +
√

Φ
(
φk+1 − φ̂k,k+1

)
, ϕ1

〉
∂T

= 0, (3.14a)(
Φuk+1

∆t
, ϕ2

)
T

−
(

Φφk+1,
∂ϕ2

∂x

)
T

+
〈

Φφ̂k,k+1n1, ϕ2

〉
∂T

=
(
fΦvk+1 − γΦuk+1, ϕ2

)
T
, (3.14b)(

Φvk+1

∆t
, ϕ3

)
T

−
(

Φφk+1,
∂ϕ3

∂y

)
T

+
〈

Φφ̂k,k+1n2, ϕ3

〉
∂T

=
(
−fΦuk+1 − γΦvk+1, ϕ3

)
T
, (3.14c)

where ϕ1, ϕ2 and ϕ3 are the test functions, and

φ̂k,k+1 =
1

2

{(
φk+1

)−
+
(
φk
)+
}

+

√
Φ

2

{(
ϑk+1

)− · n− +
(
ϑk
)+ · n+

}
. (3.15)

Lemma 2. The local solver (3.14) of the iHDG-II algorithm for the linearized shallow

water equation is well-posed.

Proof. Since
{(
φk
)+
,Φ
(
ϑk
)+
}

is a “forcing” to the local solver it is sufficient to set

them to {0,0} and show that the only solution possible is
{(
φk
)−
,Φ
(
ϑk
)−}

= {0,0}.

Choosing the test functions ϕ1 = φk+1, ϕ2 = uk+1 and ϕ3 = vk+1 in (3.14), integrating

the second term in (3.14a) by parts, and then summing equations in (3.14) altogether,

we obtain

1

∆t

(
φk+1, φk+1

)
T

+
Φ

∆t

(
ϑk+1,ϑk+1

)
T

+
√

Φ
〈
φk+1, φk+1

〉
∂T

+ γΦ
(
ϑk+1,ϑk+1

)
T

−
√

Φ
〈
φ̂k,k+1, φk+1

〉
∂T

+ Φ
〈
φ̂k,k+1,n · ϑk+1

〉
∂T

= 0. (3.16)

Summing (3.16) over all elements yields

∑
T

1

∆t

(
φk+1, φk+1

)
T

+
Φ

∆t

(
ϑk+1,ϑk+1

)
T

+ γΦ
(
ϑk+1,ϑk+1

)
T

+
√

Φ
〈
φk+1, φk+1

〉
∂T
−
√

Φ
〈
φ̂k,k+1, φk+1

〉
∂T

+ Φ
〈
φ̂k,k+1,n · ϑk+1

〉
∂T

= 0. (3.17)
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Substituting (3.15) in the above equation and canceling some terms we get,

∑
T

1

∆t

∥∥∥(φk+1
)−∥∥∥2

T
+

(
γ +

1

∆t

)∥∥∥(ϑk+1
)−∥∥∥2

Φ,T
+

√
Φ

2

∥∥∥(φk+1
)−∥∥∥2

∂T

+

√
Φ

2

∥∥∥(ϑk+1 · n
)−∥∥∥2

Φ,∂T
=
∑
∂T

√
Φ

2

〈{(
φk
)+

+
√

Φ
(
ϑk · n

)+
}
,
(
φk+1

)−〉
∂T

− Φ

2

〈{(
φk
)+

+
√

Φ
(
ϑk · n

)+
}
,
(
ϑk+1 · n

)−〉
∂T
. (3.18)

Since Φ > 0, all the terms on the left hand side are positive. When we

set
{(
φk
)+
,Φ
(
ϑk
)+
}

= {0,0}, i.e. the data from neighboring elements, the only

solution possible is
{(
φk+1

)−
,Φ
(
ϑk+1

)−}
= {0,0} and hence the method is well-

posed.

Next, our goal is to show that
(
φk+1,Φϑk+1

)
converges to zero. To that end,

let us define

C :=
A

B
, A :=

max {1,Φ}+
√

Φ

4ε
, G :=

ε
(

max {1,Φ}+
√

Φ
)

4
(3.19)

and

B1 :=

(
ch

∆t(p+ 1)(p+ 2)
+

2
√

Φ− (Φ +
√

Φ)ε

4

)

B2 :=

((
γ +

1

∆t

)
ch

(p+ 1)(p+ 2)
+

2
√

Φ− (1 +
√

Φ)ε

4

)
,B := min {B1,B2} .

where 0 < c ≤ 1, ε > 0 are constants. We also need the following norms:

∥∥(φk,ϑk)∥∥2

Ωh
:=
∥∥φk∥∥2

Ωh
+
∥∥ϑk∥∥2

Φ,Ωh
,∥∥(φk,ϑk · n)∥∥2

Eh
:=
∥∥φk∥∥2

Eh
+
∥∥ϑk · n∥∥2

Φ,Eh
.

Theorem 6. Assume that the meshsize h, the time step ∆t and the solution order

p are chosen such that B > 0 and C < 1, then the approximate solution at the kth

57



iteration
(
φk,ϑk

)
converges to zero in the following sense

∥∥(φk,ϑk · n)∥∥2

Eh
≤ Ck

∥∥(φ0,ϑ0 · n
)∥∥2

Eh
,∥∥(φk,ϑk)∥∥2

Ωh
≤ ∆t (A + GC)Ck−1

∥∥(φ0,ϑ0 · n
)∥∥2

Eh
,

where C, A and G are defined in (3.19).

Proof. Using Cauchy-Schwarz and Young’s inequalities for the terms on the right

hand side of (3.18) and simplifying we have

∑
T

1

∆t

∥∥∥(φk+1
)−∥∥∥2

T
+

(
γ +

1

∆t

)∥∥∥(ϑk+1
)−∥∥∥2

Φ,T
+

√
Φ

2

∥∥∥(φk+1
)−∥∥∥2

∂T

+

√
Φ

2

∥∥∥(ϑk+1 · n
)−∥∥∥2

Φ,∂T
≤
∑
∂T

Φ +
√

Φ

4ε

∥∥∥(φk)+
∥∥∥2

∂T

+
1 +
√

Φ

4ε

∥∥∥(ϑk · n)+
∥∥∥2

Φ,∂T
+
ε(Φ +

√
Φ)

4

∥∥∥(φk+1
)−∥∥∥2

∂T

+
ε(1 +

√
Φ)

4

∥∥∥(ϑk+1 · n
)−∥∥∥2

Φ,∂T
. (3.20)

Inequality (2.30), together with (3.20), implies

∑
∂T

[(
ch

∆t(p+ 1)(p+ 2)
+

2
√

Φ− (Φ +
√

Φ)ε

4

)∥∥∥(φk+1
)−∥∥∥2

∂T

+

((
γ +

1

∆t

)
ch

(p+ 1)(p+ 2)
+

2
√

Φ− (1 +
√

Φ)ε

4

)∥∥∥(ϑk+1 · n
)−∥∥∥2

Φ,∂T

]

≤
∑
∂T

[
Φ +
√

Φ

4ε

∥∥∥(φk)+
∥∥∥2

∂T
+

1 +
√

Φ

4ε

∥∥∥(ϑk · n)+
∥∥∥2

Φ,∂T

]
, (3.21)

which then implies

∥∥(φk+1,ϑk+1 · n
)∥∥2

Eh
≤ C

∥∥(φk,ϑk · n)∥∥2

Eh
,

where the constant C is computed as in (3.19). Therefore

∥∥(φk+1,ϑk+1 · n
)∥∥2

Eh
≤ Ck+1

∥∥(φ0,ϑ0 · n
)∥∥2

Eh
. (3.22)
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On the other hand, inequalities (3.20) and (3.22) imply

∥∥(φk+1,ϑk+1
)∥∥2

Ωh
≤ ∆t (A + GC)Ck

∥∥(φ0,ϑ0 · n
)∥∥2

Eh

and this ends the proof.

We now derive an explicit relation between the number of iterations k, the

meshsize h, the solution order p, the time step ∆t and the mean flow geopotential

height Φ. First, we need to find an ε which makes C < 1. From (3.19) we obtain the

following inequality for ε

max{1,Φ}+
√

Φ
4ε(

ch
∆t(p+1)(p+2)

+ 2
√

Φ−(max{1,Φ}+
√

Φ)ε
4

) < 1. (3.23)

A sufficient condition for the denominator to be positive and existence of a real ε > 0

to the above inequality (3.23) is

ch
∆t(p+1)(p+2)

max {1,Φ}+
√

Φ
>

1

2
. (3.24)

This allows us to find an ε > 0 that satisfies the inequality (3.23) for all Φ. In

particular, we can pick

ε =

2ch
∆t(p+1)(p+2)

+
√

Φ

max {1,Φ}+
√

Φ
. (3.25)

Using this value of ε in definition (3.19) we get

C =

 max{1,Φ}+
√

Φ√
Φ

1 + 2ch√
Φ∆t(p+1)(p+2)

2

and since the numerator is always greater than 1, the necessary and sufficient condi-

tion for the convergence of the algorithm is given by

1(
1 + 2ch√

Φ∆t(p+1)(p+2)

)2k

k→∞−→ 0.
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Using binomial theorem and neglecting higher order terms we get

k = O

(
∆t(p+ 1)(p+ 2)

√
Φ

4ch

)
. (3.26)

Note that if we choose ∆t similar to explicit method, i.e. ∆t = O
(

h
p2
√

Φ

)
[143], k =

O(1) independent of h and p. With this result in hand we are now in a better position

to understand the stability of iHDG-I and iHDG-II algorithms for the linearized

shallow water system. For unconditional stability of the iterative algorithms under

consideration, we need B > 0 in (3.19) independent of h, p and ∆t. There are two

terms in B: B1 coming from φ and B2 from ϑ or ϑ · n. We can write B in Theorem

3 for iHDG-I also as3

B1 :=

(
ch

∆t(p+ 1)(p+ 2)
+

2
√

Φ− (Φ +
√

Φ)ε

2

)
(3.27)

B2 :=

((
γ +

1

∆t

)
ch

(p+ 1)(p+ 2)
− (1 +

√
Φ)ε

2

)
,B := min {B1,B2} . (3.28)

Note that for both iHDG-I and iHDG-II algorithms we have the stability in φ in-

dependent of h, p and ∆t, since we can choose ε sufficiently small independent of

h, p and ∆t and make B1 > 0 in (3.27) and (3.19). However, from (3.28) we have

to choose ε as a function of (h, p,∆t) in order to have B2 > 0, and hence iHDG-I

lacks the mesh independent stability in the term associated with ϑ. This explains the

instability observed in iHDG-I for fine meshes and/or large time steps. Since B2 in

(3.19) can be made positive with a sufficiently small ε, independent of h, p and ∆t,

iHDG-II is always stable: a significant advantage over iHDG-I.

3This can be obtained by using Young’s inequality with ε in the proof of Theorem 3.
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3.3 iHDG-II for linear convection-diffusion PDEs
3.3.1 First order form

In this section we apply the iHDG-II algorithm, Algorithm 2, to the first order

form of the convection-diffusion equation (2.34). Similar to the previous sections, it

is sufficient to consider the homogeneous problem. Applying the iHDG-II algorithm,

Algorithm 2 with the upwind HDG flux (2.37) we have the following iterative scheme

κ−1
(
σk+1, τ

)
T
−
(
uk+1,∇ · τ

)
T

+
〈
ûk,k+1, τ · n

〉
∂T

= 0, (3.29a)

−
(
σk+1,∇v

)
T
−
(
uk+1,∇ · (βv)− νv

)
T

+〈
β · nuk+1 + σk+1 · n + τ(uk+1 − ûk,k+1), v

〉
∂T

= 0, (3.29b)

where

ûk,k+1 =

{(
σk+1 · n

)−
+
(
σk · n

)+
}

+
{
β · n−

(
uk+1

)−
+ β · n+

(
uk
)+
}

α

+

{
τ−
(
uk+1

)−
+ τ+

(
uk
)+
}

α
. (3.30)

Lemma 3. The local solver (3.29) of the iHDG-II algorithm for the convection-

diffusion equation is well-posed.

Proof. The proof is similar to the one for the shallow water equation and hence is

given in the Appendix A.

Now, we are in a position to prove the convergence of the algorithm. For ε,
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h > 0 and 0 < c ≤ 1 given, define

C1 :=
(‖β · n‖L∞(∂T ) + τ̄)(τ̄ + 1)

2εα∗
, C2 :=

(τ̄ + 1)

2εα∗
, (3.31)

C3 :=
ετ̄(1 + τ̄ + ‖β · n‖L∞(∂T ))

2α∗
, C4 :=

ε(1 + τ̄ + ‖β · n‖L∞(∂T ))

2α∗
, (3.32)

D :=
A

B
, A = max{C1,C2}, E :=

max{C3,C4}
min{κ−1, λ}

, F :=
A

min{κ−1, λ}
, (3.33)

B1 :=
2chκ−1

d(p+ 1)(p+ 2)
+

1

2ᾱ
− C4,B2 :=

2chλ

d(p+ 1)(p+ 2)
+

1

ᾱ
− C3, (3.34)

B := min{B1,B2}, (3.35)

where τ̄ := ‖τ‖L∞(∂Ωh), ᾱ := ‖α‖L∞(∂Ωh), and α∗ := inf
∂T∈∂Ωh

α. As in the previous

section we need the following norms

∥∥(σk, uk)∥∥2

Ωh
:=
∥∥σk∥∥2

Ωh
+
∥∥uk∥∥2

Ωh
,
∥∥(σk · n, uk)∥∥2

Eh
:=
∥∥σk · n∥∥2

Eh
+
∥∥uk∥∥2

Eh
.

Theorem 7. Suppose that the meshsize h and the solution order p are chosen such

that B > 0 and D < 1, the algorithm (3.29a)-(3.30) converges in the following sense

∥∥(σk · n, uk)∥∥2

Eh
≤ Dk

∥∥(σ0 · n, u0
)∥∥2

Eh
,∥∥(σk, uk)∥∥2

Ωh
≤ (ED + F)Dk−1

∥∥(σ0 · n, u0
)∥∥2

Eh
,

where D,E and F are defined in (3.33).

Proof. The proof is similar to the one for the shallow water equation and hence is

given in the Appendix B.

Similar to the discussion in section 3.2.4, one can show that

k = O

(
d(p+ 1)(p+ 2)

8ᾱchmin {κ−1, λ}

)
. (3.36)

For time-dependent convection-diffusion equation, we discretize the spatial

differential operators using HDG. For the temporal derivative, we use implicit time
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stepping methods, again with either backward Euler or Crank-Nicolson method for

simplicity. The analysis in this case is almost identical to the one for steady state

equation except that we now have an additional L2-term
(
uk+1, v

)
T
/∆t in the local

equation (3.29b). This improves the convergence of the iHDG-II method. Indeed,

the convergence analysis is the same except we now have λ + 1/∆t in place of λ. In

particular we have the following estimation

k = O

(
d(p+ 1)(p+ 2)

8ᾱchmin {κ−1, (λ+ 1/∆t)}

)
.

Remark 6. Similar to the shallow water system if we choose ∆t = O
(
h
p2

)
then

the number of iterations is independent of h and p. This is more efficient than the

iterative hybridizable IPDG method for the parabolic equation in [62], which requires

∆t = O(h
2

p4
) in order to achieve constant iterations. The reason is perhaps due the

fact that hybridizable IPDG is posed directly on the second order form whereas HDG

uses the first order form. While iHDG-I has mesh independent stability for only u

(see Theorem 4), iHDG-II does for both u and σ; an important improvement.

3.4 Numerical results

In this section various numerical results verifying the theoretical results are

provided for the transport equation, the shallow water equation, and the convection-

diffusion equation in both two- and three-dimensions. Similar to the previous chapter

here also we use the notation Nel to denote the total number of elements which is

same as NT .

3.4.1 Transport equation

We consider the same 2D and 3D test cases in section 2.6.1 of chapter 2. The

mesh consists of structured quadrilateral (2D)/hexahedral (3D) elements. Through-
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out the numerical section unless otherwise stated explicitly, just as in chapter 2 we

use the stopping criterion (2.50) if the exact solution is available, and (2.49) if the

exact solution is not available.

From Theorem 5, the theoretical number of iterations is approximately d ×

(Nel)
1/d (where d is the dimension). It can be seen from the fourth and fifth columns

of Table 3.1 that the numerical results agree well with the theoretical prediction. We

can also see that the number of iterations is independent of solution order, which

is consistent with the theoretical result Theorem 5. Figure 3.1 shows the solution

converging from the inflow boundary to the outflow boundary in a layer-by-layer

manner. Again, the process is automatic, i.e., no prior element ordering or information

about the advection velocity is required.

Now, we study the parallel performance of the iHDG algorithm. For this

purpose we have implemented the iHDG algorithm on top ofmangll [157, 29, 28] which

is a high-order continuous/discontinuous finite element library that supports large

scale parallel simulations using MPI. The simulations are conducted on Stampede

1 at the Texas Advanced Computing Center (TACC). Stampede 1 is a 10 petaflop

supercomputer consisting of 6400 Sandy Bridge nodes. Each node consists of two

8-core Xeon E5-2680 2.7GHz processors and one 61-core Xeon Phi SE10P KNC MIC

1.1GHz coprocessor. It has 32GB main memory per node (8 × 4GB DDR3-1600

MHz) and the coprocessor has additional 8GB GDDR5 memory. The interconnect

is a 56GB/s Mellanox FDR InfiniBand network in a 2-level fat-tree topology. To

carry out the computations, we have used only the main processors and not the

coprocessors.

Table 3.2 shows strong scaling results for the 3D transport problem. The

parallel efficiency is over 90% for all the cases except for the case where we use 16,384
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(a) uk at k = 16 (b) uk at k = 48 (c) uk at k = 64

Figure 3.1: Evolution of the iterative solution for the 2D transport equation using
the iHDG-II algorithm.

Nel(2D) Nel(3D) p 2D solution 3D solution
4x4 2x2x2 1 9 6
8x8 4x4x4 1 17 12

16x16 8x8x8 1 33 23
32x32 16x16x16 1 65 47
4x4 2x2x2 2 9 6
8x8 4x4x4 2 17 12

16x16 8x8x8 2 33 23
32x32 16x16x16 2 65 47
4x4 2x2x2 3 9 7
8x8 4x4x4 3 17 12

16x16 8x8x8 3 33 23
32x32 16x16x16 3 65 47
4x4 2x2x2 4 9 6
8x8 4x4x4 4 17 12

16x16 8x8x8 4 33 24
32x32 16x16x16 4 64 48

Table 3.1: The number of iterations taken by the iHDG-II algorithm for the transport
equation in 2D and 3D settings.

cores and 16 elements per core whose efficiency is 59%. This is due to the fact that,

with 16 elements per core, the communication cost dominates the computation. Table

3.3 shows the weak scaling with 1024 and 128 elements/core. Since the number of

iterations increases linearly with the number of elements, we can see a similar increase
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in time when we increase the number of elements, and hence cores.

Let us now consider the time dependent 3D transport equation with the fol-

lowing exact solution

ue = e−5((x−0.35t)2+(y−0.35t)2+(z−0.35t)2),

where the velocity field is chosen to be β = (0.2, 0.2, 0.2). In Figure 3.2 are the

numbers of iHDG iterations taken per time step to converge versus the CFL number.

As can be seen, for CFL in the range [1, 5] the number of iterations grows mildly. As

a result, we get a much better weak scaling results in Table 3.4 in comparison to the

steady state case in Table 3.3.

Nel = 262, 144, p = 4, dof=32.768 million, Iterations=190
#cores time [s] Nel/core efficiency [%]

64 1758.62 4096 100.0
128 883.88 2048 99.5
256 439.94 1024 99.9
512 228.69 512 96.1
1024 113.87 256 96.5
2048 56.36 128 97.5
4096 29.26 64 91.8
16384 11.38 16 59
Nel = 2, 097, 152, p = 4, dof=262.144 million, Iterations=382
#cores time [s] Nel/core efficiency [%]

512 3634.89 4096 100.0
1024 1788.78 2048 101.5
2048 932.495 1024 97.3
4096 447.337 512 101.5
8192 232.019 256 97.9
16384 117.985 128 92.9

Table 3.2: Strong scaling results on TACC’s Stampede system for the 3D transport
problem.
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1024 Nel/core, p = 4
#cores time [s] time ratio Iterations ratio

4 103.93 1 1
32 217.23 2.1 2
256 439.94 4.2 4
2048 932.49 8.9 8

128 Nel/core, p = 4
#cores time [s] time ratio Iterations ratio

4 6.52 1 1
32 13.68 2.1 2
256 27.71 4.2 4
2048 56.37 8.6 8

Table 3.3: Weak scaling results on TACC’s Stampede system for the 3D transport
problem.

0 5 10 15
CFL

0

5

10

15

20

25

30

iH
D

G
-I

I I
te

ra
tio

ns
/ti

m
es

te
p

Figure 3.2: CFL versus Iterations for the 3D time dependent transport.

3.4.2 Linearized shallow water system

The goal of this section is to verify the theoretical findings in section 3.2.4. The

exact solution and settings of this experiment are same as section 2.6.2 in chapter 2
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128 Nel/core, p = 4, ∆t=0.01, |β|max=0.35
#cores time/timestep [s] time ratio Iterations ratio CFL

4 1.69 1 1 0.45
32 1.91 1.1 1.1 0.9
256 2.09 1.2 1.1 1.8
2048 2.72 1.6 1.4 3.6
16384 4.68 2.8 2.1 7.2

Table 3.4: Weak scaling results on TACC’s Stampede system for the 3D time depen-
dent transport problem.

for iHDG-I. We use Crank-Nicolson method for the temporal discretization and the

iHDG-II approach for the spatial discretization. In Table 3.5 we compare the number

of iterations taken by iHDG-I and iHDG-II methods for two different time steps

∆t = 0.1 and ∆t = 0.01. Here, “∗” indicates divergence. As can be seen from the

third and fourth columns, the iHDG-I method diverges for finer meshes and/or larger

time steps. This is consistent with the findings in section 3.2.4 where the divergence

is expected because of the lack of mesh independent stability in the velocity. On the

contrary, iHDG-II converges for all cases.

In Table 3.5, we use a series of structured quadrilateral meshes with uniform

refinements such that the ratio of successive meshsizes is 1/2. The asymptotic result

(3.26), which is valid for h
∆t(p+1)(p+2)

√
Φ
� 1, predicts that the ratio of the number

of iterations required by successive refined meshes is 2, and the results in Figure

3.3 confirm this prediction. The last two columns of Table 3.5 also confirms the

asymptotic result (3.26) that the number of iHDG-II iterations scales linearly with

the time stepsize.

Next, we study the iHDG iteration growth as the solution order p increases.

The asymptotic result (3.26) predicts that k = O(p2). In Table 3.6, rows 2–4 show the

ratio of the number of iterations taken for solution orders p = {2, 3, 4} over the one
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h p
iHDG-I iHDG-II

∆t = 10−1 ∆t = 10−2 ∆t = 10−1 ∆t = 10−2

0.25 1 19 6 14 6
0.125 1 * 6 18 9
0.0625 1 * 7 32 10
0.03125 1 * 9 59 8

0.25 2 * 9 15 9
0.125 2 * 11 19 9
0.0625 2 * 13 32 11
0.03125 2 * 15 59 12

0.25 3 * 7 16 8
0.125 3 * 9 20 8
0.0625 3 * 12 31 10
0.03125 3 * * 59 12

0.25 4 * 10 17 9
0.125 4 * 12 32 10
0.0625 4 * * 60 9
0.03125 4 * * 112 13

Table 3.5: Comparison of iHDG-I and iHDG-II for the linearized shallow water sys-
tem.

p
Meshsize (h) Asymptotics0.25 0.125 0.0625 0.03125

2 1.07 1.06 1 1 2
3 1.14 1.11 0.97 1 3.33
4 1.21 1.78 1.87 1.9 5

Table 3.6: Growth of iterations with solution order p for the iHDG-II method for the
linearized shallow water system with ∆t = 10−1.

for p = 1 for four different meshsizes as in Table 3.5. As can be seen, the theoretical

estimation is conservative.
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Figure 3.3: Growth of iterations with meshsize h for the iHDG-II method for the
linearized shallow water system with ∆t = 10−1.

3.4.3 Nonlinear shallow water system

In this section, we consider the nonlinear shallow water system, given by,

∂u

∂t
+∇ · F (u) = f , (3.37)

where the forcing function f , and the x-component and y-component of the flux F

are given by

Fx :=

 Hu
Hu2 + 1

2
gH2

Huv

 , Fy :=

 Hv
Huv

Hv2 + 1
2
gH2

 , and f :=

 0
−gbx
−gby

 ,

while the conservative variables u are defined as

u := (H,Hu,Hv)T .
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Here, H is the water depth, u is the depth averaged velocity component in the x-

direction, v is the depth averaged velocity component in the y-direction, b is the

bathymetry, and g is the gravitational constant.

For nonlinear problems both the local solver (2.2a) and the conservation con-

straints (2.2b) are nonlinear. In order to tackle these problems, we apply the iHDG

algorithms to solve the linearized system arising from each Newton step of the HDG

system (2.2). For the clarity of the exposition, let us consider one generic Newton

step. To begin, we define the following residuals for time dependent versions of (2.2a)

and (2.2b):

Res = (∂tu,v)Ωh
− (F (u) ,∇v)Ωh

+
〈
F̂ (u, û) · n,v

〉
∂Ωh

+ (Cu,v)Ωh
− (f ,v)Ωh

,

(3.38a)

Flx =
〈

[[F̂ (u, û) · n]],µ
〉
Eh

. (3.38b)

Here, the hybridized Lax-Friedrichs one, used in [25] is employed, i.e.,

F̂ (u, û) · n = F (u) · n + τI (u− û) ,

with û :=
(
Ĥ, Ĥu, Ĥv

)T
, the stabilization τ =

√
û2 + v̂2 + gĤ, and I the corre-

sponding identity matrix. Note that û and v̂ are given by û = Ĥu

Ĥ
and v̂ = Ĥv

Ĥ
.

If we define a Newton step for u and û as δu and δû, respectively, the linear

system for δu and δû resulting from each Newton step is given by (after the temporal

derivative is discretized, e.g., with backward Euler or Crank-Nicolson) ∂Res
∂u

∂Res
∂û

∂Flx
∂u

∂Flx
∂û


δu

δû

 =


−Res

−Flx

 , (3.39)

Applying iHDG-II algorithm to the linear system (3.39) we get

∂Res

∂u
δuk+1 +

∂Res

∂û
δûk,k+1 = −Res, (3.40)
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where δûk,k+1 is determined from the conservation condition as

[[
∂Flx

∂û
]]δûk,k+1 = −[[Flx]]−

(
∂Flx

∂u

)− (
δuk+1

)− − (∂Flx
∂u

)+ (
δuk
)+
. (3.41)

Once convergence is obtained, the volume and trace unknown are updated as

u −→ u + δu,

û −→ û + δû,

and we can proceed with the next Newton step.

For the first example, we study the convergence of the iHDG-II solver for a

translating vortex solution [64] whose exact solution is given by

He =

[
1− (γ − 1)

16γπ2
β2e2(1−R2)

] 1
γ−1

, ue = 1− βe(1−R2) (y − y0)

2π
,

ve = βe(1−R2) (x− t− x0)

2π
,

with R2 = (x− t− x0)2 + (y − y0)2 , x0 = 5, y0 = 0, and β = 5. We take γ = g = 2,

and a flat bathymetry b = bx = by = 0. The domain considered is Ω = [3.5, 5.5] ×

[−1, 1] and structured quadrilateral elements are used. The exact solution is used

to enforce the boundary condition. For time discretization, we again use the Crank-

Nicolson method, in which the time step is ∆t = 10−4 and there are 100 time steps. In

Figure 3.4, we compare the h−convergence rates obtained with the iHDG-II algorithm

and the direct solver. Results from both solvers are on top of each other with the

convergence rate between p and (p+ 1/2). In this case, each time step takes 2 − 3

Newton iterations, each of which takes less than 10 iHDG-II iterations. The stopping

criterion for iHDG-II algorithm is based on (2.49) and the stopping tolerance is taken

to be 10−10 for both iHDG-II and Newton iterations.
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Figure 3.4: Nonlinear shallow water system with translating vortex solution: conver-
gence rate for HDG methods with iHDG-II algorithm (blue dashed line) and direct
solver (red dashed squares).

Next, we consider the water drop problem considered in [25, 136, 161]. The

initial conditions are

H (x, y, 0) := 1 + 0.1 exp
[
−100 (x− 0.5)2 − 100 (y − 0.5)2],

and

Hu (x, y, 0) = Hv (x, y, 0) = 0,

that is, the flow is initially at rest.

We consider the case with flat bottom i.e., b = bx = by = 0 and the domain

of interest is Ω = [0, 1]2. A structured quadrilateral mesh with 64 elements (h =

0.125) and solution order p = 6 is used. Wall boundary conditions are applied to

the entire boundary ∂Ω. The Crank-Nicolson method with a time step of ∆t =
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0.0005 is employed and the simulation is run for 2000 time steps. The time evolution

of the water depth H and the depth averaged y-velocity v are shown in Figures

3.5 and 3.6, respectively. The u velocity evolution is same as v but rotated by 90

degrees, and hence is not shown. The numerical results are comparable to those in

[25, 136, 161]. In Figure 3.7, we show the number of iHDG-II iterations taken per

Newton iteration at the indicated times. The horizontal axis represents the number

of Newton iterations taken from (t−∆t) to t at the indicated times t. The markers in

the vertical axis indicate the number of iHDG-II iterations taken at the corresponding

Newton iteration in the horizontal axis to solve the linear system (3.39). The stopping

tolerance is taken to be 10−10 for both iHDG-II and Newton iterations. As can be

seen, approximately 16 Newton iterations are required per time step and the number

of iHDG-II iterations decreases with each Newton iteration. The reason is that,

after each Newton iteration, the initial guess (the solution from the previous Newton

iteration) for iHDG iteration is improved and upon convergence Newton steps are

smaller.

In Table 3.7 we compare the maximum number of iHDG-II iterations and

Newton iterations taken per time step for different meshsizes and time steps. Similar

to linear problems the number of iHDG-II iterations increases for finer meshsizes,

higher solution orders, and larger time steps. The number of Newton iterations on

the other hand decreases for finer meshsizes and approaches a constant. This is well-

known as the number of Newton iterations depends on the nonlinearity of the problem

and how well it is captured by the meshsize. Once the nonlinearity is captured by a

particular meshsize and solution order, the number of iterations remains unchanged

with further refinements [153, 2]. For smaller time steps the number of Newton

iterations is reduced since the solutions at two consecutive time steps are close to

each other.
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(a) H at t = 0 (b) H at t = 0.15

(c) H at t = 0.3 (d) H at t = 0.5

(e) H at t = 0.7 (f) H at t = 1

Figure 3.5: Evolution of the water depth H for the water drop test case with iHDG-II
algorithm.

3.4.4 Linear convection-diffusion equation

In this section the following exact solution for equation (2.34) is considered

ue =
1

π
sin(πx) cos(πy) sin(πz).
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(a) v at t = 0 (b) v at t = 0.15

(c) v at t = 0.3 (d) v at t = 0.5

(e) v at t = 0.7 (f) v at t = 1

Figure 3.6: Evolution of depth averaged y-velocity v for the water drop test case with
iHDG-II algorithm.

The forcing is chosen such that it corresponds to the exact solution. The velocity

field is chosen as β = (1 + z, 1 + x, 1 + y) and we take ν = 1. The domain is

[0, 1]× [0, 1]× [0, 1]. A structured hexahedral mesh is used for the simulations. The

stopping criterion based on the exact solution (2.50) is used.
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Figure 3.7: Number of iHDG-II iterations taken for each Newton iteration at different
times for the water drop test case with h = 0.125, p = 6 and ∆t = 0.0005.

In Table 3.8 we report the number of iterations taken by iHDG-I and iHDG-

II methods for different values of the diffusion coefficient κ. Similar to the shallow

water equations, due to the lack of stability in σ, iHDG-I diverges when κ is large for

fine meshes and/or high solution orders. The iHDG-II method, on the other hand,

converges for all the meshes and solution orders, and the number of iterations are

smaller than that of the iHDG-I method. Next, we verify the growth of iHDG-II

iterations predicted by the asymptotic result (3.36).

Since min {κ−1, λ} = λ for all the numerical results considered here, due to

(3.36) we expect the number of iHDG-II iterations to be independent of κ and this

can be verified in Table 3.8. In Figures 3.8(a), 3.8(b) and 3.8(c) the growth of iter-

ations with respect to meshsize h for κ = 10−2, 10−3 and 10−6 are compared. In the

asymptotic limit, for all the cases, the ratio of successive iterations reaches a value of

around 1.7 which is close to the theoretical prediction 2. Hence the theoretical analy-

sis predicts well the growth of iterations with respect to the meshsize h. On the other
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h p
iHDG-II Newton

∆t = 10−3 ∆t = 10−4 ∆t = 10−3 ∆t = 10−4

0.25 1 7 5 7 4
0.125 1 8 5 6 3
0.0625 1 10 5 3 3
0.03125 1 13 6 3 3

0.25 2 8 5 8 4
0.125 2 9 5 6 4
0.0625 2 12 6 6 3
0.03125 2 17 7 3 3

0.25 3 9 5 9 5
0.125 3 11 5 8 4
0.0625 3 14 6 3 3
0.03125 3 20 7 3 3

0.25 4 9 5 10 5
0.125 4 12 6 9 4
0.0625 4 18 7 5 3
0.03125 4 26 9 7 3

Table 3.7: Number of iHDG-II and Newton iterations for different meshsizes and time
stepsizes for the water drop test case of nonlinear shallow water system.

hand, columns 6− 8 in Table 3.8 show that the iterations are almost independent of

solution orders. This is not predicted by the theoretical results which indicates that

the number of iterations scales like O(p2). The reason is due to the convection domi-

nated nature of the problem, for which we have shown that the number of iterations

is independent of the solution order.

Finally, we consider the elliptic regime with κ = 1 and β = 0. For this case

we use the following stopping criterion based on the direct solver solution udirect

∥∥uk − udirect∥∥L2(Ω)
< 10−10.

As shown in Figure 3.8(d) and Table 3.9, our theoretical analysis predicts well the

relation between the number of iterations and the meshsize and the solution order.
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In Table 3.9 “ ∗ ” represents that the scheme has reached the maximum number of

iterations specified i.e. 2000 and didn’t converge to the specified tolerance limit of

10−10 yet.

h p
iHDG-I iHDG-II

κ = 10−2 κ = 10−3 κ = 10−6 κ = 10−2 κ = 10−3 κ = 10−6

0.5 1 24 23 23 17 17 17
0.25 1 30 34 35 25 25 26
0.125 1 50 55 56 35 37 38
0.0625 1 90 94 97 62 64 65

0.5 2 26 24 25 17 19 19
0.25 2 41 42 42 27 27 27
0.125 2 66 67 67 42 43 43
0.0625 2 * 109 110 67 70 71

0.5 3 27 31 31 19 19 19
0.25 3 33 33 38 24 26 27
0.125 3 * 58 60 38 39 41
0.0625 3 * 102 106 69 69 71

0.5 4 26 27 27 17 19 19
0.25 4 50 41 43 26 27 27
0.125 4 * 71 72 42 45 46
0.0625 4 * 123 125 73 78 79

Table 3.8: Comparison of iHDG-I and iHDG-II methods for different κ.

p
Meshsize (h) Asymptotics0.5 0.25 0.125 0.0625

2 2.41 2.11 2.03 2.01 2
3 4.07 3.55 3.17 * 3.33
4 6.09 5.23 4.81 * 5

Table 3.9: Growth of iterations with p for the iHDG-II method for the elliptic equa-
tion.
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(b) κ = 10−3
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(c) κ = 10−6
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(d) κ = 1 (elliptic)

Figure 3.8: Ratio of successive iterations as we refine the mesh for the iHDG-II
method for different κ.

3.4.5 SPE10 test case

In this section we consider a benchmark problem of subsurface flow through

porous media from the Tenth Society of Petroleum Comparative Solution Project

(SPE10, model 2) [35]. The flow is governed by the following elliptic equation (Darcy

law) written in the first-order form,

σ = −κ∇u on Ω,

∇ · σ = f on Ω, (3.42)

where σ is the Darcy velocity, u is the pressure and κ is the permeability.
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We consider the permeability field corresponding to the 75th layer as shown in

Figure 3.9(a). The permeability field varies by six orders of magnitude and is highly

heterogeneous. It gives rise to extremely complex velocity fields. The considered

domain is 1200× 2200 [ft2]. The mesh is chosen as 60× 220 quadrilateral elements,

so that the mesh skeleton aligns with the discontinuities in the permeability and

the permeability field is constant within each element. We choose f = 0, which

corresponds to the fact that there is no source or sink. For the boundary conditions,

we take the pressure on the left and right faces to be 1 and 0 respectively. On the

top and bottom faces, no-flux boundary condition σ · n = 0 is applied. We use the

upwind HDG flux (2.36) with the velocity β = 0 for this problem. In Figures 3.9(b),

and 3.10(a) we show the pressure field and the velocity field using direct solver with

solution order p = 1.

We next consider the iHDG-II algorithm with three different initial guesses:

1. zero,

2. solution of equation (3.42) with the average of the original permeability field

over the whole domain,

3. solution of equation (3.42) with the permeability field in each element given by

κ = κ+ rand(0, 1)× κ,

where rand(0, 1) is a random number between 0 and 1, i.e., we randomly perturb

the original permeability value in each element by 0%—100%.

In Figure 3.11 we show the three initial guesses for the pressure and in Figure

3.12 are the pressure fields corresponding to these initial guesses after 2000 iHDG-II

iterations using solution order p = 1. Since the third initial guess is the closest to
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the direct solution (compared to Figure 3.9(b)), the corresponding pressure field is

almost the same as the direct solution, while the others are not. The conclusion is

similar for the corresponding velocity fields in Figures 3.13 and 3.14. In order to have

a more quantitative comparison, we plot the relative error

‖error‖ =

√
‖σk+1 − σk‖2 + ‖uk+1 − uk‖2√

‖σk+1‖2 + ‖uk+1‖2

in Figure 3.10(b) as the number of iHDG iterations increases. For all of the initial

guesses, there is a quick drop in the errors in the first few iterations and thereafter the

errors decrease slowly. Compared to the other examples, this is the most challenging

one, for which the iHDG algorithm, if used as a direct solver, could be ineffective.

Nevertheless, this is a common feature of many of the fixed-point iterative methods

like Jacobi and Gauss-Seidel [24, 145]. Ongoing work is to employ iHDG as a smoother

for multigrid methods or as a preconditioner for GMRES iterations, and this is part

of our future work.

(a) Permeability field (b) Pressure field

Figure 3.9: SPE10 test case: (a) permeability field in log scale, and (b) pressure field
from direct solver for p = 1 solution.
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(a) Velocity field
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(b) Error history

Figure 3.10: SPE10 test case: (a) velocity field from direct solver for p = 1 solution,
and (b) error history with respect to iHDG-II iterations for the three different initial
guesses.

(a) Initial guess 1 (b) Initial guess 2 (c) Initial guess 3

Figure 3.11: SPE10 test case: three different initial guesses for the pressure field.

3.5 Discussion

In this chapter we have presented an iterative HDG approach which improves

upon the algorithm introduced in chapter 2 in several aspects. In particular, it con-

verges in a finite number of iterations for the scalar transport equation and is uncon-
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(a) iHDG solution with initial
guess 1

(b) iHDG solution with initial
guess 2

(c) iHDG solution with initial
guess 3

Figure 3.12: SPE10 test case: the pressure fields obtained with the iHDG-II algorithm
after 2000 iterations with three different initial guesses.

(a) Initial guess 1 (b) Initial guess 2 (c) Initial guess 3

Figure 3.13: SPE10 test case: three different initial guesses for the velocity field.

ditionally convergent for both the linearized shallow water system and the convection-

diffusion equation. Moreover, we provide several additional findings: 1) we make a

connection between iHDG and the parareal method, which reveals interesting sim-

ilarities and differences between the two methods; 2) we show that iHDG can be

considered as a locally implicit method, and hence being somewhat in between fully

explicit and fully implicit approaches; 3) for both the linearized shallow water sys-

tem and the convection-diffusion equation, using an asymptotic approximation, we

uncover a relationship between the number of iterations and time stepsize, solution
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(a) iHDG solution with initial
guess 1

(b) iHDG solution with initial
guess 2

(c) iHDG solution with initial
guess 3

Figure 3.14: SPE10 test case: velocity field obtained with iHDG-II algorithm after
2000 iterations with three different initial guesses.

order, meshsize and the equation parameters. This allows us to choose the time step-

size such that the number of iterations is approximately independent of the solution

order and the meshsize; 4) we show that iHDG-II has improved stability and conver-

gence rates over iHDG-I; 5) we provide both strong and weak scalings of our iHDG

approach up to 16, 384 cores; and 6) we show how iHDG approaches can be used as

a linear solver for nonlinear problem.

We want to note here that for both iHDG-I and iHDG-II approaches the

number of iterations increases with the increase in number of elements which is a

characteristic of one level domain decomposition methods. In order to keep the iter-

ations constant or reduce the growth with mesh refinements we need coarse solvers

which provide global coupling to the iHDG solvers. In that sense multigrid/multilevel

solvers are attractive and iHDG approaches can be used as smoothers in them.

While the usage of iHDG-I solvers as smoothers is straightforward because of

the single valued nature of trace unknowns, for iHDG-II solvers it is not the case.

Typically as a smoother we only perform few iterations and for iHDG-II the trace
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unknowns are single valued only upon convergence up to the specified tolerance.

Thus it is not clear how to directly use the iHDG-II solvers as smoothers inside

multigrid/multilevel approaches for the HDG trace system. There are few options

that are possible, after few iterations with iHDG-II solver we can use the conservation

condition to compute the single valued trace unknowns from the volume unknowns

or we can simply take average or some weighted average of the multivalued trace

unknowns after few iterations. Analysis is required to study the effectiveness of iHDG

approaches as smoothers and is reserved for future work.
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Chapter 4

A Geometric Multigrid for HDG Trace Systems

4.1 Multigrid methods for trace systems of hybridized meth-
ods

Over the past 30 years, a tremendous amount of research has been devoted to

the convergence of multigrid methods for linear systems arising from hybridized meth-

ods, both as iterative methods and as preconditioners for Krylov subspace methods.

Optimal convergence with respect to the number of unknowns is usually obtained un-

der mild elliptic regularity assumptions [18, 19, 20]. Multigrid algorithms have been

developed for mortar domain decomposition methods [16, 156]. Several multigrid

algorithms have been proposed for hybridized mixed finite element methods [21, 34].

Most of them are based on an equivalence between the interface operator and a non-

conforming finite element method, and for these methods optimal convergence has

already been established [15, 22]. Multigrid algorithms based on restricting the trace

(skeletal) space to linear continuous finite element space has been proposed for hy-

bridized mixed methods [74], hybridized discontinuous Galerkin methods [41], and

weak Galerkin methods [33]. These algorithms fall under the non-inherited category,

i.e., the coarse scale operators do not inherit all the properties of the fine scale ones.

To the best of our knowledge, no multigrid algorithm has been developed for the case

of multinumerics.
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In this chapter1 we develop a multigrid algorithm that applies to both hy-

bridized formulations and multinumerics. Here we only show results for hybridized

DG methods to match well with the contents of the other chapters and encourage

the readers to refer [158] for an example on multinumerics. The algorithm applies to

both structured and unstructured grids. At the heart of our approach is the energy-

preserving intergrid transfer operators which are a function of only the fine scale DtN

maps (to be discussed in details in section 4.3). As such they avoid any explicit

upscaling of parameters, and at the same time allow for the use of multinumerics

throughout the domain. The multigrid algorithm presented here thus differs from the

existing approaches in that the Galerkin coarse grid operator is a discretized DtN

map on every level.

This chapter is organized as follows. Section 4.2 introduces the model problem

and hybridized DG methods considered. In Section 4.3, we define the necessary

ingredients for our geometric multigrid algorithm, that is, the coarsening strategy,

the intergrid transfer operators, the local correction operator, and the smoothing

operator. These operators are then used to define the multigrid algorithm. Section 4.4

presents several numerical examples to study the robustness of the proposed algorithm

for different hybridized DG methods, smoothers, and test cases.

1The contents of this chapter are largely based on the manuscript [158], a slightly reduced version
of which is accepted for publication in the SIAM journal on scientific computing. The contributions
of the author ranged from numerical implementation of the multigrid solver for HDG, participation
in the theoretical analysis and writing the manuscript.
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4.2 Model problem and hybridized DG methods

Consider the following second order elliptic equation

−∇ · (K∇q) = f in Ω, (4.1a)

q = gD on ∂Ω. (4.1b)

where Ω is an open, bounded, and connected subset of Rd, with d ∈ {2, 3}. Here,

K is a symmetric, bounded, and uniformly positive definite tensor, f ∈ L2(Ω), and

gD ∈ H3/2(∂Ω).

First, we cast (4.1) into the following first-order or mixed form:

u = −K∇q in Ω, (4.2a)

∇ · u = f in Ω, (4.2b)

q = gD on ∂Ω. (4.2c)

The hybrid mixed DG method or hybridized DG (HDG) method for the dis-

cretization of (4.2) is defined as

(
K−1u,v

)
T
− (q,∇ · v)T + 〈λ,v · n〉∂T = 0, (4.3a)

− (u,∇w)T + 〈û · n, w〉∂T = (f, w)T , (4.3b)

〈[[û · n]], µ〉e = 0, (4.3c)

where the numerical flux û · n is given by

û · n = u · n + τ(q − λ). (4.4)

For simplicity, we have ignored the fact that (4.3a), (4.3b) and (4.3c) must

hold for all test functions v ∈ Vh (T ), w ∈ Wh (T ), and µ ∈Mh (e), respectively (this
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is implicitly understood throughout the chapter), where Vh, Wh, and Mh are defined

as

Vh (Ωh) =
{

v ∈
[
L2 (Ωh)

]d
: v|T ∈ [Pp (T )]d ∀T ∈ Ωh

}
,

Wh (Ωh) =
{
w ∈ L2 (Ωh) : w|T ∈ Pp (T )∀T ∈ Ωh

}
,

Mh (Eh) =
{
λ ∈ L2 (Eh) : λ|e ∈ Pp (e)∀e ∈ Eh

}
,

and similar spaces Vh (T ),Wh (T ), andMh (e) on T and e can be defined by replacing

Ωh with T and Eh with e, respectively.

Next, we consider the hybridized interior penalty DG (IPDG) schemes posed

in the primal form. To that end, we test (4.2a) with v = ∇w and then integrate by

parts twice the terms on the right hand side to obtain

(u,∇w)T = − (K∇q,∇w)T + 〈(q − λ),K∇w · n〉∂T .

Substituting this in equation (4.3b) gives

(K∇q,∇w)T − 〈(q − λ),K∇w · n〉∂T + 〈û · n, w〉∂T = (f, w)T . (4.5)

For IPDG schemes, the numerical flux takes the form

û · n = −K∇q · n + τ(q − λ), (4.6)

and it is required to satisfy the conservation condition (4.3c). Substituting the nu-

merical flux (4.6) in (4.5) we get the following primal form of the hybridized IPDG

scheme:

(K∇q,∇w)T − 〈(q − λ),K∇w · n〉∂T − 〈K∇q · n, w〉∂T

+ 〈τ(q − λ), w〉∂T = (f, w)T . (4.7)
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This scheme is called the hybridized symmetric IPDG scheme (SIPG-H) and has been

studied in [71, 38, 150]. In order to include the other hybridized IPDG schemes, we

can generalize (4.7) to

(K∇q,∇w)T − sf 〈(q − λ),K∇w · n〉∂T − 〈K∇q · n, w〉∂T

+ 〈τ(q − λ), w〉∂T = (f, w)T , (4.8)

where sf ∈ {−1, 0, 1}. The scheme corresponding to sf = −1 is called the hybridized

nonsymmetric IPDG scheme (NIPG-H) and the one with sf = 0 is called the hy-

bridized incomplete IPDG scheme (IIPG-H) [71]. It is interesting to note that in the

HDG scheme, if we do not integrate by parts (4.3a) and substitute u = −K∇q in

(4.3b) and (4.4) we obtain the IIPG-H scheme.

The common solution procedure for all of these hybridized DG methods can

now be described. First, we express the local volume unknowns u and/or q, element-

by-element, as a function of the skeletal unknowns λ. Then, we use the conservation

condition to construct a global linear system involving only the skeletal unknowns.

Once they are solved for, the local volume unknowns can be recovered in an element-

by-element fashion completely independent of each other. The main advantage of this

Schur complement approach is that, for high-order methods, the global trace system

is much smaller and sparser compared to the linear system for the volume unknowns

[38, 27]. The question that needs to be addressed is how to solve the trace system

efficiently. In chapters 2 and 3 we developed iterative HDG algorithms where we do

not construct a global trace system and instead relied on solving local and global

solvers alternatively to achieve convergence. The solvers however lacked algorithmic

optimality and the iterations increases with the increase in number of elements. In

the next section we develop a geometric multigrid algorithm to tackle this issue.
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4.3 Geometric multigrid algorithm based on DtN maps

For all of the hybridized methods described in the previous section, the re-

sulting linear systems for the skeletal unknowns λ, in operator form, can be written

as

Aλ = g. (4.9)

The well-posedness of the trace system (4.9) for the hybridized methods discussed in

the previous section has been shown in [38, 71].

The concept of a DtN map is essential to our approach, so we briefly describe

it here. A map A is called a DtN map/operator if it maps Dirichlet data on a domain

boundary to Neumann data. It is a particular type of Poincaré–Steklov operator,

which contains a large class of operators which map one type of boundary condition

to another for elliptic PDEs. In finite-dimension, the Schur complement of the linear

system with volume unknowns condensed out is also known as a discrete DtN map.

We refer readers to [122] for more information.

To define our multigrid algorithm we start with a sequence of partitions of the

mesh Ωh:

Ω1,Ω2, . . . ,ΩN = Ωh,

where each Ωk contains NTk closed (not necessarily convex, except on the finest level

where each NTk is in fact some element Tj in Ωh) macro-elements consisting of unions

of macro-elements from Ωk+1. Associated with each partition, we define interface grids

E1,E2, . . . ,EN = Eh, where each e ∈ Ek is the intersection of two macro-elements in

Ωk. Each partition Ek is in turn associated with a skeletal (trace) space Mk (to be

defined in Section 4.3.1).

Remark 7. We note that if each Ωk consists of simplices or parallelopipeds, then each

Mk is straightforward to define. In general, however, the macro-elements need not be
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one of these standard shapes, and we need to define a parameterization of each macro-

edge to define Mk. While this is certainly nontrivial, this calculation only needs to

be performed one time for each mesh and can be reused for many simulation or time

steps as long as the macro-elements (agglomeration) do not change. For all of the

results presented in Section 4.4, the time required to calculate these parameterizations

is negligible in comparison with the total simulation time.

We are now in position to introduce necessary ingredients to define our geo-

metric multigrid algorithm.

4.3.1 Coarsening strategy

In the multigrid algorithm we first coarsen in p, followed by the coarsening in

h. We explain these two coarsening procedures in detail as follows.

4.3.1.1 p-coarsening

In our p-coarsening strategy, we restrict the solution order p on the finest level

N to p = 1 on level N − 1 with the same number of elements. In this case the

Lagrange multiplier2 spaces become

Mk =

{
{η ∈ Pp(e),∀e ∈ Ek} for k = N,

{η ∈ P1(e), ∀e ∈ Ek} for k = 1, 2, . . . , N − 1.

Let us comment on one subtle point. It would be ideal if we could use P0 in coarser

levels because it is trivial to define piecewise constant functions along arbitrary macro-

edges (two-dimensional) or macro-faces (three-dimensional), i.e., no parameterization

is needed. However, multilevel algorithms using restriction and prolongation oper-

ators based on piecewise constant interpolation typically have been shown not to

perform well [17, 92].

2Here, we refer trace or skeletal unknowns also as Lagrange multipliers.
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For high-order methods, the numerical examples in Section 4.4 indicate that

our strategy gives scalable results in solution order p when strong smoothers such

as block-Jacobi or Gauss–Seidel are used. This is also observed in [79] for a p-

multigrid approach applied to DG methods for the Poisson equation using block-

Jacobi smoother. Other p-multigrid strategies, such as pk−1 = pk/2 (pk is the solu-

tion order on the kth level) or pk−1 = pk − 1, can be straightforwardly incorporated

within our approach. Once we interpolate to p = 1 we carry out the h-coarsening as

described in the next section.
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Figure 4.1: A demonstration of h-coarsening strategy. (a) Level k mesh. (b) An
identification of interior Ek,I (blue) and boundary Ek,B (red) edges. (c) Coarsening of
boundary edges. and (d) Level k−1 mesh after interior edges are statically condensed
out. The numbers in (a) and (d) represent the number of (macro-) elements in levels
k and k − 1, respectively.

4.3.1.2 h-coarsening

We adopt an agglomeration-based h-coarsening, allowing intergrid transfer

and coarse grid operators to be defined using the fine scale DtN maps. By taking

this approach, no upscaling of parameters is required and our coarse operators are

discretized DtN maps at any mesh level (see Proposition 2). In Figure 4.1, we show

an h-coarsening strategy between two consecutive levels k and k − 1. First, we

identify the interior (blue) and boundary (red) edges in Figure 4.1(b). We decompose

Ek = Ek,I ⊕ Ek,B, where Ek,I consists of edges interior to macro-elements in the
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coarser partition Ωk−1 and Ek,B contains edges common to their boundaries. We also

decompose the trace space Mk on Ek into two parts Mk,I and Mk,B corresponding to

Ek,I and Ek,B, respectively. Specifically, we require Mk = Mk,I ⊕Mk,B such that each

λk ∈Mk can be uniquely expressed as λk = λk,I + λk,B, where

λk,I =

{
λk on Mk,I ,

0 on Mk,B,
and λk,B =

{
0 on Mk,I ,

λk on Mk,B.

Given the decomposition Mk = Mk,I ⊕Mk,B, the trace system (4.9) at the kth level

can be written as

Akλk = gk ⇔
[
Ak,II Ak,IB
Ak,BI Ak,BB

] [
λk,I
λk,B

]
=

[
gk,I
gk,B

]
. (4.10)

The coarser space Mk−1 is defined such that Mk−1 ⊂ Mk,B. This is done by first

agglomerating the boundary edges of level k as in Figure 4.1(c), and then statically

condensing out the interior edges to obtain the mesh on level k − 1 in Figure 4.1(d).

The elements in level k are numbered from 1 to 42 in Figure 4.1(a) and the macro

elements in level k − 1 are numbered from 1 to 6 in Figure 4.1(d)

Clearly, for an unstructured mesh the identification of interior and boundary

edges is nontrivial and nonunique. Currently we use an ad hoc approach which is

sufficient for the purpose of demonstrating our proposed algorithm. Specifically, we

first select a certain number of levels N and seed points NT1 . The locations of these

seed points are chosen based on the geometry of the domain and the original fine

mesh, such that we approximately have an equal number of fine mesh elements in each

macro-element at level 1. Based on these selected seed points, we agglomerate the

elements in the finest mesh (k = N) to form NT1 macro-elements at level 1. We then

divide each macro-element in level 1 into four approximately equal macro-elements

to form level 2. This process is recursively repeated to create macro-elements in finer

levels k = 3, . . . , N − 1. As an illustration we consider the mesh in Figure 4.2 (this
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mesh and the corresponding coarsening strategies will be used in numerical example

II in Section 4.4.1.2) and in Figures 4.3 and 4.4 we show two different coarsening

strategies with N = 7 obtained from seven and four seed points.
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Figure 4.2: Example II: Unstructured mesh for a rectangular box with eight holes.
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(d) Level 3 (e) Level 2
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(f) Level 1

Figure 4.3: Example II. Coarsening strategy 1: the seed points are marked with green
squares in level 1.

Part of our future work is to explore the coarsening strategies similar to the

ones in [148, 147]. This may give better coarsened levels with the number of macro-

elements reduced/increased by a constant factor between successive levels. The in-

tergrid transfer operators necessary for moving residuals/errors between levels is de-

scribed next.
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(a) Level 6 (b) Level 5 (c) Level 4

(d) Level 3
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Figure 4.4: Example II. Coarsening strategy 2: the seed points are marked with green
squares in level 1.

4.3.2 Intergrid transfer operators

In standard nested multigrid algorithms, the intergrid transfer operators are

straightforward. A popular approach is to take injection for the prolongation and

its adjoint for the restriction. For a skeletal system care must be taken in the con-

struction of these operators to ensure the convergence of the multigrid algorithm

under consideration. In the following we propose “physics-based energy-preserving”

operators using the fine scale DtN maps.

4.3.2.1 Prolongation

The prolongation operator, Ik : Mk−1 −→Mk, transfers the error from the grid

level k − 1 to the finer grid level k. Note that standard prolongation using injection

would set the values on the interior edges to zero and thus does not work. For our

multigrid algorithm it is defined as a function of the solution order p using DtN maps.

In particular,

• for p = 1,
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Ik :=

[
−A−1

k,IIAk,IBJk
Jk

]
for k = 2, . . . , N, (4.11)

• and for p > 1,

Ik :=


JN for k = N,[
−A−1

k,IIAk,IBJk

Jk

]
for k = 2, . . . , N − 1.

(4.12)

Here, Jk : Mk−1 −→ Mk is the injection (interpolation). To understand the idea

behind the prolongation operator, let us consider p = 1 in (4.11). First, through Jk,

we interpolate the error from the grid level k − 1 to obtain error on the boundary

edges of the finer grid level k. Then we solve (via the first block in the definition of

Ik) for the error on the interior edges as a function of the interpolated error on the

boundary. For p > 1 the prolongation is defined in (4.12), namely, we use the same

prolongation as in the case of p = 1 for all levels k ≤ N − 1 and interpolate error

from piecewise linear polynomials at level N − 1 to piecewise pth-order polynomials

at level N .

4.3.2.2 Restriction

The restriction operator, Qk−1 : Mk −→Mk−1, restricts the residual from level

k to coarser level k − 1. The popular idea is to define the restriction operator as the

adjoint (with respect to the L2-inner products 〈·, ·〉Ek and 〈·, ·〉Ek−1
in Mk and Mk−1)

of the prolongation operator, i.e., Qk−1 = I∗k , and from our numerical studies (not

shown here) it still works well. However, this purely algebraic procedure, though

convenient, is not our desire. Here, we construct the restriction operator Qk−1 such

that the coarse grid problem, via the Galerkin approximation, is exactly a discretized

DtN problem on level k − 1. To that end, let us define Qk−1 as
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• for p = 1,

Qk−1 :=
[
−J∗kAk,BIA−1

k,II J∗k
]

for k = 2, . . . , N, (4.13)

• for p > 1,

Qk−1 :=

{
J∗N for k = N,[
−J∗kAk,BIA−1

k,II J∗k

]
for k = 2, . . . , N − 1.

(4.14)

Note that if A is symmetric, then our definition of the restriction operator Qk−1 is

indeed the adjoint of the prolongation operator Ik.

Given the prolongation and restriction operators, we obtain our coarse grid

equation using the discrete Galerkin approximation [145]

Qk−1AkIkλk−1 = Qk−1gk, (4.15)

where the coarse grid operator

Ak−1 := Qk−1AkIk, (4.16)

for either p = 1 and k ≤ N or p > 1 and k ≤ N − 1, reads

Ak−1 =
[
−J∗kAk,BIA−1

k,II J∗k
] [ Ak,II Ak,IB

Ak,BI Ak,BB

] [
−A−1

k,IIAk,IBJk
Jk

]
= J∗k

(
Ak,BB − Ak,BIA−1

k,IIAk,IB
)
Jk, (4.17)

and

AN−1 = J∗NANJN , (4.18)

for p > 1 and k = N .

Energy preservation. In order for the multigrid algorithms to converge the

intergrid operators should be constructed in such a way that the “energy” does not in-

crease when transferring information between a level to a finer one [18, 74]. Note that
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“energy” here need not necessarily be associated with some physical energy. Indeed,

if we associate Ak with a bilinear form ak (., .) such that ak (κ, µ) = 〈Akκ, µ〉Ek ∀κ, µ ∈

Mk, where again 〈., .〉Ek represents the L2−inner product on Ek, then we call ak (κ, κ)

the energy on level k associated with κ. Nonincreasing energy means

ak (Ikλ, Ikλ) ≤ ak−1 (λ, λ) ∀λ ∈Mk−1, ∀k = 2, 3, . . . , N.

Proposition 1 (Energy preservation). The proposed multigrid approach preserves the

energy in the following sense: ∀k = 2, 3, . . . , N ,

ak (Ikλ, Ikλ) = ak−1 (λ, λ) ∀λ ∈Mk−1. (4.19)

Proof. We proceed first with p = 1. From the definition of Ak in (4.10) and the

definition of the prolongation operator Ik in (4.11) we have

ak (Ikλ, Ikλ)

=

〈[
−A−1

k,IIAk,IBJkλ, Jkλ
]
,

[
Ak,II Ak,IB
Ak,BI Ak,BB

] [
−A−1

k,IIAk,IBJkλ

Jkλ

]〉
Ek

=
〈(
Ak,BB − Ak,BIA−1

k,IIAk,IB
)
Jkλ, Jkλ

〉
Ek

=
〈
J∗k
(
Ak,BB − Ak,BIA−1

k,IIAk,IB
)
Jkλ, λ

〉
Ek−1

= ak−1 (λ, λ) ,

where the last equality comes from the definition of the coarse grid operator Ak−1 in

(4.17). For p > 1, we need to prove (4.19) only for k = N , but this is straightforward

since from (4.12), (4.14), and (4.18) we have

aN (INλ, INλ) = 〈ANJNλ, JNλ〉Ek = 〈J∗NANJNλ, λ〉Ek−1
= ak−1 (λ, λ) .

We now prove that the coarse grid operator (4.16) is also a discretized DtN

map on every level.
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Proposition 2. At every level k = 1, . . . , N , the Galerkin coarse grid operator (4.16)

is a discretized DtN map on that level.

Proof. The proof is a straightforward induction using the proposed coarsening strat-

egy and the definition of the intergrid transfer operators. First, consider the case of

p = 1. The fact that AN = A in (4.9) is a discretized DtN map on the finest level is

clear by the definition of the hybridized methods. Assume at level k the operator Ak

in (4.10) is a discretized DtN map. Taking λk,B = Jkλk−1 and condensing λk,I out

yield (
Ak,BB − Ak,BIA−1

k,IIAk,IB
)
Jkλk−1 = gk,B − Ak,BIA−1

k,IIgk,I

which, after restricting on the coarse space Mk−1 using J∗k , becomes

J∗k
(
Ak,BB − Ak,BIA−1

k,IIAk,IB
)
Jkλk−1 = J∗k

(
gk,B − Ak,BIA−1

k,IIgk,I
)
,

which is exactly the coarse grid equation (4.15). That is, Ak−1 is the Schur comple-

ment obtained by eliminating all the trace unknowns inside all the macro-elements

on level k − 1. By definition, the coarse grid operator Ak−1 on level (k − 1) is also a

discrete DtN map.

For the case of p > 1, it is sufficient to show that AN−1 is a discrete DtN map,

but this is clear by: (1) taking λ = JNλN−1 in (4.9), (2) restricting both sides to

MN−1 using J∗N , (3) recalling that AN is a discretized DtN map, and 4) observing

that the resulting equation coincides with the coarse grid equation (4.18).

4.3.3 Smoothing

Let us denote the smoothing operator at level k by Gk,mk , where mk stands

for the number of smoothing steps performed at level k. We take mk to satisfy

β0mk ≤ mk−1 ≤ β1mk,
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with β1 ≥ β0 > 1. That is, the number of smoothing steps are increased as the

mesh is coarsened. The reason for this choice is based on the theoretical analysis for

nonnested multigrid methods in [20]. However, as numerically shown later in Section

4.4.1.5, even a constant number of smoothing steps at all levels, e.g., two, works well.

4.3.4 Local correction operator

To motivate the need for a local correction operator, let us consider the fol-

lowing decomposition of the skeletal space Mk = Mk ⊕ M̂k such that

λk = λk + λ̂k, λk ∈Mk and λ̂k ∈ M̂k,

where λk = λk,I is given by the local correction Tk : Mk −→Mk,

λk := Tk

[
gk,I
0

]
:=

[
A−1
k,II 0

0 0

] [
gk,I
0

]
, (4.20)

and the “global component” λ̂k =
[
λ̂k,I λ̂k,B

]T
by[

Ak,II Ak,IB
Ak,BI Ak,BB

] [
λ̂k,I
λ̂k,B

]
=

[
0

gk,B − Ak,BIA−1
k,IIgk,I

]
.

Let us now consider p = 1. Standard two-grid cycles, for example, include: (1)

smoothing iterations on the system (4.9) for the fine grid, (2) restricting the residual

to the coarse grid, (3) performing the coarse grid correction, and (4) prolongating the

error back to the fine grid. However, with the prolongation operator defined in (4.11),

only λ̂k can be recovered directly. In other words, the burden of capturing λk is left for

the smoother and/or multigrid iterations. Indeed, in our numerical studies we found

that this standard algorithm takes more multigrid iterations and still converges with

Gauss–Seidel and Chebyshev accelerated Jacobi smoothers. However, it diverges with

the block-Jacobi smoother at low orders as shown in Table 4.11.

This issue can be fixed using the concept of subspace correction [162, 145].

We can perform a local correction in the subspace Mk, as in (4.20), either before or
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after the coarse grid correction (or both if symmetry is desirable). With this local

correction, we have observed that even with point Jacobi smoothers the multigrid

algorithm converges. It is important to point out that the application of the local

correction operator Tk is completely local to each macro-element at the (k − 1)th level

and thus can be carried out in parallel.

4.3.5 Relationship to AMG operators

The intergrid transfer operators in section 4.3.2 and the local correction op-

erator in section 4.3.4 are closely related to the ideal interpolation and smoothing

operators in the AMG literature [145]. However, the ideal operators in AMG lead to

a direct solver strategy, namely, nested dissection [67], and suffer from large mem-

ory requirements. This renders the algorithm impractical for large scale simulations

especially in three dimensions. In that respect, the coarsening in our operators is

the key as it leads to an O(N) iterative algorithm and can be applied to large scale

problems. In fact, this approach is pursued under the name of Schur complement

multigrid methods in [149] and similar works [124, 123, 47, 46], mostly in the context

of finite differences and finite volumes. Here we apply similar ideas for high-order

hybridized finite element methods. Also our approach is more general in the sense

that it can be applied to any unstructured mesh, whereas all the previous works deal

with structured meshes. As shown in Figure 4.2, it does not require the meshes to

be nested. In fact, our approach can be considered as a combination of AMG and

geometric multigrid methods. As such it benefits from the robustness of AMG and

the fixed coarse grid construction costs of geometric multigrid.
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4.3.6 Multigrid V-cycle algorithm

We are now in position to define our multigrid algorithm. We begin with a

fixed point scheme on the finest level:

λi+1 = λi +BN(rN), i = 0, . . . .

where rN = gN−ANλi and the action of BN on a function/vector is defined recursively

using the multigrid algorithm 3.

Algorithm 3 Multigrid v-cycle algorithm
1: Initialization:
e{0} = 0,

2: Presmoothing:
e{1} = e{0} +Gk,mk

(
rk − Ake{0}

)
,

3: Local correction:
e{2} = e{1} + Tk

(
rk − Ake{1}

)
,

4: Coarse grid correction:
e{3} = e{2} + IkBk−1

(
Qk−1

(
rk − Ake{2}

))
,

5: Local correction:
e{4} = e{3} + Tk

(
rk − Ake{3}

)
,

6: Postsmoothing:
Bk (rk) = e{5} = e{4} +Gk,mk

(
rk − Ake{4}

)
.

At the coarsest levelM1, we set B1 = A−1
1 and the inversion is computed using

a direct solver. Note that both local correction steps 3 and 5 are presented for the

sake of symmetry of the algorithm. In practice, we use either step 3 or step 5. For

example, numerical results in Section 4.4 use only step 3.

4.4 Numerical results

In this section, we study the performance of multigrid both as a solver and

as a left preconditioner. Since the global trace system of the NIPG-H and IIPG-

H methods is not symmetric, we use preconditioned GMRES for all the methods to
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enable a direct comparison. For all the numerical examples, (1) the stopping tolerance

is taken as 10−9 for the normalized residual (normalized by the norm of the right-hand

side of (4.9)), and (2) following [20] we choose the smoothing parameters β0 and β1

(see Section 4.3.3) as 2. In all the tables, “ ∗ ” stands for either the divergence of

the GMRES/multigrid solver or 200 iterations were already taken but the normalized

residual was still larger than the tolerance.

In examples 1-5 in Sections 4.4.1.1-4.4.1.5, we consider HDG and hybridized

IPDG methods.

4.4.1 Elliptic equation

4.4.1.1 Example I: Poisson equation in the unit square

In this first example, we consider the Poisson equation in the unit square. We

take the exact solution to be of the form q = xyex
2y3 . Dirichlet boundary condition

using the exact solution are applied directly (strongly) via the trace unknowns. We

consider hybridized DG methods and study the performance of multigrid both as a

solver and as a preconditioner. The number of levels in the multigrid hierarchy and

the corresponding number of quadrilateral elements are shown in Table 4.1.

Levels 2 3 4 5 6 7
Elements 16 64 256 1024 4096 16384

Table 4.1: Example I: The multigrid hierarchy.

We consider the following four different smoothers and compare their perfor-

mance for each of the hybridized DG methods.

• Damped point-Jacobi with the relaxation parameter ω = 2/3 [142].
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• Chebyshev accelerated point-Jacobi method. This smoother requires the esti-

mates of extreme eigenvalues and we compute an approximate maximum eigen-

value Λmax with O (10−2)-accuracy. Following [1], we estimate the smallest

eigenvalue using Λmax/30.

• Lower-upper symmetric point Gauss-Seidel method with one forward and one

backward sweep during each iteration, and we name this smoother as LU-SGS

for simplicity.

• Block-Jacobi smoother where one block consists of all the degrees of freedom

corresponding to an edge e ∈ Ek at the kth level. Here, we do not use any

damping as it does not make any difference in the number of iterations in our

numerical studies.

For the stabilization parameters, we consider a mesh-independent value τ = 1

and a mesh-dependent form τ = 1/hmin for HDG. The former corresponds to the

upwind HDG proposed in [25, 26]. Following [129], we take the stabilization to be

τ = (p + 1)(p + 2)/hmin for the hybridized IPDG schemes. In later examples, when

the permeability K is spatially varying we also consider τ as a function of K. We

refer to [40, 25, 37] for the h-convergence order of HDG schemes and [129] for the

IPDG schemes.

In Tables 4.2-4.5, we study the performance of multigrid as a solver and as a

preconditioner for HDG with stabilization τ = 1/hmin. We now present a few im-

portant observations from these tables. The stabilization τ = 1/hmin gives h-scalable

results with all the smoothers, i.e., the number of required multigrid/GMRES itera-

tions is almost unchanged when the mesh is refined. However, the actual number of

iterations depends on the effectiveness of the smoother under consideration. As can
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MG as solver MG with GMRES
p Levels Levels

2 3 4 5 6 7 2 3 4 5 6 7

1 14 14 14 15 15 15 6 8 8 8 8 8
2 14 14 15 15 15 15 8 8 8 8 8 8
3 15 16 16 16 16 16 8 9 9 9 9 8
4 19 19 19 19 19 19 9 10 10 9 9 9
5 21 21 21 21 21 21 10 10 10 10 10 9
6 23 23 24 24 24 24 10 11 11 11 10 10
7 25 25 25 25 25 25 11 11 11 11 11 11
8 27 27 28 28 28 28 11 12 11 11 11 11
9 30 30 30 29 29 29 12 12 12 12 12 11
10 30 31 31 31 31 32 12 12 12 12 12 12

Table 4.2: Example I. HDG with stabilization τ = 1/hmin: the number of iterations
for multigrid with point-Jacobi smoother as solver and preconditioner.

MG as solver MG with GMRES
p Levels Levels

2 3 4 5 6 7 2 3 4 5 6 7

1 13 14 14 14 14 14 6 8 8 8 8 8
2 9 10 10 10 10 10 6 7 7 7 7 7
3 27 29 30 31 31 31 12 12 12 12 12 12
4 31 29 29 29 28 28 12 12 12 11 11 11
5 31 32 32 32 32 32 13 13 12 12 12 12
6 34 33 32 32 32 31 13 13 12 12 12 11
7 32 32 32 32 32 32 13 12 12 12 12 12
8 33 33 33 33 33 33 13 12 12 12 12 12
9 33 33 33 33 33 33 13 13 13 12 12 12
10 33 33 33 33 33 33 13 13 13 12 12 12

Table 4.3: Example I. HDG with stabilization τ = 1/hmin: the number of itera-
tions for multigrid with Chebyshev accelerated point-Jacobi smoother as solver and
preconditioner.

be seen in Table 4.2 with point-Jacobi smoother, the number of iterations increases

with high-order solutions when multigrid is used as a solver. In contrast, the multi-

grid preconditioner is effective in keeping the number of GMRES iterations almost

unchanged (the increase is negligible). The results in Table 4.3 shows that Chebyshev

acceleration for point-Jacobi smoother behaves the same as the point-Jacobi smoother
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MG as solver MG with GMRES
p Levels Levels

2 3 4 5 6 7 2 3 4 5 6 7

1 5 5 5 5 5 5 4 4 4 5 5 5
2 5 5 5 5 5 5 4 4 4 4 4 4
3 5 6 6 6 6 6 5 5 5 5 5 5
4 6 6 6 6 6 6 5 5 5 5 5 5
5 7 7 7 7 7 7 5 5 6 6 6 5
6 7 7 8 8 8 8 5 6 6 6 6 6
7 8 8 8 8 8 8 6 6 6 6 6 6
8 8 8 9 9 9 9 6 6 6 6 6 6
9 9 9 9 9 9 9 7 7 7 7 7 7
10 9 9 10 10 10 10 7 7 7 7 7 7

Table 4.4: Example I. HDG with stabilization τ = 1/hmin: the number of iterations
for multigrid with LU-SGS smoother as solver and preconditioner.

MG as solver MG with GMRES
p Levels Levels

2 3 4 5 6 7 2 3 4 5 6 7

1 7 7 8 8 8 8 4 5 6 6 6 6
2 6 7 8 8 9 9 4 5 6 6 6 6
3 8 9 9 9 9 9 6 6 6 6 6 6
4 9 10 10 10 10 10 6 7 7 7 7 7
5 11 12 12 12 12 12 6 8 8 8 8 7
6 12 12 13 13 13 13 7 8 8 8 8 8
7 13 14 14 14 14 15 7 8 8 8 8 8
8 14 15 15 15 15 15 8 9 9 9 9 8
9 15 16 16 16 17 17 8 9 9 9 9 9
10 16 17 17 17 17 17 8 9 9 9 9 9

Table 4.5: Example I. HDG with stabilization τ = 1/hmin: the number of iterations
for multigrid with block-Jacobi smoother as solver and preconditioner.

in terms of scalability. However, in terms of the number of iterations it takes either

more (for multigrid as solver) or about the same (for multigrid preconditioned GM-

RES). Table 4.4 shows that LU-SGS is the most effective smoother, requiring the least

number of multigrid/GMRES iterations. Moreover, the number of both multigrid and

GMRES iterations are almost constant as either the mesh is refined or the solution
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order increases. However, it should be pointed out that the LU-SGS smoother re-

quires twice the amount of work compared to point-Jacobi for each iteration due to

one forward and one backward sweep. Table 4.5 shows that block-Jacobi is the second

best smoother in terms of the number of iterations; otherwise its scalability behavior

is similar to the point-Jacobi smoother as the mesh or the solution order is refined.

MG as solver MG with GMRES
p Levels Levels

2 3 4 5 6 7 2 3 4 5 6 7

1 6 11 21 40 76 145 4 7 11 15 21 28
2 8 15 28 53 101 193 6 8 12 17 23 31
3 10 18 32 60 113 * 7 9 13 18 24 32
4 11 19 34 62 117 * 7 10 13 18 24 32
5 13 21 36 66 124 * 8 10 14 18 24 32
6 13 22 37 68 126 * 7 10 14 18 24 32
7 15 23 39 71 131 * 8 11 14 18 24 32
8 15 24 40 72 132 * 8 11 14 18 24 31
9 16 25 42 74 136 * 8 11 14 18 24 31
10 17 26 43 75 137 * 8 11 14 18 24 31

Table 4.6: Example I. HDG with stabilization τ = 1: the number of iterations for
multigrid with LU-SGS smoother as solver and preconditioner.

MG as solver MG with GMRES
p Levels Levels

2 3 4 5 6 7 2 3 4 5 6 7

1 5 8 15 27 51 97 4 6 9 12 17 23
2 5 7 9 14 24 42 4 5 7 9 12 15
3 8 9 9 9 15 25 5 6 6 7 9 11
4 9 10 10 10 10 10 6 7 7 7 8 8
5 11 11 12 12 12 12 6 7 7 8 7 7
6 12 12 13 13 13 13 7 8 8 8 8 8
7 13 14 14 14 14 14 7 8 8 8 8 8
8 14 15 15 15 15 15 8 9 9 9 9 8
9 15 16 16 16 17 17 8 9 9 9 9 9
10 16 17 17 17 17 17 8 9 9 9 9 9

Table 4.7: Example I. HDG with stabilization τ = 1: the number of iterations for
multigrid with block-Jacobi smoother as solver and preconditioner.
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In Tables 4.6 and 4.7, we present results for the multigrid solver and GMRES

with multigrid preconditioner when τ = 1 is used for the HDG discretization. With

the point-smoothers3 (Table 4.6), the number of iterations for the multigrid solver

scales like O(1/h) (since the number of iterations is nearly doubled each time h reduces

by half). Even for GMRES with multigrid as preconditioner, we do not obtain h-

scalability with point smoothers. On the other hand, the block-Jacobi smoother in

Table 4.7 for p ≥ 4 provides h-scalable results and with solution orders greater than

5 the results are exactly the same as those for τ = 1/hmin. With respect to solution

orders, similar to the case of τ = 1/hmin, we do not obtain perfect p-scalability

with any smoother though the growth of the number of iterations is very slow with

block-Jacobi smoother.

MG as solver MG with GMRES
p Levels Levels

2 3 4 5 6 7 2 3 4 5 6 7

1 10 12 12 12 12 12 6 8 8 8 8 8
2 8 9 9 9 9 9 6 6 6 6 6 6
3 10 10 10 11 11 11 6 7 7 7 7 7
4 11 12 12 12 13 13 7 8 8 8 8 8
5 13 14 14 14 14 14 7 8 8 8 8 8
6 15 15 16 16 16 16 9 9 9 9 9 9
7 16 17 18 18 18 18 9 9 9 9 9 9
8 18 19 19 20 20 20 10 10 10 10 10 10
9 20 21 21 21 21 22 10 11 10 10 10 10
10 21 22 23 23 23 23 11 11 11 11 11 11

Table 4.8: Example I. NIPG-H: the number of iterations for multigrid with point-
Jacobi smoother as solver and preconditioner.

We present in Tables 4.8-4.10 the results for the hybridized NIPG-H scheme

with τ = (p + 1)(p + 2)/hmin. As can be seen, the number of iterations for both

3We do not show results for point-Jacobi and Chebyshev accelerated point-Jacobi smoothers as
the behavior of the number of iterations is very similar to that of the LU-SGS smoother.
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MG as solver MG with GMRES
p Levels Levels

2 3 4 5 6 7 2 3 4 5 6 7

1 4 4 4 4 4 4 3 4 4 4 4 5
2 4 4 4 5 5 5 4 4 4 4 4 4
3 4 5 5 5 5 5 4 4 4 5 5 4
4 5 5 5 5 5 6 4 4 5 5 5 5
5 5 6 6 6 6 6 4 5 5 5 5 5
6 6 6 6 6 6 6 5 5 5 5 5 5
7 6 7 7 7 7 7 5 5 5 5 5 5
8 7 7 7 7 7 7 5 6 6 6 6 6
9 7 7 8 8 8 8 5 6 6 6 6 6
10 7 8 8 8 8 8 6 6 6 6 6 6

Table 4.9: Example I. NIPG-H: the number of iterations for multigrid with LU-SGS
smoother as solver and preconditioner.

MG as solver MG with GMRES
p Levels Levels

2 3 4 5 6 7 2 3 4 5 6 7

1 5 7 8 8 8 8 4 6 6 6 6 6
2 6 6 6 6 7 7 5 5 5 5 5 5
3 7 8 8 8 8 8 5 6 6 6 6 6
4 9 9 10 10 10 10 6 7 7 7 7 7
5 10 11 11 11 11 11 6 7 7 7 7 7
6 11 12 12 12 12 12 7 8 8 8 8 7
7 12 13 13 13 13 13 7 8 8 8 8 8
8 13 14 14 14 14 14 7 8 8 8 8 8
9 14 15 15 15 15 15 8 9 9 9 9 8
10 15 16 16 16 16 16 8 9 9 9 9 9

Table 4.10: Example I. NIPG-H: the number of iterations for multigrid with block-
Jacobi smoother as solver and preconditioner.

multigrid as a solver and as a preconditioner is similar to those with HDG using

τ = 1/hmin. The results using IIPG-H and SIPG-H are similar and hence are omitted

for brevity. For all of the IPDG schemes, using the Chebyshev acceleration increases

the number of iterations and we do not include these results here.

Finally, we test the performance of multigrid without the local correction op-
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erator in step 3 of Algorithm 3. The results are shown for HDG with τ = 1/hmin

and block-Jacobi smoother in Table 4.11. As can be seen, for p ≤ 3 multigrid as

solver and also as a preconditioner fails to converge for fine meshsizes. For p ≥ 4 we

see scalable results although the number of iterations are slightly more than that in

Table 4.5 with local correction. We also see an odd-even behavior, with even orders

giving better iteration counts than odd ones. For τ = 1, we observed similar results

and hence not shown. For the hybridized IPDG schemes, with NIPG-H and IIPG-H

from p ≥ 2 onwards we observed scalable results whereas for SIPG-H for all orders we

obtained scalability without local correction. The iteration counts are again slightly

more than the ones obtained with local correction. With increase in order, since

block-Jacobi smoother gets stronger, even without the local correction operator it is

sufficient to give scalable results. However, in order to provide more robustness and

since the local correction operator is inexpensive, in the following test cases we always

include it in the step-3 of Algorithm 3.

MG as solver MG with GMRES
p Levels Levels

2 3 4 5 6 7 2 3 4 5 6 7

1 * * * * * * 8 18 56 * * *
2 8 13 21 26 27 28 6 7 9 11 11 11
3 16 60 * * * * 7 11 20 39 97 *
4 10 11 12 13 13 13 7 7 8 8 8 8
5 11 12 12 12 12 12 6 8 8 8 8 7
6 12 12 13 13 13 13 7 8 8 8 8 8
7 15 20 23 25 26 26 9 10 11 11 11 11
8 14 15 15 15 15 15 8 9 9 9 9 8
9 15 16 16 16 17 17 8 9 9 9 9 9
10 18 19 19 20 20 20 9 10 10 10 10 10

Table 4.11: Example I. HDG with stabilization τ = 1/hmin: the number of iterations
for multigrid with block-Jacobi smoother as solver and preconditioner without local
correction.

In summary, for HDG with τ = 1/hmin and multigrid preconditioned GMRES,
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almost perfect hp-scalability has been observed for all the smoothers, while for τ = 1

this scalability holds with only block smoothers together with high solution orders.

All the hybridized IPDG schemes give scalable results with τ = (p + 1)(p + 2)/hmin

and the number of iterations is very similar to that of HDG with τ = 1/hmin. Of all

the smoothers considered in this paper, LU-SGS seems to be the best smoother in

terms of the number of iterations. However, block-Jacobi smoother, the second best,

is more convenient from the implementation point of view (especially on parallel

computing systems), and for that reason we show numerical results only for block-

Jacobi smoother from now on. Since the Chebyshev acceleration does not seem to

improve the performance of multigrid by a significant margin, we will not use it

in the subsequent sections. We would like to mention that the performance of our

multigrid approach in terms of iteration counts is better or at least comparable to

other existing multigrids proposed in the literature [74, 41, 91, 33]. Since the time to

solution depends on many other factors such as the choice of smoother, the number of

smoothing steps, and the architecture of the machine we are not able to comment on

that aspect at this moment. However, in future work we plan to carry out a detailed

study between different multigrid algorithms for hybridized methods with respect to

simulation of challenging problems.

4.4.1.2 Example II: Unstructured mesh

The goal of this section is to test the robustness of the multigrid algorithm

for a highly unstructured mesh. To that end consider the mesh in Figure 4.2, which

consists of 6699 simplices with an order of magnitude variation in the diameter of

elements i.e. hmax ≈ 10hmin. Unlike structured meshes, for unstructured meshes

with local clustering of elements (local refinements) it is not straightforward to select

the number of levels and the “best” coarsening strategy that well balances the number
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of elements (in the finer level) for each macro-element. Ideally, given a number of

levels we wish to minimize the number of multigrid/GMRES iterations. Here, we

compare two coarsening strategies with the same number of levels and study the

performance of multigrid as a solver and as a preconditioner. In our future work,

we will explore the coarsening strategies similar to the ones in [148, 147]. Figures

4.3 and 4.4 show different levels corresponding to the two coarsening strategies. The

total number of levels in both the strategies is seven and the last level corresponds

to the original fine mesh as shown in Figure 4.2. For solution orders p > 1, again,

we first restrict the residual to p = 1 and then carry out the geometric coarsening.

There are seven macro-elements in the first level for coarsening strategy 1, and four

macro-elements for strategy 2.

We take the zero Dirichlet boundary condition, K = I (I is the identity), and

f = 1 for this example. We now study the performance of HDG and hybridized

IPDG schemes. In Table 4.12, we compare the number of iterations taken for HDG

with τ1 = 1 and τ2 = 1/hmin and solution orders p = 1, . . . , 8. As can be seen, for

p ∈ {1, 2, 3} , using τ1 takes less number of iterations, and for p ≥ 4 both stabilization

parameters require almost the same iteration counts. For coarsening strategy 2,

since the coarsening happens slightly more aggressive (i.e., fewer macro-elements at

any level) the iteration counts in general are higher. However, using multigrid as a

preconditioner for GMRES the difference in the iteration counts for the two strategies

is negligible.

In Table 4.13, we consider the NIPG-H scheme with τ1 = 1/hmin and τ2 =

(p + 1)(p + 2)/hmin. As can be seen, the multigrid solver diverges for many values

of solution order p. The iterations for τ1 are less than that for τ2. We observe that

the iteration counts of multigrid preconditioned GMRES with τ1, except for solution

orders p = 2 and p = 3 (which require more iterations), are similar to those for HDG.
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When multigrid is used as a preconditioner, except for solution orders equal to two

and three, both the coarsening strategies give similar iteration counts with τ1. It

turns out that the iteration counts for IIPG-H and SIPG-H are higher than that of

HDG and NIPG-H and hence are omitted for brevity.

Within the settings of this example we conclude that multigrid, both as a

solver and as a preconditioner, is more effective for HDG than for hybridized IPDG

schemes. It is also relatively more robust with respect to the coarsening strategies

and values of stabilization parameter when used as a preconditioner.

MG as solver MG with GMRES
p Coarsening strategy 1 Coarsening strategy 2 Coarsening strategy 1 Coarsening strategy 2

τ1 τ2 τ1 τ2 τ1 τ2 τ1 τ2

1 25 * 41 108 10 21 13 18
2 20 63 33 37 10 12 12 13
3 23 24 39 41 10 11 13 14
4 27 27 43 45 11 11 14 14
5 30 30 48 49 11 12 15 15
6 33 33 51 52 12 12 15 15
7 36 36 55 55 13 13 16 16
8 38 38 58 58 13 13 16 16

Table 4.12: Example II. HDG with τ1 = 1, τ2 = 1/hmin: the number of iterations
for multigrid as solver and preconditioner for both coarsening strategies.

4.4.1.3 Example III: Smoothly varying permeability

In this example we consider a smoothly varying permeability of the form

K = κI,

where κ = 1 + 0.5 sin(2πx) cos(3πy). The domain considered is a circle and we take

the exact solution again to be of the form q = xyex
2y3 . The forcing and the Dirichlet

boundary condition are chosen corresponding to the exact solution. The number of

115



MG as solver MG with GMRES
p coarsening strategy 1 coarsening strategy 2 coarsening strategy 1 coarsening strategy 2

τ1 τ2 τ1 τ2 τ1 τ2 τ1 τ2

1 16 * 29 * 9 133 11 112
2 * * * * 136 * * *
3 * * * * 42 42 49 31
4 22 * 37 * 10 71 13 62
5 25 67 41 95 11 16 14 19
6 28 * 46 * 11 28 14 27
7 31 71 49 99 12 17 15 21
8 34 121 53 106 12 20 15 21

Table 4.13: Example II. NIPG-H with τ1 = 1/hmin, τ2 = (p + 1)(p + 2)/hmin: the
number of iterations for multigrid as solver and preconditioner for both coarsening
strategies.

levels and the corresponding number of triangular elements in the multigrid hierarchy

are shown in Table 4.14.

Levels 2 3 4 5 6 7
Elements 84 348 1500 6232 25344 102160

Table 4.14: Example III: The multigrid hierarchy.

MG as solver MG with GMRES
p Levels Levels

2 3 4 5 6 7 2 3 4 5 6 7

1 18 20 23 21 24 27 9 10 11 11 11 12
2 13 15 18 17 19 20 9 9 10 10 11 11
3 16 18 21 20 23 24 10 10 11 11 11 12
4 18 21 23 23 25 27 10 11 12 12 12 12
5 20 24 26 25 28 29 11 12 12 12 13 13
6 22 27 28 28 31 32 11 13 13 13 13 13
7 24 30 30 30 33 34 12 13 13 13 14 14
8 26 32 32 32 35 36 12 13 14 14 14 14

Table 4.15: Example III. HDG with stabilization τ = 1: the number of iterations
for multigrid as solver and preconditioner.

Table 4.15 shows the number of multigrid and GMRES iterations for HDG
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with τ = 1. Note that perfect h-scalability with multigrid as a solver is not observed,

and this is mainly due to the fact that the number of elements between successive

levels is not exactly increased/decreased by a constant4. Again, we see a little growth

in the number of iterations as p increases for the multigrid solver, while for GMRES

with multigrid preconditioner we obtain almost perfect hp-scalability. We have also

conducted numerical examples with τ = 1/hmin, τ = κ/hmin and observed that the

iteration counts (not shown here) are similar to those with τ = 1.

Next we consider the IIPG-H scheme with τ = κ(p+1)(p+2)/hmin. Table 4.16

shows that the iteration counts are comparable with HDG results in Table 4.15 for

GMRES with multigrid preconditioner. The multigrid solver for IIPG-H, on the other

hand, has slightly less iteration counts. An extra penalization factor of 1.5 is necessary

to obtain well-posed linear systems for SIPG-H, but otherwise the corresponding

results for NIPG-H and SIPG-H are similar and hence are omitted.

MG as solver MG with GMRES
p Levels Levels

2 3 4 5 6 7 2 3 4 5 6 7

1 14 15 17 16 18 20 8 9 10 10 10 10
2 12 13 16 15 17 18 8 9 9 9 10 10
3 14 16 18 18 20 21 9 10 10 10 11 11
4 17 19 21 21 23 24 10 10 11 11 12 12
5 19 21 23 23 25 26 11 11 12 12 12 12
6 21 24 26 25 28 29 11 12 12 12 13 13
7 22 26 27 27 30 31 11 13 13 13 13 13
8 24 29 29 29 32 33 12 13 13 13 13 14

Table 4.16: Example III. IIPG-H with stabilization τ = κ(p + 1)(p + 2)/hmin: the
number of iterations for multigrid as solver and preconditioner.

4This, as argued before, is not trivial for unstructured meshes.
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4.4.1.4 Example IV: Highly discontinuous permeability

In this example, we test the robustness of the multigrid solver on a highly

discontinuous and spatially varying (six orders of magnitude) permeability field given

by K = κI with

κ =

{
106, (x, y) ∈ (0, 0.56)× (0, 0.56) or (x, y) ∈ (0.56, 1)× (0.56, 1),

1, otherwise,

in the unit square.

We choose the zero Dirichlet boundary condition and f = 1. In Table 4.17, we

study the performance of multigrid as a solver and as a preconditioner for GMRES

using HDG with τ = κ/hmin. The number of elements and the number of levels

are same as in example I. Similar to the previous examples, almost perfect h- and p-

scalabilities are observed with multigrid preconditioned GMRES, whereas the number

of iterations increases with the solution order p for the multigrid solver. For τ =

MG as solver MG with GMRES
p Levels Levels

2 3 4 5 6 7 2 3 4 5 6 7

1 6 8 8 9 9 9 2 5 5 5 5 5
2 6 7 9 10 10 11 3 4 5 5 5 5
3 8 9 10 10 10 10 3 5 6 6 5 5
4 10 11 11 11 11 11 4 6 6 6 6 5
5 11 13 13 13 13 13 4 6 7 7 6 6
6 13 14 14 14 14 14 4 6 7 7 7 6
7 14 15 16 16 15 15 5 7 7 7 7 7
8 15 16 17 17 17 17 5 7 8 8 7 7

Table 4.17: Example IV. HDG with stabilization τ = κ/hmin: the number of itera-
tions for multigrid as solver and preconditioner.

1/hmin and τ = 1 the multigrid solver takes too many iterations to converge for

finer meshes, and for that reason we report the iteration counts only for multigrid

preconditioned GMRES in Table 4.18. Clearly, the number of GMRES iterations is
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τ = 1/hmin τ = 1
p Levels Levels

2 3 4 5 6 7 2 3 4 5 6 7

1 3 5 6 8 11 5 2 5 8 11 15 15
2 3 5 6 5 5 5 3 5 6 7 8 11
3 3 5 6 6 5 5 3 4 5 6 7 8
4 4 5 6 6 6 5 4 5 6 6 7 7
5 4 5 7 7 6 6 4 5 7 7 6 6
6 4 6 7 7 7 6 4 6 7 7 7 6
7 4 6 7 7 7 7 4 6 7 7 7 7
8 4 6 8 8 7 7 4 6 8 8 7 7

Table 4.18: Example IV. HDG with stabilizations τ = 1/hmin and τ = 1: the number
of iterations for multigrid preconditioned GMRES.

almost insensitive to the values of the stabilization parameter τ , and the results for

τ = 1/hmin in columns 2− 7 of Table 4.18 are very similar to columns 8− 13 of Table

4.17 for τ = κ/hmin. Columns 8 − 13 of Table 4.18 shows that, again with τ = 1,

high-order solutions provide both h- and p-scalabilities and the results in these cases

are similar to those with τ = 1/hmin (see the last four rows of Table 4.18).

Table 4.19 shows the performance of our multigrid algorithm as a solver and

as a preconditioner for the SIPG-H scheme with τ = κ(p+1)(p+2)/hmin. The results

MG as solver MG with GMRES
p Levels Levels

2 3 4 5 6 7 2 3 4 5 6 7

1 8 9 10 11 11 12 3 6 6 6 6 6
2 6 8 9 9 10 10 4 5 5 5 5 5
3 9 10 10 10 10 11 4 6 6 6 6 5
4 10 11 12 12 12 12 4 6 7 6 6 6
5 12 13 13 13 13 13 4 6 7 7 7 6
6 13 14 15 15 15 15 5 7 7 7 7 7
7 14 16 16 16 16 16 5 7 8 8 7 7
8 15 17 17 17 17 17 5 7 8 8 7 7

Table 4.19: Example IV. SIPG-H with τ = κ(p + 1)(p + 2)/hmin: the number of
iterations for multigrid as solver and preconditioner.
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for NIPG-H and IIPG-H are almost identical and are omitted. As can be observed,

as a preconditioner for GMRES the multigrid algorithm is both h- and p-scalable for

all the hybridized DG methods.

4.4.1.5 Example V: SPE10 test case

In this example, we consider the benchmark problem Model 2 from the Tenth

Society of Petroleum Comparative Solution Project (SPE10) [35]. We consider the

permeability field K = κI, where κ corresponding to the 75th layer is shown on the left

of Figure 4.5. The permeability field varies by six orders of magnitude and is highly

heterogeneous which gives rise to extremely complex velocity fields. The domain is

1200 × 2200 [ft2]. The mesh has 60 × 220 quadrilateral elements and the element

edges align with the discontinuities in the permeability. We choose f = 0, which

corresponds to no source or sink. For the boundary conditions we take the pressure

(q) on the left and right faces to be 1 and 0, respectively. On the top and bottom

faces no flux boundary condition u · n = 0 is applied. From extensive numerical

examples we have observed that the multigrid hierarchy with seven levels results in

the least number of GMRES iterations. From numerical examples I-IV, we see that

HDG method is relatively the most robust and scalable. In addition, it provides

simultaneous approximations for both velocity and pressure. Thus, we consider only

HDG for this example.

Since multigrid as a solver either converges very slowly or diverges for a number

of cases in this example, we report results exclusively for the multigrid preconditioned

GMRES. The pressure field is shown on the right of Figure 4.5 for p = 1. In Table

4.20 are the number of iterations for solution orders p ∈ {1, 2, 3, 4} with τ = 1/hmin

and τ = 1. The second row shows that, for p = 2, the iterations are much larger

compared to other solution orders. At the time of writing, we had not yet found
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the reason for this behavior. For other solution orders, using τ = 1 results in more

iterations for p = 1 and less for p = 3, 4 compared to τ = 1/hmin. Again, we like

to emphasize that in this example we completely avoid upscaling of the permeability

field as our multigrid algorithm is based only on the fine scale DtN maps.

The results in columns 2 and 3 of Table 4.20 correspond to geometrically

increasing smoothing steps with respect to levels as explained in Section 4.3.3. In

columns 4 and 5, we simply take two pre- and postsmoothing steps in all levels and,

as can be seen, the iteration counts are marginally different compared to those resulted

from the increasing smoothing steps. This implies that we can achieve similar accu-

racy with less computational cost using constant (here two) pre- and postsmoothing

steps in all levels.

(a) Permeability field (b) Pressure field

Figure 4.5: Example V: Permeability (κ) in log scale (left) and pressure field (right)
using solution order p = 1.
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p
Varying smoothing 2 pre- and postsmoothing
τ = 1/hmin τ = 1 τ = 1/hmin τ = 1

1 47 78 51 80
2 81 * 72 *
3 58 40 56 48
4 48 39 49 45

Table 4.20: Example V. HDG with stabilizations τ = 1/hmin, τ = 1: the number of
iterations for multigrid preconditioned GMRES with variable smoothing and constant
smoothing.

4.4.2 Example VI: Convection-diffusion equation

In this example we apply the multigrid algorithm to the convection-diffusion

equation (2.34) discretized with HDG. We consider a very simple constant velocity

field of β = (1, 1) and ν = 0. The exact solution is same as the one used in ex-

ample I in section 4.4.1.1 and the forcing and boundary conditions are chosen based

on it. The domain is the unit square discretized with quadrilateral elements and

the multigrid hierarchy is given in Table 4.1. The smoother used is LU-SGS. The

conclusion from this study is, for scalability in the diffusion-dominated regime with

diffusion coefficient κ > 0.01 we need a mesh-dependent stabilization given by τ =

1
2h

(√
|β · n|2 + 4− β · n

)
in the flux (2.36), whereas in the convection dominated

regime with κ ≤ 0.01 pure upwind stabilization with τ = 1
2

(√
|β · n|2 + 4− β · n

)
is needed.

The iteration counts for representative cases in both regimes with these sta-

bilization parameters is given in Tables 4.21 and 4.22. For more complex varying

velocity fields we need robust line smoothers for the multigrid convergence and is a

subject of future study.
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MG as solver MG with GMRES
p Levels Levels

2 3 4 5 6 7 2 3 4 5 6 7

1 5 5 5 5 5 5 4 4 5 5 5 5
2 5 5 5 5 5 5 4 4 4 4 4 4

Table 4.21: Example VI. κ = 1, HDG with τ = 1
2h

(√
|β · n|2 + 4− β · n

)
: the

number of iterations for multigrid as solver and preconditioner.

MG as solver MG with GMRES
p Levels Levels

2 3 4 5 6 7 2 3 4 5 6 7

1 3 3 4 4 5 7 3 3 3 4 5 6
2 3 3 4 5 7 * 3 3 3 4 5 *

Table 4.22: Example VI. κ = 10−5, HDG with τ = 1
2

(√
|β · n|2 + 4− β · n

)
: the

number of iterations for multigrid as solver and preconditioner.

4.4.3 Example VII: Stokes equations

In this section we study the performance of multigrid as solver and precondi-

tioner for the Stokes equations discretized with HDG. To that end we consider the

following first order velocity-pressure formulation of Stokes equations

ReL−∇u = 0 in Ω, (4.21a)

−∇ · L +∇q = f in Ω, (4.21b)

∇ · u = 0 in Ω, (4.21c)

u = uD on ∂Ω, (4.21d)∫
Ω

q dΩ = 0. (4.21e)

The HDG discretization of the Stokes equations (4.21) gives the following local
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solver

Re (L,G)T + (u,∇ ·G)T − 〈û,Gn〉∂T = 0, (4.22a)

− (∇ · L,v)T + (∇q,v)T + 〈S (u− û) ,v〉∂T = (f ,v)T , (4.22b)(
∂q

∂t
, r

)
T

− (u,∇r)T + 〈û · n, r〉∂T = 0, (4.22c)

and global solver

〈[[−L · n + qn + S (u− û)]],µ〉e\∂Ω = 0. (4.23)

Here we have used the augmented Lagrangian approach and added a pseudo

time-derivative in pressure to make the local solvers well-posed [114, 140]. The ex-

ample we consider is the Kovasznay flow [90, 114] with the exact solution

ue = (1− exp (cx) cos (2πy) ,
c

2π
exp (cx) sin (2πy)),

qe =
1

2
exp (2cx) ,

where c = Re
2
−
√

Re2

4
+ 4π2 and f = − (ue · ∇) ue.

We choose Re = 10 and the domain Ω = (0, 2) × (−0.5, 1.5) discretized with

quadrilateral elements. The multigrid hierarchy is same as the one in Table 4.1.

Dirichlet boundary conditions based on the exact solution are enforced through û.

With the augmented Lagrangian approach we can eliminate both volume velocity

and pressure in terms of the velocity trace unknowns using the local solver (4.22).

The conservation equation (4.23) generates the global linear system which involves

only the velocity trace unknowns and we apply the multigrid solver/preconditioner

for solving it. The unknowns are ordered such that all the x−component of velocity

occurs first followed by the y−component of velocity. The smoother used is LU-SGS.

In the augmented Lagrangian approach a zero initial condition for pressure is selected

and the time-derivative is discretized by backward Euler approach with a time stepsize
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of ∆t and iterations are carried out till convergence in pressure is reached [114]. For

the Stokes equations the number of augmented Lagrangian iterations is independent

of meshsize h and solution order p as proved in [114].

For this problem, we do not observe h−scalability with pure upwind stabiliza-

tion given by S = I + (
√

2 − 1)n ⊗ n, and hence similar to scalar elliptic problems

we use the stabilization S = (1/h)I. In Tables 4.23, 4.24 and 4.25 we compare the

performance of multigrid as a solver and as a preconditioner to GMRES for three

pseudo time stepsizes ∆t = 1, 8 and 16. As can be seen for all the time stepsizes we

obtain almost perfect hp−scalability with multigrid preconditioned GMRES. With

increase in time stepsize we see an increase in number of iterations and it is much

less pronounced for multigrid as a preconditioner compared to the multigrid solver.

Finally, since the total number of iterations required to solve the Stokes equations

is the product of multigrid/GMRES iterations and the augmented Lagrangian itera-

tions choosing a time stepsize of ∆t = 8 and multigrid preconditioned GMRES seems

to be the best choice with the least number of total iterations.

4.4.4 Example VIII: Oseen equations

In this section we consider the Oseen equations obtained by the linearization

of the incompressible Navier–Stokes equations around a known velocity field w. The

equations in first order velocity-pressure form is given by

ReL−∇u = 0 in Ω, (4.24a)

−∇ · L + (w · ∇) u +∇q = f in Ω, (4.24b)

∇ · u = 0 in Ω, (4.24c)

u = uD on ∂Ω, (4.24d)∫
Ω

q dΩ = 0. (4.24e)
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MG as solver MG with GMRES
p Levels Levels

2 3 4 5 6 7 2 3 4 5 6 7

1 13 15 17 17 18 18 7 9 9 9 9 9
2 7 8 9 10 10 10 6 6 7 7 7 7
3 8 9 10 10 11 11 6 7 7 7 7 7
4 8 10 11 11 11 11 6 7 7 7 7 7
5 10 11 12 12 12 12 7 7 8 8 8 8
6 10 12 13 13 13 13 7 8 8 8 8 8
7 12 12 13 14 14 14 7 8 8 8 8 8
8 12 13 14 14 14 14 7 8 8 8 8 8
9 13 14 15 15 15 15 8 9 9 9 9 9
10 14 14 15 16 16 16 8 9 9 9 9 9

Table 4.23: Example VII: the number of iterations for multigrid as solver and pre-
conditioner with pseudo time stepsize ∆t = 1. The number of augmented Lagrangian
iterations in this case is ≈ 18− 22 and is independent of h, p.

MG as solver MG with GMRES
p Levels Levels

2 3 4 5 6 7 2 3 4 5 6 7

1 27 31 35 36 36 36 11 13 14 14 14 13
4 17 20 21 21 21 21 10 11 11 11 11 10
6 18 21 22 23 23 23 10 11 11 11 11 11
8 19 22 24 24 24 24 11 11 12 12 11 11

Table 4.24: Example VII: the number of iterations for multigrid as solver and pre-
conditioner with pseudo time stepsize ∆t = 8. The number of augmented Lagrangian
iterations in this case is ≈ 8− 9 and is independent of h, p.

The HDG discretization of (4.24) with corresponding local and global solvers is given

by

Re (L,G)T + (u,∇ ·G)T − 〈û,Gn〉∂T = 0, (4.25)

− (∇ · L,v)T + ((w · ∇) u,v)T + (∇q,v)T + 〈S (u− û) ,v〉∂T = (f ,v)T , (4.26)(
∂q

∂t
, r

)
T

− (u,∇r)T + 〈û · n, r〉∂T = 0, (4.27)

〈[[−L · n + qn + (w · n) u + S (u− û)]],µ〉e\∂Ω = 0, (4.28)
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MG as solver MG with GMRES
p Levels Levels

2 3 4 5 6 7 2 3 4 5 6 7

1 39 47 51 52 53 53 13 17 17 17 17 16
4 24 27 30 30 30 30 12 13 13 13 13 13
6 27 30 33 33 33 33 13 14 14 14 14 13
8 29 32 35 35 35 35 13 14 15 14 14 14

Table 4.25: Example VII: the number of iterations for multigrid as solver and precon-
ditioner with pseudo time stepsize ∆t = 16. The number of augmented Lagrangian
iterations in this case is ≈ 7 and is independent of h, p.

where just as in Stokes equations (4.22) we have added a pseudo time-derivative in

pressure to make the local solver well-posed. Here, we consider two stabilizations

Supwind and Smesh given by

Supwind = a2I + a1n⊗ n, (4.29a)

Smesh = (1/h+ a2)I, (4.29b)

a1 =
1

2

{(√
|w · n|2 + 8

)
−
(√
|w · n|2 + 4

)}
, (4.29c)

a2 =
1

2

{(√
|w · n|2 + 4

)
−w · n

}
. (4.29d)

The example we consider is the Poiseuille flow with exact solutions given by

ue =

(
Ql20
2µ

(
1− y2

l20

)
, 0

)
,

qe = −Q (x− 5) ,

where Q is the prescribed pressure gradient and l0 is the characteristic length. We

take f =
(
Q
ρ
, 0
)

and w = ue, where ρ is the density. The parameters are chosen

as l0 = µ = ρ = 1 and the pressure gradient Q is selected such that the Reynolds

number based on the centerline velocity is 1, 10 and 50 respectively. The domain and

the multigrid hierarchy are same as the one used for the Stokes example in section
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4.4.3. The smoother is LU-SGS. Boundary conditions based on the exact solution are

enforced through û.

In Tables 4.26-4.30 we present the number of iterations for multigrid as a solver

and as preconditioner (except for Re = 50 where we only present the preconditioner

results as the solver takes too many iterations) for the stabilizations Supwind and

Smesh for three Reynolds numbers Re = 1, 10 and 50. The conclusion is very similar

to the convection-diffusion equation, i.e., for Re = 1 in the diffusion dominated regime

we need mesh-dependent form of the stabilization Smesh for scalability whereas with

increase in Re the upwind stabilization performs better. For Re > 50 and high

orders we observed the multigrid takes either too many iterations or diverges. Hence

similar to the case of convection-diffusion, here also we need robust line smoothers

for convergence and scalability.

MG as solver MG with GMRES
p Levels Levels

2 3 4 5 6 7 2 3 4 5 6 7

2 7 14 19 31 59 118 5 9 14 20 35 65

Table 4.26: Example VIII. Re = 1, HDG with stabilization Supwind: the number
of iterations for multigrid as solver and preconditioner with pseudo time stepsize
∆t = 16.

MG as solver MG with GMRES
p Levels Levels

2 3 4 5 6 7 2 3 4 5 6 7

2 6 12 14 14 19 16 5 8 11 12 13 11

Table 4.27: Example VIII. Re = 1, HDG with stabilization Smesh: the number of
iterations for multigrid as solver and preconditioner with pseudo time stepsize ∆t =
16.
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MG as solver MG with GMRES
p Levels Levels

2 3 4 5 6 7 2 3 4 5 6 7

2 15 22 31 36 42 62 10 17 19 20 20 24

Table 4.28: Example VIII. Re = 10, HDG with stabilization Supwind: the number
of iterations for multigrid as solver and preconditioner with pseudo time stepsize
∆t = 16.

MG as solver MG with GMRES
p Levels Levels

2 3 4 5 6 7 2 3 4 5 6 7

2 13 25 34 38 37 36 11 20 25 26 26 25

Table 4.29: Example VIII. Re = 10, HDG with stabilization Smesh: the number
of iterations for multigrid as solver and preconditioner with pseudo time stepsize
∆t = 16.

Supwind Smesh
p Levels Levels

2 3 4 5 2 3 4 5

2 11 28 44 61 11 21 41 72

Table 4.30: Example VIII. Re = 50, HDG with stabilizations Supwind, Smesh: the
number of iterations for multigrid preconditioned GMRES with pseudo time stepsize
∆t = 16.

4.5 Discussion

In this chapter we have proposed a unified DtN-based geometric multigrid

algorithm for hybridized high-order finite element methods. Our approach differs

significantly from the previous attempts in the sense that the intergrid transfer oper-

ators are physics-based energy-preserving and the coarse grid operators are discretized

DtN maps on every level. These operators completely avoid upscaling of parameters,

such as permeability and source, to coarse scales. As our numerical results have in-

dicated, they also allow for multinumerics (shown in [158]) and variable coefficients
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without deteriorating the performance of the multigrid algorithm. We have presented

several numerical examples with HDG methods and hybridized IPDG methods for

the second-order elliptic equation and reported several observations. For HDG meth-

ods, with stabilization τ = 1 or 1/hmin (depending on the example), we obtain almost

perfect scalability in meshsize and solution order using multigrid preconditioned GM-

RES. For all the other hybridized IPDG methods, with a stabilization of the form

τ = O (p2/hmin) similar scalability is observed. However, the multigrid algorithm ap-

plied to IPDG seems to be less robust compared to HDG with respect to stabilization

parameters and coarsening strategies especially for highly unstructured meshes.

We have also tested the multigrid methods for the convection-diffusion equa-

tion, the Stokes equations and the Oseen equations discretized with HDG. The con-

clusion is, the multigrid preconditioned GMRES works well for Stokes equations and

the convection-diffusion equation in the diffusion dominated regime giving almost

perfect hp−scalability. For convection dominated regime in the convection-diffusion

equation and for the Oseen equations we need robust line smoothers which follow the

direction of convection for convergence and scalability.
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Chapter 5

A Multilevel Solver for HDG Trace Systems

In chapter 4 we introduced a geometric multigrid solver for the trace sys-

tem of HDG. Our numerical experiments showed that the solver gives almost per-

fect hp−scalability for the Poisson and Stokes type elliptic PDEs. However, for the

convection-diffusion equation in the convection dominated regime and Oseen equa-

tions in the high Reynolds number regime the solver has difficulty in convergence.

In chapter 4 we mentioned this could be rectified by means of robust line smoothers

which follow the direction of convection. However, in some complex velocity fields or

in some multiphysics PDEs like MHD such robust smoothers may not be available.

In this chapter1 we follow a different approach towards this issue. We create a strong

coarse solver by modifying a direct solver approach namely nested dissection and

combine it with simple smoothers such as block-Jacobi to create a robust solver for

a variety of PDEs.

Now let us briefly discuss the main idea behind our approach. The goal is to

advance the nested dissection [67]—a fill-in reducing direct solver strategy—to create

a scalable and robust solver utilizing the high-order and variational structure of HDG

methods. This is achieved by projecting the skeletal data at different levels to either

same or high-order polynomial on a set of increasingly h−coarser edges/faces. Ex-

ploiting the concept of two-level domain decomposition methods we make use of our

1The contents of this chapter are largely based on the manuscript [110], which is under revision
in the Journal of computational physics. The contributions of the author ranged from key ideas of
the algorithm, numerical implementation, complexity estimates and writing the manuscript.
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approach as a coarse solver together with a fine scale solver (e.g., block-Jacobi) to cre-

ate a solver/preconditioner for solving the trace system iteratively. Since the coarse

solver is derived from a direct solver strategy it helps in reducing the dependence

of the two-level solver/preconditioner with respect to the underlying PDE. The fine

scale solver, however, usually depends on the PDE being solved and hence can influ-

ence the overall performance of the two-level algorithm. Our numerical experiments

show that the algorithms converge even for transport equation with discontinuous

solution and elliptic equations with highly heterogeneous and discontinuous perme-

ability. For convection-diffusion equations our multilevel preconditioning algorithms

are scalable and reasonably robust for not only diffusion-dominated but also moder-

ately convection-dominated regimes. We show that the two-level approach can also

be interpreted as a multigrid algorithm with specific intergrid transfer and smoothing

operators. Our complexity estimates show that the cost of the multilevel algorithms

is somewhat in between the cost of nested dissection and standard multigrid solvers.

This chapter is organized as follows. In Section 5.1, we first recall the nested

dissection approach and then explain how it can be advanced using HDG variational

structure and the two-level domain decomposition approach. We also show that our

approach can be interpreted as a multigrid method, and estimate the complexity of

the proposed multilevel solvers. Section 5.2 presents several numerical examples to

study the robustness and scalability of the proposed algorithm for the Poisson, the

transport and the convection-diffusion equations as the mesh and the solution order

are refined.
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5.1 A Multilevel solver for the HDG trace system

The objective of our current work is to develop a robust multilevel solver and

preconditioner for HDG discretizations for a wide variety of PDEs. The ultimate goal

is to significantly reduce factorization and memory costs compared to a direct solver.

Unlike cost reduction strategies for direct solvers in [103, 69, 81] which utilizes the

elliptic nature of PDEs, here we exploit the high-order and variational structure of

HDG methods. As a result, our method is applicable to not only elliptic but also

parabolic, hyperbolic, and mixed-type PDEs. For ease of the exposition and imple-

mentation, we will focus only on structured grids. While extending the algorithm to

block-structured or nested grids is fairly straightforward, applying it to a completely

unstructured grid is a non-trivial task and hence left for future work.

5.1.1 Nested dissection

As nested dissection idea is utilized in the proposed multilevel algorithm, we

briefly review its concept (more details can be found in [67, 68, 100, 101, 50, 45]).

Nested dissection (ND) is a fill-in reducing ordering strategy introduced in 1973 [67]

for efficient solution of linear systems. Consider a p = 2 solution on an 8× 8 quadri-

lateral HDG skeletal mesh in Figure 5.1(a) (the boundary nodes are eliminated for

clarity). In the ND algorithm, we identify a set of separators which divide the mesh

into independent subdomains. For example, the black nodes in Figure 5.1(a) divide

the mesh into four independent subdomains each of which can be recursively divided

into four subdomains and so on. We then order the nodes such that the red ones are

ordered first, followed by blue and then the black ones. This will enable a recursive

Schur complement approach in a multilevel fashion and the nodes remaining in the

system after elimination at each level is shown in Figure 5.1 (for three levels). A

very similar concept to nested dissection is the substructuring methods used in the
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structural dynamics community for the fast solution of linear systems and eigenvalue

computations [13, 144].

Level 1  
separator front

(a) Level 1

Level 2  
separator front

(b) Level 2

Level 3  
separator front

(c) Level 3

Figure 5.1: An example of three levels in the nested dissection (ND) algorithm. The
red crosses correspond to level 1 separator fronts and there are 16 fronts in Figure
5.1(a), each having 4 edges. The blue crosses correspond to level 2 separators and
in Figure 5.1(b) there are four level 2 fronts, each having 8 edges. The black cross
correspond to level 3 separator and in Figure 5.1(c) there is one level 3 front with 16
edges. The circles on each edge represent the nodes and there are three nodes in each
edge corresponding to a solution order of p = 2.

There are several advantages to this algorithm. First, it can be shown that the

serial complexity of factorization for an N ×N matrix arising from 2D problems with
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this procedure is O(N3/2), and the memory requirement is O(NlogN) [67]. Whereas

with a naive lexicographic ordering, it is O(N2) for factorization and O(N3/2) for

memory [67]. Moreover, in 2D it is optimal in the sense that the lower bound of the

cost for factorization using any ordering algorithm is O(N3/2) [67]. Second, all the

leaf calculations at any level are independent of each other and hence are amenable

to parallel implementation. However, in 3D the cost is O(N2) for factorization and

O(N4/3) for memory [67], and we no longer have the tremendous savings as in 2D [51].

This can be intuitively understood using Figure 5.1. The separator fronts (the crosses

at each level in Figure 5.1) grow in size as the level increases. For example, the black

crosses have more edges and nodes than the blue ones, which in turn has more edges

and nodes than the red ones. On the last level, the size is O(N1/2) for 2D and the cost

of a dense matrix factorization for the separator front matrix corresponding to the

last level is O(N3/2). In 3D the size of the separator at last level is O(N2/3) and hence

the factorization cost becomes O(N2). Thus in order to cut down the factorization

and storage cost of the ND algorithm we need to reduce the front growth.

There have been many efforts in this direction over the past decade [103,

160, 137, 69, 81]. The basic idea in these approaches is to exploit the low rank

structure of the off-diagonal blocks, a characteristic of elliptic PDEs, to compress

the fronts. In this way one can obtain a solver which is O(N) or O(NlogN) in

both 2D and 3D [69, 81]. Unfortunately, since the compression capability is a direct

consequence of the ellipticity, it is not trivially applicable for convection-dominated

or pure hyperbolic PDEs. Our goal here is to construct a multilevel algorithm that is

applicable to hyperbolic PDEs and at the same time more efficient than ND. At the

heart of our approach is the exploitation of the high-order properties of HDG and the

underlying variational structure.
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5.1.2 Direct multilevel solvers

In our multilevel algorithm, we start with the ND ordering of the original fine

mesh (red, blue, and black edges) as in Figure 5.1(a). Here, by edges we mean the

original elemental edges (faces) on the fine mesh. Let us denote the fine mesh as level

0. In Figure 5.2(a), all red crosses have 4 edges, blue crosses have 8 edges and black

cross has 16 edges. On these edges are the trace spaces, and thus going from level k

to level (k + 1) the separator front grows by a factor of two. We propose to reduce

the front growth by lumping the edges so that each cross at any level has only four

(longer) edges as on level 1 separator fronts. We accomplish this goal by projecting

the traces on original fine mesh skeletal edges into a single trace space on a single

longer edge (obtained by lumping the edges). Below are the details on how we lump

edges and construct the projection operators.

The lumping procedure is straightforward. For example, longer edges on each

blue cross in Figure 5.2(b) are obtained by lumping the corresponding two blue

(shorter) edges. Similarly, longer edges on each black cross in Figure 5.2(b) are

obtained by lumping the corresponding four black (shorter) edges. The resulting

skeleton mesh with the same number of edges on the separator fronts in all levels

forms level 1 in our multilevel algorithm.

Next, we project the trace spaces on shorter edges into a single trace space on

the corresponding lumped edge. The three obvious choices for the solution order of the

single trace spaces: (1) lower than, (2) same as, or (3) higher than the solution order

on the shorter edges. Low-order option is not sensible as we have already coarsened

in h. In particular, additional coarsening in p, i.e., option (1), makes the solver

even further away from being “direct”. Moreover, since we already invert matrices of

size O((p + 1)2) for separators in level 1, low-order choice will not help in reducing
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the cost. For option (2), we obtain separators which are increasingly coarsened in

h, and clearly when we apply the ND algorithm this approach do not yield a direct

solution nor h-convergence. However, it can be used in the construction of an iterative

solver/preconditioner as we shall discuss in section 5.1.3.

Option (3), i.e., high-order projection, is more interesting as we now explain.

Due to exponential convergence in p for smooth solution [39], we can compensate for

the coarseness in h by means of refinement in p. As a result, for sufficiently smooth

solution, projecting to high-order trace spaces can provide accurate approximations

to the original ND solution while almost avoiding the front growth. In our algorithm

we enrich the order in the following fashion: if p is the solution order on the original

fine mesh, then level 1 separators have solution of order p, p + 1 for separators on

level 2, p + 2 for separators on level 3 and so on. For practical purposes we also

(arbitrarily) limit the growth to order 10 to actually stop the front growth after 10

orders. Specifically, for a generic level k we take the solution order on the separator

fronts as pk = min {p+ (k − 1), 10}. We would like to point out that this enriching

strategy is natural, but by no means optimal. Optimality requires balancing accuracy

and computational complexity, which in turns requires rigorous error analysis of the

enrichment. This is left for future research.

To the end of the chapter, we denote option (2) as multilevel (ML) and option

(3) as enriched multilevel (EML) to differentiate between them. In Figures 5.3 and

5.4 are different levels corresponding to the ML and EML approaches for solution

order of p = 2 on the original fine mesh. Level 0 of both cases corresponds to Figure

5.1(a). Note that the number of circles on each edge is equal to the solution order

plus one. For example, the solution order on each edge of Figure 5.3(c) is 2, while

the enriched solution order is 4 for each edge in Figure 5.4(c).
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(a) Level 0 (b) Level 1

Figure 5.2: Creation of level 1 from level 0 in the multilevel algorithm: every two
short blue edges in Figure 5.2(a) are projected on to the corresponding single long
blue edge in Figure 5.2(b). Similarly, every four short black edges in Figure 5.2(a) are
projected on to the corresponding single long black edge in Figure 5.2(b). In level 1,
all the separator fronts have the same number of edges (of different lengths), which
is 4. The nodes on each edge (circles in Figure 5.1) are not shown in this figure.

5.1.3 Combining multilevel approaches with domain decomposition meth-
ods

As discussed in Section 5.1.2, both ML and EML strategies are approximations

of direct solver. A natural idea is to use them as “coarse” scale solvers in a two-

level domain decomposition method [122, 141, 144]. In particular, either ML or

EML approach can be used to capture the smooth components and to provide global

coupling for the algorithm, whereas a fine scale solver can capture the high-frequency

localized error and the small length scale details and sharp discontinuities. This

combined approach can be employed in an iterative manner as a two-level solver in

the domain decomposition methods.

We select block-Jacobi as our fine scale solver, where each block corresponds

to an edge in the original fine mesh in Figure 5.1(a). The reason for this choice is

that block-Jacobi is straightforward to parallelize, insensitive to ordering direction
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(a) Level 1 (b) Level 2

(c) Level 3

Figure 5.3: An example of different levels in the multilevel (ML) algorithm. Compared
to Figure 5.1 for ND, here the separator fronts at all levels have the same number of
edges, i.e., 4. Similar to Figure 5.1 the three circles on each edge represent the nodes
corresponding to a solution order of p = 2.

for problems with convection and also reasonably robust with respect to problem

parameters. This is also supported by our previous work on geometric multigrid

methods for elliptic PDEs in section 4.4.1.1, [159], where we compared few different

smoothers and found block-Jacobi to be a competitive choice. We combine the fine

and coarse scale solvers in a multiplicative way as this is typically more effective than

additive two-level solvers especially for nonsymmetric problems [144].
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(a) Level 1 (b) Level 2

(c) Level 3

Figure 5.4: An example of different levels in the enriched multilevel (EML) algorithm.
The number of edges in the separator fronts at all levels is 4. Due to polynomial
enrichment, we have 3 nodes per edge, corresponding to p = 2, on the red crosses
(level 1 separator fronts); 4 nodes per edge, corresponding to p = 3, on the blue
crosses (level 2 separator fronts); and 5 nodes per edge, corresponding to p = 4, on
the black cross (level 3 separator front).

We would like to point out that due to the approximate direct solver character-

istic of our coarse scale solvers, regardless of the nature of the underlying PDEs, our

two-level approaches are applicable. This will be verified in various numerical results

in Section 5.2. Next we layout the algorithm for our iterative multilevel approach.
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5.1.4 Iterative multilevel solvers/preconditioners

In Figure 5.5 we show schematic diagrams of the two-level approaches de-

scribed in Section 5.1.3 combining block-Jacobi fine-scale solver and ML or EML

coarse-scale solvers (coarse in the h−sense). Algorithm 4 describes in details every

step of these iterative multilevel solvers and how to implement them. In particular,

there we present the algorithm for linear problems or linear systems arising from

Newton linearization or Picard linearization for nonlinear problems. Note that we

perform the factorizations of both coarse- and fine-scale matrices before the start

of the iteration process so that during each iteration only back solves are needed.

To precondition the GMRES algorithm we simply use one v-cycle of these iterative

approaches.

    

    Block-Jacobi (m1 iterations) 

fine scale solver 

 
 

ML or EML 

coarse scale solver 

Block-Jacobi (m2 iterations) 

fine scale solver 

 
 

(a) Two-level solver

 

       
GMRES 

+ 

Block-Jacobi (m1 iterations) 

fine scale solver 

 
 

Block-Jacobi (m2 iterations) 

fine scale solver 

 
 

ML or EML 

coarse scale solver 

(b) Two-level preconditioner

Figure 5.5: Two-level solvers and preconditioners combining block-Jacobi and ML or
EML solvers.

5.1.5 Relationship between iterative multilevel approach and multigrid
method

In this section we will show that the iterative multilevel approach presented

in Algorithm 4 can be viewed as a multigrid approach with specific prolongation,

restriction, and smoothing operators. To that end, let us consider a sequence of
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Algorithm 4 An iterative multilevel approach.
1: Order the unknowns (or permute the matrix) in the nested dissection manner.
2: Construct a set of L2 projections by visiting the edges of the original fine mesh

skeleton.
3: Create the level 1 matrices for ML or EML as A1 = I∗0AI0, where I0 is the

projection matrix from level 1 to level 0 and I∗0 is its L2 adjoint.
4: Compute factorizations of level 1 matrices of ML or EML (by means of nested

dissection), and the block-Jacobi matrices corresponding to level 0.
5: Compute the initial guess using the coarse scale solver (either ML or EML).
6: while not converged do
7: Perform m1 iterations of the block-Jacobi method.
8: Compute the residual.
9: Perform coarse grid correction using either ML or EML.
10: Compute the residual.
11: Perform m2 iterations of the block-Jacobi method.
12: Check convergence. If yes, exit, otherwise set i = i+ 1, and continue.
13: end while

interface grids E0 = Eh,E1, . . . ,EN ,
2 where each Ek contains the set of edges which

remain at level k. Here, E0 is the fine interface grid and EN is the coarsest one. Each

partition Ek is in turn associated with a skeletal (trace) space Mk. We decompose Ek

as Ek = Ek,I ⊕Ek,B, where Ek,I is the set of interior edges, corresponding to separator

fronts at level k, and Ek,B is the set of remaining (boundary) edges. To illustrate this

decomposition, let us consider Figures 5.3 and 5.4. Red edges, blue, and black lumped

edges are E1,I , E2,I , and E3,I , respectively, and Ek,B = Ek \Ek,I for k = 1, 2, 3. We also

decompose the trace space Mk on Ek into two parts Mk,I and Mk,B corresponding to

Ek,I and Ek,B, respectively. Specifically, we require Mk = Mk,I ⊕Mk,B such that each

λk ∈Mk can be uniquely expressed as λk = λk,I + λk,B, where

λk,I =

{
λk on Mk,I ,

0 on Mk,B,
and λk,B =

{
0 on Mk,I ,

λk on Mk,B.

2Note that the ordering here is reversed when compared to the multigrid algorithm in chapter 4.
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The spaces Mk for ML algorithm is given by

Mk = {η ∈ Qp(e)∀e ∈ Ek} for k = 0, 1, 2, . . . , N,

whereas for EML algorithm it is given by

Mk =



for k = 0

{η ∈ Qp(e)∀e ∈ Ek}
for k = 1, 2, . . . , N{
η ∈ Qmin(p+(k−1),10)(e)∀e ∈ Ek,I

}{
η ∈ Qmin(p+k,10)(e)∀e ∈ {Ek,B ⊂ Ek+1,I}

}{
η ∈ Qmin(p+k+1,10)(e)∀e ∈ {Ek,B ⊂ Ek+2,I}

}
...{
η ∈ Qmin(p+k+N−2,10)(e)∀e ∈ {Ek,B ⊂ Ek+N−1,I}

}
.

Here, we denote by Qp the space of tensor product polynomials of degree at most p

in each dimension.

If the trace system at level 0 is given by

Aλ = g. (5.1)

Given the decomposition Mk = Mk,I ⊕Mk,B, the trace system (5.1) at the kth level

can be written as

Akλk = gk ⇔
[
Ak,II Ak,IB
Ak,BI Ak,BB

] [
λk,I
λk,B

]
=

[
gk,I
gk,B

]
. (5.2)

We next specify the prolongation, restriction and smoothing operators. Since, all

of the operators except the ones between level 0 and level 1, correspond to ideal

operators in [145] we explain them briefly here.
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5.1.6 Prolongation operator

We define the prolongation operator Ik−1 : Mk → Mk−1 for our iterative

algorithm as

Ik−1 :=


Π0 for k = 1,[
−A−1

k,IIAk,IB

IBB

]
for k = 2, . . . , N.

(5.3)

Here, we denote by Π0 the L2 projection fromM1 →M0 and IBB the identity operator

on the boundary. Clearly, apart from k = 1, the prolongation operator is nothing but

the ideal prolongation in algebraic multigrid methods [145] as well as in the Schur

complement multigrid methods [124, 149, 47, 46].

5.1.7 Restriction operator

We define the restriction operator Qk : Mk−1 →Mk for our iterative algorithm

as

Qk :=

{
Π∗0 for k = 1,[
−Ak,BIA−1

k,II IBB

]
for k = 2, . . . , N.

(5.4)

Here, Π∗0 is the L2 adjoint of Π0. Similar to prolongation, apart from k = 1, the

restriction operator is the ideal restriction operator [145]. Given the restriction and

prolongation operators, the Galerkin coarse grid operator is constructed as

Ak := QkAk−1Ik−1. (5.5)

5.1.8 Smoothing

Recall from the Algorithm 4 and Figure 5.5 that we have both pre- and

postsmoothing steps using block-Jacobi at level 0. Either ML or EML algorithm

implicitly provides additional smoothing. Indeed, let us consider two generic levels k

and k + 1. At level k, given the decomposition (5.2) we can write the inverse of Ak
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as [146, 124]

A−1
k =

[
A−1
k,II 0

0 0

]
+ IkA

−1
k+1Qk+1, (5.6)

where Ak+1 = Qk+1AkIk is the Galerkin coarse grid matrix (it is also the Schur

complement of Ak,II in (5.2) [145]). As can be seen, the second term on the right

hand side of (5.6) is the coarse grid correction while the first term is the additive

smoothing applied only to the interior nodes. Another way [124] to look at this is

the following. If the coarse grid correction is zk+1 = A−1
k+1Qk+1[gk,I gk,B]T then the

block-Jacobi smoothing applied only on the interior nodes with initial guess as Ikzk+1

is given by

λk = Ikzk+1 +

[
A−1
k,II 0

0 0

]([
gk,I
gk,B

]
− AkIkzk+1

)
. (5.7)

From the definition of prolongation operator for k > 1 in (5.3) we see that AkIkzk+1 =

[0 ◦]T , where “◦” is a term that will subsequently be multiplied by 0, and is thus

not relevant for our discussion. As a result, λk obtained from (5.7) is the same as

A−1
k given in (5.6) acting on [gk,I gk,B]T . In other words, the implicit smoothing is

equivalent to block-Jacobi smoothing on the interior nodes with the initial guess as

Ikzk+1. In AMG literature [145] this is called F-smoothing, where F stands for fine

nodes. To summarize, the smoothing operator at different levels is given by

Gk :=


G0 for k = 0,[
A−1
k,II 0

0 0

]
for k = 1, . . . , N,

(5.8)

where G0 is the block-Jacobi smoothing operator at level 0 with each block corre-

sponding to an edge in the original fine mesh. If we denote by m1,k and m2,k the

number of pre- and postsmoothing steps at level k we have

m1,k :=

{
m1 for k = 0,

0 for k = 1, . . . , N,
m2,k :=

{
m2 for k = 0,

1 for k = 1, . . . , N.
(5.9)

Note that instead of postsmoothing inside the ML or EML solver we could also con-

sider presmoothing (i.e. m1,k = 1,m2,k = 0 ∀k = 1, . . . , N) and the result remains
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the same [145]. Now with these specific set of operators the iterative multilevel algo-

rithm, Algorithm 4, is equivalent to the following multigrid v-cycle

λi+1 = λi +B0(r0), i = 0, . . . .

where r0 = g0−A0λ
0. Here, the action of B0 on a function/vector is defined recursively

in the multigrid algorithm, Algorithm 5, and the initial guess λ0 is computed from

either ML or EML solver. In Algorithm 5, k = 0, 1, . . . , N − 1, and Gk,m1,k
, Gk,m2,k

represent the smoother Gk with m1,k and m2,k smoothing steps respectively. At the

Algorithm 5 Iterative multilevel approach as a v-cycle multigrid algorithm
1: Initialization:
e{0} = 0,

2: Presmoothing:
e{1} = e{0} +Gk,m1,k

(
rk − Ake{0}

)
,

3: Coarse Grid Correction:
e{2} = e{1} + IkBk+1

(
Qk+1

(
rk − Ake{1}

))
,

4: Postsmoothing:
Bk (rk) = e{3} = e{2} +Gk,m2,k

(
rk − Ake{2}

)
.

coarsest level MN , we set BN = A−1
N and the inversion is computed using a direct

solver. The above multigrid approach trivially satisfies the following relation [145]

〈AkIkλ, Ikλ〉Ek = 〈Ak+1λ, λ〉Ek+1
∀λ ∈Mk+1, (5.10)

where 〈., .〉Ek , 〈., .〉Ek+1
represents the L2−inner product on Ek and Ek+1 respectively.

This is a sufficient condition for the stability of intergrid transfer operators in a

multigrid algorithm [145]. The trivialness is due to the fact that: (1) our prolongation

and restriction operators are ideal ones except for k = 1, for which they are L2 adjoint

of each other; and (2) the coarse grid matrices are constructed by Galerkin projection

(5.5).
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5.1.9 Complexity estimations

In this section we estimate the serial complexity for ND, ML and EML al-

gorithms in both 2D and 3D. For simplicity, we consider standard square or cubical

domain discretized by NT = nd quad/hex elements, where d is the dimension. The

total number of levels is N = log2(n). Let pk be the solution order on separator fronts

at level k and we denote by qk = (pk + 1)d−1 the number of nodes on an edge/face.

For simplicity, we consider Dirichlet boundary condition and exclude the boundary

edges/faces in the complexity estimates.

For the ND algorithm, we define level 0 to be the same as level 1. Following

the analysis in [51], we have 4N−k crosses (separator fronts) at level k and each front

is of size 4
{

n
2(N+1−k)

}
q0 and all matrices are dense. The factorization cost of the ND

algorithm in 2D is then given by:

2D ND algorithm

Factor =
N∑
k=1

4(N−k)
(

4
{ n

2(N+1−k)

}
q0

)3

(5.11)

= O

(
16q3

0N
3/2
T

[
1− 1√

NT

])
. (5.12)

The memory requirement is given by

Memory =
N∑
k=1

4(N−k)
(

4
{ n

2(N+1−k)

}
q0

)2

(5.13)

= O
(
8q2

0NT log2 (NT )
)
. (5.14)

As the Schur complement matrices are dense, the cost for the back solve is same as

that for memory. Similarly the estimates in 3D are given as follows:
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3D ND algorithm

Factor =
N∑
k=1

8(N−k)

(
12
{ n

2(N+1−k)

}2

q0

)3

(5.15)

= O

(
31q3

0N
2
T

[
1− 1

NT

])
. (5.16)

Memory =
N∑
k=1

8(N−k)

(
12
{ n

2(N+1−k)

}2

q0

)2

(5.17)

= O

(
18q2

0N
4/3
T

[
1− 1

N
1/3
T

])
. (5.18)

Unlike [120], here we have not included the factorization and memory costs

for the matrix multiplication Ak,BIA
−1
k,IIAk,IB. The reason is that the asymptotic

complexity for ND, ML, and EML is unaffected by this additional cost. For EML

in particular, the inclusion of this cost makes the analysis much more complicated

because of the different solution orders involved at different levels. As shall be shown,

our numerical results in section 5.2.2.1 indicate that the asymptotic estimates derived

in this section are in good agreement with the numerical results.

As ML is a special case of EML with zero enrichment, it is sufficient to show

the estimates for EML. In this case we still have 4N−k fronts at level k and each front

is of the size 4qk. The factorization and memory costs in 2D are then given by:

2D EML algorithm

Factor =
N∑
k=1

4(N−k) (4qk)
3 (5.19)

= 64q3
0

N∑
k=1

4(N−k)α3
k (5.20)

= O

(
64q3

0

{
1

4

(
1 +

α3
N

3

)
NT −

α3
N

3

})
. (5.21)
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Memory =
N∑
k=1

4(N−k) (4qk)
2 (5.22)

= 16q2
0

N∑
k=1

4(N−k)α2
k (5.23)

= O

(
16q2

0

{
1

4

(
1 +

α2
N

3

)
NT −

α2
N

3

})
. (5.24)

Similarly in 3D we have:

3D EML algorithm

Factor =
N∑
k=1

8(N−k) (12qk)
3 (5.25)

= 1728q3
0

N∑
k=1

8(N−k)α3
k (5.26)

= O

(
1728q3

0

{
1

8

(
1 +

α3
N

7

)
NT −

α3
N

7

})
, (5.27)

Memory =
N∑
k=1

8(N−k) (12qk)
2 (5.28)

= 144q2
0

N∑
k=1

8(N−k)α2
k (5.29)

= O

(
144q2

0

{
1

8

(
1 +

α2
N

7

)
NT −

α2
N

7

})
. (5.30)

Here, αk = qk
q0
. To enable a direct comparison with ND, we have taken αk =

αN , ∀k = 1, 2, . . . , N . As a result, the actual cost is less than the estimated ones

as αk < αN , ∀k < N . Note that either ML or EML iterative algorithm, Algorithm

4, requires additional cost of O (NT q
3
0) for factorization and of O (NT q

2
0) for memory

and back solves due to block-Jacobi smoothing. Since these additional costs are less

than the costs for ML and EML coarse solvers, they increase the overall complexity

of the algorithm by at most a constant, and hence can be omitted.
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Remark 8. From the above complexity estimates we observe that the factorization

cost of our multilevel algorithms scales like O (α3
Nq

3
0NT ) in both 2D and 3D. Compared

to the cost for ND algorithms which is O
(
q3

0N
3/2
T

)
in 2D and O (q3

0N
2
T ) in 3D, a sig-

nificant gain (independent of spatial dimensions) can be achieved using our methods.

Similarly, the memory cost has reduced to O (α2
Nq

2
0NT ) independent of dimensions

as opposed to O (q2
0NT log2(NT )) in 2D and O

(
q2

0N
4/3
T

)
in 3D for the ND algorithm.

Here, αN = 1 for ML whereas it is greater than one for EML. On the other hand, the

memory and computational costs required by multigrid is typically O (NT q0). Thus

the proposed multilevel algorithms are O (α3
Nq

2
0) times more expensive in computation

cost and require O (α2
Nq0) more memory compared to standard multigrid algorithms.

The cost of the multilevel algorithms lie in between direct (ND) solvers and multigrid

solvers.

5.2 Numerical results
5.2.1 Two-dimensional examples

In this section we test the multilevel algorithm, Algorithm 4, on elliptic, trans-

port, and convection-diffusion equations. To that end, we consider equations (2.34)

and (2.5) discretized by the upwind HDG flux (2.36), (2.37) and (2.7). Except for

the transport equation in section 5.2.3, the domain Ω is a standard unit square [0, 1]2

discretized with structured quadrilateral elements. Dirichlet boundary condition is

enforced strongly by means of the trace unknowns on the boundary. For the transport

equation, we take Ω = [0, 2]2 and inflow boundary condition is enforced through trace

unknowns while outflow boundary condition is employed on the remaining bound-

ary. The number of levels in the multilevel hierarchy and the corresponding number

of quadrilateral elements are shown in Table 5.1 and they are used in all numerical

experiments.
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Levels (N) 2 3 4 5 6 7 8 9
Elements 42 82 162 322 642 1282 2562 5122

Table 5.1: 2D multilevel hierarchy.

We note that even though the iterative multilevel algorithm works as a solver

for most of the PDEs considered, it either converges slowly or diverges for some of the

difficult cases. Hence throughout the numerical section we report the iteration counts

for GMRES, preconditioned by one v-cycle of the multilevel algorithm, Algorithm 4,

with the number of block-Jacobi smoothing steps taken as m1 = m2 = 2.

The UMFPACK [44] library is used for the factorization and all the exper-

iments are carried out in MATLAB in serial mode. The specifications of the ma-

chine used for the experiments is as follows. The cluster has 24 cores (2 sockets,

12 cores/socket) and 2 threads per core. The cores are Intel Xeon E5-2690 v3 with

frequency 2.6 GHz and the total RAM is 256 GB.

The stopping tolerance for the residual is set to be 10−9 in the GMRES al-

gorithm. The maximum number of iterations is limited to 200. In the tables of

subsequent sections by “*” we mean that the algorithm has reached the maximum

number of iterations.

5.2.2 Elliptic equation

5.2.2.1 Example I: Poisson equation with smooth solution

In this section we test the multilevel algorithm on the Poisson equation with

a smooth exact solution given by

ue =
1

π2
sin(πx) cos(πy).

The forcing is chosen such that it corresponds to the exact solution, and the exact

solution is used to enforce the boundary conditions. The other parameters in equation
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(2.34) are taken as κ = 1, ν = 0, and β = 0.

In Table 5.2 we show the number of GMRES iterations preconditioned by one

v-cycle of iterative ML and EML algorithms. First, the number of iterations for EML

is much less than that for ML and for high-order (p > 3) solutions and fine meshes

EML performs like a direct solver up to the specified tolerance. That is, the number

of preconditioned GMRES iterations is 0. This is expected due to: (1) smooth exact

solution, and (2) exponential convergence of high-order solutions, and thus the initial

guess computed by EML is, within tolerance, same as the direct solution. As expected

for ML, increasing solution order decreases the number of GMRES iterations; this is

again due to the smooth exact solution and the high-order accuracy of HDG.

In Figures 5.6(b) and 5.6(a) we compare the time-to-solution of GMRES pre-

conditioned by ML and EML algorithms to the one obtained from direct solver with

nested dissection. As can be seen, the ratios (ND/ML and ND/EML) are greater than

one for either large number of elements or high solution orders. That is, both ML and

EML are faster than ND when accurate solution is desirable. In Figure 5.6(c), the

EML and ML algorithms are compared and, apart from p = 1, EML is faster than

ML though the speedup is not significant in this example. For high solution orders,

ML behaves more like EML as the mesh is refined.

We now compare the memory usage of ML and EML against ND. Figures

5.7(a) and 5.7(b) show the ratio of memory usages (costs) of EML and ML algorithms

relative to ND. We can see that regardless of meshsize and solution order, both ML

and EML requires (much) less memory than ND does. In particular, ML requires

almost 8 times less memory than ND at the finest mesh for any solution order. For

EML, memory saving is more significant as the mesh and/or solution order are refined,

and EML is six times less memory demanding than ND with sixth-order solution at
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the finest mesh size.

Figure 5.7(c) compares the memory usage between EML and ML. As expected,

EML always requires more memory than ML due to the enrichment. However, the

maximum ratio is around 2.1 and since we limit the maximum enrichment order to

10, memory requirements at high orders for both methods are similar. This is also

the reason that all the curves in Figure 5.7(c) converge to a constant value as the

mesh is refined. As the maximum enrichment order can be tuned, depending on the

memory availability of computing infrastructure, one can have the flexibility to adjust

the EML algorithm to adapt to memory and computation demands of the problem

under consideration. For example, we can perform more iterations for less memory

to achieve a given accuracy.

Next we verify the complexity estimates derived in section 5.1.9. Figures 5.8,

5.9 and 5.10 show that the numerical results agree well with our estimates except

for the factorization cost of ND in Figure 5.8(a), which seems to indicate that the

asymptotic complexity of O(N
3/2
T ) has not yet been reached. Since the results in

Figures 5.8, 5.9 and 5.10 are independent of the PDE under consideration, in the

subsequent sections we study only the iteration counts. As long as the iterations do

not increase much when the mesh and the solution order are refined, we can obtain

a scalable algorithm whose cost can be estimated based on the factorization and

memory costs derived in section 5.1.9.

5.2.2.2 Example II: Discontinuous highly heterogeneous permeability

In this section we test the robustness of the algorithm for elliptic PDE with a

highly discontinuous and heterogeneous permeability field. To that end, in equation

(2.34) we take β = 0, ν = 0 and κ is chosen according to example 2 in [81] and is

shown in Figure 5.11 for three different meshes. The forcing and boundary condition
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ML with GMRES EML with GMRES
N p p

1 2 3 4 5 6 1 2 3 4 5 6

2 3 3 3 3 2 1 2 3 3 2 2 1
3 6 6 5 4 4 2 4 4 4 3 2 1
4 10 8 8 6 5 4 7 5 3 2 0 0
5 14 11 11 8 7 4 9 5 3 0 0 0
6 21 16 16 12 10 6 12 6 2 0 0 0
7 31 24 22 17 13 8 16 5 0 0 0 0
8 44 34 32 23 19 11 19 3 0 0 0 0
9 63 49 45 33 26 16 22 0 0 0 0 0

Table 5.2: Example I: number of ML- and EML-preconditioned GMRES iterations
as the mesh is refined (increasing N) and the solution order p increases.
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Figure 5.6: Example I: a comparison of time-to-solution for EML, ML, and ND
algorithms.

in (2.34) are chosen as f = 1 and gD = 0. This is a difficult test case as the

permeability varies by four orders of magnitude and is also highly heterogeneous as

seen in Figure 5.11.

Tables 5.3 and 5.4 show the number of iterations taken by ML- and EML-

preconditioned GMRES, and in Table 5.5 we compare them with those taken by

GMRES preconditioned by one v-cycle of geometric multigrid presented in chapter

4, [159]. In Tables 5.3, 5.4 and 5.5 the error, max |λdirect − λ|, after 200 iterations is

shown in the parentheses. Here, λdirect and λ denote trace solution vectors obtained
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Figure 5.7: Example I: a comparison of memory requirement for EML, ML, and ND
algorithms.
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Figure 5.8: Example I: asymptotic and numerical estimates of factorization time
complexity for EML, ML, and ND. Here, T stands for the theoretically estimated
complexity derived in section 5.1.9 and E for numerical experiment.

by the direct solver and the corresponding iterative solver (ML, EML or geometric

multigrid), respectively. The results show that the geometric multigrid yields the

least number of iterations or more accurate approximation when convergence is not

attained with 200 iterations. This is expected since ML and EML algorithms have

smoothing only on the fine level while smoothing is performed on all levels (in addition

to the local smoothing) for the geometric multigrid algorithm, and for elliptic-type

PDEs performing smoothing on all levels typically provides better performance [145].
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Figure 5.9: Example I: asymptotic and numerical estimates of back solve time com-
plexity for EML, ML, and ND. Here, T stands for the theoretically estimated com-
plexity derived in section 5.1.9 and E for numerical experiment.
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Figure 5.10: Example I: asymptotic and numerical estimates of memory complexity
for EML, ML, and ND. Here, T stands for the theoretically estimated complexity
derived in section 5.1.9 and E for numerical experiment.

However, the proposed algorithms in this paper targets beyond elliptic PDEs, and

for that reason it is not clear if smoothing on coarser levels helps reduce the iteration

counts [124]. We would also like to point out that the least number of iterations in

geometric multigrid does not translate directly to least overall time to solution which

in turn depends on time per iteration and set-up cost for the three methods. In

future work we will compare the overall time to solution for ML, EML and geometric

multigrid. This challenging example clearly shows the benefits of high-order nature

156



(a) N = 6 (b) N = 7 (c) N = 8

Figure 5.11: Example II: discontinuous and heterogeneous permeability field [81] on
642, 1282 and 2562 meshes.

of HDG, that is, for all three methods as the solution order increases the solution is

not only more accurate but also obtained with less number of GMRES iterations.

Between ML and EML, we can see that EML requires less number of iterations

and attains more accuracy at higher levels (see, e.g., the results with N = 8 in Tables

5.3 and 5.4). The benefit of enrichment is clearly observed for p = {3, 4, 5}, in which

EML is almost four orders of magnitude more accurate than ML (see last row and

columns 4 − 6 of Tables 5.3 and 5.4). For coarser meshes, the iteration counts of

ML and EML are similar. Finally, it is interesting to notice that columns 4 − 7

in Table 5.4, corresponding to p = {3, 4, 5, 6}, for EML (highlighted in blue) have

similar iteration counts and accuracy when compared to columns 3− 6 in Table 5.5,

corresponding to p = {2, 3, 4, 5}, for the geometric multigrid method.

Finally, solvers/preconditioners based on hierarchical interpolative decompos-

tion [81], HSS [160] and compressible matrices [103] can provide lesser iteration

counts/faster time to solution for this example as it is elliptic and have the low

rank properties in the off-diagonal blocks. However, our approach is more general

and applicable to hyperbolic problems such as the pure transport equation and other

such equations which do not have that property. Moreover, for PDEs where the low
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rank property is applicable HSS or similar compression techniques can be applied on

top of our algorithm and can offer additional speedup. We will explore this avenue

in our future studies.

N p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

6 178 137 107 92 79 73
7 * (10−5) * (10−8) 167 138 113 99
8 * (10−2) * (10−2) * (10−2) * (10−4) * (10−5) * (10−7)

Table 5.3: Example II: number of ML-preconditioned GMRES iterations as the mesh
and solution order are refined.

N p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

6 180 132 115 98 81 72
7 * (10−7) 178 155 132 112 93
8 * (10−4) * (10−5) * (10−6) * (10−8) 195 176

Table 5.4: Example II: number of EML-preconditioned GMRES iterations as the
mesh and solution order are refined.

N p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

6 157 114 97 85 74 69
7 * (10−8) 157 129 112 98 88
8 * (10−6) * (10−7) * (10−8) 190 176 170

Table 5.5: Example II: number of geometric-multigrid-preconditioned GMRES iter-
ations as the mesh and solution order are refined.

5.2.3 Example III: Transport equation

In this section we apply ML and EML to a pure transport equation (2.5).

Similar to [82, 108], we consider the velocity field β = (1 + sin(πy/2), 2), forcing

f = 0, and the inflow boundary conditions

g =


1 x = 0, 0 ≤ y ≤ 2
sin6 (πx) 0 < x ≤ 1, y = 0
0 1 ≤ x ≤ 2, y = 0

.

The solution is shown in Figure 5.12(a) and the difficulty of this test case comes

from the presence of a curved discontinuity (shock) emanating from the inflow to
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the outflow boundaries. In Table 5.6 we show the iteration counts for both ML- and

EML-preconditioned GMRES for different solution orders and mesh levels. As can

be seen, while h−scalability is not attained with both ML and EML, p−scalability is

observed for both methods, i.e., the number of GMRES iterations is almost constant

for all solution orders. Again EML takes less iteration counts than ML for all cases.

Table 5.7 shows the iteration counts for block-Jacobi preconditioned GMRES.

Compared to ML and EML in Table 5.6, the iteration counts for block-Jacobi are

higher, and for levels 7 and 8 block-Jacobi does not converge within the maximum

number of iteration counts. This indicates though both ML and EML do not give

h−scalable results, they provide a global coupling for the two-level algorithm and thus

help in reducing the total number of iterations. Moreover, both the ML and EML

algorithms are robust (with respect to convergence) even for solution with shock. It is

important to point out that for pure transport problems it is in general not trivial to

obtain h−scalable results unless some special smoother, which follows the direction

of convection, is used [11, 77, 88, 151]. For this reason, the moderate growth in the

iteration counts for both ML and EML algorithms is encouraging.

Next, we test the algorithms on a smooth exact solution (see Figure 5.12(b))

given by

ue =
1

π
sin(πx) cos(πy).

All the other parameters are the same as those for the discontinuous solution consid-

ered above. Tables 5.8 and 5.9 show the number of ML-, EML-, and block-Jacobi-

preconditioned GMRES iterations. Table 5.8 shows that the performance of ML- and

EML-preconditioned GMRES is similar to the one observed for the elliptic equation

with smooth solution in Table 5.2. Block-Jacobi preconditioned GMRES, on the other

hand, is more or less independent of the smoothness of the solution as Table 5.9 for
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the smooth solution is very similar to Table 5.7 for the discontinuous solution. Thus

this example demonstrates that for the Poisson and the transport equations, unlike

many standard iterative algorithms which depend on the nature of the PDE under

consideration, the performance of ML and EML algorithms seems to depend only on

the smoothness of the solution and otherwise is independent of the underlying PDE.

This behavior seems to be due to their root in direct solver strategy. However, this

statement cannot be claimed in general for any PDE as our numerical experiments

with Helmholtz equation in high wave number regime shows dependence with wave

number even for smooth solution. In our future work we will study this behavior in

more detail and improve the robustness of the multilevel algorithms.

(a) Discontinuous solution
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(b) Smooth solution

Figure 5.12: Example III: discontinuous and smooth solution for the transport equa-
tion on a 64× 64 uniform mesh and p = 6 solution order.

5.2.4 Convection-diffusion equation

In this section we test the proposed algorithms for the convection-diffusion

equation in both diffusion- and convection-dominated regimes. To that end, we con-
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ML with GMRES EML with GMRES
N p p

1 2 3 4 5 6 1 2 3 4 5 6

2 4 5 5 5 5 5 3 4 5 5 5 5
3 7 7 7 7 7 7 6 6 7 7 7 7
4 10 11 11 11 10 11 8 9 10 10 10 10
5 16 17 16 18 17 17 10 14 15 15 16 16
6 25 27 26 28 27 28 15 22 23 24 25 26
7 41 44 44 46 45 47 21 34 39 43 43 44
8 66 76 79 82 81 83 31 55 67 75 77 79

Table 5.6: Example III. Discontinuous solution: number of ML- and EML-
preconditioned GMRES iterations.

N p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

2 7 7 7 7 7 7
3 9 9 10 10 10 9
4 14 14 14 15 14 14
5 24 24 24 25 25 25
6 43 41 44 45 46 46
7 78 76 * * * *
8 146 * * * * *

Table 5.7: Example III. Discontinuous solution: number of block-Jacobi precondi-
tioned GMRES iterations.

ML with GMRES EML with GMRES
N p p

1 2 3 4 5 6 1 2 3 4 5 6

2 5 4 5 4 4 3 3 4 4 4 3 3
3 6 6 6 5 5 3 5 5 5 4 3 2
4 10 9 9 8 7 5 7 7 6 4 2 1
5 15 14 13 13 10 8 8 9 7 2 1 0
6 23 22 20 20 17 13 10 11 2 1 0 0
7 36 37 37 34 30 17 12 7 1 0 0 0
8 58 63 65 62 48 21 12 2 0 0 0 0

Table 5.8: Example III. Smooth solution: number of ML- and EML-preconditioned
GMRES iterations.

sider f = 0 in (2.34). We shall take some standard problems that are often used to

test the robustness of multigrid algorithms for convection-diffusion equations.
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N p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

2 6 7 7 7 7 7
3 9 9 9 9 9 9
4 14 13 14 14 14 14
5 23 22 23 24 24 24
6 41 39 43 44 45 68
7 76 74 * * * *
8 142 * * * * *

Table 5.9: Example III. Smooth solution: number of block-Jacobi preconditioned
GMRES iterations.

5.2.4.1 Example IV

Here we consider an example similar to the one in [69]. In particular, we take

κ = 1, ν = 0, boundary condition gD = cos(2y)(1−2y) and β = (−α cos(4πy),−α cos(4πx))

in (2.34), where α is a parameter which determines the magnitude of convection ve-

locity. In Figure 5.13, solutions for different values of α in the range [10, 104] are

shown. As α increases, the problem becomes more convection-dominated and shock-

like structures are formed.

In Tables 5.10-5.13 are the iteration counts for ML- and EML-preconditioned

GMRES with various values of α. We observe the following. In all cases, as expected,

the iteration counts for EML are less than for ML. As the mesh is refined we see

growth in iterations for both ML and EML, though it is less for EML than for ML.

With increase in solution order the iterations remain (almost) constant, and in many

cases decrease. For mildly-to-moderately convection-dominated, i.e. α ∈ [10, 103],

both ML and EML are robust in the sense that their iteration counts negligibly vary

with respect to α. For α = 104, i.e., strongly convection-dominated regime, we see

an increase in iteration counts for both algorithms, though the growth is much less

pronounced for EML than for ML (especially with low solution orders p = {1, 2, 3, 4}).
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(a) α = 10 (b) α = 102

(c) α = 103 (d) α = 104

Figure 5.13: Example IV: solutions of the convection-diffusion equation for different
values of α on a 64× 64 uniform mesh and p = 6 solution order.

ML with GMRES EML with GMRES
N p p

1 2 3 4 5 6 1 2 3 4 5 6

6 29 24 24 20 20 17 13 12 12 12 11 11
7 42 35 34 29 28 24 17 15 16 14 15 15
8 60 49 49 40 39 33 22 20 19 20 21 21

Table 5.10: Example IV. α = 10: number of iterations for ML- and EML-
preconditioned GMRES.
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ML with GMRES EML with GMRES
N p p

1 2 3 4 5 6 1 2 3 4 5 6

6 27 25 23 22 22 20 15 15 16 16 16 17
7 39 36 34 32 32 30 22 21 22 22 23 23
8 55 51 49 46 46 42 29 29 31 31 33 34

Table 5.11: Example IV. α = 102: number of iterations for ML- and EML-
preconditioned GMRES.

ML with GMRES EML with GMRES
N p p

1 2 3 4 5 6 1 2 3 4 5 6

6 39 29 24 18 16 15 14 13 12 12 11 12
7 49 34 26 21 21 20 15 15 15 15 15 16
8 62 41 35 28 29 27 22 22 22 22 23 23

Table 5.12: Example IV. α = 103: number of iterations for ML- and EML-
preconditioned GMRES.

ML with GMRES EML with GMRES
N p p

1 2 3 4 5 6 1 2 3 4 5 6

6 89 101 88 68 59 51 29 43 44 41 37 33
7 136 133 98 75 65 55 40 48 44 38 35 34
8 192 141 101 76 67 56 46 45 39 35 34 34

Table 5.13: Example IV. α = 104: number of iterations for ML- and EML-
preconditioned GMRES.

5.2.4.2 Example V

In this section a test case for multigrid method in [124] is considered. The

parameters for this example are β = ((2y−1)(1−x2), 2xy(y−1)), boundary condition

gD = sin(πx) + sin(13πx) + sin(πy) + sin(13πy) and ν = 0. The solution fields

for various values of κ in the range [10−1, 10−4] are shown in Figure 5.14. As can

be observed, the problem becomes more convection dominated when the diffusion

coefficient κ decreases. Tables 5.14-5.17 present the iteration counts of ML- and

EML-preconditioned GMRES for different values of κ. Again, the iteration counts
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for EML are less than for ML. As the mesh is refined we see growth in iterations for

both ML and EML, though it is less for EML than for ML. An outlier is the case of

κ = 10−4 in Table 5.17, where the number of EML-preconditioned GMRES iterations

reduces as the mesh is refined and ML-preconditioned GMRES does not converge for

p = 2 on mesh levels 6 and 7. At the time of writing, we had not yet found the reason

for this behavior.

(a) κ = 10−1 (b) κ = 10−2

(c) κ = 10−3 (d) κ = 10−4

Figure 5.14: Example V: solutions of the convection-diffusion equation for different
values of κ on a 64× 64 uniform mesh and p = 6 solution order.
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ML with GMRES EML with GMRES
N p p

1 2 3 4 5 6 1 2 3 4 5 6

6 28 23 23 21 21 19 13 13 13 13 13 13
7 40 34 34 30 29 26 18 17 18 16 18 18
8 58 47 48 43 41 37 23 22 23 23 25 25

Table 5.14: Example V. κ = 10−1: number of iterations for ML- and EML-
preconditioned GMRES.

ML with GMRES EML with GMRES
N p p

1 2 3 4 5 6 1 2 3 4 5 6

6 30 24 23 21 20 18 15 14 14 13 12 12
7 41 34 33 30 29 26 19 17 17 15 16 16
8 56 46 47 42 40 36 23 21 21 21 22 23

Table 5.15: Example V. κ = 10−2: number of iterations for ML- and EML-
preconditioned GMRES.

ML with GMRES EML with GMRES
N p p

1 2 3 4 5 6 1 2 3 4 5 6

6 46 21 19 16 16 15 23 13 13 12 11 12
7 55 29 27 24 23 22 26 17 17 16 16 16
8 61 43 41 36 35 32 31 24 24 23 24 24

Table 5.16: Example V. κ = 10−3: number of iterations for ML- and EML-
preconditioned GMRES.

ML with GMRES EML with GMRES
N p p

1 2 3 4 5 6 1 2 3 4 5 6

6 139 * 159 28 25 21 68 161 107 20 17 15
7 175 * 33 27 23 21 58 24 21 17 15 14
8 184 43 34 30 26 24 51 20 18 16 16 16

Table 5.17: Example V. κ = 10−4: number of iterations for ML- and EML-
preconditioned GMRES.
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5.2.4.3 Example VI

Next we consider a test case from [9]. The parameters are β = (4αx(x−1)(1−

2y),−4αy(y− 1)(1− 2x)), boundary condition gD = sin(πx) + sin(13πx) + sin(πy) +

sin(13πy), ν = 0 and κ = 1. The solution fields for four values of α in [10, 104] are

shown in Figure 5.15. Similar to example IV, the problem becomes more convection-

dominated as α increases. However, one difference is that the streamlines of the

convection field in this case are circular [9]. This is challenging for geometric multigrid

methods with Gauss–Seidel type smoothers of certain ordering if unknowns are not

ordered in the flow direction. Since the block-Jacobi method, which is insensitive to

direction, is used in ML and EML algorithms, we do not encounter the same challenge

here. In Tables 5.18-5.21 are the iteration counts of ML- and EML-preconditioned

GMRES for different values of α. As expected, all observations/conclusions made for

example IV hold true for this example as well. The results for α ≥ 103 show that

this case is, however, more challenging. Indeed, this example requires more iterations

for both ML and EML, and in some cases convergence is not obtained within the

200-iteration constraint.

ML with GMRES EML with GMRES
N p p

1 2 3 4 5 6 1 2 3 4 5 6

6 28 23 23 22 22 21 23 16 15 14 15 15
7 38 33 34 31 31 29 31 20 20 19 20 20
8 56 47 48 45 44 41 40 26 26 27 29 29

Table 5.18: Example VI. α = 10: number of iterations for ML- and EML-
preconditioned GMRES.

Examples IV, V and VI show that both ML and EML preconditioners behave

especially well in both diffusion-dominated and moderately convection-dominated

regimes. EML is more beneficial than ML in terms of robustness and iteration counts,
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(a) α = 10 (b) α = 102

(c) α = 103 (d) α = 104

Figure 5.15: Example VI: solutions of the convection-diffusion equation for different
α on a 64× 64 uniform mesh and p = 6 solution order.

ML with GMRES EML with GMRES
N p p

1 2 3 4 5 6 1 2 3 4 5 6

6 35 28 28 25 24 22 26 22 21 19 18 17
7 52 42 41 36 34 31 42 33 28 24 23 21
8 77 59 54 50 46 42 66 43 32 28 30 29

Table 5.19: Example VI. α = 102: number of iterations for ML- and EML-
preconditioned GMRES.

especially for low orders p ≤ 4. The iteration counts of EML are also comparable to

some of the AMG methods in [? ] for examples V and VI
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ML with GMRES EML with GMRES
N p p

1 2 3 4 5 6 1 2 3 4 5 6

6 106 34 31 25 23 21 43 25 26 20 20 19
7 * 52 47 41 37 35 152 40 37 32 31 30
8 180 92 77 70 64 62 114 66 61 55 56 53

Table 5.20: Example VI. α = 103: number of iterations for ML- and EML-
preconditioned GMRES.

ML with GMRES EML with GMRES
N p p

1 2 3 4 5 6 1 2 3 4 5 6

6 145 111 89 69 59 49 62 54 53 42 39 34
7 200 126 117 75 69 53 91 63 78 47 53 40
8 * 151 * 93 99 71 * 90 * 67 92 60

Table 5.21: Example VI. α = 104: number of iterations for ML- and EML-
preconditioned GMRES.

5.2.5 Three-dimensional example

In this section we test the iterative multilevel algorithm 4 on the 3D Poisson

equation with a smooth exact solution given by

ue =
1

π2
sin(πx) cos(πy) sin(πz).

The other parameters and settings of the numerical experiment are same as example

I in section 5.2.2.1. The domain is a standard unit cube Ω = [0, 1]3 discretized

with structured hexahedral elements. The number of elements corresponding to the

number of levels in the multilevel hierarchy is shown in Table 5.22.

For the 3D calculations the multilevel approach described in section 5.1.2 is

extended in a natural way. The level 1 separator has 12 faces and the separators

in higher levels are projected such that all of them have same 12 faces with same

(ML) or high (EML) polynomial order. In Table 5.23, the number of ML and EML

preconditioned GMRES iterations are shown with respect to h and p refinements and
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the conclusion is very similar to the one for the 2D problem in section 5.2.2.1. In

Table 5.23, for N = 5 and p = 6 we ran into out of memory problem during coarse

factorization and hence it is denoted with ‘-’.

In Figures 5.16-5.20, we compare ML and EML preconditioners to ND. Most

of the trend is similar to that observed for the 2D problem in section 5.2.2.1 and the

notable differences worth mentioning are as follows. The overall speedup of both ML

and EML compared to ND is significantly better in 3D than in 2D and a maximum

speedup of around 8 is observed for EML in Figure 5.16(a) and around 10 is observed

for ML in Figure 5.16(b) for p = 3 and N = 5. Between ML and EML, ML is faster

than EML as seen in Figure 5.16(c) even though the factor is not very high. This

is different from 2D where in Figure 5.6(c) we found EML to be slightly faster than

ML. ND faced out of memory problem for N = 5 and p > 3 whereas both ML and

EML still work for N = 5 and p = 4, 5. Even for p ≤ 3, the memory required by ML

is 25 times less than ND at all orders and N = 5 as shown in Figure 5.17(b). EML

requires 14 times less memory than ND at N = 5 and p = 3 as seen in Figure 5.17(a).

In terms of comparison with theoretical complexities in section 5.1.9, we see a

very good agreement for the memory complexities in Figure 5.20. For the factorization

and the back solve in Figures 5.18 and 5.19, we noticed the algorithms, especially ND,

has not reached the asymptotic limit yet and hence there is some difference.

This preliminary study in 3D shows that the multilevel algorithms can offer

significant speedups and memory savings compared to ND. Our future work will

involve large scale parallel implementation of the multilevel algorithms for challenging

problems in 3D.
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Levels (N) 2 3 4 5
Elements 43 83 163 323

Table 5.22: 3D multilevel hierarchy.

ML with GMRES EML with GMRES
N p p

1 2 3 4 5 6 1 2 3 4 5 6

2 6 6 7 5 4 2 4 6 5 4 2 1
3 11 9 8 6 5 3 9 7 6 3 1 0
4 16 12 10 8 6 4 12 8 5 1 0 0
5 23 17 14 11 8 - 14 8 2 0 0 -

Table 5.23: 3D Poisson equation: number of ML- and EML-preconditioned GMRES
iterations as the mesh is refined (increasing N) and the solution order p increases.
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Figure 5.16: 3D Poisson equation: a comparison of time-to-solution for EML, ML,
and ND algorithms.

5.3 Discussion

In this chapter we have proposed a multilevel framework for HDG discretiza-

tions exploiting the concepts of nested dissection, domain decomposition, and high-

order and variational structure of HDG methods. The chief idea is to create coarse

solvers for domain decomposition methods by controlling the front growth of nested

dissection. This is achieved by projecting the skeletal data at different levels to either

same or high-order polynomial on a set of increasingly h−coarser edges/faces. When
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Figure 5.17: 3D Poisson equation: a comparison of memory requirement for EML,
ML, and ND algorithms.
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Figure 5.18: 3D Poisson equation: asymptotic and numerical estimates of factoriza-
tion time complexity for EML, ML, and ND. Here, T stands for the theoretically
estimated complexity derived in section 5.1.9 and E for numerical experiment.

the same polynomial order is used for the projection we name the method multilevel

(ML) algorithm and enriched multilevel (EML) algorithm for higher polynomial or-

ders. The coarse solver is combined with a block-Jacobi fine scale solver to construct

a two-level solver in the context of domain decomposition methods. We show that

the two-level approach can also be interpreted as a multigrid algorithm with specific

intergrid transfer and smoothing operators on each level. Our complexity estimates

show that the cost of the multilevel algorithms is somewhat in between the cost of

nested dissection and standard multigrid solvers.

We have conducted several numerical experiments with the Poisson equa-
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Figure 5.19: 3D Poisson equation: asymptotic and numerical estimates of back solve
time complexity for EML, ML, and ND. Here, T stands for the theoretically estimated
complexity derived in section 5.1.9 and E for numerical experiment.

0 1 2 3 4
Number of Elements 10 4

0

2

4

6

8

10

12

M
em

or
y 

[M
B

]

10 4

p=1 T
p=1 E
p=2 T
p=2 E
p=3 T
p=3 E
p=4 T
p=4 E
p=5 T
p=5 E
p=6 T
p=6 E

(a) ND

0 1 2 3 4
Number of Elements 10 4

0

0.5

1

1.5

2

M
em

or
y 

[M
B

]

10 4

p=1 T
p=1 E
p=2 T
p=2 E
p=3 T
p=3 E
p=4 T
p=4 E
p=5 T
p=5 E
p=6 T
p=6 E

(b) ML

0 1 2 3 4
Number of Elements 10 4

0

0.5

1

1.5

2

2.5

3

M
em

or
y 

[M
B

]

10 4

p=1 T
p=1 E
p=2 T
p=2 E
p=3 T
p=3 E
p=4 T
p=4 E
p=5 T
p=5 E
p=6 T
p=6 E

(c) EML

Figure 5.20: 3D Poisson equation: asymptotic and numerical estimates of memory
complexity for EML, ML, and ND. Here, T stands for the theoretically estimated
complexity derived in section 5.1.9 and E for numerical experiment.

tion, the transport equation, and the convection-diffusion equation in both diffusion-

and convection-dominated regimes. The numerical experiments show that our algo-

rithms are robust even for the transport equation with discontinuous solution and

elliptic equation with highly heterogeneous and discontinuous permeability. For the

convection-diffusion equation, the multilevel algorithms are scalable and reasonably

robust (with respect to changes in parameters of the underlying PDE) from diffusion-

dominated to moderately convection-dominated regimes. EML is more beneficial
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than ML in terms of robustness and iteration counts, especially for low orders p ≤ 4.

Preliminary studies show that the multilevel algorithms can offer significant speedups

and memory savings compared to the nested dissection direct solver for 3D problems.

We have demonstrated the applicability of our algorithms both as iterative

solvers and as preconditioners for various prototypical PDEs in this work. One of

the advantages of the algorithms is that they are designed to reduce dependence on

the nature of the PDE being solved. In section 6.4.4 of the next chapter we utilize

this and show an application of the multilevel approach in a block preconditioning

strategy in the context of incompressible resistive MHD.
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Chapter 6

A Block Preconditioner for HDG Trace Systems
applied to Incompressible Resistive MHD

We have so far considered fairly simple prototypical equations and developed

preconditioners and solvers for the trace systems arising from the HDG discretiza-

tion. In this chapter we consider a multiphysics system involving fluid dynamics

and electromagnetics and develop a block preconditioner for the HDG discretiza-

tion. In particular, we consider the incompressible visco-resistive MHD equations

which plays an important role in modeling low Lundquist number liquid metal flows,

high Lundquist number large-guide-field fusion plasmas and low flow-Mach-number

compressible flows [139]. Incompressible resistive MHD presents several challenges

in terms of nonlinearity, coupled fluid and magnetic physics, incompressibility con-

straints in both velocity and magnetic fields to name a few.

This chapter is organized as follows. In section 6.1, we introduce the equations

for the incompressible MHD system and the relevant non-dimensional parameters.

Then in section 6.2, we present an HDG scheme for the discretization of the linearized

MHD system and identify the block structure in it. We then proceed to introduce a

block preconditioning strategy for the linear system in section 6.3. Finally, section 6.4

presents various 2D and 3D transient test cases to test the robustness and scalability

of the block preconditioner.
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6.1 Incompressible visco-resistive MHD system

The visco-resistive, incompressible magnetohydrodynamics equations are given

by

ρ
∂u

∂t
− µ∆u + ρu · ∇u +∇q − 1

µ0

(∇× b)× b = f , (6.1a)

∇ · u = 0, (6.1b)
∂b

∂t
+∇× (

η

µ0

∇× b)−∇× (u× b) +∇r = g, (6.1c)

∇ · b = 0. (6.1d)

Here, u is the fluid velocity field, b is the magnetic field, ρ is the fluid density, µ is the

viscosity, µ0 is the permeability of free space, η the resistivity and q is the mechanical

pressure. These equations are obtained by combining the induction equation and

the incompressible Navier–Stokes equations along with the addition of Lorentz force

−J×b to the momentum equation, which describes the electromagnetic forces on the

fluid. Here, J is the current which is related to the electric field E and magnetic field

b through the generalized Ohm’s law

E + u× b = ηJ. (6.2)

In order to arrive at this formulation we assume the displacement current to

be negligible and use the Ampere’s law

∇× b = µ0J, (6.3)

to eliminate J and write the Lorentz force in terms of magnetic field b only.

We consider ρ, µ and η to be constant and assume the magnetic source term g

to be divergence-free. The variable r denotes the Lagrange multiplier which is used to

enforce the solenoidality of magnetic field constraint. Without this variable, we would
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have a over-determined system of equations. Thus it helps in enforcing the divergence-

free constraint and at the same time it is just a “dummy variable” because in essence

we are solving for zero. This can be seen by taking divergence of equation (6.1c)

which gives ∆r = 0 and together with homogeneous Dirichlet boundary conditions

gives r = 0. More details about this approach can be found in [135, 138, 42, 140].

By choosing a length scale l0, characteristic velocity scale u0 and magnetic

scale b0 we non-dimensionalize (6.1) as shown in [140]. The non-dimensionalized

MHD equations are given by

∂u

∂t
+ u · ∇u +∇q − 1

Re
∆u− κ(∇× b)× b = f , (6.4a)

∇ · u = 0, (6.4b)

κ
∂b

∂t
+

κ

Rm
∇× (∇× b)− κ∇× (u× b) +∇r = g, (6.4c)

∇ · b = 0. (6.4d)

Here, Re := ρl0u0
µ

is the Reynolds number which measures the ratio of inertial forces

to viscous forces, Rm := µ0u0l0
η

is the magnetic Reynolds number which is the ratio

of magnetic advection to magnetic diffusion, κ :=
b20

ρµ0u20
is the coupling parameter

and is the ratio of electromagnetic forces to inertial forces. The parameters κ, Re

and Rm are related by κ = Ha2
ReRm , where Ha := b0l0√

µη
is the Hartmann number. We

can also write κ as κ =
u2A
u20
, where uA := b0√

ρµ0
is the Alfvén speed. We refer the

readers to [72, 107] for details on non-dimensional parameters in MHD system. Note

that we have abused the notation here and all the variables in (6.4) represent the

non-dimensional quantities.

We put (6.4) into first order form for discretizing with HDG and towards that

end let us define the auxiliary variables L and J which represents the velocity gradient
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and curl of magnetic field respectively. The first order system is given by

ReL−∇u = 0, (6.5a)
∂u

∂t
+∇ · (u⊗ u) +∇q −∇ · L− κ(∇× b)× b = f , (6.5b)

∇ · u = 0, (6.5c)
Rm
κ

J−∇× b = 0, (6.5d)

κ
∂b

∂t
+∇r − κ∇× (u× b) +∇× J = g, (6.5e)

∇ · b = 0. (6.5f)

We refer to J as the current density or simply the current and it should be understood

in a non-dimensional sense with the characteristic value defined by J0 = Rm
κ

b0
µ0l0

.

The MHD system (6.5) is equipped with the following set of initial conditions

u(t = 0) = u0, b(t = 0) = b0. (6.6)

We also need to specify boundary conditions for the fluid components, magnetic

components and the Lagrange multiplier. Since it is not important for the current

discussion we will defer this till section 6.4 where we specify these details for each

numerical experiment separately.

The HDG schemes for the MHD system are posed on a linearized version,

and towards that we linearize (6.5) about a prescribed velocity w and a prescribed
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magnetic field d [42]:

ReL−∇u = 0, (6.7a)
∂u

∂t
+∇ · (u⊗w) +∇q −∇ · L− κ(∇× b)× d = f , (6.7b)

∇ · u = 0, (6.7c)
Rm
κ

J−∇× b = 0, (6.7d)

κ
∂b

∂t
+∇r − κ∇× (u× d) +∇× J = g, (6.7e)

∇ · b = 0. (6.7f)

Here w is assumed to reside in H(div,Ω) and be divergence-free, while d is assumed

to reside in H(div,Ω) ∩H(curl,Ω).

6.2 HDG for incompressible MHD

In this section we present the HDG scheme proposed in [140, 94].

Formulation 6.1. Find (L,u, q,J, b, r, û, b̂
t
, r̂, ρ) in Gh × V h ×Wh ×Hh × Ch ×
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Sh × V̂ h × Ĉ
t

h × Ŝh × P0(∂T ) such that the local equations

Re (L,G)T + (u,∇ ·G)T − 〈û,Gn〉∂T = 0, (6.8a)(
∂u

∂t
,v

)
T

− (∇ · L,v)T + (∇q,v)T −
1

2
(u⊗w,∇v)T +

1

2
(∇u,v ⊗w)T

+ (∇× b,v × κd)T +

〈
1

2
(w · n) û + Su (u− û) ,v

〉
∂T

− [1− ξ]
〈
n×

(
bt − b̂

t
)
,v × κd

〉
∂T

= (f ,v)T , (6.8b)

− (u,∇w)T + 〈û · n, w − w〉∂T + 〈q − ρ, w〉∂T = 0, (6.8c)
Rm
κ

(J,H)T − (b,∇×H)T −
〈
n× b̂

t
,H
〉
∂T

= 0, (6.8d)

κ

(
∂b

∂t
, c

)
T

+ (∇× J, c)T − (r,∇ · c)T − (u× κd,∇× c)T + 〈r̂, c · n〉∂T

+ 〈([1− ξ] u + ξû)× κd,n× c〉∂T +
〈
βt

(
bt − b̂

t
)
, c
〉
∂T

= (g, c)T , (6.8e)

(∇ · b, s)T +

〈
1

βn
(r − r̂) , s

〉
∂T

= 0, (6.8f)

the conservation equations

−
〈
−Ln+ qn+

1

2
(w · n) u + Su (u− û) + κd× (n× ξb) , v̂

〉
e

= 0, (6.8g)

−
〈
n× J + βt

(
bt − b̂

t
)
− n× ([1− ξ] u× κd) , ĉt

〉
e

= 0, (6.8h)

−
〈
b · n+

1

βn
(r − r̂) , ŝ

〉
e

= 0, (6.8i)

and the additional constraint

〈û · n, ψ〉∂T = 0 (6.8j)

hold for all (G,v, w,H, c, s, v̂, ĉt, ŝ, ψ) in Gh × V h ×Wh ×Hh × Ch × Sh × V̂ h ×

Ĉ
t

h × Ŝh × P0(∂T ). In addition the pressure is subject to the constraint

(q, 1)Ωh = 0.
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Here, the volume spaces are defined as

Gh :=
{

G ∈
[
L2(Ωh)

]d×d
: G|T ∈ [Pp (T )]d×d ,∀T ∈ Ωh

}
, (6.9a)

V h :=
{

v ∈
[
L2(Ωh)

]d
: v|T ∈ [Pp (T )]d ,∀T ∈ Ωh

}
, (6.9b)

Wh :=
{
w ∈ L2(Ωh) : w|T ∈ Pp (T ) ,∀T ∈ Ωh

}
, (6.9c)

Hh :=
{

H ∈
[
L2(Ωh)

]d̃
: H|T ∈ [Pp (T )]d̃ ,∀T ∈ Ωh

}
, (6.9d)

Ch :=
{
c ∈

[
L2(Ωh)

]d
: c|T ∈ [Pp (T )]d ,∀T ∈ Ωh

}
, (6.9e)

Sh :=
{
s ∈ L2(Ωh) : s|T ∈ Pp (T ) ,∀T ∈ Ωh

}
, (6.9f)

where d̃ takes the value of one for 2D and three for 3D. We define the skeletal spaces

as follows,

V̂ h :=
{

v̂ ∈
[
L2(Eh)

]d
: v̂|e ∈ [Pp (e)]d ,∀e ∈ Eh

}
, (6.10)

Ĉ
t

h :=
{
ĉt ∈

[
L2(Eh)

]d−1
: ĉt|e ∈ Ĉ

t

h(e)
}
, (6.11)

Ŝh :=
{
ŝ ∈ L2(Eh) : ŝ|e ∈ Pp (e) ,∀e ∈ Eh

}
. (6.12)

Here Ĉ
t

h(e) is a vector valued polynomial space with no normal component, defined

by

Ĉ
t

h(e) =

{
d−1∑
i=1

tiĉh,i : ĉh,i ∈ Pp (e) ,∀e ∈ Eh

}
, (6.13)

where ti are tangent vectors to e. The values ξ = 1
2
, βn = βt = 1 are chosen and the

stabilization Su is taken as

Su := τtT + τnN, (6.14)

where N := n ⊗ n, T := −n × (n × .) = I − N, τt = 1
2

√
4 + (w · n)2 and τn =

1
2

√
8 + (w · n)2.

The well-posedness of the local and global solvers of the scheme (6.1) and also

the error analysis is shown in [140, 94]. For this scheme the volume velocity and
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magnetic fields converge optimally as O(hp+1), whereas all the other volume variables

converge as O(hp+1/2). The verification of this scheme for a number of prototypical

MHD problems is shown in [140, 94].

Once the volume unknowns are expressed in terms of the skeletal unknowns

through the local solvers, we use the conservation conditions to generate the global

linear system which has the following block form [140]
A −B> E G
B 0 0 0
F 0 C J
H 0 K L



Û
ρ

B̂t

R̂

 =


F1

F2

F3

F4

 . (6.15)

We will use this block structure and develop a preconditioning strategy as shown in

the next section.

6.3 A block preconditioner for the linear system

Before moving into the construction of the block preconditioner we first briefly

explain the need for it in this case. If we want to precondition the linear system (6.15)

using the multigrid method introduced in chapter 4 or multilevel method proposed in

chapter 5 or algebraic multigrid methods (AMG), we cannot apply it directly because

of the difference in nature of the trace unknowns. The unknowns (Û , B̂t, R̂) are all

nodal skeletal unknowns belonging to Pp(e) whereas the edge average pressure ρ is

an element-wise constant and is independent of the solution order p. Thus with any

of the multigrid or multilevel methods, coarsening becomes an issue. This problem is

also encountered in the linear systems arising from mixed finite element methods and

a strategy to tackle this issue is block preconditioning. The idea is to identify and

group blocks corresponding to different unknowns and use approximate block inverses

for preconditioning [53, 54, 132, 43, 119]. Thus we use similar techniques to come up

with a preconditioner for the linear system (6.15).
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We first rewrite equation (6.15) into the saddle point form as follows
A E G −B>
F C J 0
H K L 0
B 0 0 0



Û

B̂t

R̂
ρ

 =


F1

F3

F4

F2

 . (6.16)

Denoting the 3×3 block corresponding to the unknowns (Û , B̂t, R̂) as F we can write

the matrix as [
F −B>
B 0

]
, (6.17)

where we have abused the notation and denoted [B 0 0] as B. For a 2 × 2 block

matrix such as (6.17) its block inverse (assuming F−1 exists) can be written as [146][
F −B>
B 0

]−1

=

[
F−1 F−1B>S−1

0 S−1

] [
I 0

−BF−1 I

]
, (6.18)

where S := BF−1B> is the Schur complement. Now, when we use the upper triangular

matrix of the inverse (6.18) as a right preconditioner for the saddle point matrix (6.17)

we get [
F −B>
B 0

] [
F−1 F−1B>S−1

0 S−1

]
=

[
I 0

BF−1 I

]
. (6.19)

All the eigenvalues of the preconditioned matrix have the value 1, and hence with a

Krylov subspace method such as GMRES at most two iterations are needed to solve

the system [111, 53, 54].

However, the problem with this ideal preconditioner is that we need inverses

of F and S which are expensive to compute. Hence the natural idea is to use ap-

proximations of these inverses in the construction of the preconditioner. First, let us

consider the approximation for the inverse of the Schur complement matrix S. We

will follow the approach shown in [53, 54] for incompressible Navier–Stokes equations

to derive an approximation for the inverse of the Schur complement.
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To that extent, if we can find an approximate commutator F̃ such that

B>F̃ ≈ FB>, (6.20)

then pre-multiplying by F−1 and post-multiplying by F̃−1 (assuming both inverses

exists) both sides of the above equation we get

F−1B> ≈ B>F̃−1. (6.21)

Using (6.21) we can write an approximate inverse for the Schur complement as

S−1 =
(
BF−1B>

)−1 (6.22)

≈
(
BB>F̃−1

)−1

(6.23)

S̃−1 = F̃
(
BB>

)−1
. (6.24)

Now the only thing remaining is to find the approximate commutator F and

we can use least squares minimization for that. Solving for the normal equations

corresponding to (6.20) gives [53]

F̃ =
(
BB>

)−1
BFB>. (6.25)

Substituting the above equation in the approximate inverse for Schur complement

(6.24) we get

S̃−1 =
(
BB>

)−1
BFB>

(
BB>

)−1
. (6.26)

This is called BFBT approximation (because of the middle term sandwiched between

two inverses) of the inverse Schur complement in the literature [54, 53, 132] and

has been successfully used in the context of Stokes and incompressible Navier–Stokes

equations discretized with finite volume, finite difference and mixed FEMmethods. In

those cases, BB> corresponds to the Poisson operator and instead of taking inverses
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one typically use a geometric multigrid or AMG cycle [54, 53]. Also, for approxi-

mating F−1, AMG or geometric multigrid cycles are used [54, 53]. Scaled versions

of the BFBT approximation are proposed in [53, 104, 132] in order to improve the

robustness.

In the context of HDG discretization of the incompressible MHD system, BB>

corresponds to a matrix of size NT ×NT which is much smaller in size compared to

F. It is independent of the solution order p and the bandwidth is also small since

it corresponds to the edge-average pressure which is piecewise constant per element.

Thus as a first step we will use a parallel sparse direct solver Superludist [97] for

taking inverse of this matrix in the BFBT approximation. In our future work we will

replace this part with preconditioned conjugate gradient solver of lenient tolerance

to improve scalability. Some of the initial studies conducted in this direction shows

promise.

For approximating F−1, we use one v-cycle of AMG solver from the ML library

[66] of Trilinos project [80]. Similar to [139], we order the unknowns in the nodal block

such that the degrees-of-freedom within each node appear consecutively. This helps

to preserve the coupling between different variables during coarsening. The ordering

of unknowns within each node is (Û , B̂t, R̂), while other orderings are also possible

and it can affect the performance of the AMG cycle we intend to compare them in our

future work. We use non-smoothed and uncoupled aggregation with a sparse direct

solver on the coarsest level as in [139]. More details about the aggregation strategy

employed in AMG can be found in [139].

We also use one v-cycle of the multilevel solver presented in chapter 5 and

compare the results with that of AMG in section 6.4.4. In our numerical studies we

observed that the performance of the scaled BFBT approximations is very similar to
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the non-scaled one (6.26) and hence we use that in all our experiments. In summary

we use a right preconditioner [
F̃−1 F̃−1B>S̃−1

0 S̃−1

]
, (6.27)

where F̃−1 is one v-cycle of AMG or the multilevel algorithm 4 and the inverse of

Schur complement is approximated by the BFBT approximation (6.26).

6.4 Numerical results

In this section we test the performance of the block preconditioner for some of

the transient test cases in incompressible resistive MHD. In particular, we consider 2D

and 3D versions of the island coalescence problem, hydromagnetic Kelvin-Helmholtz

(HMKH) instability and hydromagnetic lid-driven cavity problems. We use quadri-

lateral elements in 2D and hexahedral elements in 3D. For time integration we use

the backward Euler time stepping for all the 3D test cases and five stage fourth order

diagonally implicit Runge-Kutta (DIRK) method of [87] for all the 2D test cases. For

the nonlinear solver we employ the Picard iteration scheme with a stopping criterion

based on the discrete norm of the solution update vector given in [139] with the abso-

lute and relative tolerance values set as 10−6 and 10−4 respectively. For the stopping

tolerance of the linear solver, apart from the HMKH test case, we set the value to

be 10−6 multiplied by the norm of the right hand side of the Picard linear system.

For the HMKH test case, it turns out we need a stricter tolerance of 10−9 (without

multiplied by the norm of the right hand side) to make the Picard iterations converge.

For all the parallel results, we implemented our algorithms on top of the deal.II

FEM library [10, 3]. The weak scaling studies are conducted in the Knights Landing

(KNL) nodes of the Stampede2 supercomputer at the Texas Advanced Computing

Center. Each node of KNL consists of 68 intel Xeon Phi 7250 1.4GHz processors with
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4 threads per core. It has 96GB DDR4 RAM along with 16GB high speed MCDRAM

which acts as L3 cache. We have used only pure MPI parallelism even though our

deal.II code has task based parallelism using thread building blocks (TBB) in addition

to MPI. The reasons for this choice are: (i) to have memory locality and avoid memory

contention which may complicate the weak scaling studies (ii) the main focus of this

study, which is the linear solver part, uses ML from Trilinos which does not have

the threads support. In our future work we will use the latest MueLu library [121]

instead of ML as it provides support for threads and GPU.

6.4.1 Magnetic reconnection - Island coalescence

Magnetic reconnection is a fundamental phenomenon by which a magnetic

field changes its structure and is accompanied by conversion of magnetic field energy

into plasma energy and transport [139]. Reconnection is possible only in a resistive

MHD model as the ideal MHD conserves the magnetic flux and hence prevents any

change in its structure. Many physical phenomena which occurs in space such as

solar flares, coronal mass ejections involve magnetic reconnection and it is one of the

driving factors for them to happen. It is also important in a laboratory scenario,

especially in fusion experiments to understand and control plasma disruptions which

can lead to loss in plasma confinement and also damages to the machine. Since fusion

reactors like tokamak are typically designed to handle only certain maximum number

of these eruptions, understanding and controlling these phenomena is of significant

interest to the fusion and in general plasma community. More details about magnetic

reconnection can be found in [14, 72, 73].

While magnetic reconnection is important for its physical significance, it is

also characterized by disparate spatial and temporal scales which serves as an ideal

test bed for testing the robustness of our preconditioners/solvers. In this section we
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consider a specific reconnection problem which is the island coalescence studied in

[139, 30]. It initially consists of two islands embedded in a Harris current sheet as

shown in Figures 6.2(a), 6.5(a). A perturbation to the initial configuration and the

combined magnetic field causes the center of the islands (referred as the o-points)

to move towards each other and eventually coalesce to form one island. When the

reconnection happens, the islands form a ‘x’ structure in the center of the domain as

shown in Figures 6.2(d), 6.2(e), 6.6 and this is known as the x-point. In what follows

we will briefly describe the settings of this problem and then evaluate the performance

of our preconditioner in this case.

The domain is [−1, 1]× [−1, 1] in 2D and [−1, 1]× [−1, 1]× [−1, 1] in 3D. The

boundary conditions are periodic in the x-direction on the left and right faces and

also in the z-direction on the back and front faces. On the top and bottom faces in the

y-direction, for the magnetic part, perfect conducting boundary conditions described

by zero normal magnetic field b · n = 0 and zero tangential electric field n × E = 0

is applied. For fluid part on the top and bottom faces, mirror boundary conditions

described by zero normal velocity u · n = 0 and zero shear stress are applied. The

Lagrange multiplier r is set as zero on all the boundaries. We refer the readers to

[140] for an application of these boundary conditions in the HDG setting.

The initial conditions consists of zero fluid velocity (u0 = 0), and the magnetic

field given by

b0 =

(
sinh (2πy)

cosh (2πy) + ε sinh (2πx)
,

ε sin (2πx)

cosh (2πy) + ε sinh (2πx)
, 0

)
,

where in 2D the first two components of the field values are used. Here, ε refers to

the width of the island and we choose it to be 0.2 as in [139]. In order for the initial

configuration to be in equilibrium a forcing of g = ∇× J0 is used where

J0 := J(t = 0) =

(
0, 0,− 2πκ (1− ε2)

Rm (cosh (2πy) + ε sinh (2πx))

)
.
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For the momentum equation zero forcing (f = 0) is selected. To set the islands into

motion in a reproducible manner rather than relying on the accumulation of round-off

error an initial perturbation of

δb0 = σ
(π

2
cos (πx) sin

(πx
2

)
cos (πz) ,−π sin (πx) cos

(πy
2

)
cos (πz) , 0

)
,

is used with the value of σ = 10−3 which sets the magnitude of perturbation [140].

For 2D, the first two components are used without the z−term. As described in [140]

we choose the characteristic velocity as Alfvén speed which gives κ = 1. Also in all

our numerical experiments we set the fluid Reynolds number and magnetic Reynolds

number (which is Lundquist number in this case) equal to each other.

Figure 6.1: A 16 × 12 × 14 clustered mesh with solution order p = 5 used for the
simulation of the island coalescence problem at Rm = 103. The mesh is colored by
the z−component of the current (Jz) at time t = 0.1.

Let us choose Rm = 103, and a 16× 12× 14 clustered mesh of order p = 5 as

shown in Figure 6.1. Figure 6.2, shows the evolution of the z−component of current

189



by taking a slice of the contour plot at z = 0. As can be seen the perturbation in the

z−direction causes the current contours to bend and results in a highly kinked state

as evidenced in Figures 6.2(d), 6.2(e) and 6.2(f). Our results show good agreement

(visually) with the results in [30, 139].

Now we compare the performance of three preconditioners for this problem in

weak scaling sense i.e., we increase the problem size proportionally with the increase in

number of processors so that the number of elements per processor remains constant.

We take 43, 83, 163 and 323 elements and 2, 16, 128 and 1024 processors respectively

so that we have 32 elements per core. A time stepsize of 0.1 is selected and all the

results are averaged over six time steps. The nonlinear Picard solver takes on average

3.2− 4 iterations in all the cases.

First of the preconditioners is a one level domain decomposition method with

an incomplete factorization sub-domain solver with zero fill-in (ILU(0)) and overlap

of one1 (denoted as DD, ILU(0) in Figure 6.3 and let us refer this as DD with ILU(0)).

The other two preconditioners are the block preconditioners given in equation (6.27)

with BFBT approximation for S̃−1 and one AMG v-cycle for F̃−1. The difference be-

tween them is the smoothing inside AMG, in one of them we use the ILU(0) smoother

of overlap one (denoted as BFBT+AMG, ILU(0) in Figure 6.3 and let us refer this as

BFBT+AMG with ILU(0)), whereas in the other one we use the GMRES precondi-

tioned by ILU(0) of overlap zero2 as smoother (denoted as BFBT+AMG, GMRES in

Figure 6.3 and let us refer this as BFBT+AMG with GMRES). The reason for these

non-standard choice of smoothers is, classical smoothers like Jacobi, Chebyshev and

Gauss–Seidel did not result in converging iterations. This is also observed in [98] for

1Here, overlap one means each processor will include its own set of rows and in addition it also
includes the rows corresponding to its non-zero columns.

2Here, overlap zero means each processor will include only its own set of rows and thus no
communication is needed.
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linear systems arising from stabilized FEM discretization of MHD. Thus it indicates

that strong smoothers are needed for AMG cycles applied to linear systems coming

from incompressible resistive MHD.

We perform three pre- and three postsmoothing steps (in the case of GM-

RES smoother, these denote the number of inner iterations), whereas in the DD with

ILU(0) preconditioner we perform three smoothing steps. The outer iterations are

performed with GMRES for the DD with ILU(0) and the BFBT+AMG with ILU(0)

preconditioners. For the BFBT+AMG with GMRES, we use flexible GMRES (FGM-

RES) [133] for the outer iterations due to the nonlinear nature of the inner iterations.

In both cases similar to [139] we use non-restarted versions as it may result in degra-

dation of convergence.

We compare the performance in terms of average iterations per Picard step

and average time per Picard step in Figure 6.3. From Figure 6.3(a) for solution order

p = 4, we can see that the iterations of DD with ILU(0) preconditioner increases

much faster than the other two block preconditioners and this is due to the lack

of coarse solvers. Similar results are also observed in [139] for the stabilized FEM

discretizations. The average linear iterations per Picard step for the two block pre-

conditioners are much less than the one level domain decomposition preconditioner

and the growth with number of unknowns/processors (here the number of unknowns

refers to the number of trace unknowns only) is also very mild. Between ILU(0)

and GMRES smoothers we can see that the GMRES smoother takes slightly more

iterations than the ILU(0).

In Figure 6.3(b), we compare the average time per Picard step for the three

preconditioners and again the DD with ILU(0) preconditioner takes more time com-

pared to the block preconditioners. However, the fact to notice is that the large
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difference in iteration count evidenced in Figure 6.3(a) between DD with ILU(0) and

BFBT+AMG with ILU(0) is not much reflected in the timing figure in 6.3(b). This

is because ILU(0) with overlap one spends most of the time in the setup cost and

very little time in the application of the preconditioners. Since the setup cost in

both DD with ILU(0) and BFBT+AMG with ILU(0) are very similar the difference

comes only from the application of the preconditioners which is high for DD with

ILU(0) due to larger number of iterations. The scenario for the GMRES smoother is

exactly opposite with very little time spent for the setup and most of the cost coming

from the application or solving part of the preconditioner. This reflects in the timing

results in Figure 6.3(b) with BFBT+AMG with GMRES smoother taking the least

time (in spite of its iteration count bit higher than ILU(0) smoother) and more than

two times faster than the other two preconditioners.

Another important aspect to notice is, ILU(0) smoothers with overlap one

require lot of memory and this is much pronounced at high solution orders. In our

numerical experiments we found that for solution orders greater than four, in the

KNL nodes of Stampede2, we are able to use only 8 cores per node or less even

though the system has 68 cores per node due to memory limitations. The GMRES

smoother (GMRES preconditioned by ILU(0) with overlap zero) on the other hand

has less memory requirements than the ILU(0) smoother with overlap one and this

is the reason we test only BFBT+AMG with GMRES smoother for solution orders

p = 5, 6 in Figure 6.4.

In Figure 6.4, the average number of iterations and time per Picard step are

shown for the BFBT+AMG with GMRES smoother for solution orders p = 5, 6. The

iteration counts are very similar to those observed for p = 4 in Figure 6.3(a) with a

mild increase with respect to mesh refinements. The time per Picard step however, for

p = 5 with 1024 cores and p = 6 with 2048 cores show a significant increase compared
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to 128 and 256 cores respectively. This is a result of two things, (i) increase in iteration

count; (ii) coarsening in AMG. We have not done repartitioning with the uncoupled

aggregation performed in AMG and at high processor counts this resulted in fewer

levels (3 or 4) in the AMG hierarchy with larger problem sizes on the coarsest level.

Since, we use a serial sparse direct solver on the coarsest level the timing increased.

This trend is observed in the other two numerical experiments also and especially in

Figure 6.14 for the lid driven cavity problem. In that case we have almost constant

iteration count which is reflected in the timing till 256 processors and after that both

in 1024 and 2048 processors we see some increase in timing. In our ongoing work we

are experimenting with different coarsening strategies in AMG and the initial studies

have shown promise. We will report these findings as well as optimization of the other

components used in the block preconditioning strategy in future.

NT = 32, 768, Ntrace = 15.2M , p=4, ∆t = 0.1, averaged over 6 time steps
#cores time/Picard [s] NT/core Trace dof/core efficiency [%]

128 211.6 256 118.4K -
256 126.8 128 59.2K 83.4
512 64.2 64 29.6K 82.4
1024 36.3 32 14.8K 73
2048 19.4 16 7.4K 68
4096 16.6 8 3.7K 40
6144 14.9 5.3 2.5K 29.6

Table 6.1: 3D island coalescence problem. Strong scaling study for BFBT+AMG
with GMRES smoother for solution order p = 4. The simulation is carried out in
Skylake nodes of Stampede2 supercomputer.

In Tables 6.1 and 6.2 we study the strong scalability of BFBT+AMG with GM-

RES smoother for solution orders p = 4, 6. We see a good strong scaling performance

and the efficiency improves with increase in order due to increased computation per

core. For the strong scaling study we used the Skylake nodes of Stampede2 super-

computer and since it has a higher clock speed (2.1GHz) compared to the KNL nodes
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NT = 32, 768, Ntrace = 29.8M , p=6, ∆t = 0.1, averaged over 6 time steps
#cores time/Picard [s] NT/core Trace dof/core efficiency [%]

512 290 64 58.4K -
1024 129.5 32 29.2K 112
2048 82.6 16 14.6K 87.7
4096 46.6 8 7.3K 77.7
8192 39.4 4 3.7K 46

Table 6.2: 3D island coalescence problem. Strong scaling study for BFBT+AMG
with GMRES smoother for solution order p = 6. The simulation is carried out in
Skylake nodes of Stampede2 supercomputer.

(1.4GHz) the average time per Picard step is 4 − 5 times lesser than that for KNL

nodes. Since the BFBT+AMG with GMRES smoother takes less time compared to

the ILU(0) smoother with overlap one and also less memory which is very important

for high orders we only consider this preconditioner in the subsequent numerical stud-

ies. Also, since the strong scaling performance is not very much problem dependent

we only study the performance in terms of weak scaling.

We now use the BFBT+AMG with GMRES smoother to simulate a challeng-

ing problem which is 2D island coalescence at high Lundquist numbers. Here as an

example we consider a Lundquist number of Rm = 107. The significance of this

problem is that at high Lundquist numbers the thin current sheet which forms at

the center of the domain during reconnection breaks and gives rise to small struc-

tures called plasmoids. The dynamics of this problem is very different from the low

Lundquist number cases where the islands monotonically approach each other and

coalesce to a single island.

The settings of this experiment are as follows: While for the scaling studies we

used a fixed time stepsize of ∆t = 0.1, in this case we use an adaptive time step where

we initially start with a stepsize of 0.05 and if the Picard iteration fails to converge in
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20 iterations we cut the stepsize by half and try again. This is essential for capturing

the highly nonlinear evolution of this problem and we observed a stepsize of 0.0015625

during the plasmoid formation and evolution stages. Once the time stepsize is cut

by half we do not increase it later in the simulation, while increasing the stepsize

may help in reducing the overall time of the simulation our focus here is to simulate

the correct physics and also test the robustness of our preconditioner. The domain is

discretized by 128×128 uniform elements and solution order p = 9. For time stepping

we use the five stage fourth order DIRK scheme. The problem is run on 512 cores in

the Skylake nodes of Stampede2 supercomputer.

Figure 6.5 shows the current and pressure corresponding to the initial location

of islands after one time step at t = 0.05 and in Figure 6.6 we can see the formation

of x-structure at the center of the domain at t = 5.2. We zoom in to the box marked

at the center of the domain in Figure 6.6 to see clearly the formation and evolution

of plasmoids. Figures 6.7 and 6.8 shows the current and pressure corresponding to

the box region marked in Figure 6.6 at different times. From these two figures we

can clearly see bubble like structures which are called plasmoids emanating from the

breakdown of the thin current sheet and moving in the vertical direction. At least from

Figures 6.7 and 6.8 we can see two prominent plasmoids one moving downwards and

the other upwards. However, there are lot more tiny plasmoids which continuously

appear and merge as time proceeds. This problem clearly shows the multiscale nature

of the magnetic reconnection phenomenon in both space and time. The island widths

are of O(0.1), whereas the size of plasmoids are of O(0.01). Similarly the time scale in

which the island moves is almost an order of magnitude larger than the plasmoid time

scales. The linear solver iterations for this problem is mostly less than 10 for most of

the Picard steps with some of them taking between 15− 20. Thus the BFBT+AMG

preconditioner with GMRES smoother seems to be fairly robust for this challenging
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problem which involves multiscale physics in space and time.

6.4.2 Hydromagnetic Kelvin-Helmholtz instability

In this section we consider the 2D and 3D versions of hydromagnetic Kelvin-

Helmholtz (HMKH) instability problem studied in [139, 119, 43]. The domain we

consider is [0, 4] × [−2, 2] in 2D and [0, 4] × [−2, 2] × [0, 2] in 3D. The initial condi-

tions consists of two counter flowing conducting fluids of constant velocities given by

u0(x, y ≥ 0, z) = (1, 0, 0) and u0(x, y < 0, z) = (−1, 0, 0) and a Harris sheet magnetic

field defined by b0(x, y, z) = (B0 tanh(y/δ), 0, 0). We choose a zero forcing for both

fluid and magnetic equations. Similar to the island coalescence problem, the bound-

ary conditions are periodic in x- and z-directions. On the top and bottom faces the

fluid boundary conditions are same as the island coalescence problem with zero nor-

mal velocity and zero shear stress and the magnetic field is defined by the Harris sheet

in the initial condition. The Lagrange multiplier r is set as zero on all the boundaries.

We select the following parameters as per [139]: κ = 1, Re = Rm = 104, B0 = 0.3333

and δ = 0.1. These values along with ρ = µ0 = 1 gives a super Alfvénic Mach number

of MA = u/uA = 3 as described in [139]. If MA > 1 then the magnetic field is not

strong enough to suppress the instabilities and the shear layer is Kelvin-Helmholtz

unstable. Thus the initial disturbances eventually grow to form vortices which roll

up and merge as time proceeds.

First, we consider the 2D HMKH problem discretized in a 128×128 mesh with

solution order p = 6. We use a time stepsize of ∆t = 0.001 in the five stage fourth

order DIRK method. As mentioned in the beginning of the numerical section we

needed a stricter tolerance of 10−9 in the linear solver to make the Picard iterations

converge for this problem up to a relative tolerance of 10−4. The preconditioner is

BFBT+AMG with GMRES smoother and the outer iterations are carried out by
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FGMRES. In Figure 6.9, the evolution of vorticity with time is shown along with

the magnetic vectors marked by arrows. The figure shows the roll up of vortices to

form the familiar cat-eye pattern and the magnetic vectors bends and follows the

fluid evolution as time proceeds. In Figure 6.10, we show the 3D HMKH problem

discretized in a 20× 24× 7 mesh clustered around the region of solution and solution

order p = 5. An initial time stepsize of ∆t = 0.025 is selected for the backward Euler

time stepping and the adaptive time stepping procedure described in the previous

section is employed. Here also as in 2D we see the rollup of vortices and the magnetic

vectors following them.

Next we study the weak scaling performance of the BFBT+AMG with GM-

RES smoother for the 3D HMKH problem. For this we used a fixed time stepsize of

∆t = 0.01 in the backward Euler time stepping and the results are averaged over six

time steps. We used 8× 8× 10, 16× 16× 10, 32× 32× 10 and 64× 64× 10 meshes

corresponding to 32, 128, 512 and 2048 processors respectively. Thus the number of

elements per processor in this case is 20. The fluid CFL ranges from 0.32 to 2.56 for

solution order p = 4 and for p = 5 from 1.25 to 4 corresponding to the meshsizes and

time stepsize. The Alfvénic CFL which is given by uA∆t/h is one third of the fluid

CFL in this case. The Picard solver took approximately 2 iterations in all the cases.

Figure 6.11 shows the average iteration counts and time per Picard step, since the

tolerance of the iterative solver in this case (10−9) is stricter than for the island coa-

lescence problem (10−6) we see an increase in overall iteration counts. However, the

number of iterations still lies mostly between 10− 20 which is moderate considering

into account the tolerance of 10−9 and the maximum CFL numbers of 2.56 and 4 for

p = 4 and 5 respectively. The average time per Picard step reflects the trend in the

iteration count together with the decrease in scalability in the 2048 processors regime

as discussed in the previous section on island coalescence.

197



6.4.3 Lid driven cavity

In this section we consider a hydromagnetic version of the classical lid driven

cavity problem. The settings of this problem follow closely [119]. Even though we

simulated the 2D version of this problem also here we present the results only for the

3D problem for brevity. The domain is [−0.5, 0.5]3, with no slip boundary conditions

of u = 0 applied on all the walls except the top one where we apply a velocity of u =

(1, 0, 0) which drives the flow. For the magnetic field we set the tangential component

on each wall as b × n = (−1, 0, 0) × n which acts from right to left. The Lagrange

multiplier r is set as zero on all the boundaries. Both initial conditions and forcings

are chosen as zero. We choose the following parameters: κ = 1, Re = Rm = 1000

which corresponds to a Hartmann number of Ha =
√
κReRm = 1000 which measures

the degree of coupling between the electromagnetics and hydrodynamics.

First, we consider a 83 uniform mesh, solution order p = 6 and an initial

time stepsize of ∆t = 0.0125 in the adaptive time stepping with backward Euler

method. The linear and nonlinear solver tolerances and the stopping criteria are

same as the ones used for the island coalescence problem. Figure 6.12 shows the

evolution of the streamlines together with the velocity vectors in the x = 0, y = 0

and z = 0 planes. Both the streamlines and the velocity vectors are colored by the

z−component of velocity. The presence of the third dimension allows the streamlines

to curl in the z−direction in Figures 6.12(d), 6.12(e) and 6.12(f) which gives rise to

complex velocity patterns. In Figure 6.13 the corresponding magnetic field lines along

with the magnetic vectors are shown. Because of the applied tangential magnetic field

from right to left we can see the magnetic lines and the vectors going from right to

left with some bending caused by the interaction with the fluid components.

For the weak scaling study we consider a fixed time stepsize of ∆t = 0.0025
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for solution orders p = 4, 5 whereas for p = 6 we consider ∆t = 0.001 in the backward

Euler method. The meshes we consider are 43, 83, 163 and 323 corresponding to 4,

32, 256 and 2048 processors respectively with 16 elements per core. The fluid CFL

which is same as the Alfvénic CFL in this case ranges from 0.16 − 1.28 for p = 4,

0.25 − 2 for p = 5 and 0.14 − 1.15 for p = 6. The Picard iterations in all the cases

range from 3.5 − 4.7. We also tested with ∆t = 0.01 for p = 4 and observed that

the iterations of the linear solver remains more or less same as that for ∆t = 0.0025

whereas the average Picard iterations are 5.3, 6.5, 7.5 and 9.3 corresponding to the four

meshsizes. In Figure 6.14 we show the average iterations and time per Picard step for

the BFBT+AMG preconditioner with GMRES smoother and the results are averaged

over six time steps. Compared to the previous two experiments, in this case we have

a fairly constant iteration count with mesh refinements for all the solution orders.

In Figure 6.14(b) we again see some increase in time per Picard step for 2048 cores

which in this case comes only from the coarsening in AMG and other components

of the block preconditioner as we have a flat iteration count. We consider one more

case for solution order p = 4 with 2, 16, 128 and 1024 cores in Figure 6.14(b), and

this shows better weak scaling performance than the other case with 2048 cores for

the finest meshsize.

6.4.4 BFBT+Multilevel preconditioner

In this section we will apply the multilevel solver introduced in chapter 5 for

F̃−1 in the block preconditioning (6.27) and compare the performance with AMG v-

cycle with GMRES smoother. The problem we consider is the 2D island coalescence

problem studied in section 6.4.1.

In chapter 5 we applied the multilevel preconditioner for problems with scalar

trace unknowns and now we will briefly describe how we can apply it to vector valued
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trace unknowns. Similar to AMG, we order the unknowns such that on each edge all

the trace unknowns (except edge average pressure) corresponding to the first node are

ordered first, followed by the unknowns in the second node and so on. The ordering

of unknowns within each nodal point is (Û , B̂t, R̂) i.e., velocity trace unknowns are

ordered first, followed by the tangent magnetic field and then the Lagrange multi-

plier. A different ordering is also possible and it can affect the performance of the

solver. Also, instead of ordering the unknowns within a node consecutively we can

choose to order, for example, all the velocity unknowns (corresponding to all edges)

first, followed by the tangent magnetic field and then the Lagrange multiplier. In

fact this is the approach we followed in our geometric multigrid approach presented

in chapter 4 for vector valued problems. Ordering the unknowns within each node

consecutively helps to maintain the coupling between different variables during coars-

ening and smoothing [139]. In our future study we will compare the performance of

the preconditioner/solver for different orderings and report our findings elsewhere.

We then apply one v-cycle of the iterative multilevel algorithm, Algorithm 4,

for F̃−1. For the coarse-solver we use the enriched multilevel approach (EML) because

of its robustness and better performance compared to the non-enriched version for

hyperbolic problems. By means of several numerical experiments we observed that

the number of smoothing steps in the block-Jacobi part of the multilevel algorithm,

m1 = 0 and m2 = 1 i.e., only one postsmoothing, gives the least number of outer

GMRES iterations and we use that in all the cases. We also observed that increasing

the number of smoothing steps generally leads to more number of iterations in this

case and postsmoothing performs better than presmoothing. Since the nodal block

(F) in the HDG discretization of MHD is a non-symmetric hyperbolic system and for

the most part it is purely algebraic we cannot in general expect better performance by

increasing the number of smoothing steps. The number of iterations also depends on
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how the fine scale solver (block-Jacobi) interacts with the coarse-scale solver (EML)

by means of capturing the overall spectrum and we do not have a clear understanding

of this yet. In our future work we will investigate this by means of Fourier analysis

and this can guide us to select the appropriate number of smoothing steps as well as

the fine scale solver.

For the AMG v-cycle we use the same number of pre- and postsmoothing steps

which is three as in the previous sections. Unlike the multilevel approach, increasing

the number of smoothing steps in AMG generally leads to less number of iterations

and the reason for this is, in AMG directional coarsening happens based on the matrix

entries whereas in the multilevel approach the coarsening is geometric. For the time

discretization we use the backward Euler time stepping with a fixed time stepsize

of ∆t = 0.1. The results are averaged over six time steps for all the cases except

128× 128 and 256× 256 meshes where we average over three time steps. We choose

a Lundquist number of Rm = 103. We run the AMG solver serially in this case to

compare with the serial implementation of the multilevel method. So this study is

mainly to assess the algorithmic scalability of EML and AMG solvers with respect to

mesh refinements, solution order and Lundquist number.

Figure 6.15(a) shows the average number of iterations for both the AMG and

EML solvers together with the BFBT approximation for the inverse Schur complement

in the block preconditioning (6.27) as the mesh and solution order are refined. In

calculating this average we have omitted the iteration counts for first Picard step in the

first time step. This is because the iteration counts for both EML and AMG solvers

are higher for this case than the rest of the steps as we start from a zero initial guess.

Hence it is not a representative of the iteration counts taken in other steps. Both

the algorithms show almost flat iteration count until 64× 64 mesh with AMG taking

slightly less iteration counts than EML. However, for 128 × 128 mesh (last marker)
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and all solution orders AMG shows a sudden increase in iteration count whereas the

performance of EML almost remains the same maintaining the algorithmic scalability.

Thus the EML solver is more scalable than AMG in terms of mesh refinements at

least in the settings of this experiment. Figure 6.15(b) shows the ratio of average

time taken per Picard step for the AMG solver over EML solver and it reflects the

trend observed in the iteration counts in Figure 6.15(a).

Solver p = 1 p = 2 p = 3 p = 4 p = 5 p = 6
BFBT+EML 1.17 1.15 1.17 1.13 1.12 1.13

ND 1.86 1.56 1.49 1.44 1.42 1.37

Table 6.3: 2D island coalescence problem. Exponent of scaling for BFBT+EML
preconditioned GMRES and ND solver as the number of elements is increased.

In Figure 6.16 we compare the scaling of the average time taken per Picard

step with mesh refinements for the BFBT+EML preconditioned GMRES and the

nested dissection direct solver for different solution orders. As per the theoretical

complexities derived in section 5.1.9, the EML solver at all orders show close to linear

scaling with the number of elements whereas the ND solver shows an asymptotic

scaling of O(NT
3/2). In Table 6.3 we show the asymptotic exponent values for both

BFBT+EML and ND solvers at different orders. In the BFBT+EML preconditioned

GMRES the BBT part is solved directly, the cost of which is higher than O(NT ) and

it may be responsible for slightly more than linear complexity.

In Figure 6.17 we show the speedup of BFBT+EML preconditioned GMRES

compared to ND and we can see at all solution orders, when the number of elements

is greater than 103 (after 5 uniform refinements) the iterative solver is faster than ND.

We get a maximum speedup of approximately 23 for p = 1 and 256 × 256 elements,

and the ND solver ran into out of memory issues after this. In terms of memory for

p = 1 and 256×256 mesh, the ND solver needed 98.2 GB for the L, U factors whereas
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the EML solver needed only 2.4 GB which is 41 times less memory compared to the

direct solver. This factor is significantly higher than the one observed for the scalar

problems studied in chapter 5. Thus EML together with the block preconditioning

can deliver significant speedups and memory savings compared to the ND direct solver

for vector valued problems even in 2D.

Finally we test the robustness of AMG and EML preconditioners with respect

to the Lundquist number for this problem. To that extent we consider 64 × 64,

p = 6 mesh and choose a time stepsize of ∆t = 0.05. The results are again averaged

over six time steps. Figure 6.18 shows the average iteration counts and time per

Picard step for Lundquist numbers in the range [103, 106]. We can see that the

BFBT+AMG with GMRES smoother is more robust with respect to increase in

Lundquist numbers than the BFBT+EML preconditioner. Nevertheless, the growth

in iterations for the BFBT+EML preconditioner is still moderate and in all the cases

both the preconditioners take less time than the ND direct solver. In our future

work, we want to improve the robustness of the EML preconditioner by exploring

more robust smoothers than block-Jacobi.

6.5 Discussion

In this chapter we introduce a block preconditioning strategy for trace systems

coming from HDG discretization of the incompressible resistive MHD equations. In

the block preconditioner, we use least squares commutator (BFBT) approximation

for the inverse of the Schur complement and AMG v-cycle for the approximate in-

verse of the nodal block. For the smoother inside AMG cycle, we compare precondi-

tioned GMRES and ILU(0) smoother of overlap one and conclude that the GMRES

smoother is faster and requires less memory compared to the ILU smoother. The
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outer iterations are carried out with flexible GMRES, as the inner iterations are non-

linear. We test the performance of the block preconditioner on several 2D and 3D

transient test cases including, but not limited to, the island coalescence problem at

high Lundquist numbers and demonstrate robustness and parallel scalability. We

also show the application of multilevel preconditioner developed in chapter 5 for the

approximate inverse of the nodal block and compare the performance with AMG.

The multilevel preconditioner shows better algorithmic scalability compared to AMG

with respect to mesh refinements. In terms of robustness with respect to Lundquist

numbers AMG performs better and strong smoothers are needed in the multilevel

preconditioner. The block preconditioning combined with the multilevel precondi-

tioner is significantly faster than the nested dissection direct solver and also requires

much less memory.
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(a) t = 0.1 (b) t = 1.1

(c) t = 2.1 (d) t = 3.1

(e) t = 3.625 (f) t = 3.875

Figure 6.2: Evolution of the z-component of the current (Jz) with time. The contours
of Jz show a highly kinked state after t > 3 due to the perturbation in the z−direction.
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Figure 6.3: 3D island coalescence problem: weak scaling study of average iterations
per Picard step (left) and average time per Picard step (right) for three precondi-
tioners and solution order p = 4. The markers in BFBT+AMG with ILU(0) and
GMRES also represent the same number of processors as in DD with ILU(0). The
values within parentheses represent weak scaling parallel efficiencies.
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Figure 6.4: 3D island coalescence problem. BFBT+AMG with GMRES smoother:
weak scaling study of average iterations per Picard step (left) and average time per Pi-
card step (right) for solution orders p = 5, 6. The values within parentheses represent
weak scaling parallel efficiencies.
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(a) J (b) q

Figure 6.5: 2D island coalescence problem. Current (J) and pressure (q) at time
t = 0.05 (after one time step) showing the two islands.

Figure 6.6: 2D island coalescence problem. Current (top) and pressure (bottom) at
time t = 5.2 showing the coalescence of the islands. In Figures 6.7 and 6.8 we will
focus on the box region marked in the central portion of the above figures.
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(a) t = 5.85 (b) t = 5.98 (c) t = 6.12 (d) t = 6.22 (e) t = 6.25 (f) t = 6.3

Figure 6.7: 2D island coalescence problem. Current plots at the indicated times
showing the breakdown of the current sheet to form plasmoids.
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(a) t = 5.85 (b) t = 5.98 (c) t = 6.12 (d) t = 6.22 (e) t = 6.25 (f) t = 6.3

Figure 6.8: 2D island coalescence problem. Pressure plots at the indicated times
showing the formation and evolution of plasmoids with time.
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(a) t = 1.51

(b) t = 1.73

(c) t = 1.96

(d) t = 2.18

(e) t = 2.61

Figure 6.9: 2D HMKH problem. Vorticity plots at the indicated times along with
the magnetic vectors (marked as arrows). The magnetic vectors are scaled by their
magnitude and are colored by the x-component of the magnetic field (bx). The red
arrows on the top represent the positive values of bx and blue arrows on the bottom
represent the negative values.
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Figure 6.10: 3D HMKH problem. Z−component of vorticity contours along with
magnetic vectors at time t = 2.0625. The magnetic vectors are not colored and
scaled in this figure to improve visibility.
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Figure 6.11: 3D HMKH problem. BFBT+AMG with GMRES smoother: weak scal-
ing study of average iterations per Picard step (left) and average time per Picard step
(right) for solution orders p = 4, 5. The values within parentheses represent weak
scaling parallel efficiencies.
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(a) t = 0.0125 (b) t = 1.5

(c) t = 3.2875 (d) t = 5.075

(e) t = 5.3625 (f) t = 5.6625

Figure 6.12: 3D lid driven cavity problem. Evolution of the streamlines and velocity
vectors with time.
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(a) t = 0.0125 (b) t = 1.5

(c) t = 3.2875 (d) t = 5.075

(e) t = 5.3625 (f) t = 5.6625

Figure 6.13: 3D lid driven cavity problem. Evolution of the magnetic field lines and
magnetic vectors with time.
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Figure 6.14: 3D lid driven cavity problem. BFBT+AMG with GMRES smoother:
weak scaling study of average iterations per Picard step (left) and average time per
Picard step (right) for solution orders p = 4, 5, 6. The values within parentheses
represent weak scaling parallel efficiencies.
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Figure 6.15: 2D island coalescence problem. Comparison of AMG and multilevel
preconditioners as the mesh is refined in h and p. In both cases we use the BFBT
approximation for the inverse of the Schur complement. On the left is the number of
average iterations per Picard step and on the right is the ratio of average time taken
per Picard step for AMG over the multilevel preconditioner.
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Figure 6.16: 2D island coalescence problem. Comparison of scaling of BFBT+EML
preconditioned GMRES (denoted as EML) and ND with number of elements for
solution orders p = 1− 6. The asymptotic numerical values for the exponents are
shown in Table 6.3.
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Figure 6.17: 2D island coalescence problem. Ratio of time taken per Picard step for
ND solver over BFBT+EML preconditioned GMRES for solution order p = 1 (left)
and for orders p = 2− 6 (right). The ND solver ran into out of memory issues for
orders p > 1 and 2562 elements.
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Figure 6.18: 2D island coalescence problem. Comparison of AMG and multilevel
preconditioners with increase in Lundquist number Rm. In both cases we use the
BFBT approximation for the inverse of the Schur complement. On the left is the
average iterations per Picard step and on the right is the average time taken per
Picard step.
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Chapter 7

Conclusions and Future Work

In this work we have developed fast, scalable solvers/preconditioners for high-

order HDG schemes applied to a variety of problems in fluid dynamics and incom-

pressible resistive MHD. First of the solvers developed (iHDG) is based on domain

decomposition methods and involves in each iteration element-by-element and face-

by-face local solves by alternating the computations between local solver and conser-

vation condition. We analyze the solver for scalar and system of hyperbolic equations

and verify the analysis by means of 2D and 3D numerical results. We also propose an

improved version of the solver for diffusion dominated equations and system of hy-

perbolic equations. Since one level domain decomposition methods are known to lack

algorithmic scalability due to lack of coarse solvers, iHDG can be used as smoothers

in multilevel/multigrid methods or as preconditioners for Krylov subspace methods

for large scale problems.

To have hp−scalability typically multigrid/multilevel solvers are needed and

we propose a geometric multigrid method for HDG trace systems based on DtN

maps. This multigrid method which comes under the class of Schur complement

multigrid methods is different from classical geometric multigrid methods for vol-

ume based dicretizations such as continuous Galerkin, stabilized FEM, DG, etc. The

main difference is the operator dependent intergrid transfer operators which provide

robustness to the algorithm and also help to avoid explicit upscaling of parameters.

Thus the proposed algorithm enjoys robustness similar to AMG and also has fixed
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coarse grid construction costs due to the geometric nature. In this sense it is similar

to the blackbox type multigrid algorithms [47, 46, 48] introduced in the context of

finite differences and finite volumes. The algorithm can be applied to both structured

and unstructured meshes and also does not require the meshes to be nested. With

various numerical examples we conclude that the algorithm gives almost hp−scalable

results for Poisson and Stokes type problems even for cases with highly heterogeneous

and discontinuous coefficients which occur in flow through porous media. For convec-

tion dominated problems and hyperbolic systems we need robust smoothers for the

convergence as well as scalability of the algorithm.

We then introduce a multilevel algorithm by blending ideas from nested dis-

section which is a fill-in reducing direct solver strategy, high-order and variational

characteristics of HDG, and domain decomposition. Since the coarse solver in the

multilevel algorithm is derived from a direct solver strategy the algorithm can be

applied to general hyperbolic system of PDEs where multigrid type algorithms have

difficulty in convergence. Our numerical experiments show that the performance of

the algorithm mostly depends on the smoothness of the solution and is otherwise

independent of the nature of the PDEs. We show that the algorithm can also be

interpreted as a multigrid with specific intergrid transfer and smoothing operators

on each level. We derive complexity estimates for the algorithm and show that the

complexity is in between direct solvers and multigrid solvers. With the multilevel ap-

proach we can vary the solution order and hence the memory requirement depending

on the architecture of the machine and thus there is flexibility. With several numerical

experiments we show the robustness and scalability of the algorithm for the Poisson,

the convection-diffusion and the pure transport equations.

Finally, we introduce a block preconditioning strategy for the trace systems

coming from HDG discretization of the incompressible resistive MHD equations. The

218



trace system leads to a saddle point structure after rearrangement, which is very

different from the saddle point systems arising from mixed FEM discretizations of

incompressible systems. The main difference is that the system is mostly algebraic as

it is generated from the static condensation of volume unknowns and the structure is

much more complicated than the linear systems coming from stabilized FEM or mixed

FEM discretizations. We use a least squares commutator (BFBT) approximation for

the inverse of the Schur complement, and one v-cycle of AMG for the approximate

inversion of the nodal block of skeletal unknowns. These strategies are previously used

in the context of incompressible Navier–Stokes equations and mixed FEM or finite

difference discretizations and here we show the applicability to high-order trace system

generated from HDG methods. One important point to notice is we need strong

smoothers for the AMG v-cycle because of the multiphysics and mostly algebraic

nature of the nodal block. We show that GMRES preconditioned by ILU(0) with

overlap zero is a good candidate for this compared to ILU(0) with overlap one due

to its large memory requirement at high orders. With several 2D and 3D transient

examples we show the robustness and parallel scalability of the block preconditioner.

We also apply the multilevel algorithm for the approximate inversion of the nodal

block and since the coarse solvers are strong in the multilevel approach the algorithm

converges with just block-Jacobi as fine scale solver. We show that the multilevel

algorithm is more scalable than AMG with respect to mesh refinements but need

more strong smoothers to improve the robustness in case of high Lundquist numbers.

There are several directions in which the current work can be extended and

we suggest a few of them as follows.

• Theoretical analysis: In this work we have shown only the convergence anal-

ysis for the iHDG solvers. For the geometric multigrid and the multilevel solvers
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we show only the stability of the intergrid transfer operators but not the con-

vergence analysis. For elliptic PDEs, with geometric multigrid we can use the

standard convergence analysis used for multigrid type algorithms and can show

convergence. In the case of multilevel solvers since we are mainly interested in

generic hyperbolic systems the analysis is much more difficult. One possible

way is to use the Fourier analysis and study the spectrum of the preconditioned

matrices. This can offer lot of insights into the algorithm and mainly the in-

teraction of fine and coarse scale solvers. This will be very useful especially

in the context of MHD systems, to choose the number of smoothing steps and

also in the selection of fine scale solvers so that they complement the spectrum

captured by the multilevel coarse solvers. Analysis for the block preconditioner

is also an interesting direction to pursue. However in this case it is much more

difficult due to the complicated nature of MHD systems combined with the

static condensation performed in HDG.

• Extension of multilevel solvers: In this work we show the multilevel solvers

for structured grids generated by uniform refinements. As such the applicabil-

ity is limited and we need to extend the algorithm for dealing with complicated

geometries. There are two ways to address this issue. One is through graph

agglomeration techniques, which can be used to find a nested dissection par-

titioning of an unstructured mesh. However, we need to be careful, since the

approach involves high-order projections and the agglomerations generated in

general do not have much smoothness in the interfaces. In these cases the inter-

face is smoothened and this can affect the performance of the preconditioner.

Another strategy is to use adaptive mesh refinement (AMR), the data struc-

tures used in AMR can be combined with the multilevel solver effectively as

we describe now. Consider a mesh which is obtained through k levels of adap-
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tive refinement from an initial coarse mesh, since we know how many times an

edge/face is h−refined or coarsened, in our multilevel approach we can use it to

increase/decrease the polynomial order. We can also use the indicator used for

the mesh refinement or coarsening in the AMR for increasing or decreasing the

polynomial order on the edges/faces. Thus the multilevel solver together with

the AMR approach can provide a strategy for tackling complicated geometries

efficiently.

• Extension of block preconditioners: We already mentioned that some of

the components in the block preconditioning such as sparse direct solver Su-

perludist for (BB>)−1 and AMG for the nodal block affects the scalability of

the algorithm after 512 cores. We can use preconditioned conjugate gradient

with a lenient tolerance and even though it may increase the number of outer

iterations it can improve the overall scalability of the algorithm for large num-

ber of elements. Some of the initial studies we performed shows promise in this

direction and further detailed study is required. Similarly in the AMG v-cycle

for the nodal block we can optimize the performance by experimenting with dif-

ferent coarsening strategies, smoothers, etc. Finally, since the multilevel solver

for the nodal block shows promise for more scalability than AMG more experi-

mentation especially in 3D is required. We also want to mention that the block

preconditioning strategy mentioned is not specific to incompressible resistive

MHD and can be applied to incompressible Navier–Stokes and Stokes equa-

tions. Thus this strategy can also give efficient solvers for the fluid dynamical

incompressible equations and thus needs investigation.

• Nonlinear solvers: In this work we used mostly the Picard solver for dealing

with the nonlinear system. Newton’s method and Anderson acceleration to
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the Picard solver can give faster and more robust nonlinear solvers and hence

they can be employed. Another strategy to deal with the nonlinearity is the

implicit-explicit (IMEX) time stepping, where we can use implicit HDG scheme

for the linearized part and explicit DG scheme for the nonlinear part [85]. This

can effectively deal with the fast waves and also just need one linear solve

per stage of time discretization. It will be interesting to study how the block

preconditioning performs in combination with these other nonlinear solvers.
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Appendix A

Proof of well-posedness of local solver of the iHDG-II
method for the linear convection-diffusion equation

Proof. Choosing σk+1 and uk+1 as test functions in (3.29a)-(3.29b), integrating the

second term in (3.29a) by parts, using (3.6) for second term in (3.29b), and then

summing up the resulting two equations we obtain

κ−1
(
σk+1,σk+1

)
T

+

({
ν − ∇ · β

2

}
uk+1, uk+1

)
T

+

〈(
β · n

2
+ τ

)
uk+1, uk+1

〉
∂T

+
〈
(σk+1 · n− τuk+1), ûk,k+1

〉
∂T

= 0. (A.1)

Substituting (3.30) in the above equation and simplifying some terms we get∑
T

κ−1
∥∥∥(σk+1

)−∥∥∥2

T
+

({
ν − ∇ · β

2

}(
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)−
,
(
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)−)
T

+

〈{
|β · n|2 + 2

2α

}(
uk+1

)−
,
(
uk+1

)−〉
∂T

+

〈
1

α

(
σk+1 · n

)−
,
(
σk+1 · n

)−〉
∂T

+

〈
β · n−

α

(
uk+1

)−
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(
σk+1 · n

)−〉
∂T

=
∑
∂T

−
〈

1

α

(
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,
(
σk · n
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〉
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−
〈{

β · n+ + τ+

α

}(
σk+1 · n

)−
,
(
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+

〈
τ−

α

(
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(
σk · n

)+
〉
∂T

+

〈{
τ−(β · n+ + τ+)

α

}(
uk+1
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,
(
uk
)+
〉
∂T

. (A.2)

Using the identity〈
β · n
α

uk+1,σk+1 · n
〉
∂T

=

∥∥∥∥ 1√
2α

(
β · nuk+1 + σk+1 · n

)∥∥∥∥2

∂T

−
〈
β · n2

2α
uk+1, uk+1

〉
∂T

−
〈

1

2α
σk+1 · n,σk+1 · n

〉
∂T

, (A.3)
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and the coercivity condition (2.35) we can write (A.2) as

∑
T

κ−1
∥∥∥(σk+1

)−∥∥∥2

T
+ λ

∥∥∥(uk+1
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T
+
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1/α,∂T

+
∥∥∥(σk+1 · n
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1/2α,∂T
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≤∑
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−
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1
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(
σk · n
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∂T

−
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α

}(
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(
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〉
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α

(
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,
(
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〉
∂T

+

〈{
τ−(β · n+ + τ+)

α

}(
uk+1

)−
,
(
uk
)+
〉
∂T

. (A.4)

Since all the terms on the left hand side are positive, when we take the “forc-

ing” to the local solver
{(
uk
)+
,
(
σk
)+
}

= {0,0}, the only solution possible is{(
uk+1

)−
,
(
σk+1

)−}
= {0,0} and hence the method is well-posed.
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Appendix B

Proof of convergence of the iHDG-II method for the
linear convection-diffusion equation

Proof. In equation (A.4) omitting the last term on the left hand side and using

Cauchy-Schwarz and Young’s inequalities for the terms on the right-hand side we get

∑
T

κ−1
∥∥∥(σk+1

)−∥∥∥2

T
+ λ

∥∥∥(uk+1
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T
+
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(
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. (B.1)

We can write the above inequality as

∑
T

κ−1
∥∥∥(σk+1
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T
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T
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1

2ᾱ
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∂T
, (B.2)

where τ̄ := ‖τ‖L∞(∂Ωh), ᾱ := ‖α‖L∞(∂Ωh), and α∗ := inf
∂T∈∂Ωh

α.
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By the inverse trace inequality (2.30) we infer from (B.2) that

∑
∂T

B1

∥∥∥(σk+1 · n
)−∥∥∥2

∂T
+ B2

∥∥∥(uk+1
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∂T
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]
,

which implies

∥∥(σk+1 · n, uk+1
)∥∥2

Eh
≤ D

∥∥(σk · n, uk)∥∥2

Eh
,

where the constant D is computed as in (3.33). Therefore

∥∥(σk+1 · n, uk+1
)∥∥2

Eh
≤ Dk+1

∥∥(σ0 · n, u0
)∥∥2

Eh
. (B.3)

Inequalities (B.2) and (B.3) imply

∥∥(σk+1, uk+1
)∥∥2

Ωh
≤ (ED + F)Dk

∥∥(σ0 · n, u0
)∥∥2

Eh
,

and this concludes the proof.
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