
Copyright

by

Yuxin Wang

2019

The Thesis Committee for Yuxin Wang
certifies that this is the approved version of the following Thesis:

Extending Capability of Formal Tools: Applying

Semiformal Verification on Large Design

APPROVED BY

SUPERVISING COMMITTEE:

Jacob A. Abraham, Supervisor

Andreas M. Gerstlauer

Extending Capability of Formal Tools: Applying

Semiformal Verification on Large Design

by

Yuxin Wang

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2019

Dedicated to my family and friends.

Acknowledgments

I would like to thank my supervisor Prof. Jacob Abraham for providing

me direction in this interesting domain of research and bringing me inspiration

when I encountered difficulties. Also, I want to thank him for offering me

the opportunity to be his teaching assistant, which helped me bolster my

understanding of digital design.

I appreciate it very much that Dr. Jacob Chang, Mr. Clifford Wolf

and Sharukh Shaikh provide kind help for me during my research. I also

want to specially thank my parents and my boyfriend Zhengping Yu for their

continuous love and support throughout my master study.

I would like to take this opportunity to specially thank Prof. Andreas

Gerstlauer for taking out his valuable time to be the reader for my thesis.

v

Extending Capability of Formal Tools: Applying

Semiformal Verification on Large Design

Yuxin Wang, M.S.E.

The University of Texas at Austin, 2019

Supervisor: Jacob A. Abraham

Simulation and formal verification (FV) are the two most commonly

used techniques for verifying a digital design described at the Register-Transfer

Level (RTL). Compared to simulation, formal verification shows an advantage

in terms of exhaustive design coverage. However, due to state-space explosion,

it is limited in size of designs that can be analyzed, and this capacity problem

remains a big issue for application in large designs, such as processors.

In this thesis, a waypoint-based semiformal verification (SFV) method

is proposed in order to extend formal tool capacity for large designs. Our algo-

rithm involves formal engines to explore traces to hit waypoints, reducing the

computation time and memory required to reach a desired state. In addition,

an automatic waypoint generation tool is developed. Criteria are developed to

identify important flip-flops in the design to generate the waypoints, based on

information from the synthesized netlist. A neural network is trained to score

vi

all the flip-flops in the target design. Based on the predicted scores, we set a

threashold to select the critical flip-flops and then generate waypoint guides

for RTL verification.

The process is first studied using a small FIFO example. Then an

expandable end-to-end ISA verification framework designed around a RISC-V

core is evaluated with the proposed SFV techniques. The results show that

waypoint-based SFV and the automatic waypoint generation algorithm have

great potential in RTL verification. SFV can save a substantial amount of

the time and memory required to cover all important scenarios, compared to

direct application of FV.

vii

Table of Contents

Acknowledgments v

Abstract vi

List of Tables x

List of Figures xi

Chapter 1. Introduction 1

1.1 Classic Verification Techniques 1

1.2 Verification Challenges in Modern Processors 4

1.3 Semiformal Verification: Motivation and Related Work 6

1.4 Summary and Chapter Outline 9

Chapter 2. Hybrid Semiformal Verification Methods 11

2.1 Formal Verification Waypoints Definition 11

2.2 Semiformal Technique Using Waypoints 13

2.2.1 Finding Proper Waypoints 14

2.2.2 Traversal Policy . 15

2.2.3 Waypoint Propagation Strategies 15

2.2.4 Algorithmic Waypoint-based SFV Flow 18

2.3 A Toy Example: Synchronized FIFO 21

Chapter 3. Automatic Generation of Guide Waypoints 29

3.1 Introduction to Neural Networks 29

3.2 Why We Need Machine Generated Waypoints 31

3.3 Automation Procedure . 33

3.3.1 Extraction of Control Models 33

3.3.2 Training Data Set Acquisition 34

viii

3.3.3 Finding the Critical Flip-flops 37

3.3.4 Generating Guide Waypoints 39

3.3.5 Result Evaluation . 43

3.4 Other note: Coverage Metrics 48

Chapter 4. Experiments and Results 50

4.1 Application Guidelines . 50

4.2 RISC-V Verification Setup . 51

4.3 RISC-V Core: PicoRV32 . 54

4.3.1 Introduction to Experiment 54

4.3.2 Verification Ability Improvement 56

4.4 RISC-V Core: Rocket . 62

4.4.1 Introduction to Experiments 62

4.4.2 Initial Configuration Sequence 64

4.4.3 Automatic Generated Waypoints 65

4.4.4 Notes for Temporary Results 66

Chapter 5. Conclusions and Future Work 68

Appendices 71

Appendix A. Important Scripts Used in This Thesis 72

A.1 TCL Command to Run JasperGold 72

A.2 Cadence Encounter Timing Analysis Script 72

A.3 Other Codes . 74

Appendix B. Original Experiment Data 75

B.1 Original Data of PicoRV32 FV and SFV Experiments 75

B.2 Neural Network Training Results 76

B.3 Automatic Waypoint Guide Report 90

Appendix C. Verilog source code 95

C.1 Synchronized FIFO . 95

Bibliography 97

ix

List of Tables

Table 2.1 Interface of Synchronized-FIFO under verification 22

Table 2.2 SVA properties checked with Synchronized-FIFO 23

Table 3.1 Feature vectors of the data set 35

Table 3.2 Design information for neural network training data set 36

Table 3.3 Neural network training parameters 39

Table 3.4 Automatic generated waypoints guide 45

Table 3.5 Comparison between FV and SFV with automatic gener-
ated waypoints . 46

Table 4.1 Assertions checked in formal verification on RISC-V in-
structions . 54

Table 4.2 CPI numbers for the individual instructions 55

Table 4.3 Verification result of PicoRV32 AND instruction on server S 57

Table B.1 Original data collected for PICORV32 core FV and SFV
tests . 75

Table B.2 Neural network training result for synchronized FIFO . 76

Table B.3 Neural network training result for PicoRV32 77

Table B.4 Neural network training result for Rocket Core 80

x

List of Figures

Figure 1.1 Comparison between simulation-based and formal veri-
fication . 2

Figure 1.2 Guided simulation using abstraction 8

Figure 2.1 Multiple waypoints in formal model checking 12

Figure 2.2 Dynamic simulation . 17

Figure 2.3 Algorithmic waypoints-based SFV flow 19

Figure 2.4 Ideal runtime reduction with waypoints-based SFV . . 21

Figure 2.5 Comparison of memory usage and runtime of synchro-
nized FIFO with various FIFO DEPTH 24

Figure 2.6 Comparison of memory consumption versus runtime among
FV, SFV with single and multiple waypoints 26

Figure 2.7 Comparison of runtime versus check bound among FV,
SFV with single and multiple waypoints 27

Figure 2.8 Comparison of coverage percentage versus runtime among
FV, SFV with single and multiple waypoints 27

Figure 3.1 Neuron structure diagram with activation functions . . 30

Figure 3.2 Typical control path model 33

Figure 3.3 Algorithm structure of the neural network 38

Figure 3.4 Squared error between user-defined scores and machine-
predicted scores . 44

Figure 3.5 Runtime growth versus bound of FV, SFV with manually
selected, and automatic generated waypoints 47

Figure 4.1 RISC-V formal verification framework diagram 53

Figure 4.2 Comparison of memory usage and runtime of RISC-V
ISAs . 59

Figure 4.3 Memory usage versus runtime of LW instruction com-
parison . 61

Figure 4.4 The Rocket core pipeline[5] 63

xi

Chapter 1

Introduction

1.1 Classic Verification Techniques

There is a desperate need for practical solutions to the problem of

performing design verification using today’s computing systems, since most

modern digital designs are far too large for traditional tests to guarantee their

correctness and safety. Two main approaches are applied in RTL verification:

dynamic simulation and formal verification (FV) [2].

Simulation-based verification has been applied for a long time. This

approach requires a testbench with manually designed or constrained random

test vectors to propagate logic values through blocks [36]. It is acknowledged

that the traditional simulation method offers the benefits of simplicity and scal-

ability; however, it is impractical for simulation to keep up with the increasing

design complexity [17], and its reliability depends on how comprehensive the

stimuli are. For example, if the design under verification (DUV) state machine

has 64 state variables, then the total time required to simulate vectors to cover

all states will be nearly 600,000 years if each vector takes 1 ms to simulate.

Formal methods are increasingly applied in the verification of complex

digital designs for their ability to detect subtle bugs [41]. The idea of formal

1

verification is derived from reasoning based on manipulation of formulas and

logic, that is, the proof is mathematical instead of experimental [24]. Gener-

ally, the name formal can refer to many sub-topics, such as logic equivalence

checking [38], model checking [9, 13] (also known as functional formal analy-

sis), and theorem proving [27]. In this thesis, we will only be dealing with

formal methods using model checking.

Figure 1.1: Comparison between simulation-based and formal verification

Formal model checking technique can verify Register-Transfer Level

(RTL) functional correctness with a set of assertion properties without in-

volving a testbench. Figure 1.1 shows the fundamental difference between

how simulation-based verification and formal verification explore states, where

each circle represents one transition step, or check bound, in formal analysis,

2

and the simulation trace is represented by the black arrows. Unlike simula-

tion, where the inputs (random or targeted sequences) result in the target

transitioning through different states, formal verification starts from a given

initial state and analyzes target behavior under user-defined constraints to

verify the assertions. Therefore it can improve verification quality by exposing

corner case bugs or exhaustively proving the correctness of one property, en-

abling shorter design and verification time. Meanwhile, with the emergence of

language standards such as SystemVerilog Assertions (SVA) to define proper-

ties, formal verification has lately become a mainstream verification method.

Development of more efficient algorithms, as well as the performance improve-

ment of CPU and memory units, also push formal tools to produce meaningful

results in practical time frames.

Compared to simulation, formal techniques, such as model checking,

are much more comprehensive in detecting corner case bugs because they can

search for all reachable states in each step. However, formal does not scale

well with large designs [17], which makes it still just one part of the solu-

tion to the massive industrial verification problems. This capacity issue is the

biggest reason that prevents formal from directly replacing any simulation-

based methodologies or tools. Being exhaustive, formal verification can easily

run into state explosion, especially for the enormous state spaces of modern de-

signs. In addition, it is difficult for verification engineers to evaluate the results

when the formal tool cannot present determined outcomes before running out

of memory or exceeding CPU time limits. These issues, which usually occur in

3

verification of large designs, require more effective and innovative techniques

to extend the capability of formal engines while maintaining relative satisfying

coverage.

1.2 Verification Challenges in Modern Processors

The increasing complexity of hardware designs, especially modern pro-

cessors, have been posing a lot more challenges in verification. The industry

has been putting more and more resources into verification than design, yet

still many projects with promising new features are dropped due to the inabil-

ity to fully verify the functionality within a reasonable time period.

Despite decades of research, the exponential growth in the complex-

ity of modern processor designs over the last decades has continued to bring

huge challenges into the verification fields. There are many optimizations to

improve the performance of these microprocessors such as pipelining, forward-

ing, branch prediction, out-of-order instruction, etc. [28]. Even with the same

instruction set architecture (ISA), especially for the open source ones, such as

RISC-V, vendors tend to have various implementations that focus on different

aspects, such as high performance or low power consumption. All the opti-

mizations and implementation diversities stated above have introduced extra

corner cases for the design, which makes verification a critical task to guarantee

system function correctness and safety.

The ultimate goal is to verify the correctness of each instruction that

can cover all critical internal states of the design. The most common tests

4

conducted for such a purpose is at the assembly level, where a sequence of

instructions is fed to the core, and values of memory and registers are checked.

However, all of these optimizations or different micro-architectures should not

be visible to the programmer in general, which means that the overall instruc-

tions should be processed one at a time in the designated order in accordance

with the ISA specifications [45]. In this case, such assembly level tests cannot

locate the bugs precisely in RTL related to micro-architectures, but classic

RTL verification requires a deep understanding of what internal signals in the

DUV behaviors are considered as legal, which brings a lot of unnecessary work

to verification teams to ensure the correctness of complex designs. This major

requirement shows the importance of establishing a dependable verification

method to perform an RTL end-to-end ISA verification for each design which

includes all the micro-architecture behavior invisible to the programmer.

On one hand, traditional simulation-based verification requires a deep

understanding of a particular implementation in order to generate the stimuli

to reach those corner cases. Creating such testbench is not only hard and

unreliable, but also expensive in terms of reusability, as the tests would be

specifically designed for one micro-architecture [45]. Furthermore, the state

space of modern processors is huge, especially for 64-bit machines; therefore

it is impractical to obtain full coverage by so-called exhaustive tests. One

purpose of this thesis is to come up with a verification method that is able to

verify the correctness of the instruction operations with higher coverage and

can also be applied to any third party implementations with relatively low

5

effort.

On the other hand, FV usually uses assertions to find violations of

specification, which is suitable to describe correct behavior for the end-to-end

approach. However, the formal engine has to go through nearly all the states

in the design thus resulting in state explosion, which would overload the formal

tool. Some corner case bugs for complex state machines can be very deep for

formal techniques to catch. A better approach is to deal with the urgent need

to solve the capacity issue in FV, which will be discussed in the next section.

There exist some tools that can perform automatic formal verification

on the architectural or transaction level models such as FISACo in [39]. How-

ever, such tools still require human effort in defining informal specifications

and the architecture models, which limits their application. In addition, the

machine-generated properties are usually not human-readable, thus one com-

pletely depends on the soundness of the tools and it can be extremely difficult

to debug if the properties themselves are buggy. In contrast, experienced

verification engineers can write human-readable proofs and provide effective

guidelines. Our intention is to achieve a balance between automation in the

verification process and high-level user involvement.

1.3 Semiformal Verification: Motivation and Related
Work

An integration of simulation with FV, generally referred to as semi-

formal verification (SFV) [1, 2, 17, 58], can have particularly preferable per-

6

formance in situations where bugs are fairly deep and require thousands of

cycles to execute. Semiformal verification combines the completeness of for-

mal techniques and the capacity and ease-of-use of dynamic verification, which

leverages FV in a resource-bounded approach, and thus is a key to scale FV

to larger, more complex designs.

Two general semiformal techniques have been frequently investigated in

the verification area. The first is referred to as augmenting simulation. In this

category, dynamic simulation is first applied to reach certain intermediate state

and then formal engines take over to exhaustively verify the remaining reach-

able states. However, formal search, in this case, would only be effective if it

is triggered fairly close to the failure state. In order to relieve this limitation,

some approaches of augmenting simulation include rarity-guided simulation

[21] that ranks the states for later search iterations, or the automatically gen-

erated lighthouses (important intermediate states) [56] as guideposts towards

the target state.

Another semiformal technique can be referred to as guided simulation.

Abstraction plays a critical role in this type of methods. It is the preliminary

step for formal engines to perform an exhaustive search, which partitions the

reachable states into “rings” as shown in Figure 1.2 based on the depth from

the target. These “rings” can be used to guide simulation towards the inner

rings until it reaches the target states. However, the abstraction can sometimes

be too coarse and the existence of mapping paths back to the concrete design

must be taken into consideration to make sure its validity. To solve the dead-

7

Figure 1.2: Guided simulation using abstraction

end states in a coarse abstraction, many research efforts have been put into

optimization of the abstraction methodology. One solution is to keep a record

of multiples states and maintain a balance between greed and relaxation [16].

Involving domain knowledge can also be effective [15], but it requires extra

efforts from engineers to manually abstract the designs. Data mining has also

been investigated for example in [43] but few applications were demonstrated

on industrial designs and verification testbenches. Meanwhile, localization can

be used to automatically refine the abstraction [18] but the abstracted models

tend to grow very quickly. One promising way to solve this explosion issue

is to abstract away the data-path signals to retain only control-path registers

[50, 58]. Since most bugs are bundled with control issues, verification processes

that focus on exploring control states increase the likelihood to find deep bugs.

Semiformal verification can be very useful in verifying industry designs

8

due to its ability to expand the bug hunting capability of FV to detect deeper

state failures in large designs. Although SFV is not as exhaustive as FV, it

does achieve much larger coverage than simulation. In the next chapter, we

will elaborate on the methodology explored in this thesis to apply semifor-

mal techniques using waypoints as intermediate guides towards the target in

complex designs.

1.4 Summary and Chapter Outline

This thesis studies an SFV approach that manages to alleviate the

capacity issue of formal verification for complex modern designs. Unlike some

previous research that only use simple RTL modules as study cases [2], this

thesis investigated an end-to-end verification framework using RISC-V cores

as targets. A waypoint-based SFV algorithm with no testbench required is

proposed where waypoints are important intermediate states that are selected

based on specific criteria. They will serve as the “lighthouses” in the formal

verification process in order to shorten the proof or counterexample exploration

time, thus expanding the capacity of formal tools. The main contribution of

this work is to design a new automatic waypoint generation tool using machine

learning techniques, which is useful for complex DUVs as it can serve as a

complement to manual waypoint selection. In addition, the data set built

for automatic waypoint generation part is open source, which identifies the

importance of the flip-flops based on synthesized netlist information. Both

manual and automatic methods will be evaluated specifically in this work for

9

different design cases.

This chapter gave a brief introduction to related work on semiformal

verification. The rest of this thesis is structured as follows. Chapter 2 illus-

trates the semiformal techniques adopted and the algorithm studied in this

work using waypoint-based SFV methods. Chapter 3 introduces an automatic

waypoint generation tool designed by applying neural networks to analyze the

extracted control models. The RISC-V study cases and the corresponding ex-

perimental results are presented in Chapter 4. Conclusions and future work

follow in Chapter 5.

10

Chapter 2

Hybrid Semiformal Verification Methods

This chapter elaborates on the waypoint-based SFV technique that is

adopted and modified in this thesis to extend the formal tool capability.

2.1 Formal Verification Waypoints Definition

It has been illustrated in the previous chapter that formal verification

is likely to run into capacity issues when the target state is too deep to reach

within the limited amount of time and memory resources available. Corner

cases usually require difficult scenarios that can only cover them when part

of the design has reached a certain state, which can take a lot of cycles from

the initial state. For example, in microprocessors, many interesting cases are

likely to happen after the cache becomes active, and perhaps full, but it takes

many cycles to write the configuration registers to enable the specific bits and

many cycles to generate the memory address sequences to fill the cache.

In conventional FV, the particular state from which formal model check-

ing starts is typically the state where the reset signal drops to be inactive. In

the aforementioned example, in order to hit the interesting scenarios, the for-

mal tool has to go through the initial sequence and then enable and fill the

11

cache. To shorten the number of cycles necessary to get to our interesting

states, we could define the intermediate state where configuration is complete

as the start state for model checking. These hypothesized intermediate states

are defined as “waypoints” or “lighthouses”, serving as new start states, from

which formal tool can search deeper until reaching the target state.

Figure 2.1: Multiple waypoints in formal model checking

Figure 2.1 illustrates the general idea of how waypoints serve as the

intermediate states in SFV to find a bug. Instead of directly checking through

all states for the assertions, the formal tool will only hit all or a subset of

the pre-selected waypoints based on some specific search algorithms. In this

scenario, two waypoints reached using simulation are used for the formal tool

to re-start in order to hit the final bug state. When a certain waypoint, such

12

as waypoint 2 in Figure 2.1, is reasonably close to the assertion failure state,

it would be much easier for the tool to hit that failure if it starts from that

waypoint. Without these intermediate states, the state explosion in formal

verification may make our targets unreachable. By doing so, we are able to

reduce the Cone of Influence (COI) at each step. Even in the cases where no

bug exists, the proof time for properties are expected to be largely reduced with

the premise that these multiple COIs at each waypoint can keep appropriate

coverage.

One thing requiring our attention is that the reachable state set de-

pends on the initial state from where model checking starts. Therefore, it is

important to ensure that the selected waypoints are traceable from the reset

state, otherwise the SFV result could run into false negatives.

2.2 Semiformal Technique Using Waypoints

The fundamental idea of applying waypoints is to use the witnesses of

such state as a guide that can lead the formal proof towards the deep target

state. A straightforward example of using waypoints would be a first-in-first-

out queue (FIFO): if our check target is FIFO overflow, the waypoints can

be set to “FIFO is 3/4 full”. Or even, multiple waypoints can be selected

to guide the formal tool towards the target, i.e. “FIFO is 1/4, 1/2, 3/4 full”

respectively. What we have to feed the formal tool is the correct input sequence

that both obeys the design specification and is able to guide the DUV towards

all the waypoints.

13

2.2.1 Finding Proper Waypoints

Waypoints can be either explicitly selected by the design or verification

engineers, or automatically generated by machines using specific algorithms,

for example, based on proximity metrics. From the view of the designer, user-

defined waypoints are more effective and often comes naturally. It is suggested

that more users tend to select waypoints manually [2].

Meanwhile, the advantage of machine-generated waypoints lies in the

fact that they do not require human intervention and detailed understand-

ing of the design specification. One intuitive method is generate waypoints

that makes the pre-condition of assert properties to be true. For example,

if the property looks like cond | => seq ##1 res, the automatically gener-

ated waypoints would be when the antecedent cond is true, or more strictly

with seq being true in the successive cycle. Other machine generated methods

may include, for instance, selecting waypoints that are at a specified distance

from the target states from an abstract design, or based on an architecture

model of the design. The main disadvantage of the automatically generated

waypoints is that they are usually less efficient than their user-defined coun-

terparts. What’s more, the generated waypoints are usually large in number,

which could result in expensive computation effort in ordering and reaching

each waypoint, making the later process more complicated or even unfeasible.

This would unnecessarily increase the verification time and effort.

One can also combine the two, conducting a mixed strategy: some

explicit waypoints can be provided by user guidance whereas the others are

14

generated by algorithms.

2.2.2 Traversal Policy

The traversal policy of the waypoints also remains to be an interesting

topic for discussion. It defines the order in which the waypoints are witnessed

in the verification flow, which has a large influence on when the failure state

of the assertion will be hit.

The most straightforward policy could traverse the waypoints in a spe-

cific order. More sophisticated policies usually involve regression in order to

hit the closest waypoint to the current state or failure state. In the latter cate-

gory policy, the search engine will need to continuously check whether current

traverse meets the requirement for a certain period, otherwise, it will restart

from the previous point and insert the latter path into a “blacklist” to avoid

repeating the same path.

2.2.3 Waypoint Propagation Strategies

The major categories of propagation strategies for reaching new way-

points are simulation-based and FV-based propagation. The former can be

further divided into random simulation and dynamic simulation. This section

will elaborate and compare the three strategies in detail.

In the random simulation policy, randomly generated stimuli are fed to

DUV in order to hit the next waypoints [31]. This method is popular because

it does not require the user to create simulation testbenches manually. The

15

external signals of the DUV are constrained with System Verilog assumptions

for formal checks, and the randomly generated stimuli should respect all the

assumptions. It is critical to make the correct assumptions to constrain the

behavior in order to avoid false negatives. Another issue is that this policy

requires consistent models in simulation and formal environments to integrate

the two successfully. However, this is usually not the case. In order to improve

the verification efficiency, models used in simulation and formal engines are

likely to be significantly different. For instance, FV tools tend to replace

parts of the logic with abstractions to fit their capacity. These difficult issues,

especially in complex designs, limits the application of the random simulation

policy in our case.

In the dynamic simulation policy, both the simulation environment and

the simulation testbench should be involved alongside the formal verification

environment. The simulation testbench needs to be run first, and then way-

points are selected on the simulation traces manually or automatically based

on specific rules. Within the set of selected waypoints, each one serves as a

new initial state for formal verification, from which formal engine starts to

search the violation of assertions. The idea of the dynamic simulation policy

is shown in Figure 2.2. From the coverage point of view, the simulation trace

looks “thicker”, which suggests better coverage than using classic simulation

methods alone. The advantage of the dynamic simulation policy is that it

can model practical scenarios by designed test vectors. However, one prob-

lem remains that the FV checks are always in proximity of simulation traces,

16

which are generally very shallow explorations. In addition, the consistent

model requirement mentioned in the context of the random simulation policy

also applies here. These issues make dynamic simulation policy infeasible for

verifying complex hardware designs.

Figure 2.2: Dynamic simulation

In the FV-based propagation policy, waypoints are selected manually

or automatically before starting the verification flow. Those waypoints are

then treated as assertions. For example, “FIFO being 3/4 full” will be repre-

sented in SVA as an assertion of “FIFO is never 3/4 full”. The FV engines will

search exhaustively within bounded steps to find a violation of the waypoints.

The counterexample found is called a “waypoint witness”, which corresponds

17

to the violation trace that can be used as input sequence to reach this wit-

ness point later. The biggest advantage of the FV-based propagation policy is

that the verification environment required is exactly the same as that of clas-

sical FV except for the multiple re-runs based on the waypoints specification

[2]. Therefore, there is no issue with model consistency, and no limitation on

specified assumptions. The disadvantage for this policy is that the adjacent

waypoints should be relatively close to each other, otherwise it will raise prob-

lems due to capacity issues of formal engines. There are commercial tools [44]

already implemented certain engines to accelerate the proof by dynamically

using proved assertions as waypoints for other property checks.

2.2.4 Algorithmic Waypoint-based SFV Flow

As aforementioned, one can either automate the waypoint search or use

manually selected waypoints. The algorithm we will discuss in this section is

based on high-level directions provided by users, but it also works for automatic

process by simply modifying the first waypoint selection step. This guidance

assists the SFV search towards the desired state by encoding the waypoints

with SVA as either cover or assert properties (in our case, we use assertions).

After discussing the algorithm, we are going to elaborate on its effectiveness

using a synchronous FIFO as an example in the next section.

The outline flow chart of the SFV algorithm is presented in Figure

2.3. The sources of waypoints are the fundamental preconditions for the SFV

flow. Given a set of waypoints C1, C2, ..., Cn and the target property P we

18

Figure 2.3: Algorithmic waypoints-based SFV flow

plan to verify, the manual waypoint traversal policy will be applied. All way-

points should be pre-ordered in sequence before starting witness checks. For

each waypoint Ci, the formal engine will perform a bounded model check and

search for a witness of this waypoint using a corresponding assertion Ai. An

assertion “failure”, in this case, should be treated as a successful witness, and

the counterexample trace is generated to serve as preliminaries for calculating

the new arbitrary starting state for the next run. Intermediate new initial

state calculation is a critical step in this algorithm because it must satisfy all

the constraints for the system, otherwise, we could end up having false failures

that are unreachable or not able to hit the corner case bugs. To make sure the

19

new initial state is valid and compatible with the DUV, the counterexample

trace is saved after each run to serve as the next input sequence to lead the de-

sign to the previously checked waypoint. Since the first counterexample trace

is generated from the reset initial state, it is guaranteed that Ci is reachable

if counterexamples are found. This input sequence is iteratively built upon

successive waypoints witnesses, ensuring that all waypoints including the final

target state are reachable from the original reset state. This algorithm rules

out the possibility of bogus witnesses and counterexamples.

If a certain waypoint cannot be reached within a bounded time, the

unreachability issue should be reported, and the waypoints will be re-ordered

or re-selected. It is also possible to only roll back one step, using heuristic

methods to specify the new waypoint. These issues will not be included in the

discussion of this work but are worth studying.

The search steps are repeated as the subsequent waypoints to guide

the FV engine towards deeper design behaviors. When the last waypoint Cn,

also the target state condition, is reached, we run FV checks for the target

property P and report the result.

Another thing that needs to be mentioned here is that multiple threads

running in parallel would result in better performance in the search. In addi-

tion, depending on how deep the target state is, single or multiple waypoints

can be selected to guide the formal check to reach states that traditional FV

can never reach. As shown in Figure 2.4, the black curve shows the runtime

increase versus check bound for isolated FV, while the blue curve models the

20

Figure 2.4: Ideal runtime reduction with waypoints-based SFV

performance of waypoint-based SFV. It is clear that SFV runtime is growing

linearly, while FV runtime increases exponentially, which indicates that using

waypoints can greatly improve the capacity of the formal engines.

2.3 A Toy Example: Synchronized FIFO

A simple synchronized First-in-first-out (FIFO) module (source code

in Appendix C.1) is introduced here to verify the concepts elaborated above.

The DUV interface is presented in Table 2.1, where FIFO DEPTH will be

gradually increased in order to touch the boundary of FV capacity in our

specific verification environment: running Cadence JasperGold on a server

21

with four Intel E5-2690 CPUs and a memory size of 8GB. In this example,

Jasper Engine, Hp, Ht are used for coverage checks and Engines N, B for

assertion checks.

Table 2.1: Interface of Synchronized-FIFO under verification

Name Type Length Description
clock input 1 system clock
reset input 1 high active asynchronize reset
wr input 1 write enable, rising edge active
rd input 1 read enable, rising edge active
empty output 1 high active FIFO empty flag
full output 1 high active FIFO full flag
din input DATA

WIDTH
data for write

dout output DATA
WIDTH

data for read

DATA
WIDTH

parameter any integer the width data stored in FIFO

FIFO
DEPTH

parameter any integer 2FIFO DEPTH being the number of
data can fit in FIFO

To make the comparison clearer, our experiments are conducted with

different values of FIFO DEPTH and waypoint selection. Each experimen-

tal group only has one variable different from the control group. Note that

although all other tasks are killed before the tests to make sure the amount

of resources available is relatively stable, it is possible some resources will be

occupied by other users from time to time. In order to generate results with

more accuracy, multiple tests (> 3) are conducted and the results presented

are the averages from these runs.

22

Table 2.2: SVA properties checked with Synchronized-FIFO

Name Type Description
ck empty correct assert check the correctness of condition for empty

flag being active
ck full correct assert check the correctness of condition for full flag

being active
ck empty once cover cover the case that empty flag is raised at

least once
ck full once cover cover the case that full flag is raised at least

once
ck empty to full cover cover the case that empty flag is raised and

then full flag is raised after certain period
ck full to empty cover cover the case that full flag is raised and then

empty flag is raised after certain period
ck wr num cover check whether write operations are executed

from zero up to an upper bound (set to be
three times more than the FIFO DEPTH)

ck rd num cover check whether read operations are executed
from zero up to an upper bound (set to be
three times more than the FIFO DEPTH)

ck all used cover check whether all the positions in FIFO are
used at least once

The assert and cover properties included in the evaluation of this exper-

iment are shown in Table 2.2, where all data are raw without post-processing.

Since our goal for this test is to prove the concept that waypoints can guide

large designs to reach deeper states, coverage for each spot in the FIFO is the

primary check on which we are focusing. In addition, assertions for correct

“full” and “empty” behaviors are also included. A list of properties written

for this experiment is presented in Table 2.2, the implementation of which uses

23

auxiliary code to ensure the efficiency of SVA in the formal engine.

(a) Memory usage growing with formal check runtime

(b) Maximum memory usage (c) Total runtime

Figure 2.5: Comparison of memory usage and runtime of synchronized FIFO
with various FIFO DEPTH

First of all, in order to illustrate the FV capacity issue more clearly,

Figure 2.5 presents the fundamental idea that both memory consumption and

24

runtime required for FV grows exponentially as FIFO DEPTH increases. One

bit added to FIFO DEPTH shows that the number of data fit in the FIFO

doubles. In the first test, all properties listed in Table 2.2 are enabled. When

the size is relatively small, a formal tool can cover all properties very fast.

However, if the size keeps increasing, the resources needed for full coverage

are going to explode very quickly. As a matter of fact, simply increasing the

FIFO DEPTH to 8 will result in a large number of non-deterministic cover

points: our experiment shows that after a 24 hour TIMEOUT limit, only

102 out of total 256 spots in the FIFO are covered with approximately 6GB

maximum memory required for the computation.

Since this example is to give the readers a general idea of how waypoint-

based SFV can effectively extend the FV tool capability, the experimental

group will use a medium size (FIFO DEPTH = 5) FIFO as our DUV. We

only focus on pushing the FIFO to the full status because the FV tool will

find the shortest path automatically for each property and those properties

listed in Table 2.2 do not always share the same effective waypoints. This

way, we only need to check ck all used and ck full once thereby simplifying

the procedure to generate input sequence to hit the waypoints.

The result is presented in Figure 2.6 – 2.8. Three conditions are tested

for evaluation.

1. Classic FV without waypoints;

2. SFV with single waypoint close to target state;

25

Figure 2.6: Comparison of memory consumption versus runtime among FV,
SFV with single and multiple waypoints

3. SFV with multiple waypoints spread out in the design.

To validate the queue logic in stressed “full” state, waypoints are selected

manually, with “3/4 full” for case 2 and “1/4 full”, “1/2 full”, “3/4 full” for

case 3.

To clarify, the data collected includes both the process to hit the way-

points and the subsequent runs using the input sequence to cover the rest

states from there. It is clear that using waypoint-based SFV can reduce the

memory consumption enormously, as well as the check time for each step with

the FV tool going deeper. Meanwhile, the cover properties are proved to be

covered much faster using SFV than classic FV. It can also be concluded that

the deeper the FV tool goes, the longer the time it needs to complete the cur-

rent check. This feature implies that our waypoint-based SFV methods can

26

Figure 2.7: Comparison of runtime versus check bound among FV, SFV with
single and multiple waypoints

Figure 2.8: Comparison of coverage percentage versus runtime among FV,
SFV with single and multiple waypoints

27

be especially beneficial in very large designs.

Apart from the benefits of using waypoints, it can be seen from Figure

2.6 – 2.8 that multiple waypoints can result in faster check and lower mem-

ory consumption to cover all states. However, this improvement from single

waypoint to multiple ones is not as fruitful as “from 0 to 1”. Considering

the fact that multiple waypoint SFV requires much more effort from the user

to define the intermediate states and find the correct input sequences, it is

probably more effective to only involve a single waypoint if it works with the

target design, whereas multiple waypoints can be applied to extremely large

state machines to exploit the benefits.

Now we can draw a conclusion that waypoint-guided SFV can largely

increase the capacity of the formal tools in our toy example. Even though it is

a very simple FIFO module, the capacity issue easily emerges with reasonably

increased FIFO depth. Considering the common designs in real applications

we will be dealing with are much larger, this issue will be a severe obstacle

for applying formal verification to achieve an exhaustive check. Therefore, the

waypoint-guided method can be very promising in terms of its considerable

coverage and capacity. In the next chapter, we will discuss the implementation

of machine learning techniques to generate guidance for waypoints to assist in

situations where it is difficult to define them with manageable human effort.

28

Chapter 3

Automatic Generation of Guide Waypoints

3.1 Introduction to Neural Networks

Neural networks have been the research hot-spots in the field of artificial

intelligence since the 1980s. A neural network abstracts the neural network in

the human brain from the perspective of information processing, establishes

a simple model, and can be used to generate different networks according

to different connection methods. It has been proved that a neural network

can represent arbitrary linear or non-linear functions [35], which is usually

an approximation of a certain algorithm or function in nature. In the past

ten years, many research efforts have been put into artificial neural networks.

Neural networks have successfully solved many practical problems in the fields

of pattern recognition, intelligent robots, computer vision, speech processing,

etc., that are difficult for traditional algorithms to resolve [29].

The network consists of a large number of nodes (or neurons) that are

massively interconnected [49]. Each node represents a specific output function

called an excitation function. A weight is assigned to each connection between

every two nodes to represent the connection strength. The output of the

neuron depends on the input variables, the weight value, and the excitation

29

Figure 3.1: Neuron structure diagram with activation functions

function. In addition, the output of the neural network is also affected by the

connection pattern of the network [49].

In the neural network, the neurons in each layer are associated with

functions generally referred to as “activation functions”, which decide whether

this neuron will be fired or activated [48]. Figure 3.1 shows the neural net-

work structure with each neuron associated with the corresponding activation

function, where x is the input vector and ω is the weight vector from other

neurons. The connection of a typical neural network will be illustrated in later

section. Note that the activation functions used in this thesis are non-linear,

which helps the de-linearization process of transformation in each neuron.

The neural network can be trained to learn the weight matrix that

controls how variables propagate through the neurons. The optimization goal

of the training is to make the prediction values as close as possible to the true

value, which can be evaluated by loss function. In a regression problem, the

30

loss function is usually measured by mean squared error (MSE), which is the

average value of the sum of the squared errors between the predicted values

and the true values [22].

Gradient descent (GD) is a common neural network optimization al-

gorithm. By calculating the gradient, the parameters in the network move

towards the negative direction of the gradient, so that the loss function is able

to reach the minimum value locally. However, traditional GD needs to min-

imize the loss function on all training data. When the neural network needs

to train a huge data set, the amount of computation required is very large.

A compromise is to calculate the gradient of the loss function with only a

subset of all the training data each time. This small amount of data is usually

called a “batch”, so this partition calculation method is usually referred to as

batch gradient descent (BGD) [46]. BGD can greatly reduce the training time

without affecting the convergence result, thus has become the mainstream to

optimize parameters.

The target of our training is to minimize MSE by optimizing parameters

in each layer using BGD in order to move the training results closer towards

the true values.

3.2 Why We Need Machine Generated Waypoints

Chapter 2 presented a waypoint-based SFV algorithm to extend the

capacity of formal verification of microprocessors. Despite many advantages

of high-level user-selected waypoints mentioned above, it is necessary to in-

31

vestigate machine generated ones due to the growing number of large complex

designs which are difficult to analyze by verification engineers without design

details. In addition, many high-level hardware description languages, such as

Chisel [7] are becoming more and more popular. In such designs, low level

RTL design languages, i.e., Verilog or VHDL, are given up in exchange for a

more convenient and better-structured design methodology. Therefore, it is

impossible to apply high-level waypoint selection on large designs, especially

those generated from higher level languages with machine-generated names for

internal signals.

It is difficult to find an obvious relationship between the information

that we can get from Verilog source code and whether this state is critical to be

our guide waypoints. As introduced in the previous section, neural networks

can extract hidden features in higher dimensions, thereby being more suitable

for solving problems with hard-to-describe relationship between features and

results like this.

In order to provide guidance of waypoint selection in such situations,

a tool based on combined Python and Tcl is implemented to perform the

automatic generation of the critical flip-flops. These critical flip-flops are then

taken as guides for corresponding target states in the verification plans. This

will involve a Verilog syntax analyzer and machine learning techniques. The

detailed algorithm will be discussed in detail in the later sections.

32

3.3 Automation Procedure

3.3.1 Extraction of Control Models

Control signals are usually dominant in system behavior. In addition,

control logic designs are often built around finite state machines (FSMs), in

which some of the states are “idle states” that keep waiting for certain trigger

signals, causing the design to be very deep and complex. Therefore, extracting

control models can be the core step to solve the reachability problems in com-

plex design verification. Meanwhile, those control signals can help to narrow

down the target design size, facilitating system analysis by formal tools.

Two simple models [25, 50] shown in Figure 3.2 are elaborated here to

assist the heuristic algorithm in order to make a decisions on whether a signal

belongs to the control set or the data set.

(a) Pure sequential logic (b) Mixed combinational and sequential logic

Figure 3.2: Typical control path model

We first consider the Verilog module in Figure 3.2a, where some flip-

33

flops would store their own history values, whereas, for others, their current

value is computed every cycle without directly referring to their previous

states. The former will be referred to as critical state registers and the latter

as data registers. Usually, pure sequential logic corresponds to “always” blocks

with signals sensitive to the system clock in the RTL code.

Another common situation would be the case shown in Figure 3.2b,

where the output value of the flip-flop affects the sequential logic indirectly

by going through combinational logic first. In this case, we need to continue

exploring the assignment values in combinational logic until we reach a clocking

event to determine whether this flip-flop is within the critical control flow or

not.

3.3.2 Training Data Set Acquisition

In order to acquire data that are related to information in the con-

trol model, we need information from the synthesized netlist, which can be

found, for example, using Cadence RTL Compiler (RC). This tool can per-

form generic synthesis and provide timing path and connection information

for inputs, outputs and registers for the design system regardless of how they

are implemented in the modules. In this work, only internal flip-flops are

analyzed since the interface inputs and outputs usually have clear definitions

based on the design specification, thus being easy to figure out whether they

are critical control signals.

There are nine features for each flip-flop we obtain from the tool as

34

shown in Table 3.1. Some features are extracted directly from the RC tool

while the others have been processed with simple arithmetic to get values in

proportion.

Table 3.1: Feature vectors of the data set

Notation Description
Rin The rate of input ports connected to the flip-flop over the

total number of input ports
Rout The rate of output ports connected to the flip-flop over the

total number of output ports
>> R The number of pins, ports or cells that exist in the fanin cone

of the specified flip-flop (must be timing start points)
R << The number of pins, ports or cells that exist in the fanout

cone of the specified flip-flop (must be timing end points)
>> Rv The number of all pins, ports or cells that exist in the fanin

cone of the specified flip-flop
Rv << The number of all pins, ports or cells that exist in the fanout

cone of the specified flip-flop
Loop Whether the specified flip-flop (or a group of flip-flops serves

different bits of the same signal) affect its own value in the
subsequent cycle

Len The number of bits for specified signal (two-dimensional mem-
ory storage will only be reduced to one-dimensional signal)

Hier specify the level of submodule, with 0 being the top module

After data acquisition, the next step is classifying flip-flops to make up

the training set. Although we would love to have two clearly distinguished

categories for the signals, it is sometimes hard to completely distinguish be-

tween control and data signals. An example would be the instructions fetched

in microprocessors: on one hand, they are data from memory or cache, on

35

the other hand, they decide how the following pipeline stages work, which is

more like control signal functions. Therefore, we will label each flip-flop in the

training set with a score between 0 and 1 instead of directly classifying them

as critical or non-critical. The continuous score is based on the control model

illustrated in the previous section, but real situations are much more complex

so we also involve some heuristics based on the actual behavior of the design.

Table 3.2: Design information for neural network training data set

Design name Number of FFs
a25 write back 44
ahb2wb 84
alu with selected input output 83
arbiter 4
asynchronized spi 62
axis master 15
axis arb mux 4 37
axis slave 5
axis switch 4 184
SSP fifo 53
ftdi wb bridge 145
hpdmc 216
i2c controller 159
i2c master 150
jtag 70
lock 3
o8 controller 53
reed solomon decoder 9228
sdc fifo 771
sequence detector 3
SSP 134
wishbone 72

36

To gather sufficient data for training, feature extraction is performed

on 22 designs, the number of flip-flops of which is listed in Table 3.2. They are

either from https://opencores.org or implemented by the author; all the

designs have been uploaded to the GitHub repository mentioned in Appendix

A.3. The script used with the RC tool is given in Appendix A.2.

3.3.3 Finding the Critical Flip-flops

According to the aforementioned fundamental ideas, the neural network

constructed for waypoint generation is illustrated in Figure 3.3. The details

of each layer are as follows.

• Input layer: there are 9 nodes representing 9 features illustrated in sec-

tion 3.3.2

• Hidden layer: full connection is implemented to connect the hidden layer

with input layer nodes. Only single layer is used with 100 nodes. This

can be extended to get more comprehensive training result. We choose

the most commmonly used ReLu function to be our excitation function

to perform de-linearization task.

• Raw output layer: full connection is implemented to connect the hidden

layer with raw output layer. There is only one node in the raw output

layer, representing the raw score from the neural network.

• Map layer: using the Sigmoid function to map the raw score (−∞,+∞)

to the (0,1) distribution.

37

• Output layer: final score.

Figure 3.3: Algorithm structure of the neural network

In the training process of the model, MSE is used as the loss function,

and the BGD algorithm is applied as the parameter optimization method.

The equation for MSE is given in Eq.3.1, where N is the sample number in

one batch, yi is the true value, and ŷ is the predicted value from the neural

network. The specific parameters after tuning are presented in Table 3.3. Note

that the regularization coefficient is set to zero because the results imply there

is no over-fitting problem. In the future, more data needs to be collected to

expand the data set and further reduce the loss function.

38

MSE(y) =
1

N

n∑
i=1

(yi − ŷi)
2 (3.1)

Table 3.3: Neural network training parameters

Parameter Value
Batch 100
Base Learning Rate 0.8
Learning Rate Attenuation 0.99
Regularization Coefficient 0
Training Round 2500
Average Moving Attenuation Rate 0.99

The entire neural network is based on the Keras framework (Tensorflow

as backend) [12]. The parameters listed in Table 3.3 are tentative results and

might not represent optimal solutions.

With the trained model, test data collected from the DUV are fed to

it to get the prediction results. After retrieving the score for each flip-flop,

we can set a threshold to select the critical ones for later use. This threshold

depends on the requirements for practical application. We will elaborate on

this in later sections.

3.3.4 Generating Guide Waypoints

We now have the score of all Flip-flops in the target design. Based on

the scores, we can set a threshold to select single or multiple flip-flops as the

the critical ones, which serve as a database for the waypoint generation step.

39

In this section, we will discuss the algorithm for single waypoint generation.

Multiple waypoints generation would be similar, but with more rounds of

iteration and regression in later verification because there is a higher chance

that the generated waypoints are out of order or not reachable.

We will first define some notation before proceeding with our illustra-

tion of the generation algorithm. Suppose we have a model M for the FSM of

our target design, we will have:

M = (S, I, s,→)

Where S is the state variables, I stands for input variables, s is the initial state

assignment, and → represents the state transition. Note that all reachable S

are correlated with at least one transition →.

A one-step state transition can be represented with [Sn] × [I] → [Sm].

If we call a certain Sm “CurImg”, the states Sn that can enter Sm in one clock

cycle with corresponding I is defined as “PreImg”; if Sn is “CurImg”, the states

Sm that the “CurImg” can transfer to in one clock cycle with corresponding

“I” is defined as “NxtImg”.

Before starting the analysis of the Verilog source files, we need to de-

termine the CFF pool for critical flip-flops out of all the flip-flops that we are

interested in. From this stage, all operations are conducted for the flip-flops

in the CFF pool.

For a specified state [Si], we can define the current state as “CurImg”

according to the FSM transition graph. We define its “PreImg” as those states

40

that can directly reach CurImg state without passing through an intermediate

state, and “NxtImg” as those can be directly transited from CurImg via no

intermediate state. All CFF should store some values in the specified CurImg,

and those flip-flop values can be calculated by parsing the information of RTL

source code in the “CurImg”, “PreImg” and “NxtImg”.

As for the RTL code, we will use Cond to represent a condition state-

ment, RV for right value of the assignment and LV for the left value of the

assignment. In addition, we need to pay attention to NOT logic, i.e., ! and

∼ symbols, of the interesting flip-flops since the reverse logic affects how we

pair those values in the assignment. This feature will be used for waypoints

automatically generated in the next step.

With the notation clarified above, we can provide the Algorithm 1

in pseudo code for waypoint generation based on the selected CFF and the

parsed RTL code.

Assume CFF is not an empty set, a new flip-flop list X is initialized

with all elements in CFF . Besides, Waypoint set is initialized as an empty set

for later appending. The generation loop (Line 3) will evaluate each element

x in the list X in sequence. For each x, its “Nickname” is first searched

through the RTL code based on two criteria: 1) when x is the only RV in

the assign statement, the corresponding LV is defined as a Nickname of x;

2) when x is directly connected to an input or output port of other modules,

that port is defined as a Nickname of x. The Nicknames should be appended

to list X for the exact same search in later looping starting Line 10 and Line

41

Algorithm 1 Waypoints Generation

Require: CFF 6= ∅
1: X ← ∀x ∈ CFF
2: Waypoints← ∅
3: for x ∈ X do
4: if x found as the only* RV in combinational assignment then
5: append LV to X
6: end if
7: if x is directly connected to submodule ports then
8: append the connected port to X
9: end if

10: for ∀x ⊂ Combinational Logic do
11: if x ∈ ∀Cond then
12: append (Cond) to Waypoints
13: end if
14: end for
15: for ∀x ⊂ Sequential Logic do
16: if x ∈ ∀Cond then
17: append (Cond) to Waypoints
18: end if
19: if (x ∈ ∀RV) ∪ (corresponding LV ∈ CFF) then
20: append (RV ##1 LV) to Waypoints
21: end if
22: end for
23: end for
24: return Waypoints

15. The next step is analyzing the RTL code to generate waypoints. First,

we go through both combinational logic (=) and sequential logic (<=) to

check whether x belongs to the conditional statement, such as if and case

(Line 11 and Line 16). If yes, the entire condition logic will be added to the

Waypoints set. Besides, there is one more case for sequential logic where we

can select waypoints: if x belongs to any RV , and the corresponding LV is

42

also within CFF set (Nickname excluded), then the sequence RV ##1 LV

should be added to the Waypoints set (Line 19). When all elements in list X

are analyzed, the loop ends and the Waypoints set is returned. In addition,

the algorithm description with symbol * can be altered to meet specific needs.

We will give an example in Chapter 4.

Note that in an application of the generated waypoints, we need to add

‘!’ if we use SVA to find the trace. No such reverse logic is needed if we use

coverage properties.

It is worth mentioning that another important issue in the automatic

process is how to order the generated waypoints. This order process is com-

pleted manually in this work. We suggest that future work can apply heuristic

regression referring to fanin and fanout metrics to further automate this step.

3.3.5 Result Evaluation

To evaluate the proposed automatic waypoint generation methods, we

apply the same synchronized FIFO example used in Chapter 2.

First, the neural network model is trained with the collected data set

illustrated in Section 3.3.2 using Keras. This model is then used to score

each flip-flop, which we refer to as “machine-predicted score”. Meanwhile, we

manually score each flip-flop as a ground-truth, which is referred to as “user-

defined score”. Figure 3.4 shows the squared errors between corresponding

user-defined score and machine-predicted score. The machine scores increase

alongside the horizontal axis from left to right, but the coordinate values are

43

not evenly distributed because we want to show each spot clearly. As shown

in the figure, the squared errors at both ends are quite small while the me-

dian ones are relatively large. This result is acceptable because our goal is

to find the critical flip-flops with a very large score. Those flip-flops belong

to data path have small scores in both user-defined and machine generated

cases, which are ensured to be eliminated. The only concern remaining is the

middle part with large squared errors. However, scoring itself is actually am-

biguous, especially for these hard-to-define flip-flops with median scores. Since

even humans cannot give a clear classification, we can take them out of our

consideration. The original data is attached in appendix B.2.

Figure 3.4: Squared error between user-defined scores and machine-predicted
scores

A threshold should be set manually to pick the CFF set for the next

step. The decision on threshold depends on practical application, but we

44

suggest a basic rule that selected CFF should not include those with large

squared errors. A fundamental way to judge whether the predicted scores are

rational is to evaluate the selected CFF based on the original RTL design.

In this example, we set 0.8 as the threshold so that:

CFF = {dffw1, dffw2, full reg, wr reg}

The detail of these signals can be referred to Appendix C.1. This result is

consistent with our arbitrary definition of control signals in the synchronized

FIFO module. These critical flip-flops will serve as the preliminary dataset for

the waypoint guide generation in the next step.

We develop a Python script to perform the waypoint guidance genera-

tion for each flop in the CFF set. It also returns the interesting line in the RTL

code in case users may want to check the design and introduce some human

intervention in deciding waypoints. The result is presented in Table 3.4.

Table 3.4: Automatic generated waypoints guide

CFF Waypoints line
dffw1 (dffw1) ##1 (dffw2) 21
dffw2 null null
wr reg (rd succ == wr reg) 91
full reg (∼full reg) 99

The next step is applying the one or multiple waypoints from Table

3.4 to SFV flow. However, can be noticed that these waypoints could guide

45

the system a different direction which may not include our target states. In

addition, the memory resources and time required to automatically select and

order multiple waypoints can be too high. Therefore, combining automatic

generation results and artificial analysis may be more effective to reach the

target state.

The test conducted applies a more effective direction which lets the user

select and order the waypoints for our target from the guidance list. In addi-

tion, higher hierarchical conditions can be added to the waypoints to specify

them in more detail. This is also a good example of the reason why human

intervention is preferred even with the generated guidance list. Therefore, the

waypoint can be selected as (∼ empty && (wr reg == rd succ)) to help to

hit the target state faster. Besides, the same environment, running Cadence

JasperGold engine Ht & Hp on the server with four Intel E5-2690 CPUs and

memory size of 8GB, is used in this test. To obtain better comparison results,

we take the same coverage property, ck full once and ck all used in Table 2.2,

as our target states and test the amount of the time and memory needed for

the formal engine to reach them.

Table 3.5: Comparison between FV and SFV with automatic generated way-
points

total runtime /s memory consumption /MB
w/o waypoint 149 251.67

w/ manual waypoint 4.35 65.96
w/ automatic waypoint 78 65.68

46

Figure 3.5: Runtime growth versus bound of FV, SFV with manually selected,
and automatic generated waypoints

We compare run times between FV and SFV with automatically gen-

erated waypoints using the synchronized FIFO with FIFO DEPTH of 5. The

result is presented in Figure 3.5 and Table 3.5, where total runtime and max

memory consumption using automatic generated waypoints are significantly

improved by 47.7% and 73.9% respectively compared to isolated FV. The

reduction in runtime using SFV with waypoints generated by the proposed

algorithm appears to be from nearly exponential to linear growth. However, it

is undeniable that the manually selected results presented in Chapter 2 appear

to be more effective than this automation algorithm, as shown in Figure 3.5 in

terms of runtime growth. However, in the cases where the DUV design details

are ambiguous or too complex, this automation method can still be of great

47

benefit.

3.4 Other note: Coverage Metrics

Besides waypoint generation automation, there are many other applica-

tions for the identified critical flip-flops, such as fault tolerance and coverage.

In this section, we will discuss the application from the aspect of coverage met-

rics based on the critical flip-flops found from the aforementioned algorithm.

Evaluation of whether verification results give sufficient confidence re-

garding the correctness of the design depends heavily on the coverage metrics.

Most of the mainstream verification flows use coverage metrics such as line cov-

erage, signal coverage, branch coverage, etc., which can be generally classified

into two categories: code coverage and function coverage [3]. However, many

of these are ambiguous and incomplete for situations where multiple decisions

on state transitions are made together. The thesis research in [25] designed

an automatic coverage directives generation tool by analyzing RTL written

in Verilog HDL. However, the coverage properties written in SystemVerilog

bear the advantages that they can be integrated with most simulators and

formal tools easily. One potential issue is that the properties generated from

large designs require a huge amount of computation. The main drawback is

that this process may take an impractical time to run. Even it can generate

all properties within a tolerable time, the possibility of having unreachable

coverage properties increases due to the large number of properties generated,

and it is hard for humans to distinguish whether the unreachable coverage is

48

due to the problem of automation tool or the deficiencies in the verification

plan. Therefore, we could use the method illustrated in this chapter to find the

CFF as a subset of all registers, which helps the coverage directives generation

tool to focus only on the critical control flow. Even excluding the automation

tool, these critical flip-flops can still serve as a good guide for manual coverage

metric design.

In addition, other similar algorithms can also be applied here to au-

tomatically generate the coverage metrics guides. The only difference lies in

how to select the CFF pool. The number of flip-flops selected can be very

flexible since we provide a continuous scoring prediction instead of an absolute

classification. Designers can choose any threshold based on their own project

requirements.

49

Chapter 4

Experiments and Results

4.1 Application Guidelines

Before looking into the study cases, we will first specify the cases where

the application of waypoint-based SFV flow would be more suitable and ben-

eficial.

The SFV flow proposed in this work is able to largely improve the

performance of verification in large design, where classic FV easily run into

complexity issues. The keypoint in our SFV flow is to select the proper way-

points. For example, in microprocessor verification, we could bypass the long

initialization sequence through the peripheral bus to configure all the architec-

tural registers. Another case, also for microprocessor verification, is that we

can select waypoints based on the pipeline stages in order to reduce the size of

the COI. For instance, if we take the state right after decoding as waypoint,

we can focus on the specific instruction for verification.

In this Chapter, experiments on RISC-V cores will be conducted and

the corresponding performance will be evaluated.

50

4.2 RISC-V Verification Setup

Chapters 2 and 3 introduced the SFV algorithm with manually selected

and automatically generated waypoints in detail and demonstrates their effec-

tiveness with a simple example of a synchronous FIFO. Since the capacity issue

that we are trying to solve is more likely to appear in large complex systems,

we will take RISC-V processors as our test objects in order to verify the effec-

tiveness of the proposed algorithm in such a real application. In this section,

we will present the verification flow based on the proposed SFV method and

the corresponding results of the study cases.

In order to verify the RISC-V cores, it is better to build an expandable

formal verification framework based on the RISC-V specification to conduct

classic FV as a control group. The framework used in this thesis is based on

the work of [54], the structure of which is presented in Figure 4.1. The RISC-V

Formal Interface (RVFI) can serve as the communication ports between the

DUV and the SVA checkers. The rvfi wrapper is connected directly to RVFI,

which provides not only the standardized wrapper, but also the input con-

straints that can mimic the correct bus behavior of the design. These input

constraints will change based on a specific design. Otherwise, incorrect input

constraints can result in weird illegal behavior and false negatives in verifica-

tion, which is also an important research topic but will not be discussed in

this thesis. The primary verification targets are the instructions based on the

supported RISC-V ISA specification. The rvfi insn check module performs

this task by having an expandable interface that can be connected to various

51

modules designed specifically for describing valid behaviors of each instruction.

The formal verification top module rvfi testbench integrates all the SystemVer-

ilog (SV) modules that have property checkers or auxiliary codes. Note that

this rvfi testbench can also connect to other checkers with different configu-

ration macros. These macros must be defined before loading any RVFI files

correctly. In addition, this framework can be set up for bounded model checks

or unbounded verification depending on factors such as the overall complex-

ity of the core and verification requirements. In our test cases, we configure

framework for bounded model checks by having a variable name “check”. This

check depth is determined by the number of cycles needed for each instruction

based on the specific pipelining design. Only when the check is asserted will

the tool start the checking process.

Since this framework is written in SV, it can accommodate any formal

tools that support SV verification with minor changes. The experiments con-

ducted in this thesis uses Cadence JasperGold Formal Property Verification

APP [44] on a large server. However, similar to the issue mentioned in ex-

periments on the synchronized FIFO, the server we use is shared so the data

collected may have some variance due to multiple uses on the shared system.

Therefore, multiple tests have been conducted to present the results on an

average base to make the outcoming data more reliable.

In our work, we will concentrate on the verification of the functional

correctness of the instruction set. The primary assertions checked for each

instruction are listed in Table 4.1. To illustrate, property 3, checking the

52

Figure 4.1: RISC-V formal verification framework diagram

correctness of Rd, write data is under the condition where data in Rs1 and Rs2

are unconstrained. Note that not all of the listed assertions would be covered

in each instruction check.

Due to space limitations, we would only present our detailed elaboration

on one RISC-V implementation, PicoRV32.

53

Table 4.1: Assertions checked in formal verification on RISC-V instructions

NO. Description
1 Conditions for entering TRAP vectors
2 Rd address
3 Rd write data
4 Next PC address
5 Rs1 address
6 Rs2 address
7 Data correctness in memory read access
8 Data correctness in memory write access
9 Correct alignment in compact ISAs

4.3 RISC-V Core: PicoRV32

4.3.1 Introduction to Experiment

PicoRV32 is a CPU core that implements the RISC-V RV32IMC ISA.

It can be configured as RV32E (embedded), or any combination of RV32I

(integer), RV32C (compact) and RV32M (multiplication) [53], and an optional

configuration to support IRQ using a simple customized ISA [55].

The average cycles per instruction (CPI) varies among different instruc-

tions, but is usually around 4. The CPI numbers for the individual instructions

can be found in Table 4.2 with the register file configured in dual-port mode.

Based on such information, the check depth is set as 20 so that the processor

is guaranteed to retire the current instruction (except the multiplication and

division) under check.

The verification experiment steps are listed as follows.

1. Make a detailed verification plan on what assert and cover properties

54

Table 4.2: CPI numbers for the individual instructions

Instruction CPI
direct jump (jal) 3
ALU reg + immediate 3
ALU reg + reg 3
branch (not taken) 3
memory load 5
memory store 5
branch (taken) 5
indirect jump (jalr) 6
shift operations 4 - 14
multiplication 40 - 72
division 40

should be checked.

2. Instantiate the formal verification framework to accommodate for Pi-

coRV32.

3. Specify waypoint(s) for the DUV (manually or automatically generated)

4. Run FV on the instruction set with waypoints as assertions. Collect data

from FV checks, and find a trace to each waypoint.

5. Run SFV on the same instruction set with customized input sequence

to hit waypoints. If this is the last waypoint – our target state, collect

data from SFV and compare with FV results; otherwise, go back to step

4.

55

4.3.2 Verification Ability Improvement

The experiment results for PicoRV32 study case are presented in this

section. Both manually selected and automatic generated waypoints will be

assessed specifically.

In order to quantify the computing performance improvement, we will

use memory and runtime as our performance metrics. Many studies only focus

on one aspect while sacrificing the other. Instead, neither would be ignored in

our study cases and each parameter will be presented in detail. If less runtime

and memory consumption is observed, it suggests this method has more ca-

pacity than isolated FV, or in another word, cover more states within limited

resources. In our experiment, we exclude the situation where stored values can

get flipped by interference such as electromagnetic interference (EMI), that is

to say, our verification only focuses on reachable states starting from the reset

state in the FSM.

4.3.2.1 User-defined Waypoints

In this section, the waypoint is manually selected as the state where the

instruction under check has retired, indicating the state where all computation

is completed.

The same verification environment as the FIFO example in section 2.3

was first used with four Intel E5-2690 CPU and memory size of 8GB. However,

JasperGold is unable to provide determinate FV results without waypoints

with the limited resources on this server. This result indicates that classic FV

56

Table 4.3: Verification result of PicoRV32 AND instruction on server S

Runtime/s Memory Usage/GB Line Coverage/%
FV result 386.7 + page fault -
SFV result 88 1.02 87.41

checks requires too many resources since the tool reports a page fault issue

due to low memory. Table 4.3 presents the results of the check for the AND

instruction using both FV and SFV methods. The ‘+’ sign in the FV runtime

entry shows the time that the tool reports a “page fault” when the check has

not been completed yet. Although we are not able to statistically analyze such

results, it is obvious that our waypoint-based SFV is superior to classic FV in

terms of both runtime and memory consumption.

To better quantify the comparison of verification ability between FV

and SFV, we move to the “big” server with 32 Intel Xeon E5-2690 CPUs and

memory size of 378.47GB available. In this condition, we are able to complete

both FV and SFV experiments for all instructions listed on RV32ICM specifi-

cations [53]. Both FV and waypoint-based SFV are applied to the PicoRV32

core to verify the functional correctness as indicated in Table 4.1 of each in-

struction. Note that only the control paths are verified for RV32M, which will

be elaborated on later.

Comparison in terms of runtime and memory consumption is presented

in Figure 4.2. As can be seen from these figures, the improvement is significant:

it is obvious that both runtime and memory usage applying the SFV method

57

is much less than those applying the FV method. In fact, our statistical results

show that the average improvement of runtime from FV to SFV is 79%, and

the reduction of memory usage is 94%. At the same time, the line coverage

and signal coverage [3] provided by JasperGold remain the same for the two

methods, indicating that introducing traces to hit waypoints does not have a

significant effect in basic coverage measurements.

We will now discuss verification for RV32M specifically. Due to its

complex arithmetic operations, It will take a lot longer runtime if we include

the data path in verification. To solve this issue, we assume the MUL/DIV

calculation is correct, similar to the idea of black-boxing, and only check the

addresses of Rs1, Rs2 and Rd (source and destination registers), and the control

signals send to the control unit to establish that the instruction has been

correctly executed. If more comprehensive verification is required, the function

unit can be verified separately.

To conclude, the proposed SFV method is proved to be very promising

in expanding formal verification capacity on such large designs.

The original data is given in Appendix B.1 as a reference.

4.3.2.2 Automatically Generated Waypoints

The previous section shows that applying high-level user-defined way-

points in our SFV method can bring us large improvements in verification

ability compared with classic FV. However, though the manually selected way-

points are effective, they require a large amount of time and effort to analyze

58

(a) Runtime

(b) Memory Usage

Figure 4.2: Comparison of memory usage and runtime of RISC-V ISAs

59

the system and select the proper intermediate states. In this section, the au-

tomatically generated waypoints will be assessed with the PicoRV32 core in

order to prove the effectiveness of the automatic waypoint generation algo-

rithm proposed in Chapter 3. The results in this experiment will be compared

with the case using manually selected waypoints.

With the model already trained by the neural network and the data

gathered from the synthesized PicoRV32 netlist, we follow the same routine

introduced in Chapter 3 and get the score predictions of flip-flops in the Pi-

coRV32 core. The original data is given in Table B.3 attached in Appendix

B.2. Based on the score set, the threshold for CFF is set to 0.8, which delim-

its 5 critical flip-flops in total. These CFFs are then passed to the waypoint

generation tool. The guide report for each CFF is presented in Appendix

B.3, where the number after “L” is the corresponding line in the Verilog code

analyzed by the tool, and the logic expressions after them are the generated

waypoints.

As stated in Chapter 3, human intervention is involved to select the

suitable waypoints based on this guide. In this experiment, the waypoint

below is used to guide the formal engine (no hierarchical information added):

(resetn && cpuregs write && latched rd)

With the same environment as metioned in the previous section, we

run formal checks in JasperGold using 1) FV without waypoints, 2) SFV with

the manually selected waypoint, and 3) SFV with the automatically generated

60

waypoint. In order to compare the performance of these three cases, we vi-

sualize the increase in the memory usage as a function of the runtime of the

formal tool pass in Figure 4.3 with the LW instruction as an example. Noted

that the data is not consistent with that in Appendix B.1 because this is from

one experiment result, while the original table shows the average values.

Figure 4.3: Memory usage versus runtime of LW instruction comparison

The results show that using the FV method, the memory usage is nearly

exponential with the increase in runtime, and that of SFV is close to linear.

Besides, the result is similar to the synchronized FIFO example elaborated

in Chapter 3: though both are able to improve the verification performance,

the user-defined waypoint is more effective than its automatic generated coun-

terpart. Due to space limitations, corresponding curves of other instructions,

which all show similar performance changes, will not be presented here. How-

61

ever, one problem that has not been resolved is the SFV runs of the DIV set

of instructions. This may be due to the fact that the waypoint we defined is

not necessarily on the path towards the target state; this is an area for future

experiments and analysis. In addition, since this DUV is bug-free, we inten-

tionally added some bugs related to instruction functions. Those bugs have

been captured with our formal verification framework, and the SFV results

show that bugs are covered with less overhead. To illustrate, the number of

cycles needed to find the bug is the same as the number of bounds reduced to

reach the target state. However, we will not elaborate on these experiments

due to space limitation.

4.4 RISC-V Core: Rocket

4.4.1 Introduction to Experiments

Rocket is a 5-stage in-order scalar core generator implemented with

Berkeley’s Chisel, which supports the RV32G and RV64G ISAs. Its pipeline

structure is shown in Figure 4.4. It has one memory management unit (MMU)

that supports virtual memory, a non-blocking data cache, and also a branch

prediction unit. The source code for the Rocket project can be found on the

GitHub repository freechipsproject/rocket-chip.

The main reason why we brought this Rocket core into study, as men-

tioned earlier, is that its RTL code is not human-readable because it is gener-

ated by Chisel. Besides, the generated Verilog file is huge with nearly 200,000

lines. Considering these features, we would like to make an assessment on

62

Figure 4.4: The Rocket core pipeline[5]

whether the machine-generated waypoints can be of reasonable value in this

case.

The verification flow for Rocket core is introduced as follows (similar

steps with the PicoRV32 study case are briefly mentioned).

1. Generate RTL code from the Rocket core design implemented in Chisel.

2. Make the verification plan and run rvfi insn checks using the FV method.

3. Find the initial sequence to configure the core correctly (this is different

from the previous example, we will elaborate on this in the next section).

4. Run the automatic waypoint generation tool developed in this thesis for

the Rocket core and select waypoints for SFV test.

5. Find the traces to the specified waypoints using assertions.

6. Run waypoint-based SFV on the supported ISA set with the new trace

to hit the waypoints. Repeat this procedure until the last waypoint –

the target state – is reached.

7. Analyze the results.

63

4.4.2 Initial Configuration Sequence

The first round test is conducted the same way as that used for Pi-

coRV32 case. However, when we simply start the FV checks from the reset

state, all properties would find counterexample traces at the very first cycle

after the reset cycles. These counterexamples are obvious false negatives after

investigating the traces provided by JasperGold.

In order to produce correct and comprehensive processor functions,

it is often the case that one needs to initialize the core first by configuring

important registers to proper initial states. As a matter of fact, this actual

initial state is not the same concept as what we have been referring to as the

ones that determined by the reset signal. Instead, it should be considered as

a waypoint, representing the state where the processor is ready to work.

In Rocket, the program counter (PC) is always initialized to 0x2000.

Therefore, we need to make sure the PC is initialized there, and it should

remain at the same address for many cycles before any instructions start to

execute. This is because of the memory system feature that simulates a typ-

ical latency for the DRAM access. This latency is required for loading the

instructions into the cache before executing.

Instruction JAL with specifically calculated offset as its operand is used

here to initialize PC to 0x2000. However, we also need to add a few NOP

instructions before executing the JAL instruction because we need to flush

the pipeline and dump all possible trash data inside the instruction cache.

64

In this way, we are able to design an initial configuration sequence to bypass

the initialization and start the SFV checks for the Rocket core from this pre-

configured “waypoint”.

With the initial configuration sequence, we are able to run the SFV

checks for all instructions in RV64I. However, even with the ‘big’ server with

32 CPUs and over 300 GB memory, the tool kept running for 72 hours and

gave non-deterministic results for some properties in the instruction checks.

The situation repeats in other instruction checks but the properties that give

non-deterministic results vary. In formal verification, non-deterministic results

mean that there are neither proofs nor counterexamples found for the property.

A commonly used standard in industrial verification projects is to constrain

the check to be within a certain bound (80 in our experiment). It is be good

enough to conclude that the design is bug-free within this bound.

4.4.3 Automatic Generated Waypoints

As mentioned above, the Rocket core is specifically suitable for auto-

matically generated waypoints because of its large size (nearly 300 thousand

lines) and non-human-readable feature (due to the code being generated by

Berkely’s Chisel compiler). Applying the method presented in Chapter 3, we

have scored all internal flip-flops in the Rocket RTL design. The scoring result

is presented in Table B.4 attached in Appendix B.2.

To delimit critical flip-flops for the Rocket core, the threshold is set to

0.8. We then run the automatic waypoint guide generation tool. One thing

65

needs to be mentioned here is that the nickname (defined in Algorithm 1)

searching for Rocket core is slightly modified. To illustrate, the direct connect

combinational logic will be extended to also include the RV with only one logic

operation between CFF and another signal. In addition, a constant ‘Level’

is introduced to inform the tool how many hierarchies it should search. This

hierarchical level can be modified by user to restrain how many nicknames are

found.

The suggested waypoints along with their line information are shown

in Appendix B.2. It can be seen from the waypoint report that the machine-

generated ones are large in number, which requires a lot more effort to select

and order.

4.4.4 Notes for Temporary Results

The experiment results for Rocket core show that some of the properties

checked for functional correctness of each instruction are still non-deterministic

with all optimizations involved. One obstacle is the unresolved conflicts be-

tween the initial sequence and the design. This issue comes from the different

macro definitions in the initial configuration stage and the regular work stage.

We are not able to dynamically change the macros during the verification pro-

cess, so the RISC-V verification framework should take the responsibility of

altering the behavior pattern. This strategy works when we only apply the

initial configuration sequence in the formal checks, but problems occur again

when we try to combine the configuration with the traces found to hit the way-

66

point. This should be the most important issue to resolve in order to make

progress in this study case.

In any case, the waypoint-based SFV method, either manual or auto-

matically selected, has been proven to be effective in the previous study cases.

The scope of this target might be beyond the reach of this thesis’s timeline,

but it is still worthy of studying for any related future work. It is also rea-

sonable to make the hypothesis that the efficiency of the RISC-V verification

framework for end-to-end verification needs to be improved for implementa-

tions of large scale processors. We would also recommend that future research

can explore the automation regarding waypoints, not only based on the RTL

code, but also based on the status of the formal engine in real time.

67

Chapter 5

Conclusions and Future Work

In general, this thesis has proposed a waypoint-based SFV approach

to extend the capacity of formal tools, which proves to be very effective using

performance metrics of both runtime and memory consumption. The detailed

summary of this thesis is as follows.

1. A waypoint-based SFV method is proposed in this thesis. The waypoint

definition and propagation policy are discussed in detail. The imple-

mentation algorithm flow is presented and experiments are conducted

for a synchronized FIFO to compare the results from classic FV, single

waypoint SFV and multiple waypoint SFV in terms of memory usage

and runtime. The results show that the formal engine capacity can be

greatly improved by introducing waypoints in the verification flow.

2. As a supplement for the cases where manually selected waypoints are

impractical, an automatic waypoint guide generation tool is developed

in this thesis. Nine important features from the synthesized netlists are

collected to form the training data set, and then a full connection neural

network is trained to find the critical flip-flops. These critical flip-flops

are then used to generate waypoint guidance by analyzing the Verilog

68

source codes. The proposed SFV flow is run with the automatically gen-

erated waypoints, and the results show that this automation procedure

is effective in helping the formal engine to extend its capacity but not as

good as the user-defined waypoints in our experiments.

3. Two RISC-V cores, PicoRV32 and Rocket, are selected as study cases

to test the effectiveness of our waypoint-based SFV. An expandable and

reusable RISC-V verification framework has been applied to perform end-

to-end ISA verification, circumventing the troubles to look into design

details. Our experiments suggest that the proposed SFV methods is

quite promising for extending the tool capacity for such large designs.

Although being powerful, the methods proposed in this work still have

many aspects that could be improved. Here we list several suggestions on

prospective future work.

1. The instructions verified in this thesis are still a subset of all ISAs sup-

ported. Instructions such as multiplication and floating-point operations

can be verified using more suitable methodologies.

2. More comprehensive coverage metrics, such as state coverage and pair-

wise signal coverage, can be applied to evaluate the waypoint-based SFV

method.

3. The training data set can be expanded further with more designs be-

cause the loss function, though tending to be flat, still shows a trend to

69

decrease. More advanced neural network structures and other feature

vectors are also worth further study.

4. The automatic waypoint generation tool can be more intelligent than

just providing guidance. This should involve a comprehensive Verilog

parser and more design specific configurations based on different speci-

fications. Realtime information from the formal engine can also be take

into consideration.

70

Appendices

71

Appendix A

Important Scripts Used in This Thesis

A.1 TCL Command to Run JasperGold

Listing A.1: Jaspergold setup command (example)
c l e a r −all ;

ana lyze −sv −f v f i l e . f ;
ana lyze −sv −f s v f i l e . f ;

e l a b o r a t e −top { r v f i t e s t b e n c h } −enable sva isunknown
black−boxing in the e l a bo ra t e s t ep

clock clock ;
r e s e t −express ion r e s e t ;
re s e t −sequence j g i n i t . s e q ;
r e s e t −sequence −vcd in i t n ew . v cd
the above used fo r waypoint based SFV, i n i t i a l sequence can be seq or vcd

f i l e s

assumption or a b s t r a c t i on s can be made here in add i t i on

prove −all ;
exit

A.2 Cadence Encounter Timing Analysis Script

Listing A.2: get.tcl
s e t a t t r i b u t e hd l s ea r ch path { . /}
s e t a t t r i b u t e l i b s e a r c h p a t h { . /}
s e t a t t r i b u t e l ibrary [l i s t g s c l 4 5n m . l i b]

set c u r r e n t d e s i g n DUT
set myFiles [l i s t DUT.v]

r ead hd l ${myFiles}
e l a b o r a t e ${ c u r r e n t d e s i g n }

r ead sdc . / c o n s t r a i n t s . s d c

check des i gn −unresolved
repo r t t iming − l int

72

Synthes i z e the des ign to the t a r g e t l i b r a r y
s y n t h e s i z e −to mapped

w r i t e h d l −mapped > ${ c u r r e n t d e s i g n } n e t l i s t . v

puts ”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗”
puts ” a l l o u t p u t s ”
puts ”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗”
puts [a l l o u t p u t s]
set a l l o u t [a l l o u t p u t s]

puts ”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗”
puts ” a l l r e g i s t e r s ”
puts ”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗”
puts [a l l r e g i s t e r s]
set a l l r e g [a l l r e g i s t e r s]

puts ”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗”
puts ” a l l i n p u t s ”
puts ”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗”
puts [a l l i n p u t s]
set a l l i n [a l l i n p u t s]

set fp [open ” t e s t 2 . r p t ” a+]

#$ a l l i n

#$ a l l o u t

for { set a 0} {$a < [llength $ a l l r e g]} { incr a} {
set tmp reg [lindex $ a l l r e g $a]
regsub −all {\/ de s i gn s \/DUT\/ i n s t a n c e s \ s eq \/} $tmp reg ”” mytmp
puts $fp $mytmp

regsub −all { \ [[0−9] ∗ \]} $mytmp ”” i n i t k e y
set s ea rch key ”∗”
append s ea rch key $ i n i t k e y
append s ea rch key ”\∗Q∗”
append mytmp ”\/D”

set f an in [a l l f a n i n −to $mytmp − s t a r tpo in t s on ly]
set f a n i n v e r b o s e [a l l f a n i n −to $mytmp]

regsub −all {\/D} $mytmp {\/CLK} mytmp2
set fanout [a l l f a n o u t −from $mytmp2 −endpoints only]
set f anout ve rbose [a l l f a n o u t −from $mytmp2]

set i n key ” ∗port s \ i n∗ ”
puts $fp [llength [lsearch −all − i n l ine $ fan in $ in key]]

set out key ” ∗port s \ out∗ ”
puts $fp [llength [lsearch −all − i n l ine $fanout $out key]]

73

puts $fp [llength $ fan in]
puts $fp [llength $fanout]
puts $fp [llength $ f a n i n v e r b o s e]
puts $fp [llength $ fanout ve rbose]

set f a n i n l o o p [a l l f a n i n −to $mytmp]
i f { [llength [lsearch −all − i n l ine $ f a n i n l o o p $search key]]} then {

puts $fp ”1”} else {puts $fp ”0”}

puts $fp [llength $ a l l i n]
puts $fp [llength $ a l l o u t]
puts $fp [llength $ a l l r e g]

}
puts ” r e g i s t e r s D done”

close $fp

A.3 Other Codes

Other codes that are too large to fit in the appendix can be found on Github
repository: https://github.com/bearichan/thesis_SFV.git

The repository includes:

• Neural Network training model and prediction code

• Automatic Waypoint Guide Generation Tool

• Formal Verification Framework for RISC-V (modified from work [54])

• RTL source codes of the design used to gather the training set data

• The script to source information from Candece RC as well as the raw data
gathered for scoring prediction

A README file can be found via link above illustrating how the files are
origanized and how to use the tools.

74

Appendix B

Original Experiment Data

B.1 Original Data of PicoRV32 FV and SFV Experi-
ments

Table B.1: Original data collected for PICORV32 core FV and SFV tests

ISA
name

FV run-
time

FV
mem
usage

SFV run-
time

SFV
mem
usage

line cov-
erage

signal
coverage

runtime
improved

mem
re-
duced

add 1.93 12.453 0.362 0.743 86.22% 70.77% 81% 94%
addi 2.173 13.159 0.314 0.749 85.75% 68.37% 86% 94%
and 2.046 14.75 0.355 0.732 87.41% 72.82% 83% 95%
andi 1.937 12.432 0.38 0.783 85.75% 68.37% 80% 94%
auipc 1.072 6.723 0.382 0.743 84.89% 65.54% 64% 89%
beq 1.387 8.464 0.412 0.704 87.51% 72.91% 70% 92%
bge 1.184 7.629 0.412 0.754 87.51% 72.91% 65% 90%
bgeu 1.011 7.536 0.434 0.784 87.51% 72.91% 57% 90%
blt 1.538 11.789 0.449 0.733 87.51% 72.91% 71% 94%
bltu 1.411 8.209 0.407 0.688 87.51% 72.91% 71% 92%
bne 1.41 7.985 0.425 0.607 87.51% 72.91% 70% 92%
jal 1.438 11.716 0.425 0.668 85.26% 64.11% 70% 94%
jalr 1.617 11.011 0.388 0.785 86.19% 67.21% 76% 93%
lb 2.613 14.549 0.445 0.792 86.29% 67.68% 83% 95%
lbu 1.792 13.664 0.476 0.75 86.29% 67.68% 73% 95%
lh 1.808 11.51 0.411 0.761 86.29% 67.71% 77% 93%
lhu 1.785 8.268 0.368 0.722 86.29% 67.71% 79% 91%
lui 1.169 11.37 0.379 0.84 85.23% 63.95% 68% 93%
lw 1.968 12.635 0.344 0.764 86.29% 67.78% 83% 94%
or 1.772 13.571 0.39 0.687 86.83% 70.18% 78% 95%
ori 2.08 13.959 0.35 0.716 86.18% 67.20% 83% 95%
sb 4.029 27.51 0.417 0.902 86.82% 70.26% 90% 97%
sh 3.88 25.507 0.407 0.741 86.82% 70.26% 90% 97%
sll 2.328 13.587 0.398 0.636 86.84% 67.62% 83% 95%
slli 1.606 13.747 0.362 0.618 86.19% 67.12% 77% 96%
slt 2.116 14.682 0.392 0.729 86.83% 70.18% 81% 95%
slti 1.748 11.458 0.357 0.731 86.18% 67.20% 80% 94%
sltiu 1.747 8.148 0.393 0.697 86.18% 67.20% 78% 91%
sltu 2.414 14.162 0.407 0.71 86.83% 70.18% 83% 95%
sra 2.256 14.375 0.373 0.729 86.84% 67.62% 83% 95%
srai 1.949 9.285 0.367 0.575 86.19% 67.12% 81% 94%
srl 1.979 13.513 0.371 0.627 86.84% 67.62% 81% 95%

75

srli 1.814 11.475 0.374 0.607 86.19% 67.12% 79% 95%
sub 1.832 14.861 0.338 0.788 86.83% 70.18% 82% 95%
sw 1.389 12.878 0.401 0.705 86.82% 70.26% 71% 95%
xor 1.87 13.491 0.424 0.738 86.83% 70.18% 77% 95%
xori 1.341 12.473 0.416 0.748 86.18% 67.20% 69% 94%
c add 1.722 14.004 0.321 0.668 86.81% 70.12% 81% 95%
c addi 2.04 14.497 0.303 0.718 86.17% 67.16% 85% 95%
c addi4spn 1.508 12.423 0.336 0.66 86.17% 67.16% 78% 95%
c addi16sp 2.061 15.081 0.32 0.69 86.17% 67.16% 84% 95%
c and 1.942 13.8 0.327 0.708 86.82% 70.13% 83% 95%
c andi 2.142 15.808 0.344 0.79 86.10% 67.17% 84% 95%
c beqz 1.612 13.707 0.348 0.684 86.18% 67.16% 78% 95%
c bnez 1.533 13.5 0.345 0.762 86.18% 67.16% 77% 94%
c j 1.709 13.498 0.336 0.773 85.26% 64.07% 80% 94%
c jal 1.439 11.753 0.308 0.735 85.26% 64.07% 79% 94%
c jalr 1.804 14.566 0.345 0.952 86.17% 67.04% 81% 93%
c jr 2.387 14.518 0.367 0.864 85.90% 64.85% 85% 94%
c li 1.517 13.785 0.335 0.771 85.26% 64.10% 78% 94%
c lui 1.566 10.287 0.333 0.777 85.26% 64.10% 79% 92%
c lw 2.666 14.79 0.346 0.728 86.29% 67.76% 87% 95%
c lwsp 2.213 13.609 0.379 0.735 86.27% 67.74% 83% 95%
c mv 1.389 13.71 0.349 0.7 85.90% 67.04% 75% 95%
c or 2.294 15.929 0.387 0.683 86.82% 70.13% 83% 96%
c slli 1.229 7.625 0.305 0.648 86.17% 67.04% 75% 92%
c srai 1.542 8.365 0.335 0.598 86.18% 67.05% 78% 93%
c srli 1.237 4.797 0.338 0.637 86.18% 67.05% 73% 87%
c sub 1.447 10.18 0.293 0.731 86.82% 70.13% 80% 93%
c sw 0.799 7.413 0.313 0.694 86.82% 70.24% 61% 91%
c swsp 1.182 10.51 0.331 0.697 86.82% 70.22% 72% 93%
c xor 2.013 14.642 0.328 0.718 86.82% 70.13% 84% 95%
mul 2.334 14.655 0.35 0.839 85.44% 62.47% 85% 94%
mulh 2.61 14.688 0.357 0.884 85.44% 62.47% 86% 94%
mulhsu 2.365 14.646 0.357 0.883 85.44% 62.47% 85% 94%
mulhu 2.087 13.779 0.351 0.781 85.44% 62.47% 83% 94%
rem 2.657 16.664 0.391 1.614 85.44% 62.47% 85% 90%
remu 2.305 14.505 0.372 1.47 85.44% 62.47% 84% 90%
div 2.614 14.574 0.393 1.686 85.44% 62.47% 85% 88%
divu 2.354 14.596 0.4 1.354 85.44% 62.47% 83% 91%

B.2 Neural Network Training Results

Table B.2: Neural network training result for synchronized FIFO

signal name Hier Rin Rout >> R R << >> Rv Rv << Loop Len score ref
full reg 0 0 0.100 0.058 0.791 0.419 6.465 1 1 0.999 1
dffw1 0 0.08 0.000 0.006 0.814 0.012 6.756 0 1 0.999 0.8
dffw2 0 0 0.000 0.006 0.808 0.017 6.762 0 1 0.999 0.8
wr reg 0 0 0.000 0.011 0.194 0.088 1.644 1 4 0.956 0.8
dffr1 0 0.08 0.000 0.006 0.116 0.012 4.390 0 1 0.658 0.8
dffr2 0 0 0.000 0.006 0.110 0.017 4.395 0 1 0.585 0.8
rd reg 0 0 0.000 0.011 0.018 0.083 0.987 1 4 0.411 0.8

76

empty reg 0 0 0.100 0.081 0.047 1.267 0.262 1 1 0.328 1
regarray[1] 0 0.01 0.000 0.007 0.002 0.044 0.015 1 8 0.046 0
regarray[9] 0 0.01 0.000 0.007 0.002 0.046 0.015 1 8 0.046 0
regarray[3] 0 0.01 0.000 0.007 0.002 0.046 0.015 1 8 0.046 0
regarray[5] 0 0.01 0.000 0.007 0.002 0.046 0.015 1 8 0.046 0
regarray[0] 0 0.01 0.000 0.007 0.002 0.043 0.019 1 8 0.046 0
regarray[7] 0 0.01 0.000 0.007 0.002 0.047 0.015 1 8 0.046 0
regarray[13] 0 0.01 0.000 0.007 0.002 0.047 0.015 1 8 0.046 0
regarray[11] 0 0.01 0.000 0.007 0.002 0.047 0.015 1 8 0.046 0
regarray[4] 0 0.01 0.000 0.007 0.002 0.044 0.019 1 8 0.046 0
regarray[8] 0 0.01 0.000 0.007 0.002 0.044 0.019 1 8 0.046 0
regarray[2] 0 0.01 0.000 0.007 0.002 0.044 0.019 1 8 0.046 0
regarray[15] 0 0.01 0.000 0.007 0.002 0.049 0.015 1 8 0.046 0
regarray[10] 0 0.01 0.000 0.007 0.002 0.046 0.019 1 8 0.046 0
regarray[12] 0 0.01 0.000 0.007 0.002 0.046 0.019 1 8 0.046 0
regarray[6] 0 0.01 0.000 0.007 0.002 0.046 0.019 1 8 0.046 0
regarray[14] 0 0.01 0.000 0.007 0.002 0.047 0.019 1 8 0.046 0
out 0 0 0.013 0.017 0.002 0.180 0.010 1 8 0.034 0

Table B.3: Neural network training result for PicoRV32

signal name Hier Rin Rout >> R R << >> Rv Rv << Loop Len score
latched branch 0 0.01 0.098 0.054 0.568 0.86 5.428 1 1 0.995
latched store 0 0.01 0.098 0.056 0.568 0.867 5.399 1 1 0.995
latched stalu 0 0.01 0 0.003 0.537 0.019 2.271 1 1 0.985
latched rd 0 0.002 0 0.001 0.101 0.005 0.79 1 5 0.928
cpu state 0 0.003 0 0.004 0.079 0.031 0.952 1 7 0.909
mem state 0 0.01 0.003 0.003 0.048 0.04 0.784 1 2 0.731
mem do
wdata

0 0.02 0.003 0.008 0.096 0.069 1.558 1 1 0.719

mem do
rdata

0 0.02 0.003 0.008 0.079 0.063 1.471 1 1 0.682

mem valid 0 0.02 0.003 0.005 0.078 0.065 1.514 1 1 0.677
mem do
prefetch

0 0.02 0.101 0.007 0.077 0.051 1.494 1 1 0.666

mem do rinst 0 0.02 0.101 0.083 0.095 1.043 1.787 1 1 0.62
decoder
trigger

0 0.02 0 0.059 0.092 0.94 1.124 0 1 0.619

is beq bne
blt bge bltu
bgeu

0 0.088 0 0.012 0.029 0.096 0.238 1 1 0.555

decoder
pseudo
trigger

0 0.02 0 0.008 0.038 0.069 0.436 0 1 0.552

trap 0 0.01 0.003 0.004 0.037 0.026 0.28 0 1 0.537
is alu
reg imm

0 0.088 0 0.012 0.023 0.096 0.157 1 1 0.486

is sb sh sw 0 0.088 0 0.012 0.02 0.098 0.138 1 1 0.454
mem word-
size

0 0.01 0.046 0.004 0.025 0.037 0.304 1 2 0.445

is lui auipc
jal jalr addi
add sub

0 0 0 0.005 0.017 0.024 0.168 0 1 0.371

77

instr jal 0 0.088 0 0.012 0.074 0.096 4.843 1 1 0.357
latched is lb 0 0.02 0 0.007 0.013 0.06 0.097 1 1 0.353
latched is lh 0 0.02 0 0.007 0.013 0.06 0.119 1 1 0.35
latched is lu 0 0.02 0 0.007 0.013 0.06 0.144 1 1 0.346
is alu reg reg 0 0.088 0 0.012 0.007 0.097 0.055 1 1 0.283
instr jalr 0 0.118 0 0.015 0.058 0.115 4.664 1 1 0.243
is lb lh
lw lbu lhu

0 0.088 0 0.012 0.058 0.097 4.65 1 1 0.235

is sll srl sra 0 0 0 0.007 0.003 0.048 0.017 1 1 0.232
is sltiu
bltu sltu

0 0 0 0.002 0.003 0.007 0.021 0 1 0.232

is slti
blt slt

0 0 0 0.002 0.003 0.007 0.022 0 1 0.231

mem instr 0 0.01 0.003 0.005 0.002 0.046 0.004 1 1 0.221
is lbu lhu lw 0 0 0 0.002 0.001 0.007 0.005 0 1 0.212
is compare 0 0.01 0 0.004 0.001 0.021 0.004 0 1 0.205
reg sh 0 0.002 0 0.01 0.008 0.079 0.192 1 5 0.201
mem wstrb 0 0.002 0.001 0.002 0 0.018 0.001 1 4 0.196
instr sub 0 0.01 0 0.008 0.056 0.041 4.703 1 1 0.193
instr andi 0 0.01 0 0.004 0.055 0.024 4.728 1 1 0.19
decoded rs2 0 0.006 0 0.001 0.006 0.011 0.475 1 5 0.188
instr and 0 0.01 0 0.008 0.055 0.041 4.727 1 1 0.187
instr ori 0 0.01 0 0.004 0.055 0.025 4.774 1 1 0.185
instr or 0 0.01 0 0.008 0.055 0.042 4.773 1 1 0.183
instr xori 0 0.01 0 0.004 0.055 0.026 4.798 1 1 0.182
instr xor 0 0.01 0 0.008 0.055 0.043 4.798 1 1 0.18
instr auipc 0 0.088 0 0.012 0.05 0.097 4.652 1 1 0.179
instr lui 0 0.088 0 0.012 0.05 0.096 4.672 1 1 0.177
instr rdcycle 0 0 0 0.015 0.056 0.079 4.816 1 1 0.177
instr rdcycleh 0 0 0 0.015 0.056 0.08 4.838 1 1 0.175
instr rdinstr 0 0 0 0.015 0.056 0.08 4.844 1 1 0.175
instr rdinstrh 0 0 0 0.015 0.056 0.081 4.864 1 1 0.173
decoded rs1 0 0.006 0 0.001 0.004 0.011 0.518 1 5 0.171
decoded rd 0 0.006 0 0.001 0 0.011 0.002 1 5 0.127
instr beq 0 0.01 0 0.004 0.041 0.027 4.563 1 1 0.114
instr bge 0 0.01 0 0.004 0.041 0.025 4.564 1 1 0.114
instr bgeu 0 0.01 0 0.004 0.041 0.024 4.563 1 1 0.114
instr bne 0 0.01 0 0.004 0.041 0.026 4.568 1 1 0.114
instr slti 0 0.01 0 0.004 0.04 0.026 4.544 1 1 0.11
instr sltiu 0 0.01 0 0.004 0.04 0.025 4.544 1 1 0.11
instr slt 0 0.01 0 0.008 0.04 0.043 4.544 1 1 0.109
instr sltu 0 0.01 0 0.008 0.04 0.042 4.544 1 1 0.109
instr blt 0 0.01 0 0.004 0.04 0.026 4.547 1 1 0.108
instr bltu 0 0.01 0 0.004 0.04 0.025 4.547 1 1 0.108
instr lb 0 0 0 0.004 0.04 0.024 4.55 1 1 0.108
instr lbu 0 0 0 0.004 0.04 0.023 4.553 1 1 0.108
instr lh 0 0 0 0.004 0.04 0.02 4.55 1 1 0.108
instr lhu 0 0 0 0.004 0.04 0.022 4.553 1 1 0.108
instr addi 0 0.01 0 0.004 0.04 0.027 4.559 1 1 0.107
instr lw 0 0 0 0.004 0.04 0.023 4.545 1 1 0.106
instr add 0 0.01 0 0.008 0.04 0.044 4.559 1 1 0.105
instr sb 0 0 0 0.004 0.04 0.024 4.551 1 1 0.105
instr sh 0 0 0 0.004 0.04 0.02 4.555 1 1 0.105

78

instr sw 0 0 0 0.004 0.039 0.023 4.553 1 1 0.103
instr sll 0 0.01 0 0.008 0.039 0.043 4.591 1 1 0.101
is lui auipc
jal

0 0 0 0.002 0.038 0.007 4.593 0 1 0.101

instr slli 0 0 0 0.007 0.039 0.037 4.589 1 1 0.1
instr srl 0 0.01 0 0.008 0.039 0.042 4.624 1 1 0.099
instr sra 0 0.01 0 0.008 0.039 0.043 4.632 1 1 0.098
instr srai 0 0 0 0.007 0.039 0.037 4.63 1 1 0.097
instr srli 0 0 0 0.007 0.039 0.037 4.623 1 1 0.097
is slli
srli srai

0 0 0 0.007 0.038 0.048 4.536 1 1 0.097

is jalr addi
slti sltiu xori
ori andi

0 0 0 0.004 0.038 0.042 4.577 1 1 0.096

decoded
imm uj

0 0.003 0 0.001 0.001 0.005 0.006 1 10 0.033

alu out q 0 0 0 0.001 0.001 0.012 0.004 0 32 0.001
reg out 0 0.002 0 0.001 0.001 0.012 0.004 0 32 0.001
cpuregs[10] 0 0 0 0.001 0 0.003 0.001 1 32 0.001
cpuregs[11] 0 0 0 0.001 0 0.003 0.001 1 32 0.001
cpuregs[12] 0 0 0 0.001 0 0.003 0.001 1 32 0.001
cpuregs[13] 0 0 0 0.001 0 0.003 0.001 1 32 0.001
cpuregs[14] 0 0 0 0.001 0 0.003 0.001 1 32 0.001
cpuregs[15] 0 0 0 0.001 0 0.003 0.001 1 32 0.001
cpuregs[16] 0 0 0 0.001 0 0.003 0.001 1 32 0.001
cpuregs[17] 0 0 0 0.001 0 0.003 0.001 1 32 0.001
cpuregs[18] 0 0 0 0.001 0 0.003 0.001 1 32 0.001
cpuregs[19] 0 0 0 0.001 0 0.003 0.001 1 32 0.001
cpuregs[1] 0 0 0 0.001 0 0.003 0.001 1 32 0.001
cpuregs[20] 0 0 0 0.001 0 0.003 0.001 1 32 0.001
cpuregs[21] 0 0 0 0.001 0 0.003 0.001 1 32 0.001
cpuregs[22] 0 0 0 0.001 0 0.003 0.001 1 32 0.001
cpuregs[23] 0 0 0 0.001 0 0.003 0.001 1 32 0.001
cpuregs[24] 0 0 0 0.001 0 0.003 0.001 1 32 0.001
cpuregs[25] 0 0 0 0.001 0 0.003 0.001 1 32 0.001
cpuregs[26] 0 0 0 0.001 0 0.003 0.001 1 32 0.001
cpuregs[27] 0 0 0 0.001 0 0.003 0.001 1 32 0.001
cpuregs[28] 0 0 0 0.001 0 0.003 0.001 1 32 0.001
cpuregs[29] 0 0 0 0.001 0 0.003 0.001 1 32 0.001
cpuregs[2] 0 0 0 0.001 0 0.003 0.001 1 32 0.001
cpuregs[30] 0 0 0 0.001 0 0.003 0.001 1 32 0.001
cpuregs[31] 0 0 0 0.001 0 0.003 0.001 1 32 0.001
cpuregs[3] 0 0 0 0.001 0 0.003 0.001 1 32 0.001
cpuregs[4] 0 0 0 0.001 0 0.003 0.001 1 32 0.001
cpuregs[5] 0 0 0 0.001 0 0.003 0.001 1 32 0.001
cpuregs[6] 0 0 0 0.001 0 0.003 0.001 1 32 0.001
cpuregs[7] 0 0 0 0.001 0 0.003 0.001 1 32 0.001
cpuregs[8] 0 0 0 0.001 0 0.003 0.001 1 32 0.001
cpuregs[9] 0 0 0 0.001 0 0.003 0.001 1 32 0.001
decoded imm 0 0 0 0 0 0.001 0.002 1 32 0.001
mem addr 0 0 0 0 0 0.002 0 1 30 0.001
mem rdata q 0 0.001 0 0 0 0 0.002 1 32 0.001
mem wdata 0 0 0 0 0 0.001 0 1 32 0.001

79

reg next pc 0 0 0 0.001 0 0.013 0.003 1 31 0.001
reg op1 0 0.001 0 0.002 0 0.02 0.004 1 32 0.001
reg op2 0 0 0 0.001 0 0.012 0.004 1 32 0.001
reg pc 0 0 0 0 0.008 0.001 0.028 1 31 0.001
count cycle 0 0 0 0 0 0.001 0.002 1 64 0
count instr 0 0 0 0 0 0.002 0.001 1 64 0

Table B.4: Neural network training result for Rocket Core

signal name Hier Rin Rout >> R R << >> Rv Rv << Loop Len score
core/wb reg inst 1 0 0 0.001 0.295 0.004 2.891 1 17 0.997
core/wb
ctrl mem

1 0 0 0.001 0.408 0.004 6.396 1 1 0.977

core/wb
reg replay

1 0 0 0.003 0.408 0.023 6.357 1 1 0.977

core/wb
reg xcpt

1 0 0 0.005 0.408 0.034 6.394 1 1 0.977

core/wb
reg valid

1 0 0 0.005 0.408 0.037 6.991 1 1 0.977

core/wb
ctrl wxd

1 0 0 0.001 0.406 0.004 6.860 1 1 0.976

core/wb
ctrl csr

1 0 0 0.001 0.382 0.004 1.450 1 3 0.968

dtim adapter
/state

1 0 0 0.004 0.034 0.041 0.226 1 3 0.700

core/div /state 2 0 0 0.001 0.039 0.017 0.658 1 3 0.628
dcache/s2
req cmd

1 0 0 0.014 0.043 0.146 0.302 1 5 0.626

dcache/s2
valid pre xcpt

1 0 0 0.004 0.043 0.029 0.243 1 1 0.598

core/mem
reg valid

1 0 0 0.005 0.103 0.036 3.935 1 1 0.596

dcache/pstore1
held

1 0 0 0.003 0.041 0.032 0.223 1 1 0.592

dcache/ T 602 1 0 0 0.014 0.043 0.140 0.238 1 1 0.585
frontend/fq/
T 60 0

2 0 0 0.007 0.062 0.056 0.562 1 1 0.585

dcache/pstore2
valid

1 0 0 0.003 0.041 0.033 0.326 1 1 0.585

dcache/s2
req phys

1 0 0 0.014 0.043 0.143 0.247 1 1 0.584

frontend/fq/
T 60 4

2 0 0 0.007 0.062 0.054 0.513 1 1 0.584

dcache/ T 2984 1 0 0 0.014 0.043 0.147 0.247 1 1 0.584
dcache/s2 hit
state state

1 0 0 0.017 0.043 0.160 0.238 1 1 0.582

dcache/ T
2986 ma st

1 0 0 0.018 0.043 0.186 0.245 1 1 0.579

dcache/ T
2986 ma ld

1 0 0 0.019 0.043 0.187 0.245 1 1 0.579

dcache/ T
2986 ae st

1 0 0 0.018 0.043 0.187 0.244 1 1 0.579

80

dcache/ T
2986 ae ld

1 0 0 0.019 0.043 0.187 0.244 1 1 0.579

core/mem reg
flush pipe

1 0 0 0.001 0.037 0.006 0.355 1 1 0.576

dcache/s1 valid 1 0 0 0.014 0.039 0.154 0.308 1 1 0.566
dcache/ un-
cachedInFlight
0

1 0 0 0.005 0.028 0.034 0.152 1 1 0.549

buffer 1/
Queue/value

2 0 0 0.001 0.043 0.005 0.223 1 1 0.540

buffer 1/
Queue/ T 39

2 0 0 0.003 0.043 0.019 0.222 1 1 0.539

buffer 1/
Queue/value 1

2 0 0 0.003 0.043 0.017 0.309 1 1 0.535

buffer/Queue/
value

2 0 0 0.001 0.042 0.005 0.215 1 1 0.535

buffer/Queue/
T 39

2 0 0 0.001 0.042 0.008 0.215 1 1 0.535

dtim adapter/
acq param

1 0 0 0.004 0.023 0.039 0.128 1 3 0.535

dtim adapter/
acq opcode

1 0 0 0.004 0.023 0.039 0.129 1 3 0.535

buffer/Queue/
value 1

2 0 0 0.001 0.042 0.006 0.298 1 1 0.532

frontend/fq/
T 60 3

2 0 0 0.007 0.037 0.058 0.281 1 1 0.506

frontend/fq/
T 60 1

2 0 0 0.007 0.037 0.057 0.342 1 1 0.502

frontend/fq/
T 60 2

2 0 0 0.007 0.037 0.058 0.341 1 1 0.501

dcache/ block-
Uncached-
Grant

1 0 0 0.003 0.023 0.035 0.219 1 1 0.484

buffer 1/Queue
1/value

2 0 0 0.001 0.027 0.006 0.141 1 1 0.471

buffer 1/Queue
1/ T 39

2 0 0 0.001 0.027 0.008 0.140 1 1 0.471

buffer/Queue
1/ value

2 0 0 0.001 0.026 0.006 0.138 1 1 0.467

buffer 1/Queue 1/
value 1

2 0 0 0.001 0.027 0.006 0.194 1 1 0.467

buffer/Queue
1/ T 39

2 0 0 0.001 0.026 0.012 0.137 1 1 0.466

core/ex reg
replay

1 0 0 0.004 0.038 0.043 0.358 0 1 0.463

buffer/Queue
1/value 1

2 0 0 0.001 0.026 0.010 0.191 1 1 0.462

core/ex reg
xcpt interrupt

1 0 0 0.005 0.038 0.046 0.356 0 1 0.461

dcache/s1
req typ

1 0 0 0.000 0.017 0.003 0.112 1 3 0.443

core/ex reg
valid

1 0 0 0.035 0.079 0.563 3.755 1 1 0.438

81

frontend/icache/
s2 valid

2 0 0 0.001 0.017 0.005 0.207 1 1 0.401

frontend/ T 222 1 0 0 0.002 0.013 0.012 0.106 1 1 0.367
frontend/s2 valid 1 0 0 0.002 0.013 0.012 0.108 1 1 0.367
frontend/s2
speculative

1 0 0 0.002 0.013 0.009 0.112 1 1 0.367

core/ex reg
rs lsb 1

1 0 0 0.045 0.024 0.706 0.419 1 2 0.366

frontend/s2 tlb
resp ae inst

1 0 0 0.006 0.013 0.032 0.112 1 1 0.359

core/mem reg
xcpt interrupt

1 0 0 0.003 0.024 0.025 0.183 0 1 0.358

core/csr/
T 1242

2 0 0 0.000 0.012 0.006 0.100 1 1 0.356

core/mem
reg rvc

1 0 0 0.001 0.012 0.006 0.079 1 1 0.356

frontend/
icache/ invali-
dated

2 0 0 0.001 0.012 0.006 0.107 1 1 0.355

core/csr/
reg wfi

2 0 0 0.001 0.012 0.013 0.100 1 1 0.354

core/mem
reg replay

1 0 0 0.005 0.023 0.035 0.180 0 1 0.354

core/mem
ctrl csr

1 0 0 0.001 0.042 0.006 3.382 1 3 0.348

core/ex reg rs
bypass 1

1 0 0 0.033 0.024 0.571 0.375 1 1 0.343

core/mem
ctrl jalr

1 0 0 0.001 0.055 0.006 3.550 1 1 0.341

core/mem
ctrl jal

1 0 0 0.001 0.054 0.006 3.476 1 1 0.341

core/mem
ctrl branch

1 0 0 0.001 0.054 0.006 3.480 1 1 0.340

core/div/ resHi 2 0 0 0.002 0.012 0.028 0.226 1 1 0.328
dcache/s1
req cmd

1 0 0 0.000 0.026 0.002 0.182 1 5 0.328

fragmenter 1/
Repeater/full

2 0 0 0.002 0.009 0.017 0.080 1 1 0.313

core/ex ctrl
sel imm

1 0 0 0.033 0.012 0.567 0.165 1 3 0.302

core/wb ctrl
div

1 0 0 0.001 0.047 0.004 3.400 1 1 0.286

dcache/ T 1213 1 0 0 0.003 0.016 0.021 0.082 0 1 0.283
core/ibuf/buf

replay
2 0 0 0.010 0.009 0.230 0.058 1 1 0.279

frontend/icache
/refill valid

2 0 0 0.002 0.005 0.016 0.029 1 1 0.277

core/ibuf/
nBufValid

2 0 0 0.010 0.009 0.230 0.145 1 1 0.264

core/ex ctrl csr 1 0 0 0.032 0.041 0.567 3.381 1 3 0.255
dtim adapter
/acq size

1 0 0 0.004 0.000 0.039 0.002 1 2 0.254

core/ex ctrl
mem

1 0 0 0.032 0.054 0.564 3.597 1 1 0.252

82

frontend/ T 241 1 0 0 0.000 0.013 0.001 0.108 0 1 0.249
core/wb reg
flush pipe

1 0 0 0.005 0.043 0.038 3.389 1 1 0.248

core/mem reg
xcpt

1 0 0 0.005 0.013 0.038 0.121 0 1 0.244

core/ex ctrl
mem type

1 0 0 0.033 0.008 0.565 0.131 1 3 0.244

core/mem
ctrl wxd

1 0 0 0.001 0.042 0.007 3.395 1 1 0.244

core/mem
ctrl div

1 0 0 0.001 0.042 0.007 3.382 1 1 0.241

core/mem
ctrl mem

1 0 0 0.001 0.042 0.006 3.385 1 1 0.240

core/blocked 1 0 0 0.001 0.041 0.004 3.380 1 1 0.240
core/mem reg
slow bypass

1 0 0 0.001 0.041 0.007 3.382 1 1 0.239

core/ex ctrl
sel alu1

1 0 0 0.038 0.012 0.794 0.155 1 2 0.238

core/ex ctrl
sel alu2

1 0 0 0.037 0.012 0.794 0.179 1 2 0.236

tlMasterXbar/
T 1111 1

1 0 0 0.002 0.002 0.011 0.054 1 1 0.233

core/csr/reg
mstatus mie

2 0 0 0.003 0.002 0.054 0.017 1 1 0.230

core/csr/reg
mstatus mpie

2 0 0 0.002 0.002 0.054 0.014 1 1 0.229

tlMasterXbar/
T 1111 0

1 0 0 0.002 0.002 0.011 0.082 1 1 0.229

core/mem ctrl
fence i

1 0 0 0.001 0.001 0.006 0.002 1 1 0.228

buffer/Queue 1/
T 35 opcode[1]

2 0 0 0.001 0.001 0.006 0.006 1 1 0.226

core/div/ isHi 2 0 0 0.001 0.001 0.006 0.005 1 1 0.226
buffer/Queue 1/
T 35 opcode[0]

2 0 0 0.001 0.001 0.006 0.006 1 1 0.226

core/wb ctrl
fence i

1 0 0 0.001 0.000 0.004 0.002 1 1 0.226

frontend/s1
speculative

1 0 0 0.002 0.001 0.016 0.003 1 1 0.226

buffer 1/Queue 1/
T 35 opcode[1]

2 0 0 0.001 0.000 0.006 0.002 1 1 0.223

buffer 1/Queue 1/
T 35 opcode[0]

2 0 0 0.001 0.000 0.006 0.002 1 1 0.223

core/ex ctrl rxs2 1 0 0 0.032 0.012 0.564 0.208 1 1 0.221
core/div/req dw 2 0 0 0.001 0.000 0.004 0.033 1 1 0.219
tlMasterXbar/
T 1026

1 0 0 0.002 0.001 0.012 0.076 1 1 0.218

core/ex ctrl
alu fn

1 0 0 0.037 0.012 0.798 0.083 1 4 0.217

frontend/fq/
T 82 4 replay

2 0 0 0.007 0.001 0.055 0.002 1 1 0.214

frontend/fq/
T 82 4
xcpt ae inst

2 0 0 0.007 0.001 0.055 0.002 1 1 0.214

83

frontend/fq/
T 82 1
xcpt ae inst

2 0 0 0.007 0.001 0.061 0.003 1 1 0.213

frontend/fq/
T 82 3 replay

2 0 0 0.007 0.001 0.061 0.003 1 1 0.213

core/mem br
taken

1 0 0 0.077 0.054 0.941 3.480 1 1 0.213

frontend/fq/
T 82 1 replay

2 0 0 0.007 0.001 0.061 0.003 1 1 0.213

frontend/fq/
T 82 3
xcpt ae inst

2 0 0 0.007 0.001 0.061 0.003 1 1 0.213

frontend/fq/
T 82 2 replay

2 0 0 0.007 0.001 0.061 0.003 1 1 0.213

frontend/fq/
T 82 2 xcpt
ae inst

2 0 0 0.007 0.001 0.062 0.003 1 1 0.213

fragmenter 1/
T 222

1 0 0 0.001 0.002 0.017 0.028 1 3 0.213

frontend/fq/
T 82 0
xcpt ae inst

2 0 0 0.007 0.000 0.060 0.002 1 1 0.212

frontend/fq/
T 82 0 replay

2 0 0 0.007 0.000 0.061 0.002 1 1 0.211

fragmenter 1/
T 323

1 0 0 0.003 0.001 0.029 0.014 1 3 0.199

dcache/ un-
cachedReqs
0 addr

1 0 0 0.003 0.001 0.022 0.002 1 3 0.197

dcache/ un-
cachedReqs
0 typ

1 0 0 0.003 0.001 0.022 0.003 1 3 0.197

fragmenter 1
/ T 224

1 0 0 0.001 0.000 0.012 0.002 1 3 0.196

frontend/icache
/s2 tl error

2 0 0 0.017 0.000 0.140 0.001 1 1 0.195

core/div/neg out 2 0 0 0.026 0.001 0.144 0.006 1 1 0.195
core/ex reg rs
lsb 0

1 0 0 0.049 0.012 0.929 0.381 1 2 0.192

dcache/s2
req typ

1 0 0 0.015 0.001 0.147 0.064 1 3 0.190

core/ibuf/buf
xcpt ae inst

2 0 0 0.010 0.000 0.230 0.002 1 1 0.184

fragmenter 1/
Repeater/
saved size

2 0 0 0.002 0.009 0.017 0.045 1 3 0.180

fragmenter 1/
Repeater/
saved param

2 0 0 0.002 0.009 0.017 0.046 1 3 0.180

fragmenter 1/
Repeater/
saved opcode

2 0 0 0.002 0.009 0.017 0.047 1 3 0.180

core/ex ctrl
div

1 0 0 0.032 0.042 0.565 3.389 1 1 0.179

84

core/csr/
reg misa

2 0 0 0.003 0.002 0.049 0.018 1 2 0.175

core/ex ctrl jalr 1 0 0 0.033 0.041 0.565 3.381 1 1 0.174
core/ex ctrl

wxd
1 0 0 0.033 0.041 0.564 3.390 1 1 0.174

core/id reg fence 1 0 0 0.032 0.041 0.565 3.380 1 1 0.173
core/ex reg rs
bypass 0

1 0 0 0.039 0.012 0.792 0.389 1 1 0.173

core/id reg pause 1 0 0 0.033 0.041 0.598 3.379 1 1 0.170
buffer/Queue 1/
T 35 source

2 0 0 0.001 0.001 0.006 0.006 1 2 0.163

buffer/Queue/
T 35 source

2 0 0 0.001 0.000 0.006 0.002 1 2 0.160

buffer/Queue 1/
T 35 corrupt

2 0 0 0.001 0.000 0.006 0.002 1 2 0.160

core/ex ctrl
alu dw

1 0 0 0.038 0.006 0.793 0.037 1 1 0.153

frontend/
icache/s2 hit

2 0 0 0.017 0.017 0.138 0.206 0 1 0.142

core/ex ctrl
mem cmd

1 0 0 0.033 0.001 0.564 0.007 1 1 0.140

core/ex reg
load use

1 0 0 0.032 0.001 0.566 0.007 1 1 0.139

core/ex ctrl
fence i

1 0 0 0.032 0.001 0.564 0.002 1 1 0.137

core/ex ctrl jal 1 0 0 0.032 0.001 0.564 0.002 1 1 0.137
core/ex ctrl

branch
1 0 0 0.033 0.001 0.566 0.003 1 1 0.137

core/ex reg
flush pipe

1 0 0 0.033 0.001 0.582 0.002 1 1 0.135

frontend/
icache/ T 154

2 0 0 0.001 0.012 0.004 0.179 0 1 0.123

frontend/
s1 valid

1 0 0 0.001 0.000 0.005 0.001 0 1 0.120

dcacheArb/
T 212

1 0 0 0.000 0.000 0.001 0.002 0 1 0.119

dcache/ doUn-
cachedResp

1 0 0 0.000 0.000 0.003 0.001 0 1 0.119

core/ T 1189 1 0 0 0.001 0.000 0.004 0.001 0 1 0.119
dcacheArb
/ T 210

1 0 0 0.000 0.000 0.001 0.051 0 1 0.119

core/csr/reg mie 2 0 0 0.002 0.002 0.040 0.019 1 3 0.117
core/ex reg rvc 1 0 0 0.040 0.001 0.791 0.009 1 1 0.117
frontend/icache/
s1 valid

2 0 0 0.001 0.011 0.006 0.080 0 1 0.116

buffer 1/Queue/
T 35 opcode[1]

2 0 0 0.001 0.001 0.006 0.006 1 3 0.111

buffer 1/Queue/
T 35 opcode[0]

2 0 0 0.001 0.001 0.006 0.006 1 3 0.111

buffer 1/Queue/
T 35 param[0]

2 0 0 0.001 0.001 0.006 0.006 1 3 0.111

buffer 1/Queue/
T 35 param[1]

2 0 0 0.001 0.001 0.006 0.006 1 3 0.111

85

buffer/Queue/
T 35 size[1]

2 0 0 0.001 0.000 0.006 0.002 1 3 0.109

buffer 1/Queue 1/
T 35 size[1]

2 0 0 0.001 0.000 0.006 0.002 1 3 0.109

buffer/Queue/
T 35 opcode[1]

2 0 0 0.001 0.000 0.006 0.002 1 3 0.109

buffer/Queue/
T 35 param[1]

2 0 0 0.001 0.000 0.006 0.002 1 3 0.109

buffer 1/Queue/
T 35 size[0]

2 0 0 0.001 0.000 0.006 0.002 1 3 0.109

buffer 1/Queue/
T 35 size[1]

2 0 0 0.001 0.000 0.006 0.002 1 3 0.109

buffer 1/Queue
1/ T 35 size[0]

2 0 0 0.001 0.000 0.006 0.002 1 3 0.109

buffer/Queue/
T 35 size[0]

2 0 0 0.001 0.000 0.006 0.002 1 3 0.109

buffer/Queue/
T 35 opcode[0]

2 0 0 0.001 0.000 0.006 0.002 1 3 0.109

buffer/Queue/
T 35 param[0]

2 0 0 0.001 0.000 0.007 0.002 1 3 0.109

dcache/mask 1 0 0 0.003 0.025 0.035 0.144 1 8 0.084
dcache/
pstore1 mask

1 0 0 0.014 0.025 0.144 0.146 1 8 0.084

core/mem
reg cause

1 0 0 0.001 0.001 0.006 0.003 1 5 0.077

core/wb
reg cause

1 0 0 0.002 0.000 0.013 0.026 1 5 0.076

core/ex reg xcpt 1 0 0 0.040 0.000 0.788 0.002 0 1 0.074
core/ex
reg cause

1 0 0 0.035 0.001 0.568 0.003 1 5 0.072

buffer/Queue 1/
T 35 size[1]

2 0 0 0.001 0.000 0.006 0.002 1 4 0.072

buffer/Queue 1/
T 35 size[0]

2 0 0 0.001 0.000 0.006 0.002 1 4 0.072

dtim adapter
/acq mask

1 0 0 0.004 0.023 0.039 0.121 1 8 0.071

intsink/ Syn-
chronizer-
ShiftReg
w1 d3/ sync 2

2 0 0 0.000 0.000 0.000 0.001 0 1 0.068

intsink/ Syn-
chronizer-
ShiftReg
w1 d3/ sync 1

2 0 0 0.000 0.000 0.001 0.001 0 1 0.068

intsink/ Syn-
chronizer-
ShiftReg
w1 d3/ sync 0

2 0 0 0.000 0.000 0.001 0.000 0 1 0.067

core/csr/ T 241 2 0 0 0.002 0.013 0.041 0.103 1 6 0.061
core/csr/ T 251 2 0 0 0.003 0.013 0.042 0.103 1 6 0.061
core/csr/
reg mcause

2 0 0 0.002 0.002 0.046 0.012 1 5 0.049

dcache/s1
req tag

1 0 0 0.000 0.001 0.003 0.002 1 6 0.046

86

dcache/ un-
cachedReqs
0 tag

1 0 0 0.003 0.001 0.022 0.003 1 6 0.046

dcache/s2
req tag

1 0 0 0.015 0.001 0.148 0.003 1 6 0.045

buffer 1/Queue/
T 35 source[0]

2 0 0 0.001 0.000 0.006 0.002 1 5 0.045

buffer 1/
Queue 1/
T 35 source[0]

2 0 0 0.001 0.000 0.006 0.002 1 5 0.045

buffer 1/Queue/
T 35 source[1]

2 0 0 0.001 0.000 0.006 0.002 1 5 0.045

buffer 1/
Queue 1/
T 35 source[1]

2 0 0 0.001 0.000 0.006 0.002 1 5 0.045

core/div/req tag 2 0 0 0.001 0.000 0.004 0.001 1 5 0.045
fragmenter 1
/Repeater/
saved source

2 0 0 0.002 0.000 0.017 0.002 1 5 0.044

dcache/
pstore2 addr

1 0 0 0.003 0.025 0.035 0.143 1 11 0.043

dcache/
pstore1 addr

1 0 0 0.014 0.025 0.144 0.143 1 11 0.037

dtim adapter/
acq source

1 0 0 0.004 0.010 0.039 0.053 1 9 0.022

tlMasterXbar/
T 1015

1 0 0 0.002 0.002 0.018 0.097 1 8 0.018

core/div/count 2 0 0 0.001 0.002 0.009 0.019 1 7 0.017
dcache/ T 1283 1 0 0 0.003 0.000 0.035 0.003 1 8 0.016
dcache/ T 1289 1 0 0 0.003 0.000 0.035 0.003 1 8 0.016
dcache/ T 1295 1 0 0 0.003 0.000 0.035 0.003 1 8 0.016
dcache/ T 1301 1 0 0 0.003 0.000 0.034 0.003 1 8 0.016
dcache/ T 1307 1 0 0 0.003 0.000 0.034 0.003 1 8 0.016
dcache/ T 1313 1 0 0 0.003 0.000 0.034 0.003 1 8 0.016
dcache/ T 1319 1 0 0 0.003 0.000 0.034 0.003 1 8 0.016
dcache/ T 1325 1 0 0 0.003 0.000 0.034 0.003 1 8 0.016
frontend/
icache/ T 171

2 0 0 0.002 0.014 0.019 0.150 1 9 0.014

dcache/ T 2726 1 0 0 0.002 0.002 0.027 0.036 1 9 0.013
buffer/Queue/
T 35 mask[0]

2 0 0 0.001 0.000 0.006 0.002 1 8 0.009

buffer 1/Queue/
T 35 mask[0]

2 0 0 0.001 0.000 0.006 0.002 1 8 0.009

buffer 1/Queue/
T 35 mask[1]

2 0 0 0.001 0.000 0.006 0.002 1 8 0.009

buffer/Queue/
T 35 mask[1]

2 0 0 0.001 0.000 0.006 0.002 1 8 0.009

frontend/fq/
T 82 0 data

2 0 0 0.007 0.062 0.060 0.512 1 32 0.003

core/ibuf/
buf data

2 0 0 0.010 0.007 0.230 0.042 1 16 0.001

core/mem
reg inst

1 0 0 0.001 0.019 0.006 0.746 1 25 0.001

core/ex reg inst 1 0 0 0.033 0.009 0.572 0.690 1 25 0.000

87

core/mem
reg pc

1 0 0 0.001 0.009 0.006 0.054 1 33 0.000

dcache/
s1 req addr

1 0 0 0.007 0.011 0.035 0.068 1 34 0.000

frontend/icache/
refill addr

2 0 0 0.001 0.003 0.007 0.026 1 26 0.000

frontend/s1 pc 1 0 0 0.005 0.003 0.028 0.020 1 33 0.000
dtim adapter
/acq address

1 0 0 0.004 0.000 0.039 0.002 1 32 0.000

core/ T 1320 1 0 0 0.004 0.041 0.034 3.391 1 31 0.000
frontend/ s2 pc 1 0 0 0.002 0.001 0.012 0.003 1 33 0.000
core/wb reg pc 1 0 0 0.001 0.000 0.004 0.003 1 33 0.000
dcache/s2
req addr

1 0 0 0.014 0.001 0.145 0.010 1 32 0.000

core/ex reg pc 1 0 0 0.035 0.001 0.567 0.008 1 33 0.000
core/csr/
reg mtvec

2 0 0 0.002 0.001 0.040 0.012 1 31 0.000

buffer/Queue/
T 35 address[1]

2 0 0 0.001 0.000 0.006 0.002 1 32 0.000

frontend/icache/
s2 dout 0

2 0 0 0.001 0.000 0.006 0.002 1 32 0.000

buffer 1/Queue/
T 35 address[0]

2 0 0 0.001 0.000 0.006 0.002 1 32 0.000

buffer 1/Queue/
T 35 address[1]

2 0 0 0.001 0.000 0.006 0.002 1 32 0.000

buffer/Queue/
T 35 address[0]

2 0 0 0.001 0.000 0.006 0.002 1 32 0.000

fragmenter 1/
Repeater/
saved address

2 0 0 0.002 0.000 0.017 0.002 1 32 0.000

frontend/fq/
T 82 4 data

2 0 0 0.007 0.001 0.055 0.002 1 32 0.000

frontend/fq/
T 82 1 data

2 0 0 0.007 0.001 0.061 0.003 1 32 0.000

frontend
/fq/ T 82
3 data

2 0 0 0.007 0.001 0.061 0.003 1 32 0.000

frontend/fq/
T 82 2 data

2 0 0 0.007 0.001 0.062 0.003 1 32 0.000

core/csr
/reg mepc

2 0 0 0.002 0.002 0.040 0.016 1 33 0.000

frontend/fq/
T 82 0 pc

2 0 0 0.007 0.002 0.061 0.018 1 33 0.000

frontend/fq/
T 82 4 pc

2 0 0 0.007 0.001 0.055 0.002 1 33 0.000

frontend/fq/
T 82 1 pc

2 0 0 0.007 0.001 0.061 0.003 1 33 0.000

frontend/fq/
T 82 3 pc

2 0 0 0.007 0.001 0.061 0.003 1 33 0.000

frontend/fq/
T 82 2 pc

2 0 0 0.007 0.001 0.061 0.003 1 33 0.000

core/ibuf
/buf pc

2 0 0 0.010 0.000 0.230 0.002 1 32 0.000

88

core/csr/
reg mtval

2 0 0 0.001 0.002 0.041 0.015 1 34 0.000

core/csr/ T 244 2 0 0 0.008 0.006 0.067 0.045 1 58 0.000
core/csr/ T 254 2 0 0 0.008 0.006 0.068 0.046 1 58 0.000
core/wb
reg wdata

1 0 0 0.011 0.007 0.070 0.046 1 64 0.000

dcache/s2 data 1 0 0 0.001 0.004 0.007 0.028 1 64 0.000
core/ T 525[18] 1 0 0 0.009 0.001 0.079 0.008 1 64 0.000
core/ T 525[22] 1 0 0 0.009 0.001 0.079 0.008 1 64 0.000
core/ T 525[28] 1 0 0 0.009 0.001 0.079 0.008 1 64 0.000
core/ T 525[2] 1 0 0 0.009 0.001 0.080 0.008 1 64 0.000
core/ T 525[30] 1 0 0 0.009 0.001 0.077 0.008 1 64 0.000
core/ T 525[4] 1 0 0 0.009 0.001 0.080 0.008 1 64 0.000
core/mem
reg rs2

1 0 0 0.004 0.000 0.033 0.002 1 64 0.000

dtim adapter
/ T 238

1 0 0 0.001 0.000 0.004 0.001 1 64 0.000

core/ T 525[0] 1 0 0 0.009 0.001 0.080 0.008 1 64 0.000
core/ T 525[10] 1 0 0 0.009 0.001 0.080 0.008 1 64 0.000
core/ T 525[11] 1 0 0 0.009 0.001 0.079 0.008 1 64 0.000
core/ T 525[12] 1 0 0 0.009 0.001 0.079 0.008 1 64 0.000
core/ T 525[13] 1 0 0 0.009 0.001 0.079 0.008 1 64 0.000
core/ T 525[16] 1 0 0 0.009 0.001 0.080 0.008 1 64 0.000
core/ T 525[17] 1 0 0 0.009 0.001 0.079 0.008 1 64 0.000
core/ T 525[19] 1 0 0 0.009 0.001 0.079 0.008 1 64 0.000
core/ T 525[1] 1 0 0 0.009 0.001 0.079 0.008 1 64 0.000
core/ T 525[20] 1 0 0 0.009 0.001 0.080 0.008 1 64 0.000
core/ T 525[21] 1 0 0 0.009 0.001 0.079 0.008 1 64 0.000
core/ T 525[23] 1 0 0 0.009 0.001 0.079 0.008 1 64 0.000
core/ T 525[24] 1 0 0 0.009 0.001 0.080 0.008 1 64 0.000
core/ T 525[25] 1 0 0 0.009 0.001 0.079 0.008 1 64 0.000
core/ T 525[27] 1 0 0 0.009 0.001 0.079 0.008 1 64 0.000
core/ T 525[29] 1 0 0 0.009 0.001 0.079 0.008 1 64 0.000
core/ T 525[3] 1 0 0 0.009 0.001 0.079 0.008 1 64 0.000
core/ T 525[5] 1 0 0 0.009 0.001 0.079 0.008 1 64 0.000
core/ T 525[6] 1 0 0 0.009 0.001 0.080 0.008 1 64 0.000
core/ T 525[7] 1 0 0 0.009 0.001 0.079 0.008 1 64 0.000
core/ T 525[9] 1 0 0 0.009 0.001 0.079 0.008 1 64 0.000
dtim adapter
/acq data

1 0 0 0.004 0.000 0.039 0.001 1 64 0.000

dcache/
pstore1 data

1 0 0 0.014 0.001 0.144 0.004 1 64 0.000

core/ T 525[14] 1 0 0 0.009 0.001 0.079 0.008 1 64 0.000
core/ T 525[15] 1 0 0 0.009 0.001 0.079 0.008 1 64 0.000
core/ T 525[8] 1 0 0 0.009 0.001 0.080 0.008 1 64 0.000
core/ T 525[26] 1 0 0 0.009 0.001 0.079 0.008 1 64 0.000
core/ex reg
rs msb 1

1 0 0 0.043 0.001 0.699 0.010 1 62 0.000

core/ex reg
rs msb 0

1 0 0 0.048 0.001 0.923 0.017 1 62 0.000

core/div /divi-
sor

2 0 0 0.013 0.007 0.072 0.072 1 65 0.000

89

buffer/Queue 1/
T 35 data[0]

2 0 0 0.001 0.000 0.006 0.002 1 64 0.000

buffer/Queue 1/
T 35 data[1]

2 0 0 0.001 0.000 0.006 0.002 1 64 0.000

buffer 1/Queue/
T 35 data[0]

2 0 0 0.001 0.000 0.006 0.002 1 64 0.000

buffer 1/Queue/
T 35 data[1]

2 0 0 0.001 0.000 0.006 0.002 1 64 0.000

buffer 1/
Queue 1
/ T 35 data[0]

2 0 0 0.001 0.000 0.006 0.002 1 64 0.000

buffer 1/
Queue 1/
T 35 data[1]

2 0 0 0.001 0.000 0.006 0.002 1 64 0.000

frontend/icache/
vb array

2 0 0 0.004 0.001 0.028 0.009 1 64 0.000

buffer/Queue/
T 35 data[0]

2 0 0 0.001 0.000 0.007 0.002 1 64 0.000

buffer/Queue/
T 35 data[1]

2 0 0 0.001 0.000 0.006 0.002 1 64 0.000

core/csr/
reg mscratch

2 0 0 0.001 0.001 0.030 0.009 1 64 0.000

core/
mem reg wdata

1 0 0 0.080 0.001 0.917 0.028 1 64 0.000

core/div/
remainder

2 0 0 0.024 0.013 0.429 0.159 1 130 0.000

B.3 Automatic Waypoint Guide Report

Listing B.1: PicoRV32

Fl ip F lop : la tched branch
Nickname : latched branch ,
CL1 : L1281 (la tched branch | | i r q s t a t e | | ! r e s e t n)
SL1 : L1502 (la tched branch)
SL2 :

F l ip F lop : l a t c h e d s t o r e
Nickname : l a t c h e d s t o r e ,
CL1 :
SL1 :
SL2 :

F l ip F lop : l a t c h e d s t a l u
Nickname : l a t c h e d s t a l u ,
CL1 :
SL1 :

90

SL2 :

F l ip F lop : l a t c h ed r d
Nickname : la tched rd ,
CL1 :
SL1 : L1320 (r e s e t n&&cpureg s wr i t e&&l a t c h ed r d)
SL2 :

F l ip F lop : cpu s ta t e
Nickname : cpu state ,
CL1 : L1170 (cpu s ta t e==c p u s t a t e t r a p)

L1171 (cpu s ta t e==c p u s t a t e f e t c h)
L1172 (cpu s ta t e==c p u s t a t e l d r s 1)
L1173 (cpu s ta t e==c p u s t a t e l d r s 2)
L1174 (cpu s ta t e==c p u s t a t e e x e c)
L1175 (cpu s ta t e==c p u s t a t e s h i f t)
L1176 (cpu s ta t e==cpu state stmem)
L1177 (cpu s ta t e==cpu state ldmem)
L1295 (cpu s ta t e==c p u s t a t e f e t c h)
L2059 (cpu s ta t e==c p u s t a t e t r a p)
L2060 (cpu s ta t e==c p u s t a t e f e t c h)
L2061 (cpu s ta t e==c p u s t a t e l d r s 1)
L2062 (cpu s ta t e==c p u s t a t e l d r s 2)
L2063 (cpu s ta t e==c p u s t a t e e x e c)
L2064 (cpu s ta t e==c p u s t a t e s h i f t)
L2065 (cpu s ta t e==cpu state stmem)

L2066 (cpu s ta t e==cpu state ldmem)
SL1 : L1468 (cpu s ta t e)
SL2 :

Listing B.2: Rocket Core

Fl ip F lop : wb reg in s t
Nickname : wb reg ins t , wb reg in s t 0 ,
CL1 :
SL1 :
SL2 :

F l ip F lop : wb ctrl mem
Nickname : wb ctrl mem , T 1204 , T 1205 , T 1207 , T 1216

91

T 1217 , T 1209 , T 1218 , T 1211 , T 1219
T 1213 , T 1220 , wb xcpt , T 1242 , T 1243

take pc wb , take pc mem wb , wb dcache miss , r e p l a y e x l o a d u s e ,
T 1184

t v a l v a l i d , unpause , i o imem req va l i d , wb ctrl mem ,
wb dcache miss 0

wb xcpt 0 , i b u f i o k i l l , c s r i o e x c e p t i o n ,
CL1 : L168124 (take pc mem wb==1’h0) L168141 (wb xcpt==1’h0)

L168296 (take pc wb==1’h0) L168396 (take pc wb==1’h0)
SL1 : L169118 (unpause)
SL2 :

F l ip F lop : wb reg rep lay
Nickname : wb reg rep lay , replay wb common , replay wb , T 1242 ,

T 1243
take pc wb , take pc mem wb , T 1184 , unpause , i o i m e m r e q v a l i d
replay wb 0 , i b u f i o k i l l ,
CL1 : L168124 (take pc mem wb==1’h0) L168139 (replay wb==1’h0)

L168296 (take pc wb==1’h0) L168396 (take pc wb==1’h0)
SL1 : L169118 (unpause)
SL2 :

F l ip F lop : wb reg xcpt
Nickname : wb reg xcpt , T 1216 , T 1217 , T 1218 , T 1219
T 1220 , wb xcpt , T 1242 , T 1243 , take pc wb

take pc mem wb , T 1184 , t v a l v a l i d , unpause , i o i m e m r e q v a l i d
wb xcpt 0 , i b u f i o k i l l , c s r i o e x c e p t i o n ,
CL1 : L168124 (take pc mem wb==1’h0) L168141 (wb xcpt==1’h0)

L168296 (take pc wb==1’h0) L168396 (take pc wb==1’h0)
SL1 : L169118 (unpause)
SL2 :

F l ip F lop : wb reg va l id
Nickname : wb reg va l id , T 1484 , T 1486 , T 1255 , T 1257
T 1331 , T 983 , T 1010 , T 1011 , T 1204
T 1205 , T 1207 , T 1451 , p s to r e d ra in , d a t a A r b i o i n 0 v a l i d

d a t a A r b i o i n 0 b i t s w r i t e , T 985 , T 1332 , T 1333 , T 1334
rep lay wb rocc , replay wb , T 1216 , T 1217 , T 1209
T 1218 , T 1211 , T 1219 , T 1213 , T 1220

92

wb xcpt , T 1242 , T 1243 , take pc wb , take pc mem wb
id wb hazard , T 1349 , id sboard hazard , wb wxd , wb val id
wb wen , rf wen , T 1184 , t v a l v a l i d , T 1350
T 1354 , unpause , T 1569 , i o imem req va l i d ,

i o i m e m s f e n c e v a l i d
i o i m e m f l u s h i c a c h e , wb xcpt 0 , replay wb 0 , wb reg va l id 0 ,

wb wen 0
i b u f i o k i l l , c s r i o e x c e p t i o n , c s r i o r e t i r e ,
CL1 : L666 (T 1011==9’h0) L3763 (i o i n d b i t s p a r a m== T 983)

L3766 (i o i n d b i t s s i z e== T 985) L6983 (T 1486==1’h0)
L8333 (T 1011==9’h0) L11576 (T 1011==9’h0)

L16340 (T 1257==1’h0) L33903 (i o i n d b i t s p a r a m== T 983
) L33906 (i o i n d b i t s s i z e== T 985) L38146 (
i o i n d b i t s p a r a m== T 983) L38149 (i o i n d b i t s s i z e
== T 985)

L41393 (i o i n d b i t s p a r a m== T 983) L41396 (
i o i n d b i t s s i z e== T 985) L45356 (i o i n d b i t s p a r a m

== T 983) L45359 (i o i n d b i t s s i z e== T 985) L49265 (
i o i n d b i t s p a r a m== T 983)

L49268 (i o i n d b i t s s i z e== T 985) L56760 (
i o i n d b i t s p a r a m== T 983) L56763 (i o i n d b i t s s i z e
== T 985) L123059 (T 983== T 983) L123077 (T 983 !=2 ’
h0)

L153920 (p s t o r e d r a i n ==1’h0) L153921 (p s t o r e 2 v a l i d==
p s t o r e d r a i n) L158044 (T 1011==9’h0) L168079 (T 1331
==1’h0) L168110 (wb wxd==1’h0)

L168124 (take pc mem wb==1’h0) L168139 (replay wb==1’h0)
L168141 (wb xcpt==1’h0) L168296 (take pc wb==1’h0)
L168386 (T 1350==1’h0)

L168396 (take pc wb==1’h0)
SL1 : L32836 (T 965& T 985) L32847 (T 965& T 985) L62881 (

T 965& T 985) L62892 (T 965& T 985) L66830 (T 965& T 985
) L66841 (T 965& T 985)

L70057 (T 965& T 985) L70068 (T 965& T 985) L74065 (
T 965& T 985) L74076 (T 965& T 985) L78028 (T 965&
T 985)

L78039 (T 965& T 985) L111248 (T 965& T 985) L111259 (
T 965& T 985) L148647 (T 1011& T 1019) L148658 (
T 1011& T 1019)

93

L151388 (T 1011& T 1019) L151399 (T 1011& T 1019)
L169118 (unpause) L169739 (T 1354)

SL2 :

F l ip F lop : wb ctr l wxd
Nickname : wb ctr l wxd , data hazard wb , wb wxd , wb wen , r f wen
T 1350 , T 1354 , T 1569 , wb ctrl wxd , wb wen 0

CL1 : L168110 (wb wxd==1’h0) L168386 (T 1350==1’h0)
SL1 : L169739 (T 1354)
SL2 :

F l ip F lop : w b c t r l c s r
Nickname : w b c t r l c s r , c s r io rw cmd ,
CL1 : L168150 (w b c t r l c s r !=3 ’ h0)
SL1 :
SL2 :

94

Appendix C

Verilog source code

C.1 Synchronized FIFO

Listing C.1: Synchronized FIFO source code
module s y n c f i f o # (

parameter a b i t s = 2 , // f i f o depth
parameter db i t s = 8 // data width

) (
input c lock ,
input r e s e t ,
input wr ,
input rd ,
input [db i t s −1:0] din ,
output empty ,
output f u l l ,
output [db i t s −1:0] dout

) ;

wire db wr , db rd ;
reg dffw1 , dffw2 , d f f r 1 , d f f r 2 ;
reg [db i t s −1:0] out ;
reg [db i t s −1:0] r egar ray [2∗∗ ab i t s −1 : 0] ;
reg [ab i t s −1:0] wr reg , wr next , wr succ ;
reg [ab i t s −1:0] rd reg , rd next , rd succ ;
reg f u l l r e g , empty reg , f u l l n e x t , empty next ;

always @ (posedge c l o ck) dffw1 <= wr ;
always @ (posedge c l o ck) dffw2 <= dffw1 ;
assign db wr = ˜ dffw1 & dffw2 ;
assign wr en = db wr & ˜ f u l l ;

always @ (posedge c l o ck) d f f r 1 <= rd ;
always @ (posedge c l o ck) d f f r 2 <= d f f r 1 ;
assign db rd = ˜ d f f r 1 & d f f r 2 ;

always @ (posedge c l o ck) begin
i f (wr en) regar ray [wr reg] <= din ;

end

always @ (posedge c l o ck) begin
i f (db rd) out <= regar ray [rd r eg] ;

end

95

always @ (posedge c l o ck or posedge r e s e t) begin
i f (r e s e t) begin
wr reg <= 0 ;
rd r eg <= 0 ;
f u l l r e g <= 1 ’ b0 ;
empty reg <= 1 ’ b1 ;
end

else begin
wr reg <= wr next ;
rd r eg <= rd next ;
f u l l r e g <= f u l l n e x t ;
empty reg <= empty next ;
end

end

always @(∗) begin
wr succ = wr reg + 1 ;
rd succ = rd r eg + 1 ;
wr next = wr reg ;
rd next = rd r eg ;
f u l l n e x t = f u l l r e g ;
empty next = empty reg ;

case ({db wr , db rd })
2 ’ b01 : // read
begin
i f (˜ empty) begin

rd next = rd succ ;
f u l l n e x t = 1 ’ b0 ;

i f (rd succ == wr reg) empty next = 1 ’ b1 ;
end

end
2 ’ b10 : // wr i t e
begin
i f (˜ f u l l) begin

wr next = wr succ ;
empty next = 1 ’ b0 ;
i f (wr succ == rd r eg) f u l l n e x t = 1 ’ b1 ;

end
end

2 ’ b11 :
begin

wr next = wr succ ;
rd next = rd succ ;

end
default :
endcase

end

assign f u l l = f u l l r e g ;
assign empty = empty reg ;
assign dout = out ;
endmodule

96

Bibliography

[1] S. Agbaria, D. Carmi, O. Cohen, D. Korchemny, M. Lifshits, and A. Nadel.

Sat-based semiformal verification of hardware. In Formal Methods in Computer

Aided Design, pages 25–32, Oct 2010.

[2] Sabih Agbaria, Dan Carmi, Orly Cohen, Dmitry Korchemny, Michael Lifshits,

and Alexander Nadel. An experience of complex design validation: How to

make semiformal verification work. ACM, 2010.

[3] G Allan, G Chidolue, T Ellis, H Foster, M Horn, P James, and M Peryer. Cov-

erage cookbook, mentor graphics. available on-line https://verificationacademy.

com, n.d.

[4] Nina Amla and Ken L McMillan. A hybrid of counterexample-based and

proof-based abstraction. In International Conference on Formal Methods in

Computer-Aided Design, pages 260–274. Springer, 2004.

[5] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David

Biancolin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam

Izraelevitz, et al. The rocket chip generator. EECS Department, University

of California, Berkeley, Tech. Rep. UCB/EECS-2016-17, 2016.

[6] Nathaniel Ayewah, Nikhil Kikkeri, Peter-Michael Seidel, and Sven Beyer. Chal-

lenges in the formal verification of complete state-of-the-art processors. In

97

Computer Design: VLSI in Computers and Processors, 2005. ICCD 2005.

Proceedings. 2005 IEEE International Conference on, pages 603–606. IEEE,

2005.

[7] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,

Rimas Avižienis, John Wawrzynek, and Krste Asanović. Chisel: constructing

hardware in a scala embedded language. In Design Automation Conference

(DAC), 2012 49th ACM/EDAC/IEEE, pages 1212–1221. IEEE, 2012.

[8] Jason Baumgartner, Andreas Kuehlmann, and Jacob Abraham. Property

checking via structural analysis. In International Conference on Computer

Aided Verification, pages 151–165. Springer, 2002.

[9] Armin Biere, Alessandro Cimatti, Edmund M Clarke, Masahiro Fujita, and

Yunshan Zhu. Symbolic model checking using sat procedures instead of bdds.

In Proceedings 1999 Design Automation Conference (Cat. No. 99CH36361),

pages 317–320. IEEE, 1999.

[10] Per Bjesse and James Kukula. Using counter example guided abstraction

refinement to find complex bugs. In Proceedings of the conference on Design,

automation and test in Europe-Volume 1, page 10156. IEEE Computer Society,

2004.

[11] G. Braun, A. Nohl, A. Hoffmann, O. Schliebusch, R. Leupers, and H. Meyr.

A universal technique for fast and flexible instruction-set architecture simula-

tion. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 23(12):1625–1639, Dec 2004.

98

[12] François Chollet et al. Keras, 2015.

[13] JR Burch EM Clarke and D Long. Representing circuits more efficiently in

symbolic model checking. In 28th ACM/IEEE Design Automation Conference,

pages 403–407, 1991.

[14] Ben Cohen, Srinivasan Venkataramanan, Ajeetha Kumari, and Lisa Piper.

SystemVerilog Assertions Handbook:... for Dynamic and Formal Verification.

CreateSpace Independent Publishing Platform, 2015.

[15] Flavio M de Paula and Alan J Hu. Everlost: A flexible platform for industrial-

strength abstraction-guided simulation. In International Conference on Com-

puter Aided Verification, pages 282–285. Springer, 2006.

[16] Flavio M De Paula and Alan J Hu. An effective guidance strategy for abstraction-

guided simulation. In Design Automation Conference, 2007. DAC’07. 44th

ACM/IEEE, pages 63–68. IEEE, 2007.

[17] David L Dill. What’s between simulation and formal verification? In Proceed-

ings 1998 Design and Automation Conference. 35th DAC.(Cat. No. 98CH36175),

pages 328–329. IEEE, 1998.

[18] Niklas Een, Alan Mishchenko, and Nina Amla. A single-instance incremental

sat formulation of proof-and counterexample-based abstraction. In Proceedings

of the 2010 Conference on Formal Methods in Computer-Aided Design, pages

181–188. FMCAD Inc, 2010.

99

[19] Harry Foster, Lawrence Loh, Bahman Rabii, and Vigyan Singhal. Guidelines

for creating a formal verification testplan. Proc. DVCon, 2006.

[20] Malay Ganai, Praveen Yalagandula, Adnan Aziz, Andreas Kuehlmann, and

Vigyan Singhal. Siva: A system for coverage-directed state space search.

Journal of Electronic Testing, 17(1):11–27, 2001.

[21] Malay K Ganai and Adnan Aziz. Rarity based guided state space search. In

Proceedings of the 11th Great Lakes symposium on VLSI, pages 97–102. ACM,

2001.

[22] Aurélien Géron. Hands-on machine learning with Scikit-Learn and Tensor-

Flow: concepts, tools, and techniques to build intelligent systems. ” O’Reilly

Media, Inc.”, 2017.

[23] Saurav Gorai, Saptarshi Biswas, Lovleen Bhatia, Praveen Tiwari, and Raj S

Mitra. Directed-simulation assisted formal verification of serial protocol and

bridge. In Design Automation Conference, 2006 43rd ACM/IEEE, pages 731–

736. IEEE, 2006.

[24] Aarti Gupta. Formal hardware verification methods: A survey. In Computer-

Aided Verification, pages 5–92. Springer, 1992.

[25] Kshitiz Gupta et al. Automatic generation of coverage directives targeting

signal relationships by statically analyzing rtl. Master’s thesis, The University

of Texas at Austin, 2017.

100

[26] Ziyad Hanna, Craig Franklin Deaton, Kathryn Drews Kranen, Björn H̊akan

Hjort, and Lars Lundgren. Guided exploration of circuit design states, June 21

2016. US Patent 9,372,949.

[27] Klaus Havelund and Natarajan Shankar. Experiments in theorem proving

and model checking for protocol verification. In International Symposium of

Formal Methods Europe, pages 662–681. Springer, 1996.

[28] John L Hennessy and David A Patterson. Computer architecture: a quantita-

tive approach. Elsevier, 2011.

[29] John A Hertz. Introduction to the theory of neural computation. CRC Press,

2018.

[30] C Richard Ho, Michael Theobald, Brannon Batson, J Grossman, Stanley C

Wang, Joseph Gagliardo, Martin M Deneroff, Ron O Dror, and David E Shaw.

Post-silicon debug using formal verification waypoints. In Design and Verifi-

cation Conf, 2009.

[31] Pei Hsin Ho, Thomas Shiple, Kevin Harer, James Kukula, Robert Damiano, Va-

leria Bertacco, Jerry Taylor, and Jiang Long. Smart simulation using collabora-

tive formal and simulation engines. In Proceedings of the 2000 IEEE/ACM in-

ternational conference on Computer-aided design, pages 120–126. IEEE Press,

2000.

[32] Bob Hu. Hummingbird e200 opensource processor core. https://github.

com/SI-RISCV/e200_opensource, 2018.

101

[33] Brian Keng and Andreas Veneris. Automated debugging of missing input

constraints in a formal verification environment. In 2012 Formal Methods in

Computer-Aided Design (FMCAD), pages 101–105. IEEE, 2012.

[34] Olof Kindgren. Serv. https://github.com/olofk/serv, 2018.

[35] Vladik Ya Kreinovich. Arbitrary nonlinearity is sufficient to represent all

functions by neural networks: a theorem. Neural networks, 4(3):381–383,

1991.

[36] Howard E Krohn. Design verification of large scientific computers. In Proceed-

ings of the 14th Design Automation Conference, pages 354–361. IEEE Press,

1977.

[37] Daniel Kröning. Formal verification of pipelined microprocessors. PhD thesis,

Universitat des Saarlandes, 2001.

[38] Andreas Kuehlmann and Cornelis AJ van Eijk. Combinational and sequen-

tial equivalence checking. In Logic synthesis and Verification, pages 343–372.

Springer, 2002.

[39] Ulrich Kühne, Sven Beyer, Jorg Bormann, and John Barstow. Automated

formal verification of processors based on architectural models. In Formal

Methods in Computer-Aided Design (FMCAD), 2010, pages 129–136. IEEE,

2010.

[40] Pradeep Kumar Nalla, Raj Kumar Gajavelly, Jason Baumgartner, Hari Mony,

Robert Kanzelman, and Alexander Ivrii. The art of semi-formal bug hunting.

102

In Computer-Aided Design (ICCAD), 2016 IEEE/ACM International Confer-

ence on, pages 1–8. IEEE, 2016.

[41] Kuntal Nanshi and Fabio Somenzi. Guiding simulation with increasingly re-

fined abstract traces. In Proceedings of the 43rd annual Design Automation

Conference, pages 737–742. ACM, 2006.

[42] Minh D Nguyen, Max Thalmaier, Markus Wedler, Jörg Bormann, Dominik

Stoffel, and Wolfgang Kunz. Unbounded protocol compliance verification using

interval property checking with invariants. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 27(11):2068–2082, 2008.

[43] Ankur Parikh, Weixin Wu, and Michael S Hsiao. Mining-guided state justi-

fication with partitioned navigation tracks. In Test Conference, 2007. ITC

2007. IEEE International, pages 1–10. IEEE, 2007.

[44] JasperGold Formal Verification Platform. Cadence inc.

[45] Alastair Reid, Rick Chen, Anastasios Deligiannis, David Gilday, David Hoyes,

Will Keen, Ashan Pathirane, Owen Shepherd, Peter Vrabel, and Ali Zaidi.

End-to-end verification of processors with isa-formal. In International Confer-

ence on Computer Aided Verification, pages 42–58. Springer, 2016.

[46] Sebastian Ruder. An overview of gradient descent optimization algorithms.

arXiv preprint arXiv:1609.04747, 2016.

[47] Sharukh Shahajahan Shaikh. Implementation of verification methodologies.

Master’s thesis, The University of Texas at Austin, 2018.

103

[48] Avinash Sharma. Understanding activation functions in neural networks.

medium. com, 2017.

[49] Donald F Specht. A general regression neural network. IEEE transactions on

neural networks, 2(6):568–576, 1991.

[50] Rob Sumners, Jayanta Bhadra, and Jacob Abraham. Automatic validation test

generation using extracted control models. In VLSI Design, 2000. Thirteenth

International Conference on, pages 312–317. IEEE, 2000.

[51] Shinya Takamaeda-Yamazaki. Pyverilog: A python-based hardware design

processing toolkit for verilog hdl. In Applied Reconfigurable Computing, vol-

ume 9040 of Lecture Notes in Computer Science, pages 451–460. Springer

International Publishing, Apr 2015.

[52] Andrew Waterman, Yunsup Lee, Rimas Avizienis, David A Patterson, and

Krste Asanović. The risc-v instruction set manual volume ii: Privileged archi-

tecture version 1.10. EECS Department, University of California, Berkeley,

Tech. Rep. UCB/EECS-2017, 2017.

[53] Andrew Waterman, Yunsup Lee, David Patterson, and Krste Asanovic. The

risc-v instruction set manual. Volume I: User-Level ISA’, version, 2.2, 2017.

[54] C Wolf. End-to-end formal isa verification of risc-v processors with riscv-

formal, 2017.

[55] C Wolf. Picorv32-a size-optimized risc-v cpu. github. com/cliffordwolf/pi-

corv32, 2018.

104

[56] Praveen Yalagandula, Vigyan Singhal, and Adnan Aziz. Automatic lighthouse

generation for directed state space search. In Proceedings of the conference on

Design, automation and test in Europe, pages 237–242. ACM, 2000.

[57] C Han Yang and David L Dill. Validation with guided search of the state space.

In Proceedings of the 35th annual Design Automation Conference, pages 599–

604. ACM, 1998.

[58] Jun Yuan, Jian Shen, Jacob Abraham, and Adnan Aziz. On combining formal

and informal verification. In International Conference on Computer Aided

Verification, pages 376–387. Springer, 1997.

105

