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Supervisor:  Deborah A. Bolnick 

 

Recent developments in queer and feminist materialisms have offered productive 

ways to rethink the connections between nature and culture, and how these forces are 

mutually entailed in the constitution of bodies. These insights hold radical potentials for 

reconfiguring what science can mean and for remaking the worlds it helps to materialize. 

However, such perspectives are rarely taken as entry points for the production of scientific 

knowledge. Drawing upon emerging scholarship from queer, feminist, and indigenous 

theorists, this dissertation aims to take on the genetics lab as a site of political 

transformation. Here, I develop and apply new approaches for recovering the genetic and 

epigenetic correlates of sociopolitical change, showing that bodies are a “shifting 

entanglement of relations” (Barad 2007) between sociopolitical and material forces.  

I begin by evaluating the boundary-making practices and conditions of possibility 

through which the field of population genetics has materialized certain indigenous bodies 

and histories to the exclusion of others. This research demonstrates how conventional 

population genetic research in North America, long predicated on notions of “biological 

purity”, has helped to maintain the sociopolitical conditions of the settler state. Working 

from tribal and First Nations self-definitions, this research brings attention to histories that 

have been hidden in previous population genetic studies in the Americas. This work further 
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destabilizes notions of “indigenous DNA” as the sole criteria for indigenous belonging, 

through which settler claims to indigenous bodies and cultural heritage have unfolded in 

recent decades (TallBear 2013). 

Next, I developed and evaluated methods for reconstructing chemical modifications 

to DNA, known as cytosine methylation, in five ancient genomes. Because changes in 

methylation can be shaped by social and environmental factors, reconstructing cytosine 

methylation in DNA from ancient people could help recover aspects of their lived 

experiences, shedding new light on past lifeways. I applied paleoepigenetic approaches to 

evaluate archaeologically-informed questions about the Wari society, the first expansive 

state in the central Peruvian Andes. By reconstructing ancient methylation patterns from 

14 individuals who lived before and after the decline of the Wari state, I show that changes 

in DNA methylation trace sociopolitical and environmental changes in the ancient world. 
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INTRODUCTION 

 

“What approaches might enable us to hold the politics of science and the 

possibilities of biology in the same frame, such that our new conceptions of 

materiality reflect the breadth of feminist and other contributions to knowing 

bodies?”  

-Angela Willey, “Undoing Monogamy” (2016) 

 

“Matter does not refer to a fixed substance; rather, matter is substance in its intra-

active becoming – not a thing but a doing, a congealing of agency.”  

-Karen Barad, “Meeting the Universe Halfway” (2007) 

 

“Nature is not a physical place to which one can go, nor a treasure to fence in or 

bank, nor an essence to be saved or violated. Nature is not hidden and so does not 

need to be unveiled. Nature is not a text to be read in the codes of mathematics 

and biomedicine. It is not the “other” who offers origin, replenishment, and 

service. Neither mother, nurse, nor slave, nature is not a matrix, resource, or tool 

for the reproduction of man… Nature is a topic of public discourse on which 

much turns, even the earth.”  

-Donna Haraway, “The Promises of Monsters” (1992) 

 

 

The production of histories from the material remnants of the past unfolds through 

the interaction of multiple processes, including existing theoretical frameworks, 

technoscientific tools and other knowledge-making practices, and processes of ruination 

and degradation through which we make knowledges from what remains. The work that 

follows in each of these chapters reflects my ongoing efforts to draw attention to some of 

the material residues and bodily knowledges that get left behind or excluded by the 

epistemological limits and power dynamics of population genetics and epigenetics. It is the 
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beginning of a wish to occupy the lab with desires to know bodies otherwise. Thus, the 

underlying concerns of this dissertation revolve around new ways of attending to what 

bodies remember when bodily knowledges are lost, forgotten, ruined, or erased. What 

material traces and bodily memories survive and what subaltern histories do they know? 

What meanings are bodies inscribed with and what meanings do they inscribe in the world? 

How might turning attention to certain subjugated and unruly recollections of matter 

disrupt received narratives in science? Using a postdisciplinary1 approach, this dissertation 

combines genetic research with emerging scholarship from decolonial theory, material and 

indigenous feminisms, queer theory, and the situated knowledges of white trash people to 

elucidate the biological and social forces shaping human bodies, as well as the 

sociopolitical factors that influence how we make knowledge about bodies and histories in 

settler colonial states.  

This research is deeply informed by emergent philosophies in queer and feminist 

materialisms2, which have offered productive ways to rethink the connections between 

nature and culture. Questions of materiality, particularly those which pertain to bodies and 

biology, have long been volatile subjects within feminist and queer theory (Alaimo and 

Hekman 2008). As a result, much of queer and feminist scholarship has turned toward 

social constructivist models to critique the heteropatriarchal power relations embedded 

within western discursive practices.  While this so called “discursive turn” in queer and 

feminist scholarship has dealt profound blows to scientific objectivity and its authorities 

                                                 
1 I use the term “postdisciplinary” in place of “interdisciplinary” or “transdisciplinary”. Rather than 

referring to a process that involves working from within, across, or between disciplinary divides, the term 

“postdisciplinarity” refuses to divide various knowledge-making practices into conventional academic 

disciplines, and highlights a process in which multiple capacities for making knowledge are brought 

together in spite of disciplinary norms. 
2 The term “materialism” refers to philosophies of materiality. As used here, it refers to scholarship that 

deals with physicality, corporeality, or matter as a locus for producing knowledge or academic discourse. 
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over “bodies” and “natures”, less attention has been given to the need for active 

reconfigurations of these natures as queer and feminist imperatives. Without such 

reconfigurations, questions of materiality can often remain uncontested ground for the 

reproduction of racist, heterosexist, and patriarchal infrastructures. In addition, social 

constructivist models that lack concern for materialities can lead us into relativistic worlds 

through which it is difficult or impossible to reckon with the bodily consequences of power 

and its abilities to reshape human and non-human life.  

Over the last decade, multiple genealogies of scholarship have coalesced around, 

and offered alternatives to, the antibiologism that has long characterized much of queer 

and feminist theory (Barad 2007, Alaimo and Hekman 2008, Mortimer-Sandilands and 

Erickson 2010). The so called “material turn” (Alaimo and Hekman 2008) in queer and 

feminist scholarship involves many efforts to take up questions of materiality and its 

embeddedness within discursive practices as grounds for queer and feminist engagement. 

As outlined by Stacy Alaimo and Susan Hekman in their influential volume “Material 

Feminisms”, “feminist theorists of the body want definitions of corporeality that can 

account for how the discursive and the material interact in the constitution of bodies” 

(Alaimo and Hekman 2008). Similarly, Karen Barad notes that feminist theorists must 

“move conversations…beyond the mere acknowledgment that both material and 

discursive, and natural and cultural, factors play a role in knowledge production by 

examining how these factors work together, and how conceptions of materiality, social 

practice, nature, and discourse must change to accommodate their mutual involvement” 

(Barad 2007). While social constructivist interventions have shown us that science operates 

as a cultural process and a system of knowledge production that too often reifies 

sociopolitical norms, engagement with emerging queer and feminist materialisms holds 
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radical potentials for transforming what science can mean and reimagining the worlds that 

it helps to materialize. 

In my dissertation research, the most influential scholarship for answering these 

calls is that which I find to be in the spirit of Bruno Latour’s formulation of the “new 

settlement”, Donna Haraway’s concepts of “material-semiotics” and “naturecultures”, and 

Karen Barad’s intervention on “agential realism”, theoretical frameworks which represent 

significant efforts to elucidate the interstices between nature and culture without 

privileging one over the other. In particular, Barad’s notions of “intra-action”, in which 

bodies and knowledge, materiality and discursivity, must be understood as part of one, co-

constitutive process, underlies much of the work unfolded in this dissertation, and in future 

work that will come out of what I have learned in producing it. The broadest goal of my 

work has been to move beyond seeing the body as a fixed, immutable, or passive referent 

that exists outside the influence of power, demonstrating instead that bodies are a “shifting 

entanglement of relations” between social and biological forces (Barad 2007). In other 

words, bodies emerge through the interactions of nature and culture. Bodies are always 

already bodies-in-context. Bodies are irreducibly worldly happenings. Thus, my goal is to 

engage matter not as a “thing” but as a “doing”, a “congealing of agency” (Barad 2007). 

Bodies and histories are not simply “out there”, they are produced through discursive 

practices which serve to bring certain kinds of bodies and histories into being to the 

exclusion of others. Because of this, scientific apparatuses are not simply neutral probes of 

“nature” (Barad 2007). Rather, they are always loaded with certain conditions of possibility 

and meaning.  

However, while previous new materialist scholarship has retheorized the 

interactions between social and biological forces, these insights must still be brought to 
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bear on scientific practices themselves. Therefore, building on insights from queer, 

material, and indigenous feminists, this dissertation aims in part to take on the lab as a site 

of political transformation, to claim empirical ground for the intra-action of bodily and 

sociopolitical forces in genetics and epigenetics. Each of these chapters, in one form or 

another, is intended to provide anthropological case studies in queer and feminist 

materialisms, moving emergent gender scholarship directly into sites of empirical inquiry 

by investigating how systems of power shape bodies. My referent is neither bodies nor 

power systems in isolation, but rather their intra-action, the entwining of bodies into history 

and of history into bodies. I do not take matter to be some immutable substance for 

empirical study, but rather I ask, what are the conditions that underlie certain forms of 

mattering, and what are some of their possible alternatives? 

This work involves a layering of multiple insights and approaches from population 

genetics, epigenetics, paleogenomics, archaeology, and social theory. I consider the 

“interdisciplinary”, or better, “postdisciplinary” spirit of my dissertation to be deeply 

informed not only by emerging work in queer and feminist materialisms, by the lived 

experiences and situated knowledges of both bisexual and white trash people. According 

to Angela Willey, in her Dreams of a Dyke Science, “the feminist scientist will not only 

“be aware” of the interconnectedness of the personal and the political; that awareness will 

lead to a fundamental transformation of science’s very definition. The dream is not for a 

better science, but for a different one”. In ongoing work by myself and Samantha Archer, 

we are attempting to unfold what queer and bisexual epistemologies can contribute to the 

political and epistemological transformation of the lab. As many postmodern and material 

feminists have noted, the male/female divide informs all the dichotomies that ground 

Western thought, including nature/culture, mind/body, subject/object, self/other, 
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reason/passion, human/nonhuman, science/fiction, and by extension, all of the disciplinary 

divides that have severed the natural sciences from the humanities (Alaimo and Hekman 

2008). However, such divisions are irreconcilable with queer experience, where gender 

binaries have never been a given. My dissertation research, then, is in part driven by a 

situated refusal to abide by certain gendered structures of knowledge. My disciplinary 

promiscuity reflects a set of queer desires, a movement through the gendered spaces of the 

academy and beyond the gendered conventions that fracture knowledge about bodies and 

police how and what we are supposed to know about them. This dissertation reflects certain 

infidelities to Science, or perhaps, new kinds of fidelity and new kinds of relations with 

science that entail engagement with multiple simultaneous capacities for knowing bodies. 

For me, these interdisciplinary tendencies cannot be disentangled from the situated 

knowledges and experiences of white trash people, in particular, the experiences of both 

rural agricultural and urban poor whites in the American south who live and die on the 

margins of whiteness. Put simply, to be white trash in the academy is to be forced early 

and often to learn to stand in multiple places simultaneously and to hold different worlds 

together. To navigate multiple ways of knowing, and to move along multiple axes of 

privilege and exclusion. It is to learn to live in the mess of contradictions without 

righteousness, and because of this, to work without the hope of moral absolutes or final 

answers. To be white trash is to never really leave the material and political mess that you 

were born into. It means that my interests in violence and power are rooted in certain lived 

experiences of violence and power, and that my embodied knowledges permeate all the 

work that I do. It means to understand, first hand, how the emergence of certain kinds of 

bodies are irrevocably tied to systems of power and exclusion. While these factors are 

almost certainly not true for everyone who would identify as queer or as white trash, they 



7 

 

are the center from which my own work has unfolded. And while our particular experiences 

are not the same, these factors are the driving forces for entangling my work with other 

queer, material, and indigenous feminists among whom I find many kin and with whom I 

share many common anti-violence, anti-racist, and decolonial interests. 

In this dissertation, I work from these intersectional knowledges to elucidate the 

entanglement of bodily and political forces in the constitution of human bodies. While each 

chapter uses different narrative styles and methodological approaches, and the theoretical 

frameworks are not always made visible, the driving force of this work is to engage various 

systems of power through which matter is congealed. Specifically, I first look at the 

boundary making practices and power relations through which population genetics 

materializes certain indigenous bodies and histories to the exclusion of others. Second, I 

develop and evaluate new methodological approaches for reconstructing epigenetic marks 

in ancient DNA, contributing to the development of the emerging field of paleoepigenetics. 

Finally, I use emerging approaches in paleoepigenetics to show how global genomic 

methylation patterns reflect sociopolitical and environmental changes in the ancient world. 

In chapter one, I argue that the early population histories of the Americas have been 

the primary focus of genetic research with Native American tribes and First Nations 

peoples, and by comparison, far less emphasis has been placed on more recent histories, 

including the genetic correlates of settler colonialism. Conventionally, population genetic 

research with these groups has involved sampling people who trace most or all of their 

ancestors to the indigenous peoples present in the Americas prior to the arrival of 

Europeans. Geneticists studying pre-colonial population histories have often excluded 

tribal and First Nations members who have “mixed ancestries”, because their genetic 

diversity is presumed to confound efforts to reconstruct ancient population history. In this 
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study, I present new genetic data from a collection of frozen blood samples originally 

assembled by researchers in the 1990s. Blood samples from people with primarily 

indigenous ancestors were selected from this collection in the past for population history 

analysis, while others with non-indigenous ancestors and/or ancestors from multiple 

indigenous peoples were largely excluded from study. In this chapter, I use tribal and First 

Nations affiliations instead of excluding samples on previous genetic standards of 

biological purity. In doing so, I draw on material and indigenous feminisms to investigate 

the boundary-making practices and conditions of possibility through which genetic 

research materializes certain indigenous bodies and histories to the exclusion of others. 

In chapter two, I develop and evaluate tools for reconstructing cytosine methylation 

in ancient DNA, contributing to the emerging field of paleoepigenetics. In living 

populations, epigenetic research has shown that cytosine methylation patterns can be 

shaped by a variety of lived experiences, including diet and exposure to violence, among 

other factors. By looking for similar methylation patterns in the DNA of ancient people, it 

may be possible to reconstruct certain lived experiences in ancient societies. However, 

because various epigenetic functions operate on different scales, from single cytosines to 

hundreds, different resolutions of methylation data are required to make varying types of 

inferences. The goal of this chapter was to evaluate an emerging technique that exploits 

patterns of post-mortem cytosine degradation to reconstruct genome-wide methylation 

patterns in five ancient genomes with differing levels of preservation. I found that while 

this method can be used to reconstruct regional methylation patterns, providing broad 

insights into how lived experiences shape cytosine methylation at the global genomic level, 

it cannot be used to characterize the small, functionally-specific epigenetic changes that 

often accompany differences in diet and exposure to violence. Combining approaches from 



9 

 

biochemistry and bioinformatics, this chapter offers technical insights into the 

methodological limits of paleoepigenetics, and lays some of the necessary empirical 

groundwork for the paleoepigenetic case studies I unfold in my final chapter. 

In my third and final chapter, I evaluated whether global genomic methylation 

patterns were associated with sociopolitical and environmental changes in ancient 

societies. This study focused on the rise and decline of the Wari, one of the earliest 

expansive state civilizations of the Andes. During the height of Wari culture, 

bioarchaeological analyses have shown that people in the Wari heartland had good access 

to carbon-enriched foods, rates of violence were generally low and injuries were non-lethal, 

and people’s exposure to physical trauma was shaped by status, gender, and ethnic 

differences in Wari society. Following the decline of the Wari state, however, life appears 

to have worsened for many people across the central Andes. In the former Wari heartland, 

bioarchaeological evidence shows that many people had decreased access to carbon-

enriched foods and there were dramatic increases in the risk of both lethal and non-lethal 

violence. In this chapter, I reconstructed patterns of cytosine methylation from the remains 

of people who lived before and after the Wari decline. In doing so, I provide the first 

evidence that methylation patterns may mirror social and environmental changes in the 

ancient world, supporting the feasibility of future research on the epigenetic correlates of 

ancient lifeways. Thus, paleoepigenetics may provide important new tools for assessing 

how large-scale social, political, and environmental changes can shape human biology. 

This dissertation draws together approaches from population genetics, epigenetics, 

bioarchaeology, social theory, and my own situated perspectives to demonstrate how 

bodies are co-constituted by the intra-actions of social and material forces. While the latter 

two chapters are heavily empirical in form, and the theoretical frameworks underlying them 
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are not made fully visible here, they are nonetheless deeply informed by queer, feminist, 

and other emerging materialist philosophies. Thus, while the postdisciplinary goals of my 

ongoing work are not fully realized in these pages, this dissertation lays some of the 

necessary groundwork on which my future work will unfold. These chapters reflect some 

of my first steps towards the goal of realizing a different science, and of integrating multiple 

simultaneous capacities for knowing bodies. 
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CHAPTER ONE: In Cold Blood—Genetic Boundary-Making and the 

Production of Indigenous Histories. 

BACKGROUND 

While the genetic diversity of Native American tribes and First Nations groups has 

been shaped by both ancient and contemporary population histories, the ancient population 

histories of the Americas have received far greater attention than the more recent events of 

settler colonialism (Kemp and Schurr 2010, O’Rourke and Raff 2010, Raff et al. 2011, 

Bolnick et al., 2016). As a result, research on indigenous population histories has typically 

relied on genetic samples from only a subset of people in indigenous communities — 

namely, only those who trace all or most of their ancestors to the indigenous inhabitants of 

the Americas prior to the arrival of Europeans. Genetic diversity in these individuals is 

presumed to reflect population processes that preceded European colonialism, providing 

insights into more ancient events.  

This approach often excludes individuals who, in the parlance of population 

genetics, are described as “admixed” — individuals who have some combination of 

indigenous and non-indigenous ancestors. Genetic samples from these individuals have 

sometimes been collected but not analyzed, and at other times, they have simply not been 

collected at all. The rationale underlying these sampling practices is that for researchers 

wishing to study the deep migratory history of the Americas, it is thought to be preferable 

to exclude all those whose “genetic ancestry” reflects more recent population histories of 

settler colonialism. Similarly, in recent years, genomic reconstructions of indigenous 

population histories have relied on statistical “masking” techniques, or computational 

methods that “hide” the portions of a person’s genome that might be inherited from non-

indigenous ancestors. These methods have been intended to reduce or eliminate inferences 
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drawn from “non-indigenous” portions of a person’s DNA to avoid confounding 

conclusions about pre-colonial histories (Reich et al. 2012, Rasmussen et al. 2015, 

Raghavan et al. 2015) — although it is important to note that the “indigenous” portions of 

a person’s DNA may have also been reshaped by events in the colonial era and might not 

provide a perfect window into pre-colonial times either. In other words, indigenous peoples 

did not suddenly cease to move after the arrival of Europeans, quite the contrary. 

Notably, individuals have also sometimes been excluded from genetic analysis 

because they have ancestors from multiple indigenous groups. The ostensible “problem” 

with sampling these individuals is not genetic exchange between indigenous and non-

indigenous peoples, but rather genetic exchange between various tribal or First Nations 

groups. Such genetic exchange conflicts with assumptions of population isolation, 

differentiation, and genetic purity that underlie many conventional population genetic 

models, and individuals with multiple tribal or First Nations affiliations complicate the 

process of scientific classification, so geneticists have sometimes found it easier to simply 

ignore their existence. 

As a result of these approaches, much has been learned about the initial peopling 

of the Americas, but less consideration has been given to (1) the population dynamics after 

the initial peopling of the continents, (2) the genetic correlates of settler colonialism 

resulting from disease, warfare, genocide, and forced relocations, and (3) the dramatic 

growth of Native American and First Nations populations beginning in the 20th century. 

These sampling practices have also led to an incomplete understanding of genetic diversity 

in indigenous communities today, because some people who are socially recognized as 

community members have been excluded from genetic analysis. In recent years, a small 

number of studies have begun to address some of these issues (e.g., Bolnick et al. 2003, 
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Wang et al. 2004, Bolnick et al. 2006, Hunley and Healy 2011, Moreno-Estrada et al. 2013, 

and Moreno-Estrada et al. 2014, among others). However, the dominant narratives of 

genetic research in the Americas have largely centered around only certain indigenous 

bodies, histories, and concerns, to the exclusion of others.  

These ongoing labors of inclusions and exclusions, motivated by scientific desires 

to discern the “pure” from the “mixed” as a way to access and reproduce certain histories 

over others, have helped shape what bodies and histories count as indigenous in various 

material, biological, and political terms. What constitutes indigenous (or any other form 

of) belonging is not given by “nature” or by biological studies of it; indigeneity is not a 

pre-existing category passively waiting to be described by a geneticist. Rather, as used in 

genetics, this category is material-discursive, emerging in and through scientific practices 

where what is understood as “indigenous” — and what is knowable about the genetic 

diversity of indigenous peoples — is profoundly shaped by the ideals and expectations of 

largely non-indigenous scientists. For example, romantic notions of indigenous peoples as 

isolated, pure, exotic, and primitive others have long been used in colonial states as a way 

to mark indigenous peoples in a world outside modernity. Such assumptions resonate 

within contemporary genetic sampling and other scientific practices today, where 

ostensibly pure, genetically isolated people who are presumed to be untouched by colonial 

processes are studied as relics of a more distant past. Furthermore, as population genetic 

research has worked to characterize the indigenous body and indigenous past, it has also 

served to naturalize the specific sociohistorical conditions of settler colonialism in which 

the terms “indigenous” and “non-indigenous” have come to have particular meanings.  

Material feminist philosopher Karen Barad notes that “scientific apparatuses 

constrain the material conditions of possibility and impossibility of mattering: they enact 
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what matters and what is excluded from mattering” (Barad 2007). In “Meeting the Universe 

Halfway: Quantum Physics and the Entanglement of Matter and Meaning”, Barad argues 

that there is an inseparability between objects and the apparatuses that we use to make 

knowledge about them, and that they rely on each other for their mutual intelligibility. In 

other words, she suggests that there are no intrinsic properties in “nature” that exist 

independently of the scientific apparatuses, structures, and systems that are used to describe 

them, and we must understand all of these aspects as part of one process. Yet scientific 

apparatuses are not purely deterministic. Rather, certain scientific apparatuses make room 

for certain kinds of material possibilities, but not others. In the case of population histories 

in the Americas, for example, the criteria of “biological purity” precludes certain 

indigenous bodies and histories from surfacing in discourses of population genetics. 

Because of this, Barad argues, no scientific inquiries are ever neutral. They are always 

already historical, political, and power-laden, and it is important to be cognizant of how 

these issues shape the production of scientific knowledge.  

In this paper, we follow Barad’s and other material feminist scholars’ dual usage of 

“matter” and “materialize”. We take these terms to refer to both 1) the power and politics 

of science and the way it shapes what can be known about bodies, and 2) the various 

corporealities that science does and does not bring into being. Our goal is to question 

boundary-making practices in population genetics and the “conditions of possibility” 

through which some indigenous bodies and histories come to matter in population genetics, 

while others are forgotten or erased. We want to highlight the apparatuses that produce 

certain material configurations of indigenous belonging, and work from other social and 

theoretical frameworks that might enable us to move towards possible alternatives. 
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This study focuses on a collection of frozen blood samples that were originally 

acquired by various population geneticists and medical researchers in the 1990s and 

subsequently curated by David Glenn Smith at the University of California, Davis. The 

blood samples in this collection were obtained from indigenous people on the basis of their 

tribal or First Nations affiliation for the purpose of reconstructing population histories. 

However, some of the collected samples were omitted from previous genetic analysis 

because they came from research participants who reported having non-indigenous 

ancestors or affiliations with multiple tribes and/or First Nations groups. These decisions 

indicate that scientists have used different criteria for genetic sampling during the various 

stages of research. Initially, tribal or First Nations affiliations and self-identifications were 

used to determine whose blood should be collected. Researchers then used blood quantum 

data and self-reported ancestry information to select the fraction of samples deemed 

relevant to a particular area of population history research. Thus, within population 

genetics, there have been different criteria for indigenous belonging at different stages of 

research, which act to negotiate and renegotiate who counts as indigenous between the 

syringe and the laboratory bench. These negotiations reflect a layered set of decisions on 

the part of genetic scientists, where what constitutes indigeneity is progressively sifted and 

reduced by the boundary-making apparatuses of scientific research. In other words, while 

many people are socially and culturally cohered as indigenous, only certain indigenous 

bodies come to “matter” within the technoscientific worlds of human population genetics. 

Many of the unanalyzed blood samples have remained frozen and unstudied for two 

decades, and with them, certain bodily knowledges of settler colonialism have become 

deanimated in cold blood, deemed irrelevant to dominant scientific discourses about 

indigenous population history. This biological tissue collection therefore represents an 
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opportunity to explore how scientific boundary-making practices have shaped knowledge 

about indigenous DNA, bodies, and histories. To this end, we undertook a genetic analysis 

of some of the unstudied blood samples to help elucidate the consequences of sampling 

decisions in previous scientific studies of Native American and First Nations population 

history. We sought to evaluate how our understandings of genetic diversity and population 

histories change when we reorient modes of knowledge production in science, privileging 

tribal and First Nations belonging rather than excluding samples that do not fit within the 

criteria for inclusion in ancient migrations research, or within traditional scientific 

definitions of purity.  

We therefore obtained and analyzed DNA from frozen blood samples that had been 

collected from self-identified tribal and First Nations members, but excluded from past 

studies because they reported having ancestors who were either non-indigenous or from 

multiple indigenous groups. We analyzed the maternally-inherited mitochondrial DNA 

(mtDNA) and, for individuals with Y chromosomes, the paternally-inherited Y-

chromosome DNA (NRY). We also obtained mtDNA data generated by other researchers 

who collected samples from Native American tribes and First Nations groups without the 

use of specific “ancestry” criteria (Schroeder et al. 2011, Hughes et al. 2016). We then 

assessed genetic diversity patterns across four geographical regions in North America and 

compared them to the diversity estimates that had been previously reported for those 

regions. Our results demonstrate that sampling criteria have a significant effect on the 

patterns of genetic diversity and population histories that can be reconstructed. These 

results more fully illuminate genetic diversity among contemporary Native American tribes 

and First Nations groups, and highlight potential genetic correlates of recent colonial 

histories that have been vastly understudied in North America. Thus, our study 
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demonstrates how the boundary-making apparatuses of genetic research have helped shape 

who counts as indigenous and what histories are made visible in human population 

genetics. Our findings also draw further attention to critical distinctions between how non-

indigenous scientists and various indigenous peoples negotiate issues of kinship, identity, 

and group belonging. 
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MATERIALS AND METHODS 

Samples for Genetic Analysis 

We selected 54 blood samples for analysis that had previously been collected from 

self-identified tribal members but excluded from past studies because they reported having 

non-indigenous ancestors and/or affiliations with multiple indigenous groups (Lorenz and 

Smith 1997). These samples were curated at David Glenn Smith’s Molecular Anthropology 

Lab at the University of California, Davis. The sampled individuals provided informed 

consent for population genetic analyses, and approval for human subjects research was 

granted by the University of Texas at Austin (IRB protocol 2012-05-0105) and by the 

University of California, Davis (IRB protocol ). To increase our sample size, we also 

included genetic data from 21 individuals from California and 101 individuals from British 

Columbia generated by other researchers (Schroeder et al. 2011, Hughes et al. 2016). 

Individuals were sampled from the California and British Columbia groups on the basis of 

tribal and First Nations affiliation, without strict requirements for “genetic purity”. 

Because some indigenous groups are concerned that population genetic studies 

could have potential ramifications for federal recognition status and issues of legal 

sovereignty, we conducted our analysis at the regional level, rather than at the tribal or First 

Nations level, in order to maintain anonymity as much as possible. Based on the geographic 

locations and culture histories of tribal and First Nations communities, we grouped samples 

into four geographical regions across North America: Southeast (n=21), Northern Plains 

(n=30), West (n=24), and Pacific Northwest (n=101) (Figure 1.1). Genetic data from 

previous studies of these geographical regions were obtained from published articles as 

well as an unpublished dissertation (n=228) (Lorenz and Smith 1997, Kaestle 1998, Smith 

et al. 1999, Malhi et al. 2001, Bolnick and Smith, 2003, Bolnick et al. 2006). Including 
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both the newly collected and previously reported datasets, 404 genetic samples were 

analyzed in this study altogether. 

DNA Extraction and Genetic Analysis 

For samples obtained from the frozen blood collection, DNA was extracted from 

100 µL of serum using the DNeasy Blood and Tissue kit (Qiagen), following the 

manufacturer’s protocol except in the final step, where DNA was eluted in 50-100 µL of 

Buffer EB. Negative control extractions (blanks) were included to monitor for possible 

contamination during all extractions. Following DNA extraction, we used the polymerase 

chain reaction (PCR) to amplify a 650 base pair (bp) fragment of mtDNA, including the 

first hypervariable region (HVR1), following Kemp et al. (2010). Mitochondrial DNA is 

inherited solely from one’s mother. Because it traces a single line of ancestors (one’s 

matriline), mitochondrial DNA sheds light on maternal relatedness and population 

movements, and has been widely studied in human migrations research. PCR products 

were submitted to the DNA Sequencing Facility at the University of Texas at Austin for 

purification and sequencing. Sequences were analyzed using Sequencher v. 5.3, and were 

aligned to the Cambridge Reference Sequence to identify sequence differences using a 

custom function in the [R] statistical environment. Mitochondrial haplotypes (specific 

mtDNA sequences) and haplogroups (clusters of related haplotypes that share some 

mutations because they are descended from a common ancestor) were determined via 

MitoTools, using the PhyloTree mtDNA database (build 17).  

We also analyzed a length dimorphism in the amelogenin gene to detect the 

presence of X and Y chromosomes in each sample (following Sullivan et al. 1993). This 

method targets a portion of the first intron of the amelogenin gene, which is present in the 

homologous regions of the X and Y chromosomes. Because the allele on the X 
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chromosome is 6 bp shorter than the allele on the Y chromosome (due to a deletion), PCR 

amplification of this locus yields a single amplicon for people with only X chromosomes, 

but two amplicons (6 bp different in length) for people with X and Y chromosomes. We 

assessed amplicon sizes using gel electrophoresis with 6% polyacrylamide gels. Because 

the blood samples we tested were two decades old and the DNA had somewhat degraded 

over time, amelogenin assays were conducted twice for some samples to control for allelic 

dropout, or the random failure of one allele to amplify during PCR. If a Y chromosome 

was detected on the first assay, the sample was not repeated. However, if only X 

chromosomes were detected on the first assay, the samples were tested a second time to 

assess the potential for allelic dropout and to confirm that only X chromosomes were 

present. Results from sample NP23 (Table 1.2) provide an example of allelic dropout in 

this study, where the first PCR failed to detect the presence of a Y chromosome allele. 

Since there are many possible combinations of sex chromosomes in humans and it is not 

possible to determine precisely how many X or Y chromosomes are present using the 

amelogenin approach, we do not report genotypes as simply XX or XY. In addition, 

because combinations of sex chromosomes may or may not correspond with a person’s sex 

or gender identity, we avoided the conventional assignment of “male” and “female” using 

amelogenin tests. Instead, if no Y chromosome was detected after two assays, the 

consensus of amelogenin runs was determined to be “X only”. For samples that yielded X 

chromosomes on the first run but re-amplification was not successful, no consensus was 

determined. Finally, if a Y chromosome was detected in either of the two runs for any 

sample, the consensus of the amelogenin runs was determined to be “X and Y”.  

For samples from individuals with Y chromosomes, we analyzed 23 short tandem 

repeats (STRs – short repeated sequences of DNA that vary in the number of repeats in 
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each individual) found only on the paternally-inherited portion of the Y chromosome 

(known as the non-recombining region of the Y chromosome, or NRY). Because the NRY 

is inherited only from one’s father, NRY analysis has been used extensively in population 

history research to assess paternal relatedness, patrilineal descent, and population 

movements, similar to how mtDNA is used to study maternal relatedness and matrilineal 

descent. STR profiles for each sample were generated using the PowerPlex Y23 System 

(Promega), following the manufacturer’s protocol. Multiplexed PCR products were 

submitted to the DNA Sequencing Facility at the University of Texas at Austin for 

fragment analysis to determine the number of repeats at each Y-STR. Y chromosome 

haplotypes were defined as the combination of alleles present at the 23 STR loci analyzed, 

and Y chromosome haplogroups were determined from STR profiles using the online 

haplogroup predictor tools available from Whit-Athey and the Y-Chromosome STR 

Haplotype Reference Database (YHRD), with the area selection field set for equal priors. 

As some of the blood samples had degraded over time, STRs amplified sporadically and 

we were only able to determine paternal haplogroups and haplotypes with >70% 

confidence for some of the Y chromosome-bearing individuals. 

Statistical Analysis 

Haplogroup and haplotype frequencies for each geographical region were 

calculated for both the mtDNA and NRY datasets in the [R] statistical environment (R 

Core Team). Newly collected haplotype data were then combined with previously 

published data to create composite datasets for each of the four geographical regions. For 

mtDNA data, all sequences were trimmed to the 294 nucleotides (nucleotide positions 

16,069-16,362) sequenced in all samples (i.e., those sequenced in this study and those 
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sequenced in previous studies). Nucleotide position (np) 16183 was excluded from analysis 

because it is not independent of a C mutation at np 16189 (Bolnick and Smith 2003).  

For each of the four geographical regions in North America, we calculated indices 

of genetic diversity for mtDNA sequences, including nucleotide, haplotype, and 

haplogroup diversity, in Arlequin v. 3.5 (Excoffier and Lischer, 2010). These indices 

summarize the average number of differences between sequences at each nucleotide 

position, the probability of randomly selecting two different alleles from the population (a 

measure of allele richness), and the probability of randomly selecting two different 

haplogroups from the population (a measure of lineage richness), respectively. The higher 

each of these indices are, the greater the genetic diversity that is present in the population. 

We also calculated the same indices based only on the previously published sequences for 

each geographical region and compared these to our composite datasets (Lorenz and Smith 

1997, Kaestle 1998, Smith et al. 1999, Malhi et al. 2001, Bolnick and Smith, 2003, Bolnick 

et al. 2006).  

To detect any statistically significant differences in measures of genetic diversity, 

we compared estimates from the previously published data to estimates from our composite 

dataset for each geographical region using paired t-tests with a Holm-Bonferroni correction 

for multiple comparisons (Holm 1979). Fisher’s exact tests of population differentiation 

were also performed in Arlequin v 3.5 to evaluate whether the addition of individuals with 

non-indigenous ancestors or multiple tribal or First Nations affiliations resulted in any 

significant changes in Native American regional genetic diversity. For NRY data, we 

calculated haplogroup frequencies for our composite dataset and compared them to 

previous studies that had either limited analysis to individuals with mainly indigenous 

ancestors (Bolnick et al. 2006) or included all tribally affiliated people in the analysis 
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(Hughes et al. 2016). Taken together, these comparisons allowed us to assess the 

consequences of scientific sampling decisions on measures of genetic diversity by adding 

samples into the analysis that had previously been excluded. 

To evaluate spatial trends in the indices of genetic diversity for mtDNA sequences, 

we used three linear regression analyses to assess relationships between geography and 

either haplogroup diversity or the proportion of genetic sequences shared with non-

indigenous peoples. For each region in this study (East, Northern Plains, West, and Pacific 

Northwest), we selected the center of the geographical range where each tribal or First 

Nations group was located at the time of European colonization and calculated the linear 

distances in miles starting from the Southeast (0 miles away) to the Pacific Northwest 

(2245 miles away). We then regressed these distances against each measure of genetic 

diversity for both previously published datasets and our composite datasets. 

For mtDNA and NRY hapotypes not found among the indigenous peoples of North 

America prior to the arrival of Europeans (Tamm et al. 2007), we used GenBank’s Basic 

Local Alignment Search Tool (megablast) to search human genetic databases for highly 

similar DNA sequences. The geographic location of the sequences with highest genetic 

affinity and frequency were used to identify the most likely population with which 

indigenous people share either maternal or paternal ancestors. However, while the 

predicted populations are the most likely source, these lineages may have also been brought 

to the Americas from populations where they are found at lower frequencies, from regions 

where they are not present today but where they were present earlier during U.S. 

colonization, or from a geographic area or population which has not yet been sampled, and 

thus is not represented in public genomic databases for comparison.  
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RESULTS 

Mitochondrial DNA sequences were generated for all 54 frozen blood samples 

(Table 1.1). While we had little difficulty amplifying mtDNA from these samples, as it is 

present in many copies in each cell, single-copy nuclear loci on sex chromosomes, 

including the amelogenin and Y-STR loci, amplified with more variable success. This 

pattern of amplification was not surprising, as the blood samples used in this study were 

collected more than 20 years ago and many had degraded over time. Of the 54 samples 

yielding mtDNA, we were able to genotype the amelogenin length dimorphism in a total 

of 34 (63%) individuals. We determined that 15 (44%) of these individuals carried X and 

Y chromosomes, while 19 (56%) individuals carried only X chromosomes (Table 1.2). Y 

chromosome STR data (ranging from 1-16 STRs per sample) were obtained for 8 (53%) 

of the 15 Y chromosome-bearing samples (Table 1.3). Six of these 15 samples (40%) 

yielded enough STR loci to estimate paternally-inherited NRY haplogroups with greater 

than 70% probability (Table 1.3).  

The 54 mtDNA sequences generated here were combined with 122 sequences 

recently collected by other researchers (Schroeder et al. 2011, Hughes et al. 2016) and with 

previously published studies of the frozen blood collection (Lorenz and Smith 1997, 

Kaestle 1998, Smith et al. 1999, Malhi et al. 2001, Bolnick and Smith, 2003, Bolnick et al. 

2006). Indices of genetic diversity for this composite dataset, and for the previously 

published sequences from each geographical region, are given in Table 1.4. Notably, when 

all tribal or First Nations-affiliated individuals were included in the genetic analysis, rather 

than excluding individuals with ancestors who were either non-indigenous or from multiple 

indigenous groups, there are important differences in estimates of genetic diversity for all 

four geographical regions (Tables 1.5 and 1.6). Nucleotide diversity estimates are lower in 
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the composite datasets for the Northern Plains and the West, but greater in the composite 

datasets for both the Southeast and the Pacific Northwest. However, pairwise t-tests 

indicate that differences between current and previous measures of nucleotide diversity 

were not statistically significant (p ≥ 0.94, Table 1.5). All measures of haplotype and 

haplogroup diversity are greater in the composite datasets for the four geographical regions 

testedespecially in the Pacific Northwest, where haplotype diversity increased by 12% 

and haplogroup diversity increased by 57%. Pairwise t-tests indicate that the differences 

between previous and current measures of haplotype and haplogroup diversity are highly 

statistically significant for all four geographical regions (p<0.001, Table 1.5). 

Haplotypes and haplogroups inherited from non-indigenous ancestors are more 

highly represented in our analysis than in previous studies, more fully reflecting settler 

colonial population histories (Table 1.7 and 1.8, respectively). Mitochondrial haplogroups 

A2, B2, C1, D1, and X2a are the maternally-inherited haplogroups commonly found 

among Native Americans and First Nations peoples prior to the arrival of non-indigenous 

people, and they were the ones identified by previous genetic studies of these populations. 

In contrast, our study identified low frequencies (3-6%) of mtDNA haplogroups H, I, J, 

and L in the indigenous communitiessequences which reflect genetic exchange with non-

indigenous people who came or were forcibly brought to the Americas from Europe and 

Africa (Table 1.1). For the paternally-inherited Y chromosome lineages, a similar pattern 

is seen. While previous studies have shown that some members of Native American tribes 

and First Nations share paternal ancestors with non-indigenous populations (Bolnick et al. 

2006), a greater proportion of these haplogroups are detected when tribal or First Nations 

affiliation is used in lieu of specific “genetic ancestry” requirements (Tables 1.3 and 1.8). 

These results show that both tribal and First Nations communities in North America share 
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some paternal ancestors with populations who came to the Americas from Europe, Africa, 

or elsewhere in the last five centuries. Notably, the frequency of these paternal lineages is 

much higher than the frequency of maternal lineages inherited from non-indigenous 

ancestors over the same time period, reflecting a marked asymmetry in the proportion of 

paternal and maternal ancestors shared with non-indigenous populations. This pattern is 

consistent with previous studies of gender-biased genetic exchange in the Americas (for 

example, Bolnick et al. 2006). 

Strikingly, some measures of genetic diversity exhibit spatial patterning across the 

four geographical regions included in this study. While spatial assessments were not 

possible with the NRY data due to limited sample sizes, linear regression analyses show 

that both mtDNA haplogroup diversity and the frequencies of mtDNA haplogroups shared 

with non-indigenous populations gradually decline from the Southeast to the Northwest 

(Figures 1.2 and 1.3). Our composite dataset (including all tribally- or First Nations-

affiliated people) identified a stronger relationship with East-to-West geography (Figure 

1.2B, R2=0.63) than did our meta-analysis of previously published datasets that excluded 

some community members (Figure 1.2A, R2=0.46), though neither relationship was 

statistically significant (p ≥ 0.13). However, the proportion of mtDNA haplogroups shared 

with non-indigenous populations showed a strong and statistically significant westward 

decline from Southeast to Northwest (Figure 1.2C, R2=0.95, p=0.016).  
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DISCUSSION 

Genetic Sampling, Boundary-making, and the Production of Indigenous Histories 

By reconsidering the criteria used to select samples for genetic studies with tribal 

and First Nations groups, this study illuminates the consequences of scientific boundary-

making practices, showing how the power-laden politics of inclusions and exclusions have 

helped shape knowledge about indigenous bodies, communities, and histories. When we 

use the criteria of tribal and First Nations membership as entry points for genetic research, 

rather than limiting analysis to the subset of individuals who facilitate ancient migrations 

research, a different understanding of genetic diversity emergesone that reflects at least 

three aspects of settler colonial histories in the Americas that had been rendered partially 

or fully invisible by earlier studies. First, our results demonstrate that the genetic 

composition of Native American and First Nations communities is more diverse than 

previously suggested. We identified both mtDNA and Y chromosome haplogroups among 

tribes and First Nations groups that trace to non-indigenous ancestors and had not been 

identified in previous studies of this blood collection. We also found that the frequency of 

Y chromosome lineages inherited from non-indigenous ancestors is much higher than the 

frequency of mtDNA lineages from such ancestors. This marked asymmetry is consistent 

with both scientific and oral histories of settler colonial expansion in North America, which 

was largely male driven, and likely reflects layered histories of sexual violence, 

partnership, intermarriage, and other relations. While this pattern has been described in 

previous studies (for example, Bolnick et al. 2006), we show that patterns of patrilineal 

genetic diversity – and genetic diversity more broadly among tribes and First Nations 

groups – have been more influenced by settler colonialism than previous studies suggested. 
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Second, our meta-analysis of previously published genetic data indicates that 

previous studies could only detect a weak relationship between geography and haplogroup 

diversity. This relationship is much stronger when all tribal and First Nations affiliated 

people are included in the analysis, showing a more pronounced decline in haplogroup 

diversity across the landscape from Southeast to Northwest. Most importantly, we found 

that the fraction of mtDNA haplogroups that trace to non-indigenous ancestors is strongly 

and significantly shaped by geographic distance from the Southeast, where European 

colonialism had many of its earliest impacts in North America. This genetic pattern had 

been rendered invisible by the boundary-making apparatuses of science that shaped earlier 

analyses of this and other sample sets. To our knowledge, no previous study has identified 

an east-to-west decline in mtDNA haplogroup diversity or the fraction of mtDNA that 

tribes and First Nations trace to non-indigenous ancestors. While our findings are 

somewhat limited by sample size (n=404) and our focus on a small region of mtDNA, these 

patterns may reflect the spatial and temporal correlates of European colonialism as settlers 

expanded westward across the continent over the last five centuries. Many of the earliest 

colonies were established in eastern North America, so greater haplogroup diversity and 

mtDNA tracing to non-indigenous ancestors in the Southeast may reflect the longer 

duration of colonial settlement and history of interaction between indigenous and non-

indigenous peoples in this region. Alternatively, these patterns might reflect differences in 

regional colonization processes and/or shifting patterns of indigenous resistance as settlers 

expanded across the continent. Further studies are needed to distinguish among these 

possibilities and better elucidate the genetic correlates of settler colonialism in North 

America. 
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Finally, when we used our composite dataset to identify the most likely non-

indigenous populations with which indigenous people share maternal or paternal ancestors, 

we found that tribal and First Nations groups share some ancestors with populations living 

in Europe and Africa. These inferences are based on the geographic region(s) where each 

haplogroup is found at the highest frequency in contemporary, previously studied 

populations, and thus are not definitive ties to specific ancestral populations. Nevertheless, 

these patterns of genetic diversity are consistent with – and clearly reflect – the histories of 

European settler colonialism and the West African slave trade in the Americas. 

Thus, the picture of genetic diversity in indigenous communities that emerges from 

this study is one that must be understood as a result of both ancient and more recent 

demographic processes. By privileging tribal and First Nations affiliations over criteria of 

“biological purity”, this analysis helps recover histories and demographic processes that 

have frequently been overlooked in population genetics, and more fully elucidates the 

genetic correlates of settler colonialism.  

Narratives of Indigeneity in Science and Society 

Indigenous belongings, indigenous histories, and indigenous identities are all 

contested spaces in science. Various productions of indigeneity within population genetics 

should be recognized as entangled with settler colonial power structures, the legacies of 

racial science, and the layered politics and legal context of kinship and belonging in 

indigenous communities. However, the dominant apparatus of genetic research in North 

America, which has overwhelmingly focused on the “origins” of indigenous people and 

the ancient peopling of the Americas, has largely constituted indigenous bodies as only 

those which carry narrowly defined “indigenous DNA”. But who has been counted as 

indigenous in bioscientific terms, and whose identity is otherwise materially and socially 
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constituted as indigenous, do not always align. Genetic research in North America has too 

often enacted what matters in terms of deep history, and has excluded histories of settler 

colonialism, along with their genetic correlates. It has also excluded many people whose 

identity, regardless of their DNA, is cohered in relation to indigenous peoples. These 

practices, like the centuries of western science that precede them, too often depict Native 

Americans in anachronistic terms, as biological and cultural relics of a distant past. 

Conventional population genetic histories in the Americas produce and authenticate certain 

kinds of indigeneity by privileging “genetic ancestries” over social affiliations, shaping 

who counts as indigenous in terms of ancient patterns of genetic diversity. Such scientific 

narratives have long been deployed as a way to mark others as being in a world outside of 

colonial modernity, and are the foundation upon which settler claims to indigenous 

belonging have unfolded through direct-to-consumer “genetic ancestry” tests in recent 

decades (TallBear 2013). 

Such claims highlight the distinctions between various modes of defining who is 

indigenous. Non-indigenous scientists and settler communities have long defined 

indigeneity in narrow biological and anachronistic terms, characterizing indigenous 

peoples as ancient and isolated others – unchanging relics of the past. Increasingly 

articulated in the form of "genetic ancestry”, such delineations of indigenous belonging 

emphasize biological origins and genetic relations, and differ substantially from the 

understandings of belonging prevalent in many indigenous communities (TallBear 2013). 

Many indigenous communities recognize belonging as constituting more than one’s 

genetic relations, instead being the product of a complex web of social and cultural ties, 

political factors, lineal descent, and legal codes (TallBear 2013). In other words, many 

tribes and First Nations communities see belonging more as a layered set of social and 
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material connections, and less exclusively as a question of one’s “biological origin” 

(Kolopenuk 2014).  

In this context, the idea of “indigenous DNA” that emerges out of human 

population genetics research deserves further attention. Indigeneity, or any other way that 

humans constitute identity and belonging, is not given by scientific mediations of DNA, 

but by one’s embeddedness in certain material and social worlds (TallBear 2013). DNA 

alone therefore cannot be indigenous, and it does not identify who is indigenous and who 

is not. Thus, while there are indigenous people, there is no meaningful basis for defining 

“indigenous DNA” as something apart from indigenous personhood3. Indigenous people 

may share genetic sequences in common with non-indigenous people as a result of various 

settler colonial histories, but that alone does not establish or deny their belonging within 

indigenous communities. Likewise, non-indigenous people may have DNA sequences that 

they inherited from an indigenous ancestor, but that alone does not make them 

“indigenous” (TallBear 2015). Instead, what bodies, identities, cultures, relations, and 

histories count as indigenous is ultimately a question for various indigenous communities 

and not for non-indigenous geneticists or other scientists. These issues, guided by the 

insights of queer, feminist, and indigenous critiques of genomics, shaped the research 

design employed in this study. Thus, rather than seeking to define what is “indigenous” in 

genetic terms, the starting point of this study to center the sovereignty of tribal and First 

                                                 
3 Elsewhere, and in agreement with the work of Kim TallBear (2013), I have noted in autoethnographical 

writing that white settlers cannot use the DNA that they have inherited from indigenous ancestor(s) as a 

means for appropriating indigenous identities. Instead, drawing upon the positionalities of white trash 

people, I have argued that in spite of DNA that I may have inherited from my indigenous ancestors, without 

specific ties to indigenous communities my identity can only be understood as constituted within the 

histories and social relations of white trash people in the pastoral and urban south. Similarly, Māori scholar 

Māui Hudson has used the notion of “taonga” (treasure to be stewarded) to describe how DNA that he 

inherited from his Scottish ancestor(s) can be understood as appropriated within his Māori identity. In both 

cases, DNA cannot be understood as something apart from various modes of personhood and social 

belonging. 
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Nations groups to define who they are and who is a member of their communities. From 

there, we worked to recover the various invisibilized political and social processes that 

shape bodies, and to attend to bodily knowledges that have been hidden or lost in previous 

studies of population history in the Americas. 

The conventional omission of “admixed” members of indigenous communities – 

those who have ancestors from multiple tribes, First Nations, or non-indigenous 

populations – reflects a number of power relations that are shaped by the embeddedness of 

genetic science within settler colonial regimes and their desires to define indigeneity in 

terms of the entangled concepts of purity, death, and extinction (TallBear 2013). The 

urgency of ongoing scientific gazes directed at biologically “pure” Natives over those who 

are increasingly “mixed” emerges from and contributes to the imagined extinction of 

indigenous peoples and their ongoing histories. This has the effect of reifying biological 

notions of difference and reinvigorating false perceptions of the “disappearing Native”.   

Such views hinge on the strict scientific definition of indigenous people through 

narrow patterns of genetic variation that existed in the Americas in the past, conflating 

notions of purity and stasis with those of survival. But themes of purity, mixedness, life, 

and death are unevenly mapped across communities in settler colonial societies. While 

increasing mixedness is often seen as the end of indigenous peoples, mixedness among 

settlers is used to support certain idealized notions of the virtuous, liberal, multicultural 

citizen in contemporary settler colonial society (TallBear 2015) – the white settler with 

“indigenous DNA” through whose body we are ostensibly supposed to witness the final 

resolution of colonial history, the morally sanctioned possession of indigenous lands, and 

the emergence of an imagined postracial era. Mixedness, then, simultaneously signals 

indigenous extinction and settler futures in the colonial consciousness (TallBear 2015).  



34 

 

In this regard, genetics has served the larger political structures of colonialism, 

where settlers imagine and enact their own identities and entitlements through collective 

imaginings of settler life and indigenous death (Morgensen 2011, TallBear 2013). 

However, as scientists and settler societies wrestle with their colonial anxieties about the 

increasing “mixedness” among indigenous people, indigenous scholars like Chris 

Andersen have reasserted that notions of tribe and nation, rather than biological purity or 

mixedness, are those which are foundational to indigenous survival and modes of 

belonging (Andersen 2014). These issues underscore crucial distinctions between 

bioscientific and indigenous articulations of belonging. While some avenues of population 

genetic research have long reproduced themes of indigenous death and facilitated certain 

possessions of indigenous bodies, identities, and cultures, the genetic diversity of tribal and 

First Nations-affiliated people seen in this study instead underscore notions of vitality, 

dynamism, and survival through centuries of settler colonialism. 

These concerns have shaped the research design and scientific concepts employed 

in this study. For example, we avoided employing the population genetics concept of 

“admixture” wherever possible. Instead, we refer to “genetic exchange”, to highlight how 

DNA sequences are shared between populations without the racializing presumptions that 

there were ever pure “source” populations. We also emphasize that DNA is inextricably 

embedded in and shaped by social processes. From these starting points, we have worked 

to recover the various political and social processes that shape bodies but have been made 

invisible, and to attend to bodily knowledges that have been hidden or lost in previous 

studies of population history in the Americas. 

Thus, by reanalyzing previously collected genetic samples, we have interrogated 

the scientific boundary-making practices and “conditions of possibility” through which 
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certain indigenous bodies and histories have been materialized to the exclusion of others. 

By privileging tribal and First Nations definitions of who counts as indigenous, we recover 

recent population histories that have been understudied in population genetics – histories 

that make the genetic correlates of settler colonialism visible, and that do not presume that 

indigenous peoples are unchanging relics of the past, but ongoing, dynamic, living 

communities. Our research further destabilizes the idea of indigenous belonging as 

something that is biologically constituted, and begins to shift the boundary-making 

practices of population genetics that conventionally serve to bring only certain indigenous 

histories, and certain indigenous bodies, into view. 
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Table 1.1: Mitochondrial DNA Haplogroups and Haplotypes. 

Sample 
ID 

Geographic 
Region 

mtDNA 
Haplogroup 

mtDNA 
Haplotype 

NP1 Northern Plains C 223T, 298C, 327T 

NP2 Northern Plains H NA 

NP3 Northern Plains C 172C, 223T, 298C, 325C, 327T 

NP4 Northern Plains A 111T, 223T, 230G, 290T, 319A, 362C 

NP5 Northern Plains A 111T, 192T, 223T, 290T, 319A, 362C 

NP6 Northern Plains X 189C, 223T, 278T 

NP7 Northern Plains C 223T, 298C, 325C, 327T 

NP8 Northern Plains A 111T, 209C, 223T, 290T, 319A, 362C 

NP9 Northern Plains C 223T, 298C, 327T 

NP10 Northern Plains B 179A, 181C, 182C, 183C, 189C, 217C 

NP11 Northern Plains A 111T, 223T, 290T, 319A, 362C 

NP12 Northern Plains A 111T, 192T, 223T, 290T, 319A, 362C 

NP13 Northern Plains A 111T, 223T, 290T, 319A, 325C, 362C 

NP14 Northern Plains A 126C, 129A, 223T, 290T, 319A, 324C, 362C 

NP15 Northern Plains C 223T, 298C, 327T, 362C 

NP16 Northern Plains C 195C, 223T, 298C, 327T 

NP17 Northern Plains C 223T, 294T, 298C, 325C, 327T 

NP18 Northern Plains C 223T, 298C, 327T 

NP19 Northern Plains A 111T, 223T, 290T, 319A, 362C 

NP20 Northern Plains A 111T, 223T, 230G, 290T, 319A, 362C 

NP21 Northern Plains B 182C, 183C, 189C, 217C 

NP22 Northern Plains B 182C, 183C, 189C, 217C 

NP23 Northern Plains D 223T, 303A, 325C, 362C 

NP24 Northern Plains H 354T 
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NP25 Northern Plains H NA 

NP26 Northern Plains A 111T, 223T, 290T, 319A, 362C 

NP27 Northern Plains H 148T 

NP28 Northern Plains B 182C, 189C, 217C 

NP29 Northern Plains C 223T, 298C, 327T 

NP30 Northern Plains H 162G 

SE1 Southeast A 111T, 223T, 290T, 319A, 362C 

SE2 Southeast L 124C, 223T, 278T, 362C 

SE3 Southeast C 223T, 298C, 325C, 327T 

SE4 Southeast J 069T, 126C, 261T 

SE5 Southeast B 153A, 183C, 189C, 217C 

SE6 Southeast A 111T, 223T, 290T, 319A, 362C 

SE7 Southeast C 223T, 298C, 325C, 327T 

SE8 Southeast A 111T, 223T, 290T, 319A, 362C 

SE9 Southeast A 111T, 223T, 249C, 290T, 319A, 362C 

SE10 Southeast I 129A, 223T 

SE11 Southeast A 111T, 223T, 290T, 319A, 362C 

SE12 Southeast A 111T, 184T, 223T, 290T, 319A, 362C 

SE13 Southeast H NA 

SE14 Southeast A 111T, 223T, 249C, 290T, 319A, 362C 

SE15 Southeast H 304C 

SE16 Southeast A 104T, 111T, 223T, 290T, 319A, 362C 

SE17 Southeast A 111T, 223T, 234T, 250T, 290T, 319A, 362C 

SE18 Southeast A 111T, 223T, 249C, 290T, 311C, 319A, 362C 

SE19 Southeast A 111T, 223T, 249C, 290T, 319A, 362C 

SE20 Southeast B 114T, 179T, 182C, 189C, 217C 

Table 1.1 cont. 
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SE21 Southeast B 114T, 179T, 182C, 189C, 217C 

W1 West B 183C, 189C, 217C 

W2 West B 111T, 189C, 217C 

W3 West A 111T, 223T, 290T, 319A, 362C 

Table 1.1 cont. 

 

mtDNA haplogroups are reported with names that are composed of a combination of 

letters and numbers. Haplotypes are often reported as sets of DNA differences 

(mutations) from a particular reference sequence. For example, the mtDNA haplotype 

“16,223T, 16,298C, and 16,327T” indicates that there are three differences from the 

Cambridge reference sequence. The first difference is a thymine that is present at the 

16,223rd position of the mtDNA, the second difference is a cytosine at the 16,298th 

position, and so on. In this study, sequence differences are reported from nucleotide 

positions 16,069-16,362. NA-no differences from the Cambridge reference sequence. 
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Table 1.2: X and Y chromosomes identified by the amelogenin assay. 

Sample ID First Test Second Test Consensus 

NP2 X only X only X only 

NP6 X only X only X only 

NP7 X only X only X only 

NP9 X and Y  X and Y 

NP11 X and Y  X and Y 

NP13 X and Y  X and Y 

NP14 X and Y  X and Y 

NP15 X and Y  X and Y 

NP16 X only X only X only 

NP18 X only X only X only 

NP20 X and Y  X and Y 

NP21 X and Y  X and Y 

NP22 X and Y  X and Y 

NP23 X only X and Y X and Y 

NP24 X and Y  X and Y 

NP25 X and Y  X and Y 

NP26 X only X only X only 

NP27 X only X only X only 

NP29 X only X only X only 

NP30 X and Y X only X and Y 

SE2 X only X only X only 

SE4 X only X only X only 

SE6 X and Y  X and Y 
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SE7 X only X only X only 

SE8 X and Y X only X and Y 

SE9 X only X only X only 

SE10 X only X only X only 

SE11 X only X only X only 

SE12 X only X only X only 

SE13 X and Y  X and Y 

SE16 X only X only X only 

SE19 X only X only X only 

SE20 X only X only X only 

SE21 X only X only X only 

Table 1.2 cont.
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Table 1.3: NRY Haplotypes and Haplogroups. 

Sample 
DYS 
385a 

DYS 
385b 

DYS 
389I 

DYS 
389II 

DYS 
390 

DYS 
391 

DYS 
393 

DYS 
437 

DYS 
438 

DYS 
448 

DYS 
456 

DYS 
458 

DYS 
481 

DYS 
533 

DYS 
549 

DYS 
570 

DYS 
576 

DYS 
635 

HG* F† Pr‡ 

NP9 15 16 13 28 23 9 12 14 10 21  19 30 12 12  17 23 I2a 29 100 

NP13            18          

NP14     23 10 12   22 14  27 11 13 19 16 20 J1 43 99.7 

NP15      11      17    16      

NP20   14   10 13     16 25 10 11 18 20  Q 54 73.2 

SE8   14   10 13   19  17 25   18 19 22 Q 76 96.7 

SE9 14 16 14 30  10  14 11   17       Q 82 86.3 

SE13   13   11  14 12   17 22   17   R1b 73 99.6 

STR analyses assess differences in the length of short repeated sequences of DNA. For example, the STR position on the NRY known 

as DYS385 is made up of 4 nucleotide bases, [GAAA], which are repeated between 7 and 28 times depending on the person. At this 

STR position, some people have [GAAA]7 while others have up to [GAAA]28, indicating that the “GAAA” sequence is repeated 7 

and 28 times in a row, respectively.  

*HG: Haplogroup assignment 
†F: Whit-Athey predicted fitness score 
‡Pr: Probability of haplogroup prediction(%) 
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Table 1.4: Indices of mtDNA Genetic Diversity. 

Region Sample Set N 
Nucleotide 

Diversity (π) 
Haplotype 
Diversity 

Haplogroup 
Diversity 

Southeast 
Bolnick and Smith 2003 63 0.0195 0.9601 0.7394 

Current Study* 84 0.0196 0.9745 0.7516 

Northern 
Plains 

Lorenz and Smith 1997 
Smith et al. 1999 
Malhi et al. 2001 

80 0.0247 0.9766 0.6696 

Current Study* 110 0.0225 0.9852 0.7063 

West 

Lorenz and Smith 1997 
Kaestle 1998 

66 0.0188 0.9534 0.6876 

Current Study* 90 0.0186 0.9678 0.7051 

Pacific 
Northwest 

Lorenz and Smith 1997 19 0.0165 0.8421 0.3801 

Current Study* 120 0.0184 0.9471 0.5986 

*Composite dataset including previously published and newly collected HVR1 data 
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Table 1.5: Paired T-Tests Between Previous and Current Estimates of Genetic Diversity 

for each Geographic Region. 

  
Holm-Bonferroni corrected p-values 

 Nucleotide Diversity Haplotype Diversity Haplogroup Diversity 

East 1.00 <0.0001 <0.01 

Plains 0.94 <0.0001 <0.0001 

West 1.00 <0.0001 <0.001 

NorthWest 1.00 <0.0001 <0.0001 
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Table 1.6: Fisher’s Exact Test of Population Differentiation. 

   East Plains West Northwest 

  Previous Current Previous Current Previous Current Previous Current 

East 
Previous 0.0000               

Current 0.0327 0.0000        

Plains 
Previous 0.0316 0.0245 0.0000       

Current 0.0272 0.0202 0.0191 0.0000      

West 
Previous 0.0433 0.0360 0.0350 0.0305 0.0000     

Current 0.0360 0.0289 0.0278 0.0235 0.0393 0.0000    

Northwest 
Previous 0.0939 0.0856 0.0846 0.0794 0.0973 0.0889 0.0000   

Current 0.0466 0.0394 0.0384 0.0339 0.0499 0.0427 0.0995 0.0000 
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Table 1.7: Mitochondrial Haplogroup Frequencies. 

Haplogroup 
Southeast Northern Plains West Northwest 

Previous Current Previous Current Previous Current Previous Current 

A 0.32 0.36 0.50 0.45 0.05 0.04 0.79 0.60 

B 0.30 0.26 0.15 0.15 0.42 0.42 0.11 0.03 

C 0.25 0.23 0.23 0.25 0.27 0.21 0.05 0.16 

D 0.13 0.10 - 0.01 0.26 0.28 0.05 0.13 

X - - 0.13 0.10 - - - 0.07 

Other - 0.06 - 0.05 - 0.04 - 0.03 
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Table 1.8: NRY Haplogroup Frequencies. 

Haplogroup 
Bolnick et al. 2006* 

(n=98) 
Hughes et al. 2016† 

(n=61) 
Current Study‡ 

(n=165) 

Q 0.59 0.30 0.48 

C 0.02 0.06 0.04 

Other 0.39 0.64 0.48 

*Data includes NRY haplogroups reported for the Southeast region only 
†Data includes NRY haplogroups reported for the Pacific Northwest region only 
‡Composite dataset including previously published and newly collected NRY data 
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Figure 1.1: Geographic Regions and Samples Sizes. 

 

 
 

 

Small black circles indicate midpoints for the four geographic regions included in this 

study – Southeast, Northern Plains, West, and Pacific Northwest. Blue shaded circles are 

proportional to the relative sample sizes in the composite dataset of mtDNA sequences, 

which includes both newly sequenced and previously published genetic data. 
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Figure 1.2: Linear Regression Analyses of Haplogroup Diversity, the Fraction of 

Haplogroups from Non-Indigenous Ancestors, and Distance. 

 

  
  

  

  
Linear regression analyses of genetic diversity indices as a function of distance starting 

from the Southeast (0 miles) to the Northwest (2245 miles). (A) Haplogroup diversity 

estimates calculated from previously published mtDNA sequences. (B) Haplogroup 

diversity estimates calculated from the composite dataset of newly collected and 

previously published mtDNA sequences. (C) The fraction of mtDNA lineages (%) among 

tribal and First Nation affiliated people from the composite dataset that is shared with 

non-indigenous settler populations. 
 

A 

B 

C 



51 

 

Figure 1.3: Westward Decline in Proportion of mtDNA Settler Populations. 

 

 
 
 

 

Small black circles indicate midpoints for the four geographic regions included in this 

study. Blue shaded circles are proportional to the mtDNA sample sizes available for each 

region. The width between the dashed lines, highlighted at four key points by black 

arrows, indicate the relative frequency of mtDNA haplogroups that are shared with non-

indigenous people. These frequencies decrease across the continent from Southeast to 

Northwest, possibly mirroring the spatial and temporal history of westward settler 

colonial expansion. 
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CHAPTER TWO: Evaluating Deamination-based Approaches for 

Inferring DNA Methylation: Insights from Five Ancient Genomes.  

 

BACKGROUND 

Paleoepigenetics is an emerging area of ancient DNA (aDNA) research that 

reconstructs epigenetic modifications to DNA from ancient organisms and evaluates their 

environmental and evolutionary significance. In recent years, a small but growing number 

of studies have shown that cytosine methylation patterns can be successfully recovered 

from aDNA (reviewed in Gokhman et al. 2016). So far, paleoepigenetic research has 

centered on the reconstruction of one type of epigenetic modification, known as cytosine 

methylation, where a methyl group (-CH3) is added to cytosines in CpG dinucleotide 

contexts. Cytosine methylation influences chromatin structure and regulates gene 

expression, and has been implicated in developmental processes, disease etiologies, and 

mediating interactions between the genome and its physical and social environments 

(Thayer and Kuzawa 2011, Thayer and Non 2016, Vinkers et al. 2016).  

Previous studies have relied on two primary methods to reconstruct ancient 

methylation patterns: damage-dependent analysis (DDA) and bisulfite sequencing (BS-

Seq). Most studies of cytosine methylation in aDNA have used DDA to infer methylation 

patterns from post-mortem damage to cytosines. This method exploits the fact that 

methylated and unmethylated cytosines degrade differently after death. Specifically, 

unmethylated cytosines degrade to uracils, while methylated cytosines degrade to thymines 

(Figure 2.1). When uracils are removed using aDNA damage repair protocols (Briggs et 

al. 2010, Gokhman et al. 2014) or through library construction with DNA proofreading 

enzymes (Pedersen et al. 2014), the remaining thymine misincorporations that stem from 
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the degradation of methylated cytosines can be used to estimate cytosine methylation. 

Using patterns of thymine misincorporations, genome-wide methylation patterns have now 

been inferred in dozens of ancient humans, Neanderthals and Denisovans, and many 

ancient mammals including horses, polar bears, mammoths, and aurochs (Briggs et al. 

2010, Pedersen et al. 2014, Gokhman et al. 2014, Seguin-Orlando 2015, Hanghøj et al. 

2016).   

Alternatively, bisulfite sequencing (BS-Seq) approaches have been used to 

reconstruct methylation in aDNA. Because methylated cytosines are resistant to sodium 

bisulfite treatment (NaHSO3), while unmethylated cytosines are converted to uracils, any 

cytosines detected after bisulfite conversion are methylated (Figure 2.1). BS-Seq has 

previously been used to detect cytosine methylation in one ancient bison (Llamas et al. 

2012), ancient Egyptian barley (Smith et al. 2014), and ancient humans from a variety of 

archaeological sites in the Americas (Smith et al. 2015).   

 

  



54 

 

Figure 2.1: Detecting methylation statuses of cytosine residues from their deamination 

products. (adapted from Smith et al. 2015) 

 
5-mc: 5-methylcytosine; 5-hmc: 5-hydroxymethylcytosine; 5-ms: 5-methylenesulfonate; 

5-hmu: 5-hydroxymethyluracil; NaHSO3: Sodium bisulfite. (A) Unmethylated cytosines 

are converted to uracil at high efficiency by bisulfite conversion and at low efficiency by 

post-mortem deamination. After conversion, no methylation is detected by either bisulfite 

sequencing or damage-dependent analysis. (B) Methylated cytosines are unaffected by 

bisulfite conversion, while post-mortem deamination converts methylated cytosines to 

thymines. Methylation is detected by the presence of undamaged cytosines in bisulfite 

sequencing, and by the presence of thymines at damaged positions in misincorporation 

analysis. (C) Hydroxymethylated cytosines are converted to cytosine 5-methelensulfonate 

by bisulfite conversion, and 5-hydroxymethyluracil by post-mortem deamination. 

Methylated cytosines are detected at undamaged positions by bisulfite sequencing, but 

cannot be discriminated from non-hydroxylated methylcytosines using this method. It is 

currently unclear whether misincorporation analysis will be able to detect methylation in 

the form of 5-hydroxymethyluracil, but the UDG-endoVIII approach may be able to do 

so. 

 

There are a variety of tradeoffs entailed with the different methodological 

approaches for reconstructing methylation patterns in aDNA. BS-Seq provides high 

resolution methylation data, and can be used to assess the methylation status of single 

cytosines. This method has successfully been applied to samples that have relatively good 

preservation of nuclear aDNA, including bison remains preserved in permafrost (Llamas 

et al. 2012) and human remains up to 6000 years old (Smith et al. 2015). However, because 



55 

 

sodium bisulfite treatment degrades up to 90% of a sample’s DNA (Grunau et al. 2001, 

Tanaka and Okamoto 2007), it is less feasible for samples with poor aDNA preservation. 

Conversely, DDA can be used to reconstruct methylation patterns without inducing further 

chemical degradation to aDNA. However, these approaches rely on post-mortem 

deamination of cytosines, which is a stochastic and incomplete process that is many orders 

of magnitude less efficient than bisulfite conversion. Because only a fraction of cytosines 

are converted to uracils by post-mortem processes, methylation levels cannot be estimated 

at single nucleotide resolution using DDA. Instead, methylation levels must be 

reconstructed over regions spanning tens or hundreds of nucleotides at a time to maximize 

the probability that a single cytosine in a given genomic window will be deaminated. This 

approach therefore yields much lower resolution than BS-Seq. Thus, the feasibility of 

different methods of reconstructing ancient methylation patterns is driven by 

considerations such as sample age, rarity, and aDNA preservation, and different methods 

yield different scales of paleoepigenetic data. 

While paleoepigenetics promises new insights into evolutionary processes and 

lived experiences in ancient societies, such inferences will be constrained by the resolution 

of paleoepigenetic data. For DDA methods, the interaction between deamination rate and 

paleoepigenetic resolution has not been well characterized in the literature, nor has there 

been consideration of how this interaction may affect the kinds of inferences that can be 

made from paleoepigenetic data. In this study, we characterize the relationship between 

cytosine deamination rate and epigenetic resolution in aDNA from human skeletal samples, 

and assess what kinds of evolutionary and life-history inferences could be drawn given 

various scales of epigenome resolution. 
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MATERIALS AND METHODS 

Bioarchaeological Samples 

We obtained dental and skeletal samples of five individuals from different 

archaeological localities ranging in age from approximately 180-9000 years old (Table 

2.1). Each of the dental samples included in this study received approval for genetic 

analysis. Members of the Kenzaitze tribe contacted Ripan Malhi for genetic analysis of the 

KEN9 individual. Memoranda of understanding (MOUs) containing approvals for genetic 

analysis for KEN9 were signed with members of the Kenzaitze Tribe and the Village of 

Tyonek. Genetic analysis of the PRH532 and PRH940 individuals was done in 

collaboration with the Metlakatla and Lax Kw’alaams communities, and tribal councils 

provided approvals for genetic analysis of these individuals. For the PT11 individual, we 

obtained permission for genetic analysis from the Secretaria de Estado de Cultura, Direcion 

Provincial de Antropologia in Catamarca, Argentina, with support from the local 

community in Antofagasta de la Sierra. 

 

Table 2.1: Bioarchaeological Samples. 

Sample ID Burial Location Age (ybp) 

B10 Grassmere Plantation, Nashville, Tennesee 180 

KEN9 Kenai Peninsula, Alaska 200 

PRH532 Prince Rupert Harbor, British Columbia 2000 

PRH940 Lucy Island, British Columbia 5600 

PT11 Antofagasta de la Sierra, Argentina 9043 

 

DNA Extraction, Library Construction, and Sequencing 

The surfaces of ancient dental and skeletal samples were decontaminated by 

immersion in 6% sodium hypochlorite (full strength bleach) for 3-10 minutes and then 
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rinsed 2-3 times with DNA-free water. Samples were then UV irradiated in a 254-nm 

emitting DNA crosslinker for 5-10 minutes on each side and dried overnight. For samples 

B10, KEN9, PRH532, and PRH940, 200 mg of powder was obtained from the tooth root 

using a dremel tool fitted with a dental burr. Ancient DNA was then extracted from tooth 

powder using the Qiagen MinElute column based method reported in Lindo et al. (2017). 

For sample PT11, aDNA was obtained using the silica dioxide, guanidinium thiocyanate 

method reported in Rohland and Hofreiter (2007) but with the modifications reported in 

Bolnick et al. (2012) for minimally destructive extraction. 

DNA libraries were constructed with 5 ng–1 μg of each aDNA extract using the 

NEBNext Ultra DNA Library Preparation Kit for Illumina (New England Biolabs) 

following the manufacturer’s protocol. Library preparations included incubations with 

USER enzyme to remove any uracils that had been formed as a result of post-mortem 

deamination of unmethylated cytosines (Figure 2.1). Samples B10, KEN9, and PRH532 

were treated with a partial UDG repair for 15-minutes, similar to the protocol described by 

Rohland et al. (2014), while PRH940 and PT11 were treated with a full UDG repair for 

three hours following Briggs et al. (2010). The partial repair protocol is intended to 

maintain a small fraction of the misincorporations that stem from the deamination of 

unmethylated cytosines. Because this form of cytosine damage is characteristic of degraded 

aDNA, but not observed in sequences obtained from contemporary samples, the fraction 

of misincorporations remaining after partial UDG repair allow for the authentication of 

aDNA sequences. In contrast, the full repair protocol is designed to remove virtually all 

the uracils stemming from the degradation of unmethylated cytosines. Following full 

repair, the remaining fraction of C-to-T misincorporations stem largely from thymines that 

result from the degradation of methylated cytosines, which are not removed via UDG 
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repair. Sample-specific DNA barcodes were ligated to each sample library in the aDNA 

facility, and a portion of the libraries were pooled and submitted for shotgun sequencing 

on the Illumina HiSeq 2000 platform at the High-Throughput Sequencing Division of the 

W. M. Keck Biotechnology Center at the University of Illinois Urbana-Champaign. Whole 

mitogenome sequences were determined from resulting shotgun reads by alignment to the 

Cambridge Reference Sequence (rCRS). A second portion of each library was enriched for 

sites of epigenetic regulation using the SureSelect Methyl-Seq Target Enrichment System 

for Illumina (Agilent Technologies) following the manufacturer’s protocol. Libraries were 

then pooled and submitted for sequencing on the Illumina HiSeq 2000 platform at the High-

Throughput Sequencing Division of the W. M. Keck Biotechnology Center at the 

University of Illinois Urbana-Champaign. 

Authentication 

Ancient DNA obtained from archaeological remains is highly degraded and 

requires strict precautions to minimize contamination from exogenous sources of DNA and 

authenticate results (Kaestle and Horsburgh 2002, Paabo et al. 2004, Gilbert et al. 2005, 

Willerslev and Cooper 2005, Shapiro 2012). All phases of work with bioarchaeological 

samples, including aDNA extractions, Illumina library constructions, and library 

enrichments were conducted in specialized aDNA facilities at the University of Illinois 

Urbana-Champaign and the University of Texas at Austin. Both aDNA facilities are 

restricted-access, positive air pressure, HEPA-filter ventilated spaces with overhead UV-

irradiating lights that are dedicated to pre-PCR analyses of aDNA. The post-PCR facilities 

are located in separate buildings, and all movement of materials and personnel was 

unidirectional (from pre-PCR to post-PCR facility) to prevent contamination from highly 

concentrated, post-PCR amplified DNA. Additional precautions included the use of sterile 
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and disposable hooded coveralls, hair covers, face masks, sleeve covers, dedicated shoes, 

and two pairs of gloves. We frequently decontaminated laboratory benchtops and 

equipment with 6% sodium hypochlorite (full strength bleach), and decontaminated the 

entire lab space weekly with a 3% sodium hypochlorite solution (1:1::bleach:water, v/v). 

The facilities were also irradiated with a 254-nm emitting overhead UV light for 12 hours 

following each use, while tubes, containers, and reagents were UV irradiated (when 

possible) in a 254-nm emitting DNA cross-linker for 15 minutes prior to use. Negative 

controls were included in every phase of sample preparation, including blanks for DNA 

extraction and Illumina library builds. Each library included sample-specific barcodes so 

we could computationally exclude any non-endogenous sequences introduced after library 

construction (i.e., during the subsequent library enrichment and Illumina sequencing steps).  

We conducted three sets of a posteriori computational analyses to 1) verify that 

resulting Illumina sequencing reads showed deamination patterns that are characteristic of 

degraded aDNA, 2) assess the potential impacts of exogenous DNA contamination, and to 

3) evaluate whether the dinucleotide contexts of cytosine misincorporation rates match 

expectations for in vivo methylation. First, each sequence dataset was analyzed using 

MapDamage 2.0 (Jόnsson et al. 2013) to assess misincorporation patterns and to evaluate 

whether the sequence reads show expected patterns of C-to-T transitions concentrated 

towards fragment ends, which is characteristic of aDNA (Briggs et al. 2010). While UDG-

repair does remove many of the misincorporations in DNA libraries, we still expect to see 

signs of DNA degradation because the use of partial-UDG repair protocols is designed to 

maintain a small fraction of misincorporations (Rohland et al. 2014). In addition, even 

when using full repair protocols, some cytosine misincorporations will still remain because 

1) UDG treatment cannot remove uracils that stem from the deamination of unmethylated 
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cytosines if those uracils are not phosphorylated (which can happen at the ends of degraded 

fragments), and 2) UDG cannot remove the thymines that result from the deamination of 

methylated cytosines. 

Next, we used mitogenome reads to evaluate the rates of non-endogenous 

contamination from deamination patterns using the program Schmutzi (Renaud et al. 

2015). In addition, rates of contamination were estimated from mitogenome sequences by 

calling an endogenous consensus, and then comparing that consensus sequence to a 

database of possible contaminants using Schmutzi (Renaud et al. 2015) and contamMix 

(Fu et al. 2013). Finally, we assessed whether deamination rates were diagnostic of in vivo 

methylation by evaluating the dinucleotide contexts of C-to-T misincorporations. While 

methylation has been reported in a variety of dinucleotide contexts (CpA, CpC, CpG, and 

CpT), the vast majority of methylated cytosines in mammals are found in CpG 

dinucleotides, when cytosines immediately precede a guanine in the DNA sequence (Patil 

et al. 2014). Because most uracils resulting from the degradation of unmethylated cytosines 

were removed with UDG treatment, the remaining fraction of C-to-T misincorporations in 

the DNA sequencing reads should stem from thymines that result from the degradation of 

methylated cytosines in CpG dinucleotides. We therefore compared the rates of C-to-T 

misincorporations in each of the four dinucleotide contexts (CpA, CpC, CpG, and CpT) to 

evaluate whether these misincorporations are diagnostic of methylated cytosines (Briggs 

et al. 2010, Gokhman et al. 2014, and Pedersen et al. 2014). If deamination reflects in vivo 

methylation patterns, C-to-T transitions should be relatively higher in CpG dinucleotides 

than in other dinucleotide contexts. 
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Reconstruction of Cytosine Methylation 

As a result of post-mortem processes, a fraction of the unmethylated cytosines in 

the genome degrade to uracils, while a fraction of the methylated cytosines degrade to 

thymines (Figure 2.1). When uracils are removed by incubation with UDG, the remaining 

fraction of C-to-T misincorporations in the genome should result from the deamination of 

methylated cytosines. Previous studies have shown that rates of C-to-T misincorporations 

in CpG dinucleotides can be used to reconstruct methylation patterns in aDNA (Briggs et 

al. 2010, Pedersen et al. 2014, Gokhman et al. 2014, Seguin-Orlando et al. 2015, Hanghøl 

et al. 2016).  

Building on these findings, we developed a computational pipeline to infer 

methylation patterns from Agilent target-enriched aDNA sequence data. Briefly, 

sequencing adapters and sample barcodes were removed using the cutadapt package in 

python. We then removed the first and last nucleotide of every read, because USER-

mediated removal of uracils is prohibited whenever terminal uracils are not 

phosphorylated. Since such uracils would result from the degradation of unmethylated 

cytosines, they would confound misincorporation-based estimates of cytosine methylation. 

Reads were further trimmed using fastqc quality filters. Sequencing reads were aligned to 

the human reference sequence (hg19) using bwa mem and duplicates were removed via 

samtools rmdup. Using samtools mpileup and bcftools, base composition was determined 

at every nucleotide position in the genome that was covered by at least one read.  Next, we 

calculated the fraction of thymine misincorporations present in CpG dinucleotides 

following the approaches reported in Gokhman et al. (2014) and Pedersen et al (2014). To 

control for the influence of polymorphic sites on C-to-T misincorporation rates, we 

disregarded any positions where we observed a greater or equal proportion of G-to-A 
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transitions on the second position of CpG dinucleotides on the negative strands. We also 

disregarded any C-to-T transitions in known polymorphic positions reported in the NCBI 

dbSNP database.  

Statistical Analysis 

Based on previous studies (Pedersen et al. 2014, Gokhman et al. 2014), we defined 

a summary statistic, Mres, that can be used to determine the optimal methylome resolution 

for each aDNA sample. Mres is determined by calculating the minimum number of 

consecutive nucleotides (window size) necessary to produce the maximum correlation 

between cytosine deamination patterns in aDNA and methylation levels of corresponding 

genomic regions in publicly available Reduced Representation Bisulfite Sequencing 

(RRBS) data generated from contemporary osteoblasts (ENCODE: ENCSR000DEU). As 

of this study, no epigenomic data from contemporary dental samples was available. 

However, my analysis of LINE-1 methylation patterns in Chapter Three of this dissertation 

indicate that, at least for these retrotransposable loci, methylation patterns are highly 

correlated between several different tissues, and teeth and bone are expected to show highly 

similar patterns of cytosine methylation. 

In this study, Mres was determined for each autosomal chromosome across six 

different window scales, ranging from 50-300 nucleotide positions (nps) (50, 100, 150, 

200, 250, and 300). X and Y chromosomes were excluded from the analysis. Next, we 

assessed how methylome resolution relates to aDNA preservation using linear regression 

analysis of Mres against global genomic deamination rates for each genome from 

MapDamage 2.0 analyses. Finally, we assessed whether C-to-T misincorporations were 

greater in CpG dinucleotides than other dinucleotide contexts (CpA, CpC, and CpT) using 

the Kruskal-Wallis H Test. Shapiro-Wilk tests, quantile-quantile plots, and histogram plots 
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indicated that the misincorporation data were not normally distributed, so a non-parametric 

comparison of variance was used. Statistical analyses were performed using custom 

pipelines in the python, [R], and bash environments, and plots were generated using the 

ggplot2 package in [R] (R Core Team 2017). 
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RESULTS 

Shotgun Sequencing and Mitogenome Analysis 

Mitogenome analysis for samples KEN9, PRH532, PRH940, and PT11 yielded 

mtDNA haplogroups that are commonly found among Native Americans (Table 2.2). The 

mitogenome analysis of sample B10 yielded a mtDNA haplogroup that is common 

throughout Africa and the African diaspora (Table 2.2). These haplogroup designations are 

consistent with expectations based on the archaeological context of each site, they are 

distinct from those of lab members involved in this project, and are unlikely to stem from 

contamination. 

 

Table 2.2: Results of Mitogenome Analysis. 

Sample mtDNA Haplogroup mtDNA Coverage 

B10 L1c2b1c 5.8X 

KEN9 A2 19.1X 

PRH532 A2p 20.0X 

PRH940 A2ag 51.6X 

PT11 D4h3a5 19.1X 

 

Schmutzi analyses of contamination rates using mitogenome reads yielded variable 

results. While the PRH940 and PT11 samples were estimated to have low rates of non-

endogenous sequences present, KEN9 and PRH532 yielded higher estimates of 

contamination (Table 2.3). Sample B10 yielded too few reads and was excluded from this 

analysis. However, these estimates stem solely from deamination patterns, and because the 

samples lack high levels of deamination because of preservation and/or UDG treatment, 

all samples in this analysis fell below the deamination levels that are recommended for 

Schmutzi analysis (5% deamination). Sequencing depth for each sample was also below 

the recommended minimum for Schmutzi analysis (>500 million molecules). Therefore, 
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the confidence in contamination estimates from this approach is limited. Contamination 

rates were also estimated via Schmutzi and contamMix analysis by determining a 

consensus for the endogenous mitochondrial sequence and then comparing any non-

endogenous sequences to a database of potential mtDNA contaminants. 

Table 2.3: Estimates of non-endogenous contamination from patterns of DNA 

deamination. 

Sample 

Bayesian Estimates of Percent Contamination (ranging from 

0-1) 

Lower Average Upper 

KEN9 0.45 0.42 0.48 

PRH532 0.99 0.98 0.99 

PRH940 0 0 0.01 

PT11 0 0 0.95 

 

Nuclear DNA Target Capture and Reconstruction of Cytosine Methylation 

Following Agilent Methyl-Seq target capture, each of the five samples yielded 

nuclear DNA sequences enriched for regions of the genome that are known to be sites of 

cytosine methylation (Table 2.5). However, sample B10 did not yield sufficient genome 

coverage and was excluded from further analysis. While coverage of the remaining 

genomes is also relatively low, it was sufficient enough to investigate how methylome 

resolution is related to deamination rates in the regions targeted by the MethylSeq probes. 

MapDamage analysis of nuclear DNA for PRH532, PRH940, and PT11 shows that C-to-

T misincorporations are concentrated near the 5' ends of sequencing reads, a pattern that is 

considered to be diagnostic of aDNA (Rohland et al. 2014, Figure 2.2). MapDamage results 

also show that genomic rates of deamination vary between the four targeted genomes in 

this study (Table 2.6). Because each of the DNA libraries were treated with UDG to remove 

uracils that result from the deamination of unmethylated cytosines, the remaining fraction 
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of C-to-T misincorporations for each of these genomes is low and stems largely from the 

deamination of methylated cytosines. 

 

Table 2.4: Results of Agilent MethylSeq Capture. 

Sample ID Coverage Total Reads Mapped Reads 

B10 1.1x 86,086,966 50,376 

KEN9 1.3x 136,745,581 126,194 

PRH532 1.3x 12,709,428 1,182,365 

PRH940 1.5x 55,396,576 126,298 

PT11 1.3x 24,399,975 9,584,519 
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Figure 2.2: MapDamage analysis showing frequencies and distributions of C-to-T misincorporations. 
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Table 2.5: Rates of genomic deamination for four Agilent-targeted genomes. 

Sample Genomic Deamination Rate 

KEN9 0.055 

PRH532 0.063 

PRH940 0.112 

PT11 0.059 

 

When we analyzed cytosine misincorporation rates by their dinucleotide context 

(Figure 2.3), we found that C-to-T transitions were highest in CpG dinucleotides, and were 

much lower in the other three dinucleotide contexts (CpA, CpC, and CpT). While Kruskal-

Wallis H Tests indicated that these differences were not statistically significant (p=0.40), 

this finding nonetheless suggests that the majority of C-to-T transitions stem from the 

deamination of methylated cytosines (Figure 2.1), and that these misincorporations can be 

used to estimate in vivo methylation levels. 

 

Figure 2.3: C-to-T misincorporations rates by dinucleotide context. 
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Finally, methylome resolutions were estimated from patterns of C-to-T 

misincorporations in CpG dinucleotides using the Agilent-targeted nuclear aDNA data. 

While sample B10 was excluded from analysis due to insufficient read density, Mres was 

evaluated for samples KEN9, PRH532, PRH940, and PT11. We found that methylome 

resolutions varied substantially across autosomes and that the chromosomes that yielded 

the highest resolutions were different between samples. The probability that any cytosine 

will become deaminated has been shown to be uniform across the genome (Gokhman et al. 

2014). However, while there is an equal likelihood of deamination across all chromosomes, 

our results indicate that chromosomal deamination rates are uneven, with some 

chromosomes showing higher rates of deamination than others (Figure 2.4). When 

methylome resolutions were estimated across all autosomes for each sample, values ranged 

between window sizes of 50-300 nps (Figures 2.4 and 2.5). For samples KEN9, PRH940, 

and PT11, Mres values of 50 nps generated the highest correlations with methylation 

patterns in contemporary osteoblasts, and larger window sizes generated progressively 

negative correlations for each of these samples. For each of these genomes, then, the 

smaller window sizes tested seem to have been slightly more predicative of in vivo 

methylation patterns than the larger ones. However, even at a window size of 50 nps, the 

correlations with endogenous methylation patterns were uniformly weak and sometimes 

negative. In other words, even the best window sizes identified in our analyses were neither 

strong nor precise predictors of in vivo methylation levels. Sample PRH532 generated 

stronger correlations with in vivo methylation patterns in contemporary osteoblasts, and 

Mres steadily increased up to the maximum window size of 300 nps. In this sample, then, 

the larger the window size, the better the correlation with in vivo methylation. Combining 

MapDamage and Mres results into a linear regression analysis, we found that genomic 
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deamination levels and methylome resolutions are inversely related (R2= -0.62), with 

higher deamination rates yielding more fine-scale methylome resolutions. However, this 

effect was not statistically significant (p=0.71). 

Figure 2.4: Correlation of C-to-T misincorporation rates with in vivo methylation of 

osteoblasts. 
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Figure 2.5: Fitted Mres values for the four ancient targeted genomes. 
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DISCUSSION 

The results presented in this study are likely to be derived from endogenous aDNA. 

While deamination rates for each of the genomes are low following UDG-repair, 

MapDamage results showed that the remaining C-to-T transitions are concentrated at the 

5’ end of reads, which is characteristic of degraded aDNA. In addition, the mitogenome 

consensus sequences for each sample fit with expectations based on their archaeological 

contexts, and do not correspond to any mitogenome sequences of lab members involved in 

the project, suggesting that samples were not contaminated during laboratory processing. 

However, Schmutzi estimates of exogenous contamination based on mitogenome reads 

yielded variable results. While estimates of exogenous contaminants for PRH940 and PT11 

were very low, KEN9 and PRH532 may have higher rates of exogenous contamination. 

However, these contamination estimates should be interpreted with caution for two 

reasons. First, all four samples had very low rates of deamination following UDG repair, 

which can lead to overestimations of endogenous contamination when these estimates are 

based on deamination patterns alone. Second, when using the Schmutzi implementation 

(Renaud et al. 2015), there were not enough molecules present to estimate contaminants 

by calculating the fraction of reads that do not match the expected consensus sequence. To 

evaluate whether the results from Schmutzi analysis were reliable, we calculated the 

fraction of reads that do not align to the predicted consensus sequences using contamMix 

(Fu et al. 2013), which does require high depth of coverage for estimating contamination 

rates. Finally, our analysis of thymine misincorporations shows that C-to-T transitions are 

vastly (though not significantly) over-represented in CpG dinucleotide contexts relative to 

other dinucleotide contexts, suggesting that these thymines stem from the deamination of 

methylated cytosines which are not removed via UDG-repair. 
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Because stable epigenetic differences can accompany morphological and other 

phenotypic changes, researchers have suggested that reconstructing epigenetic marks from 

aDNA could inform our understanding of past evolutionary processes, including 

speciation, animal and plant domestication, and other morphological changes that followed 

events like the Neolithic revolution (Orlando and Willerslev 2014, Gokhman et al. 2016). 

In addition, because changes in cytosine methylation can be more plastic and responsive 

to differences in lived experiences, including nutrition, stress, and other factors, it may also 

be possible to use ancient epigenetic marks to understand non-evolutionary processes and 

provide new insights into past lifeways. However, different environmental and 

evolutionary factors likely shape the epigenome at different scales, ranging from a single 

cytosine to many thousands of cytosines. For example, factors such as diet and stress can 

produce epigenetic changes at multiple different scales. Dietary and stress differences can 

influence methylation at the global genomic level, through changes in the methylation of 

retrotransposable elements (Zhang et al. 2011a, Zhang et al. 2011b). However, because 

methylation of repetitive elements can be shaped by the interaction of many factors 

simultaneously, these measures of global genomic methylation lack a single biological or 

functionally specific meaning. In contrast, dietary and stress differences may also be 

associated with highly localized, functionally specific epigenetic changes. For example, 

exposure to stress can alter NR3C1 methylation in as few as 1-5 cytosines in exon 1F/17 

(Vinkers et al. 2016). Therefore, the resolution with which paleoepigenomic studies can 

reconstruct methylation patterns in ancient genomes will greatly influence the kinds of 

inferences that can be made from ancient methylomes. 

Because DDA-based inferences of methylation rely on the stochastic and 

incomplete conversion of cytosines by post-mortem deamination, they can only be used to 
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estimate methylation at low resolutions over many dozens or even hundreds (or thousands) 

of nucleotides. In our analysis, Mres  ranged from 50-300 nps given deamination rates of 

0.06-1%.  Such resolutions will make it possible to infer larger-scale epigenetic effects, 

such as the methylation states of repetitive elements or differences in promoter/gene body 

methylation that could provide rough measures of gene activity. However, these resolutions 

are not well suited to more fine-scale epigenetic analyses, such as determining the 

methylation states of transcription factor binding sites in the promoter regions of dietary or 

stress-related genes, which often entails determining the methylation state of a single 

specific cytosine. Thus, while these DDA methods can be used to give a general assessment 

of larger-scale methylation patterns, they lack the resolution required to detect highly 

localized and functionally specific epigenetic changes.  

Our results point to important tradeoffs between the two main approaches that have 

been used to reconstruct cytosine methylation in aDNA. For samples with highly degraded 

aDNA and high rates of cytosine deamination, DDA methods are well suited for producing 

regional estimates of methylation that can be used to infer larger scale changes in genomic 

methylation. These methods may provide the only practical way to reconstruct methylation 

in highly degraded or rare samples where the destructive effects of bisulfite treatment 

would be infeasible, but they will likely always limit the kinds of inferences that can be 

obtained. Our findings suggest that it is unlikely that DDA methods could provide insights 

into functionally meaningful, site-specific epigenetic changes that accompany events like 

ancient famines or warfare. In contrast, BS-seq can be used to produce high resolution 

methylation data, but it will only be possible with samples with sufficiently well-preserved 

nuclear DNA because bisulfite treatment greatly reduces the number of template molecules 

available for analysis (Llamas et al. 2012, Smith et al. 2014, Smith et al. 2015). It should 
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be noted that BS-Seq is currently the only method that has been successfully applied to 

aDNA that can produce the methylome resolutions necessary to evaluate the fine-scale, 

functionally meaningful effects of ancient lived experiences. To date, BS-Seq is the only 

current method that could be used to reconstruct methylation in younger or more well-

preserved samples which lack the degree of cytosine deamination that is required for DDA 

methods. Future studies that wish to reconstruct the effects of ancient lived experiences, 

including the functionally specific outcomes of dietary differences and experiences of 

traumatic violence, must bear such distinctions in mind. In addition, future research could 

investigate whether other high-resolution methods of detecting cytosine methylation, such 

as mass spectrometry (Lin et al. 2016), could be used to detect methylation in degraded 

aDNA. 

The emerging field of paleoepigenetics faces a number of additional limitations and 

challenges that must be carefully considered in future studies. First, research in epigenetics 

already faces scrutiny, and has often been the locus of controversy because epigenetic 

findings have sometimes been seen as contradictory to existing paradigms of evolutionary 

thought. One example of such controversies can be seen in the ongoing debate around 

whether epigenetic marks can be in inherited across generations, which has often been seen 

as contradictory to 1) some of the early definitions of epigenetics that did not include the 

possibility of meiotic transfer of epigenetic information, and 2) Darwin’s theory of 

evolution by natural selection, which does not explicitly include the possibility that 

ancestors’ experiences might impact the phenotypes of their offspring (Tollefsbol 2014).  

Second, because paleoepigenetics involves epigenetic analysis of aDNA, this 

subfield of epigenetic research faces even more scrutiny than epigenetic studies of living 

organisms. Any research with aDNA faces a number of laboratory and analytical 
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challenges due to the post-mortem degradation of DNA sequences (Kaestle and Horsburgh 

2002, Paabo et al. 2004, Gilbert et al. 2005, Willerslev and Cooper 2005, Shapiro 2012). 

Ancient DNA is highly fragmented, plagued by sequence damage, and highly prone to 

exogenous contamination. Because of these issues, some of the earliest findings in the field 

of aDNA were shown to be erroneous. This led to the development of stringent criteria for 

authenticating aDNA results (Cooper and Poinar 2000). While the specific criteria for 

authenticating aDNA results have greatly changed following the advent of next generation 

sequencing technologies, they remain a central concern in the field, and are likely to be of 

even greater concern for studies of epigenetic marks.  

As we have demonstrated, patterns of DNA degradation impose limits on the scale 

of epigenetic changes that can be inferred with confidence. Given these challenges, it is 

important that emerging research in paleoepigenetics does not overstate its potential for 

reconstructing ancient lived experiences. While DDA methods have been proposed as one 

method for investigating ancient lived experiences, our research suggests that these insights 

have important constraints that limit what can be inferred about ancient lifeways. 
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CHAPTER THREE: LINE-1 Methylation in Ancient DNA from Wari 

and post-Wari Populations in Peru. 

 

BACKGROUND 

While the field of paleoepigenetics is breaking new ground with regard to the kinds 

of information that can be obtained from degraded ancient DNA (aDNA), the focus of the 

field has been largely methodological thus far. To date, no study has evaluated whether 

ancient methylation patterns reflect sociopolitical and environmental differences in ancient 

societies. In this study, we applied recent developments in the field of paleoepigenetics to 

answer archaeologically-informed questions about the decline of an ancient society of the 

central Peruvian Andes known as the Wari. In doing so, we provide new insights into how 

epigenetic data could reflect sociopolitical and environmental change over many centuries 

of Andean history.  

Paleoepigenetics 

Paleoepigenetics is an emerging area of aDNA research that reconstructs chemical 

modifications to DNA obtained from ancient organisms and evaluates their environmental 

and evolutionary significance. To date, paleoepigenetic research has largely centered on 

analyzing patterns of one kind of epigenetic modification, known as cytosine methylation, 

where a methyl group (-CH3) is attached to cytosines in cytosine-guanine (CpG) 

dinucleotides in the DNA sequence. Cytosine methylation has been extensively studied in 

living humans and other organisms, where it has been linked with developmental 

processes, disease etiologies, and mediating interactions between the genome and its 

physical and social environments (Portella and Esteller 2010, Thayer and Kuzawa 2011, 

Feil and Fraga 2012, Cantone and Fisher 2013, Thayer and Non 2016). Because stable 



80 

 

epigenetic differences may accompany morphological changes, researchers have suggested 

that reconstructing epigenetic marks from aDNA can inform past evolutionary processes, 

including species divergence, animal and plant domestication, and other morphological 

changes that followed events like the Neolithic revolution (Orlando and Willerslev 2014, 

Gokhman et al. 2016). In addition, because more plastic changes in cytosine methylation 

can be shaped by lived experiences, including nutrition, stress, and other factors (Thayer 

and Kuzawa 2011), it may also be possible to use ancient epigenetic marks to understand 

non-evolutionary processes, such as the impacts of social inequalities, sociopolitical 

transitions, and famines that occurred in distant past.  

Relatively little research has focused on analyzing epigenetic marks in ancient 

organisms, but a series of recent studies have shown that cytosine methylation can be 

reconstructed from aDNA using two methodological approaches: damage-dependent 

analysis (DDA) and bisulfite sequencing (BS-Seq). Most studies of cytosine methylation 

in aDNA have used DDA approaches to infer methylation patterns from post-mortem 

damage to cytosines. This method exploits the fact that methylated and unmethylated 

cytosines degrade differently after death. Specifically, unmethylated cytosines degrade to 

uracils, while methylated cytosines degrade to thymines (Figure 3.1). When uracils are 

removed using aDNA repair protocols (Briggs et al. 2010, Gokhman et al. 2014) or through 

library construction with DNA proofreading enzymes (Pedersen et al. 2014), the remaining 

thymine misincorporations that stem from the degradation of methylated cytosines can be 

used to estimate cytosine methylation. Using patterns of thymine misincorporations, 

genome-wide methylation patterns have now been inferred in dozens of ancient humans, 

Neanderthals and Denisovans, and many ancient mammals including horses, polar bears, 

mammoths, and aurochs (Briggs et al. 2010, Pedersen et al. 2014, Gokhman et al. 2014, 
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Seguin-Orlando 2015, Hanghøj et al. 2016).  Alternatively, bisulfite sequencing (BS-Seq) 

approaches have been used to reconstruct methylation in aDNA. Because methylated 

cytosines are resistant to sodium bisulfite treatment (NaHSO3) while unmethylated 

cytosines are converted to uracils, any cytosines detected after bisulfite conversion are 

methylated (Figure 3.1). BS-Seq has previously been used to detect cytosine methylation 

in one ancient bison (Llamas et al. 2012), ancient Egyptian barley (Smith et al. 2014), and 

ancient humans from a variety of archaeological sites across North America (Smith et al. 

2015).   

Given limitations in the abundance and availability of archaeological remains for 

genetic research, and variation in the quality of DNA preservation, there are tradeoffs 

between DDA and BS-Seq approaches for reconstructing methylation from aDNA. 

Because DDA methods rely on the presence of deaminated cytosines to detect methylation 

and do not involve further chemical treatment, this method may be preferable for older or 

rarer samples where less destructive methodologies may be necessary. DDA methods may 

also be preferable for highly degraded samples where there is sufficient deamination 

present to estimate methylation patterns (Smith et al. 2015, Smith et al. 2016, see chapter 

2). However, inferring methylation from deamination is less applicable to well-preserved 

samples where there may not be enough deamination present to reconstruct methylation 

patterns. Because sodium bisulfite treatment has been shown to degrade up to 90% of input 

DNA (Grunau et al. 2001, Tanaka and Okamoto 2007), these methods would be infeasible 

for highly degraded or rarer samples where minimally destructive approaches may be 

preferred. But BS-seq has proved effective for reconstructing methylation patterns in 

ancient samples with well-preserved DNA (Llamas et al. 2012, Smith et al. 2015). Finally, 

there are differences in the overall resolution of methylation that one can achieve with 
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different methods. While BS-Seq can be used to reconstruct the methylation status of single 

cytosines (highest resolution), DDA methods provide only regional estimates of 

methylation over many tens or hundreds of nucleotides (low resolution). 

 

Figure 3.1: Detecting methylation states of cytosine residues from their deamination 

products. (adapted from Smith et al. 2015) 

 
5-mc: 5-methylcytosine; 5-hmc: 5-hydroxymethylcytosine; 5-ms: 5-methylenesulfonate; 

5-hmu: 5-hydroxymethyluracil; NaHSO3: Sodium bisulfite. (A) Unmethylated cytosines 

are converted to uracil at high efficiency by bisulfite conversion and at low efficiency by 

post-mortem deamination. After conversion, no methylation is detected by either bisulfite 

sequencing or misincorporation analysis. (B) Methylated cytosines are unaffected by 

bisulfite conversion, while post-mortem deamination converts methylated cytosines to 

thymines. Methylation is detected by the presence of undamaged cytosines in bisulfite 

sequencing, and by the presence of thymines at damaged positions in misincorporation 

analysis. (C) Hydroxymethylated cytosines are converted to cytosine 5-methelensulfonate 

by bisulfite conversion, and 5-hydroxymethyluracil by post-mortem deamination. 

Methylated cytosines are detected at undamaged positions by bisulfite sequencing, but 

cannot be discriminated from non-hydroxylated methylcytosines using this method. It is 

currently unclear whether misincorporation analysis will be able to detect methylation in 

the form of 5-hydroxymethyluracil, but the UDG-endoVIII approach may be able to do 

so. 
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Tissue-Dependent Methylation 

Another concern about paleoepigenetic research stems from the fact that 

methylation patterns often vary from tissue to tissue, reflecting functional differences in 

gene expression (Christensen et al. 2009, Varley et al. 2013, Lokk et al. 2014). Thus, one 

potential limitation in epigenetic studies of gene-environment interactions in ancient 

humans is the lack of aDNA from the most physiologically relevant tissues, which are 

rarely preserved in archaeological contexts (Campos et al. 2012). For example, for research 

that is focused on the epigenetic correlates of stress, tissues from the hypothalamic-

pituitary-adrenal (HPA) axis would be the most physiologically relevant tissues. However, 

these soft tissues are only very rarely preserved in archaeological contexts and are therefore 

largely unavailable for paleoepigenomic research. It is important to note, though, that 

limitations posed by tissue-dependent methylation also apply to studies of cytosine 

methylation in living humans, where peripheral blood or saliva are often used in lieu of 

more invasive tissue sampling. Therefore, physiologically relevant tissues are not always 

strictly required for epigenetic research, because methylation patterns in peripheral tissues 

may be correlated with those of physiologically relevant tissues, or show similar responses 

to the stimulus under investigation.  

While a discrete set of methylated sites do differ between tissues, most of the 

genome shares common DNA methylation patterns across cell types. Recent studies have 

found that as many as 80% of all methylated regions are expected to be similar across 

tissues (Ziller et al. 2013). The more developmentally and functionally related tissues are, 

the more likely it is that their methylation patterns will be correlated. In addition, genes 

that are functionally relevant to a broad spectrum of different tissue activities, such as those 

related to stress, immunity, growth, and energy metabolism, would also be expected to 
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show similar methylation patterns across tissues. Conversely, methylation of genes whose 

function is highly specialized may be expected to differ between tissues. For most 

methylated regions, however, patterns observed in teeth and bone are likely to be conserved 

across tissues. Therefore, while methylation in osseous tissues would not be expected to be 

functionally related to every environmental stimulus, it could nevertheless serve as a useful 

biomarker for exposure to certain social and physical environments in the same way that 

peripheral tissues such as blood and buccal cells have been used in contemporary 

populations.  

It is relatively unclear how patterns of methylation derived from archaeologically 

available tissues such as teeth, hair, and bone compare with tissues that are more commonly 

studied in living populations, such as buccal cells or blood. To address some of these issues, 

we conducted a preliminary analysis to evaluate whether methylation patterns of Long 

Interspersed Nuclear Elements (LINE-1) are correlated between molars, buccal cells, 

whole blood, hair, and nails that were obtained from living humans, providing a means to 

help interpret ancient methylation patterns reconstructed from ancient teeth. LINEs are 

highly repetitive and CpG-dense sequences that have been widely used as a measure of 

global genomic methylation (Ricceri et al. 2014). While the full biological meaning and 

functional significance of LINE-1 methylation remains unclear, differences in LINE-1 

methylation have been linked with social and environmental differences including dietary 

disparities and social inequalities (Zhang et al. 2011a, Zhang et al. 2011b). For example, 

these studies have indicated that differences in lived experiences that are shaped by gender 

and ethnic inequalities can lead to a 2-3% decrease in average genomic methylation. We 

hypothesized that LINE-1 methylation should be correlated between different tissues, as it 

is not known to be functionally specific to any differentiated cell functions. However, 
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because LINE-1 methylation is known to be responsive to physical and social 

environments, we also hypothesized that differences in lived experiences could alter 

methylation of LINE-1 differently across tissues. In this study, we therefore conducted an 

analysis of LINE-1 methylation across multiple tissues in individuals that had different life 

histories. We use these data to interpret LINE-1 methylation patterns reconstructed from 

ancient skeletal remains. 

Overview of Wari Society in the Central Peruvian Andes 

 Beginning around 600 CE, the Wari emerged as the first expansive state societies 

in South America (Isbell 2004). From its large urban capitol of Huari in the Ayacucho 

Basin, the Wari culture spread through much of what is now northern, southern, and coastal 

Peru, achieving unprecedented influence across a vast area of the central Peruvian Andes 

(Schreiber 1992). The Wari expansion helped to reshape the sociopolitical organization 

and material culture of the region (Figure 3.2 and 3.3, Tung 2012). This process is evident 

in the use of Wari-style architecture across the central Andes, including “patios surrounded 

by narrow rectangular buildings, niched halls, and D-shaped buildings used for rituals”, the 

transformation of landscapes to increase agricultural production, and the construction of 

extensive roadways and trade networks (Isbell 1991, Schreiber 1991, Williams 2002, Tung 

2012). The influence of Wari culture is also evident in shifting mortuary traditions, in the 

Nasca region for example, people began interring people together in sepultures with Wari-

style grave offerings, a shift from previous mortuary practices where people had more 

commonly been interred in individual graves (Tung 2012). Other influences on material 

culture include widespread integration of Wari iconography into ceramic, textile, and 

metallurgical production throughout many regions of the central and southern Peruvian 

Andes (Tung 2012). Recent excavations are continuing to shed light on Wari material 
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culture. Beginning in 2010, a team of archaeologists led by Milosz Giersz and Roberto 

Pimentel Nita excavated a tomb at the site of El Castillo de Huarmey in northern, coastal 

Peru. This tomb is one of the only known unlooted tombs from the Wari era, and included 

the remains of three elite women who were interred with elaborate grave offerings 

including gold earrings and weaving implements. These findings highlight the extent of 

Wari influence across northern Peru, which had spread far from urban centers in the Wari 

heartland. The period from 600-1000 CE, which includes the emergence and expansion of 

Wari culture, is referred to as the Middle Horizon (MH).   

Within the social orders that the Wari imposed, differences in lived experiences, 

including the quality of people’s diet and their risk of exposure to traumatic violence were 

structured by age, status, geographic, and gender. During Wari times, the marginalization 

and destruction of certain bodies often served as a way to perform and maintain state power 

(Tung 2012). Therefore, vulnerability during Wari times was not randomly structured in 

Wari populations but was intensively shaped by aspects of Wari social life. 
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Figure 3.2: Geographic locations of Wari archaeological sites in the central Peruvian 

Andes. 

 
Image adapted from Tung 2012 
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Figure 3.3: Detail of Wari archaeological sites in the Ayacucho Basin. 

 
 

Image courtesy of Tiffiny Tung 

 

For reasons that are not yet fully understood, Wari society began to decline at the 

end of the first millennium (1000 CE). This decline is documented by the disappearance of 

Wari-style pottery and textiles, as well as the deterioration of trade networks throughout 

the Ayacucho Basin (Tung 2012). In contrast to earlier periods of Wari history, poor 
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nutrition and risk of traumatic injury became remapped across social, political, and 

geographic spheres, and began to affect a much larger segment of people in some areas. 

The time following the decline of the Wari, known as the Late Intermediate Period (LIP, 

1000 – 1400 CE), was characterized by sociopolitical and ecological volatility in what was 

previously the Wari heartland, in which various polities of the central Andes struggled to 

gain control of the region (Arkush 2005, Tung et al. 2008, Arkush and Tung 2013). 

Changes in architecture, including decreases in monumental construction and increases in 

defensible site locations and fortifications, signaled a cultural shift in which warfare and 

violence became more common across certain social and material landscapes (Tung et al. 

2016). Coinciding with the period of Wari decline were changes in the environment, 

including long periods of drought (Bird et al. 2011, Thompson et al. 2013). Some scholars 

have suggested that environmental changes were the determining factors in the ultimate 

decline of the Wari state. However, Tung has shown that high levels of violence were 

characteristic of some terminal Wari sites in the Wari heartland prior to the onset of 

droughts (Tung 2016, unpublished). This indicates that environmental change alone is not 

sufficient to explain rates of violence at Huari in the post-Wari (LIP) era, and that there is 

a more complex set of sociopolitical factors that may influence patterns of violence that 

have been observed across the Wari to post-Wari transition.  

In this study, we examined how cytosine methylation varied between Wari and 

post-Wari times, where dramatic changes in quality of life were shaped in part by 

sociopolitical and environmental change. We focus on three archaeological sites spanning 

Wari era. The first is Conchopata, a Wari-era community in the Wari heartland that was 

occupied during the height of the Wari culture. Two mortuary sectors at the site of Huari, 

Cheqo Wasi and Vegachayoq Moqo, are mortuary sectors located in the city of Huari, the 
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large metropolitan epicenter of the Wari state. To reduce confusion between the terms 

“Wari” and “Huari”, we will follow Isbell’s (2004) nomenclature, which uses “Wari” to 

refer to the culture and cultural material, and “Huari” to refer to the archaeological locality.  

The Cheqo Wasi mortuary sector includes burials that were interred during the 

terminal Wari period, just prior to the final decline of the Wari state (Tung 2014). The 

Vegachayoq Moqo mortuary sector includes disremembered corpses that were discarded 

into a pit some 300 years after the decline of the Wari state (Tung et al. 2017). 

Reconstructing cytosine methylation patterns in aDNA from these three sites provides a 

way to assess whether epigenetic patterns reflect differences in sociopolitical and 

environmental conditions in the Wari heartland. In the overviews of the archaeological 

localities that follow, I employ the various nomenclature regarding age categories 

(subadult, adult, etc.), status indicators (elite, intermediate elite, or non-elite), and 

community belonging (social insider or outsider) used in the various bioarchaeological 

studies pertaining to those sites. 

Conchopata (Middle Horizon, 600-1000 CE) 

Conchopata is a Wari-era settlement that was occupied during the height of Wari 

culture. There has been some debate among archaeologists about the sociopolitical 

organization that may have existed at the site. Some have suggested that aspects of the 

architecture at Conchopata are best interpreted as royal palaces, and that the site may have 

been inhabited by a segment of Wari elite (Isbell 2004). However, others have noted that 

while there are similarities in mortuary styles and practices between Conchopata and the 

nearby capitol city of Huari, the tombs at Conchopata did not reach the size and grandeur 

of the royal tombs seen at Huari (Tung and Cook 2006). Therefore, some archaeologists 

have argued that the community at Conchopata was inhabited not by members of the Wari 
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elite, but by intermediate elites (Tung and Cook 2006). This latter interpretation is 

supported by a recent trace element analysis of obsidian artifacts excavated from 

Conchopata (Burger et al. 2016). This analysis has shown that all the volcanic glass at 

Conchopata was quarried from local sources in the surrounding Ayacucho basin, indicating 

that Conchopata was not an urban cosmopolitan center in the same way that the nearby 

capitol of Huari was. 

Extensive bioarchaeological analyses have been conducted at Conchopata. 

Osteological analyses of antemortem trauma indicate that traumatic violence was 

structured by social differences in Wari society. No osteological evidence of violence is 

present among children, suggesting that the skeletal injuries seen among intermediate elites 

were accrued during adulthood. Twenty-nine percent of intermediate elite men show 

combat-related skeletal injuries, while 20% of intermediate elite women exhibit injuries on 

the posterior cranium. While the rates of violence were not statistically significant between 

women and men, bioarchaeologists have shown that the contexts of violence were 

different, where men were often facing their attacker(s) while women never were (Tung 

2014). In contrast to the intermediate elites, some non-elite females interred at Conchopata 

show distinct patterns of extreme and recurrent injuries (Tung et al. 2008). For example, 

an old woman (individual EA1) was exposed to extensive violence throughout her life, 

with both fully healed and partially healed cranial wounds that showed signs of secondary 

infections, multiple postcranial fractures including six broken ribs, and antemortem loss of 

anterior dentition, which were potentially lost due to facial trauma (Figure 3.4, Tung 2014). 

In addition, this woman exhibited other injuries that are suggestive of hard physical labor, 

including metacarpal fractures and multiple compression fractures of the lumbar vertebrae 

(Tung 2014). The extensive damage to her body indicates that she was treated very 
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differently from other members of the community at Conchopata. However, none of the 

trauma observed among intermediate elites or non-elites were perimortem injuries, 

indicating that violence observed among people buried at Conchopata was non-lethal 

(Tung 2012). 

Figure 3.4: Cranial and post-Cranial Trauma observed in individual EA1 from 

Conchopata. 

 
 

A: Cranium of an old woman (EA1) with the annular form of cranial modification, where 

the head is elongated from front to back. Cranial injuries include fully healed and 

partially healed wounds with signs of secondary infection, and possible antemortem loss 

of anterior dentition. B: Examples of partially healed rib fractures, one of many 

postcranial wounds observed on the remains of individual EA1. Images courtesy of 

Tiffiny Tung. 

 

Social outsiders at Conchopata, including non-locals and low-status people, are 

marked by distinct osteological and mortuary features compared to intermediate elites at 

the site. Intermediate elites at Conchopata were buried together under house floors with 

numerous grave offerings (Figure 3.5, Tung 2012). Analyses of strontium isotopes among 

intermediate elites indicate that they consumed local sources of strontium throughout their 

A B 
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lives, and were likely born in the Wari heartland (Tung and Knudson 2008). In contrast, 

many sacrificed individuals are interred near D-shaped ritual structures, separate from 

other burials. While their postcrania were disarticulated, burned, and chopped, the heads 

of sacrificed people were sometimes transformed into trophies. Sixty percent of the trophy 

heads show non-local strontium isotope signatures, indicating that some of these 

individuals had lived outside the Ayacucho Basin during part of their lives (Tung and 

Knudson 2008). Another adolescent female who was sacrificed was buried alone with 

sparse grave goods near the D-shaped ritual structure where multiple trophy heads had been 

deposited (Figure 3.6). Previous analyses of her strontium isotopes indicate that she was 

non-local, but arrived after the age of 5, and may have been captured during Wari raids of 

other Andean communities (Tung 2014). Thus, while intermediate elites appear to be 

locals, sacrificed people with distinct mortuary treatment are largely outsiders. In addition, 

the old woman with extensive evidence of trauma received distinct mortuary treatment and 

was buried alone with only a ceramic fragment under her head. While her strontium isotope 

ratios indicate that she was born in the Wari heartland, she is the only woman in the 

community to exhibit the annular form of cranial modification, in which the skull is 

wrapped during childhood to elongate the cranium from front to back (Figure 3.4). Most 

other women either exhibit no cranial modification, and those that do have modified crania 

show the fronto-occipital style (Tung 2014). Based on her osteological and mortuary 

features, it is likely that this low-status woman was viewed as a social outsider at 

Conchopata. Thus, bioarchaeological evidence indicates that lived experiences of violence 

at Conchopata were shaped by status, gender, and ethnic differences as well as group 

belonging in Wari society. However, while violence was shaped by social differences, 

dietary patterns at Conchopata do not appear to have been significantly stratified along 
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status, gender, or ethnic lines. Rather, studies of stable carbon isotopes have shown that 

most people living at Conchopata had access to carbon-enriched foods such as maize 

(Finucane et al. 2006), and social outsiders do not appear to have substantially differed 

from intermediate elites at the site. 

Figure 3.5: Individual EA205 in situ, illustrating the mortuary context of an intermediate 

elite individual at Conchopata. 

 
Intermediate elites at Conchopata were interred under house floors with grave offerings 

near other intermediate elites. Image courtesy of William Isbell and Anita Cook. 
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Figure 3.6: Mortuary context of EA20, an adolescent female who was sacrificed and 

interred near D-shaped ritual structure at Conchopata. 

 
This adolescent female was ritually sacrificed and then buried alone without grave 

offerings. Image courtesy of William Isbell and Anita Cook. 

 

Huari, Cheqo Wasi Sector (Terminal Wari, 1000-1100 CE) 

Ten kilometers to the north of Conchopata is the city of Huari, the large 

cosmopolitan capitol of the Wari state throughout the Middle Horizon. Huari was occupied 

before, during, and after the decline of the Wari culture, and burials from various time 

periods were interred in different mortuary sectors of the city. The mortuary sector of 

Cheqo Wasi contained burials from the latest phase of the Wari state, known as terminal 

Wari (Figure 3.7, Tung 2014). Cheqo Wasi was one of the most elaborate funerary sectors 

at Huari (Tung 2014), and is characterized by the presence of monumental architecture 
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including an elaborate stone arch and large royal tombs (Figure 3.7). These architectural 

and mortuary features suggest that the highest strata of society were being interred there 

before the eventual decline of the Wari (Tung 2014). While this site was repeatedly looted 

during pre-Hispanic times and again following European colonialism, architectural and 

osteological analyses of Cheqo Wasi provide the only known picture of the life and health 

of capitol elites during the final phases of the Wari state (Tung 2014). 
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Figure 3.7:  Mortuary complex in the Cheqo Wasi sector of Huari. 

 
A: Tombs of Cheqo Wasi. B: An example of a megalithic tomb at Cheqo Wasi. Images 

courtesy of Tiffiny Tung. 

A 

B 
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Among the various mortuary sectors that have been studied at Huari at so far, 

osteological analysis has shown that people interred at Cheqo Wasi suffered the greatest 

rates of traumatic violence. In all, 50% of individuals show some evidence of cranial 

trauma and the vast majority of these injuries were non-lethal (42% antemortem and 8% 

perimortem, Tung 2014). While it is unusual to observe violence among children in the 

Andes, 66% of subadults at Cheqo Wasi showed evidence of cranial trauma (Tung 2014). 

Sixty-four percent of women show signs of cranial trauma, with a more posterior than 

anterior distribution of injuries suggesting that their injuries were often accrued while the 

women were not facing their attacker (Tung 2014). Fifty percent of men show signs of 

cranial trauma, and in contrast, their injuries show a more anterior than posterior 

distribution, indicating that they were more often facing their attacker than the women were 

(Tung 2014). No significant sex-biased differences have been observed in overall rates of 

trauma at Cheqo-Wasi. Importantly though, a higher fraction of women overall show 

cranial trauma relative to men, while men tend to show more cranial traumas per individual. 

In addition to the head injuries at Cheqo-Wasi, 18% of left ulnae have parry fractures that 

can be sustained when someone blocks an oncoming attack with their arm. This rate of 

parry fractures is the highest that has been observed at any Wari-era site (Tung 2014). 

Compared to sites that date from the height of the Wari state, such as Conchopata, 

traumatic violence was much more common among those interred in the Cheqo Wasi 

mortuary sector of Huari as the Wari era was coming to a close. While no violence was 

observed among any of the children at Conchopata, the majority of children that have been 

studied at Cheqo Wasi suffered traumatic injuries.  Among adults at Cheqo Wasi, cranial 

injuries were larger and far more numerous than those observed at Conchopata, and more 

individuals show signs of repetitive injuries (Tung 2014). Taken together, osteological 
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evidence indicates that people interred at Cheqo Wasi near the decline of the Wari state 

were more likely to be the victims of traumatic violence than those who lived during the 

height of Wari society (Tung 2014). This could indicate that patterns of violence were 

changing throughout the Wari-era, or that engaging in violent acts was a means of 

establishing and/or maintaining elite status in Wari society, as those who engaged in 

violence and survived were interred in the most elaborate mortuary contexts (Tung 2014). 

These interpretations are not mutually exclusive, and one or both of these factors could be 

explanations for the dramatic increase in violence observed at Cheqo Wasi relative to other 

Wari-era sites. In spite of the high rates of violence, stable isotope analyses indicate that 

elites living at Cheqo Wasi had higher access to carbon-enriched foods during the terminal 

Wari era than others who were interred at Huari after the decline of the Wari civilization. 

Huari, Vegachayoq Moqo Sector (Post-Wari, 1350 CE) 

The time following the decline of the Wari state, known as the Late Intermediate 

Period (LIP), was characterized by large scale changes in settlement patterns and material 

culture throughout the Ayacucho Basin. These changes included the disintegration of state 

control in the former Wari heartland, the decline and or reorganization of ceramic and 

textile production infrastructures and trade networks, and shifts in occupation patterns from 

the valley floors to higher-elevation sites (Covey 2008, Tung  2016). Changes in political 

organization are observed in the depopulation of sites in the Wari heartland as well as the 

decline in construction of monumental architecture (Covey 2008, Finucane 2009, Arkush 

and Tung 2013, Tung 2016). Increases in social unrest and conflict in some areas is 

reflected through the increase in fortifications (Covey 2008, Arkush and Tung 2013). Shifts 

in diet and patterns of violence also changed dramatically in the LIP compared with the 

height of the Wari state in the MH. In particular, rates of perimortem violence dramatically 
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increased compared to both Conchopata and Cheqo Wasi. There are likely many interacting 

factors that influenced the increases in violence observed at various archaeological sites 

across the Ayacucho Basin during the LIP, including the decline of the Wari state, long 

periods of drought that may have led to increased resource competition and conflict, and/or 

changes in social and political structures that may have altered the contexts and social 

meaning of violence (Tung 2016). 

At Huari, the mortuary sectors of Vegachayoq Moqo and Monqachayoq provide 

important insights into life at the former capitol following the decline of Wari society. 

Huari was either reoccupied or used for mortuary purposes during the LIP, and 

bioarchaeological analyses of human remains have helped to shed light on the aftermath of 

the Wari decline and its effects on people’s diets and relative burdens of violence in the 

former Wari heartland (Tung 2016). At Vegachayoq Moqo, the mortuary context is quite 

different than those observed at the earlier, Wari-era sites of Cheqo Wasi and Conchopata 

(Figure 3.8). Archaeologists working at Vegachayoq Moqo have excavated mass graves 

containing thousands of comingled remains of more than 100 people (Bragayrac 1991, 

Tung 2016). Eighty percent of the long bones show evidence of cut marks, indicating that 

the bodies had been dismembered before being thrown into a trench that ran along a wall 

beneath a D-shaped ritual structure (Tung 2016, Figure 3.8). In addition, while signs of 

antemortem and perimortem trauma among children are rarely observed in the Andes, 

children interred at Vegachayoq Moqo appear to have died violent deaths, underscoring 

the social and political volatility of this area during LIP (Tung 2016). While no antemortem 

trauma was observed on the remains of these children, rates of perimortem trauma were 

very high. Sixty-six percent of the children interred at Vegachayoq Moqo show signs of 

having suffered perimortem cranial fractures, which suggests changes in the treatment of 
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children in the former capitol city during the tumultuous era following the decline of Wari 

society (Tung 2016). Osteological analysis has shown that these perimortem blows to the 

head were intentional and systematic, largely resulting from blunt force traumas to the left 

posterior sides of the crania (Tung 2016). Rates of violence were also high among children 

interred at the nearby mortuary sector of Monqachayoq, affecting 30% of the children there 

(Tung 2008). In addition, nutrition among children appears to have changed in this region 

during post-Wari times. Analysis of stable Carbon isotopes has shown that children in the 

post-Wari era had significantly lower δ13C values, indicating that they had less access to 

carbon-enriched foods like maize relative to children in the Wari period (Tung 2016). 
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Figure 3.8: Mortuary complex in the Vegachayoq Moqo sector of Huari.

 
 

A: Vegachayoq Moqo complex with D-shaped ritual structure that was used during the 

Wari era. B: Wall running along the western margin of the Vegachayoq Moqo complex 

just below the D-shaped structure, where bodies from the LIP were deposited in a 

commingled grave. Images courtesy of Tiffiny Tung. 

  

A 
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While osteological analyses of adults interred at Vegachayoq Moqo is still ongoing, 

the remains of adults interred at the nearby and contemporaneous mortuary sector of 

Monqachayoq may serve as a useful proxy for rates of violence among adults interred at 

Huari during the LIP.  Here, antemortem trauma affected 71% of adults. In addition, 

perimortem cranial fractures were observed on 42% of adults, indicating a dramatic 

increase in lethal attacks relative to Wari-era sites (Tung 2008, Kemp et al. 2009). The 

rates of antemortem violence are far higher than those observed at Conchopata during the 

height of Wari society, and rates of both antemortem and perimortem trauma far surpass 

those observed in the terminal Wari period at the mortuary sector of Cheqo Wasi. 

For the three archaeological sites represented in this study, it is clear that violence 

affected many more individuals at the terminal and post-Wari sites than at the Wari-era 

sites, and that access to carbon-enriched foods declined at the post-Wari site (Figure 3.9). 

These changes were shaped at least in part by sociopolitical and environmental changes in 

the Ayacucho basin across the Wari to post-Wari transition. The rich history and 

bioarchaeology of Conchopata, Cheqo Wasi, and Vegachayoq Moqo provide an ideal 

context for assessing whether these changes are associated with epigenetic differences in 

aDNA. In living humans, LINE-1 methylation has been shown to be affected by factors 

such as dietary, psychosocial, and structural inequalities (Zhang et al. 2011a, Zhang et al. 

2011b), all of which are characteristic of the Wari archaeological record to varying degrees. 

Therefore, we obtained skeletal and dental samples from 33 individuals living before and 

after the Wari decline and evaluated patterns of LINE-1 methylation. Based on the 

mortuary and osteological evidence from Conchopata, we hypothesized that low status 

women, including those who experienced repetitive trauma and outsiders who were ritually 

sacrificed, would show different patterns of LINE-1 methylation compared to intermediate 
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elites at the site. Taking the bioarchaeological evidence for Conchopata, Cheqo Wasi, and 

Vegachayoq Moqo together, we hypothesized that global genomic methylation of LINE-1 

would decrease from Wari to post-Wari times, as access to carbon-enriched foods 

diminished and exposure to violence worsened for the people represented in this study. We 

also hypothesized that variability in percent methylation would increase as Wari social 

orders disintegrated, adversity became more pronounced, and vulnerability became more 

erratically structured in the population. Here, we provide the first study of whether ancient 

methylation patterns track environmental and sociopolitical changes in the ancient world. 

 

Figure 3.9: Overview of violence and diet at Wari and post-Wari sites. 

 
AM: antemortem 

PM: perimortem 
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MATERIALS AND METHODS 

Tissue Samples 

To assess the LINE-1 methylation patterns of Wari and post-Wari populations, we 

obtained 33 dental and skeletal samples from three archaeological sites in the Ayacucho 

Basin, Peru. From the Wari era, we collected skeletal samples from the site of Conchopata 

(N=14). From the terminal Wari era, we collected skeletal samples from the Cheqo Wasi 

mortuary sector of Huari (N=9). Finally, from the post-Wari era we collected samples from 

the Vegachayoq Moqo mortuary sector of Huari (N=10). Osseous samples were exported 

with support for genetic research from the provincial office in Ayacucho and the Ministry 

of Culture in Lima, Peru. 

To evaluate whether LINE-1 methylation values observed in teeth are correlated 

with those in other tissues, we analyzed four different tissues from two living individuals. 

One individual had experienced physical violence throughout life, while the other had not. 

It is not currently known whether other significant aspects of life history differ between the 

two individuals. Third molars, whole blood, buccal cells, and hair were collected from both 

individuals with informed consent (UT IRB 2012-05-0105). Molars were collected 

opportunistically following routine dental extractions unrelated to the research. 

Approximately 50 microliters (µL) of whole blood was collected via finger pricks using 

retractable lancets and placed in a 1.5 mL tube containing 150 µLs of RNAlater® 

(ThermoFisher). Buccal cells were collected using sterile swabs and hair samples were 

collected by cutting 2-3 cms off of the distal end without attached follicles. 

DNA Extraction 

To extract DNA from contemporary tissues, three tissue-specific protocols were 

used. Negative control extractions (blanks) were included to monitor for possible 
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contamination. DNA was obtained from contemporary teeth following the method 

described in Dabney et al. (2013). Prior to DNA extraction, teeth were decontaminated by 

immersing in 6% sodium hypochlorite (full strength bleach) for 10 minutes and then rinsing 

twice with DNA-free water. Teeth were then UV irradiated in a 254-nm emitting DNA 

crosslinker for 5 minutes on each side. Rather than drilling bone powder from the tooth 

root, we modified the Dabney et al. (2013) approach for a minimally destructive extraction 

protocol (following Bolnick et al. 2012) where the whole tooth was immersed in a digestion 

buffer containing 4,937.5 µL of 0.45 M EDTA and 62.5 µL of 20 mg/mL proteinase K and 

placed on a thermal rocker at 37 ˚C for 18 hours. In addition, we decontaminated the 

guanidine hydrochloride binding buffer by adding 100 µL of a silica dioxide suspension 

described in Rohland and Hofreiter (2007) and placing on a rocking platform at room 

temperature for 18 hours. Buccal swabs and 100 µL of each whole blood sample were 

extracted using the DNeasy Blood and Tissue Kit (Qiagen) following the manufacturer’s 

protocol. Hair samples were decontaminated by immersing in a 3% sodium hypochlorite 

solution for 10 minutes, and then rinsing three times with DNA-free water. Hair samples 

were then extracted using the DNeasy Blood and Tissue kit (Qiagen), following the user 

developed protocol for the purification of total DNA from nails, hair, or feathers (Protocol: 

DY04  Aug-06). 

To extract DNA from archaeological samples, teeth and bone samples were first 

immersed in 6% sodium hypochlorite (full strength bleach) for 10 minutes and then rinsed 

twice with DNA-free water. Samples were then UV irradiated in a 254-nm emitting DNA 

crosslinker for 5 minutes on each side. For skeletal material, we gently abraded the surface 

of the sample with a dental drill fitted with a 0.5 mm diamond burr and then drilled 150-

200 mg of bone powder from which we extracted DNA following the method described in 
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Dabney et al (2013), with the addition of purifying the binding buffers with a silica dioxide 

suspension as described above. For dental samples, we modified the Dabney et al. (2013) 

method for minimally destructive extraction as described above. 

Mitochondrial DNA Analysis 

To assess the preservation of endogenous DNA in each of the archaeological 

samples, we analyzed a portion of the first hypervariable region (HVR1) of the 

mitochondrial DNA (mtDNA) and looked for diagnostic mutations commonly found 

among Native Americans prior to the arrival of Europeans. We PCR amplified short 

overlapping fragments of HVR1 following the method described in Bolnick et al. (2012). 

To confirm amplification, PCR products were visualized via gel electrophoresis using 5X 

GelRedTM solution (Biotium) and a 6% polyacrylamide gel. Confirmed PCR amplicons 

were diluted 1:10 in DNA-free water and submitted for PCR purification and Sanger 

sequencing at the Core Sequencing Facility at the University of Texas at Austin. Resulting 

sequences were edited using Sequencher v. 5.3, and were aligned to the Cambridge 

Reference Sequence to identify sequence differences using a custom function in the [R] 

statistical environment (R Core Team 2017). Haplotypes and haplogroups were determined 

via MitoTools, using the PhyloTree mtDNA database (build 17).  

Bisulfite Conversion and Pyrosequencing 

DNA extracts from contemporary molars, whole blood, buccal cells, and hair were 

quantified with a NanoDrop spectrophotometer and input volumes for bisulfite conversion 

protocols were adjusted so that DNA concentrations were standardized across all reactions. 

For archaeological samples, 20 µL of each extract was included in bisulfite conversion 

reactions. Ancient and contemporary tissues were bisulfite converted using the EpiTect 
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Fast Bisulfite Kit (Qiagen) following the manufacturer’s protocol for low concentration 

samples. We modified the bisulfite conversion protocol following Smith et al. (2015), 

Specifically, we UV irradiated buffers BL (31 mL), BW (13 mL concentrate), BD (3 mL 

concentrate), and EB (15 mL) for 15 minutes in a 254-nm emitting DNA crosslinker to 

eliminate any background contaminants that might be present in these reagents. We also 

omitted the carrier RNA, as previous use of this reagent in aDNA applications has shown 

trace levels of DNA contaminants.  

Following bisulfite conversion, we PCR amplified a 108 base pair (bp) region of 

the human long interspersed nuclear element (LINE-1) promoter that contains a total of 

eight CpG sites, following the method described in Ricceri et al. (2014). PCRs were 

prepared with 1 μL of bisulfite product in a 25 μL total reaction volume using the Amplitaq 

GoldTM kit (ThermoFisher). Each reaction also included 0.78 μL of 20 mg/mL BSA 

(Roche) and 1.5 μL of MasterAmpTM 10X PCR enhancer with betaine (Epicentre). To 

confirm amplification, PCR products were visualized via gel electrophoresis using 3X 

GelRedTM solution (Biotium) and a 6% polyacrylamide gel. Confirmed PCR amplicons 

were submitted for pyrosequencing on Qiagen’s Q96 platform at the BASiC Core Facility 

at the University of Texas San Antonio Health Science Center. Percent methylation, or the 

fraction of cytosines that were methylated at each CpG position across LINE-1 amplicons, 

was calculated for four CpG positions. 

Authentication 

Ancient DNA obtained from archaeological remains is highly degraded and 

requires strict precautions to minimize contamination from exogenous sources of DNA and 

authenticate results (Kaestle and Horsburgh 2002, Paabo et al. 2004, Gilbert et al. 2005, 

Willerslev and Cooper 2005, Shapiro 2012). All phases of work with archaeological 
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samples, including aDNA extractions, bisulfite conversions, and PCR setups were 

conducted in the aDNA facility at the University of Texas at Austin. The aDNA facility is 

a restricted-access, positive air pressure, HEPA-filter ventilated space with overhead UV-

irradiating lights that is dedicated to pre-PCR analyses of aDNA. The post-PCR facility is 

located in a separate building, and all movement of materials and personnel was 

unidirectional (from pre-PCR to post-PCR facility) to prevent contamination from highly 

concentrated, post-PCR amplified DNA. Additional precautions included the use of sterile 

and disposable hooded coveralls, hair covers, face masks, sleeve covers, dedicated shoes, 

and two pairs of gloves. We frequently decontaminated laboratory benchtops and 

equipment with 6% sodium hypochlorite (full strength bleach), and decontaminated the 

entire lab space weekly with a 3% sodium hypochlorite solution (1:1::bleach:water, v/v). 

We also irradiated the facility with a 254-nm emitting overhead UV light for 12 hours 

following each use, while tubes, containers, and reagents were UV irradiated (when 

possible) in a 254-nm emitting DNA cross-linker for 15 minutes prior to use. 

Negative controls included DNA extraction blanks, conversion blanks (bisulfite 

conversion reaction mixtures containing no DNA), and PCR negatives to identify the 

presence of any contamination at each stage of sample analysis. We performed 2-3 

independent PCR amplifications for each aDNA extract, and additional PCR 

amplifications were performed using an independent DNA extraction for a subset of 

individuals (N=3) to verify the authenticity of the results. Many of the archaeological 

samples used in this study were previously extracted in an independent lab, and our mtDNA 

results were verified against previously published sequences (Kemp et al. 2009). 

During pyrosequencing, the dispensation program included bisulfite control 

positions to monitor the efficiency of bisulfite conversion in each individual sample. 
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However, because pyrosequencing primers are designed to amplify bisulfite converted 

sequences, bisulfite products may be preferentially amplified over unconverted DNA, 

limiting the accuracy of bisulfite control dispensation as a measure of conversion 

efficiency. To better evaluate the efficiency of the bisulfite conversion process, three 

aDNA samples were bisulfite converted a second time to assess the reproducibility of the 

methylation assays across independent conversions. 

Statistical Analyses 

In this study, we conducted two sets of statistical analyses. First, we assessed 

methylation of the LINE-1 promoter region in four tissues from living humans. Because 

CpG positions 3-6 showed evidence of polymorphism that possibly contributed to 

variability in the estimation of percent methylation at those positions, only four CpG 

positions (CpGs 1, 2, 7, and 8) were analyzed. To evaluate whether LINE-1 methylation 

patterns in contemporary teeth are consistent with methylation patterns observed in buccal 

cells, blood, and hair, we performed both one-way and two-way ANOVAs. One-way 

ANOVAs were first used to test whether percent methylation values observed in teeth were 

significantly different from percent methylation observed in the three other tissues. This 

test allowed us to assess differences in the numerical response parameter of percent 

methylation relative to the categorical parameter of different tissue types. We then 

performed two-way ANOVAs to assess the relative effects of CpG position and tissue type 

across all 4 CpG positions included in this analysis. These tests allowed us to assess 

whether methylation levels were shaped by the CpG position, by the tissue of origin, or by 

an interaction between CpG position and tissue source.  If methylation is different across 

the four tissue types tested here, we would expect two-way ANOVAs to identify tissue 

source as the main effect shaping methylation patterns. If methylation levels are the same 
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no matter what the tissue source is, we would expect CpG position to be the main effect 

shaping methylation patterns. If both tissue source and CpG position influence methylation 

patterns, we expect that there will be a significant interaction between the two main effects 

included in the two-way ANOVA tests. Finally, we used paired t-tests to detect any 

significant differences in methylation at each CpG position between individuals one and 

two. Shapiro-Wilk tests, quantile-quantile plots, and histograms showed that percent 

methylation data for each CpG position did not violate the assumption of normality 

required for parametric statistical analyses. 

Secondly, we evaluated methylation of the same 4 CpG positions of the LINE-1 

promoter region in aDNA obtained from human remains interred at Conchopata, Cheqo 

Wasi, and Vegachayoq Moqo. To test the hypothesis that social outsiders at Conchopata 

had different methylation patterns than local intermediate elites, we conducted pairwise 

Wilcoxon rank-sum tests between all individuals in the population, using Holm-Bonferroni 

correction for multiple comparisons (Holm 1979). Shapiro-Wilk tests, quantile-quantile 

plots, and histograms showed that percent methylation data for each CpG position violated 

the assumption of normality required for parametric statistical analyses. Therefore, non-

parametric statistical comparisons were used in this case. CpG positions 1, 7, and 8 showed 

some stochasticity between independent pyrosequencing replicates for one or more 

individuals. Therefore, Wilcoxon rank-sum tests were only conducted using percent 

methylation data from the second CpG position, which showed the least stochasticity 

between independent pyrosequencing replicates across all individuals from Conchopata. 

This approach allowed us to conduct the most conservative statistical test possible while 

maximizing the sample size. Next, to assess whether there were statistical differences 

between archaeological localities in percent methylation values at each of the CpG sites, 
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we conducted four one-way ANOVAs comparing methylation levels at each CpG site 

between Conchopata, Cheqo Wasi, and Vegachayoq Moqo. To assess whether there was 

greater variance between individuals in post-Wari times relative to Wari times, we grouped 

the percent methylation data into Wari and post-Wari cohorts and calculated the variance 

at each CpG position for all individuals in each group. We then conducted a one-way 

ANOVA to test whether variance was significantly different between Wari and post-Wari 

times. We also grouped the variances in percent methylation by archaeological locality and 

conducted one-way ANOVAs to test for any differences between sites. Because previous 

work has shown that variance between pyrosequencing replicates is inversely related to 

DNA preservation (Smith et al. 2015), we controlled for the influence of DNA degradation 

in our results by conducting a second round of each statistical test outlined above. The 

second set of statistical analyses included only the subset of methylation data that showed 

lowest variability between independent measures of percent methylation for each 

individual. The results of these secondary tests did not show any significant differences 

from the initial rounds of statistical testing that were based on all available data, and did 

not affect our interpretations. All phases of statistical analysis for modern and aDNA were 

conducted in [R] using the packages lsr, dplyr, and tidyr, and graphical outputs were 

generated using the package ggplot2. 
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RESULTS 

LINE-1 Methylation in Contemporary Human Tissues 

Because methylation patterns can vary between tissues, we conducted a preliminary 

analysis of LINE-1 methylation patterns in four tissues from two living people to evaluate 

how methylation patterns in archeologically available tissues (such as teeth and hair) 

compare with more peripheral tissues that have been commonly studied in living 

populations (such as buccal cells and blood). We successfully characterized LINE-1 

methylation in all tissues tested from living humans (Table 3.1). Our one-way ANOVA 

analyses showed that percent methylation values observed in molars were statistically 

indistinguishable from buccal cells and whole blood from both of the living individuals 

tested (Table 3.2). For individual two, LINE-1 methylation values observed in teeth and 

hair were also not statistically different. However, for individual one, the difference in 

LINE-1 methylation between molars and hair reached statistical significance (p=0.049). 

Table 3.1: Percent methylation of LINE-1 from multiple tissues in living humans. 

Individual Tissue 
Percent Methylation 

Pos. 1 Pos. 2 Pos. 7 Pos. 8 

1 

Molar 1 61.3 36.9 57.1 29.1 

Molar 2 63.8 37.9 57.9 29.1 

Hair 76.1 44.4 67.9 33.6 

Buccal 1 56.8 34.0 51.5 26.1 

Buccal 2 52.4 32.4 50.9 26.3 

Blood 57.2 34.5 55.5 28.1 

2 

Molar 68.3 39.4 60.1 31.1 

Hair 1 73.4 49.0 58.0 29.7 

Hair 2 80.8 56.8 49.8 27.8 

Buccal 65.8 38.2 58.2 29.9 

Blood 66.6 39.2 60.9 30.8 
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Table 3.2: Results of one-way ANOVAs between percent methylation values of LINE-1 

in four tissues from living humans. 

Tissue Comparison 
p-values 

Individual 1 Individual 2 

Molar vs. Blood 0.23 0.86 

Molar vs. Buccal 0.88 0.79 

Molar vs. Hair 0.049* 0.40 

*statistically significant 

 

Two-way ANOVA tests of LINE-1 methylation evaluating the relative effects of 

CpG position and tissue source showed variable results between individuals one and two 

(Figure 3.10, Table 3.3). For individual one, the interaction effect between CpG position 

and tissue source was statistically significant (p=0.017), indicating LINE-1 methylation 

patterns differ across both CpG positions and tissue sources. However, the main effect of 

CpG position was far more significant (p=3.33 x 10-10) and CpG position had a much larger 

effect size than either tissue source or the interaction between CpG position and tissue 

source (ƞ2=0.87, 0.11, and 0.017, respectively). Because one-way ANOVA results showed 

that percent methylation in hair was significantly different from that of molars for 

individual one, we ran a second two-way ANOVA analysis in which methylation data for 

hair was removed from the model. In this updated model, the main effect of CpG position 

remains significant (p=1.063 x 10-09), but the interaction between CpG position and tissue 

source is no longer significant (p= 0.26). These results indicate that methylation values are 

similar between molars, buccal cells, and blood, where CpG position predicts methylation 

levels regardless of tissue source. However, methylation patterns in hair are more distinct 

and appear to be more tissue-specific. For individual two, the interaction between CpG 

position and tissue source was not statistically significant (p=0.40), but the main effect of 

CpG position was highly statistically significant (p=0.00047). As with individual one, CpG 
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position had a much larger effect size than either tissue source or the interaction between 

CpG position and tissue source (ƞ2=0.90, 0.02, and 0.06, respectively). Paired t-tests 

indicated that individual one was significantly hypomethylated at the first and second CpG 

positions relative to individual two (p≤0.028). Excluding methylation data from hair 

samples, individual one was significantly hypomethylated at all four CpG positions relative 

to individual two (p≤0.030). 
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Figure 3.10: Comparison of LINE-1 methylation levels across four tissues from living humans. 
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Table 3.3: Results of two-way ANOVAs assessing the effects of CpG position and tissue source in living humans. 

Effect 
Individual 1 Individual 2 

p ƞ2 p ƞ2 

CpG Position 3.3 x 10-10 0.87 7.2 x 10-4 0.90 

Tissue Source 1.2 x 10-6 0.11 0.40 0.02 

Position:Source 0.017 0.017 0.36 0.06 

p: p-value 

ƞ2: effect size 
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LINE-1 Methylation in Ancient Wari and Post-Wari Populations 

Of the 33 Wari and post-Wari skeletal samples that we attempted to obtain aDNA 

from, a total of 13 had preserved endogenous DNA (success rate of 39%). Of these 13 

samples, five are from Conchopata, four are from Cheqo Wasi, and four are from 

Vegachayoq Moqo. Rates of trauma and stable isotope ratios were determined in previous 

studies (Table 3.4). Resulting mtDNA sequences correspond to haplogroups that are known 

to be present in the Americas prior to European colonization (Table 3.5). In addition, for 

the subset of samples in this study that had been included in other paleogenomic research, 

haplogroup assignments reported here are consistent with previously published data (Kemp 

et al. 2009).
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Table 3.4: Bioarchaeological data for individuals included in this study. 

Sample 
Sit

e 

 
Era 

Time 

Period 
Sex Age 

δ18O den 

carbonate 

δ13C dent 

carbonate 

δ13C 
collagen 

δ15N 

collagen 

87Sr/ 

86Sr 

Skeletal 

Trauma 

EA1 C 
 

W 
600-1000 

CE 
F Old Adult -8.65 to -7.5 -2.7 to -5.89   0.70583 AM 

EA6 C 
 

W 
600-1000 

CE 
? Infant -9.27 -2.1   0.70673 No 

EA20 C 
 

W 
600-1000 

CE 
F 

Young 

Adult 
-7.0 -6.6   0.71058 No 

EA88 C 
 

W 
600-1000 

CE 
? Infant      No 

EA205 C 
 

W 
600-1000 

CE 
? Infant     0.70572 No 

HCW46 
C

W 

 
TW 1100 CE M Adult -8.8 to -10 -5.4 to -1.1    Unknown 

HCW11

9 

C

W 

 
TW 1100 CE F 

Young 

Adult 
-0.9 to 1.6 -9.6 to -9.3    AM 

HCW35

8 

C

W 

 
TW 1100 CE F 

Young 

Adult 
-10.1 -0.1    AM and PM 

HCW86

0 

C

W 

 
TW 1100 CE M 

Young 

Adult 
-2.6 to -0.74 -9.2 to -8.9    No 

HVM11 
V

M 

 
PW 1350 CE F Teen -8.92 -4.90 -12.07 8.6 0.70622 PM 

HVM16 
V

M 

 
PW 1350 CE F 

Young 

Adult 
-9.38 -5.24   0.70611 PM 

HVM19 
V

M 

 
PW 1350 CE F 

Young 

Adult 
  -11.68 16.3  No 

HVM66 
V

M 

 
PW 1350 CE M Old adult -7.9 -3.8 -11.5 to -10.4 9.5 to 13.3  AM and PM 

C: Conchopata, CW: Cheqo Wasi, VM: Vegachayoq Moqo, W: Wari, TW: Terminal Wari, PW: Post-Wari, F: Female, M: Male, AM: 

Antemortem, PM: Perimortem. (Data adapted from Tung 2012 and Tung, in press) 
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Table 3.5: Mitochondrial DNA results from Wari and post-Wari skeletal remains. 

Sample Haplotype HG 

EA1 16223T, 16325C, 16362C D1 

EA6 16298C, 16325C, 16327T C1 

EA20 16258G, 16357C B 

EA88  C 

EA205  C  

HCW46 16221T, 16298C, 16327C C 

HCW119 16223T, 16325C, 16362C D1 

HCW358 16217C, 16261T B 

HCW860 16217C, 16319A B 

HVM11 16223T, 16298C, 16325C, 16327T C1 

HVM16 16223T, 16298C, 16325C, 16327T, 16361A C1 

HVM19 16223T, 16287T, 16290T, 16295T, 16296T, 16325C, 16327T C1 

HVM66 16223T, 16325C, 16327T C1 

 

For the 13 samples that had preserved endogenous mtDNA, we assessed LINE-1 

methylation patterns. All 13 samples tested yielded measures of cytosine methylation. However, 

many of the CpG positions for sample HVM11 failed to produce percent methylation data during 

pyrosequencing runs and that sample was excluded from subsequent data analysis. The final 

methylation data included percent methylation from a total of 12 Wari and post-Wari individuals, 

with five from Conchopata, four from Cheqo Wasi, and three from Vegachayoq Moqo (Table 3.6). 
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Table 3.6: LINE-1 methylation results from Wari and post-Wari individuals. 

Sample ID CpG 1 CpG 2 CpG 7 CpG 8 

EA1 
70.2 41.6 62.1 29.7 

61.6 39.2 55.3 29.3 

EA6 
61.8 34.7 56.5 34.8 

61.4 30.3 56.5 20.4 

EA20 
76.0 49.7 62.7 9.9 

22.3 48.6 56.6 23.4 

EA88 
64.9 34.9 56.4 28.6 

64.2 32.4 56.0 25.8 

EA205 
55.9 35.2 68.9 20.0 

56.0 27.7 49.6 27.8 

HVM16 
42.0 24.5 30.0 18.0 

43.8 28.0 58.6 26.2 

HVM66 
40.5 47.0 62.3 26.8 

48.7 37.8 48.7 27.5 

HVM19 
98.2 73.8 76.9 13.8 

96.3 1.4 83.9 13.2 

HCW46 
68.4 65.3 45.0 4.4 

27.6 34.2 51.3 41.3 

HCW860 
70.0 41.5 56.6 29.5 

70.4 41.3 56.9 30.4 

HCW119 
65.1 37.8 57.7 29.5 

66.7 39.1 58.4 28.6 

HCW358 
68.7 39.6 59.0 28.3 

68.4 44.1 60.1 29.9 

 

For the LINE-1 methylation data reconstructed from human remains at 

Conchopata, results of the pairwise Wilcoxon rank-sum tests are given in Table 3.7. We 

hypothesized that social outsiders at Conchopata (EA1 and EA20) would show differential 

methylation of LINE-1 compared to the intermediate elites (EA6, EA88, and EA205). 
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However, there are no statistically significant differences in any of the pairwise 

comparisons of LINE-1 methylation at Conchopata. The old woman at Conchopata (EA1) 

falls in the middle of the distribution of methylation values among intermediate elites at 

the site. She does not fall below the distribution of intermediate elites, as might be predicted 

based on existing studies of social inequalities in living humans (Zhang et al. 2011a, 

2011b). We also predicted that the sacrificed woman who was born outside the community 

(EA20) would show differential methylation compared to those who were born in or near 

Conchopata. While the sacrificed woman does show the highest methylation of CpG 

position 2 of anyone at the site, the difference is not statistically significant. 

 

Table 3.7: Holm-Bonferroni corrected p-values from pairwise Wilcoxon rank-sum tests 

comparing percent methylation of LINE-1 CpG position 2 between 

individuals interred at Conchopata. 

 EA1 EA6 EA20 EA88 

EA6 0.98 - - - 

EA20 0.43 0.43 - - 

EA88 0.18 0.98 0.70 - 

EA205 0.98 0.98 0.70 0.98 

 

We also compared LINE-1 methylation patterns across the three archaeological 

localities, to assess how methylation patterns might be changing over space and time across 

the Wari transition (Figure 3.11). Generally, elite individuals interred at Cheqo Wasi have 

the highest percent methylation across all four CpG sites and the least variability between 

individuals. Intermediate elites and non-elites interred at Conchopata are hypomethylated 

relative to elites at Cheqo Wasi, and there is slightly higher variability between individuals. 

People interred at the post-Wari site of Vegachayoq Moqo show the highest variability 

between individuals. One-way ANOVAs of the percent methylation values between 
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localities for each CpG position show that there is a statistically significant difference 

between localities at CpG position 8 (p=0.037).  
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Figure 3.11: LINE-1 methylation patterns across three Wari and post-Wari archaeological localities. 
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Finally, to test the hypothesis that variance in LINE-1 methylation would be greater 

between individuals living in post-Wari times relative to Wari times, we grouped the 

samples into Wari and post-Wari cohorts and calculated the variance in percent 

methylation values for each of the four CpG positions included in the LINE-1 analysis. We 

then performed a one-way ANOVA to test whether variance in percent methylation 

between individuals was greater after the decline of the Wari state. Our results show that 

variation in LINE-1 methylation during post-Wari times was significantly greater than 

during Wari times (Figure 3.12, p=0.00072, ƞ2=0.70). The variance in methylation between 

the two Wari era populations was also significantly different (p=0.012, ƞ2=0.67), but less 

so than the difference between Wari and post-Wari populations. Taken together, we 

observed statistically significant differences in methylation across the three archaeological 

periods, but the largest effect was observed when samples were grouped into Wari and 

post-Wari populations. 
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Figure 3.12: Variance in methylation between Wari and post-Wari times. 
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DISCUSSION 

LINE-1 Methylation in Contemporary Human Tissues 

Epigenetic marks such as cytosine methylation are shaped by a variety of social and 

environmental factors (Thayer and Kuzawa 2011, Thayer and Non 2016, Vinkers et al. 

2016). Because cytosine methylation can be reconstructed from aDNA, we evaluated 

whether emerging techniques in paleoepigenetics could provide insights into how 

sociopolitical and ecological events shaped ancient populations. However, methylation 

patterns are known to vary from tissue to tissue (Christensen et al. 2009, Varley et al. 2013, 

Lokk et al. 2014). Therefore, we first conducted an analysis of LINE-1 methylation across 

a variety of tissues in living humans, including teeth, buccal cells, blood, and hair. Our 

results indicated that methylation patterns obtained from archaeologically-available tissues 

such as teeth are reliable indicators of LINE-1 methylation patterns in peripheral tissues 

such as buccal cells and whole blood. For the region of the LINE-1 promoter that we 

analyzed, CpG position was a far better predictor of methylation patterns than tissue source 

was. This result indicates that LINE-1 methylation patterns for this locus are influenced 

more significantly by the particular CpG being studied than by the tissue source, and that 

methylation levels at each of the four CpG positions analyzed are generally conserved 

across tissue types.  

However, there was variation between individuals one and two in how predicative 

molar methylation patterns were for other tissues. While LINE-1 methylation patterns in 

molars were predicative of methylation patterns across all tissues that were tested for 

individual two, our preliminary results indicate that methylation patterns in molars were 

good predictors of methylation patterns only in buccal cells and blood for individual one, 

but not methylation patterns in hair. Because individuals one and two had different life 
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histories, it is possible that certain life events have differential effects on LINE-1 

methylation across various cell types. Alternatively, it is also possible that once epigenetic 

patterns have been altered by an event, they may not be retained across different cell types 

in the same ways over time. Because CpG position 7 of the LINE-1 promoter has also been 

analyzed in previous studies using the same pyrosequencing assay, we can compare 

methylation levels observed in this study with those of larger populations. The population 

average for CpG position 7 reported in previous studies ranges between 62.03-62.55% 

(Ricceri et al. 2014). In this study, methylation at CpG position 7 for individual two 

(60.9%) is similar to the population average reported in previous studies, but individual 

one’s methylation levels are substantially lower (55.5%). Our observation that individual 

one is hypomethylated compared to individual two is also consistent studies showing that 

decreased methylation of LINE-1 elements can result from social differences and 

disparities in lived experiences (Zhang et al. 2011a, 2011b). However, because our 

preliminary findings are limited by sample size and exposure groups, we are unable to 

determine what specific factors may be influencing these patterns. Therefore, further 

research will be necessary to determine whether the conservation of LINE-1 methylation 

patterns across tissues is effected by differences in lived experiences such as disparities in 

diet and exposure to violence. However, our preliminary results suggest that LINE-1 

methylation patterns are highly correlated across molars, buccal cells, and blood for both 

individuals tested. 

These results help to frame interpretations of LINE-1 methylation patterns 

reconstructed from the DNA of ancient populations. We found that LINE-1 methylation 

patterns in molars can serve as excellent proxies for methylation patterns in buccal cells 

and blood, suggesting that paleoepigenetic LINE-1 data from ancient teeth may be readily 
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compared with epigenetic analyses of buccal cells and blood in living humans. However, 

methylation patterns in hair showed more variable correlation with those of other tissues, 

and were consistently outliers compared with methylation levels in molars, buccal cells, 

and blood for both individuals tested. While hair is preserved in some archaeological 

contexts and has been shown to be an excellent source of endogenous aDNA (Rasmussen 

et al. 2010, Bengtsson et al. 2012), our results suggest that LINE-1 methylation patterns in 

hair may not always be a reliable proxy for LINE-1 methylation patterns in other tissues. 

Our preliminary findings also suggest that LINE-1 methylation patterns in hair may not 

track differences in life histories in the same way as other tissues, and may not be as readily 

comparable to epigenetic studies that have been based on buccal cells and blood in living 

humans. Because some lived experiences may unevenly alter methylation patterns that 

might otherwise be correlated across tissues, hair may not be an ideal source tissue for 

detecting the epigenetic effects of social and environmental change. 

LINE-1 Methylation in Ancient Wari and Post-Wari Populations 

While a small but growing number of studies have shown that it is possible to 

reconstruct methylation patterns from ancient teeth, bone, and hair (Gokhman et al. 2016), 

this study applied paleoepigenetic methods within an archaeological context to assess 

whether changes in cytosine methylation patterns trace sociopolitical and environmental 

changes in ancient societies. At the Wari-era site of Conchopata, we hypothesized that low-

status, social outsiders would be differentially methylated compared to local intermediate 

elites at the site. Our results show that the sacrificed woman who was born outside 

Conchopata (EA20) showed higher LINE-1 methylation than everyone who was born in or 

near Conchopata. Though this result was not statistically significant, the different LINE-1 

methylation levels of individual EA20 mirror other distinctions observed in her mortuary 
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treatment and strontium isotope ratios, which together provide many independent lines of 

evidence that this person was an outsider at Conchopata. Based on existing epigenetic 

studies of social inequalities and LINE-1 methylation, we would predict that the old woman 

with annular cranial modification and extensive signs of skeletal injury would be 

hypomethylated relative to intermediate elites at Conchopata. Contrary to this prediction, 

the woman with annular cranial modification fell within the range of methylation values 

that we observed among intermediate elites at the site. Overall, we found no statistically 

significant differences between social outsiders and intermediate elites at Conchopata. 

However, our analysis is limited by sample size, and the addition of more individuals in 

each exposure group may help to identify epigenetic differences in future studies. 

By reconstructing methylation patterns from three archaeological localities across 

different phases of Wari society, our findings suggest that methylation patterns may track 

social and environmental differences over space and time in the ancient world. We 

hypothesized that global genomic methylation of LINE-1 would decrease from Wari to 

post-Wari times, as access to carbon-enriched foods diminished and exposure to violence 

worsened for many people after the decline of the Wari state. We also hypothesized that 

variability in percent methylation would increase as Wari social orders disintegrated, 

adversity became more pronounced, and vulnerability became more erratically structured 

in the population. Our results offer some support for these hypotheses, indicating that there 

are significant differences in LINE-1 methylation patterns between populations living 

during and after the Wari era. While not all post-Wari individuals are hypomethylated 

relative to Wari era people, the lowest methylation values in this study were found among 

post-Wari individuals interred at Vegachayoq Moqo. Notably, everyone from Vegachayoq 

Moqo is uniformly hypomethylated relative to people at Cheqo Wasi and Conchopata at 
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the 8th CpG position of LINE-1, and this difference was statistically significant. In addition, 

while people living through both height and the terminal phases of Wari society showed 

relatively low variability between individuals, people living at Vegachayoq Moqo after the 

decline of the Wari show far greater variability in levels of cytosine methylation. 

Wari elites at Cheqo Wasi are generally hypermethylated relative to other 

populations tested, Wari intermediate elites and non-elites from Conchopata fall in the 

middle of the range, while some or all non-elite individuals (depending on the CpG 

position) from Vegachayoq Moqo are hypomethylated relative to populations during the 

Wari-era. These findings generally align with studies of LINE-1 methylation in living 

humans, which have shown that nutritional differences and social inequalities can lead to 

genomic hypomethylation of repetitive elements. Taken together, the differences in LINE-

1 methylation patterns observed between archaeological localities broadly reflect what is 

known about the social and environmental conditions that existed between populations in 

the Wari and post-Wari eras. We also found that variance in percent methylation was 

significantly different between the three archaeological periods, but the greatest effect was 

observed when people were grouped into Wari and post-Wari populations. However, 

because time period in this study is variably conflated with archaeological locality, status, 

and dietary and social factors, it is difficult to identify specific underlying causes for these 

patterns. 

While our results suggest that LINE-1 methylation patterns track ancient social and 

environmental changes, our findings should be interpreted with caution for several reasons. 

First, aspects of the archaeological context present certain limitations. Given the relatively 

small number of samples with preserved aDNA in this study, our sample size is limited. In 

addition, while the three archaeological sites studied here provide important glimpses of 
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different lifeways in the Wari heartland, they cannot be taken to be representative of Wari 

society as a whole, or of the broader political and environmental conditions that existed 

across the Andes in the MH and LIP. For example, while the decline of the Wari seems to 

have greatly affected the heartland sites represented in this study, these events sometimes 

had less dramatic effects among the more distant, coastal communities that had once been 

part of the Wari political sphere. Thus, the localities included in this study provide a 

snapshot of differences in people’s lived experiences in the Wari heartland, but these events 

are separated by time and geography in such a way that they cannot simply be viewed as 

part of a single overarching or continuous narrative. However, it is clear that the patterns, 

contexts, exposures and even the meaning of violence varied substantially over space and 

time across the Wari transition, and that differences in access to carbon-enriched foods was 

also affected by the decline of the Wari state for the populations included in this study. 

Finally, while it would be ideal to have samples from a single site to assess how cytosine 

methylation patterns change over time, these samples are not yet available for the Wari. 

Another limitation of our study may stem from the effects of post-mortem 

deamination of cytosines, which we have argued elsewhere may 1) artificially reduce 

estimates of cytosine methylation in aDNA when using BS-seq and 2) lead to variability 

in independent measures of cytosine methylation (Smith et al. 2015). In this study, it is 

relatively unclear to what extent cytosine deamination may be influencing our results. 

Because the rate of cytosine deamination is an exponential process, our samples are likely 

to be affected by relatively similar rates of DNA degradation and we would not expect 

variability in the data to be shaped by differences in deamination rates between 

archaeological sites. In addition, we included controls for DNA degradation by running 

additional rounds of statistical tests that excluded samples with high variance between 
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independent replicate measures of methylation. Our findings remained consistent 

following these statistical controls. Next, the patterns of variability do not appear to be time 

dependent, as would be expected if DNA degradation were shaping our results. Samples 

from Vegachayoq Moqo were the youngest in this study, and had a greater proportion of 

samples with preserved DNA (40%) than the oldest samples from Conchopata (36%). In 

spite of this, the younger samples from Vegachayoq Moqo show the greatest variability in 

methylation between individuals of any site, while the older samples from Cheqo Wasi and 

Conchopata showed relatively little variability in methylation between individuals. In 

addition, mtDNA results from individuals interred at Vegachayoq Moqo indicate that these 

individuals had the best preserved aDNA among all the localities included in this study, 

providing further evidence that the variability in LINE-1 methylation we observed at this 

site does not stem from DNA degradation. Finally, the ancient methylation data 

incorporated into the most conservative statistical tests were no more variable between 

independent replicate measures of the same individual than what was observed among the 

two contemporary samples. 

Finally, while LINE-1 methylation has often been used as a measure of global 

genomic methylation, and has been shown to be shaped by social and environmental 

differences, the biological significance of LINE-1 methylation remains somewhat unclear. 

LINE-1 methylation represents a gross assessment of methylation across the genome, and 

lacks specific functional outcomes. In addition, changes in the methylation of repetitive 

elements can be shaped by a variety of different factors, so methylation of these loci lack 

a single biological meaning, and it is often difficult to distinguish between multiple 

potential influences on LINE-1 methylation. Given what we know from previous 

bioarchaeological analyses of the Wari and post-Wari sites included in this study, it is likely 
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that multiple factors are operating simultaneously on these populations to shape the 

patterns of global genomic methylation observed here. Multiple social and environmental 

inputs on this locus also open the possibility of compensatory processes, in which one set 

of lived experiences decreases the methylation of these loci while others may increase 

methylation. This could help explain why some individuals do not fit within the predictions 

of our hypotheses, such as EA1. While she showed signs of intense trauma, there is little 

evidence that her diet differed substantially from the intermediate elites at Conchopata. 
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CONCLUSION 

In this study, we have provided the first evidence that methylation patterns may 

mirror social and environmental change in the ancient world. While it is difficult to identify 

the specific factors shaping these patterns, ancient methylation levels generally trace the 

decline of the Wari civilization in the Wari heartland sites included in this study. Our 

findings provide support for the feasibility of future research on the epigenetic effects of 

ancient lifeways. While we focused on global genomic methylation of LINE-1 elements, 

future paleoepigenetic studies of single-copy loci that are known to be affected by diet, 

disease, trauma, or other factors could shed further light on lived experiences in the ancient 

world. Given this possibility, paleoepigenetics could provide additional methodological 

tools for testing paleoanthropological and archaeological hypotheses. While the field of 

epigenetics is providing new insights into the dynamism of the genome in response to a 

variety of social and environmental events in living humans, applying these findings within 

a paleoepigenetic context may provide a way to assess epigenetic shifts over many 

centuries or even millennia of social and environmental change. Thus, paleoepigenetics 

may provide important new tools for assessing how large scale social, political, and 

environmental changes can shape human biology. 
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