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Abstract

This paper presents a solid freeform fabrication (SFF) technique based on micro-plasma powder 

deposition (MPPD). The relationship between the geometric features of the deposited layers and 

the welding parameters is investigated. The arc length is controlled through the monitoring of the 

arc voltage. The result of building parts with functionally graded components by the MPPD 

process is shown as well. The microstructure and the properties of the deposited layers are 

analyzed. The experimental results show that the MPPD process is a promising welding-based 

solid freeform fabrication technology.  

Introduction 

Successfully responding to the ever changing and continually increasing high demands of 

today’s global markets requires the rapid product development and manufacturing of new 

designs.  Visualization tools often play a major role in taking an idea from the initial concept 

through the design phase, and into the final product development process.  The following terms 

are often used interchangeably when referring to rapid prototyping technology: solid free-form 

fabrication, desktop manufacturing, layered manufacturing, and tool-less manufacturing.  Solid 

freeform fabrication is one of the fastest growing automated manufacturing technologies that 

have significantly impacted the length of time between initial concept and actual part fabrication.  

However, to fully realize the potential cost and timesavings associated with rapid prototyping, 

the capacity to go from CAD models directly to metal components and tooling is crucial [1]. The 

use of arc welding to create freestanding shapes was established in Germany in the 1960's [2]. 

Companies such as Krupp, Thyssen, and Sulzer developed welding techniques for the fabrication 

of large components of simple geometry such as pressure vessels that can weigh up to 500 tons 

[3]. Other work in this area was undertaken by Babcock and Wilcox [4] who worked mainly on 

large components produced in an austenitic steel material. Also, work by Rolls-Royce has 

centered on investigating three-dimensional welding as a means of reducing the waste levels of 

expensive high-performance alloys that can occur in conventional processing. They have 

successfully produced various aircraft parts of nickel-based and titanium-based alloys. Research 

work on the welding-based rapid prototyping continues at universities and institutes such as the 

University of Nottingham, UK [5], the University of Minho, Portugal, the University of 

Wollongong, Australia [6-7], Southern Methodist University, USA [8-9], Korea Institute of 

Science and Technology and Hongik University [10], Indian Institute of Technology Bombay 

and Fraunhofer Institut Produktionstechnik und Automatisierung [11]. Most of the research work 

in this area is based on gas metal arc welding (GMAW) [3, 5, 6-8, 10] or gas tungsten arc 

welding (GTAW) [9].  
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The plasma arc technique is the only arc-welding process that is capable of achieving the energy 

density required for “keyhole” penetration - full penetration. However, high penetration keyhole 

welding is not the only capability of plasma arc welding. It can also be used as a low penetration 

weld surfacing technique. In this form it is commonly known as plasma transferred arc (PTA) 

surfacing or cladding. Being a modern advanced technology, PTA surfacing/cladding is widely 

used to coat details in high-risk functional areas with special materials that are resistant against 

intensive wear, corrosion, thermal, and percussive loading. Compared with conventional arc 

surfacing technologies, the PTA offers [12]: 

1. A high deposition rate up to 10 kg/h; 

2. A minimum losses of filler material;  

3. A high quality of deposited metal;  

4. A minimum penetration into the base metal (< 5%);  

5. Deposits between 0,5 - 5,0 mm thickness and 3,0 - 50,0 mm width can be produced; 

rapidly in a single pass; 

6. Fe-, Ni-, Co-, Cu- base alloys as well as composite materials can be clad.  

In a competition with the laser surfacing/cladding, the PTA technology offers much higher 

productivity, a comparably higher quality of deposits and significantly lower costs.  A PTA 

powder surfacing/cladding system (including power source, nozzle, and powder-feeding system) 

usually is about one-tenth the cost of a laser-based powder surfacing/cladding system.  

In recent years, a number of researchers have paid more attention to the PTA surfacing/cladding 

technology. Matthes et al. [13-14] found that plasma-arc powder surfacing with the pulsed arc is 

a further development of shape welding that considerably reduces the thermal deformation of the 

component. The deformations and residual stresses caused on flat components by the intensive 

heat input during shape welding exert a negative influence on the component properties, 

particularly in the case of multi-pass weld surfacing. Dilthey et al. [15] developed a combined 

plasma-arc powder surfacing technique. It was a development from plasma-arc powder surfacing 

and plasma spraying. The advantages of the combined plasma-arc powder surfacing technique 

were less penetration depth and dilution, better mechanical properties of the surfacing weld, 

smaller heat-affect zone, and improvement in the possibility for isothermal heat input. 

Draugelates et al. [16-17] developed a plasma-arc powder nozzle and optimized the processing 

parameters with regard to heat input and powder delivery for the heavy-duty torch. It turned out 

that extensive coatings could be economically produced in one layer with dilution under 10%. 

They also implemented a two-powder plasma-arc surfacing process to manufacture anti-

corrosion and anti-wear surfacing reinforced with oxide ceramics. So, plasma-arc-based 

deposition has been successfully used in cladding and surfacing. However, no literature has been 

found on the research topic – solid freeform fabrication based on plasma/micro-plasma powder 

deposition process. This paper investigates the feasibility of applying a micro-plasma powder 

deposition for solid freeform fabrication.

Experimental set-up 

Micro-plasma arc welding is a kind of plasma arc welding (PAW) using low current and a 

specially designed welding torch. PAW usually works in two basic methods: transferred and 
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non-transferred arc modes.  A flowing plasma gas is provided through the center of the torch and 

exits through a copper nozzle.  When an arc is established between the tungsten electrode 

positioned within the body of the torch and the copper nozzle, the gas is ionized, forming high-

temperature plasma. The arc can be transferred to the workpiece where the intense heat causes 

fusion, and a weld is produced. With compression of the copper nozzle, the energy density of the 

micro-plasma arc becomes much higher, and the arc diameter and the HAZ become much 

smaller than that in a conventional welding arc such as a GTAW arc. So, micro-plasma welding 

applications often overlap with laser welding applications. The working principle of micro-

plasma metal powder deposition is shown in Figure 1. A transferred plasma arc exists between 

the torch nozzle and the substrate, and generates a molten pool on the surface of the substrate. 

The metal powder is fed into the molten pool by the carrier gas (argon) through the powder feed 

nozzle. Then, the fed powder is melted under the high temperature of the plasma arc. With the 

moving away of the plasma arc, the molten metal solidifies to form a deposited layer.  

Fig. 1 Schematic diagram of micro-plasma powder deposition

The developed MPPD rapid prototyping system is shown in Figure 2.  It consists of two axes in 

vertical position (Z axis and R axis), one axis in the horizontal position (X axis), two powder 

feeders, a powder feeder controller, a MPPD torch, a micro-plasma welding power source, a 

motion system controller, and a computer.  The Z-axis is used to lift the welding torch up with 

the increase of the deposited wall during the deposition process. The three-dimensional part is 

built on a substrate that is fixed on a rotating axis, the R-axis.  The R-axis is attached to the X-

axis in the horizontal position. By controlling the movement of the X-axis in the depositing 

process, a part with a variable diameter can be obtained. The two powder feeders can be 

controlled at different powder feeding-rates, respectively. So, powders with different 

compositions can be deposited to build parts with functionally graded compositions.  

Substrate Preheating 

Compared with the subsequent deposited layers, the first deposited layer has unique deposition 

conditions: the deposition base is the surface of a substrate (in this paper the dimensions of the 
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substrate are: outer diameter, 25 mm; inner diameter, 14 mm; height, 10 mm) at room 

temperature (25 °C). The subsequent layers are deposited on the surface of a previously 

deposited layer that is heated up to around 1000 °C. When a temperature gradient exists in a 

body, the heat energy is transferred by conduction. The heat-transfer rate per unit area is 

proportional to the normal temperature gradient: 

q/A ~ �T / �x                                                            (1) 

where q is the heat-transfer rate, A is the section area perpendicular to the direction of the heat 

flow, and �T/�x is the temperature gradient in the direction of the heat flow. When depositing the 

first layer, the temperature gradient between the welding-arc-heated area and the rest of the 

substrate is very large. The heat from the welding arc quickly dissipates into the substrate. So, it 

is difficult to accumulate enough energy to generate a molten pool on the surface of the substrate 

that is at room temperature. The status of the molten pool has a significant effect on the quality 

of the deposited layer. A smooth and uniform molten pool is the key for obtaining a deposited 

layer of high quality. One solution to the problem is to increase the initial temperature of the 

substrate before the starting of the deposition process. In this paper, the micro-plasma welding 

arc is used as a heat source to preheat the substrate. According to experimental results, the 

preheating parameters are determined as follows: welding current, 15 A; welding speed, 1 mm/s; 

and preheating time, 180 seconds.  

Fig. 2 Experimental Set-up for micro-plasma powder deposition

Arc length control 

The arc length control is a key in the MPPD process. The reasons are as follows: 

1. The heat input from the micro-plasma arc fluctuates with the variation of the arc 

length, and in turn, the molten pool size also fluctuates. The heat input from the welding arc Q is 

defined in Equation (2):

Q = ηIV           (2) 
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where η is the coefficient of efficiency, I is the welding current, and V is the arc voltage.  The 

welding power source has a constant-current characteristic. The heat input is directly 

proportional to the arc length. So, a variation of the arc length causes a fluctuation in the arc 

voltage (V), and consequently, the heat-input (Q) varies as well. As well known, the heat input 

has a determinant effect on the molten pool size.  So, a fluctuation of the arc length usually leads 

to an undesired variation of the molten pool size and in turn results in non-uniform deposited 

layers.   

2. The arc length has an effect on the height of the deposited layer. In Figure 3, L1 and 

L2 denote arc length respectively and L1 is larger than L2. Assuming that except for the arc 

length all other parameters such as welding current, pilot gas flow rate, shielding gas flow rate, 

carrier gas flow rate, powder feeding speed, and traveling speed are the same in the two different 

cases, therefore the micro-plasma arc and the flowing behaviors of the carrier gas and the powder 

are the same. The shape of the feeding powder stream is shown in Figure 4. Laser strips are 

projected to the powder stream, and the reflection of the laser strips is recorded. It is seen that the 

shape of the powder stream is a cone. The shorter the distance between the nozzle and the cross 

section along the axis of the nozzle, the smaller the cross-section area. To simplify the analysis, 

assume that the distribution density of the powder is uniform on each cross section that is vertical 

to the axis of the nozzle. According to the law of conservation of mass, the smaller the cross-

sectional area of the carrier-gas and powder flow, the larger the distribution density of the 

powder. So per unit area of the molten pool, much more powder is received at arc length L2 than 

at arc length L1. Because the height of the deposited layer is directly proportional to the amount 

of the fed powder on the molten pool per unit area, a larger height of the deposited layer is 

generated when the arc length is short.  

In order to monitor and control the arc length in the MPPD process, the relationship between the 

arc length and the arc voltage is investigated.  For instance, when the current is 15 A, the 

relationship between the arc length and the arc voltage is shown in Figure 5. It is seen that the arc 

voltage has a linear relationship with the arc length when the current is constant. The arc voltage 

is directly proportional to the arc length. In addition according to the experimental results, it is 

also noted that the current has an effect on the relationship between the arc voltage, and the arc 

length and the effect of current is nonlinear and complicated. So, an arc length control strategy is 

developed based on the real-time measurement of the arc voltage and current:  

1.  The arc voltage is acquired at selected arc lengths and currents. The selected arc lengths 

are from 1 mm to 6 mm with an increment of 0.5 mm.  The selected currents are from 10 A to 15 

A with an increment of 1 A.

2.  Five linear equations can be obtained by linear regression analyses of the data acquired at 

different currents.  Each linear equation describes the relationship of the arc voltage and the arc 

length at a corresponding current.  

3.  In the MPPD process, the current is always set to be one of the selected current values 

(10 A, 11 A, 12 A, 13 A, 14 A, and 15 A). The current is constant after it is set because the 

power supply has a characteristic of constant-current output.  So, the effect of current fluctuation 

on the relationship of the arc voltage and arc length can be neglected. The arc length control 

process consists of the following steps: acquiring arc voltage, low-pass filtering of the acquired 

signal, selecting a linear equation according to the current value, calculating the arc length, and 

moving the torch 0.05 mm up (down) if the calculating result is smaller (larger) than the given 

arc length. Repeat the process.  
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Fig. 3 Effect of arc length on powder feeding      Fig. 4 Shape of the feeding powder stream 
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Fig. 5 Relationship between arc length and arc voltage at 15-A current 

Relationship between welding parameters and deposited layer’s geometry 

The effect of the welding speed on the deposited layer’s geometries is shown in Figure 6(a). The 

welding speed is 3.14 mm/s, 4.18 mm/s, and 6.28 mm/s, respectively. The welding current is 15 

A, the arc length is 3.0 mm, the plasma gas flow rate is 0.4 l/min, the shielding gas flow rate is 

10 l/min, and the powder-carrier gas flow rate is 3.5 l/min.  The powder is H13 tool steel, and the 

powder-feeding rate is 2.3 g/min. It is seen that both of the deposited layer’s width and height 

decrease with the increase in the welding speed. The effects of the welding speed on the width 

and height of the deposited layer are almost the same. The effect of the welding current on the 

deposited layer’s geometry is shown in Figure 6(b). The welding current is 15 A, 13 A, and 11 

A, respectively. The welding speed is 3.14 mm/s, the arc length is 3.0 mm, the plasma gas flow 

rate is 0.4 l/min, the shielding gas flow rate is 10 l/min, and the powder-carrier gas flow rate is 

3.5 l/min.  The powder is H13 tool steel and the powder-feeding rate is 2.3 g/min. It is seen that 

the width of the deposited layer increases with the increase in the welding current. The height of 

the deposited layer decreases slightly with the increase in the welding current. The effect of the 

powder-feeding rate on the deposited layer’s geometries is shown in Figure 6(c). The powder is 

H13 tool steel, and the powder-feeding rate is 1.2 g/min, 2.3 g/min, and 3.6 g/min, respectively. 

The welding current is 15 A, the arc length is 3.0 mm, the plasma gas flow rate is 0.4 l/min, the 

shielding gas flow rate is 10 l/min, and the powder-carrier gas flow rate is 3.5 l/min.  It is seen 

that the deposited layer’s height increases with the increase in the powder-feeding rate.  The 

deposited layer’s width slightly decreases with the increase in the powder-feeding rate. It is also 

seen that the powder-feeding rate has a much larger influence on the height of the deposited layer 

than on the width of the deposited layer. 
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Fig. 6 Effects of welding parameters on the geometries of the deposited layer: (a) effect 

        of welding speed; (b) effect of welding current; (c) effect of powder-feeding rate 

Test parts 

Several test parts are built with the developed MPPD process as shown in Figure 7.  The 

geometrical parameters of the part in the form of a cylinder [Figure 7(a)] are as follows: number 

of layers is 80; the average layer of thickness is about 0.42 mm; the outer diameter is 22.4 mm; 

and the inner diameter is 17.2 mm. The geometrical parameters of the part in form of a cone 

[Figure 7(b)] are as follows: number of layers is 40; the average layer of thickness is about 0.35 

mm; the outer diameter at the top is 30.0 mm; the inner diameter at the top is 26.2 mm; the outer 

diameter at the bottom is 21.5 mm; the inner diameter at the bottom is 16.5 mm; and the over-

hang angle is 23 degree. The test part in the form of a cylinder, as shown in Figure 7(a), is 

deposited with 80 layers. The traveling speed is 3.14 mm/s. The diameter of the deposited part is 

20 mm. The powder-feeding rate is 2.3 g/min. So, the amount of feeding powder in the 

deposition process is 61.3 g. The weight of the substrate is 28.9 g. After the deposition process, 
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the total weight of the substrate and the deposited cylinder part is 65.1 g. So, the powder 

utilization efficiency in this deposition process is about 59%.  

                                      (a)                                                                         (b)

Fig. 7 Test parts: (a) part in form of a cylinder; (b) part in form of a cone 

The term functionally graded composition (FGC) is applied to components whose composition 

and structure vary progressively as a function of position. A FGC (along the z-axis) test part is 

produced by the successive deposition of the H13 tool steel powder and tungsten carbide 

powder. The part is in the form of a cylinder (the height, 6 mm; the outer diameter, 23.0 mm; and 

the inner diameter, 17.5 mm) and is built with 20 layers on a mild-steel substrate. The cross 

section of the FGC part is shown in Figure 8. In the first 12 layers, the feeding powder is 100% 

H13 tool steel powder. From layer 13, the tungsten carbide powder is blended with H13 tool 

steel. The percentage of volume of the tungsten carbide powder increases gradually from 0 to 20 

%. Figure 9 shows the interface between the substrate and the deposited wall that corresponds to 

position A in Figure 8.  

                Fig. 8 Cross section of a FGM test part                    Fig. 9 Interface between the  

 substrate and the deposited wall 
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Scanning electron microscopy (SEM) observation indicates that injected tungsten carbide 

dissolves and subsequently, fine carbides precipitate from supersaturated melt during cooling, as 

shown in Figure 10. The dissolution of tungsten carbide is rather aggressive during deposition. 

Only at the top of the part can injected coarse tungsten carbide be observed, as shown in Figure 

11. The reprecipitation of fine carbide happens extensively. Its morphology, size, and amount are 

closely related to the amount of injected tungsten carbide. Figure 12 shows typical 

microstructures of reprecipitated carbide that correspond to the positions B, C, D, and E in 

Figure 8.  In these back-scattered electron images, the precipitated carbide appears brighter than 

the matrix, indicating that it is rich in tungsten. At the lowest amount of injected tungsten 

carbide, the precipitated carbide is fewer, globular, and located at the grain boundary of the 

matrix [Figure 12(a)]. By increasing the injected tungsten carbides, the amount of precipitated 

carbide increases and its morphology evolves into an intergranular network [Figure 12(b)]. The 

higher amount of injected tungsten carbide results in the formation of herringbone [Figure 12(c) 

and (d)]. At a higher magnification, a significant amount of dark carbide can be seen [Figure 13]. 

It may be MC rich in titanium and chromium, whose contents in H13 are as high as 5.2 and 4.3 

wt.%, respectively.  

      Fig. 10 Dissolution of tungsten carbide and           Fig. 11 Coarse tungsten carbide on top  

      Precipitation of fine carbides                                  layers of the FGM part 

      (WC – tungsten carbide) 

Microstructural observation indicates that tungsten carbide is unstable and dissolves during 

deposition. Injected coarse tungsten carbide is observed only at the top of the deposited part. 

This result may be attributed to rapid cooling and a higher amount of injected tungsten carbide. 

Dissolution of injected tungsten carbide increases the contents of tungsten and carbon in the 

melt. During subsequent cooling, tungsten carbide precipitates from the supersaturated melt. 

From the present metallographical observation, it can be inferred that a eutectic reaction is 

predominant during solidification. When the amount of injected tungsten carbide is smaller, and 

consequently, fewer tungsten and carbon atoms are released into the melt, the melt is 

hypoeutectic and tungsten carbide precipitates as a final formed phase and is pushed to the grain 

boundary of the matrix. A higher amount of injected tungsten carbide increases the contents of 

tungsten and carbon in the melt. That increase results in a eutectic reaction during solidification, 

forming herringbone carbide. 
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                Fig. 12 Microstructures of re-precipitated carbide corresponding to the position  

                in Fig.8: (a) position B; (b) position C; (c) position D; (d) position E. (the 

arrow indicates the phases 

Fig. 13 Microstructures of re-precipitated carbide at a higher magnification 

(the arrow indicates the phases) 
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The Vickers hardness (HV) distribution along the cross section of the test FGC part is shown in 

Figure 14. It is seen that the hardness of the deposited wall continuously increases by increasing 

the amount of injected tungsten carbide. The hardness value is an average value at three different 

points in the same testing area. The hardness of the tungsten carbide is 1114 Hv. 
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Fig. 14 Hardness (HV) distribution on the cross section of the test FGM part

Conclusions

The MPPD based SFF process allows the components to be directly built from the corresponding 

powder. Substrate preheating and arc length control are required in the developed deposition 

process. The arc voltage signal can be used to monitor and control the arc length according to the 

developed control strategy. The power of the micro-plasma arc applied in the deposition process 

is less than 375 W. A number test parts are made of H13 tool steel powder with acceptable 

surface quality and mechanical properties including parts with functionally graded composition. 

The powder utilization efficiency is about 59%. The microstructural observation on the FGC part 

shows that the dissolution of tungsten carbide is fast occurring during deposition. Injected coarse 

tungsten carbide can only be observed at the top of the part. The reprecipitation of fine carbide 

happens extensively. From the metallographical observations, it can be inferred that a eutectic 

reaction is predominant during solidification. Experimental result shows that the hardness of the 

built FGC part continuously increases with increase in the amount of injected tungsten carbide.  
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