

Copyright

by

Jose Luis Hernandez Mejia

2019

The Thesis Committee for Jose Luis Hernandez Mejia
Certifies that this is the approved version of the following Thesis

Application of Artificial Neural Networks for Rapid Flash Calculations

APPROVED BY

SUPERVISING COMMITTEE:

Ryosuke Okuno, Supervisor

Kamy Sepehrnoori

Application of Artificial Neural Networks for Rapid Flash Calculations

by

Jose Luis Hernandez Mejia

Thesis

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

August 2019

 Dedication

To my mom Elvira, my dad Jose, and my brother Noe.

 v

Acknowledgements

First, I would like to express my genuine gratitude to my advisor Dr. Ryosuke

Okuno for his guidance, inspiration, and patience, during my studies at the University of

Texas at Austin. My admiration for Dr. Okuno for greatly inspiring me with his example

to be the best professional and person that I can be. I also would like to thank Dr. Kamy

Sepehrnoori for his time to review my thesis and for his valuable feedback.

I would like to thank my research group and the staff of the Hildebrand Department

of Petroleum Engineering for welcoming me and supporting me during the course of my

degree. To my friends Sofiane, Ricardo, Javier, Fernando, Chelsea, Hongeeun Jo,

Francisco, Julia, Mayra, Gustavo, and Mauricio, thank you for the long study sessions and

the wonderfull memories collected outside the campus. To professor Dr. Michael Pyrcz,

thank you for your comments on the development of artificial neural networks.

I also would like to thank, Thais McComb, John Pederson and Evelyn Vilchez my

mentors from Chevron for playing a crucial role in my professional growth.

Additionally, I would like to thank M.S.E Maria Isabel Villegas Javier, Dr. Pedro

Silva, Dr. Simon Lopez, and Dra. Cecilia de Los Angeles Duran Valencia for always

believe in me and supporting me through my petroleum engineering career.

To my friends and family whom I did not cite here explicitly, thank you for your

love and support. I also would like to thank the Fulbright Commission in Mexico and

Conacyt, for the financial support during my studies at UT Austin.

Last but not least, I would like to thank my mom Elvira, my brother Noe and my

dad Jose for always supporting me and encourage me to always follow my dreams no

matter what. Without all of you, this work would have not been possible. Thank you

 vi

Abstract

Application of Artificial Neural Networks for Rapid Flash Calculations

Jose Luis Hernandez Mejia, MSE

The University of Texas at Austin, 2019

Supervisor: Ryosuke Okuno

Compositional reservoir simulation is widely used as an important tool for

optimization of enhanced oil recovery processes. In compositional reservoir simulation,

flash calculations are performed to solve for phase properties and amounts for each grid-

block and each time step by use of a cubic equation of state (EOS). EOS flash calculation

is one of the most time-consuming operations during compositional reservoir simulation.

There has been a critical need for more efficient EOS flash for practical compositional

reservoir simulation.

The central idea tested in this thesis is to use artificial neural networks (ANNs) to

replace the most fundamental, but time-consuming portion of EOS flash; that is, the

evaluation of fugacity coefficients. ANNs are used for efficient feedforward

approximation of the EOS fugacity coefficient function with a series of weights, bias, and

activation functions. A set of weights and bias is found by using an algorithm that

minimizes the mean squared error between the predicted and real values. This type of

approximation is called supervised learning in machine learning applications. The

 vii

thermodynamic model used is the Peng – Robinson equation of state with the van der Waals

mixing rules and solved by the successive substitution algorithm for flash calculations.

The implementation of the ANN-based fugacity coefficient function is

straightforward because it only replaces the EOS-based fugacity coefficient in

conventional flash calculation algorithms. Once an ANN-based fugacity coefficient

function is built based on a cubic EOS, the EOS is required only when phase densities are

calculated, usually at the final convergence. That is, ANN-based flash does not use an

EOS during the iterative solution. We show comparisons between the conventional EOS

flash calculations and the ANN flash calculations in terms of computational efficiency. Use

of ANN flash can reduce on average 89.83% of the time needed by the conventional EOS

flash for the cases studied in this thesis.

viii

Table of Contents

List of Tables ..x

List of Figures ..xi

Chapter 1: Introduction ...1

 1.1 Problem description ..1

 1.2 Research Objectives ..2

 1.3 Outline of thesis ..3

Chapter 2: Phase Equilibrium Calculations ..5

 2.1 Basics of phase equilibrium calculations ..5

2.1.1 Equilibrium conditions ...5

2.1.2 Conventional formulations for flash calculations8

2.1.2.1 Direct minimization of the Gibbs free Energy8

2.1.2.2 Succesive substitutions Iteration method12

2.1.3 Equations of State ..15

 2.2 Methods to speed up compositional reservoir simulations17

Chapter 3: Artificial Neural Networks ..22

 3.1 Basics of artificial neural networks ...22

 3.2 Training artificial neural networks using backpropagation algorithm25

 3.3 Data preparation ..30

3.1.1 Data splitting ..30

3.1.1 Data normalization ...31

ix

Chapter 4: Methodology, formulation and algorithm ...38

 4.1 Artificial neural networks for the fugacity coefficient38

 4.2 Artificial neural network flash calculation ...39

4.2.1 Formulation ..40

4.2.2 Algorithm ...43

Chapter 5: Case studies ...46

 5.1 Stand-Alone flash calculations ...46

5.1.1 Case 1 ...46

5.1.2 Case 2 ...50

5.1.3 Case 3 ...51

5.1.4 Case 4 ...53

 5.2 Discussion ...55

Chapter 6: Summary, conclusions and recommendations for future research153

 6.1 Summary and conclusions ..153

 6.2 Recommendations for future research ..156

Appendix A Database generation code ...158

Appendix B Artificial Neural Network models ..164

Appendix C Artificial neural network flash ..167

Glossary ...172

References ..175

x

List of Tables

Table 4.1: Table 4.1. ANN architecture for fugacity coefficients...…...…………....45

Table 5.1: Fluid properties for case 1..58

Table 5.2: Keras setup to train neura networks.........................……………....……..58

Table 5.3: Generalization error of fugacity coefficient from artificial neural
networks...58

Table 5.4: Time per iteration comparison for study case 1...58

Table 5.5: Fluid properties for case 2..73

Table 5.6: Generalization error of fugacity coefficient from artificial neural
networks ..74

Table 5.7: Time per iteration comparison between EOS Flash and ANN Flash........74

Table 5.8: Fluid properties for case 3..96

Table 5.9: BIPs for fluid model in case 3..97

Table 5.10: Generalization error of fugacity coefficients from ANNs.........................97

Table 5.11: Time per iteration comparison between EOS Flash and ANN Flash........97

Table 5.12: Fluid model for case 4..123

Table 5.13: Generalization error of fugacity coefficients from ANNs.......................123

Table 5.14: Time per iteration comparison between EOS Flash and ANN Flash......123

 xi

List of Figures

Figure 3.1: Basic architecture of a neuron..34

Figure 3.2: Fully connected feedforward neural network structure.............................34

Figure 3.3: Commonly used activation functions used in ANNs
 Top: Sigmoid. Bottom: Identity. ..35

Figure 3.4: Commonly used activation functions used in ANNs
 Top: Sign. Bottom: Rectified Linear Unit (ReLU). 36

Figure 3.5: Commonly used activation functions used in ANNs
 Top: Hard Tanh. Bottom: Tanh ...37

Figure 4.1: Fully connected neural network for the fugacity coefficient45

Figure 5.1: Phase diagram of adapted BSB west Texas oil fluid model57

Figure 5.2: Accuracy comparison between fugacity coefficient calculated with EOS
 and ANN Top: Component C1. Bottom: Component C2-3.........................59

Figure 5.3: Accuracy comparison between fugacity coefficient calculated with EOS
 and ANN Top: Component C4-6. Bottom: Component C7-15.....................60

Figure 5.4: Accuracy comparison between fugacity coefficient calculated with EOS
 and ANN Top: Component C16-28. Bottom: Component C28+...................61

Figure 5.5: Phase mole fraction calculations comparison between EOS and ANN.
 Top: Liquid phase for C1. Bottom: Vapor phase C1..................................62

Figure 5.6: Phase mole fraction calculations comparison between EOS and ANN.
 Top: Liquid phase for C2-3. Bottom: Vapor phase for C2-3.........................63

Figure 5.7: Phase mole fraction calculations comparison between EOS and ANN.
 Top: Liquid phase for C4-6. Bottom: Vapor phase for C4-6.........................64

Figure 5.8: Phase mole fraction calculations comparison between EOS and ANN.
 Top: Liquid phase for C7-15. Bottom: Vapor phase for C7-15......................65

Figure 5.9: Phase mole fraction calculations comparison between EOS and ANN.
 Top: Liquid phase for C16-27. Bottom: Vapor phase for C16-27...................66

xii

Figure 5.10: Phase mole fraction calculations comparison between EOS and ANN.
Top: Liquid phase for C28+. Bottom: Vapor phase for C28+.......................67

Figure 5.11: Phase mole fraction calculation comparison between EOS and ANN.
Top: Liquid mole fraction. Bottom: Vapor mole fraction.........................68

Figure 5.12: Phase mole fraction calculation comparison between EOS and ANN.
Top: Liquid mole fraction. Bottom: Vapor mole fraction.........................69

Figure 5.13: Fluid density calculation comparison between EOS and ANN.
Top: Liquid density. Bottom: Vapor density..70

Figure 5.14: Fugacity coefficient execution time
Top: EOS Bottom: ANN..71

Figure 5.15: Fugacity coefficient execution time comparison72

Figure 5.16: Flash calculation execution time comparison..72

Figure 5.17: Gas Condensate phase envelope..73

Figure 5.18: Accuracy comparison between fugacity coefficient calculated with EOS
 and ANN Top: Component C1. Bottom: Component C2...........................75

Figure 5.19: Accuracy comparison between fugacity coefficient calculated with EOS
and ANN Top: Component C3. Bottom: Component C4...........................76

Figure 5.20: Accuracy comparison between fugacity coefficient calculated with EOS
and ANN Top: Component C5. Bottom: Component C6...........................77

Figure 5.21: Accuracy comparison between fugacity coefficient calculated with EOS
and ANN Top: Pseudo-Component 1. Bottom: Pseudo-Component 2.....78

Figure 5.22: Accuracy comparison between fugacity coefficient calculated with EOS
and ANN Top: Pseudo-Component 3. Bottom: Pseudo-Component 4.....79

Figure 5.23: Phase mole fraction calculations comparison between EOS and ANN.
Top: Liquid phase for C1. Bottom: Vapor phase for C1.............................80

Figure 5.24: Phase mole fraction calculations comparison between EOS and ANN.
Top: Liquid phase for C2. Bottom: Vapor phase for C2.............................81

 xiii

Figure 5.25: Phase mole fraction calculations comparison between EOS and ANN.
 Top: Liquid phase for C3. Bottom: Vapor phase for C3.............................82

Figure 5.26: Phase mole fraction calculations comparison between EOS and ANN.
 Top: Liquid phase for C4. Bottom: Vapor phase for C4.............................83

Figure 5.27: Phase mole fraction calculations comparison between EOS and ANN.
 Top: Liquid phase for C5. Bottom: Vapor phase for C5.............................84

Figure 5.28: Phase mole fraction calculations comparison between EOS and ANN.
 Top: Liquid phase for C6. Bottom: Vapor phase for C6.............................85

Figure 5.29: Phase mole fraction calculations comparison between EOS and ANN.
 Top: Liquid Pseudo Component 1. Bottom: Vapor Pseudo
 Component 1..86

Figure 5.30: Phase mole fraction calculations comparison between EOS and ANN.
 Top: Liquid Pseudo Component 2. Bottom: Vapor Pseudo
 Component 2..87

Figure 5.31: Phase mole fraction calculations comparison between EOS and ANN.
 Top: Liquid Pseudo Component 3. Bottom: Vapor Pseudo
 Component 3..88

Figure 5.32: Phase mole fraction calculations comparison between EOS and ANN.
 Top: Liquid Pseudo Component 4. Bottom: Vapor Pseudo
 Component4...89

Figure 5.33: Phase mole fraction calculation comparison between EOS and ANN.
 Top: Liquid mole fraction. Bottom: Vapor mole fraction.........................90

Figure 5.34: Fluid saturation comparison between EOS and ANN.
 Top: Vapor saturation. Bottom: Liquid Saturation....................................91

Figure 5.35: Fluid density calculation comparison between EOS and ANN.
 Top: Liquid density. Bottom: Vapor density..92

Figure 5.36: Fugacity coefficient execution time
 Top: ANNs. Bottom: EOS...93

Figure 5.37: Fugacity coefficient execution time comparison between
 EOS and ANN..94

 xiv

Figure 5.38: Total number of iterations needed to reach to the solution between EOS
 flash and ANN flash...94

Figure 5.39: Total execution time to reach solution of conventional EOS method and
 ANN flash method...95

Figure 5.40: Convergence behavior comparison between EOS flash and ANN flash at a
 pressure of 220 Bar..95

Figure 5.41: Phase diagram of fluid model in case 3...96

Figure 5.42: Accuracy comparison between fugacity coefficient calculated with EOS
 and ANN Top: N2. Bottom: CO2...98

Figure 5.43: Accuracy comparison between fugacity coefficient calculated with EOS
 and ANN Top: Component C1. Bottom: Component C2...........................99

Figure 5.44: Accuracy comparison between fugacity coefficient calculated with EOS
 and ANN Top: Component C3. Bottom: Pseudo-Component C4............100

Figure 5.45: Accuracy comparison between fugacity coefficient calculated with EOS
 and ANN Top: Component C5. Bottom: Pseudo-Component C6............101

Figure 5.46: Accuracy comparison between fugacity coefficient calculated with EOS
 and ANN Top: Pseudo Component 1. Bottom: Pseudo Component 2....102

Figure 5.47: Accuracy comparison between fugacity coefficient calculated with EOS
 and ANN Top: Pseudo Component 3. Bottom: Pseudo Component 4....103

Figure 5.48: Phase mole fraction calculations comparison between EOS and ANN.
 Top: Liquid N2 . Bottom: Vapor N2...104

Figure 5.49: Phase mole fraction calculations comparison between EOS and ANN.
 Top: Liquid CO2. Bottom: Vapor CO2...105

Figure 5.50: Phase mole fraction calculations comparison between EOS and ANN.
 Top: Liquid C1. Bottom: Vapor C1...106

Figure 5.51: Phase mole fraction calculations comparison between EOS and ANN.
 Top: Liquid C2. Bottom: Vapor C2...107

 xv

Figure 5.52: Phase mole fraction calculations comparison between EOS and ANN.
 Top: Liquid C3. Bottom: Vapor C3...108

Figure 5.53: Phase mole fraction calculations comparison between EOS and ANN.
 Top: Liquid C4. Bottom: Vapor C4...109

Figure 5.54: Phase mole fraction calculations comparison between EOS and ANN.
 Top: Liquid C5. Bottom: Vapor C5...110

Figure 5.55: Phase mole fraction calculations comparison between EOS and ANN.
 Top: Liquid C6. Bottom: Vapor C6...111

Figure 5.56: Phase mole fraction calculations comparison between EOS and ANN.
 Top: Liquid Pseudo Component 1. Bottom: Vapor Pseudo
 Component 1..112

Figure 5.57: Phase mole fraction calculations comparison between EOS and ANN.
 Top: Liquid Pseudo Component 2. Bottom: Vapor Pseudo
 Component 2..113

Figure 5.58: Phase mole fraction calculations comparison between EOS and ANN.
 Top: Liquid Pseudo Component 3. Bottom: Vapor Pseudo
 Component 3..114

Figure 5.59: Phase mole fraction calculations comparison between EOS and ANN.
 Top: Liquid Pseudo Component 4. Bottom: Vapor Pseudo
 Component 4..115

Figure 5.60: Phase mole fraction calculation comparison between EOS and ANN.
 Top: Liquid mole fraction. Bottom: Vapor mole fraction.......................116

Figure 5.61: Fluid saturation comparison between EOS and ANN.
 Top: Vapor saturation. Bottom: Liquid Saturation..................................117

Figure 5.62: Fluid density calculation comparison between EOS and ANN.
 Top: Liquid density. Bottom: Vapor density..118

Figure 5.63: Fugacity coefficient execution time
 Top: ANNs. Bottom: EOS..119

Figure 5.64: Fugacity coefficient execution time comparison between
 EOS and ANN..120

 xvi

Figure 5.65: Total execution time to reach solution of conventional EOS method and
 ANN flash method...120

Figure 5.66: Total execution time to reach solution of conventional EOS method and
 ANN flash method...121

Figure 5.67: Convergence behavior comparison between EOS flash and ANN flash at a
 pressure of 220 Bar..121

Figure 5.68: Phase diagram of case number 4 ...122

Figure 5.69: Accuracy comparison between fugacity coefficient calculated with EOS
 and ANN Top: Component C1. Bottom: Component C2.124

Figure 5.70: Accuracy comparison between fugacity coefficient calculated with EOS
 and ANN Top: Component C3. Bottom: Component C4.........................125

Figure 5.71: Accuracy comparison between fugacity coefficient calculated with EOS
 and ANN Top: Component C5. Bottom: Component C6.........................126

Figure 5.72: Accuracy comparison between fugacity coefficient calculated with EOS
 and ANN Top: Pseudo-Component 1. Bottom: Pseudo-Component 2...127

Figure 5.73: Accuracy comparison between fugacity coefficient calculated with EOS
 and ANN Top: Pseudo Component 3. Bottom: Pseudo Component 4....128

Figure 5.74: Phase mole fraction calculations comparison between EOS and ANN.
 Top: Liquid C1. Bottom: Vapor C1..129

Figure 5.75: Phase mole fraction calculations comparison between EOS and ANN.
 Top: Liquid C2 Bottom: Vapor C2..130

Figure 5.76: Phase mole fraction calculations comparison between EOS and ANN.
 Top: Liquid C3. Bottom: Vapor C3...131

Figure 5.77: Phase mole fraction calculations comparison between EOS and ANN.
 Top: Liquid C4. Bottom: Vapor C4...132

Figure 5.78: Phase mole fraction calculations comparison between EOS and ANN.
 Top: Liquid C5. Bottom: Vapor C5...133

 xvii

Figure 5.79: Phase mole fraction calculations comparison between EOS and ANN.
 Top: Liquid C6. Bottom: Vapor C6...134

Figure 5.80: Phase mole fraction calculations comparison between EOS and ANN.
 Top: Liquid Pseudo Component 1. Bottom: Vapor Pseudo
 Component 1..135

Figure 5.81: Phase mole fraction calculations comparison between EOS and ANN.
 Top: Liquid Pseudo Component 2. Bottom: Vapor Pseudo
 Component 2..136

Figure 5.82: Phase mole fraction calculations comparison between EOS and ANN.
 Top: Liquid Pseudo Component 3. Bottom: Vapor Pseudo
 Component 3..137

Figure 5.83: Phase mole fraction calculations comparison between EOS and ANN.
 Top: Liquid Pseudo Component 4. Bottom: Vapor Pseudo
 Component 4..138

Figure 5.84: Total number of iteration comparison between
 EOS flash and ANN flash..139

Figure 5.85: Convergence behavior at 180 bars...139

Figure 5.86: Convergence behavior at 272 bars...140

Figure 5.87: Phase mole fraction calculation comparison.
 Top: Liquid mole fraction. Bottom: Vapor mole fraction.......................141

Figure 5.88: Liquid saturation comparison.
 Top: Liquid saturation. Bottom: Vapor saturation..................................142

Figure 5.89: Fluid density calculation comparison between EOS and ANN.
 Top: Liquid density. Bottom: Vapor density..143

Figure 5.90: Fugacity coefficient execution time
 Top: Feedforward Neural Network. Bottom: Cubic Equation of State...144

Figure 5.91: Fugacity coefficient execution time comparison between
 EOS and ANN..145

Figure 5.92: Total execution time to reach solution of conventional EOS method and
 ANN flash method...145

 xviii

Figure 5.93 Solution of the RR function at 272 bars approaching the critical region
 Top: Iteration 8th Bottom: Iteration 32nd..146

Figure 5.94: Gradient of the Rachford-Rice solution
 Top: Case 1. Bottom: Case 2..147

Figure 5.95: Gradient of the Rachford-Rice solution
 Top: Case 3. Bottom: Case 4..148

Figure 5.96: Rachford-Rice solution comparison between EOS and ANN flash
 Top: 180 Bar. Bottom: 272 Bar..149

Figure 5.97: Phase amount calculation comparison between EOS and ANN with

switching criteria.
Top: Liquid density. Bottom: Vapor density..150

Figure 5.98: Fluid saturation calculation comparison between EOS and ANN with
switching criteria.
Top: Liquid density. Bottom: Vapor density..151

Figure 5.99: Fluid density calculation comparison between EOS and ANN with
switching criteria.
Top: Liquid density. Bottom: Vapor density..152

 1

CHAPTER 1

INTRODUCTION

This chapter describes the flash calculation problems to be solved in this thesis,

following by the objectives of this research and finally an outline of the thesis is presented.

1.1 PROBLEM DESCRIPTION

Compositional reservoir simulation is widely used for designing and optimizing

enhanced oil recovery (EOR) processes. Such simulators must be able to predict phase

behavior, volumetric sweep efficiency, and incremental oil recovery of miscible gas/CO2

flooding. Compositional simulators often use a fluid model based on a cubic equation of

state (EOS) to predict the phase behavior of reservoir fluid mixtures at operating

conditions.

The phase behavior in EOS compositional simulation is determined by the use of

stability analysis and flash calculations. Stability analysis will indicate if the hydrocarbon

mixture of interest is in stable single phase at specific conditions of pressure and

temperature. If more than one phase is necessary for phase equilibrium, the subsequent

flash calculation is to calculate the amounts and properties of the coexisting phases. Those

phase equilibrium calculations are performed in an iterative manner at each grid – block

and at each iteration step, and therefore, can consume a non-trivial amount of the

simulation time during EOS compositional reservoir simulation.

This problem of compositional reservoir simulation is intensified when the number

of components used for the simulation is increased, when there are more than two phases

or when the thermodynamic conditions are in the critical region in gas flooding

simulations. Additionally, compositional simulation becomes challenging when the

 2

resolution of the reservoir model is increased by grid refinement since flash calculation has

to be performed in each gridblock. The development of algorithms that decrease the time

spent in EOS flash calculations would facilitate the decision making and the design of more

efficient oil production for EOR projects.

1.2 RESEARCH OBJECTIVES

The computational time in compositional reservoir simulation depends on the

algorithm used for phase equilibrium calculations and the number of equations to be solved

during the simulation run. With the advances in computer science and artificial

intelligence, new tools have been developed to predict complex and nonlinear functions.

The aim of this thesis is to generate a fast flash calculation algorithm using artificial neural

networks (ANNs) to replace the most fundamental, but time-consuming portion of the flash

calculation; that is, the evaluation of the fugacity coefficient. The fugacity coefficient

function by a cubic EOS (e.g., Peng and Robinson) can be accurately represented by a

simpler function within a given thermodynamic domain by use of ANNs. If that was done,

flash calculation usually does not require solving the EOS during the iterative solution.

This is the central idea that motivated this thesis project.

The objectives of this research are the following:

1. Develop ANN models of the fugacity coefficient based on the Peng-Robinson EOS.

2. Integrate the ANN-based fugacity coefficient function into a flash algorithm based

on successive substation.

3. Evaluate the accuracy of the ANN flash in comparison to the original EOS flash by

using different reservoir fluids.

4. Quantify the computational efficiency of the ANN flash in comparison to the EOS

flash.

 3

5. Identify implementation problems for ANN flash and propose practical remedies

to them.

To achieve the first objective, we create ANN models for the fugacity coefficient,

without model overfitting, with low generalization error for predictions in unseen data. For

the second objective, we integrate the ANN models into the traditional flash calculation

algorithm using successive substitution. The generated algorithm can increase the speed of

the flash calculation because we replace the fugacity coefficient with ANNs avoiding

calculation of the fugacity coefficient during the iteration. Cases studies using the ANN

and EOS flash calculations are used for the 3rd, 4th, and 5th objectives.

1.3 OUTLINE OF THESIS:

This thesis consists of 6 chapters. Chapter 2 presents background information of

the conventional flash calculations and the basics of the phase equilibrium. Additionally, a

literature review on the different methods for speeding up compositional reservoir

simulations is presented.

In Chapter 3, theory behind artificial neural networks is presented. Here, we define

the concepts used to generate, train and evaluate the performance of ANNs.

In Chapter 4, we describe the methodology to generate ANNs for the fugacity

coefficient. Additionally, the ANN flash formulation and algorithm developed in this

research is presented.

In Chapter 5, we present the results obtained with the new algorithm as well as

comparisons in terms of accuracy, robustness and efficiency against the conventional EOS

flash calculation.

 4

Chapter 6 summarizes and concludes the research. Suggestions for future work are

also presented.

 5

CHAPTER 2

PHASE EQUILIBRIUM CALCULATIONS

This chapter defines the fundamental concepts involved in phase equilibrium

calculation. The first portion of this chapter describes the fundamental equations involved

in phase equilibrium and the conventional methods of flash calculation. The second portion

of this chapter provides a literature review about the different methods to speed up flash

calculations for compositional reservoir simulators.

2.1 BASICS OF PHASE EQUILIBRIUM CALCULATIONS

This section describes the fundamental equations used in flash calculations. Then,

the methodology to solve the flash calculation is presented followed by equations of state

(EOSs). In this thesis, the Peng – Robinson equation of state (1978) is used with the van

der Waals mixing rules.

2.1.1 Equilibrium Conditions

Thermodynamics analysis of mixtures involves the partial molar properties of each

component in the mixture. Therefore, the partial molar Gibbs free energy is one of the most

important parameters for phase equilibrium modeling. Since the Gibbs free energy of a

multicomponent mixture is a function of temperature, pressure and mole number of the

components in the mixture, the total differential of the Gibbs free energy function can be

written as

 𝑑𝐺 = 	%
𝜕𝐺
𝜕𝑇(!,#!

𝑑𝑇 + %
𝜕𝐺
𝜕𝑃($,#!

𝑑𝑃 ++%
𝜕𝐺
𝜕𝑁%

(
$,!,#"#!

𝑑𝑁%

#&

%

2.1

𝑑𝐺 = 	−𝑆𝑑𝑇 + 𝑉𝑑𝑃 +	+𝐺̅%𝑑𝑁%

#&

%

2.2

 6

where T is temperature, P is pressure, 𝐺̅% is the partial molar Gibbs energy,	𝑁𝑐 is the number

of components, and 𝑁% is the number of moles of component i. Using the commutative

properties of second derivatives of the thermodynamic functions,
 𝜕

𝜕𝑁%
2
$,!,#"#!

=
𝜕
𝜕𝑇2!,#"

%
𝜕𝐺
𝜕𝑁%

(
$,!,#"#!

2.3

 and
 𝜕

𝜕𝑁%
2
$,!,#"#!

=
𝜕
𝜕𝑇2!,#"

%
𝜕𝐺
𝜕𝑁%

(
$,!,#"#!

2.4

To obtain the two equations

𝑆%̅ = −3

𝜕𝐺̅%
𝜕𝑇 4

!,#"

2.5

and

𝑉5% = 3
𝜕𝐺̅%
𝜕𝑃4

$,#"

 2.6

where 𝑆̅% and 𝑉5% are the partial molar entropy and partial molar volume of component i

respectively. Therefore, the fugacity equation can be derived with relation to the partial

Gibbs free energy (Okuno 2009). Integration from a reference pressure 𝑃' to a higher

pressure 𝑃(results in

𝐺̅%6𝑇',𝑃', 𝑥9 − 𝐺̅%6𝑇',𝑃(, 𝑥9 = : 𝑉5%

!$

!%
𝑑𝑃

 2.7

where 𝑥 is the vector representing the composition of the phase mixture of interest. For

ideal gas mixtures (IGM), the EOS for ideal gas can be used with equation 2.2 to obtain

 𝐺̅%)*+6𝑇',𝑃', 𝑥9 − 𝐺̅%)*+6𝑇(,𝑃(, 𝑥9 = 𝑅𝑇 ln %

𝑃(
𝑃'
(

 2.8

 7

where R is the universal gas constant. In analogy with equation 2.8, the fugacity coefficient

can be defined as

𝐺̅%6𝑇',𝑃', 𝑥9 − 𝐺̅%6𝑇',𝑃(, 𝑥9 = 𝑅𝑇 ln 3
𝑓%
𝑓%,
4

2.9

where 𝑓% and 𝑓%, are the fugacities at 𝑃(and 𝑃' respectively. The fugacity 𝑓% accounts for

the deviation in the partial pressure 𝑃% generated by the non-ideal behavior of molecules

in the mixture. Subtracting equation 2.8 from 2.9

𝑓% =	𝑥%Pexp C

𝐺̅%6𝑇,𝑃, 𝑥9 − 𝐺̅%)*+6𝑇,𝑃, 𝑥9
𝑅𝑇 D

2.10

𝑓% =	𝑥%Pexp C
1
𝑅𝑇: (𝑉5% − 𝑉5%)*)𝑑𝑃

!

,
D

2.10

Assuming that 𝑓' = 𝑥%𝑃' ≡ 𝑃% and 𝐺̅%6𝑇',𝑃', 𝑥9 = 𝐺̅%)*+6𝑇',𝑃', 𝑥9 when 𝑃' ⟶ 0.

Here, 𝑃% is the partial pressure of component i, and the superscript IGM indicates an ideal

gas mixture property. When the pressure goes to 0, all mixtures become ideal and the

fugacity can be express as.

𝑓% = 𝑥%Pexp C
𝐺̅%6𝑇,𝑃, 𝑥9 − 𝐺̅%)*6𝑇,𝑃, 𝑥9

𝑅𝑇 D

2.11

Equation 2.11 is provided as a definition of the fugacity in textbooks (e.g. Sandler, 2006)

and its derivation with its relationship with the partial molar Gibbs free energy is given by

Okuno (2009). The fugacity coefficient for a component in a mixture is defined as

𝜑% =
𝑓%
𝑥%P

2.12

which is intensively used during phase equilibrium calculations. To calculate the fugacity

of the components in the mixture from equation 2.10, a volumetric equation of state needs

 8

to be solved explicitly for volume in terms of pressure and temperature (Sandler, 2006).

However, most of the equations of state are usually pressure explicit. Therefore, the

fugacity equation can be re written starting with

 𝑑𝑃 =
1
𝑉5
𝑑6𝑃𝑉9 −

𝑃
𝑉 𝑑𝑉

2.13
And the triple product rule

%
𝜕𝑉
𝜕𝑁%

(
$,!,#"#!

%
𝜕𝑃
𝜕𝑉($,#"

%
𝜕𝑁%
𝜕𝑃 ($,-,#"#!

= −1

2.14

 in the form

%
𝜕𝑉
𝜕𝑁%

(
$,!,#"#!

𝑑𝑃 = −%
𝜕𝑃
𝜕𝑁%

(
$,-,#"#!

𝑑𝑉

2.15

 The symbolic fugacity coefficient for a component in a mixture from an EOS is

ln𝜑% = ln
𝑓%(𝑇,𝑃, 𝑥)
𝑥%P

=
1
𝑅𝑇: L

𝑅𝑇
𝑉 − %

𝜕𝑃
𝜕𝑁%

(
$,-,#"#!

M 𝑑𝑉
-./0$/!

-.2
− ln𝑍

2.16

Finally, the criterion for equilibrium between two phases is that 𝐺̅%) = 𝐺̅%)) for all

components i in the mixture with the condition that temperature and pressure are equal in

both phases. Therefore, at equilibrium conditions, the fugacity of each component in the

mixture must be the same in the two phases.

2.1.2 Conventional formulations for flash calculations

There are two main approaches to performing phase equilibrium calculations: a)

direct minimization of the Gibbs free energy and b) solution of the fugacity equations. In

this section both methods will be discussed, and common algorithms will be presented.

2.1.2.1 Direct minimization of the Gibbs Free energy

Flash calculations are used in this thesis to find the equilibrium phase compositions

and phase amounts at conditions of pressure P, temperature T, and overall composition 𝑧.

 9

The fundamental formulation in flash calculations is the minimization of the Gibbs free

energy at given pressure and temperature. As described in Okuno (2009), the molar Gibb

free energy of a multicomponent mixture is defined as

𝐺 = 	++𝛽3𝑥%3𝐺̅%3

#&

%.'

#4

3.'

2.17

where 𝑥%3 is the mole fraction of component i in phase j and 𝛽3 is the mole fraction of phase

j. Combining equation 2.12 with equation 2.17, we get the following:

𝐺 = 	𝑅𝑇++𝛽3𝑥%3ln(𝑥%3𝜑%3)
#&

%.'

#4

3.'

+ 𝐺)*++𝛽3𝑥%3

#&

%.'

#4

3.'

2.18

= 𝑅𝑇++𝛽3𝑥%3ln(𝑥%3𝜑%3)

#&

%.'

#4

3.'

+ 𝐺)*

In equation 2.18, the molar Gibbs free energy of the ideal gas 𝐺)* is a function of

pressure and temperature that are fixed in flash calculations. Therefore, the minimization

of the Gibbs free energy can be solved using the following dimensionless equation:

𝐺0 = 𝑅𝑇++𝛽3𝑥%3ln(𝑥%3𝜑%3)
#&

%.'

#4

3.'

2.19

Thus, the constrained global optimization problem for the Gibbs free energy

minimization is

min𝐺0 = 𝑅𝑇++𝛽3𝑥%3ln(𝑥%3𝜑%3)
#&

%.'

#4

3.'

subject to

+𝛽3𝑥%3

#4

3.'

= 𝑧%
2.20

 10

+𝑧%

#&

%.'

= 1.0
2.21

+𝛽3

#4

3.'

= 1.0	and	𝛽3 	≥ 0	for	j = 1,…	, Np,
2.22

+𝑥%3

#&

%.'

= 1.0	and	𝑥%3 	≥ 0	for	i = 1,…	, Nc	and	j = 1,…	, Np.
2.23

As shown by Baker et al. (1982), when the fluid system exhibits multiple phases,

the Gibbs free energy using an EOS might have false solutions. Therefore, the global

minimum is the correct solution while the other local minima are false solutions.

As explain by Okuno (2009), the standard minimization is performed in terms of

Nc(Np − 1) independent variables.

 𝑤%3 = 𝛽3𝑥%3 	where	i = 1,… , Nc	and	j = 1,… , (Np − 1) 2.19

since ∑ 𝑤%3
#4
3.' = 𝑧%. The mole fraction can be express as 𝑥%3 =

5!"
∑ 5!"&'
!(%

 because ∑ 𝑤%3#&
%.' =

𝛽3. The minimization problem can be re-arranged as follows

min𝐺0 = 𝑅𝑇++𝛽3𝑥%3ln(𝑥%3𝜑%3)
#&

%.'

#4

3.'

𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑	𝑡𝑜:	

2.20

 𝑤78 = 𝛽8𝑥87 ≥ 0 2.21

+𝑤78

#4

8.'

= 𝑧7	where	m = 1,… , Nc	and	n = 1,… , Np

2.22

For a function	 F		to be a local minimum at 𝑥∗,	the sufficient conditions for

optimality are that ∆F(𝑥∗) = 0 and the Hessian of the matrix 	∆(F(𝑥∗)	is positive definite.

The gradient and the Hessian of the matrix are used in Newton’s method of minimization

 11

with a line search technique. The material balance has to be satisfied at each iteration to fix

a reference value of the function and the dependent variables for the remaining phases can

be calculated as

𝑤%#4 = 𝑧% − + 𝑤%3 ,
#4:'

3.'

where	i = 1,… , Nc

2.23

The algorithm of Perschke et al. (1989) is the following:

1. Obtain the initial estimate of the	𝑁𝑐(Np − 1) independent variables in equation

2.19

2. Calculate dependent variables using 𝑤%#4 with equation 2.23

3. Calculate fugacity coefficients and compressibility factors using an EOS for Np

phases. When the solution of the cubic EOS, select the root that gives the lowest

Gibbs Free energy (Evelein et at. 1976)

4. Calculate the gradient vector and the Hessian matrix analytically from equation

2.20

5. Decompose the Hessian matrix using the modified Cholesky decomposition

algorithm.

6. If the Hessian matrix is positive definite in step 5 check for convergence of the max

norm of the gradient vector. If convergence is achieved, stop. Otherwise, continue

to step 7.

7. Obtained search direction using systems of equations decomposed in step 5

8. Calculate step length using the line search algorithm.

9. Update the 𝑁𝑐(Np − 1) and go to step 2.

Since Newton’s method is used for minimization of the Gibbs free energy the

convergence behavior is quadratic close to the solution.

 12

2.1.2.2 Successive Substitutions Iteration Method

A second alternative to flash calculation is the solution of the fugacity equations as

explained in Okuno (2009). Assuming no capillary or gravity effect on phase equilibrium,

the criterion for phase equilibrium is that the chemical potential of each component i in

phase I is the same for component i in phase II for all components in the mixture. A useful

expression for the chemical potential is the fugacity, 𝑓%. Therefore, the constraint for phase

equilibrium can be written as
 𝑙𝑛𝑓%3 − 𝑙𝑛𝑓%3 = 0,where	i = 1,… , Nc	and	j = 1,… , Np	 2.24

This constraint can be solved by successive substitution (SS) until a convergence

criterion is achieved. Successive substitution is widely applied because of its simplicity

and robustness. The independent variable in successive substations is k-values. k-values

represent the tendency of a component to partition among different phases and is defined

by
 𝐾%3 =

𝑥%3
𝑥%#4

	where	i = 1,… , Nc	and	j = 1,… , (Np − 1) 2.25

The Np;< phase is a reference phase in equation 2.25. Successive substitution solves

for equation 2.24 for 𝐾%3 with material balance equations 2.20, 2.22 and 2.23. Therefore,

equation 2.24 can be express as

 ln𝐾%3=>' =		 ln𝜑%#4

= −	ln𝜑%3
= 	where	i = 1,… , Nc	and	j = 1,… , (Np − 1)	 2.26

In equation 2.24, the superscript indicates iteration step. In equation 2.24, the

fugacity coefficient 𝜑%3 should be calculated at each iteration step to update the k – value.

Because fugacity coefficient is a function of component i in phase j at pressure and

temperature conditions, it is necessary to calculate phase composition for a given set of k

– values. The conventional procedure for a constant K-value flash calculation was

originally proposed by Rachford and Rice (1952), but more comprehensive and rigorous

 13

treatment of the multiphase material balance was presented by Okuno (2009) and Okuno

et al. (2010c). The objective of the constant k-value flash calculation is to determine the

phase mole fraction and phase composition for a fixed overall composition. The Rachford

and Rice equation is given by

𝑓(𝛽) =+
(1 − 𝐾%)𝑧%

1 − (1 − 𝐾%)𝛽

#&

'

= 0
2.27

The Newton Rapson algorithm is commonly used to find the solution of 𝑓(𝛽) and

the first guess of 𝑓(𝛽) can be chosen arbitrarily as 0.5 or the average between 𝐾7?@	and

𝐾7%8. The first derivative of 𝑓(𝛽) and the Newton Rapson iteration step are express as

 𝑓′(𝛽) 	= −+
(1 − 𝐾%)(𝑧%

[1 − (1 − 𝐾%)𝛽](

#&

'

2.28

 𝑓(𝛽)8>' = 𝑓(𝛽)8 −
𝑓(𝛽)8

𝑓′(𝛽)8 2.29

where the correct solution of 𝑓(𝛽) lies in the region between 𝑓(𝛽)7%8 and 𝑓(𝛽)7?@

defined as
 𝑓(𝛽)7%8 =

1
1 − 𝐾7?@

< 0

2.30

 𝑓(𝛽)7?@ =
1

1 − 𝐾7%8
> 1

2.31

Whitson and Brulé (2000) showed that 𝑓(𝛽)7%8 < 0 and 𝑓(𝛽)7?@ > 1 if at least

one k-value of is < 1 and one k-value is > 1. This implies that the solution of for 𝑓(𝛽) =

0 is always limited to the region 𝑓(𝛽)7%8 < 𝑓(𝛽) < 𝑓(𝛽)7?@.

The phase compositions are calculated using the material balance as follows

 14

 𝑥% =
𝑧%

𝑓(𝛽)(𝐾% − 1) + 1
	𝑤ℎ𝑒𝑟𝑒		𝑖 = 1, . . , 𝑁𝑐

2.32

 𝑦% =
𝑧%𝐾%

𝑓(𝛽)(𝐾% − 1) + 1
= 𝑧%𝐾% 	𝑤ℎ𝑒𝑟𝑒		𝑖 = 1, . . , 𝑁𝑐

2.33

In the successive substitution (SS) method, the inner iteration solves for equation

2.27 to determine the phase composition and phase mole fraction and the outer loop solves

for equation 2.26 with the use of an EOS. The SS method is generally initialized with the

use of Wilson’s correlation to provide the initial estimates of the k-values as

𝐾% =
𝑥%
𝑦%
≈
exp[5.373(1 + 𝑤%)(1 − 𝑇A%:')]

𝑃A%
		𝑤ℎ𝑒𝑟𝑒		𝑖 = 1, . . , 𝑁𝑐

2.34

where

 𝑃A% =
𝑃&%
𝑃 		where		i = 1,… , Nc 2.35

 𝑇A% =
𝑇&%
𝑇 		where		i = 1,… . , Nc 2.36

where 𝑃&% , 𝑇&% are the critical pressure and critical temperature for component i respectively,

and 𝑤% is the acentric factor of component i. However, K – values from Wilson’s

correlation are not accurate at high pressures. Results from stability analysis can provide

better initial k -values estimates to initialize two-phase flash calculations.

The successive substitution algorithm can be summarized as:

1. Specify T, P and feed mole fraction of the hydrocarbon mixture

2. Calculate the initial guess of the equilibrium constant using Wilson’s

correlation (2.34)

 15

3. Solve the vapor fraction equation proposed by Rarchford and Rice (1952).

Equation 2.27

4. Calculate the liquid and vapor molar fraction at those conditions of pressure

and temperature, equation 2.32 and 2.33

5. Calculate the cubic equation parameters from an EOS

6. Solve the cubic EOS for Z for vapor and liquid and discard all middle roots as

they are unstable

7. Calculate the fugacity coefficients lnφ%B and lnφ%-

8. Check for convergence of based on the residuals of the fugacity coefficient

equations ‖ln𝑥%φ%B − ln𝑦φ%C‖ < 𝜀	(𝑒. 𝑔, 𝜀 = 10:D). If convergence is

achieved stop. Otherwise, go to step 9

9. Update the equilibrium constants 𝑙𝑛𝐾%=>' = (lnφ%B − lnφ%-)=

10. Go to step 3

The successive substation method is linearly convergent, and convergence becomes

slow in the near-critical region (Michelsen, 1982b).

2.1.3 Equations of State (EOS)

Cubic equations of state are simple equations that relate pressure, volume and

temperature (PVT). EOS can predict volumetric phase behavior using the critical properties

of the hydrocarbon mixture and acentric factors. One of the earliest attempts to represent

phase behavior of real gases was the van der Waals (1873) equation of state.

 %𝑝 +

𝑎
𝑉+$

((𝑉+ − 𝑏) = 𝑅𝑇

2.37

The difference of this equation from the ideal gas equation is the addition of the
term ?

-)$
 to pressure and the subtraction of 𝑏 from molar volume. The term ?

-)$
 is a

 16

pressure correction due to the attraction forces of the molecules. The constant 𝑏 is a

correction to the molar volume related to the volume occupied by the molecules. Constants

𝑎 and 𝑏 are characteristic of the particular gas of study. The van der Waals equation is an

improvement from the ideal gas equation. However, its practical use is limited. Since the

introduction of the van der Waals EOS, many cubic EOSs have been introduced in attempts

to improve the accuracy of modeling fluids at a wide range of pressure and temperature

(e.g. The Redlich and Kwong EOS in 1994 and the Peng – Robinson EOS in 1976).

Changes in the molecular attraction term were commonly proposed.

Most of petroleum engineering applications use the Peng Robinson EOS or

modifications of the Redlich Kwong EOS. To apply EOSs to hydrocarbon-rich mixtures,

the van der Waals mixing rules are widely used, although more complex mixing rules can

be also used.

A =++𝑥%𝑥3𝑎%3

#&

3.'

#&

%.'

2.38

B =+𝑥%𝑏%

#&

%.'

2.39

Parameters 𝑎7 and b7 are used in the EOS as a pure fluid. The combining rules

for 𝑎%3 are defined as
 𝑎%3 = �𝑎%𝑎3(1 − 𝑘%3) 2.40

where the terms 𝑘%3 are the binary interaction parameter (BIP), which are assumed to be

independent of pressure and temperature. Values of the BIPs are usually obtained by fitting

the equation of state to gas – liquid equilibria data for each mixture.

 17

The Peng-Robinson EOS (Peng and Robinson 1978) with the van der Waals mixing

rules are used for the development of training data for the ANN models in this thesis. The

Peng-Robinson EOS is

 P =
𝑅𝑇

(𝑉 − 𝑏) −
𝑎(𝑇)

[𝑉6𝑉 + 𝑏9 + 𝑏6𝑉 − 𝑏9]

2.41

where
 𝑎(𝑇) = 0.45724𝑅(𝑇&(𝛼(𝑇)/𝑃& 2.42

 𝑏 =
0.07780𝑅𝑇&

𝑃E
 2.43

 𝛼(𝑇) = 1 + 𝜅(1 − �𝑇/𝑇&) 2.44

 𝜅 = 0.37464 + 1.54226𝜔 − 0.26992𝜔(for	𝜔 < 0.49 2.45

 𝜅 = 0.37464 + 𝜔61.48503 + 𝜔(−0.16442 + 0.01667𝜔)9	for	𝜔
> 0.49

2.46

The fugacity coefficient of component i in a mixture using the Peng-Robinson EOS

is defined as

lnφ%36𝑃, 𝑇, 𝑥9 = (𝑍 − 1)
𝐵%
𝐵 − ln(𝑍 − 𝐵)

−
𝐴

(𝛿' − 𝛿()𝐵
3
2∑ 𝑥3𝐴%3#&

3.'

𝐴7
−
𝐵%
𝐵4 𝑙𝑛 �

𝑍 + 𝛿'𝐵
𝑍 + 𝛿(𝐵

� ;

2.47

where 𝛿' = 1 + 0. 2,.G and 𝛿(= 1 − 0. 2,.G.

2.2 Methods to speed up compositional reservoir simulators.

Because of the large computational cost involved in compositional reservoir

simulations, a number of methods have been developed to accelerate phase equilibrium

 18

calculations. Methods to achieve faster phase equilibrium calculations include reduction

methods, tie-line methods, and most recently machine – learning methods. This section

presents a literature review for the methods reported in the literature to speed up

compositional reservoir simulation.

Reduction methods are used to accelerate phase fluid equilibrium calculations. The

idea of the reduction method is to take advantage of the rank of the BIP matrix using only

the most significant eigenvalues. The first reduction method was proposed by Michelsen

(1986). Michelsen demonstrated that flash calculation and stability analysis can be

performed using only three and two variables respectively when all the BIPs are zero

independently of the number of components of the mixture.

The idea was then expanded by Jensen and Fredenslund (1987) to handle non –

zero BIPs by applying truncated spectral expansion of the matrix 1 − 𝑘%3 from the Van

der Waals mixing rules. Hendricks (1988) proved that two-phase equilibrium calculations

can be performed with a reduced number of variables than the number of components

including non-zero BIPs.

Hendriks and Van Bergen (1992) applied their reduction method to two-phase flash

calculation. In their method, they approximate the BIP matrix using spectral expansion

and then reduce the number of eigenvectors such that both, the error of the BIP matrix is

small and the number of parameters is small. Its success is achieved because the large

separation between the dominant eigenvalue of the 𝑘%3 matrix with the rest of the

eigenvalues.

Kaul and Trasher (1996) proposed a parameter-based approach for two-phase

equilibrium predictions. In their approach the reduce the number of variables to three or

fourth depending on whether the BIPs are zero or not. Their method reduced the

 19

minimization problem by taking advantage of the special mathematical form of the ideal

mixing and excess parts of the Gibbs Free Energy.

Pan and Firoozabadi (2003) introduced a method based on the reduction of the

dependent variables of the Gibbs Free Energy through the spectral theory of linear algebra.

In their formulation, they reduced the number of eigenvalues of the (1 − 𝑘%3) matrix as

Hendriks and Van Bergen (1992) and tested on stability analysis and flash calculations

focusing on robustness.

Nichita et al. (2004) presented a new reduction formulation with a selection of

independent variables as suggested by Hendriks (1988). Their implementation includes

non – zero BIPs in a 2	𝑁𝑐 +3 equation system implemented with the Successive

Substitution algorithm (SS) followed by the second-order minimum variable Newton

Rapson close to the solution. Later, Nichita et al (2006) used the truncated expectral

expantion of the attraction parameter of the EOS to reduce the number of equations to be

solved during flash calculations.

Li and Johns (2006) implement a reduced flash calculation by decomposing the

BIPs matrix into two parts using a quadratic expression. The number of independent

parameters in their method is reduced to six for fluids with non-zero BIPs, three for zero

BIPs and five for cases when exits only BIPs between a single component and the others.

Okuno et al. (2010a) used their approximation of the BIPs matrix to develop a reduce

method with only five and six independent variables for flash calculations and stability

analysis respectively regardless of the number of components. Additionally, they

demonstrate the robustness and efficiently of their method for two and three phases in

UTCOMP a compositional reservoir simulator originally developed by Chang et al. (1990).

 Okuno et al. (2010b) extend the algorithm for reduce two-phase flash calculations

to three-phase flash calculations and showed the efficiency and robustness of the algorithm

 20

in stand-alone calculations and during compositional reservoir simulations for various case

studies.

Gaganis and Varotsis (2013) proposed a BIP matrix decomposition to a set of basis

vectors that approximate the original BIP matrix by the minimization of an energy function.

The reduction methods have shown to save computational time without losing a high

degree of accuracy.

Another strategy that aims to reduce the computational cost of flash calculations is

the use of tie-lines. The idea behind it is to solve the non-linear phase equilibrium equations

for each gridlock separately from the reservoir simulation. Voskov and Tchelepi (2007)

proposed a compositional space parametrization approach for simulation of gas flooding

processes. In their method, flash calculations are performed and results are stored as a

preprocessing stage for reservoir simulation. During the simulation, if the concentration

lies on the compositional tie line, a tie-line table is used to look up the flash results. The

performance of tie-line-based methods is improved by the use of information from a

previous time step to determine the phase state at the current step.

ANNs have been applied to speed up flash calculations. Gaganis and Varotsis

(2012) proposed an integrated method using classification and regression models. First,

they used support vectors to classify the mixture as stable or unstable for a given pressure,

temperature and feed composition. If the mixture is unstable, they use ANNs to predict the

equilibrium coefficicients for a given pressure, temperature and composition. Later, they

expanded their method in Gaganis and Varotsis (2014), introducing ANNs to estimate the

reduced variables of Nichita and Graccia (2011) for flash calculations.

Kashinath et al. (2018). extended the work of Gaganis and Varotsis (2014) to

supercritical phase determination, subcritical phase stability analysis and flash

calculations. In their method, they used support vector machines to classify the

 21

hydrocarbon mixture as supercritical, or subcritical with composition and pressure as

inputs. Additionally, they solved the phase – split problem by applying ANNs to predict

K-values for a given pressure, temperature, and composition.

Wang et al. (2019a) proposed using ANNs to assist the conventional flash

calculation. In their approach, three ANNs are constructed. First two models predict the

bubble point pressure and dew point pressure of the system. If the pressure of the system

is between the bubble point pressure and the dew point pressure, the system is unstable.

The second ANN is to predict the vapor mole fraction 𝑓(𝛽) and K – values that are used

as an initial guess for the subsequent flash calculation. As a result, it requires less iterations

to converge. The difference between Kashinath et al. (2018) and Wang et al. (2019) is that

the use of ANNs is easier to calculate than the use of support vectors to label the stability

of the system at a given pressure, temperature, and feed composition.

Wang et al. (2019b) implemented ANNs to speed up compositional reservoir

simulation of a tight oil and shale gas reservoir. In their work, the initial estimates of the

equilibrium constants, and capillary pressure are calculated using ANNs for a given

pressure, temperature, and feed composition instead of Wilson’s correlation. Their

implementation reduced the number of iterations needed to converge to the solution during

flash calculations because of the prediction of the initial guess using ANNs is close to the

solution.

 22

CHAPTER 3

ARTIFICIAL NEURAL NETWORKS

This chapter defines the basic concepts used in the development of ANNs, more

specifically feed forward neural networks. This chapter is divided into three sections. The

first part describes the fundamental concepts used in the development of ANNs. Secondly,

the methodology to train ANNs is described, and finally, data preparation is discussed.

3.1 BASICS OF ARTIFICIAL NEURAL NETWORKS

Priddy et at. (2005) described that ANNs are networks of simple processing

elements mapping an input space to an output space. One of the most outstanding

capabilities of artificial neural networks is that they can perform complex non – linear

mappings. There are many different types of ANNs that are used for different applications,

but the principles are similar. Feed forward neural networks (FNNs) are used in this thesis.

FNNs are composed of one input layer, one or more hidden layers, and one final layer that

is called the output layer. Every layer, except for the output layer, includes a bias neuron

and it is connected to the next layer. When a feed forward neural network has two or more

hidden layers, it is called a deep neural network.

ANNs are conformed by neurons that receive information from previous neuros,

then process the information internally through an activation function to generate an output

response. However, some inputs to the neuron may be more relevant than others. Therefore,

this process is modeled by weights in the input of the neuron. The output of a neuron can

be express as

 𝜐 =+𝑤%𝑥% + 𝑏%

#%

%.,

3.1

 α = 𝑓(𝜐) 3.2

 23

where 𝑓 represents the activation function, 𝜐 is the net stimuli of the neuron, 𝑁% is the

number of inputs of the neuron, 𝑥% is the input value, 𝑤% is the corresponding weight and

𝑏% is the bias term. Equation 3.2 is given as the fundamental equation involved in ANNs

by various textbooks (e.g. Aggwargal 2015, Goodfellow, 2016, Pedregosa 2011, Priddy

2005). Figure 3.1 shows a representation of a neuron can be seen as a small engine that

takes the weighted inputs, process them and then transmit an output.

Priddy et al. (2005) showed that activation functions 𝑓 are used in neural networks

to control the firing rate or action potential of each neuron. There are different types of

activation functions that can be used depending on the application of the neural network.

For example, if the target value to predict is a real number, then the identity activation

function is recommended. In another scenario, if the target value is to predict the

probability of a binary classification system, a sigmoid activation function has to be

selected.

In multilayer ANN, non-linear activation functions help to create more powerful

compositions of different types of functions. If an ANN only uses linear activation

functions, it would not provide better estimations than a single layer ANN. Additionally,

the non – linear activation functions help to map the non-linear relationship with the inputs

and the target values. Figures 3.3 to 3.5 show examples of widely used activation functions

reported in the literature, such as sing, sigmoid, and hyperbolic tangent functions. Most

recently, however, a number of piecewise activation functions, such as the rectified linear

unit (RELU) and its variants, have become popular because they facilitate the training

process of the neural networks as demonstrated by Goodfellow (2016). The most widely

used activation functions are the following

 𝑓(𝜐) = 𝜐	(𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) 3.3

 24

 𝑓(𝜐) = +1	𝑖𝑓	𝑥 ≥ 0,−1	𝑖𝑓	𝑥 < 0		(𝑠𝑖𝑛𝑔	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)
 3.4

 𝑓(𝜐) =
1

1 + 𝑒:H
(𝑠𝑖𝑔𝑚𝑜𝑖𝑑	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)

3.5

 𝑓(𝜐) =
𝑒(H − 1
𝑒(H + 1

(𝑡𝑎𝑛ℎ	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)

3.6

 𝑓(𝜐) = max{𝜐, 0} (𝑅𝐸𝐿𝑈	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)
 3.7

 𝑓(𝜐) = max{min[𝜐, 1] , 0} (ℎ𝑎𝑟𝑑	𝑡𝑎𝑛ℎ	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)
 3.8

The specific architecture of a multilayer neural network is referred to as feed

forward networks (FNN) because successive layers feed into the one another in a forward

direction from input to output. The architecture of an artificial neural network is fully

connected when all the neurons are connected to the neurons in the next layer. Therefore,

the dimension of an ANN is defined by the number of layers and the number of neurons in

each layer. Priddy et al. (2005) defined the structure of ANNs as composition function in

a multilayer ANN as follows:
 𝑔' = 𝑓'(𝜐), 	𝑔(= 𝑓((𝑔'), … , 	𝑦 = 𝑓ℓ6𝑔ℓ:'9	 3.8

where 𝑔 represent the functions computed in layer ℓ and 𝑦	represent the output of the neural

network. The use of non-linear activation functions is key to increase the power of multiple

layers. As a result, ANNs are often referred to as universal approximators.

The learning process of ANNs occurs by changing the weights connecting different

neurons. As an analogy, a stimulus is needed to learn in biological organisms. In the case

of ANNs, the external stimuli are provided by the training data containing examples of

input – output response. The pairs of data are feed into the ANN to adjust the weights

based on the error between the target value and the predicted one. The function used to

calculate this error is called the loss function. There are several loss functions reported in

 25

the literature. Goodfellow (2016) reported that their use depends on the application of the

ANN. For FNN, the mean square error 𝐽+JK and the mean absolute error (MAE) are

commonly used.

 𝐽+JK =
1
𝑛+(

8

%.'

𝑦% − 𝑦%)(

3.9

 𝐽+LK =
1
𝑛+(

8

%.'

𝑦% − 𝑦%) 3.10

where 𝐽	 is the value of the loss function, 𝑛 is the number of data samples, 𝑦 is the target

value, and 𝑦 is the predicted value at instance 𝑖.

The goal of changing the weights is to modify the computed function to make the

predictions more accurate in future calculations. Therefore, the weights are carefully

adjusted using an algorithm called backpropagation. Once the neural networks are properly

trained, they are capable of making accurate predictions on unseen data over a finite set of

inputs and outputs. This ability is referred to as model generalization. Figure 3.2 shows a

fully connected ANN.

3.2 Training artificial neural networks using backpropagation algorithm

The objective of the backpropagation algorithm is to adjust the weights in the ANN

model until the desired output is obtained by minimizing the output error. Goodfellow.

(2016) described the backpropagation as an algorithm consisting of two main steps: the

forward phase and backward phase. During the forward phase, the training data are fed into

the ANN to calculate the response of each neuron and the output response with the current

set of weights. Priddy et al. (2005) showed the derivation of the backpropagation algorithm

starting with the comparison of the value predicted by the ANN and the real value through

a loss function. To reduce the error of the ANN, it is necessary to minimize the loss function

 26

J with respect to the weights in all the neurons of the network and force it to zero. The

gradient descent error minimization is defined by

∂J
𝜕𝑤%3ℓ

≡ 0 3.11

Now, the chain rule can be used to break down the partial derivate into two parts.

The first term corresponds to the change in the loss function with respect to the stimuli and

the second term represent the change in the stimuli with respect to the weights.

∂J
𝜕𝑤%3ℓ

=
∂J
∂𝜐%3ℓ

∂𝜐%3ℓ

𝜕𝑤%3ℓ
 3.12

The second term of the partial derivate can be solved by substituting the stimuli

given in equation 3.1. This results in the output of a neuron as shown in equation 3.13

∂𝜐%3ℓ

𝜕𝑤%3ℓ
=

∂
𝜕𝑤%3ℓ

+(𝑤%3ℓ 𝑥%3ℓ:')
#%

%.,

+ 𝑏%3ℓ = 𝑥%3ℓ:'

3.13

Substituting equation 3.13 into equation 3.12, we obtain equation 3.14. By defining

the change of the loss function with respect to the stimuli as a delta term, we obtain equation

3.15. Substituting it back into equation 3.14 results in equation 3.16.

∂J
𝜕𝑤%3ℓ

=
∂J
∂𝜐%3ℓ

𝑥%3ℓ:'

3.14

∆%3ℓ = −

∂J
∂𝜐%3ℓ

3.15

∂J
𝜕𝑤%3ℓ

= −∆%3ℓ 𝑥%3ℓ:' 3.16

 27

The derivative of the loss function with respect to the stimuli can be breakdown

using the chain rule to a term that measures the change of the loss function with respect to

the neuron output in any layer times the change of the neuron output with respect to its

own stimuli. This gives

∂J
∂𝜐%3ℓ

=
∂J
𝜕𝑥%3ℓ

𝜕𝑥%3ℓ

∂𝜐%3ℓ
 3.17

The solution of the change of the neuron output with respect to its own stimuli can

be solved by substituting equation 3.2 to obtain the derivative of the activation function

evaluated at the total stimuli.

𝜕𝑥%3ℓ

∂𝜐%3ℓ
=

𝜕
∂𝜐%3ℓ

	𝑓ℓ6𝜐%3ℓ 9 = 	𝑓Mℓ6𝜐%3ℓ 9 3.18

Finally, we have the derivative of the output error with respect to any neuron’s

output. Considering the mean square error between the predicted value with respect to the

target value for a single layer,

∂J
𝜕𝑥%3ℓ

=
∂
𝜕𝑥%3ℓ

L
1
𝑛+(

8

%.'

𝑥% − 𝑥)(M = −(𝑥% − 𝑥)		for	ℓ = L 3.19

where L indicates the output layer. However, each neuron is connected to all neurons in

the following layer. Therefore, a variation in weight affects the subsequent layers in the

network. The variation in the loss function with respect to the internal neuron’s output is

determined by the variation on its own stimuli. Then, it is necessary to sum over all the

variations in the downstream network to determine the variation in the final outcome with

respect to the output of a hidden neuron. This can be express as

 ∂J
𝜕𝑥%3ℓ

= +
∂J

𝜕𝜐%3ℓ>'
𝜕𝜐%3ℓ>'

∂𝑥%3ℓ>'
			when	ℓ < L	(Hidden	layers)

#ℓ+%

=.'

	 3.20

 28

The first term in the summation corresponds to the delta term defined in equation

3.15.

∂J

𝜕𝜐%3ℓ>'
= −∆%3ℓ>'	when	ℓ < L	(Hidden	layers) 3.21

The second term in the summation can be solved by substituting the net stimuli as

follows:

𝜕𝜐%3ℓ>'

∂𝑥%3ℓ>'
=

𝜕
∂𝑥%3ℓ>'

¦+(𝑤%3ℓ>'𝑥%3ℓ)
#ℓ

%.,

+ 𝑏%3ℓ>'§ = 𝑤%3ℓ>'		when	ℓ < L	 3.22

Now, substituting equations 3.21 and 3.22 into equation 3.20 results in

 ∂J
𝜕𝑥%3ℓ

= − + ∆%=ℓ>'	𝑤%=ℓ>'			when	ℓ < L	
#ℓ+%

=.'

	 3.23

The delta term defined in equation 3.15 can be defined for the hidden layers and

the output layers as follows:

 ∆%3B = 𝑓MB6𝜐%3B 9(𝑦% − 𝑦%) where	ℓ = L	(Output	layer)

3.24

 ∆%3ℓ = 𝑓Mℓ6𝜐%3ℓ 9+∆%=ℓ>'	𝑤%=ℓ>'			when	ℓ < L	
ℓ>'

=.'

	(Hidden	layer) 3.25

From equation 3.25, we can see that we need to calculate the delta term for the

output layer first, and then go backwards from the output layer to the input layer calculating

the delta term for the hidden neurons. Since the loss function is directly related to the delta

term of the output layer, the error is propagated backwards to the neural network.

The minimization of the output error with respect to the weights of the network can

be express as

 ∆𝑤%3=ℓ = −𝜇	
∂E=
𝜕𝑤%3=ℓ

 3.26

 29

Finally, combining equation 3.26 with 3.16 gives the formula for weight update

after each iteration
 ∆𝑤%3=ℓ = −𝜇	𝑥%3ℓ 𝑥%3ℓ:' 3.27

where the subscripts 𝑖, 𝑗, ℓ, and	𝑘	 indicate neuron, connecting neuron, layer number, and

iteration step respectively. The term 𝜇 corresponds to the step size in the minimization

problem. Equation 3.27 is the working equation used to obtain the set of weights and bias

that allow ANNs to model complex nonlinear functions. The backpropagation algorithm is

the most common technique to train ANNs and more detailed derivations can be found in

several textbooks (e.g. Rumelhart 1986, Pao 1989, Haykin 1994).

The backpropagation training procedure can be summarized as follows.

1. Uniformly random Initialize weights 𝑤%3ℓ for the entire neural network

2. Propagate training data forward through the network and generate an output

response

3. Calculate the error between the predicted value and the target value by using

equation 3.9

4. Propagate the error backwards to the neural network and calculate the gradients

of each neuron by the weight-update formula with equation 3.27

5. If the output error is high or the maximin number of iterations has not been

reached, go to step 2.

The weights of the neural network are updated after each sample in the training data

is processed. However, if the adjustment of the weights is performed after all the samples

have been processed, the method is called batch training. Both methods are performed with

a large number of training samples until the error converges to a minimum. There are

several programs available to train artificial neural networks using the backpropagation

 30

algorithm (e.g. Torch, Theano, TensorFlow, and Keras). In this thesis, Keras was used to

train the artificial neural networks for the fugacity coefficient.

3.3 Data preparation.

The objective of ANN training is to find a set of the parameters (e.g. weights, bias

terms, and activation functions) that results in the best performance with data that have not

been used during the training stage. This process is called “model generalization” and it

means how well the model performed in new data within an acceptable limit of the input

feature space.

During neural network training, we can find two cases. Undertraining, that occurs

when the model did not reach the a minimum and it performs poorly with testing data.

Undertraining can occur because of the sensitivity of the model to limited data, model bias,

irreducible error due to missing variables or the range of the variables of the training data.

Overfitting is the opposite of underfitting. In this case, the neural network will memorize

the training data set, but it will perform poorly in testing data. The goal is to find the

configuration with the best performance with independent data. To avoid underfitting or

overfitting, datasets have to be prepared before neural network training. This section

describes the two main steps for data preparation for neural network training.

3.3.1 Data splitting

To find the optimal neural network configuration, the general approach is to

randomly sample the population to generate three different and independent data sets:

training data set, validation data set, and testing data set (Pedregosa 2011).

The training data set is used with the backpropagation training algorithm to adjust

the weights that conform to the neural network architecture to produce the desired output.

 31

In practice, the training data set consists of pairs of an input vector that contains the

variables to reproduce and output response. Successively, a validation data set is used to

make predictions using the fitted model to tune the model hyperparameters (e.g. the number

of neurons in each layer, the number of layers in the model) until the desired accuracy is

achieved. Finally, the testing data set is used to provide an unbiased evaluation of the fully

trained model performance. The neural network is biased towards the validation and testing

data sets. Therefore, the test set is used to estimate the generalization error of the neural

network.

There are several ratios of how to partition the data set into training, validation, and

test data set reported in the literature. However, the conventional approach follows the

pareto principle that states that for many events, roughly 80% of effects come from 20%

of the causes. Mathematically, the pareto principle is roughly followed by a power-law

distribution for a particular set of parameters. Therefore, the complete data set can be split

in 80% for training, 10% for validation, and the remaining 10% of the data set for testing.

3.3.2 Data normalization

Once the dataset has been split into different sets, normalization of the data is

required before starting the training process. The goal of normalization is to change the

values of the variables into a common scale without distorting the range of the values. Data

normalization is necessary during the development of ANNs to minimize the bias of the

neural network towards one feature or another. Gulli et al (2017) explain that data

normalization can speed up the training process, and it is especially useful for modeling

applications when the range of the variables are generally on different scales. There are

several techniques of data normalization reported in the literature (e.g. Pedregosa 2011,

Priddy 2015, Gulli 2017), but the most widely used is the Min – Max normalization. This

 32

is performed by rescaling all the variables to the same range of 0 to 1 or -1 to 1. The

rescaling is calculating using linear interpolation as given by equation 3.28

 𝑥% = �
𝑥% − 𝑥7%8
𝑥7?@ − 𝑥7%8

� 3.28

where 𝑥% is the scaled feature, 𝑥% represents the original value of the variable, and 𝑥7%8 and

𝑥7?@ correspond to the upper and lowest limits of the variable in the data set before

splitting into 3 sub datasets. When Min – Max normalization is applied, each feature will

lie in a new range of values, but the underlying data distribution will remain intact. The

main advantage of using Min – Max normalization is that the dataset will keep its

distribution, and no bias will be added to the neural network. Finally, for applications that

require data in ranges outside of the neuron input, the data must be rescaled to its original

data range as shown in equation 3.29.

 𝑥% = 𝑥% 	(𝑥7?@ − 𝑥7%8) +	𝑥7%8 3.29

A summary of the training and testing neural networks is the following

1. Randomly sample the dataset into 3 categories: training, validation and testing.

2. Choose a neural network model and define its architecture (Number of neurons,

layers and activation function)

3. Normalize the datasets using min-max normalization using equation 3.28

4. Train the neural network using the backpropagation algorithm described in section

3.2 or with the use of available software to train neural networks (e.g. Keras,

Tensorflow, Pythorch)

5. Evaluate the neural network using the validation dataset and tune hyperparameters

if necessary

 33

6. Repeat steps 2 to 5 with different neural networks architectures until the desired

accuracy is achieved.

7. Select the neural network model with the lowest validation error

8. Make predictions using the chosen neural network models on the testing data set

9. Rescale the predictions of the neural network to its original scale using equation

3.29

10. Evaluate the performance of the ANNs using mean square error and mean absolute

error from equations 3.9 and 3.10, respectively.

 34

Figure 3.1 Basic architecture of a neuron

Figure 3.2 Fully connected feedforward neural network structure

 35

Figure 3.3 Commonly used activation functions used in ANNs.

Top: Sigmoid. Bottom: Identity.

 36

Figure 3.4 Commonly used activation functions used in ANNs.

Top: Sign. Bottom: Rectified Linear Unit (ReLU).

 37

Figure 3.5 Commonly used activation functions used in ANNs.

Top: Hard Tanh. Bottom: Tanh

 38

CHAPTER 4

METHODOLOGY, FORMULATION AND ALGORITHM

Efficient phase equilibrium calculations are important for practical compositional

reservoir simulation studies. A number of methods have been proposed and tested for

speeding up flash calculations, as discussed in Chapter 2. In this thesis, we test use of

artificial neural networks (ANNs) to replace the most fundamental, but time-consuming

function in EOS flash calculations, namely the fugacity coefficient. This chapter is divided

into two sections. The first part describes the methodology to generate ANNs for the

fugacity coefficient. The second portion describes the formulation and implementation of

the ANN flash.

4.1 ARTIFICIAL NEURAL NETWORKS FOR THE FUGACITY COEFFICIENT

In this section, we present the methodology to generate ANN models to represent

the fugacity coefficient during the minimization of the Gibbs free energy with successive

substitution. The first step is to determine the range of application of the ANN and create

a database for a range of pressure and an evenly distributed composition space. Since

temperature of the reservoirs is keep constant, the only variables in the ANN are pressure

and composition of the fluid system of interest.

The methodology to generate the dataset for the ANN is the following:

1. With the critical properties of the fluid and acentric factor calculate 𝑏, 𝜅 and the

temperature-independent part of 𝑎 using equations 2.43 and 2.45

2. At reservoir temperature, calculate the values for 𝑎 and 𝛼 with equations 2.42 and

2.44

3. Calculate A and B for the fluid mixture using equations 2.38 and 2.39

 39

4. Calculate the parameters 𝜀, 𝛽, and	𝛾 using equations 2.53, 2.54 and 2.55

5. Solve the cubic equation of state to obtain the compressibility factor with equation

2.52

6. Calculate the fugacity coefficient using equation 2.48. When the cubic EOS has

multiple roots of the compressibility factors, the correct root corresponds to the root

with the lowest Gibbs free Energy (Evelein et al. 1976)

7. Store the fugacity coefficient value of each component and the corresponding

pressure and concentration conditions.

8. Repeat steps 1 through 7 for all pressures and composition in the application range

Once a database is generated, the second step consists of determining the

architecture of the ANNs (e.g. activation function, number of hidden layers, number of

neurons per hidden layer). In this thesis, the architecture for all the ANN models was fixed

as described in Table 4.1. The fully connected feed forward neural network for the fugacity

coefficient is shown in Figure 4.1.

Depending on the number of components in the mixture, an ANN model for each

component in the mixture as a function of pressure and composition has to be calculated

using the methodology described in section 3.3.2. Finally, the performance of each neural

network is evaluated by calculating the global percentage error, mean square error and the

correlation coefficient for each model. The ones with the lowest error are selected.

4.2 ARTIFICIAL NEURAL NETWORK FLASH CALCULATION

This section describes the formulation of the proposed algorithm using the ANNs

with the successive substitution to solve fugacity equations. The first portion of the section

 40

describes the formulation of the fugacity coefficient using ANNs. The second part

describes the ANN flash algorithm.

4.2.1 Formulation

The Peng-Robinson Equation of State (Peng and Robinson, 1978) with the van der

Waals mixing rules is used for the formulation of the closed-form solution of the fugacity

coefficient. However, any equation of state can be used depending on the type of

thermodynamic modeling required. The Peng-Robinson equation of state is

 P =
𝑅𝑇

(𝑉 − 𝑏) −
𝑎(𝑇)

[𝑉6𝑉 + 𝑏9 + 𝑏6𝑉 − 𝑏9]

4.1

where
 𝑎(𝑇) = 0.45724𝑅(𝑇&(𝛼(𝑇)/𝑃& 4.2

 𝑏 =
0.07780𝑅𝑇&

𝑃E
 4.3

 𝛼(𝑇) = 1 + 𝜅(1 − �𝑇/𝑇&) 4.4

 𝜅 = 0.37464 + 1.54226𝜔 − 0.26992𝜔(for	𝜔 < 0.49 4.5

 𝜅 = 0.37464 + 𝜔61.48503 + 𝜔(−0.16442 + 0.01667𝜔)9	for	𝜔
> 0.49

4.6

The van der Waals rules are as follows:

A =++𝑥%𝑥3𝑎%3

#&

3.'

#&

%.'

4.7

B =+𝑥%𝑏%

#&

%.'

4.8

where A and B represent the attraction and co-volume parameters, respectively. The

combining rules for 𝑎%3 are defined as

 41

 𝑎%3 = �𝑎%𝑎3(1 − 𝑘%3) 4.9

The EOS can be expressed as a cubic equation with parameters	𝜀, 𝛽, and	𝛾 for the

Peng – Robinson EOS as:

 𝑍N + 𝜀𝑍(+ 𝛽𝑍 + 𝛾 4.10

 𝜀 = −1 + 𝐵 4.11

 𝛽 = 𝐴 − 3𝐵(− 2𝐵 4.12

 𝛾 = −𝐴𝐵 + 𝐵(+	𝐵N 4.13

where 𝑍 = 𝑃𝑉/𝑅𝑇 is the compressibility factor.

The fugacity coefficient of component i in the mixture using the Peng-Robinson

EOS is defined as

lnφ%36𝑃, 𝑇, 𝑥9 = (𝑍 − 1)
𝐵%
𝐵 − ln(𝑍 − 𝐵)

−
𝐴

(𝛿' − 𝛿()𝐵
3
2∑ 𝑥3𝐴%3#&

3.'

𝐴7
−
𝐵%
𝐵4 𝑙𝑛 �

𝑍 + 𝛿'𝐵
𝑍 + 𝛿(𝐵

� ;

4.14

where 𝛿' = 1 + 0. 2,.G and 𝛿(= 1 − 0. 2,.G. As discussed in chapter 2, the fugacity

coefficient is used repeatedly during phase equilibrium calculations. Therefore, the key to

obtaining an efficient algorithm for phase equilibrium calculation is to reduce the

operations required for the fugacity coefficient calculation. A simple approximation for the

fugacity coefficient has been developed by using ANNs in this thesis. The approximation

can be express as

 𝜐 = [𝑃5, 𝑥%]	𝑓𝑜𝑟	𝑛 = 1,… ,𝑁𝑐	 4.15

 42

 𝜎 = +𝜐8

#C

8.'

𝑤8 	+ 𝑏(4.16

 𝑔% = 𝑚𝑎𝑥[𝜎	,0]% 			𝑓𝑜𝑟	𝑖 = 1,… ,𝑁𝑛		 4.17

 𝜏 = +𝑔8

#8

8.'

𝑤8 	+ 𝑏(4.18

 ℎ% = 𝑚𝑎𝑥[𝜏	,0]% 			𝑓𝑜𝑟	𝑖 = 1,… ,𝑁𝑛			 4.19

 𝑙𝑛𝜑%36𝑃, 𝑥9 = °+ℎ8

#8

8.'

+ 𝑏N±
%3

		𝑓𝑜𝑟		𝑖 = 1, 𝑁𝑐	𝑎𝑛𝑑	𝑗 = 1,… ,𝑁𝑝	 4.20

where 𝜐 corresponds to the vector composed of normalized pressure 𝑃, and 𝑥% 	is the mole

fraction of component i. The values of 𝑤 and 𝑏 correspond to the weights and bias that

conform the neural network, and 𝑁𝑣 and 𝑁𝑛 represent the number of inputs of the neural

network and the number of neurons in the hidden layer, respectively.

In this approach, the fugacity coefficient is calculated directly by the ANN models

for a given pressure and feed composition. The advantages of using ANNs for the fugacity

coefficient is that there is no need to solve the EOS during the iterative flash calculation.

The computationally expensive calculations (e.g. logarithms, divisions, and root square)

involved in the fugacity coefficient calculation are replaced by computationally less

expensive calculations (e.g. additions and multiplications) used in the ANNs. Therefore,

the fugacity coefficient approximation using ANNs can decrease the computation time of

the fugacity coefficient calculation. A more detailed procedure to generate ANN models

for the fugacity coefficient is given in case 1.

 43

4.2.2 Algorithm

The application of ANNs to flash calculation (ANN flash) is a combination of the

conventional flash calculation with the use of ANNs for efficient calculation of the fugacity

coefficient without using an EOS. For a flash calculation at a given pressure and

temperature, the solution of the minimum Gibbs free energy is found in the composition

space. The first-order necessary conditions for the minimization of the Gibbs free energy

are the solution of the fugacity equations as

 𝑙𝑛𝑓%3 − 𝑙𝑛𝑓%3 = 0,where	i = 1,… , Nc	and	j = 1,… , Np	

4.21

where Np represents the reference phase. The use of successive substitutions is used to find

the phase equilibrium. As mention in section 2, the independent variable in successive

substitutions is the constant equilibrium K-values.

 𝐾%3 =

𝑥%3
𝑥%#4

	where	i = 1,… , Nc	and	j = 1,… , (Np − 1) 4.22

Therefore, successive substitution solves for equation 4.21 subjected to material

balance constraints define in equations 4.24, 4.25 and 4.26.

 ln𝐾%3=>' =		 ln𝜑%#4

= −	ln𝜑%3
= , where	i = 1,… , Nc	and	j = 1,… , (Np − 1)	 4.23

+𝛽3𝑥%3

#4

3.'

= 𝑧%

4.24

+𝑧%

#&

%.'

= 1.0
4.25

+𝑥%3

#&

%.'

= 1.0	and	𝑥%3 	≥ 0	for	i = 1,…	, Nc	and	j = 1,…	, Np.
4.26

 44

In equation 4.23, the superscripts indicate the iteration step and the value of the

fugacity coefficient. In this algorithm, the fugacity coefficient is calculated using the

equation 4.20 at each iteration step for a given pressure and feed composition. Since the

fugacity coefficient is a function of component 𝑖 in phase 𝑗 the Rachford – Rice equation

is used to find the phase mole fractions as

𝑓(𝛽) =+
(1 − 𝐾%)𝑧%

1 − (1 − 𝐾%)𝛽

#&

'

= 0
4.27

Finally, the phase compositions are calculated using the material balance defined

as

 𝑥% =
𝑧%

𝑓(𝛽)(𝐾% − 1) + 1
	𝑤ℎ𝑒𝑟𝑒		𝑖 = 1, . . , 𝑁𝑐

4.28

 𝑦% =
𝑧%𝐾%

𝑓(𝛽)(𝐾% − 1) + 1
= 𝑧%𝐾% 	𝑤ℎ𝑒𝑟𝑒		𝑖 = 1, . . , 𝑁𝑐

4.29

The ANN flash calculation algorithm can be summarized as:

1. Specify T, P and feed mole fraction of the mixture of interest.

2. Calculate the initial guess of the equilibrium constant using Wilson’s

correlation using equation 2.34.

3. Solve Equation 4.27 for the vapor fraction.

4. Calculate the liquid and vapor compositions using equation 4.28 and 4.29.

5. Calculate the fugacity coefficients using the ANN model for lnφ%B and lnφ%-

using equation 4.20.

6. Check for convergence based on the residuals of the fugacity coefficient ANN

models ‖ln𝑥%φ%B − ln𝑦φ%C‖ < 𝜀	(𝑒. 𝑔, 𝜀 = 10:D). If convergence is achieved,

stop. Otherwise, go to step 7.

 45

7. Update the equilibrium constants 𝑙𝑛𝐾%=>' = (lnφ%B − lnφ%-)=.

8. Go to step 3.

Note again that the above algorithm does not use an EOS during the iteration. It

does not require the calculation of the van der walls mixing rules, the solution of the cubic

equation of state and the evaluation of different roots when the EOS has more than one

root. All those calculations were performed during the database generation for the training

process of the ANN. Appendix C shows the code implementation of ANNs with successive

substitutions.

Table 4.1. ANN architecture for fugacity coefficients
Setting Value

Activation function in Hidden layers ReLU, equation 3.7
Number of hidden layers 2
Number of neurons per hidden layer 20
Input Mixture composition and pressure
Outputs Fugacity coefficient

Figure 4.1. Fully connected neural network for the fugacity coefficient

 46

CHAPTER 5

CASE STUDIES

This chapter presents four different hydrocarbon-rich mixtures for ANN-based

standalone flash calculations. The mixtures represent different scenarios commonly found

in petroleum engineering applications. We compare the ANN flash and the conventional

EOS flash in terms of the accuracy of the fugacity coefficient, calculate the fluid properties,

and analyze the convergence behavior.

5.1 STAND-ALONE FLASH CALCULATIONS

EOS flash often becomes more challenging and time-consuming with increasing

number of components and increasing level of miscibility. The fugacity coefficient

becomes more non-linear with increasing non-zero BIPs. In this chapter, therefore, ANN

flash is compared with the conventional EOS flash for four fluid models with different

component numbers, miscibility levels, and BIPs.

5.1.1 Case 1

The reservoir oil used for this study case was made after the BSB West Texas oil

at 105°F (Khan et al. 1992). First, CO2 was removed from the original model of Khan et

al. (1992). Then, all BIPs were set to zero as described in Table 5.1. Okuno (2017)

demonstrated that the fugacity coefficient with zero BIPs is less non-linear in composition

space than when non-zero BIPs are involved. This is mainly because the fugacity

coefficient with zero BIPs is expressed by only two reduced parameters as follows:

𝜃' =+𝑧%𝐵% = 𝐵7

#&

%.'

5.1

 47

𝜃(=+𝑧%�𝐴% = �𝐴7

#&

%.'

5.2

The objective of this case study was to test the idea of using ANNs for

approximation of the fugacity coefficient during flash calculations. Hence, this case is

designed to be relatively straightforward for phase equilibrium algorithms. The

thermodynamic conditions are also far from a critical point. The phase diagram for the

adapted BSB west Texas oil is shown in Figure 5.1.

The specific procedure used for this study case is as follows:

1. Determine the application range of the ANNs. The phase diagram indicates that the

two-phase region is from 0 to 27.89 bar. The number of components in the mixture

is six.

2. Create a database with the selected range of application. For each component in the

mixture, calculate the fugacity coefficient in the composition space from 0 to 1 and

the pressure range. The pressure intervals in this case were set to be 0.5 bar and the

concentration intervals 0.01. However, the accuracy of the ANN model can be

improved with larger datasets. Thus, the resolution in pressure and concentration

act as parameters to increase the accuracy of the neural network if needed. The

dataset is stored in an array of pressure,

𝑥',	𝑥(, 𝑥N, 𝑥O, 𝑥G, 𝑥D,	𝑙𝑛𝜑', 𝑙𝑛𝜑(, 𝑙𝑛𝜑N, 𝑙𝑛𝜑O,𝑙𝑛𝜑G, and	𝑙𝑛𝜑D. Here, the ANNs will

take pressure and composition as inputs, and the fugacity coefficient will be the

output.

3. Determine the maximum and minimum values for the pressure interval and the

fugacity coefficients of each component.

4. Once the database has been generated, randomly split it into 3 different datasets:

The training dataset is composed of 80% of the rows randomly selected from the

 48

database. For the remaining 20% of the database, randomly select 50% of the rows

to form the validation dataset and the remaining 50% correspond to the testing

dataset.

5. Normalize the pressure and fugacity coefficient for each dataset using min-max

normalization with equation 3.28. Since the concentration is a value between 0 and

1, no further normalization is needed.

6. Specify the ANN architecture. In this case, the ANN consists of 20 neurons and 2

hidden layers. The activation function is ReLU.

7. Train the ANN model for each component. In this work, Keras was used to perform

the backpropagation algorithm. The Keras setup used in this research is shown in

Table 5.2.

8. Make predictions using the trained ANNs with the testing dataset.

9. Re-scale the output of the neural network (𝑙𝑛𝜑%) to its original range using equation

3.29.

10. Calculate the mean square error, average percentage error, and correlation

coefficient R2 of the predicted value and the original value.

Appendix A shows the code used to generate the database. Appendix B describes

the code in Python that uses Keras to train the ANN models. The generalization errors for

the different ANN models used in this case study are shown in Table 5.3. The mean average

error of the fugacity coefficient neural network prediction ranges from 0.30% to 0.95%. It

was observed that the ANNs models predict fugacity coefficients with low deviations from

the original values calculated with EOS. The accuracy comparison between the EOS and

the ANNs is shown in Figures 5.2, 5.3, and 5.4. The accuracy comparison between the

ANN and EOS fugacity coefficients indicate that we can achieve a high accuracy in

fugacity coefficients along different mixture concentrations and different pressures in the

 49

two-phase region. The ANN fugacity coefficient was implemented in flash calculation with

the successive substitution method. The phase compositions are compared between the

ANN flash and EOS in Figures 5.5 to 5.10. The accuracy in the composition calculations

will impact directly the phase property calculations. It can be observed that the deviation

in phase compositions between the EOS and the ANN flash are negligible. The calculation

comparisons of fluid properties, such as vapor and liquid fraction, saturation and densities,

are shown in Figures 5.11 to 5.13. The ANN flash calculations show essentially the same

results as the EOS for this case (Table 5.3). The time per iteration comparison between

EOS and ANN flash is shown in table 5.4. Here, we can observe that the time per iteration

in the ANN flash is reduced by 90.13%. The time reduction was calculated using equation

5.3.

Time	reduction = %
EOS	flash	time − ANN	flash	time

EOS	flash	time (× 100%
5.3

The fugacity coefficient execution time using ANNs is reduced by 96.85% for six

components with respect to conventional EOS fugacity coefficient execution time, as

shown in Figures 5.14 and 5.15. Finally, the total flash calculation time (the product of the

number of iterations and the time per iteration) between the EOS flash and ANN flash is

reduced by 85.96% on average as shown in Figure 5.16. For this case study we can

conclude that the fugacity coefficients from ANNs can be used with successive

substitutions with negligible variations on fluid property calculations at a lower

computational cost.

 50

5.1.2 Case 2

For the second study case, the number of components is increased to 10. This is a

gas condensate (Al-Meshary, 2014) characterized by using the perturbation of n-alkanes

method developed by Kumar (2016) and Kumar and Okuno (2016). The gas condensate

fluid is composed of 6 pure components and 4 pseudo components, as described in Table

5.4. The reservoir temperature for this study case is 525 K, and the critical point is located

at 425.30 K and 265.79 bars. This fluid model is closer to the critical point as compared

with the first case, as shown in the phase diagram in Figure 5.17.

The generalization error for the ANNs for the fugacity coefficient is shown in t

Table 5.5. The average percentage error for the ANN fugacity models goes from 0.0097%

for the pseudo component number four to 0.1483% for ethane. Figures 5.18 to 5.22 show

the accuracy comparison between the fugacity coefficients from ANN models and the EOS.

As in the previous study case, the fugacity coefficients from ANNs have a low percentage

error as compared to EOS fugacity coefficient. The advantage of using different ANNs for

each component in the hydrocarbon mixture is that the average percentage error is kept low

and the single fugacity coefficient predictions are more accurate. Therefore, when the

different ANNs models are used together during iterations, we can predict accurate phase

compositions and fluid properties.

The phase compositions using the conventional EOS and the ANN flash are

compared in Figures 5.23 to 5.32. The results from the ANN flash overlap those calculated

with the EOS flash. Fluid properties, such as vapor and liquid fraction, fluids’ saturations

and fluid densities, using the ANN flash and the EOS flash are compared in Figures 5.33

to 5.35, respectively. A good agreement between the ANN and EOS flash results is

observed.

 51

The efficiency of the ANN flash was evaluated by comparing the execution time to

compute the fugacity coefficient using the conventional EOS method and that using the

ANN method. The execution time of the fugacity coefficient by the use of ANNs is reduced

by on average 96.56% of the time required by the original EOS for the 10 components in

the mixture as shown in Figures 5.36 and 5.37. Table 5.7 presents the comparison of the

time per iteration between the conventional method and the ANN flash. The ANN flash

time per iteration is reduced by 81.58% with respect to the conventional method. Finally,

the total flash time (the number of iterations multiplied by the time per iteration) of the

ANN flash is reduced by 84.35% with respect to the EOS method as shown in Figure 5.39.

The convergence behavior of the two methods is presented in Figure 5.40 for 220 bars

where it is observed that the ANN flash follows similar convergence behavior as the EOS.

For this case study, we can conclude that ANN flash can work independently of the number

of components in the mixture with a higher miscibility degree while keeping high accuracy

and faster calculations as compared with the conventional EOS flash

5.1.3 Case 3

The fluid model for this case study consists of 12 components with 2 non-

hydrocarbon components (CO2 and N2) and contains non-zero BIPs. This fluid is a volatile

oil (Al-Meshary, 2014) characterized by using the method, perturbation of n-alkanes, by

Kumar and Okuno (2016). The critical point of this model is at 522.65 K and 324.22 bar.

The reservoir temperature for this reservoir fluid model is 393.70 K, as shown in figure

5.41. The fluid model is described in table 5.8, and the BIPs are shown in Table 5.9.

In this case study, 12 ANNs were generated to predict the fugacity coefficient of

each component in the mixture. Table 5.10 shows that the generalization error of each

model for prediction is lower than 1.09%. As explain by Okuno (2017) the use of non –

 52

zero BIPs increase the non – linearity of the fugacity coefficient in composition space.

However, ANNs are capable to predict accurate fugacity coefficients using non – zero BIPs

as shown in Figures 5.42 to 5.47. The phase compositions from the two flash methods are

compared in Figures 5.48 to 5.59. The difference between the phase compositions with

the two methods is insignificant for fluid property calculations (Fluid saturations, phase

amount and fluid densities) as shown in Figures 5.60 to 5.62.

The fugacity coefficient execution time using the ANN model is 96.94% of that

using the original EOS for 12 components in the mixture as shown in Figures 5.63 to 5.64.

The time per iteration in the ANN flash is reduced by 94.01% with respect to the EOS flash

as shown in Table 5.11. The total number of iterations needed to reach convergence

between the two methods shown in Figures 5.65. It can be observed that the ANN flash

converges with fewer iterations as compared with the EOS flash. Figure 5.66 shows the

total flash time comparison (Number of iterations multiplied by the time per iteration)

comparison between the two methods. The total flash time is reduced by 94. 66% with the

use of ANN for the fugacity coefficient as compared with the EOS flash. Finally, Figure

5.67 presents the convergence behavior of the two methods where it is shown that the

convergence behavior of the ANN flash is similar to the EOS flash.

For this case study we can conclude that ANN flash calculation can deal with fluid

models including non-zero BIPs and non-hydrocarbon components such as CO2 and N2

resulting on accurate fluid properties calculations. The ANN architecture for all

components was kept as the one used for the previous cases. That is, the universal

approximation of the artificial neural networks can work even with complicated and non-

continuous functions, like the fugacity coefficient, at a lower computational cost.

 53

5.1.4 Case 4

EOS flash becomes more challenging near the critical region, where the physical

properties of the liquid and vapor phase are sensitive to the thermodynamic conditions. The

fluid model for this case is a near critical oil (Al-Meshary, 2014) characterized by using

the methodology of perturbation from n-alkanes (Kumar and Okuno 2016). The model is

composed of ten components: 6 pure components and 4 pseudo-components. The mixture

shows a critical point at 477.03 bar at 276.49 K, and the reservoir temperature is 462 K.

The fluid model is described in Table 5.12. Figure 5.68 shows the phase diagram of the

mixture.

For this case, we generate 10 ANNs to model the fugacity coefficient of each

component for a range of pressure from 150 bar to the bubble point pressure at 275.1 bar

and with a uniformly spaced concentration distribution. The generalization error of each

neural network model is shown in Table 5.13. The accuracy comparison is shown in

Figures 5.69 to 5.73. The ANN fugacity coefficient can match on average 4 significant

figures with the EOS fugacity coefficients.

The phase compositions of this case study are shown in Figures 5.74 to 5.83. The

ANN flash model performs well, except for pressures close to the critical point. The total

number of iterations needed to converge in this near-critical zone is more than 2000 with

the conventional EOS flash. Figure 5.84 shows the comparison between the total number

of iterations with the conventional EOS and that with the ANN flash calculations. Figure

5.85 shows the convergence behavior comparison between the two methods at 272 bar at

which the ANN flash converges to an incorrect solution. Figure 5.86 shows the comparison

at 180 bars, at which both methods converge to the correct solution. The ANN flash

converges to an incorrect solution at pressures above 267 bars. Figures 5.87 to 5.89 show

 54

the impact of the ANN flash miscalculation in reservoir fluid properties: vapor and liquid

fraction, fluid saturation, and densities, respectively.

This miscalculations near the critical region is generated by the effect of the ANN

fugacity coefficients on the RR function. Near the critical region, the gradient of the RR

functions tends to 0. Therefore, the vapor fraction calculation become very sensitive to the

accuracy of the K values calculated from ANN fugacity coefficients. This small variations

on the K values affect the solution of the RR function leading to an incorrect vapor fractions

calculation approaching the critical point.

Therefore, a switching criterion based on the gradient of the RR functions was

implemented. The switching criterion will indicate when the ANN flash will stop to

calculate the fugacity coefficients using the ANNs models and use the EOS based fugacity

coefficients instead. For this case study, the switching criterion was set for the gradient of

the RR function to be 0.05. When the gradient of the RR function is smaller than 0.05, the

ANN flash is switched to the EOS for the fugacity coefficients. Results of the

implementation of this switching criterion are shown in Figures 5.97 to 5.99. It can be

observed that with the implementation of the switching criterion, the ANN flash converges

to the correct solution near the critical point, and the fluid properties are calculated

correctly. Note that this switching, if it occurs, does not start over the flash calculation

using the EOS; hence, the calculations using ANNs prior to the switching are not wasted.

The fugacity coefficient execution time comparison between the ANN flash and the

EOS method is shown in Figures 5.90 and 5.91. The fugacity coefficient execution time

for 10 components using ANNs is reduced by 96.63% as compared with the EOS method.

The time per iteration comparison between the two methods is presented in Table

5.14. The ANN method shows a time reduction of 93.806% per iteration with respect to

the EOS method. Finally, the total ANN flash calculation time (Number of iterations times

 55

time per iteration) is reduced by 94.34% on average with fewer iterations to reach solution

as compared with the EOS flash shown in Figure 5.92.

5.2 DISCUSSION

The implementation of ANNs to calculate the fugacity coefficient in different fluid

models demonstrates that the method performs successfully for different fluid types: fluid

models with a large number of components, non – zero BIPs, and relatively complex

compositions with CO2. The advantage of using ANNs is that they can calculate the

fugacity coefficient with a low generalization error using simple neural network

architectures that does not require a large number of neurons in the hidden layers. As a

result, the training of the ANN models becomes simple, and also the risk of overfitting is

avoided. ANNs were combined with the successive substitution algorithm to solve for the

phase compositions and amounts in flash calculations.

The first case study indicates that the ANN fluid model implemented with successive

substitutions can predict phase compositions and phase amounts with the same accuracy as

the conventional EOS while reducing the total flash calculation time by 85.96%. This

reduction in computational time comes from the ANN-based fugacity coefficients that

require a smaller number of operations than the EOS-based ones. The ANN-based flash is

EOS-free during the iteration; it solves the EOS for compressibility factors only at the final

convergence when phase saturations are computed. This means that the complex

operations involved in the fugacity coefficient calculation (e.g. logarithms, roots, exp) are

replaced by computationally efficient calculations involved in the ANN-based feedforward

calculations (additions and multiplications). ANN flash becomes more advantageous over

EOS flash for a larger number of components because the difference between the two

approaches becomes more significant with increasing number of components in the

 56

mixture. It is expected that the advantage of ANN flash over EOS flash increases with

increasing number of grid- blocks in reservoir simulations because the number of flash

calculations increases. Note that the accuracy of fluid phase behavior representation is not

reduced by the ANN flash. When the ANN flash may converge to an inaccurate solution

in a near-critical region, EOS flash can be activated on the fly during the ANN flash

calculation when a small gradient of the RR function is detected.

In the third case study, we analyzed the capability of the ANN flash with mixtures with

more components and the use of non – zero BIPs. Results from this case study indicated

that the application of the ANN-based flash was not affected by non – zero BIPs. The use

of ANNs could handle the non-linearity introduced by non-zero BIPs with no modification

of the ANN architecture (e.g. number of hidden neuros and number of hidden layers). The

same accuracy was kept as the conventional EOS flash with an improvement of 94. 66%

in computational time.

Finally, the ANN flash was tested for a volatile oil near the critical point. Fluids near

the critical point are challenging and require the conventional EOS flash to take more

iterations to converge to the solution. Also, convergence issues of flash calculations often

arise in near-critical regions as presented in the literature. The ANN flash calculates the

phase compositions and phase amounts accurately for most of the pressure ranges in the

case studies. However, when the pressure is very close to a critical point, the ANN flash

may deviate from the correct solution. Near a critical point, the gradient of the Rachford –

Rice (RR) function tends to zero around the solution. The ANN-based fugacity coefficient

is an approximation of an equation of state. Small variations in the K values using the

ANN fugacity coefficient have a greater impact on the RR function near the critical point,

resulting in an incorrect RR solution. Figure 5.93 shows the vapor fraction solutions from

 57

the EOS and ANN flash when the gradient of the RR tends to zero in the critical region for

case 4 at 272 bars.

The incorrect ANN flash calculations arose when the gradient of the RR function was

smaller than 0.05179 for case 4. As shown in Figures 5.94 and 5.95, the gradient tends to

zero when it gets close to a critical point as is the case with the original EOS used. In

practical applications, the gradient of the RR function is calculated as part of the flash

calculation and will indicate whether to use EOS or ANN flash. That is, it is possible to

set a switching criterion as a minimum gradient of the RR function. Since the gradient of

the RR is part of the solution method, no additional calculations are needed. Finally, figure

5.96 shows the deviation of the RR solution near the critical region at a pressure of 272 bar

(Close to the critical point) for case 4. Phase diagrams for the four study cases were

generated with PVTsim and fluid properties, phase concentrations, and fugacity

coefficients using the code developed in this work were verified with PVTsim.

Figure 5.1. Phase diagram of adapted BSB west Texas oil fluid model.

 58

Table 5.1. Fluid properties for case 1. BIPs are all zero.
Component Overall

composition
Molecular
Weight, g/mol

Pc,
Bar

Tc,
 K

Acentric Factor

C1 0.0917 16.04 46.0017 190.6000 0.0080
C2-3 0.1559 37.2 44.9923 344.2056 0.1310
C4-6 0.1727 69.5 33.9959 463.2222 0.2400
C7-15 0.3360 140.96 21.7487 605.7500 0.6180
C16-27 0.1667 280.99 16.5404 751.0167 0.9570
C28+ 0.0769 519.62 16.4177 942.4778 1.2680

Table 5.2. Keras setup to train neural networks.

Optimizer Adam

Loss function Mean square error

Epochs 20

Batch size 100

Table 5.3. Generalization error of fugacity coefficient from ANNs.

Component Mean square error
(MSE)

Average percentage
error (MAE)

R2

C1 6.70850106051E-06 0.308447055769539 0.999997519525688
C2-3 3.848290256829E-06 0.320329972589314 0.999992396154579
C4-6 3.430544575051E-06 0.634021871766337 0.999996884179634
C7-15 0. 81966110180E-06 0.308447055769539 0.999999401780076
C16-27 2.615210785704E-5 0.436224573336516 0.999999593942976
C28+ 0.000210430013068 0.955529562436639 0.999999064147138

Table 5.4. Time per iteration comparison for study case 1.

Time per iteration, msec EOS Flash ANN Flash
11.51606089 1.135802257

 59

Figure 5.2 Accuracy comparison between fugacity coefficient calculated with EOS and

ANN.
Top: Component C1. Bottom: Pseudo-Component C2-3.

 60

Figure 5.3 Accuracy comparison between fugacity coefficient calculated with EOS and

ANN.
Top: Pseudo-Component C4-6. Bottom: Pseudo-Component C7-15.

 61

Figure 5.4 Accuracy comparison between fugacity coefficient calculated with EOS and

ANN.
Top: Pseudo-Component C16-28. Bottom: Pseudo-Component C28+.

 62

Figure 5.5 Phase mole fraction calculations comparison between EOS and ANN.

Top: C1 liquid concentration. Bottom: C1 vapor concentration.

 63

Figure 5.6 Phase mole fraction calculations comparison between EOS and ANN

Top: Liquid phase for C2-3. Bottom: Vapor phase for C2-3

 64

Figure 5.7 Phase mole fraction calculations comparison between EOS and ANN.

Top: Liquid phase for C4-6. Bottom: Vapor phase for C4-6.

 65

Figure 5.8 Phase mole fraction calculations comparison between EOS and ANN.

Top: Liquid phase for C7-15. Bottom: Vapor phase for C7-15.

 66

Figure 5.9 Phase mole fraction calculations comparison between EOS and ANN.

Top: Liquid phase for C16-27. Bottom: Vapor phase for C16-27.

 67

Figure 5.10 Phase mole fraction calculations comparison between EOS and ANN.

Top: Liquid phase for C28+. Bottom: Vapor phase for C28+.

 68

Figure 5.11 Phase mole fraction calculation comparison between EOS and ANN.

Top: Liquid mole fraction. Bottom: Vapor mole fraction.

 69

Figure 5.12 Fluid saturation comparison between EOS and ANN.

Top: Vapor saturation. Bottom: Liquid Saturation.

 70

Figure 5.13 Fluid density calculation comparison between EOS and ANN.
Top: Liquid density. Bottom: Vapor density.

 71

Figure 5.14 Fugacity coefficient execution time.

Top: EOS. Bottom: ANNs.

 72

Figure 5.15 Fugacity coefficient execution time comparison.

Figure 5.16 Flash calculation execution time comparison.

 73

Figure 5.17. Gas Condensate phase envelope.

Table 5.5 Fluid properties for case 2.

Component Overall

composition
Molecular
Weight, g/mol

Pc,
Bar

Tc,
K

Acentric Factor

C1 0.617632733 16.04 190.6 46 0.008
C2 0.113513628 30.07 305.4 48.84 0.098
C3 0.063427857 44.1 369.8 42.46 0.152
C4 0.036531905 58.12 419.95 37.53 0.1878
C5 0.019483682 72.15 465.25 33.79 0.2397
C6 0.018213007 86.18 507.4 29.69 0.296

PC-1 0.047967979 108.21 594.94 30.51 0.1519
PC-2 0.037379021 138.84 646.31 27.41 0.1971
PC-3 0.028272517 183.71 715.87 24.05 0.265
PC-4 0.01757767 294.82 878.5 18.96 0.4391

 74

Table 5.6. Generalization error of fugacity coefficient from ANNs.

Component Mean Square Error Average percentage error R2

C1 2.54311325475e-08 0.07234457797421 0.999999665740048
C2 2.66136957059e-08 1.148322228690716 0.999998801603921
C3 3.1167560168e-08 0.044787534277102 0.999993897126990
C4 1.37826100055e-08 0.015488466508183 0.999996900515374
C5 1.91603159707e-08 0.009869041485957 0.999998906088491
C6 4.50596740515e-08 0.013688432331599 0.999999012191636

PC-1 1.0675432431e-07 0.015403556687481 0.999999285755196
PC-2 7.9619158355e-08 0.00977703684872 0.99999968709666
PC-3 4.58442675124e-07 0.021012046757658 0.999999025705854
PC-4 5.6781995651e-07 0.013882962556325 0.999999622923520

Table 5.7. Time per iteration comparison between EOS Flash and ANN Flash.

Time per iteration, msec EOS Flash ANN Flash
16.3719777073514 3.01555897189149

 75

Figure 5.18 Accuracy comparison between fugacity coefficient calculated with EOS and

ANN.
Top: Component C1. Bottom: Component C2.

 76

Figure 5.19 Accuracy comparison between fugacity coefficient calculated with EOS

and ANN.
Top: Component C3. Bottom: Component C4.

 77

Figure 5.20 Accuracy comparison between fugacity coefficient calculated with EOS and

ANN.
Top: Component C5. Bottom: Component C6.

 78

Figure 5.21 Accuracy comparison between fugacity coefficient calculated with EOS and

ANN.
Top: Pseudo-Component 1. Bottom: Pseudo-Component 2.

 79

Figure 5.22 Accuracy comparison between fugacity coefficient calculated with EOS and

ANN.
 Top: Pseudo-Component 3. Bottom: Pseudo-Component 4.

 80

Figure 5.23 Phase mole fraction calculations comparison between EOS and ANN

Top: Liquid phase for C1. Bottom: Vapor phase for C1.

 81

Figure 5.24 Phase mole fraction calculations comparison between EOS and ANN.

Top: Liquid phase for C2. Bottom: Vapor phase for C2.

 82

Figure 5.25 Phase mole fraction calculations comparison between EOS and ANN.

Top: Liquid phase for C3. Bottom: Vapor phase for C3.

 83

Figure 5.26 Phase mole fraction calculations comparison between EOS and ANN.

Top: Liquid phase for C4. Bottom: Vapor phase for C4.

 84

Figure 5.27 Phase mole fraction calculations comparison between EOS and ANN.

Top: Liquid phase for C5. Bottom: Vapor phase for C5.

 85

Figure 5.28 Phase mole fraction calculations comparison between EOS and ANN.

Top: Liquid phase for C6. Bottom: Vapor phase for C6.

 86

Figure 5.29 Phase mole fraction calculations comparison between EOS and ANN.

Top: Liquid Pseudo Component 1. Bottom: Vapor Pseudo Component 1.

 87

Figure 5.30 Phase mole fraction calculations comparison between EOS and ANN.

Top: Liquid Pseudo Component 2. Bottom: Vapor Pseudo Component 2.

 88

Figure 5.31 Phase mole fraction calculations comparison between EOS and ANN.

Top: Liquid Pseudo Component 3. Bottom: Vapor Pseudo Component 3.

 89

Figure 5.32 Phase mole fraction calculations comparison between EOS and ANN.

Top: Liquid Pseudo Component 4. Bottom: Vapor Pseudo Component 4.

 90

Figure 5.33 Phase mole fraction calculation comparison between EOS and ANN.

Top: Liquid mole fraction. Bottom: Vapor mole fraction.

 91

Figure 5.34 Fluid saturation comparison between EOS and ANN.

Top: Vapor saturation. Bottom: Liquid Saturation.

 92

Figure 5.35 Fluid density calculation comparison between EOS and ANN.

Top: Liquid density. Bottom: Vapor density.

 93

Figure 5.36 Fugacity coefficient execution time.

Top: ANNs. Bottom: EOS.

 94

Figure 5.37 Fugacity coefficient execution time comparison between EOS and

ANN.

Figure 5.38 Total number of iterations needed to reach to the solution between EOS

flash and ANN flash.

 95

Figure 5.39 Total execution time to reach solution of conventional EOS method and

ANN flash method.

Figure 5.40 Convergence behavior comparison between EOS flash and ANN flash

at a pressure of 220 Bar.

 96

Figure 5.41. Phase diagram of fluid model in case 3.

Table 5.8 Fluid model for case 3.

Component
Overall

Composition
MW,
g/mol

Tc,
K

Pc,
 Bar Acentric Factor

N2 0.0011 28.01 126.2 33.94 0.04
CO2 0.0214 44.01 304.2 73.76 0.225
C1 0.5559 16.04 190.6 46 0.008
C2 0.087 30.07 305.4 48.84 0.098
C3 0.0589 44.1 369.8 42.46 0.152
C4 0.0405 58.12 419.46 37.49 0.1873
C5 0.0253 72.15 465.35 33.79 0.2399
C6 0.0197 86.18 507.4 29.69 0.296

PC-1 0.0765 119.41 617.17 28.42 0.1616
PC-2 0.0539 169.32 687.97 24.54 0.2245
PC-3 0.0379 240.96 789.61 20.43 0.3278
PC-4 0.0219 416.17 1011 15.43 0.5663

 97

Table 5.9. BIPs for fluid in case 3.

Table 5.10. Generalization error of fugacity coefficients from ANNs.

Model Mean Square Error Average percentage error R2

N2 3.44602E-08 0.022108731 0.999999619
CO2 1.36382E-08 0.335540038 0.999998135
C1 2.99343E-08 1.097797124 0.999999167
C2 5.00523E-09 0.009843797 0.99999872
C3 5.41057E-08 0.01605231 0.999992704
C4 4.7724E-08 0.009767913 0.999997499
C5 6.25513E-08 0.009573048 0.999998744
C6 3.47057E-07 0.014598305 0.999997774

PC-1 1.52473E-07 0.00785658 0.999999562
PC-2 8.37175E-07 0.015457675 0.999998583
PC-3 1.14541E-06 0.012976682 0.999999024
PC-4 1.67559E-06 0.008772282 0.999999609

Table 5.11. Time per iteration comparison between EOS Flash and NN Flash.

Time per iteration, msec EOS Flash NN Flash
19.96194709 1.194794771

 N2 CO2 CH4 C2H6 C3H8 C4H10 C5H12 C6H14 PC-1 PC-2 PC-3 PC-4
N2 0

CO2 0 0
CH4 0.1 0.1 0
C2H6 0.1 0.145 0.042 0
C3H8 0.1 0.2115 0.042 0.04 0
C4H10 0.1 0.1834 0.042 0.04 0.03 0
C5H12 0.1 0.1544 0.042 0.04 0.03 0.0116 0
C6H14 0.1 0.1381 0.042 0.04 0.03 0.0155 0.0058 0
PC-1 0.13 0.0294 0.0509 0.0415 0.0324 0.038 0.0231 0 0
PC-2 0.13 0.0637 0.0536 0.0418 0.0339 0.0482 0.0356 0 0 0
PC-3 0.13 0.1003 0.0581 0.0424 0.0378 0.0594 0.0521 0 0 0 0
PC-4 0.13 0.1306 0.0698 0.0438 0.0532 0.0732 0.0774 0 0 0 0 0

 98

Figure 5.42 Accuracy comparison between fugacity coefficient calculated with EOS

and ANN.
Top: N2. Bottom: CO2.

 99

Figure 5.43 Accuracy comparison between fugacity coefficient calculated with EOS and

ANN.
Top: Component C1. Bottom: Component C2.

 100

Figure 5.44 Accuracy comparison between fugacity coefficient calculated with EOS and

ANN.
 Top: Component C3. Bottom: Pseudo-Component C4.

 101

Figure 5.45 Accuracy comparison between fugacity coefficient calculated with EOS and

ANN.
Top: Component C5. Bottom: Pseudo-Component C6.

 102

Figure 5.46 Accuracy comparison between fugacity coefficient calculated with EOS and

ANN.
Top: Pseudo Component 1. Bottom: Pseudo Component 2.

 103

Figure 5.47 Accuracy comparison between fugacity coefficient calculated with EOS and

ANN.
Top: Pseudo Component 3. Bottom: Pseudo Component 4.

 104

Figure 5.48 Phase mole fraction calculations comparison between EOS and ANN.

Top: Liquid N2. Bottom: Vapor N2.

 105

Figure 5.49 Phase mole fraction calculations comparison between EOS and ANN.

Top: Liquid CO2. Bottom: Vapor CO2.

 106

Figure 5.50 Phase mole fraction calculations comparison between EOS and ANN.

Top: Liquid C1. Bottom: Vapor C1.

 107

Figure 5.51 Phase mole fraction calculations comparison between EOS and ANN.

Top: Liquid C2. Bottom: Vapor C2.

 108

Figure 5.52 Phase mole fraction calculations comparison between EOS and ANN.

Top: Liquid C3. Bottom: Vapor C3.

 109

Figure 5.53 Phase mole fraction calculations comparison between EOS and ANN.

Top: Liquid C4. Bottom: Vapor C4.

 110

Figure 5.54 Phase mole fraction calculations comparison between EOS and ANN.

Top: Liquid C5. Bottom: Vapor C5.

 111

Figure 5.55 Phase mole fraction calculations comparison between EOS and ANN.

Top: Liquid C6. Bottom: Vapor C6.

 112

Figure 5.56 Phase mole fraction calculations comparison between EOS and ANN.

Top: Liquid Pseudo Component 1. Bottom: Vapor Pseudo Component 1.

 113

Figure 5.57 Phase mole fraction calculations comparison between EOS and ANN.

Top: Liquid Pseudo Component 2. Bottom: Vapor Pseudo Component 2.

 114

Figure 5.58 Phase mole fraction calculations comparison between EOS and ANN.

Top: Liquid Pseudo Component 3. Bottom: Vapor Pseudo Component 3.

 115

Figure 5.59 Phase mole fraction calculations comparison between EOS and ANN.

Top: Liquid Pseudo Component 4. Bottom: Vapor Pseudo Component 4.

 116

Figure 5.60 Phase mole fraction calculation comparison between EOS and ANN.

Top: Liquid mole fraction. Bottom: Vapor mole fraction.

 117

Figure 5.61 Fluid saturation comparison between EOS and ANN.

Top: Vapor saturation. Bottom: Liquid Saturation.

 118

Figure 5.62 Fluid density calculation comparison between EOS and ANN.

Top: Liquid density. Bottom: Vapor density.

 119

Figure 5.63 Fugacity coefficient execution time.

Top: ANNs. Bottom: EOS

 120

Figure 5.64 Fugacity coefficient execution time comparison between EOS and ANN

Figure 5.65 Total number of iterations to reach solution of conventional EOS

method and ANN flash method.

 121

Figure 5.66 Total execution time to reach solution of conventional EOS method and

ANN flash method.

Figure 5.67 Convergence behavior comparison between EOS flash and ANN flash

at a pressure of 220 Bar.

 122

Figure 5.68. Phase diagram of study case number 4.

Table 5.12. Fluid model for case 4.

Component
Overall

Composition
MW,
g/mol

Tc,
 K

Pc,
Bar Acentric Factor

C1 0.535520867 16.04 190.6 46 0.008
C2 0.102474249 30.07 305.4 48.84 0.098
C3 0.092917065 44.1 369.8 42.46 0.152
C4 0.062546459 58.12 418.35 37.39 0.1862
C5 0.031326325 72.15 464.67 33.79 0.2381
C6 0.024317723 86.18 507.4 29.69 0.296

PC-1 0.058829776 117.36 618.51 28.86 0.1747
PC-2 0.043219709 159.75 689.76 25.04 0.2428
PC-3 0.030901561 223.2 773.46 21.68 0.3325
PC-4 0.017946267 385.02 988.48 16.64 0.5766

 123

Table 5.13. Generalization error of fugacity coefficients from ANNs

Component Mean Square
error Average percentage error R2

C1 6.9050940309405e-09 0.02803580156022059 0.99999955691239
C2 5.3506857562917e-09 0.06287203172845639 0.9999988518461894
C3 4.6323974385562e-09 0.0065057960460917 0.9999985060862664
C4 8.0573148746983e-09 0.0054783202854876405 0.9999985701122961
C5 8.6815557873929e-09 0.004550404478930354 0.9999992904208203
C6 2.94897871988366e-08 0.006768406455592809 0.9999987166076977

PC-1 6.1702269899789e-08 0.006320129632940961 0.9999990865435309
PC-2 7.9247650805181e-08 0.006278033830646585 0.9999993494488439
PC-3 1.42215462247054e-07 0.006249761794386665 0.9999993705621273
PC-4 1.22818904559822e-06 0.009917284658483893 0.9999985775998397

Table 5.14. Time per iteration comparison between EOS Flash and ANN Flash.

EOS Flash ANN Flash

Time per iteration, msec 16. 6958528948416 1.03413565577091

 124

Figure 5.69 Accuracy comparison between fugacity coefficient calculated with EOS and

ANN.
 Top: Component C1. Bottom: Component C2.

 125

Figure 5.70 Accuracy comparison between fugacity coefficient calculated with EOS and

ANN.
Top: Component C3. Bottom: Component C4.

 126

Figure 5.71 Accuracy comparison between fugacity coefficient calculated with EOS and

ANN.
Top: Component C5. Bottom: Component C6.

 127

Figure 5.72 Accuracy comparison between fugacity coefficient calculated with EOS and

ANN.
Top: Pseudo-Component 1. Bottom: Pseudo-Component 2.

 128

Figure 5.73 Accuracy comparison between fugacity coefficient calculated with EOS and

ANN.
Top: Pseudo Component 3. Bottom: Pseudo Component 4.

 129

Figure 5.74 Phase mole fraction calculations comparison between EOS and ANN.

Top: Liquid C1. Bottom: Vapor C1.

 130

Figure 5.75 Phase mole fraction calculations comparison between EOS and ANN.

Top: Liquid C2 Bottom: Vapor C2.

 131

Figure 5.76 Phase mole fraction calculations comparison between EOS and ANN.

Top: Liquid C3. Bottom: Vapor C3.

 132

Figure 5.77 Phase mole fraction calculations comparison between EOS and ANN.

Top: Liquid C4. Bottom: Vapor C4.

 133

Figure 5.78 Phase mole fraction calculations comparison between EOS and ANN.

Top: Liquid C5. Bottom: Vapor C5.

 134

Figure 5.79 Phase mole fraction calculations comparison between EOS and ANN.

Top: Liquid C6. Bottom: Vapor C6.

 135

Figure 5.80 Phase mole fraction calculations comparison between EOS and ANN.

Top: Liquid Pseudo Component 1. Bottom: Vapor Pseudo Component 1.

 136

Figure 5.81 Phase mole fraction calculations comparison between EOS and ANN.

Top: Liquid Pseudo Component 2. Bottom: Vapor Pseudo Component 2.

 137

Figure 5.82 Phase mole fraction calculations comparison between EOS and ANN.

Top: Liquid Pseudo Component 3. Bottom: Vapor Pseudo Component 3.

 138

Figure 5.83 Phase mole fraction calculations comparison between EOS and ANN.

Top: Liquid Pseudo Component 4. Bottom: Vapor Pseudo Component 4.

 139

Figure 5.84 Total number of iteration comparison between EOS flash and ANN

flash.

Figure 5.85 Convergence behavior at 180 bars (To correct solution).

 140

Figure 5.86 Convergence behavior at 272 bars (To incorrect solution).

 141

Figure 5.87 Phase mole fraction calculation comparison

Top: Liquid mole fraction. Bottom: Vapor mole fraction.

 142

Figure 5.88 Liquid saturation comparison

Top: Liquid saturation. Bottom: Vapor saturation.

 143

Figure 5.89 Fluid density calculation comparison between EOS and ANN.

Top: Liquid density. Bottom: Vapor density.

 144

Figure 5.90 Fugacity coefficient execution time.

Top: ANN. Bottom: EOS.

 145

Figure 5.91 Fugacity coefficient execution time comparison between EOS and

ANN.

Figure 5.92 Total execution time to reach solution of conventional EOS method and

ANN flash method.

 146

Figure 5.93 Solution of the RR function at 272 bars approaching the critical region

Top: Iteration 8th Bottom: Iteration 32nd .

 147

Figure 5.94 Gradient of the Rachford-Rice solution

Top: Case 1. Bottom: Case 2.

 148

Figure 5.95 Gradient of the Rachford-Rice solution

Top: Case 3. Bottom: Case 4.

 149

Figure 5.96 Rachford-Rice solution comparison between EOS and ANN flash

Top: 180 Bar (away from critical point). Bottom: 272 Bar (Close to
critical point).

 150

Figure 5.97 Phase amount calculation comparison between EOS and NN with
switching criteria.
Top: Liquid density. Bottom: Vapor density.

 151

Figure 5.98 Fluid saturation calculation comparison between EOS and NN with
switching criteria.
Top: Liquid density. Bottom: Vapor density.

 152

Figure 5.99 Fluid density calculation comparison between EOS and NN with

switching criteria.
Top: Liquid density. Bottom: Vapor density.

 153

CHAPTER 6

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR
FUTURE RESEARCH

This chapter summarizes the objective of this work, the implementation of the new

algorithm and the conclusions gathered from the study cases. Additionally,

recommendations for future research are presented.

6.1 SUMMARY AND CONCLUSIONS

Compositional reservoir simulators are widely used in petroleum engineering. They

are used to predict reservoir performance for different field development scenarios, to

optimize well spacing and surface facilities locations, and to design and evaluate EOR

projects. Compositional reservoir simulators must be able to predict the phase behavior of

hydrocarbon-rich mixtures at different thermodynamic conditions. Phase behavior is

calculated by the use of stability analysis and flash calculations. Stability analysis is to

determine whether the hydrocarbon mixture is in a single phase or not. If instability of the

fluid is detected, flash calculations are performed to calculate the phase mole fraction,

composition, and fluid properties.

Flash calculations are performed at each reservoir grid-block and at each iteration

step, making the EOS flash one of the most time-consuming calculations in compositional

reservoir simulations. This limitation of compositional reservoir simulators restricts the

application of refined reservoir grids to analyze in more detail the sweep efficiency of EOR

techniques since the increased number of grid-blocks would increase the computational

time significantly. Additionally, to reduce the computational time, reservoir fluid models

are lumped into pseudo components to speed up the compositional simulation reducing the

 154

accuracy of the phase behavior. For that reason, researchers have developed various

methods to speed up EOS flash calculations in compositional simulation.

These methods include reductions methods, where the main idea is to reduce the

number of nonlinear equations to be solved during flash calculations. Another method that

aims to reduce the time for flash calculations is the use of look-up tables, where the flash

calculation is performed as a pre-simulation step storing the results and then using them

directly during reservoir simulations. Most recently, the development of ANNs to aid flash

calculations has been proposed by several authors.

During flash calculations, the fugacity coefficient is used extensively to find the

phase equilibrium. A key to obtaining an efficient flash calculation is to speed up the time-

consuming fugacity coefficient calculation in flash calculations. In this thesis, ANNs were

applied to make an accurate and efficient model for the fugacity coefficient for each

component in a mixture. The ANN-based fluid model was used to solve for phase

equilibrium conditions by use of the traditional successive substations method.

The replacement of the conventional EOS fugacity coefficient with the ANN-based

one provides several advantages. First, there is no need to solve the cubic EOS for

compressibility factor(s) during the iteration since the ANN fluid model gives the fugacity

coefficients through a feedforward calculation. This also means that there is no need to

evaluate the Gibbs free energy of different cubic roots when the solution of the EOS gives

more than one root. The ANN-based fluid model is rapid in providing fugacity coefficients

because the feedforward calculation is computationally efficient (additions and

multiplications) in comparison to the EOS-based fugacity coefficient that contains

logarithms, square roots, and exponentials.

The newly formulated flash calculation using an ANN-based fluid model was used

for different reservoir fluids. The main conclusions are as follows:

 155

1. Results showed that EOS-based fugacity coefficients can be accurately represented

by ANNs for different reservoir fluids (e.g. up to 12 components, zero and non-

zero BIPs, and non-hydrocarbon components, such as N2 and CO2, in the mixture).

2. The ANN-based fugacity coefficients were used to solve for phase compositions

and amounts for different reservoir fluids. Flash calculations using the ANN-based

fugacity coefficient model successfully converged, except for one fluid in the close

vicinity of the critical point. The phase equilibrium conditions converged were

essentially identical between EOS and ANN-based flash. In the near-critical case,

the equilibrium solution was so sensitive to fugacity coefficients that the ANN-

based flash converged to an inaccurate solution. This implementation issue was

resolved by using a switching criterion to EOS flash as described in conclusion 5

below.

3. The ANN flash generally converged in fewer iterations in comparison with the

conventional EOS. The reduced number of iterations also contributed to the

algorithm efficiency.

4. The ANN flash provides a computational time reduction of 89.83% on average in

comparison with the conventional EOS method as shown in the case studies.

5. ANN flash was robust for fluid models that are not in a critical region. Near a

critical point, the ANN flash deviates from the correct solution when the gradient

of the Rachford – Rice (RR) solution is extremely small, which makes the RR

solution very sensitive to K values. To avoid this potential of inaccurate ANN

flash in a near-critical region, the switching criterion from ANN flash to EOS flash

was defined and applied by a gradient of the RR function, 0.05, below which the

switching occurs. This switching from ANN to EOS flash does not waste the

 156

calculations performed prior to the switching, and lets the iteration converge to the

correct solution in the cases studied.

6. There are other applications of ANNs to flash calculations presented in the

literature. However, this is the first time ANNs were applied to make simple and

accurate models for the fugacity coefficients that speed up the iterative flash

calculation.

7. Unlike reduced methods, the implementation and computational advantage of

ANN-based flash are not affected by non-zero BIPs.

8. The execution time of ANN flash increases linearly with the number of components

in the mixture, while the execution time of EOS flash increases quadratically with

the number of components increases. That is, the advantage of ANN flash over

EOS flash tends to be more pronounced for a larger number of components.

6.2 RECOMMENDATIONS FOR FUTURE RESEARCH

Recommendations for future research of ANNs for flash calculations in compositional

reservoir simulations are as follows:

1. Standalone flash calculations evaluations are necessary but not sufficient for

reservoir simulations applications. Generally, reservoir simulations require more

robust methods for phase equilibrium calculations. Therefore, the application of

ANN flash calculations in compositional reservoir simulation should be evaluated

to verify its robustness and efficiency.

2. The scope of this work was to evaluate the application and performance of ANNs

for flash calculations. However, stability analysis is an integral part of the phase

equilibrium calculations. Therefore, the use of ANNs for the fugacity coefficient

 157

should be evaluated in conjunction with stability analysis to create an integrated

phase equilibrium algorithm based on ANNs

3. This work focused on two-phase flash calculations, but more than two phases can

be present during compositional reservoir simulations. Therefore, the ANNs can be

applied to more complex algorithms to look for more than two phases.

4. In this work, ANNs models were generated for each component in the mixture. This

approach allows us to have more control over the accuracy and generalization error

of the fugacity coefficient for each component in the mixture. However, other

neural network architectures can be investigated to generate less artificial neural

models and speed up the training process and the data preparation before

implementation in flash calculations.

 158

Appendix A. Database generation code

 This code uses the fluid model described in case 1 and calculate the fugacity

coefficient, determine the multiple concentration combinations for a given concentration

increments and compute the fugacity coefficient database for a range of pressure,

concentration and number of components. This code was developed in python language.

#Libraries
Import numpy as np

#Reduce pressure calculation
def Pred(P,Pc):
 Pr=np.divide(P,Pc)
 return Pr

#Reduced temperature calculation
def Tred(T,Tc):
 Tr=np.divide(T,Tc)
 return Tr

#Attraction parameter
def Aa(Pr,Tr,alph):
 A=np.divide((0.457235529)*(Pr)*alph,Tr**2)
 return A

#Covolume parameter
def Be(Pr,Tr):
 B=(0.077796074)*np.divide(Pr,Tr)
 return B

#Temperature dependent EOS parameter
def alpha(k,Tr):
 alph=(1+k*(1-np.sqrt(Tr)))**2
 return alph

#Accentric factor dependent parameter
def kk(Nc,af):
 for i in range(0,Nc):

 159

 if af[i] <= 0.49:
 k=0.37464+1.54226*af-(0.26992)*(af**2.)
 elif af[i] > 0.49:
 k=0.379642+1.48503*af-0.164423*(af**2.)+(0.01666)*(af**3.)
 return k

#Peng robinson equation of state variables
def gammma(Amix,Bmix):
 gamma=np.multiply(-Amix,Bmix)+np.power(Bmix,2)+np.power(Bmix,3)
 return gamma

def betta(Bmix,Amix):
 beta=Amix-(3*np.power(Bmix,2))-np.multiply(2,Bmix)
 return beta

def phil(Bmix):
 phi2=-1.+Bmix
 return phi2

#Reduced attraction parameter
def Ami(X,Am,Nc):
 Amix=0.
 for i in range(0,Nc):
 for j in range(0,Nc):
 Amix+=X[i]*X[j]*Am[i,j]
 return Amix

#Reduced covolume parameter
def Bm(X,B):
 Bmix2=np.sum(X*B)
 return Bmix2

#Van del Waals mixing rules
def Vw(Nc,A,bi):
 Am=np.zeros([Nc,Nc])
 for i in range(0,Nc):
 for j in range(0,Nc):
 Am[i,j]=np.sqrt(A[i]*A[j])*(1.-bi[i,j])
 return Am

 160

#Terms of the fugacity coefficient equation for PR EOS
def fc(Amix,Bmix,z,Am,Nc,X,B):
 Term2=np.log(z-Bmix)
 Term3=np.divide(Amix,(2*np.sqrt(2)*Bmix))
 Term6=np.log(np.divide((z+(1+np.sqrt(2))*Bmix),(z+(1-np.sqrt(2))*Bmix)))
 mask=np.zeros((Nc,))
 for i in range(0,Nc):
 for j in range(0,Nc):
 mask[i]+=X[j]*Am[i,j]
 Term1=(B/Bmix)*(z-1)
 Term5=B/Bmix
 Term4=(2.*(mask))/Amix
 Fc=Term1- Term2-Term3*(Term4-Term5)*Term6
 return Fc

#Gibbs free energy root evaluation
def Dgg(X,FcL,FcV):
 Dg2=np.sum(X*(FcL-FcV))
 return Dg2

#Fugacity Coefficient calculation
def lnfug(af,T,Tc,P,Pc,Nc,bi,X):
 Tr=Tred(T,Tc)
 Pr=Pred(P,Pc)
 k=kk(Nc,af)
 alph=alpha(k,Tr)
 B=Be(Pr,Tr)
 A=Aa(Pr,Tr,alph)
 Am=Vw(Nc,A,bi)
 Bmix=Bm(X,B)
 Amix=Ami(X,Am,Nc)
 phi=phil(Bmix)
 beta=betta(Bmix,Amix)
 gamma=gammma(Amix,Bmix)
 z = Compressibility(phi,beta,gamma)
 RN= RootNumber(phi,beta,gamma)
 if RN ==2:
 Zv=np.max(z)
 Zl=np.min(z)
 FcL=fc(Amix,Bmix,Zl,Am,Nc)
 FcV=fc(Amix,Bmix,Zv,Am,Nc)
 Dg=Dgg(X,FcL,FcV)
 if Dg<0:

 161

 z=Zl
 else:
 z=Zv
 lnfug=fc(Amix,Bmix,z,Am,Nc,X,B)
 return lnfug

#Cardano to solve cubic Equation of State
def Compressibility(A,B,C):
 D=(A/3)**3-(A*B/6)+(C/2)
 E=(B/3)-(A/3)**2
 Delta=(D**2)+(E**3)

 if Delta == 0:

 if D > 0:
 Z1 = 2*(-abs(-D)**(1/3))-(A/3)
 Z2 = -abs(-D)**(1/3)-(A/3)
 Z3 = -abs(-D)**(1/3)-(A/3)

 elif D <= 0:
 Z1=2*((-D)**(1/3))-(A/3)
 Z2=(-D)**(1/3)-(A/3)
 Z3=(-D)**(1/3)-(A/3)
 return Z1,Z2,Z3

 elif Delta > 0:
 global G
 if -D + (Delta)**(1/2) < 0:
 F= -(abs(-D + (Delta)**(1/2)))**(1/3)
 else:
 F = (-D + (Delta)**(1/2))**(1/3)

 if -D - (Delta)**(1/2) < 0:
 G= -(abs(-D - (Delta)**(1/2)))**(1/3)

 else:
 G = (-D - (Delta)**(1/2))**(1/3)

 Z = F + G-(A/3)
 return Z

 elif Delta < 0:
 TETA=np.acos(-D/np.sqrt(-E**3))

 162

 Z1=2*np.sqrt(-E)*np.cos(TETA/3)-A/3
 Z2=2*np.sqrt(-E)*np.cos((TETA/3)+(2/3)*np.pi)-A/3
 Z3=2*np.sqrt(-E)*np.cos((TETA/3)+(4/3)*np.pi)-A/3
 return Z1,Z2,Z3

#Root number identification
def RootNumber(A,B,C):
 D=(A/3)**3-(A*B/6)+(C/2)
 E=(B/3)-(A/3)**2
 Delta=(D**2)+(E**3)
 if Delta == 0:
 RN=2
 return RN
 elif Delta > 0:
 RN=1
 return RN
 elif Delta < 0:
 RN=2
 return RN

#Mixture composition generation for material balance, N indicates the resolution
def Mixture(N):
 X1=np.linspace(0,1,N)
 X2=np.linspace(0,1,N)
 X3=np.linspace(0,1,N)
 X4=np.linspace(0,1,N)
 X5=np.linspace(0,1,N)
 X6=np.linspace(0,1,N)
 one=np.zeros(X1.size*X2.size*X3.size*X4.size*X5.size*X6.size)
 two=np.zeros(X1.size*X2.size*X3.size*X4.size*X5.size*X6.size)
 three=np.zeros(X1.size*X2.size*X3.size*X4.size*X5.size*X6.size)
 fourth=np.zeros(X1.size*X2.size*X3.size*X4.size*X5.size*X6.size)
 five=np.zeros(X1.size*X2.size*X3.size*X4.size*X5.size*X6.size)
 six=np.zeros(X1.size*X2.size*X3.size*X4.size*X5.size*X6.size)
 l=0
 for j in X1:
 for k in X2:
 for f in X3:
 for h in X4:
 for o in X5:
 for q in X6:
 one[l]=j
 two[l]=k

 163

 three[l]=f
 fourth[l]=h
 five[l]=o
 six[l]=q
 l=l+1

 one=one.reshape(-1,1)
 two=two.reshape(-1,1)
 three=three.reshape(-1,1)
 fourth=fourth.reshape(-1,1)
 five=five.reshape(-1,1)
 six=six.reshape(-1,1)
 Summ=one+two+three+fourth+five+six
 Xarray=np.concatenate((one,two,three,fourth,five,six,Summ), axis=1)
 item = 1
 index =np.where(Summ==item)[0]
 Xarray1=Xarray[index]
 Mixcomp=np.delete(Xarray1, 6, axis=1)
 return Mixcomp

#Database generation
Pressure=np.arange(0,27.89,0.1)
Concentration=Mixture(0.01)
T=313.706
af=np.array([0.008,0.131,0.240,0.618,0.957,1.268])
Tc=np.array([190.6000,344.20556,463.222222,605.75,751.016667,942.4777778])
Nc=6
Pc=np.array([46.00173748,44.99234683,33.99591831,21.74878308,16.54049284,16.417
76638])
bi =
np.array([[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]])
Fug=np.zeros(Pressure.size*Concentration[0].size)
l=0
for P in Pressure:
 for x in Concentration:
 Fug[l]=lnfug(af,T,Tc,P,Pc,Nc,bi,x)
 l=l+1
Data=np.concatenate((Pressure,Concentration,Fug), axis=1)
np.savetxt('Database.dat',Data)

 164

Appendix B. Artificial Neural Network models

 This code generates the ANNs for the fugacity coefficient using the database as

described in Appendix A. The code generates the datasets for training, validation and

testing, train the neural networks and evaluate its performance. Keras was used to train the

neural network models with the backpropagation algorithm.

#Import libraries
import numpy as np
from keras.models import Sequential
from keras.layers import Dense
from keras.callbacks import ModelCheckpoint
import matplotlib.pyplot as plt
import random

#Load database
Data = np.loadtxt('Database.dat')
X= Data[:,[1,2,3,4,5,6]]
Pressure=[:,0].reshape(-1,1)
Min_P=np.min(Pressure)
Max_P=np.max(Pressure)

#Neural Networks for the fugacity coefficient
Nc=np.arange(7,12,1) #Number of components in the mixture
for i in Nc:
 N=6+i
 Fug= Data[:,N].reshape(-1,1) #Fugacity coefficient
 Min_Fug=np.min(Fug)
 Max_Fug=np.max(Fug)
 limits= np.array([[Min_Fug],[Max_Fug]])
 np.savetxt("Fuglimits"+str(i)+".txt",limits)

 #Randomly Database splitting for training, testing and validation
 test=np.array(random.sample(range(X.shape[0]),int(np.round(X.shape[0]*0.10))))
 P1=np.delete(Pressure,test,0)
 X1=np.delete(X,test,0)

 P_test=Pressure[test]
 X_test=X[test]

 Fugset1=np.delete(Fug,test,0)

 165

 fug_test=Fug[test]

val=np.array(random.sample(range(Fugset1.shape[0]),int(np.round(Fugset1.shape[0]*0.1
0))))
 P_training=np.delete(P1,val,0)
 X_training=np.delete(X1,val,0)
 fug_training=np.delete(Fugset1,val,0)

 P_val=P1[val]
 X_val=X1[val]
 fug_val=Fugset1[val]

 plot=np.array(random.sample(range(Fug.shape[0]),1000))
 P_plot=Pressure[plot]
 X_plot=X[plot]
 fug_plot=Fug[plot]

 #Database normalization
 nP_training=np.divide((P_training-Min_P),(Max_P- Min_P))
 nP_test=np.divide((P_test-Min_P),(Max_P- Min_P))
 nP_val=np.divide((P_val-Min_P),(Max_P- Min_P))
 nP_plot=np.divide((P_plot-Min_P),(Max_P- Min_P))

 norm_data_training=np.concatenate((nP_training,X_training),axis=1)
 norm_data_test=np.concatenate((nP_test,X_test),axis=1)
 norm_data_val=np.concatenate((nP_val,X_val),axis=1)
 norm_data_plot=np.concatenate((nP_plot,X_plot),axis=1)

 #Label normalization
 nFug_training=np.divide((fug_training-Min_Fug),(Max_Fug- Min_Fug))
 nFug_test=np.divide((fug_test-Min_Fug),(Max_Fug- Min_Fug)).reshape(-1,1)
 nFug_val=np.divide((fug_val-Min_Fug),(Max_Fug- Min_Fug)).reshape(-1,1)
 nFug_plot=np.divide((fug_plot-Min_Fug),(Max_Fug- Min_Fug)).reshape(-1,1)

 #Neural network Keras assembly
 model=Sequential()
 model.add(Dense(20,activation = 'relu', use_bias=True, input_dim=7))
 model.add(Dense(20,activation = 'relu', use_bias=True))
 model.add(Dense(1))
 model.compile(optimizer='adam' ,loss='mse',metrics=['mae','mape'])
 #Model name
 filepath="Component_str(i)+".hdf5"

 166

 checkpointer=ModelCheckpoint(filepath, monitor='val_loss', verbose=1,
save_best_only=True, save_weights_only=False, mode='min')
 #Neural Network training with backpropagation
history=model.fit(norm_data_training,nFug_training,epochs=20,batch_size=100,callback
s=[checkpointer],validation_data=(norm_data_val,nFug_val))

 # summarize history for loss
 plt.figure()
 plt.plot(history.history['loss'])
 plt.plot(history.history['val_loss'])
 plt.title('model loss')
 plt.ylabel('loss')
 plt.xlabel('epoch')
 plt.legend(['train', 'test'], loc='upper left')
 plt.show()

 #Model predicton on testing data
 from keras.models import load_model
 Best=load_model(filepath)
 standirized_fug=Best.predict(norm_data_plot,batch_size=1000).reshape(-1, 1)
 Fug_NN=(np.multiply(standirized_fug,(Max_Fug-Min_Fug))+Min_Fug).reshape(-1,1)
 Fug=Fug.reshape(-1, 1)
 plt.plot(fug_plot,fug_plot,color='Black',linewidth=1.0)
 plt.scatter(fug_plot,Fug_NN,s=5,color='gray')
 plt.title('Accuracy comparison C5')
 plt.xlabel('EOS Model')
 plt.ylabel('NN Model')

 #Model Evaluation
 standirized_fug_test=Best.predict(norm_data_test,batch_size=4346175).reshape(-1, 1)
 Fug_NN_test=(np.multiply(standirized_fug_test,(Max_Fug-
Min_Fug))+Min_Fug).reshape(-1,1)
 def mean_absolute_percentage_error(y_true, y_pred):
 y_true, y_pred = np.array(y_true), np.array(y_pred)
 return np.mean(np.abs((y_true - y_pred) / y_true)) * 100
 from sklearn.metrics import r2_score, mean_squared_error
 r2=r2_score(fug_test,Fug_NN_test)
 mape=mean_absolute_percentage_error(fug_test,Fug_NN_test)
 mse=mean_squared_error(fug_test,Fug_NN_test)
 metrics= np.array([[r2],[mape],[mse]])
 np.savetxt("Metrics"+str(i)+".txt",metrics)

 167

Appendix C Artificial Neural Network Flash

 This code uses ANNs to calculate the fugacity coefficient as described in chapter

4. The models used in this flash calculations correspond to the fluid model of case 1.

NN flash
import numpy as np
from keras.models import load_model
NN1=load_model(' Component1.hdf5')
NN2=load_model(' Component2.hdf5')
NN3=load_model('Component3.hdf5')
NN4=load_model('Component4.hdf5')
NN5=load_model('Component5.hdf5')
NN6=load_model('Component6.hdf5')

#Extract weights and bias from Keras

w1=[]
b1=[]
for layer in NN1.layers:
 weights= layer.get_weights()[0]
 bias=layer.get_weights()[1]
 w1.append(weights)
 b1.append(bias)

w2=[]
b2=[]
for layer in NN2.layers:
 weights= layer.get_weights()[0]
 bias=layer.get_weights()[1]
 w2.append(weights)
 b2.append(bias)

w3=[]
b3=[]
for layer in NN3.layers:
 weights= layer.get_weights()[0]
 bias=layer.get_weights()[1]

 168

 w3.append(weights)
 b3.append(bias)

w4=[]
b4=[]
for layer in NN4.layers:
 weights= layer.get_weights()[0]
 bias=layer.get_weights()[1]
 w4.append(weights)
 b4.append(bias)

w5=[]
b5=[]
for layer in NN5.layers:
 weights= layer.get_weights()[0]
 bias=layer.get_weights()[1]
 w5.append(weights)
 b5.append(bias)

w6=[]
b6=[]
for layer in NN6.layers:
 weights= layer.get_weights()[0]
 bias=layer.get_weights()[1]
 w6.append(weights)
 b6.append(bias)

weights=[w1,w2,w3,w4,w5,w6]
bias=[b1,b2,b3,b4,b5,b6]

P=10
X=np.array([0.0917166666666667,0.155916666666667,0.172716666666667,0.3360166
66666667,0.166716666666667,0.0769166666666667])
T=313.706
af=np.array([0.008,0.131,0.240,0.618,0.957,1.268])
Tc=np.array([190.6000,344.20556,463.222222,605.75,751.016667,942.4777778])
Nc=6
Pc=np.array([46.00173748,44.99234683,33.99591831,21.74878308,16.54049284,16.417
76638])
Fugmax=np.array([0.8509604729089526,-0.035248585700825785,-
0.5206856081534699,-0.7108217921364027,-0.9097244029847029,-
1.127952250637442,-1.6578438405221156,-2.1894188142990103,-3.13814748798403,-
5.4719367618593715])

 169

Fugmin=np.array([-0.060246650178461425,-0.49843491827529496,-
0.9844384647848845,-1.472792683003422,-2.0102446974914265,-
2.5768514689564306,-4.078493849514273,-5.561646380581826,-8.23884036197259,-
15.044247653802742])
Pmin=np.array([0.1])
Pmax=np.array([27.899000000000026])

def NNflash(P,T,Nc,X,af,Tc,Pc,weights,bias):
 Tr=Tred(T,Tc)
 Pr=Pred(P,Pc)
 Kw=will(Pr,af,Tr)
 Ress=1
 s=0
 while True:
 V=RR(Kw,X,Nc)
 XLiq=Xliq(X,V,Kw)
 Yvap=Yvapo(XLiq,Kw)
 Fugliq=lnfug(P,XLiq,weights,bias,Fugmax,Fugmin,Pmin,Pmax)
 Fugvap=lnfug(P,Yvap,weights,bias,Fugmax,Fugmin,Pmin,Pmax)
 Conv=conve(XLiq,Yvap,Fugliq,Fugvap)
 Ress=resi(Conv)
 Kw=kww(Fugliq,Fugvap)
 s=s+1
 if(Ress < 1e-6):
 break

def lnfug(P,XLiq,weights,bias,Fugmax,Fugmin,Pmin,Pmax):
 #Pressure normalization
 nP=np.divide((P-Pmin),(Pmax- Pmin))
 v=np.concatenate((nP,X),axis=0).reshape(1,-1)#Input data for neural network
 #Feedfoward calculation
 fugcoefficient=[]
 for i in range(0,Nc):
 w=weights[i]
 b=bias[i]
 f11 = np.dot(v,w[0])+b[0] #first layer
 f11a = np.maximum(f11, 0) #activation of first layer
 f12 = np.dot(f11a,w[1])+b[1] #second layer
 f12a=np.maximum(f12, 0) #activation second layer
 f13= np.dot(f12a,w[2])+b[2] #output layer
 fugcoeff= np.sum(f13) #normilized output
 lnfug=(np.multiply(fugcoeff,(Fugmax[i]-Fugmin[i]))+Fugmin[i]).reshape(-1,1) #Re-
scaled fugacity coefficient

 170

 fugcoefficient.append(lnfug)
 return np.array(fugcoefficient).reshape(-1,1)

def will(Pr,af,Tr):
 Kw2=np.multiply(np.divide(1,Pr),np.exp((np.multiply(np.multiply(5.373,(1+af)),(1-
(1/Tr))))))
 return Kw2

def Pred(P,Pc):
 Pr=np.divide(P,Pc)
 return Pr

def Tred(T,Tc):
 Tr=np.divide(T,Tc)
 return Tr

def RR(Kw,X,Nc):
 Kmax=1/(1-np.max(Kw))
 Kmin=1/(1-np.min(Kw))
 V=np.divide((Kmax+Kmin),2)
 Err=1
 while True:
 fv = 0
 dfv = 0
 for i in range(0,Nc):
 fv = fv+(1-Kw[i])*(X[i])/(1-(1-Kw[i])*V)
 dfv=dfv+(Kw[i]-1)**2*(X[i])/((Kw[i]-1)*V+1)**2
 Vnew=V-(fv/dfv)
 Err=abs(fv)
 V=Vnew
 if(Err < 1e-6):
 break
 return V

def Xliq(X,V,Kw):
 XLiq2=np.divide(X,(V*Kw+(1-V)))
 return XLiq2

 171

def Yvapo(XLiq,Kw):
 Yvap2=np.multiply(XLiq,Kw)
 return Yvap2

def conve(XLiq,Yvap,Fugliq,Fugvap):
 Conv=np.log(XLiq)-np.log(Yvap)+Fugliq-Fugvap
 return Conv

def resi(Conv):
 Ress=np.linalg.norm(Conv)
 return Ress

def kww(Fugliq,Fugvap):
 Kw2=np.exp(Fugliq-Fugvap)
 return Kw2

 172

Glossary

Roman symbols

a Attraction parameter for cubic EOS

A Dimensionless attraction parameter for cubic EOS

b Covolume parameter for cubic EOS or bias term

B Dimensionless covolume parameter for cubic EOS

𝑓%3 Fugacity of component i in phase j

G Gibbs free energy

𝐺 Molar Gibbs free energy

𝐺̅%3 Partial Gibbs free energy of component i in phase j

𝑔% Activation functions in first hidden layer

ℎ% Activation function in second hidden layer

J Loss function

𝑘%3 Binary interaction coefficient

𝐾%3 K-value of component i in phase j

Nc Number of components

Np Number of phases

N𝑣 Number of inputs in neural network

𝑁𝑛 Number of neurons in hidden layer

𝑁% Number of inputs of a neuron

P Pressure

𝑃& Critical pressure

R Gas constant

𝑆%̅ Partial molar entropy of component i

T Temperature

 173

𝑇& Critical temperature

V Volume or vapor phase mole fraction

𝑉5% partial molar volume of component i

𝑤%3 Weight value of input i in neuron j

𝑥%3 Mole fraction of component i in phase j or output of input i in neuron j

𝑥% Normalized feature

𝑥% Original feature

𝑦% Mole fraction of component i vapor phase

𝑦% Target value at instance 𝑖

𝑦% Predicted value at instance 𝑖

𝑧% Mole fraction of component i in a mixture

𝑍3 Compressibility factor of phase j

Greek letters

α Output of a neuron

𝛽3 Mole fraction of phase j

𝜑%3 Fugacity coefficient of component of component i in phase j

𝜐 net stimuli of a neuron

𝜇 Step size in the minimization problem.

𝛼(𝑇) Temperature dependent parameter in equation of state

𝜔 Acentric factor

𝜀 Parameter to express equation of state in cubic form

𝛽 Parameter to express equation of state in cubic form

𝛾 Parameter to express equation of state in cubic form

 174

Superscripts

𝐼𝐺𝑀 Ideal gas mixture

𝐼𝐺 Ideal gas

𝑘 Iteration step

ℓ Layer number

L Output layer

Subscripts

𝐶 Critical property

𝑚𝑎𝑥 Maximum

𝑚𝑖𝑥 Minimum

Abbreviations

BIP Binary Interaction Parameter

EOS Equation of State

EOR Enhanced Oil Recovery

𝑀𝑆𝐸 Mean square error

𝑀𝐴𝐸 Mean absolute error

msec Microseconds: Second to the 10-6

NN Neural Network

RR Rachford – Rice equation

UTCOM IMPEC multiphase reservoir simulation developed at the University of Texas

at Austin

FNN Feed Forward Neural Network

 175

References

Al-Meshari, A. 2004. New Strategic Method to Tune Equation of State to Match

Experimental Data for Compositional Simulation. PhD Thesis. Texas A&M
University, Texas. USA.

Aggarwal, C. C. (2018). Neural networks and deep learning. Cham: Springer
 International Publishing.

Baker, L. E., Pierce, A. C., & Luks, K. D. (1982). Gibbs energy analysis of phase
 equilibria. Society of Petroleum Engineers Journal, 22(05), 731-742.

Evelein, K. A., Moore, R. G., & Heidemann, R. A. (1976). Correlation of the phase
 behavior in the systems hydrogen sulfide-water and carbon dioxide-
 water. Industrial & Engineering Chemistry Process Design and
 Development, 15(3), 423-428.

Gaganis, V., & Varotsis, N. (2013). An improved BIP matrix decomposition method for
 reduced flash calculations. Fluid Phase Equilibria, 340, 63-76.

Gaganis, V., & Varotsis, N. (2012, January). Machine learning methods to speed up
 compositional reservoir simulation. In SPE Europec/EAGE Annual Conference.
 Society of Petroleum Engineers.

Gaganis, V., & Varotsis, N. (2014). An integrated approach for rapid phase behavior
 calculations in compositional modeling. Journal of Petroleum Science and
 Engineering, 118, 74-87.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

Gulli, A., & Pal, S. (2017). Deep Learning with Keras. Packt Publishing Ltd.

Haykin, S. (1994). Neural networks: a comprehensive foundation. Prentice Hall PTR.

Hendriks, E. M. (1988). Reduction theorem for phase equilibrium problems. Industrial
 & engineering chemistry research, 27(9), 1728-1732.

Hendriks, E. M., & Van Bergen, A. R. D. (1992). Application of a reduction method to
 phase equilibria calculations. Fluid Phase Equilibria, 74, 17-34.

Khan, S.A., Pope, G.A., and Sepehrnoori, K. (1992). Fluid Characterization of Three-
Phase CO2/Oil Mixtures. Paper presented at the SPE/DOE Enhanced Oil Recovery
Symposium, Tulsa, Oklahoma, 22-24 April.

 176

Kashinath, A., Szulczewski, M. L., & Dogru, A. H. (2018). A fast algorithm for
calculating isothermal phase behavior using machine learning. Fluid Phase
Equilibria, 465, 73-82.

Kaul, P., & Thrasher, R. L. (1996). A parameter-based approach for two-phase-
 equilibrium prediction with cubic equations of state. SPE Reservoir
 Engineering, 11(04), 273-279.

Kumar, A. 2016. Characterization of Reservoir Fluids based on Perturbation on n-
 Alkanes. PhD dissertation, University of Alberta, Edmonton, Alberta, Canada.

Kumar, A. and Okuno, R. (2016). A new algorithm for multiphase fluid characterization

for solvent injection. SPE Journal, 21(05), 1688-1704.

Keras version 2.2.4, François Chollet, MIT

Jensen, B.H. and Fredenslund, A. 1987. A Simplified Flash Procedure for Multicomponent

Mixtures Containing Hydrocarbons and One Non-Hydrocarbon Using Two-
Parameter Cubic Equations of State. Industrial and Engineering Chemistry
Research 26(10): 2129-2134.

Li, Y., & Johns, R. T. (2006). Rapid flash calculations for compositional
 simulation. SPE Reservoir Evaluation & Engineering, 9(05), 521-529.

Michelsen, M. L. (1982b). The isothermal flash problem. Part II. Phase-split
 calculation. Fluid phase equilibria, 9(1), 21-40.

Michelsen, M. L. (1986). Simplified flash calculations for cubic equations of
 state. Industrial & Engineering Chemistry Process Design and
 Development, 25(1), 184-188.

Nichita, D. V., & Minescu, F. (2004). Efficient phase equilibrium calculation in a reduced
flash context. The Canadian Journal of Chemical Engineering, 82(6), 1225-1238.

Nichita, D. V., Broseta, D., & de Hemptinne, J. C. (2006). Multiphase equilibrium
 calculation using reduced variables. Fluid phase equilibria, 246(1-2), 15-27.

Nichita, D. V., & Graciaa, A. (2011). A new reduction method for phase equilibrium
calculations. Fluid Phase Equilibria, 302(1-2), 226-233.

Okuno, R., Johns, R. T., & Sepehrnoori, K. (2010a). Three-phase flash in compositional
 simulation using a reduced method. SPE Journal, 15(03), 689-703.

Okuno, R., Johns, R. T., & Sepehrnoori, K. (2010b). Application of a reduced method in
 compositional simulation. SPE Journal, 15(01), 39-49.

Okuno, R., Johns, R.T., and Sepehrnoori, K. (2010c). A new algorithm for Rachford-Rice
for multiphase compositional simulation. SPE Journal, 15(02), 313-325.

 177

Okuno, R., 2009. Modeling of phase behavior for gas flooding simulation. PhD dissertation,
the University of Texas at Austin, Austin, Texas, U.S.A.

Okuno, R., 2017. Class notes for PGE 384 “Advanced Thermodynamics in Petroleum
Engineering”, Department of Petroleum and Geosystems Engineering, The
University of Texas at Austin, Austin, Texas, USA.

Pan, H. and Firoozabadi, A. 2003. Fast and Robust Algorithm for Compositiona

Modeling: Part II-Two-Phase Flash Computations. SPE Journal 8(4): 380-391.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... &
 Vanderplas, J. (2011). Scikit-learn: Machine learning in Python. Journal of
 machine learning research, 12(Oct), 2825-2830.

Perschke, D. R., Chang, Y., Pope, G. A., & Sepehrnoori, K. (1989). Comparison of
 phase behavior algorithms for an equation-of-state compositional simulator.

PVTsim version 17.3.0 Calsep A/S, Lyngby, Denmark.

Priddy, K. L., & Keller, P. E. (2005). Artificial neural networks: an introduction (Vol.

68). SPIE press.

Pao, Y. (1989). Adaptive pattern recognition and neural networks.

Rachford Jr, H. H., & Rice, J. D. (1952). Procedure for use of electronic digital

computers in calculating flash vaporization hydrocarbon equilibrium. Journal of
Petroleum Technology, 4(10), 19-3.

Robinson, D. B., & Peng, D. Y. (1978). The characterization of the heptanes and heavier

fractions for the GPA Peng-Robinson programs. Gas processors association.

Rummelhart, D. E., McClelland, J. L., & PDP Research Group. (1986). Parallel distributed

processing.

Sandler, S. I., & Sandler, S. I. (2006). Chemical, biochemical, and engineering

thermodynamics.

Van der Waals, JD (1873). About the Continuity of the Gas and Liquid State (Vol.

1). Sijthoff.

Voskov, D., & Tchelepi, H. A. (2007, January). Compositional space parameterization

for flow simulation. In SPE Reservoir Simulation Symposium. Society of
Petroleum Engineers.

 178

Whitson, C. H., & Brulé, M. R. (2000). Phase behavior (Vol. 20). Richardson, TX:
 Henry L. Doherty Memorial Fund of AIME, Society of Petroleum
 Engineers.

Wang, K., Luo, J., Yan, L., Wei, Y., Wu, K., Li, J., ... & Chen, Z. (2019a, March).
 Artificial Neural Network Accelerated Flash Calculation for Compositional
 Simulations. In SPE Reservoir Simulation Conference. Society of Petroleum
 Engineers.

Wang, S., Sobecki, N., Ding, D., Wu, Y.-S., & Zhu, L. (2019b, March 29). Accelerated
Compositional Simulation of Tight Oil and Shale Gas Reservoirs Using Proxy
Flash Calculation. Society of Petroleum Engineers. doi:10.2118/193878-MS

