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Abstract 

 

Application of Artificial Neural Networks for Rapid Flash Calculations 

 

Jose Luis Hernandez Mejia, MSE 

The University of Texas at Austin, 2019 

 

Supervisor:  Ryosuke Okuno 

 

Compositional reservoir simulation is widely used as an important tool for 

optimization of enhanced oil recovery processes. In compositional reservoir simulation, 

flash calculations are performed to solve for phase properties and amounts for each grid-

block and each time step by use of a cubic equation of state (EOS).  EOS flash calculation 

is one of the most time-consuming operations during compositional reservoir simulation.  

There has been a critical need for more efficient EOS flash for practical compositional 

reservoir simulation.  

The central idea tested in this thesis is to use artificial neural networks (ANNs) to 

replace the most fundamental, but time-consuming portion of EOS flash; that is, the 

evaluation of fugacity coefficients.  ANNs are used for efficient feedforward 

approximation of the EOS fugacity coefficient function with a series of weights, bias, and 

activation functions. A set of weights and bias is found by using an algorithm that 

minimizes the mean squared error between the predicted and real values. This type of 

approximation is called supervised learning in machine learning applications. The 
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thermodynamic model used is the Peng – Robinson equation of state with the van der Waals 

mixing rules and solved by the successive substitution algorithm for flash calculations. 

The implementation of the ANN-based fugacity coefficient function is 

straightforward because it only replaces the EOS-based fugacity coefficient in 

conventional flash calculation algorithms.  Once an ANN-based fugacity coefficient 

function is built based on a cubic EOS, the EOS is required only when phase densities are 

calculated, usually at the final convergence.  That is, ANN-based flash does not use an 

EOS during the iterative solution.  We show comparisons between the conventional EOS 

flash calculations and the ANN flash calculations in terms of computational efficiency. Use 

of ANN flash can reduce on average 89.83% of the time needed by the conventional EOS 

flash for the cases studied in this thesis.   
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CHAPTER 1  

INTRODUCTION 

This chapter describes the flash calculation problems to be solved in this thesis, 

following by the objectives of this research and finally an outline of the thesis is presented.  

1.1 PROBLEM DESCRIPTION 

Compositional reservoir simulation is widely used for designing and optimizing 

enhanced oil recovery (EOR) processes.  Such simulators must be able to predict phase 

behavior, volumetric sweep efficiency, and incremental oil recovery of miscible gas/CO2 

flooding. Compositional simulators often use a fluid model based on a cubic equation of 

state (EOS) to predict the phase behavior of reservoir fluid mixtures at operating 

conditions.  

The phase behavior in EOS compositional simulation is determined by the use of 

stability analysis and flash calculations. Stability analysis will indicate if the hydrocarbon 

mixture of interest is in stable single phase at specific conditions of pressure and 

temperature. If more than one phase is necessary for phase equilibrium, the subsequent 

flash calculation is to calculate the amounts and properties of the coexisting phases. Those 

phase equilibrium calculations are performed in an iterative manner at each grid – block 

and at each iteration step, and therefore, can consume a non-trivial amount of the 

simulation time during EOS compositional reservoir simulation.  

This problem of compositional reservoir simulation is intensified when the number 

of components used for the simulation is increased, when there are more than two phases 

or when the thermodynamic conditions are in the critical region in gas flooding 

simulations. Additionally, compositional simulation becomes challenging when the 



 2 

resolution of the reservoir model is increased by grid refinement since flash calculation has 

to be performed in each gridblock. The development of algorithms that decrease the time 

spent in EOS flash calculations would facilitate the decision making and the design of more 

efficient oil production for EOR projects.  

1.2 RESEARCH OBJECTIVES 

The computational time in compositional reservoir simulation depends on the 

algorithm used for phase equilibrium calculations and the number of equations to be solved 

during the simulation run. With the advances in computer science and artificial 

intelligence, new tools have been developed to predict complex and nonlinear functions. 

The aim of this thesis is to generate a fast flash calculation algorithm using artificial neural 

networks (ANNs) to replace the most fundamental, but time-consuming portion of the flash 

calculation; that is, the evaluation of the fugacity coefficient.  The fugacity coefficient 

function by a cubic EOS (e.g., Peng and Robinson) can be accurately represented by a 

simpler function within a given thermodynamic domain by use of ANNs.  If that was done, 

flash calculation usually does not require solving the EOS during the iterative solution.  

This is the central idea that motivated this thesis project.   

The objectives of this research are the following:  

1. Develop ANN models of the fugacity coefficient based on the Peng-Robinson EOS. 

2. Integrate the ANN-based fugacity coefficient function into a flash algorithm based 

on successive substation. 

3. Evaluate the accuracy of the ANN flash in comparison to the original EOS flash by 

using different reservoir fluids. 

4. Quantify the computational efficiency of the ANN flash in comparison to the EOS 

flash. 
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5. Identify implementation problems for ANN flash and propose practical remedies 

to them.   
 

To achieve the first objective, we create ANN models for the fugacity coefficient, 

without model overfitting, with low generalization error for predictions in unseen data.  For 

the second objective, we integrate the ANN models into the traditional flash calculation 

algorithm using successive substitution. The generated algorithm can increase the speed of 

the flash calculation because we replace the fugacity coefficient with ANNs avoiding 

calculation of the fugacity coefficient during the iteration.  Cases studies using the ANN 

and EOS flash calculations are used for the 3rd, 4th, and 5th objectives. 

1.3 OUTLINE OF THESIS:  

This thesis consists of 6 chapters. Chapter 2 presents background information of 

the conventional flash calculations and the basics of the phase equilibrium. Additionally, a 

literature review on the different methods for speeding up compositional reservoir 

simulations is presented.  

In Chapter 3, theory behind artificial neural networks is presented. Here, we define 

the concepts used to generate, train and evaluate the performance of ANNs.  

In Chapter 4, we describe the methodology to generate ANNs for the fugacity 

coefficient. Additionally, the ANN flash formulation and algorithm developed in this 

research is presented. 

In Chapter 5, we present the results obtained with the new algorithm as well as 

comparisons in terms of accuracy, robustness and efficiency against the conventional EOS 

flash calculation.  
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Chapter 6 summarizes and concludes the research. Suggestions for future work are 

also presented.  
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CHAPTER 2  

PHASE EQUILIBRIUM CALCULATIONS 

This chapter defines the fundamental concepts involved in phase equilibrium 

calculation. The first portion of this chapter describes the fundamental equations involved 

in phase equilibrium and the conventional methods of flash calculation. The second portion 

of this chapter provides a literature review about the different methods to speed up flash 

calculations for compositional reservoir simulators.  

2.1 BASICS OF PHASE EQUILIBRIUM CALCULATIONS  

This section describes the fundamental equations used in flash calculations. Then, 

the methodology to solve the flash calculation is presented followed by equations of state 

(EOSs). In this thesis, the Peng – Robinson equation of state (1978) is used with the van 

der Waals mixing rules.  

 
2.1.1 Equilibrium Conditions  

Thermodynamics analysis of mixtures involves the partial molar properties of each 

component in the mixture. Therefore, the partial molar Gibbs free energy is one of the most 

important parameters for phase equilibrium modeling.  Since the Gibbs free energy of a 

multicomponent mixture is a function of temperature, pressure and mole number of the 

components in the mixture, the total differential of the Gibbs free energy function can be 

written as  

 𝑑𝐺 = 	%
𝜕𝐺
𝜕𝑇(!,#!

𝑑𝑇 + %
𝜕𝐺
𝜕𝑃($,#!

𝑑𝑃 ++%
𝜕𝐺
𝜕𝑁%

(
$,!,#"#!

𝑑𝑁%

#&

%

 
 

2.1 

 
 

𝑑𝐺 = 	−𝑆𝑑𝑇 + 𝑉𝑑𝑃 +	+𝐺̅%𝑑𝑁%

#&

%

 
 

2.2 
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where T is temperature, P is pressure, 𝐺̅% is the partial molar Gibbs energy,	𝑁𝑐 is the number 

of components, and 𝑁% is the number of moles of component i. Using the commutative 

properties of second derivatives of the thermodynamic functions, 
 𝜕

𝜕𝑁%
2
$,!,#"#!

=
𝜕
𝜕𝑇2!,#"

%
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To obtain the two equations 
 

 
𝑆%̅ = −3

𝜕𝐺̅%
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2.5 

 
and  

 
 

𝑉5% = 3
𝜕𝐺̅%
𝜕𝑃4

$,#"
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where 𝑆̅% and 𝑉5% are the partial molar entropy and partial molar volume of component i 

respectively. Therefore, the fugacity equation can be derived with relation to the partial 

Gibbs free energy (Okuno 2009). Integration from a reference pressure 𝑃' to a higher 

pressure 𝑃( results in  
 

 
𝐺̅%6𝑇',𝑃', 𝑥9 − 𝐺̅%6𝑇',𝑃(, 𝑥9 = : 𝑉5%

!$

!%
𝑑𝑃 

  
 2.7 

  

where 𝑥 is the vector representing the composition of the phase mixture of interest. For 

ideal gas mixtures (IGM), the EOS for ideal gas can be used with equation 2.2 to obtain  

 
 𝐺̅%)*+6𝑇',𝑃', 𝑥9 − 𝐺̅%)*+6𝑇(,𝑃(, 𝑥9 = 𝑅𝑇 ln %

𝑃(
𝑃'
(  

 2.8 
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where R is the universal gas constant. In analogy with equation 2.8, the fugacity coefficient 

can be defined as   
 

𝐺̅%6𝑇',𝑃', 𝑥9 − 𝐺̅%6𝑇',𝑃(, 𝑥9 = 𝑅𝑇 ln 3
𝑓%
𝑓%,
4 

 
2.9 

where 𝑓% and 𝑓%, are the fugacities at 𝑃(	and 𝑃' respectively. The fugacity 𝑓% accounts for 

the deviation in the partial pressure 𝑃%  generated by the non-ideal behavior of molecules 

in the mixture. Subtracting equation 2.8 from 2.9  
 

 
𝑓% =	𝑥%Pexp C

𝐺̅%6𝑇,𝑃, 𝑥9 − 𝐺̅%)*+6𝑇,𝑃, 𝑥9
𝑅𝑇 D 

 
2.10 

 
 

𝑓% =	𝑥%Pexp C
1
𝑅𝑇: (𝑉5% − 𝑉5%)*)𝑑𝑃

!

,
D 

 
2.10 

 
 

Assuming that 𝑓' = 𝑥%𝑃' ≡ 𝑃% and 𝐺̅%6𝑇',𝑃', 𝑥9 = 𝐺̅%)*+6𝑇',𝑃', 𝑥9 when 𝑃' ⟶ 0. 

Here, 𝑃% is the partial pressure of component i, and the superscript IGM indicates an ideal 

gas mixture property. When the pressure goes to 0, all mixtures become ideal and the 

fugacity can be express as.  

 
 

𝑓% = 𝑥%Pexp C
𝐺̅%6𝑇,𝑃, 𝑥9 − 𝐺̅%)*6𝑇,𝑃, 𝑥9

𝑅𝑇 D 
 
2.11 

Equation 2.11 is provided as a definition of the fugacity in textbooks (e.g. Sandler, 2006) 

and its derivation with its relationship with the partial molar Gibbs free energy is given by 

Okuno (2009).  The fugacity coefficient for a component in a mixture is defined as 
  
 

𝜑% =
𝑓%
𝑥%P

 
 
2.12 

which is intensively used during phase equilibrium calculations. To calculate the fugacity 

of the components in the mixture from equation 2.10, a volumetric equation of state needs 
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to be solved explicitly for volume in terms of pressure and temperature (Sandler, 2006). 

However, most of the equations of state are usually pressure explicit. Therefore, the 

fugacity equation can be re written starting with 
 

 𝑑𝑃 =
1
𝑉5
𝑑6𝑃𝑉9 −

𝑃
𝑉 𝑑𝑉  

2.13 
And the triple product rule  
 

 
%
𝜕𝑉
𝜕𝑁%

(
$,!,#"#!

%
𝜕𝑃
𝜕𝑉($,#"

%
𝜕𝑁%
𝜕𝑃 ($,-,#"#!

= −1 
 
2.14 

 in the form 
 

%
𝜕𝑉
𝜕𝑁%

(
$,!,#"#!

𝑑𝑃 = −%
𝜕𝑃
𝜕𝑁%

(
$,-,#"#!

𝑑𝑉 
 
2.15 

  
 The symbolic fugacity coefficient for a component in a mixture from an EOS is  
 
 

ln𝜑% = ln
𝑓%(𝑇,𝑃, 𝑥)
𝑥%P

=
1
𝑅𝑇: L

𝑅𝑇
𝑉 − %

𝜕𝑃
𝜕𝑁%

(
$,-,#"#!

M 𝑑𝑉
-./0$/!

-.2
− ln𝑍 

 
2.16 

Finally, the criterion for equilibrium between two phases is that 𝐺̅%) = 𝐺̅%)) for all 

components i in the mixture with the condition that temperature and pressure are equal in 

both phases. Therefore, at equilibrium conditions, the fugacity of each component in the 

mixture must be the same in the two phases.  

 
2.1.2 Conventional formulations for flash calculations  

There are two main approaches to performing phase equilibrium calculations:  a) 

direct minimization of the Gibbs free energy and b) solution of the fugacity equations.  In 

this section both methods will be discussed, and common algorithms will be presented.  

 
2.1.2.1 Direct minimization of the Gibbs Free energy  

Flash calculations are used in this thesis to find the equilibrium phase compositions 

and phase amounts at conditions of pressure P, temperature T, and overall composition 𝑧. 
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The fundamental formulation in flash calculations is the minimization of the Gibbs free 

energy at given pressure and temperature. As described in Okuno (2009), the molar Gibb 

free energy of a multicomponent mixture is defined as 
 

𝐺 = 	++𝛽3𝑥%3𝐺̅%3

#&

%.'

#4

3.'

 
 
2.17 

where 𝑥%3 is the mole fraction of component i in phase j and 𝛽3 is the mole fraction of phase 

j. Combining equation 2.12 with equation 2.17, we get the following: 

 
 

𝐺 = 	𝑅𝑇++𝛽3𝑥%3ln(𝑥%3𝜑%3)
#&

%.'

#4

3.'

+ 𝐺)*++𝛽3𝑥%3

#&

%.'

#4

3.'

 

 

 
2.18 

 
= 𝑅𝑇++𝛽3𝑥%3ln(𝑥%3𝜑%3)

#&

%.'

#4

3.'

+ 𝐺)*  
 

In equation 2.18, the molar Gibbs free energy of the ideal gas 𝐺)*  is a function of 

pressure and temperature that are fixed in flash calculations. Therefore, the minimization 

of the Gibbs free energy can be solved using the following dimensionless equation:  

 
 

𝐺0 = 𝑅𝑇++𝛽3𝑥%3ln(𝑥%3𝜑%3)
#&

%.'

#4

3.'

 
2.19 

Thus, the constrained global optimization problem for the Gibbs free energy 

minimization is  

 
 

min𝐺0 = 𝑅𝑇++𝛽3𝑥%3ln(𝑥%3𝜑%3)
#&

%.'

#4

3.'

 

subject to 

 

 
+𝛽3𝑥%3

#4

3.'

= 𝑧%  
2.20 
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+𝑧%

#&

%.'

= 1.0 
2.21 

 
+𝛽3

#4

3.'

= 1.0	and	𝛽3 	≥ 0	for	j = 1,…	, Np, 
2.22 

 
+𝑥%3

#&

%.'

= 1.0	and	𝑥%3 	≥ 0	for	i = 1,…	, Nc	and	j = 1,…	, Np. 
2.23 

 

As shown by Baker et al. (1982), when the fluid system exhibits multiple phases, 

the Gibbs free energy using an EOS might have false solutions. Therefore, the global 

minimum is the correct solution while the other local minima are false solutions.  

As explain by Okuno (2009), the standard minimization is performed in terms of 

Nc(Np − 1) independent variables.  

 
 𝑤%3 = 𝛽3𝑥%3 	where	i = 1,… , Nc	and	j = 1,… , (Np − 1) 2.19 
   

since ∑ 𝑤%3
#4
3.' = 𝑧%. The mole fraction can be express as 𝑥%3 =

5!"
∑ 5!"&'
!(%

 because ∑ 𝑤%3#&
%.' =

𝛽3. The minimization problem can be re-arranged as follows  

 
 

min𝐺0 = 𝑅𝑇++𝛽3𝑥%3ln(𝑥%3𝜑%3)
#&

%.'

#4

3.'

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑	𝑡𝑜:	  

2.20 

 𝑤78 = 𝛽8𝑥87 ≥ 0 2.21 
 

+𝑤78

#4

8.'

= 𝑧7	where	m = 1,… , Nc	and	n = 1,… , Np 

 

 
2.22 

For a function	 F		to be a local minimum at 𝑥∗,	the sufficient conditions for 

optimality are that ∆F(𝑥∗) = 0 and the Hessian of the matrix 	∆(F(𝑥∗)	is positive definite. 

The gradient and the Hessian of the matrix are used in Newton’s method of minimization 
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with a line search technique. The material balance has to be satisfied at each iteration to fix 

a reference value of the function and the dependent variables for the remaining phases can 

be calculated as 
 

𝑤%#4 = 𝑧% − + 𝑤%3 ,
#4:'

3.'

where	i = 1,… , Nc 
 
2.23 

 

The algorithm of Perschke et al. (1989) is the following:  

1. Obtain the initial estimate of the	𝑁𝑐(Np − 1) independent variables in equation 

2.19  

2. Calculate dependent variables using 𝑤%#4 with equation 2.23 

3. Calculate fugacity coefficients and compressibility factors using an EOS for Np 

phases. When the solution of the cubic EOS, select the root that gives the lowest 

Gibbs Free energy (Evelein et at. 1976) 

4. Calculate the gradient vector and the Hessian matrix analytically from equation 

2.20 

5. Decompose the Hessian matrix using the modified Cholesky decomposition 

algorithm.  

6. If the Hessian matrix is positive definite in step 5 check for convergence of the max 

norm of the gradient vector. If convergence is achieved, stop. Otherwise, continue 

to step 7.  

7. Obtained search direction using systems of equations decomposed in step 5 

8. Calculate step length using the line search algorithm.  

9. Update the  𝑁𝑐(Np − 1) and go to step 2.  

Since Newton’s method is used for minimization of the Gibbs free energy the 

convergence behavior is quadratic close to the solution. 
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2.1.2.2 Successive Substitutions Iteration Method  

A second alternative to flash calculation is the solution of the fugacity equations as 

explained in Okuno (2009). Assuming no capillary or gravity effect on phase equilibrium, 

the criterion for phase equilibrium is that the chemical potential of each component i in 

phase I is the same for component i in phase II for all components in the mixture. A useful 

expression for the chemical potential is the fugacity, 𝑓%. Therefore, the constraint for phase 

equilibrium can be written as 
 𝑙𝑛𝑓%3 − 𝑙𝑛𝑓%3 = 0,where	i = 1,… , Nc	and	j = 1,… , Np	 2.24 

This constraint can be solved by successive substitution (SS) until a convergence 

criterion is achieved.  Successive substitution is widely applied because of its simplicity 

and robustness. The independent variable in successive substations is k-values. k-values 

represent the tendency of a component to partition among different phases and is defined 

by 
 𝐾%3 =

𝑥%3
𝑥%#4

	where	i = 1,… , Nc	and	j = 1,… , (Np − 1) 2.25 

The Np;< phase is a reference phase in equation 2.25. Successive substitution solves 

for equation 2.24 for 𝐾%3 with material balance equations 2.20, 2.22 and 2.23. Therefore, 

equation 2.24 can be express as 

 
 ln𝐾%3=>' =		 ln𝜑%#4

= −	ln𝜑%3
= 	where	i = 1,… , Nc	and	j = 1,… , (Np − 1)	 2.26 

 

In equation 2.24, the superscript indicates iteration step. In equation 2.24, the 

fugacity coefficient 𝜑%3 should be calculated at each iteration step to update the k – value. 

Because fugacity coefficient is a function of component i in phase j at pressure and 

temperature conditions, it is necessary to calculate phase composition for a given set of k 

– values. The conventional procedure for a constant K-value flash calculation was 

originally proposed by Rachford and Rice (1952), but more comprehensive and rigorous 
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treatment of the multiphase material balance was presented by Okuno (2009) and Okuno 

et al. (2010c). The objective of the constant k-value flash calculation is to determine the 

phase mole fraction and phase composition for a fixed overall composition. The Rachford 

and Rice equation is given by  

 
 

𝑓(𝛽) =+
(1 − 𝐾%)𝑧%

1 − (1 − 𝐾%)𝛽

#&

'

= 0 
2.27 

The Newton Rapson algorithm is commonly used to find the solution of 𝑓(𝛽)  and 

the first guess of 𝑓(𝛽) can be chosen arbitrarily as 0.5 or the average between 𝐾7?@	and 

𝐾7%8. The first derivative of 𝑓(𝛽) and the Newton Rapson iteration step are express as 

 

 𝑓′(𝛽) 	= −+
(1 − 𝐾%)(𝑧%

[1 − (1 − 𝐾%)𝛽](

#&

'

 

 

2.28 

 𝑓(𝛽)8>' = 𝑓(𝛽)8 −
𝑓(𝛽)8

𝑓′(𝛽)8 2.29 

   

where the correct solution of 𝑓(𝛽) lies in the region between  𝑓(𝛽)7%8 and  𝑓(𝛽)7?@ 

defined as 
 𝑓(𝛽)7%8 =

1
1 − 𝐾7?@

< 0 

 

2.30 

 𝑓(𝛽)7?@ =
1

1 − 𝐾7%8
> 1 

 

2.31 

Whitson and Brulé (2000) showed that 𝑓(𝛽)7%8 < 0 and 𝑓(𝛽)7?@ > 1 if at least 

one k-value of is < 1 and one k-value is > 1. This implies that the solution of for 𝑓(𝛽) = 

0 is always limited to the region 𝑓(𝛽)7%8 < 𝑓(𝛽) < 𝑓(𝛽)7?@. 

The phase compositions are calculated using the material balance as follows  
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 𝑥% =
𝑧%

𝑓(𝛽)(𝐾% − 1) + 1
	𝑤ℎ𝑒𝑟𝑒		𝑖 = 1, . . , 𝑁𝑐 

 
2.32 

 𝑦% =
𝑧%𝐾%

𝑓(𝛽)(𝐾% − 1) + 1
= 𝑧%𝐾% 	𝑤ℎ𝑒𝑟𝑒		𝑖 = 1, . . , 𝑁𝑐 

 
2.33 

In the successive substitution (SS) method, the inner iteration solves for equation 

2.27 to determine the phase composition and phase mole fraction and the outer loop solves 

for equation 2.26 with the use of an EOS. The SS method is generally initialized with the 

use of Wilson’s correlation to provide the initial estimates of the k-values as 

 
 

𝐾% =
𝑥%
𝑦%
≈
exp[5.373(1 + 𝑤%)(1 − 𝑇A%:')]

𝑃A%
		𝑤ℎ𝑒𝑟𝑒		𝑖 = 1, . . , 𝑁𝑐 

 

2.34 
 

where 

 𝑃A% =
𝑃&%
𝑃 		where		i = 1,… , Nc 2.35 

   

 𝑇A% =
𝑇&%
𝑇 		where		i = 1,… . , Nc 2.36 

where 𝑃&% , 𝑇&% are the critical pressure and critical temperature for component i respectively, 

and 𝑤% is the acentric factor of component i.  However, K – values from Wilson’s 

correlation are not accurate at high pressures. Results from stability analysis can provide 

better initial k -values estimates to initialize two-phase flash calculations.  

The successive substitution algorithm can be summarized as: 

1. Specify T, P and feed mole fraction of the hydrocarbon mixture 

2. Calculate the initial guess of the equilibrium constant using Wilson’s 

correlation (2.34) 



 15 

3. Solve the vapor fraction equation proposed by Rarchford and Rice (1952). 

Equation 2.27 

4. Calculate the liquid and vapor molar fraction at those conditions of pressure 

and temperature, equation 2.32 and 2.33 

5. Calculate the cubic equation parameters from an EOS 

6. Solve the cubic EOS for Z for vapor and liquid and discard all middle roots as 

they are unstable  

7. Calculate the fugacity coefficients lnφ%B and lnφ%- 

8. Check for convergence of based on the residuals of the fugacity coefficient 

equations ‖ln𝑥%φ%B − ln𝑦φ%C‖ < 𝜀	(𝑒. 𝑔, 𝜀 = 10:D). If convergence is 

achieved stop. Otherwise, go to step 9 

9. Update the equilibrium constants 𝑙𝑛𝐾%=>' = (lnφ%B − lnφ%-)=  

10. Go to step 3 

The successive substation method is linearly convergent, and convergence becomes 

slow in the near-critical region (Michelsen, 1982b).  

2.1.3 Equations of State (EOS) 

Cubic equations of state are simple equations that relate pressure, volume and 

temperature (PVT). EOS can predict volumetric phase behavior using the critical properties 

of the hydrocarbon mixture and acentric factors. One of the earliest attempts to represent 

phase behavior of real gases was the van der Waals (1873) equation of state.  

 
 %𝑝 +

𝑎
𝑉+$

( (𝑉+ − 𝑏) = 𝑅𝑇 

 

2.37 
 

The difference of this equation from the ideal gas equation is the addition of the 
term ?

-)$
 to pressure and the subtraction of 𝑏 from molar volume.  The term ?

-)$
 is a 
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pressure correction due to the attraction forces of the molecules. The constant 𝑏 is a 

correction to the molar volume related to the volume occupied by the molecules. Constants 

𝑎 and 𝑏 are characteristic of the particular gas of study. The van der Waals equation is an 

improvement from the ideal gas equation. However, its practical use is limited. Since the 

introduction of the van der Waals EOS, many cubic EOSs have been introduced in attempts 

to improve the accuracy of modeling fluids at a wide range of pressure and temperature 

(e.g. The Redlich and Kwong EOS in 1994 and the Peng – Robinson EOS in 1976). 

Changes in the molecular attraction term were commonly proposed.  

Most of petroleum engineering applications use the Peng Robinson EOS or 

modifications of the Redlich Kwong EOS. To apply EOSs to hydrocarbon-rich mixtures, 

the van der Waals mixing rules are widely used, although more complex mixing rules can 

be also used.  

 
 

A =++𝑥%𝑥3𝑎%3

#&

3.'

#&

%.'

 

 

2.38 
 

 
B =+𝑥%𝑏%

#&

%.'

 

 

2.39 

Parameters 𝑎7 and b7 are used in the EOS as a pure fluid. The combining rules 

for 𝑎%3 are defined as  
 𝑎%3 = �𝑎%𝑎3(1 − 𝑘%3) 2.40 

 

where the terms 𝑘%3  are the binary interaction parameter (BIP), which are assumed to be 

independent of pressure and temperature. Values of the BIPs are usually obtained by fitting 

the equation of state to gas – liquid equilibria data for each mixture.  
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The Peng-Robinson EOS (Peng and Robinson 1978) with the van der Waals mixing 

rules are used for the development of training data for the ANN models in this thesis. The 

Peng-Robinson EOS is  

 

 P =
𝑅𝑇

(𝑉 − 𝑏) −
𝑎(𝑇)

[𝑉6𝑉 + 𝑏9 + 𝑏6𝑉 − 𝑏9]
 

 
2.41 

where 
 𝑎(𝑇) = 0.45724𝑅(𝑇&(𝛼(𝑇)/𝑃& 2.42 
   

 𝑏 =
0.07780𝑅𝑇&

𝑃E
 2.43 

   
 𝛼(𝑇) = 1 + 𝜅(1 − �𝑇/𝑇&) 2.44 
   
 𝜅 = 0.37464 + 1.54226𝜔 − 0.26992𝜔(	for	𝜔 < 0.49 2.45 
   

 𝜅 = 0.37464 + 𝜔61.48503 + 𝜔(−0.16442 + 0.01667𝜔)9	for	𝜔
> 0.49 

2.46 

The fugacity coefficient of component i in a mixture using the Peng-Robinson EOS 

is defined as 

 

lnφ%36𝑃, 𝑇, 𝑥9 = (𝑍 − 1)
𝐵%
𝐵 − ln(𝑍 − 𝐵)

−
𝐴

(𝛿' − 𝛿()𝐵
3
2∑ 𝑥3𝐴%3#&

3.'

𝐴7
−
𝐵%
𝐵4 𝑙𝑛 �

𝑍 + 𝛿'𝐵
𝑍 + 𝛿(𝐵

� ; 

 
 

2.47 

where 𝛿' = 1 + 0. 2,.G and 𝛿( = 1 − 0. 2,.G. 

2.2 Methods to speed up compositional reservoir simulators.   

Because of the large computational cost involved in compositional reservoir 

simulations, a number of methods have been developed to accelerate phase equilibrium 
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calculations. Methods to achieve faster phase equilibrium calculations include reduction 

methods, tie-line methods, and most recently machine – learning methods. This section 

presents a literature review for the methods reported in the literature to speed up 

compositional reservoir simulation. 

Reduction methods are used to accelerate phase fluid equilibrium calculations. The 

idea of the reduction method is to take advantage of the rank of the BIP matrix using only 

the most significant eigenvalues. The first reduction method was proposed by Michelsen 

(1986). Michelsen demonstrated that flash calculation and stability analysis can be 

performed using only three and two variables respectively when all the BIPs are zero 

independently of the number of components of the mixture.  

The idea was then expanded by Jensen and Fredenslund (1987) to handle non – 

zero BIPs by applying truncated spectral expansion of the matrix   1 − 𝑘%3 from the Van 

der Waals mixing rules. Hendricks (1988) proved that two-phase equilibrium calculations 

can be performed with a reduced number of variables than the number of components 

including non-zero BIPs.  

Hendriks and Van Bergen (1992) applied their reduction method to two-phase flash 

calculation.  In their method, they approximate the BIP matrix using spectral expansion 

and then reduce the number of eigenvectors such that both, the error of the BIP matrix is 

small and the number of parameters is small. Its success is achieved because the large 

separation between the dominant eigenvalue of the 𝑘%3 matrix with the rest of the 

eigenvalues.  

Kaul and Trasher (1996) proposed a parameter-based approach for two-phase 

equilibrium predictions. In their approach the reduce the number of variables to three or 

fourth depending on whether the BIPs are zero or not. Their method reduced the 
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minimization problem by taking advantage of the special mathematical form of the ideal 

mixing and excess parts of the Gibbs Free Energy.  

Pan and Firoozabadi (2003) introduced a method based on the reduction of the 

dependent variables of the Gibbs Free Energy through the spectral theory of linear algebra. 

In their formulation, they reduced the number of eigenvalues of the (1 − 𝑘%3) matrix as 

Hendriks and Van Bergen (1992) and tested on stability analysis and flash calculations 

focusing on robustness. 

Nichita et al. (2004) presented a new reduction formulation with a selection of 

independent variables as suggested by Hendriks (1988). Their implementation includes 

non – zero BIPs in a 2	𝑁𝑐 +3 equation system implemented with the Successive 

Substitution algorithm (SS) followed by the second-order minimum variable Newton 

Rapson close to the solution. Later, Nichita et al (2006) used the truncated expectral 

expantion of the attraction parameter of the EOS to reduce the number of equations to be 

solved during flash calculations.  

Li and Johns (2006) implement a reduced flash calculation by decomposing the 

BIPs matrix into two parts using a quadratic expression. The number of independent 

parameters in their method is reduced to six for fluids with non-zero BIPs, three for zero 

BIPs and five for cases when exits only BIPs between a single component and the others.   

Okuno et al. (2010a) used their approximation of the BIPs matrix to develop a reduce 

method with only five and six independent variables for flash calculations and stability 

analysis respectively regardless of the number of components.  Additionally, they 

demonstrate the robustness and efficiently of their method for two and three phases in 

UTCOMP a compositional reservoir simulator originally developed by Chang et al. (1990). 

 Okuno et al. (2010b) extend the algorithm for reduce two-phase flash calculations 

to three-phase flash calculations and showed the efficiency and robustness of the algorithm 
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in stand-alone calculations and during compositional reservoir simulations for various case 

studies. 

Gaganis and Varotsis (2013) proposed a BIP matrix decomposition to a set of basis 

vectors that approximate the original BIP matrix by the minimization of an energy function. 

The reduction methods have shown to save computational time without losing a high 

degree of accuracy.  

Another strategy that aims to reduce the computational cost of flash calculations is 

the use of tie-lines. The idea behind it is to solve the non-linear phase equilibrium equations 

for each gridlock separately from the reservoir simulation. Voskov and Tchelepi (2007) 

proposed a compositional space parametrization approach for simulation of gas flooding 

processes. In their method, flash calculations are performed and results are stored as a 

preprocessing stage for reservoir simulation. During the simulation, if the concentration 

lies on the compositional tie line, a tie-line table is used to look up the flash results.  The 

performance of tie-line-based methods is improved by the use of information from a 

previous time step to determine the phase state at the current step.  

ANNs have been applied to speed up flash calculations. Gaganis and Varotsis 

(2012) proposed an integrated method using classification and regression models. First, 

they used support vectors to classify the mixture as stable or unstable for a given pressure, 

temperature and feed composition. If the mixture is unstable, they use ANNs to predict the 

equilibrium coefficicients for a given pressure, temperature and composition. Later, they 

expanded their method in Gaganis and Varotsis (2014), introducing ANNs to estimate the 

reduced variables of Nichita and Graccia (2011) for flash calculations. 

Kashinath et al. (2018). extended the work of Gaganis and Varotsis (2014) to 

supercritical phase determination, subcritical phase stability analysis and flash 

calculations. In their method, they used support vector machines to classify the 
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hydrocarbon mixture as supercritical, or subcritical with composition and pressure as 

inputs. Additionally, they solved the phase – split problem by applying ANNs to predict 

K-values for a given pressure, temperature, and composition.  

Wang et al. (2019a) proposed using ANNs to assist the conventional flash 

calculation. In their approach, three ANNs are constructed. First two models predict the 

bubble point pressure and dew point pressure of the system. If the pressure of the system 

is between the bubble point pressure and the dew point pressure, the system is unstable. 

The second ANN is to predict the vapor mole fraction  𝑓(𝛽) and K – values that are used 

as an initial guess for the subsequent flash calculation. As a result, it requires less iterations 

to converge. The difference between Kashinath et al. (2018) and Wang et al. (2019) is that 

the use of ANNs is easier to calculate than the use of support vectors to label the stability 

of the system at a given pressure, temperature, and feed composition.  

Wang et al. (2019b) implemented ANNs to speed up compositional reservoir 

simulation of a tight oil and shale gas reservoir. In their work, the initial estimates of the 

equilibrium constants, and capillary pressure are calculated using ANNs for a given 

pressure, temperature, and feed composition instead of Wilson’s correlation. Their 

implementation reduced the number of iterations needed to converge to the solution during 

flash calculations because of the prediction of the initial guess using ANNs is close to the 

solution.  

 

 



 22 

CHAPTER 3  

ARTIFICIAL NEURAL NETWORKS  

This chapter defines the basic concepts used in the development of ANNs, more 

specifically feed forward neural networks. This chapter is divided into three sections. The 

first part describes the fundamental concepts used in the development of ANNs. Secondly, 

the methodology to train ANNs is described, and finally, data preparation is discussed.  

3.1 BASICS OF ARTIFICIAL NEURAL NETWORKS  

Priddy et at. (2005) described that ANNs are networks of simple processing 

elements mapping an input space to an output space. One of the most outstanding 

capabilities of artificial neural networks is that they can perform complex non – linear 

mappings. There are many different types of ANNs that are used for different applications, 

but the principles are similar. Feed forward neural networks (FNNs) are used in this thesis. 

FNNs are composed of one input layer, one or more hidden layers, and one final layer that 

is called the output layer. Every layer, except for the output layer, includes a bias neuron 

and it is connected to the next layer. When a feed forward neural network has two or more 

hidden layers, it is called a deep neural network.   

ANNs are conformed by neurons that receive information from previous neuros, 

then process the information internally through an activation function to generate an output 

response. However, some inputs to the neuron may be more relevant than others. Therefore, 

this process is modeled by weights in the input of the neuron. The output of a neuron can 

be express as 

 𝜐 =+𝑤%𝑥% + 𝑏%

#%

%.,

 

 

3.1 

 α = 𝑓(𝜐) 3.2 
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where 𝑓 represents the activation function, 𝜐 is the net stimuli of the neuron, 𝑁% is the 

number of inputs of the neuron, 𝑥% is the input value, 𝑤% is the corresponding weight and 

𝑏% is the bias term. Equation 3.2 is given as the fundamental equation involved in ANNs 

by various textbooks (e.g. Aggwargal 2015, Goodfellow, 2016, Pedregosa 2011, Priddy 

2005).   Figure 3.1 shows a representation of a neuron can be seen as a small engine that 

takes the weighted inputs, process them and then transmit an output. 

Priddy et al. (2005) showed that activation functions 𝑓 are used in neural networks 

to control the firing rate or action potential of each neuron. There are different types of 

activation functions that can be used depending on the application of the neural network. 

For example, if the target value to predict is a real number, then the identity activation 

function is recommended. In another scenario, if the target value is to predict the 

probability of a binary classification system, a sigmoid activation function has to be 

selected.  

In multilayer ANN, non-linear activation functions help to create more powerful 

compositions of different types of functions. If an ANN only uses linear activation 

functions, it would not provide better estimations than a single layer ANN. Additionally, 

the non – linear activation functions help to map the non-linear relationship with the inputs 

and the target values. Figures 3.3 to 3.5 show examples of widely used activation functions 

reported in the literature, such as sing, sigmoid, and hyperbolic tangent functions. Most 

recently, however, a number of piecewise activation functions, such as the rectified linear 

unit (RELU) and its variants, have become popular because they facilitate the training 

process of the neural networks as demonstrated by Goodfellow (2016). The most widely 

used activation functions are the following  

 
 𝑓(𝜐) = 𝜐	(𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) 3.3 
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 𝑓(𝜐) = +1	𝑖𝑓	𝑥 ≥ 0,−1	𝑖𝑓	𝑥 < 0		(𝑠𝑖𝑛𝑔	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) 
 3.4 

 𝑓(𝜐) =
1

1 + 𝑒:H
(𝑠𝑖𝑔𝑚𝑜𝑖𝑑	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) 

 
3.5 

 𝑓(𝜐) =
𝑒(H − 1
𝑒(H + 1

(𝑡𝑎𝑛ℎ	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) 
 

3.6 

 𝑓(𝜐) = max{𝜐, 0} (𝑅𝐸𝐿𝑈	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) 
 3.7 

 𝑓(𝜐) = max{min[𝜐, 1] , 0} (ℎ𝑎𝑟𝑑	𝑡𝑎𝑛ℎ	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) 
 3.8 

The specific architecture of a multilayer neural network is referred to as feed 

forward networks (FNN) because successive layers feed into the one another in a forward 

direction from input to output. The architecture of an artificial neural network is fully 

connected when all the neurons are connected to the neurons in the next layer. Therefore, 

the dimension of an ANN is defined by the number of layers and the number of neurons in 

each layer. Priddy et al. (2005) defined the structure of ANNs as composition function in 

a multilayer ANN as follows: 
 𝑔' = 𝑓'(𝜐), 	𝑔( = 𝑓((𝑔'), … , 	𝑦 = 𝑓ℓ6𝑔ℓ:'9	 3.8 

where 𝑔 represent the functions computed in layer ℓ and 𝑦	represent the output of the neural 

network. The use of non-linear activation functions is key to increase the power of multiple 

layers. As a result, ANNs are often referred to as universal approximators.  

The learning process of ANNs occurs by changing the weights connecting different 

neurons. As an analogy, a stimulus is needed to learn in biological organisms.  In the case 

of ANNs, the external stimuli are provided by the training data containing examples of 

input – output response.  The pairs of data are feed into the ANN to adjust the weights 

based on the error between the target value and the predicted one. The function used to 

calculate this error is called the loss function. There are several loss functions reported in 
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the literature. Goodfellow (2016) reported that their use depends on the application of the 

ANN. For FNN, the mean square error 𝐽+JK and the mean absolute error (MAE) are 

commonly used. 

 𝐽+JK =
1
𝑛+(

8

%.'

𝑦% − 𝑦%)( 

 
3.9 

 𝐽+LK =
1
𝑛+(

8

%.'

𝑦% − 𝑦%) 3.10 

where 𝐽	 is the value of the loss function, 𝑛 is the number of data samples, 𝑦 is the target 

value, and 𝑦 is the predicted value at instance 𝑖.  

The goal of changing the weights is to modify the computed function to make the 

predictions more accurate in future calculations. Therefore, the weights are carefully 

adjusted using an algorithm called backpropagation. Once the neural networks are properly 

trained, they are capable of making accurate predictions on unseen data over a finite set of 

inputs and outputs. This ability is referred to as model generalization.  Figure 3.2 shows a 

fully connected ANN.  

 
3.2 Training artificial neural networks using backpropagation algorithm   

The objective of the backpropagation algorithm is to adjust the weights in the ANN 

model until the desired output is obtained by minimizing the output error. Goodfellow. 

(2016) described the backpropagation as an algorithm consisting of two main steps: the 

forward phase and backward phase. During the forward phase, the training data are fed into 

the ANN to calculate the response of each neuron and the output response with the current 

set of weights. Priddy et al. (2005) showed the derivation of the backpropagation algorithm 

starting with the comparison of the value predicted by the ANN and the real value through 

a loss function. To reduce the error of the ANN, it is necessary to minimize the loss function 
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J with respect to the weights in all the neurons of the network and force it to zero. The 

gradient descent error minimization is defined by  

 
∂J
𝜕𝑤%3ℓ

≡ 0 3.11 

Now, the chain rule can be used to break down the partial derivate into two parts. 

The first term corresponds to the change in the loss function with respect to the stimuli and 

the second term represent the change in the stimuli with respect to the weights.  

 

 
∂J
𝜕𝑤%3ℓ

=
∂J
∂𝜐%3ℓ

∂𝜐%3ℓ

𝜕𝑤%3ℓ
 3.12 

The second term of the partial derivate can be solved by substituting the stimuli 

given in equation 3.1. This results in the output of a neuron as shown in equation 3.13 

 

 
∂𝜐%3ℓ

𝜕𝑤%3ℓ
=

∂
𝜕𝑤%3ℓ

+(𝑤%3ℓ 𝑥%3ℓ:')
#%

%.,

+ 𝑏%3ℓ = 𝑥%3ℓ:' 

 

3.13 

Substituting equation 3.13 into equation 3.12, we obtain equation 3.14. By defining 

the change of the loss function with respect to the stimuli as a delta term, we obtain equation 

3.15. Substituting it back into equation 3.14 results in equation 3.16. 

 

 
∂J
𝜕𝑤%3ℓ

=
∂J
∂𝜐%3ℓ

𝑥%3ℓ:' 

 
3.14 

 
∆%3ℓ = −

∂J
∂𝜐%3ℓ

 

 
3.15 

 
∂J
𝜕𝑤%3ℓ

= −∆%3ℓ 𝑥%3ℓ:' 3.16 
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The derivative of the loss function with respect to the stimuli can be breakdown 

using the chain rule to a term that measures the change of the loss function with respect to 

the neuron output in any layer times the change of the neuron output with respect to its 

own stimuli. This gives 

 
∂J
∂𝜐%3ℓ

=
∂J
𝜕𝑥%3ℓ

𝜕𝑥%3ℓ

∂𝜐%3ℓ
 3.17 

The solution of the change of the neuron output with respect to its own stimuli can 

be solved by substituting equation 3.2 to obtain the derivative of the activation function 

evaluated at the total stimuli. 

 
𝜕𝑥%3ℓ

∂𝜐%3ℓ
=

𝜕
∂𝜐%3ℓ

	𝑓ℓ6𝜐%3ℓ 9 = 	𝑓Mℓ6𝜐%3ℓ 9 3.18 

Finally, we have the derivative of the output error with respect to any neuron’s 

output. Considering the mean square error between the predicted value with respect to the 

target value for a single layer,  

 

 
∂J
𝜕𝑥%3ℓ

=
∂
𝜕𝑥%3ℓ

L
1
𝑛+(

8

%.'

𝑥% − 𝑥)(M = −(𝑥% − 𝑥)		for	ℓ = L 3.19 

where L indicates the output layer. However, each neuron is connected to all neurons in 

the following layer. Therefore, a variation in weight affects the subsequent layers in the 

network. The variation in the loss function with respect to the internal neuron’s output is 

determined by the variation on its own stimuli. Then, it is necessary to sum over all the 

variations in the downstream network to determine the variation in the final outcome with 

respect to the output of a hidden neuron. This can be express as  

 ∂J
𝜕𝑥%3ℓ

= +
∂J

𝜕𝜐%3ℓ>'
𝜕𝜐%3ℓ>'

∂𝑥%3ℓ>'
			when	ℓ < L	(Hidden	layers)

#ℓ+%

=.'

	 3.20 
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The first term in the summation corresponds to the delta term defined in equation 

3.15. 

 
∂J

𝜕𝜐%3ℓ>'
= −∆%3ℓ>'	when	ℓ < L	(Hidden	layers) 3.21 

The second term in the summation can be solved by substituting the net stimuli as 

follows: 

 
𝜕𝜐%3ℓ>'

∂𝑥%3ℓ>'
=

𝜕
∂𝑥%3ℓ>'

¦+(𝑤%3ℓ>'𝑥%3ℓ )
#ℓ

%.,

+ 𝑏%3ℓ>'§ = 𝑤%3ℓ>'		when	ℓ < L	 3.22 

Now, substituting equations 3.21 and 3.22 into equation 3.20 results in 

 ∂J
𝜕𝑥%3ℓ

= − + ∆%=ℓ>'	𝑤%=ℓ>'			when	ℓ < L	
#ℓ+%

=.'

	 3.23 

The delta term defined in equation 3.15 can be defined for the hidden layers and 

the output layers as follows:  

 

 ∆%3B = 𝑓MB6𝜐%3B 9(𝑦% − 𝑦%) where	ℓ = L	(Output	layer) 
 

3.24 

 ∆%3ℓ = 𝑓Mℓ6𝜐%3ℓ 9+∆%=ℓ>'	𝑤%=ℓ>'			when	ℓ < L	
ℓ>'

=.'

	(Hidden	layer) 3.25 

From equation 3.25, we can see that we need to calculate the delta term for the 

output layer first, and then go backwards from the output layer to the input layer calculating 

the delta term for the hidden neurons. Since the loss function is directly related to the delta 

term of the output layer, the error is propagated backwards to the neural network. 

The minimization of the output error with respect to the weights of the network can 

be express as 

 ∆𝑤%3=ℓ = −𝜇	
∂E=
𝜕𝑤%3=ℓ

 3.26 
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Finally, combining equation 3.26 with 3.16 gives the formula for weight update 

after each iteration 
 ∆𝑤%3=ℓ = −𝜇	𝑥%3ℓ 𝑥%3ℓ:' 3.27 

where the subscripts 𝑖, 𝑗, ℓ, and	𝑘	 indicate neuron, connecting neuron, layer number, and 

iteration step respectively. The term 𝜇 corresponds to the step size in the minimization 

problem. Equation 3.27 is the working equation used to obtain the set of weights and bias 

that allow ANNs to model complex nonlinear functions. The backpropagation algorithm is 

the most common technique to train ANNs and more detailed derivations can be found in 

several textbooks (e.g. Rumelhart 1986, Pao 1989, Haykin 1994). 

The backpropagation training procedure can be summarized as follows.  

1. Uniformly random Initialize weights 𝑤%3ℓ  for the entire neural network  

2. Propagate training data forward through the network and generate an output 

response 

3. Calculate the error between the predicted value and the target value by using 

equation 3.9 

4. Propagate the error backwards to the neural network and calculate the gradients 

of each neuron by the weight-update formula with equation 3.27 

5. If the output error is high or the maximin number of iterations has not been 

reached, go to step 2. 

The weights of the neural network are updated after each sample in the training data 

is processed. However, if the adjustment of the weights is performed after all the samples 

have been processed, the method is called batch training. Both methods are performed with 

a large number of training samples until the error converges to a minimum. There are 

several programs available to train artificial neural networks using the backpropagation 
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algorithm (e.g. Torch, Theano, TensorFlow, and Keras). In this thesis, Keras was used to 

train the artificial neural networks for the fugacity coefficient. 

 
3.3 Data preparation.  

The objective of ANN training is to find a set of the parameters (e.g. weights, bias 

terms, and activation functions) that results in the best performance with data that have not 

been used during the training stage. This process is called “model generalization” and it 

means how well the model performed in new data within an acceptable limit of the input 

feature space. 

During neural network training, we can find two cases. Undertraining, that occurs 

when the model did not reach the a minimum and it performs poorly with testing data. 

Undertraining can occur because of the sensitivity of the model to limited data, model bias, 

irreducible error due to missing variables or the range of the variables of the training data. 

Overfitting is the opposite of underfitting. In this case, the neural network will memorize 

the training data set, but it will perform poorly in testing data. The goal is to find the 

configuration with the best performance with independent data. To avoid underfitting or 

overfitting, datasets have to be prepared before neural network training. This section 

describes the two main steps for data preparation for neural network training.  

 

3.3.1 Data splitting 

To find the optimal neural network configuration, the general approach is to 

randomly sample the population to generate three different and independent data sets: 

training data set, validation data set, and testing data set (Pedregosa 2011).  

The training data set is used with the backpropagation training algorithm to adjust 

the weights that conform to the neural network architecture to produce the desired output. 
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In practice, the training data set consists of pairs of an input vector that contains the 

variables to reproduce and output response. Successively, a validation data set is used to 

make predictions using the fitted model to tune the model hyperparameters (e.g. the number 

of neurons in each layer, the number of layers in the model) until the desired accuracy is 

achieved. Finally, the testing data set is used to provide an unbiased evaluation of the fully 

trained model performance. The neural network is biased towards the validation and testing 

data sets. Therefore, the test set is used to estimate the generalization error of the neural 

network. 

There are several ratios of how to partition the data set into training, validation, and 

test data set reported in the literature.  However, the conventional approach follows the 

pareto principle that states that for many events, roughly 80% of effects come from 20% 

of the causes. Mathematically, the pareto principle is roughly followed by a power-law 

distribution for a particular set of parameters. Therefore, the complete data set can be split 

in 80% for training, 10% for validation, and the remaining 10% of the data set for testing.  

 
3.3.2 Data normalization 

Once the dataset has been split into different sets, normalization of the data is 

required before starting the training process. The goal of normalization is to change the 

values of the variables into a common scale without distorting the range of the values. Data 

normalization is necessary during the development of ANNs to minimize the bias of the 

neural network towards one feature or another. Gulli et al (2017) explain that data 

normalization can speed up the training process, and it is especially useful for modeling 

applications when the range of the variables are generally on different scales. There are 

several techniques of data normalization reported in the literature (e.g. Pedregosa 2011, 

Priddy 2015, Gulli 2017), but the most widely used is the Min – Max normalization. This 
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is performed by rescaling all the variables to the same range of 0 to 1 or -1 to 1. The 

rescaling is calculating using linear interpolation as given by equation 3.28 

 

 𝑥% = �
𝑥% − 𝑥7%8
𝑥7?@ − 𝑥7%8

� 3.28 

where 𝑥% is the scaled feature, 𝑥% represents the original value of the variable, and 𝑥7%8 and 

𝑥7?@ correspond to the upper and lowest limits of the variable in the data set before 

splitting into 3 sub datasets. When Min – Max normalization is applied, each feature will 

lie in a new range of values, but the underlying data distribution will remain intact. The 

main advantage of using Min – Max normalization is that the dataset will keep its 

distribution, and no bias will be added to the neural network. Finally, for applications that 

require data in ranges outside of the neuron input, the data must be rescaled to its original 

data range as shown in equation 3.29.  

 
 𝑥% = 𝑥% 	(𝑥7?@ − 𝑥7%8) +	𝑥7%8 3.29 

A summary of the training and testing neural networks is the following  

1. Randomly sample the dataset into 3 categories: training, validation and testing.   

2. Choose a neural network model and define its architecture (Number of neurons, 

layers and activation function)  

3. Normalize the datasets using min-max normalization using equation 3.28  

4. Train the neural network using the backpropagation algorithm described in section 

3.2 or with the use of available software to train neural networks (e.g. Keras, 

Tensorflow, Pythorch)  

5. Evaluate the neural network using the validation dataset and tune hyperparameters 

if necessary  
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6. Repeat steps 2 to 5 with different neural networks architectures until the desired 

accuracy is achieved.  

7. Select the neural network model with the lowest validation error 

8. Make predictions using the chosen neural network models on the testing data set  

9. Rescale the predictions of the neural network to its original scale using equation 

3.29  

10. Evaluate the performance of the ANNs using mean square error and mean absolute 

error from equations 3.9 and 3.10, respectively.  
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Figure 3.1 Basic architecture of a neuron 

 

 

Figure 3.2 Fully connected feedforward neural network structure  
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Figure 3.3 Commonly used activation functions used in ANNs.  

Top: Sigmoid.   Bottom: Identity. 
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Figure 3.4 Commonly used activation functions used in ANNs.  

Top: Sign.   Bottom: Rectified Linear Unit (ReLU). 
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Figure 3.5 Commonly used activation functions used in ANNs.  

Top: Hard Tanh.   Bottom: Tanh 
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CHAPTER 4  

METHODOLOGY, FORMULATION AND ALGORITHM 

Efficient phase equilibrium calculations are important for practical compositional 

reservoir simulation studies.  A number of methods have been proposed and tested for 

speeding up flash calculations, as discussed in Chapter 2.  In this thesis, we test use of 

artificial neural networks (ANNs) to replace the most fundamental, but time-consuming 

function in EOS flash calculations, namely the fugacity coefficient.  This chapter is divided 

into two sections. The first part describes the methodology to generate ANNs for the 

fugacity coefficient. The second portion describes the formulation and implementation of 

the ANN flash. 

4.1 ARTIFICIAL NEURAL NETWORKS FOR THE FUGACITY COEFFICIENT 

In this section, we present the methodology to generate ANN models to represent 

the fugacity coefficient during the minimization of the Gibbs free energy with successive 

substitution. The first step is to determine the range of application of the ANN and create 

a database for a range of pressure and an evenly distributed composition space. Since 

temperature of the reservoirs is keep constant, the only variables in the ANN are pressure 

and composition of the fluid system of interest. 

 

The methodology to generate the dataset for the ANN is the following:  

1. With the critical properties of the fluid and acentric factor calculate 𝑏, 𝜅 and the 

temperature-independent part of 𝑎 using equations 2.43 and 2.45  

2. At reservoir temperature, calculate the values for  𝑎 and 𝛼 with equations 2.42 and 

2.44 

3. Calculate A and B for the fluid mixture using equations 2.38 and 2.39 
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4. Calculate the parameters 𝜀, 𝛽, and	𝛾 using equations 2.53, 2.54 and 2.55 

5. Solve the cubic equation of state to obtain the compressibility factor with equation 

2.52 

6. Calculate the fugacity coefficient using equation 2.48. When the cubic EOS has 

multiple roots of the compressibility factors, the correct root corresponds to the root 

with the lowest Gibbs free Energy (Evelein et al. 1976) 

7. Store the fugacity coefficient value of each component and the corresponding 

pressure and concentration conditions.   

8. Repeat steps 1 through 7 for all pressures and composition in the application range 

 

Once a database is generated, the second step consists of determining the 

architecture of the ANNs (e.g. activation function, number of hidden layers, number of 

neurons per hidden layer). In this thesis, the architecture for all the ANN models was fixed 

as described in Table 4.1. The fully connected feed forward neural network for the fugacity 

coefficient is shown in Figure 4.1.  

Depending on the number of components in the mixture, an ANN model for each 

component in the mixture as a function of pressure and composition has to be calculated 

using the methodology described in section 3.3.2. Finally, the performance of each neural 

network is evaluated by calculating the global percentage error, mean square error and the 

correlation coefficient for each model.  The ones with the lowest error are selected.  

4.2 ARTIFICIAL NEURAL NETWORK FLASH CALCULATION 

This section describes the formulation of the proposed algorithm using the ANNs 

with the successive substitution to solve fugacity equations. The first portion of the section 



 40 

describes the formulation of the fugacity coefficient using ANNs.  The second part 

describes the ANN flash algorithm.  

4.2.1 Formulation 

The Peng-Robinson Equation of State (Peng and Robinson, 1978) with the van der 

Waals mixing rules is used for the formulation of the closed-form solution of the fugacity 

coefficient.  However, any equation of state can be used depending on the type of 

thermodynamic modeling required. The Peng-Robinson equation of state is  

 P =
𝑅𝑇

(𝑉 − 𝑏) −
𝑎(𝑇)

[𝑉6𝑉 + 𝑏9 + 𝑏6𝑉 − 𝑏9]
 

 
4.1 

where 
 𝑎(𝑇) = 0.45724𝑅(𝑇&(𝛼(𝑇)/𝑃& 4.2 
   

 𝑏 =
0.07780𝑅𝑇&

𝑃E
 4.3 

   
 𝛼(𝑇) = 1 + 𝜅(1 − �𝑇/𝑇&) 4.4 
   
 𝜅 = 0.37464 + 1.54226𝜔 − 0.26992𝜔(	for	𝜔 < 0.49 4.5 
   

 𝜅 = 0.37464 + 𝜔61.48503 + 𝜔(−0.16442 + 0.01667𝜔)9	for	𝜔
> 0.49 

4.6 

The van der Waals rules are as follows:  
 

A =++𝑥%𝑥3𝑎%3

#&

3.'

#&

%.'

 

 

4.7 
 

 
B =+𝑥%𝑏%

#&

%.'

 

 

4.8 

where A and B represent the attraction and co-volume parameters, respectively. The 

combining rules for 𝑎%3 are defined as  
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 𝑎%3 = �𝑎%𝑎3(1 − 𝑘%3) 4.9 
 

The EOS can be expressed as a cubic equation with parameters	𝜀, 𝛽, and	𝛾 for the 

Peng – Robinson EOS as: 

 𝑍N + 𝜀𝑍( + 𝛽𝑍 + 𝛾 4.10 
 

 𝜀 = −1 + 𝐵 4.11 
   
 𝛽 = 𝐴 − 3𝐵( − 2𝐵 4.12 
   
 𝛾 = −𝐴𝐵 + 𝐵( +	𝐵N 4.13 
   

where 𝑍 = 𝑃𝑉/𝑅𝑇 is the compressibility factor. 

The fugacity coefficient of component i in the mixture using the Peng-Robinson 

EOS is defined as  

 

lnφ%36𝑃, 𝑇, 𝑥9 = (𝑍 − 1)
𝐵%
𝐵 − ln(𝑍 − 𝐵)

−
𝐴

(𝛿' − 𝛿()𝐵
3
2∑ 𝑥3𝐴%3#&

3.'

𝐴7
−
𝐵%
𝐵4 𝑙𝑛 �

𝑍 + 𝛿'𝐵
𝑍 + 𝛿(𝐵

� ; 

 
 

4.14 

where 𝛿' = 1 + 0. 2,.G and 𝛿( = 1 − 0. 2,.G. As discussed in chapter 2, the fugacity 

coefficient is used repeatedly during phase equilibrium calculations. Therefore, the key to 

obtaining an efficient algorithm for phase equilibrium calculation is to reduce the 

operations required for the fugacity coefficient calculation. A simple approximation for the 

fugacity coefficient has been developed by using ANNs in this thesis. The approximation 

can be express as  

 

 𝜐 = [𝑃5, 𝑥% 	]	𝑓𝑜𝑟	𝑛 = 1,… ,𝑁𝑐	 4.15 
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 𝜎 = +𝜐8

#C

8.'

𝑤8 	+ 𝑏(		 4.16 

 𝑔% = 𝑚𝑎𝑥[𝜎	,0]% 			𝑓𝑜𝑟	𝑖 = 1,… ,𝑁𝑛		 4.17 
 

   

 𝜏 = +𝑔8

#8

8.'

𝑤8 	+ 𝑏(	 4.18 

   
 ℎ% = 𝑚𝑎𝑥[𝜏	,0]% 			𝑓𝑜𝑟	𝑖 = 1,… ,𝑁𝑛			 4.19 
   

 𝑙𝑛𝜑%36𝑃, 𝑥9 = °+ℎ8

#8

8.'

+ 𝑏N±
%3

		𝑓𝑜𝑟		𝑖 = 1, 𝑁𝑐	𝑎𝑛𝑑	𝑗 = 1,… ,𝑁𝑝	 4.20 

where 𝜐 corresponds to the vector composed of normalized pressure 𝑃, and 𝑥% 	is the mole 

fraction of component i. The values of 𝑤 and 𝑏 correspond to the weights and bias that 

conform the neural network, and 𝑁𝑣 and 𝑁𝑛 represent the number of inputs of the neural 

network and the number of neurons in the hidden layer, respectively.  

In this approach, the fugacity coefficient is calculated directly by the ANN models 

for a given pressure and feed composition. The advantages of using ANNs for the fugacity 

coefficient is that there is no need to solve the EOS during the iterative flash calculation. 

The computationally expensive calculations (e.g. logarithms, divisions, and root square) 

involved in the fugacity coefficient calculation are replaced by computationally less 

expensive calculations (e.g. additions and multiplications) used in the ANNs. Therefore, 

the fugacity coefficient approximation using ANNs can decrease the computation time of 

the fugacity coefficient calculation. A more detailed procedure to generate ANN models 

for the fugacity coefficient is given in case 1. 
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4.2.2 Algorithm 

The application of ANNs to flash calculation (ANN flash) is a combination of the 

conventional flash calculation with the use of ANNs for efficient calculation of the fugacity 

coefficient without using an EOS. For a flash calculation at a given pressure and 

temperature, the solution of the minimum Gibbs free energy is found in the composition 

space. The first-order necessary conditions for the minimization of the Gibbs free energy 

are the solution of the fugacity equations as 

 
 𝑙𝑛𝑓%3 − 𝑙𝑛𝑓%3 = 0,where	i = 1,… , Nc	and	j = 1,… , Np	 

 
4.21 

where Np represents the reference phase. The use of successive substitutions is used to find 

the phase equilibrium. As mention in section 2, the independent variable in successive 

substitutions is the constant equilibrium K-values. 

 
 𝐾%3 =

𝑥%3
𝑥%#4

	where	i = 1,… , Nc	and	j = 1,… , (Np − 1) 4.22 

Therefore, successive substitution solves for equation 4.21 subjected to material 

balance constraints define in equations 4.24, 4.25 and 4.26.   

 
 ln𝐾%3=>' =		 ln𝜑%#4

= −	ln𝜑%3
= , where	i = 1,… , Nc	and	j = 1,… , (Np − 1)	 4.23 
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+𝑧%
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%.'
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4.25 

 
+𝑥%3

#&

%.'

= 1.0	and	𝑥%3 	≥ 0	for	i = 1,…	, Nc	and	j = 1,…	, Np. 
4.26 
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In equation 4.23, the superscripts indicate the iteration step and the value of the 

fugacity coefficient. In this algorithm, the fugacity coefficient is calculated using the 

equation 4.20 at each iteration step for a given pressure and feed composition. Since the 

fugacity coefficient is a function of component 𝑖 in phase 𝑗 the Rachford – Rice equation 

is used to find the phase mole fractions as  

 
 

𝑓(𝛽) =+
(1 − 𝐾%)𝑧%

1 − (1 − 𝐾%)𝛽

#&

'

= 0 
4.27 

Finally, the phase compositions are calculated using the material balance defined 

as 

 𝑥% =
𝑧%

𝑓(𝛽)(𝐾% − 1) + 1
	𝑤ℎ𝑒𝑟𝑒		𝑖 = 1, . . , 𝑁𝑐 

 
4.28 

 𝑦% =
𝑧%𝐾%

𝑓(𝛽)(𝐾% − 1) + 1
= 𝑧%𝐾% 	𝑤ℎ𝑒𝑟𝑒		𝑖 = 1, . . , 𝑁𝑐 

 
4.29 

The ANN flash calculation algorithm can be summarized as: 

1. Specify T, P and feed mole fraction of the mixture of interest. 

2. Calculate the initial guess of the equilibrium constant using Wilson’s 

correlation using equation 2.34. 

3. Solve Equation 4.27 for the vapor fraction. 

4. Calculate the liquid and vapor compositions using equation 4.28 and 4.29. 

5. Calculate the fugacity coefficients using the ANN model for lnφ%B and lnφ%- 

using equation 4.20. 

6. Check for convergence based on the residuals of the fugacity coefficient ANN 

models ‖ln𝑥%φ%B − ln𝑦φ%C‖ < 𝜀	(𝑒. 𝑔, 𝜀 = 10:D). If convergence is achieved, 

stop. Otherwise, go to step 7. 
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7. Update the equilibrium constants 𝑙𝑛𝐾%=>' = (lnφ%B − lnφ%-)=.  

8. Go to step 3. 

Note again that the above algorithm does not use an EOS during the iteration. It 

does not require the calculation of the van der walls mixing rules, the solution of the cubic 

equation of state and the evaluation of different roots when the EOS has more than one 

root.  All those calculations were performed during the database generation for the training 

process of the ANN. Appendix C shows the code implementation of ANNs with successive 

substitutions.  

Table 4.1. ANN architecture for fugacity coefficients 
Setting Value 

Activation function in Hidden layers ReLU, equation 3.7 
Number of hidden layers 2 
Number of neurons per hidden layer 20 
Input Mixture composition and pressure  
Outputs Fugacity coefficient 

 

 
Figure 4.1. Fully connected neural network for the fugacity coefficient 
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CHAPTER 5  

CASE STUDIES 

This chapter presents four different hydrocarbon-rich mixtures for ANN-based 

standalone flash calculations. The mixtures represent different scenarios commonly found 

in petroleum engineering applications. We compare the ANN flash and the conventional 

EOS flash in terms of the accuracy of the fugacity coefficient, calculate the fluid properties, 

and analyze the convergence behavior.   

5.1 STAND-ALONE FLASH CALCULATIONS 

EOS flash often becomes more challenging and time-consuming with increasing 

number of components and increasing level of miscibility.  The fugacity coefficient 

becomes more non-linear with increasing non-zero BIPs. In this chapter, therefore, ANN 

flash is compared with the conventional EOS flash for four fluid models with different 

component numbers, miscibility levels, and BIPs. 

 
5.1.1 Case 1 

The reservoir oil used for this study case was made after the BSB West Texas oil 

at 105°F (Khan et al. 1992). First, CO2 was removed from the original model of Khan et 

al. (1992). Then, all BIPs were set to zero as described in Table 5.1.  Okuno (2017) 

demonstrated that the fugacity coefficient with zero BIPs is less non-linear in composition 

space than when non-zero BIPs are involved.  This is mainly because the fugacity 

coefficient with zero BIPs is expressed by only two reduced parameters as follows: 

 
 

𝜃' =+𝑧%𝐵% = 𝐵7

#&

%.'

 
5.1 
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𝜃( =+𝑧%�𝐴% = �𝐴7

#&

%.'

 
5.2 

The objective of this case study was to test the idea of using ANNs for 

approximation of the fugacity coefficient during flash calculations.  Hence, this case is 

designed to be relatively straightforward for phase equilibrium algorithms. The 

thermodynamic conditions are also far from a critical point. The phase diagram for the 

adapted BSB west Texas oil is shown in Figure 5.1.  

The specific procedure used for this study case is as follows:  

1. Determine the application range of the ANNs. The phase diagram indicates that the 

two-phase region is from 0 to 27.89 bar.  The number of components in the mixture 

is six.  

2. Create a database with the selected range of application. For each component in the 

mixture, calculate the fugacity coefficient in the composition space from 0 to 1 and 

the pressure range. The pressure intervals in this case were set to be 0.5 bar and the 

concentration intervals 0.01. However, the accuracy of the ANN model can be 

improved with larger datasets. Thus, the resolution in pressure and concentration 

act as parameters to increase the accuracy of the neural network if needed. The 

dataset is stored in an array of pressure, 

𝑥',	𝑥(, 𝑥N, 𝑥O, 𝑥G, 𝑥D,	𝑙𝑛𝜑', 𝑙𝑛𝜑(, 𝑙𝑛𝜑N, 𝑙𝑛𝜑O,𝑙𝑛𝜑G, and	𝑙𝑛𝜑D. Here, the ANNs will 

take pressure and composition as inputs, and the fugacity coefficient will be the 

output.  

3. Determine the maximum and minimum values for the pressure interval and the 

fugacity coefficients of each component.  

4. Once the database has been generated, randomly split it into 3 different datasets: 

The training dataset is composed of 80% of the rows randomly selected from the 
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database. For the remaining 20% of the database, randomly select 50% of the rows 

to form the validation dataset and the remaining 50% correspond to the testing 

dataset. 

5. Normalize the pressure and fugacity coefficient for each dataset using min-max 

normalization with equation 3.28. Since the concentration is a value between 0 and 

1, no further normalization is needed.  

6. Specify the ANN architecture. In this case, the ANN consists of 20 neurons and 2 

hidden layers.  The activation function is ReLU.  

7. Train the ANN model for each component. In this work, Keras was used to perform 

the backpropagation algorithm. The Keras setup used in this research is shown in 

Table 5.2. 

8. Make predictions using the trained ANNs with the testing dataset.  

9. Re-scale the output of the neural network (𝑙𝑛𝜑%) to its original range using equation 

3.29.  

10. Calculate the mean square error, average percentage error, and correlation 

coefficient R2 of the predicted value and the original value.   

Appendix A shows the code used to generate the database.  Appendix B describes 

the code in Python that uses Keras to train the ANN models. The generalization errors for 

the different ANN models used in this case study are shown in Table 5.3. The mean average 

error of the fugacity coefficient neural network prediction ranges from 0.30% to 0.95%. It 

was observed that the ANNs models predict fugacity coefficients with low deviations from 

the original values calculated with EOS.  The accuracy comparison between the EOS and 

the ANNs is shown in Figures 5.2, 5.3, and 5.4. The accuracy comparison between the 

ANN and EOS fugacity coefficients indicate that we can achieve a high accuracy in 

fugacity coefficients along different mixture concentrations and different pressures in the 
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two-phase region. The ANN fugacity coefficient was implemented in flash calculation with 

the successive substitution method. The phase compositions are compared between the 

ANN flash and EOS in Figures 5.5 to 5.10. The accuracy in the composition calculations 

will impact directly the phase property calculations. It can be observed that the deviation 

in phase compositions between the EOS and the ANN flash are negligible.  The calculation 

comparisons of fluid properties, such as vapor and liquid fraction, saturation and densities, 

are shown in Figures 5.11 to 5.13. The ANN flash calculations show essentially the same 

results as the EOS for this case (Table 5.3).  The time per iteration comparison between 

EOS and ANN flash is shown in table 5.4. Here, we can observe that the time per iteration 

in the ANN flash is reduced by 90.13%. The time reduction was calculated using equation 

5.3. 

 
 

Time	reduction = %
EOS	flash	time − ANN	flash	time

EOS	flash	time ( × 100% 
5.3 

The fugacity coefficient execution time using ANNs is reduced by 96.85% for six 

components with respect to conventional EOS fugacity coefficient execution time, as 

shown in Figures 5.14 and 5.15. Finally, the total flash calculation time (the product of the 

number of iterations and the time per iteration) between the EOS flash and ANN flash is 

reduced by 85.96% on average as shown in Figure 5.16. For this case study we can 

conclude that the fugacity coefficients from ANNs can be used with successive 

substitutions with negligible variations on fluid property calculations at a lower 

computational cost. 
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5.1.2 Case 2 

For the second study case, the number of components is increased to 10. This is a 

gas condensate (Al-Meshary, 2014) characterized by using the perturbation of n-alkanes 

method developed by Kumar (2016) and Kumar and Okuno (2016). The gas condensate 

fluid is composed of 6 pure components and 4 pseudo components, as described in Table 

5.4. The reservoir temperature for this study case is 525 K, and the critical point is located 

at 425.30 K and 265.79 bars. This fluid model is closer to the critical point as compared 

with the first case, as shown in the phase diagram in Figure 5.17.  

The generalization error for the ANNs for the fugacity coefficient is shown in t 

Table 5.5. The average percentage error for the ANN fugacity models goes from 0.0097% 

for the pseudo component number four to 0.1483% for ethane. Figures 5.18 to 5.22 show 

the accuracy comparison between the fugacity coefficients from ANN models and the EOS. 

As in the previous study case, the fugacity coefficients from ANNs have a low percentage 

error as compared to EOS fugacity coefficient. The advantage of using different ANNs for 

each component in the hydrocarbon mixture is that the average percentage error is kept low 

and the single fugacity coefficient predictions are more accurate. Therefore, when the 

different ANNs models are used together during iterations, we can predict accurate phase 

compositions and fluid properties. 

The phase compositions using the conventional EOS and the ANN flash are 

compared in Figures 5.23 to 5.32. The results from the ANN flash overlap those calculated 

with the EOS flash. Fluid properties, such as vapor and liquid fraction, fluids’ saturations 

and fluid densities, using the ANN flash and the EOS flash are compared in Figures 5.33 

to 5.35, respectively.  A good agreement between the ANN and EOS flash results is 

observed.  
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The efficiency of the ANN flash was evaluated by comparing the execution time to 

compute the fugacity coefficient using the conventional EOS method and that using the 

ANN method. The execution time of the fugacity coefficient by the use of ANNs is reduced 

by on average 96.56% of the time required by the original EOS for the 10 components in 

the mixture as shown in Figures 5.36 and 5.37.  Table 5.7 presents the comparison of the 

time per iteration between the conventional method and the ANN flash. The ANN flash 

time per iteration is reduced by 81.58% with respect to the conventional method. Finally, 

the total flash time (the number of iterations multiplied by the time per iteration) of the 

ANN flash is reduced by 84.35% with respect to the EOS method as shown in Figure 5.39. 

The convergence behavior of the two methods is presented in Figure 5.40 for 220 bars 

where it is observed that the ANN flash follows similar convergence behavior as the EOS. 

For this case study, we can conclude that ANN flash can work independently of the number 

of components in the mixture with a higher miscibility degree while keeping high accuracy 

and faster calculations as compared with the conventional EOS flash  

 
5.1.3 Case 3 

The fluid model for this case study consists of 12 components with 2 non-

hydrocarbon components (CO2 and N2) and contains non-zero BIPs.  This fluid is a volatile 

oil (Al-Meshary, 2014) characterized by using the method, perturbation of n-alkanes, by 

Kumar and Okuno (2016). The critical point of this model is at 522.65 K and 324.22 bar.  

The reservoir temperature for this reservoir fluid model is 393.70 K, as shown in figure 

5.41.  The fluid model is described in table 5.8, and the BIPs are shown in Table 5.9. 

In this case study, 12 ANNs were generated to predict the fugacity coefficient of 

each component in the mixture. Table 5.10 shows that the generalization error of each 

model for prediction is lower than 1.09%. As explain by Okuno (2017) the use of non – 
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zero BIPs increase the non – linearity of the fugacity coefficient in composition space. 

However, ANNs are capable to predict accurate fugacity coefficients using non – zero BIPs 

as shown in Figures 5.42 to 5.47. The phase compositions from the two flash methods are 

compared in Figures 5.48 to 5.59.  The difference between the phase compositions with 

the two methods is insignificant for fluid property calculations (Fluid saturations, phase 

amount and fluid densities) as shown in Figures 5.60 to 5.62.  

The fugacity coefficient execution time using the ANN model is 96.94% of that 

using the original EOS for 12 components in the mixture as shown in Figures 5.63 to 5.64. 

The time per iteration in the ANN flash is reduced by 94.01% with respect to the EOS flash 

as shown in Table 5.11. The total number of iterations needed to reach convergence 

between the two methods shown in Figures 5.65. It can be observed that the ANN flash 

converges with fewer iterations as compared with the EOS flash. Figure 5.66 shows the 

total flash time comparison (Number of iterations multiplied by the time per iteration) 

comparison between the two methods. The total flash time is reduced by 94. 66% with the 

use of ANN for the fugacity coefficient as compared with the EOS flash. Finally, Figure 

5.67 presents the convergence behavior of the two methods where it is shown that the 

convergence behavior of the ANN flash is similar to the EOS flash.  

For this case study we can conclude that ANN flash calculation can deal with fluid 

models including non-zero BIPs and non-hydrocarbon components such as CO2 and N2 

resulting on accurate fluid properties calculations. The ANN architecture for all 

components was kept as the one used for the previous cases. That is, the universal 

approximation of the artificial neural networks can work even with complicated and non-

continuous functions, like the fugacity coefficient, at a lower computational cost.  
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5.1.4 Case 4 

EOS flash becomes more challenging near the critical region, where the physical 

properties of the liquid and vapor phase are sensitive to the thermodynamic conditions. The 

fluid model for this case is a near critical oil (Al-Meshary, 2014) characterized by using 

the methodology of perturbation from n-alkanes (Kumar and Okuno 2016). The model is 

composed of ten components: 6 pure components and 4 pseudo-components.  The mixture 

shows a critical point at 477.03 bar at 276.49 K, and the reservoir temperature is 462 K. 

The fluid model is described in Table 5.12. Figure 5.68 shows the phase diagram of the 

mixture.  

For this case, we generate 10 ANNs to model the fugacity coefficient of each 

component for a range of pressure from 150 bar to the bubble point pressure at 275.1 bar 

and with a uniformly spaced concentration distribution. The generalization error of each 

neural network model is shown in Table 5.13.  The accuracy comparison is shown in 

Figures 5.69 to 5.73. The ANN fugacity coefficient can match on average 4 significant 

figures with the EOS fugacity coefficients. 

The phase compositions of this case study are shown in Figures 5.74 to 5.83. The 

ANN flash model performs well, except for pressures close to the critical point. The total 

number of iterations needed to converge in this near-critical zone is more than 2000 with 

the conventional EOS flash. Figure 5.84 shows the comparison between the total number 

of iterations with the conventional EOS and that with the ANN flash calculations. Figure 

5.85 shows the convergence behavior comparison between the two methods at 272 bar at 

which the ANN flash converges to an incorrect solution.  Figure 5.86 shows the comparison 

at 180 bars, at which both methods converge to the correct solution. The ANN flash 

converges to an incorrect solution at pressures above 267 bars. Figures 5.87 to 5.89 show 
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the impact of the ANN flash miscalculation in reservoir fluid properties: vapor and liquid 

fraction, fluid saturation, and densities, respectively.  

This miscalculations near the critical region is generated by the effect of the ANN 

fugacity coefficients on the RR function. Near the critical region, the gradient of the RR 

functions tends to 0. Therefore, the vapor fraction calculation become very sensitive to the 

accuracy of the K values calculated from ANN fugacity coefficients. This small variations 

on the K values affect the solution of the RR function leading to an incorrect vapor fractions 

calculation approaching the critical point.  

Therefore, a switching criterion based on the gradient of the RR functions was 

implemented. The switching criterion will indicate when the ANN flash will stop to 

calculate the fugacity coefficients using the ANNs models and use the EOS based fugacity 

coefficients instead. For this case study, the switching criterion was set for the gradient of 

the RR function to be 0.05.  When the gradient of the RR function is smaller than 0.05, the 

ANN flash is switched to the EOS for the fugacity coefficients. Results of the 

implementation of this switching criterion are shown in Figures 5.97 to 5.99. It can be 

observed that with the implementation of the switching criterion, the ANN flash converges 

to the correct solution near the critical point, and the fluid properties are calculated 

correctly.  Note that this switching, if it occurs, does not start over the flash calculation 

using the EOS; hence, the calculations using ANNs prior to the switching are not wasted.  

The fugacity coefficient execution time comparison between the ANN flash and the 

EOS method is shown in Figures 5.90 and 5.91. The fugacity coefficient execution time 

for 10 components using ANNs is reduced by 96.63% as compared with the EOS method.  

The time per iteration comparison between the two methods is presented in Table 

5.14. The ANN method shows a time reduction of 93.806% per iteration with respect to 

the EOS method. Finally, the total ANN flash calculation time (Number of iterations times 
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time per iteration) is reduced by 94.34% on average with fewer iterations to reach solution 

as compared with the EOS flash shown in Figure 5.92.  

5.2 DISCUSSION 

The implementation of ANNs to calculate the fugacity coefficient in different fluid 

models demonstrates that the method performs successfully for different fluid types: fluid 

models with a large number of components, non – zero BIPs, and relatively complex 

compositions with CO2. The advantage of using ANNs is that they can calculate the 

fugacity coefficient with a low generalization error using simple neural network 

architectures that does not require a large number of neurons in the hidden layers. As a 

result, the training of the ANN models becomes simple, and also the risk of overfitting is 

avoided. ANNs were combined with the successive substitution algorithm to solve for the 

phase compositions and amounts in flash calculations.   

The first case study indicates that the ANN fluid model implemented with successive 

substitutions can predict phase compositions and phase amounts with the same accuracy as 

the conventional EOS while reducing the total flash calculation time by 85.96%. This 

reduction in computational time comes from the ANN-based fugacity coefficients that 

require a smaller number of operations than the EOS-based ones. The ANN-based flash is 

EOS-free during the iteration; it solves the EOS for compressibility factors only at the final 

convergence when phase saturations are computed.  This means that the complex 

operations involved in the fugacity coefficient calculation (e.g. logarithms, roots, exp) are 

replaced by computationally efficient calculations involved in the ANN-based feedforward 

calculations (additions and multiplications). ANN flash becomes more advantageous over 

EOS flash for a larger number of components because the difference between the two 

approaches becomes more significant with increasing number of components in the 
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mixture.  It is expected that the advantage of ANN flash over EOS flash increases with 

increasing number of grid- blocks in reservoir simulations because the number of flash 

calculations increases.  Note that the accuracy of fluid phase behavior representation is not 

reduced by the ANN flash.  When the ANN flash may converge to an inaccurate solution 

in a near-critical region, EOS flash can be activated on the fly during the ANN flash 

calculation when a small gradient of the RR function is detected.  

In the third case study, we analyzed the capability of the ANN flash with mixtures with 

more components and the use of non – zero BIPs. Results from this case study indicated 

that the application of the ANN-based flash was not affected by non – zero BIPs. The use 

of ANNs could handle the non-linearity introduced by non-zero BIPs with no modification 

of the ANN architecture (e.g. number of hidden neuros and number of hidden layers).  The 

same accuracy was kept as the conventional EOS flash with an improvement of 94. 66% 

in computational time. 

Finally, the ANN flash was tested for a volatile oil near the critical point. Fluids near 

the critical point are challenging and require the conventional EOS flash to take more 

iterations to converge to the solution.  Also, convergence issues of flash calculations often 

arise in near-critical regions as presented in the literature. The ANN flash calculates the 

phase compositions and phase amounts accurately for most of the pressure ranges in the 

case studies. However, when the pressure is very close to a critical point, the ANN flash 

may deviate from the correct solution. Near a critical point, the gradient of the Rachford – 

Rice (RR) function tends to zero around the solution. The ANN-based fugacity coefficient 

is an approximation of an equation of state.  Small variations in the K values using the 

ANN fugacity coefficient have a greater impact on the RR function near the critical point, 

resulting in an incorrect RR solution. Figure 5.93 shows the vapor fraction solutions from 
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the EOS and ANN flash when the gradient of the RR tends to zero in the critical region for 

case 4 at 272 bars.  

The incorrect ANN flash calculations arose when the gradient of the RR function was 

smaller than 0.05179 for case 4. As shown in Figures 5.94 and 5.95, the gradient tends to 

zero when it gets close to a critical point as is the case with the original EOS used. In 

practical applications, the gradient of the RR function is calculated as part of the flash 

calculation and will indicate whether to use EOS or ANN flash.  That is, it is possible to 

set a switching criterion as a minimum gradient of the RR function. Since the gradient of 

the RR is part of the solution method, no additional calculations are needed. Finally, figure 

5.96 shows the deviation of the RR solution near the critical region at a pressure of 272 bar 

(Close to the critical point) for case 4. Phase diagrams for the four study cases were 

generated with PVTsim and fluid properties, phase concentrations, and fugacity 

coefficients using the code developed in this work were verified with PVTsim.   

 

 
Figure 5.1. Phase diagram of adapted BSB west Texas oil fluid model. 
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Table 5.1. Fluid properties for case 1.  BIPs are all zero. 
Component Overall 

composition 
Molecular 
Weight, g/mol 

Pc,  
Bar 

Tc, 
 K 

Acentric Factor 

C1 0.0917 16.04 46.0017 190.6000 0.0080 
C2-3 0.1559 37.2 44.9923 344.2056 0.1310 
C4-6 0.1727 69.5 33.9959 463.2222 0.2400 
C7-15 0.3360 140.96 21.7487 605.7500 0.6180 
C16-27 0.1667 280.99 16.5404 751.0167 0.9570 
C28+ 0.0769 519.62 16.4177 942.4778 1.2680 

 
 
Table 5.2. Keras setup to train neural networks. 
 

Optimizer Adam 

Loss function Mean square error 

Epochs 20 

Batch size 100 
 
 
Table 5.3. Generalization error of fugacity coefficient from ANNs.  

Component Mean square error 
(MSE) 

Average percentage 
error (MAE) 

R2 

C1 6.70850106051E-06 0.308447055769539 0.999997519525688 
C2-3 3.848290256829E-06 0.320329972589314 0.999992396154579 
C4-6 3.430544575051E-06 0.634021871766337 0.999996884179634 
C7-15 0. 81966110180E-06 0.308447055769539 0.999999401780076 
C16-27 2.615210785704E-5 0.436224573336516 0.999999593942976 
C28+ 0.000210430013068 0.955529562436639 0.999999064147138 

 
Table 5.4. Time per iteration comparison for study case 1. 

Time per iteration, msec EOS Flash ANN Flash 
11.51606089 1.135802257 
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Figure 5.2 Accuracy comparison between fugacity coefficient calculated with EOS and 

ANN. 
Top: Component C1.  Bottom: Pseudo-Component C2-3. 
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Figure 5.3 Accuracy comparison between fugacity coefficient calculated with EOS and 

ANN. 
Top: Pseudo-Component C4-6.  Bottom: Pseudo-Component C7-15. 
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Figure 5.4 Accuracy comparison between fugacity coefficient calculated with EOS and 

ANN. 
Top: Pseudo-Component C16-28.  Bottom: Pseudo-Component C28+. 
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Figure 5.5 Phase mole fraction calculations comparison between EOS and ANN. 

Top: C1 liquid concentration.  Bottom: C1 vapor concentration. 
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Figure 5.6 Phase mole fraction calculations comparison between EOS and ANN 

Top: Liquid phase for C2-3.  Bottom: Vapor phase for C2-3 
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Figure 5.7 Phase mole fraction calculations comparison between EOS and ANN. 

Top: Liquid phase for C4-6.  Bottom: Vapor phase for C4-6. 
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Figure 5.8 Phase mole fraction calculations comparison between EOS and ANN. 

Top: Liquid phase for C7-15.  Bottom: Vapor phase for C7-15. 
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Figure 5.9 Phase mole fraction calculations comparison between EOS and ANN. 

Top: Liquid phase for C16-27.  Bottom: Vapor phase for C16-27. 
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Figure 5.10 Phase mole fraction calculations comparison between EOS and ANN. 

Top: Liquid phase for C28+.  Bottom: Vapor phase for C28+. 
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Figure 5.11 Phase mole fraction calculation comparison between EOS and ANN. 

Top: Liquid mole fraction.  Bottom: Vapor mole fraction. 
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Figure 5.12 Fluid saturation comparison between EOS and ANN. 

Top: Vapor saturation.  Bottom: Liquid Saturation. 
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Figure 5.13 Fluid density calculation comparison between EOS and ANN. 
Top: Liquid density.  Bottom: Vapor density. 
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Figure 5.14 Fugacity coefficient execution time. 

Top: EOS.  Bottom: ANNs. 
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Figure 5.15 Fugacity coefficient execution time comparison. 

 

 
 
Figure 5.16 Flash calculation execution time comparison. 
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Figure 5.17. Gas Condensate phase envelope. 
 
Table 5.5 Fluid properties for case 2. 
 
Component Overall 

composition 
Molecular 
Weight, g/mol 

Pc,  
Bar  

Tc,  
K 

Acentric Factor 

C1 0.617632733 16.04 190.6 46 0.008 
C2 0.113513628 30.07 305.4 48.84 0.098 
C3 0.063427857 44.1 369.8 42.46 0.152 
C4 0.036531905 58.12 419.95 37.53 0.1878 
C5 0.019483682 72.15 465.25 33.79 0.2397 
C6 0.018213007 86.18 507.4 29.69 0.296 

PC-1 0.047967979 108.21 594.94 30.51 0.1519 
PC-2 0.037379021 138.84 646.31 27.41 0.1971 
PC-3 0.028272517 183.71 715.87 24.05 0.265 
PC-4 0.01757767 294.82 878.5 18.96 0.4391 
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Table 5.6. Generalization error of fugacity coefficient from ANNs.   
 
Component Mean Square Error Average percentage error R2 

C1 2.54311325475e-08 0.07234457797421 0.999999665740048 
C2 2.66136957059e-08 1.148322228690716 0.999998801603921 
C3 3.1167560168e-08 0.044787534277102 0.999993897126990 
C4 1.37826100055e-08 0.015488466508183 0.999996900515374 
C5 1.91603159707e-08 0.009869041485957 0.999998906088491 
C6 4.50596740515e-08 0.013688432331599 0.999999012191636 

PC-1 1.0675432431e-07 0.015403556687481 0.999999285755196 
PC-2 7.9619158355e-08 0.00977703684872 0.99999968709666 
PC-3 4.58442675124e-07 0.021012046757658 0.999999025705854 
PC-4 5.6781995651e-07 0.013882962556325 0.999999622923520 

 
Table 5.7. Time per iteration comparison between EOS Flash and ANN Flash.   
 

Time per iteration, msec EOS Flash ANN Flash 
16.3719777073514 3.01555897189149 
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Figure 5.18 Accuracy comparison between fugacity coefficient calculated with EOS and 

ANN.  
Top: Component C1.  Bottom: Component C2. 
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Figure 5.19 Accuracy comparison between fugacity coefficient calculated with EOS 

and ANN.  
Top: Component C3.  Bottom: Component C4. 
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Figure 5.20 Accuracy comparison between fugacity coefficient calculated with EOS and 

ANN. 
Top: Component C5.  Bottom: Component C6. 
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Figure 5.21 Accuracy comparison between fugacity coefficient calculated with EOS and 

ANN. 
Top: Pseudo-Component 1.  Bottom: Pseudo-Component 2. 
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Figure 5.22 Accuracy comparison between fugacity coefficient calculated with EOS and 

ANN. 
 Top: Pseudo-Component 3.  Bottom: Pseudo-Component 4. 

 
 
 



 80 

 

 
Figure 5.23 Phase mole fraction calculations comparison between EOS and ANN 

Top: Liquid phase for C1.  Bottom: Vapor phase for C1. 
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Figure 5.24 Phase mole fraction calculations comparison between EOS and ANN.  

Top: Liquid phase for C2. Bottom: Vapor phase for C2. 
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Figure 5.25 Phase mole fraction calculations comparison between EOS and ANN. 

Top: Liquid phase for C3.  Bottom: Vapor phase for C3. 
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Figure 5.26 Phase mole fraction calculations comparison between EOS and ANN.  

Top: Liquid phase for C4.  Bottom: Vapor phase for C4. 
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Figure 5.27 Phase mole fraction calculations comparison between EOS and ANN.  

Top: Liquid phase for C5.  Bottom: Vapor phase for C5. 
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Figure 5.28 Phase mole fraction calculations comparison between EOS and ANN.  

Top: Liquid phase for C6.  Bottom: Vapor phase for C6. 
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Figure 5.29 Phase mole fraction calculations comparison between EOS and ANN.  

Top: Liquid Pseudo Component 1.  Bottom: Vapor Pseudo Component 1. 
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Figure 5.30 Phase mole fraction calculations comparison between EOS and ANN.  

Top: Liquid Pseudo Component 2.  Bottom: Vapor Pseudo Component 2. 
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Figure 5.31 Phase mole fraction calculations comparison between EOS and ANN.  

Top: Liquid Pseudo Component 3.  Bottom: Vapor Pseudo Component 3. 
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Figure 5.32 Phase mole fraction calculations comparison between EOS and ANN.  

Top: Liquid Pseudo Component 4.  Bottom: Vapor Pseudo Component 4. 
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Figure 5.33 Phase mole fraction calculation comparison between EOS and ANN.  

Top: Liquid mole fraction.  Bottom: Vapor mole fraction. 
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Figure 5.34 Fluid saturation comparison between EOS and ANN.  

Top: Vapor saturation.  Bottom: Liquid Saturation. 
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Figure 5.35 Fluid density calculation comparison between EOS and ANN.  

Top: Liquid density.  Bottom: Vapor density. 
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Figure 5.36 Fugacity coefficient execution time. 

Top: ANNs. Bottom: EOS. 
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Figure 5.37 Fugacity coefficient execution time comparison between EOS and 

ANN.  
 

 
Figure 5.38 Total number of iterations needed to reach to the solution between EOS 

flash and ANN flash.  
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Figure 5.39 Total execution time to reach solution of conventional EOS method and 

ANN flash method.   
 

 
Figure 5.40 Convergence behavior comparison between EOS flash and ANN flash 

at a pressure of 220 Bar. 
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Figure 5.41. Phase diagram of fluid model in case 3. 
 
Table 5.8 Fluid model for case 3.   
 

Component 
Overall 

Composition 
MW,  
g/mol 

Tc,  
K 

Pc, 
 Bar Acentric Factor 

N2 0.0011 28.01 126.2 33.94 0.04 
CO2 0.0214 44.01 304.2 73.76 0.225 
C1 0.5559 16.04 190.6 46 0.008 
C2 0.087 30.07 305.4 48.84 0.098 
C3 0.0589 44.1 369.8 42.46 0.152 
C4 0.0405 58.12 419.46 37.49 0.1873 
C5 0.0253 72.15 465.35 33.79 0.2399 
C6 0.0197 86.18 507.4 29.69 0.296 

PC-1 0.0765 119.41 617.17 28.42 0.1616 
PC-2 0.0539 169.32 687.97 24.54 0.2245 
PC-3 0.0379 240.96 789.61 20.43 0.3278 
PC-4 0.0219 416.17 1011 15.43 0.5663 
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Table 5.9. BIPs for fluid in case 3. 

 
Table 5.10.  Generalization error of fugacity coefficients from ANNs. 
 

Model Mean Square Error Average percentage error R2 

N2 3.44602E-08 0.022108731 0.999999619 
CO2 1.36382E-08 0.335540038 0.999998135 
C1 2.99343E-08 1.097797124 0.999999167 
C2 5.00523E-09 0.009843797 0.99999872 
C3 5.41057E-08 0.01605231 0.999992704 
C4 4.7724E-08 0.009767913 0.999997499 
C5 6.25513E-08 0.009573048 0.999998744 
C6 3.47057E-07 0.014598305 0.999997774 

PC-1 1.52473E-07 0.00785658 0.999999562 
PC-2 8.37175E-07 0.015457675 0.999998583 
PC-3 1.14541E-06 0.012976682 0.999999024 
PC-4 1.67559E-06 0.008772282 0.999999609 

 
Table 5.11. Time per iteration comparison between EOS Flash and NN Flash.    
 

Time per iteration, msec EOS Flash NN Flash 
19.96194709 1.194794771 

 N2 CO2 CH4 C2H6 C3H8 C4H10 C5H12 C6H14 PC-1 PC-2 PC-3 PC-4 
N2 0            

CO2 0 0           
CH4 0.1 0.1 0          
C2H6 0.1 0.145 0.042 0         
C3H8 0.1 0.2115 0.042 0.04 0        
C4H10 0.1 0.1834 0.042 0.04 0.03 0       
C5H12 0.1 0.1544 0.042 0.04 0.03 0.0116 0      
C6H14 0.1 0.1381 0.042 0.04 0.03 0.0155 0.0058 0     
PC-1 0.13 0.0294 0.0509 0.0415 0.0324 0.038 0.0231 0 0    
PC-2 0.13 0.0637 0.0536 0.0418 0.0339 0.0482 0.0356 0 0 0   
PC-3 0.13 0.1003 0.0581 0.0424 0.0378 0.0594 0.0521 0 0 0 0  
PC-4 0.13 0.1306 0.0698 0.0438 0.0532 0.0732 0.0774 0 0 0 0 0 



 98 

 
 

 
Figure 5.42 Accuracy comparison between fugacity coefficient calculated with EOS 

and ANN. 
Top: N2.  Bottom: CO2. 
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Figure 5.43 Accuracy comparison between fugacity coefficient calculated with EOS and 

ANN. 
Top: Component C1.  Bottom: Component C2. 
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Figure 5.44 Accuracy comparison between fugacity coefficient calculated with EOS and 

ANN. 
 Top: Component C3.  Bottom: Pseudo-Component C4. 
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Figure 5.45 Accuracy comparison between fugacity coefficient calculated with EOS and 

ANN. 
Top: Component C5.  Bottom: Pseudo-Component C6. 
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Figure 5.46 Accuracy comparison between fugacity coefficient calculated with EOS and 

ANN. 
Top: Pseudo Component 1.  Bottom: Pseudo Component 2. 
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Figure 5.47 Accuracy comparison between fugacity coefficient calculated with EOS and 

ANN. 
Top: Pseudo Component 3.  Bottom: Pseudo Component 4. 
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Figure 5.48 Phase mole fraction calculations comparison between EOS and ANN.  

Top: Liquid N2.  Bottom: Vapor N2. 
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Figure 5.49 Phase mole fraction calculations comparison between EOS and ANN.  

Top: Liquid CO2.  Bottom: Vapor CO2. 
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Figure 5.50 Phase mole fraction calculations comparison between EOS and ANN.  

Top: Liquid C1.  Bottom: Vapor C1. 
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Figure 5.51 Phase mole fraction calculations comparison between EOS and ANN.  

Top: Liquid C2.  Bottom: Vapor C2. 
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Figure 5.52 Phase mole fraction calculations comparison between EOS and ANN.  

Top: Liquid C3.  Bottom: Vapor C3. 
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Figure 5.53 Phase mole fraction calculations comparison between EOS and ANN.  

Top: Liquid C4.  Bottom: Vapor C4. 
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Figure 5.54 Phase mole fraction calculations comparison between EOS and ANN.  

Top: Liquid C5.  Bottom: Vapor C5. 
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Figure 5.55 Phase mole fraction calculations comparison between EOS and ANN.  

Top: Liquid C6.  Bottom: Vapor C6. 
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Figure 5.56 Phase mole fraction calculations comparison between EOS and ANN.  

Top: Liquid Pseudo Component 1.  Bottom: Vapor Pseudo Component 1. 
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Figure 5.57 Phase mole fraction calculations comparison between EOS and ANN.  

Top: Liquid Pseudo Component 2.  Bottom: Vapor Pseudo Component 2. 
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Figure 5.58 Phase mole fraction calculations comparison between EOS and ANN.  

Top: Liquid Pseudo Component 3.  Bottom: Vapor Pseudo Component 3. 
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Figure 5.59 Phase mole fraction calculations comparison between EOS and ANN.  

Top: Liquid Pseudo Component 4.  Bottom: Vapor Pseudo Component 4. 
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Figure 5.60 Phase mole fraction calculation comparison between EOS and ANN.  

Top: Liquid mole fraction.  Bottom: Vapor mole fraction. 
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Figure 5.61 Fluid saturation comparison between EOS and ANN.  

Top: Vapor saturation.  Bottom: Liquid Saturation. 
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Figure 5.62 Fluid density calculation comparison between EOS and ANN.  

Top: Liquid density.  Bottom: Vapor density. 



 119 

 
 

 
 
Figure 5.63 Fugacity coefficient execution time. 

Top: ANNs. Bottom: EOS 
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Figure 5.64 Fugacity coefficient execution time comparison between EOS and ANN  

 

 
Figure 5.65 Total number of iterations to reach solution of conventional EOS 

method and ANN flash method.   
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Figure 5.66 Total execution time to reach solution of conventional EOS method and 

ANN flash method.   
 

 
Figure 5.67 Convergence behavior comparison between EOS flash and ANN flash 

at a pressure of 220 Bar. 
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Figure 5.68. Phase diagram of study case number 4. 
 
Table 5.12. Fluid model for case 4.    
 

Component 
Overall 

Composition 
MW,  
g/mol 

Tc, 
 K 

Pc,  
Bar Acentric Factor 

C1 0.535520867 16.04 190.6 46 0.008 
C2 0.102474249 30.07 305.4 48.84 0.098 
C3 0.092917065 44.1 369.8 42.46 0.152 
C4 0.062546459 58.12 418.35 37.39 0.1862 
C5 0.031326325 72.15 464.67 33.79 0.2381 
C6 0.024317723 86.18 507.4 29.69 0.296 

PC-1 0.058829776 117.36 618.51 28.86 0.1747 
PC-2 0.043219709 159.75 689.76 25.04 0.2428 
PC-3 0.030901561 223.2 773.46 21.68 0.3325 
PC-4 0.017946267 385.02 988.48 16.64 0.5766 
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Table 5.13.  Generalization error of fugacity coefficients from ANNs 
 

Component Mean Square 
error Average percentage error R2 

C1 6.9050940309405e-09 0.02803580156022059 0.99999955691239 
C2 5.3506857562917e-09 0.06287203172845639 0.9999988518461894 
C3 4.6323974385562e-09 0.0065057960460917 0.9999985060862664 
C4 8.0573148746983e-09 0.0054783202854876405 0.9999985701122961 
C5 8.6815557873929e-09 0.004550404478930354 0.9999992904208203 
C6 2.94897871988366e-08 0.006768406455592809 0.9999987166076977 

PC-1 6.1702269899789e-08 0.006320129632940961 0.9999990865435309 
PC-2 7.9247650805181e-08 0.006278033830646585 0.9999993494488439 
PC-3 1.42215462247054e-07 0.006249761794386665 0.9999993705621273 
PC-4 1.22818904559822e-06 0.009917284658483893 0.9999985775998397 

 
 
Table 5.14. Time per iteration comparison between EOS Flash and ANN Flash.    
 

 
 
 
 

 
 
 
 
 
 
 

 
EOS Flash ANN Flash 

Time per iteration, msec 16. 6958528948416 1.03413565577091 
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Figure 5.69 Accuracy comparison between fugacity coefficient calculated with EOS and 

ANN. 
 Top: Component C1.  Bottom: Component C2. 
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Figure 5.70 Accuracy comparison between fugacity coefficient calculated with EOS and 

ANN. 
Top: Component C3.  Bottom: Component C4. 
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Figure 5.71 Accuracy comparison between fugacity coefficient calculated with EOS and 

ANN. 
Top: Component C5.  Bottom: Component C6. 
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Figure 5.72 Accuracy comparison between fugacity coefficient calculated with EOS and 

ANN. 
Top: Pseudo-Component 1.  Bottom: Pseudo-Component 2. 
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Figure 5.73 Accuracy comparison between fugacity coefficient calculated with EOS and 

ANN. 
Top: Pseudo Component 3.  Bottom: Pseudo Component 4. 
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Figure 5.74 Phase mole fraction calculations comparison between EOS and ANN.  

Top: Liquid C1.  Bottom: Vapor C1. 
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Figure 5.75 Phase mole fraction calculations comparison between EOS and ANN.  

Top: Liquid C2   Bottom: Vapor C2. 
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Figure 5.76 Phase mole fraction calculations comparison between EOS and ANN.  

Top: Liquid C3.  Bottom: Vapor C3. 
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Figure 5.77 Phase mole fraction calculations comparison between EOS and ANN.  

Top: Liquid C4.  Bottom: Vapor C4. 
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Figure 5.78 Phase mole fraction calculations comparison between EOS and ANN.  

Top: Liquid C5.  Bottom: Vapor C5. 
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Figure 5.79 Phase mole fraction calculations comparison between EOS and ANN.  

Top: Liquid C6.  Bottom: Vapor C6. 
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Figure 5.80 Phase mole fraction calculations comparison between EOS and ANN.  

Top: Liquid Pseudo Component 1.  Bottom: Vapor Pseudo Component 1. 
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Figure 5.81 Phase mole fraction calculations comparison between EOS and ANN.  

Top: Liquid Pseudo Component 2.  Bottom: Vapor Pseudo Component 2. 
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Figure 5.82 Phase mole fraction calculations comparison between EOS and ANN.  

Top: Liquid Pseudo Component 3.  Bottom: Vapor Pseudo Component 3. 
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Figure 5.83 Phase mole fraction calculations comparison between EOS and ANN.  

Top: Liquid Pseudo Component 4.  Bottom: Vapor Pseudo Component 4. 
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Figure 5.84 Total number of iteration comparison between EOS flash and ANN 

flash. 
 

 
Figure 5.85 Convergence behavior at 180 bars (To correct solution). 
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Figure 5.86 Convergence behavior at 272 bars (To incorrect solution). 
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Figure 5.87 Phase mole fraction calculation comparison  

Top: Liquid mole fraction.  Bottom: Vapor mole fraction. 
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Figure 5.88 Liquid saturation comparison  

Top: Liquid saturation.  Bottom: Vapor saturation. 
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Figure 5.89 Fluid density calculation comparison between EOS and ANN.  

Top: Liquid density.  Bottom: Vapor density. 
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Figure 5.90 Fugacity coefficient execution time. 

Top: ANN. Bottom: EOS. 
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Figure 5.91 Fugacity coefficient execution time comparison between EOS and 

ANN. 
 

 
Figure 5.92 Total execution time to reach solution of conventional EOS method and 

ANN flash method.   
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Figure 5.93 Solution of the RR function at 272 bars approaching the critical region 

Top: Iteration 8th Bottom: Iteration 32nd .  
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Figure 5.94 Gradient of the Rachford-Rice solution 

Top: Case 1.  Bottom: Case 2.  
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Figure 5.95 Gradient of the Rachford-Rice solution 

Top: Case 3.  Bottom: Case 4.   
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Figure 5.96 Rachford-Rice solution comparison between EOS and ANN flash 

Top: 180 Bar (away from critical point).  Bottom: 272 Bar (Close to 
critical point). 
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Figure 5.97 Phase amount calculation comparison between EOS and NN with 
switching criteria.  
Top: Liquid density.  Bottom: Vapor density. 
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Figure 5.98 Fluid saturation calculation comparison between EOS and NN with 
switching criteria.  
Top: Liquid density.  Bottom: Vapor density. 
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Figure 5.99 Fluid density calculation comparison between EOS and NN with 

switching criteria.  
Top: Liquid density.  Bottom: Vapor density. 
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CHAPTER 6 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR 
FUTURE RESEARCH  

This chapter summarizes the objective of this work, the implementation of the new 

algorithm and the conclusions gathered from the study cases. Additionally, 

recommendations for future research are presented.  

6.1 SUMMARY AND CONCLUSIONS  

Compositional reservoir simulators are widely used in petroleum engineering. They 

are used to predict reservoir performance for different field development scenarios, to 

optimize well spacing and surface facilities locations, and to design and evaluate EOR 

projects. Compositional reservoir simulators must be able to predict the phase behavior of 

hydrocarbon-rich mixtures at different thermodynamic conditions. Phase behavior is 

calculated by the use of stability analysis and flash calculations. Stability analysis is to 

determine whether the hydrocarbon mixture is in a single phase or not. If instability of the 

fluid is detected, flash calculations are performed to calculate the phase mole fraction, 

composition, and fluid properties.  

Flash calculations are performed at each reservoir grid-block and at each iteration 

step, making the EOS flash one of the most time-consuming calculations in compositional 

reservoir simulations. This limitation of compositional reservoir simulators restricts the 

application of refined reservoir grids to analyze in more detail the sweep efficiency of EOR 

techniques since the increased number of grid-blocks would increase the computational 

time significantly. Additionally, to reduce the computational time, reservoir fluid models 

are lumped into pseudo components to speed up the compositional simulation reducing the 
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accuracy of the phase behavior. For that reason, researchers have developed various 

methods to speed up EOS flash calculations in compositional simulation.  

These methods include reductions methods, where the main idea is to reduce the 

number of nonlinear equations to be solved during flash calculations. Another method that 

aims to reduce the time for flash calculations is the use of look-up tables, where the flash 

calculation is performed as a pre-simulation step storing the results and then using them 

directly during reservoir simulations. Most recently, the development of ANNs to aid flash 

calculations has been proposed by several authors.  

During flash calculations, the fugacity coefficient is used extensively to find the 

phase equilibrium. A key to obtaining an efficient flash calculation is to speed up the time-

consuming fugacity coefficient calculation in flash calculations. In this thesis, ANNs were 

applied to make an accurate and efficient model for the fugacity coefficient for each 

component in a mixture.  The ANN-based fluid model was used to solve for phase 

equilibrium conditions by use of the traditional successive substations method.  

The replacement of the conventional EOS fugacity coefficient with the ANN-based 

one provides several advantages. First, there is no need to solve the cubic EOS for 

compressibility factor(s) during the iteration since the ANN fluid model gives the fugacity 

coefficients through a feedforward calculation.  This also means that there is no need to 

evaluate the Gibbs free energy of different cubic roots when the solution of the EOS gives 

more than one root.  The ANN-based fluid model is rapid in providing fugacity coefficients 

because the feedforward calculation is computationally efficient (additions and 

multiplications) in comparison to the EOS-based fugacity coefficient that contains 

logarithms, square roots, and exponentials. 

The newly formulated flash calculation using an ANN-based fluid model was used 

for different reservoir fluids.  The main conclusions are as follows:  
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1. Results showed that EOS-based fugacity coefficients can be accurately represented 

by ANNs for different reservoir fluids (e.g. up to 12 components, zero and non-

zero BIPs, and non-hydrocarbon components, such as N2 and CO2, in the mixture).  

2. The ANN-based fugacity coefficients were used to solve for phase compositions 

and amounts for different reservoir fluids.  Flash calculations using the ANN-based 

fugacity coefficient model successfully converged, except for one fluid in the close 

vicinity of the critical point.  The phase equilibrium conditions converged were 

essentially identical between EOS and ANN-based flash.  In the near-critical case, 

the equilibrium solution was so sensitive to fugacity coefficients that the ANN-

based flash converged to an inaccurate solution.  This implementation issue was 

resolved by using a switching criterion to EOS flash as described in conclusion 5 

below.     

3. The ANN flash generally converged in fewer iterations in comparison with the 

conventional EOS.  The reduced number of iterations also contributed to the 

algorithm efficiency. 

4. The ANN flash provides a computational time reduction of 89.83% on average in 

comparison with the conventional EOS method as shown in the case studies.  

5. ANN flash was robust for fluid models that are not in a critical region. Near a 

critical point, the ANN flash deviates from the correct solution when the gradient 

of the Rachford – Rice (RR) solution is extremely small, which makes the RR 

solution very sensitive to  K values.  To avoid this potential of inaccurate ANN 

flash in a near-critical region, the switching criterion from ANN flash to EOS flash 

was defined and applied by a gradient of the RR function, 0.05, below which the 

switching occurs.  This switching from ANN to EOS flash does not waste the 
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calculations performed prior to the switching, and lets the iteration converge to the 

correct solution in the cases studied.   

6. There are other applications of ANNs to flash calculations presented in the 

literature.  However, this is the first time ANNs were applied to make simple and 

accurate models for the fugacity coefficients that speed up the iterative flash 

calculation.  

7. Unlike reduced methods, the implementation and computational advantage of 

ANN-based flash are not affected by non-zero BIPs.  

8. The execution time of ANN flash increases linearly with the number of components 

in the mixture, while the execution time of EOS flash increases quadratically with 

the number of components increases.  That is, the advantage of ANN flash over 

EOS flash tends to be more pronounced for a larger number of components.  

6.2 RECOMMENDATIONS FOR FUTURE RESEARCH   

Recommendations for future research of ANNs for flash calculations in compositional 

reservoir simulations are as follows: 

1. Standalone flash calculations evaluations are necessary but not sufficient for 

reservoir simulations applications. Generally, reservoir simulations require more 

robust methods for phase equilibrium calculations. Therefore, the application of 

ANN flash calculations in compositional reservoir simulation should be evaluated 

to verify its robustness and efficiency.  

2. The scope of this work was to evaluate the application and performance of ANNs 

for flash calculations. However, stability analysis is an integral part of the phase 

equilibrium calculations. Therefore, the use of ANNs for the fugacity coefficient 
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should be evaluated in conjunction with stability analysis to create an integrated 

phase equilibrium algorithm based on ANNs  

3. This work focused on two-phase flash calculations, but more than two phases can 

be present during compositional reservoir simulations. Therefore, the ANNs can be 

applied to more complex algorithms to look for more than two phases.  

4. In this work, ANNs models were generated for each component in the mixture. This 

approach allows us to have more control over the accuracy and generalization error 

of the fugacity coefficient for each component in the mixture. However, other 

neural network architectures can be investigated to generate less artificial neural 

models and speed up the training process and the data preparation before 

implementation in flash calculations.  
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Appendix A. Database generation code 

 This code uses the fluid model described in case 1 and calculate the fugacity 

coefficient, determine the multiple concentration combinations for a given concentration 

increments and compute the fugacity coefficient database for a range of pressure, 

concentration and number of components. This code was developed in python language.  

 
#Libraries 
Import numpy as np 

 
#Reduce pressure calculation 
def Pred(P,Pc): 
    Pr=np.divide(P,Pc) 
    return Pr  
 
#Reduced temperature calculation 
def Tred(T,Tc): 
    Tr=np.divide(T,Tc)  
    return Tr 
 
#Attraction parameter 
def Aa(Pr,Tr,alph): 
    A=np.divide((0.457235529)*(Pr)*alph,Tr**2) 
    return A 
 
#Covolume parameter 
def Be(Pr,Tr): 
    B=(0.077796074)*np.divide(Pr,Tr) 
    return B 
 
 
#Temperature dependent EOS parameter 
def alpha(k,Tr): 
    alph=(1+k*(1-np.sqrt(Tr)))**2 
    return alph 
 
#Accentric factor dependent parameter 
def kk(Nc,af): 
    for i in range(0,Nc): 
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        if af[i] <= 0.49: 
            k=0.37464+1.54226*af-(0.26992)*(af**2.) 
        elif af[i] > 0.49: 
            k=0.379642+1.48503*af-0.164423*(af**2.)+(0.01666)*(af**3.)   
    return k  
 
#Peng robinson equation of state variables 
def gammma(Amix,Bmix): 
    gamma=np.multiply(-Amix,Bmix)+np.power(Bmix,2)+np.power(Bmix,3) 
    return gamma 
 
def betta(Bmix,Amix): 
    beta=Amix-(3*np.power(Bmix,2))-np.multiply(2,Bmix) 
    return beta 
 
 
def phil(Bmix): 
    phi2=-1.+Bmix 
    return phi2 
 
#Reduced attraction parameter 
def Ami(X,Am,Nc): 
    Amix=0.  
    for i in range(0,Nc): 
        for j in range(0,Nc): 
            Amix+=X[i]*X[j]*Am[i,j] 
    return  Amix 
 
#Reduced covolume parameter 
def Bm(X,B): 
    Bmix2=np.sum(X*B) 
    return Bmix2 
 
 
 
#Van del Waals mixing rules 
def Vw(Nc,A,bi): 
    Am=np.zeros([Nc,Nc]) 
    for i in range(0,Nc): 
        for j in range(0,Nc): 
            Am[i,j]=np.sqrt(A[i]*A[j])*(1.-bi[i,j]) 
    return Am 
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#Terms of the fugacity coefficient equation for PR EOS 
def fc(Amix,Bmix,z,Am,Nc,X,B): 
    Term2=np.log(z-Bmix) 
    Term3=np.divide(Amix,(2*np.sqrt(2)*Bmix)) 
    Term6=np.log(np.divide((z+(1+np.sqrt(2))*Bmix),(z+(1-np.sqrt(2))*Bmix))) 
    mask=np.zeros((Nc,)) 
    for i in range(0,Nc): 
        for j in range(0,Nc): 
            mask[i]+=X[j]*Am[i,j]             
    Term1=(B/Bmix)*(z-1) 
    Term5=B/Bmix 
    Term4=(2.*(mask))/Amix  
    Fc=Term1- Term2-Term3*(Term4-Term5)*Term6 
    return Fc 
 
#Gibbs free energy root evaluation 
def Dgg(X,FcL,FcV): 
    Dg2=np.sum(X*(FcL-FcV)) 
    return Dg2 
 
#Fugacity Coefficient calculation 
def lnfug(af,T,Tc,P,Pc,Nc,bi,X): 
    Tr=Tred(T,Tc) 
    Pr=Pred(P,Pc) 
    k=kk(Nc,af) 
    alph=alpha(k,Tr)           
    B=Be(Pr,Tr) 
    A=Aa(Pr,Tr,alph) 
    Am=Vw(Nc,A,bi) 
    Bmix=Bm(X,B) 
    Amix=Ami(X,Am,Nc) 
    phi=phil(Bmix) 
    beta=betta(Bmix,Amix) 
    gamma=gammma(Amix,Bmix) 
    z = Compressibility(phi,beta,gamma) 
    RN= RootNumber(phi,beta,gamma) 
    if RN ==2: 
        Zv=np.max(z) 
        Zl=np.min(z) 
        FcL=fc(Amix,Bmix,Zl,Am,Nc) 
        FcV=fc(Amix,Bmix,Zv,Am,Nc) 
        Dg=Dgg(X,FcL,FcV) 
        if Dg<0: 
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            z=Zl 
        else: 
            z=Zv 
    lnfug=fc(Amix,Bmix,z,Am,Nc,X,B) 
    return lnfug    
 
#Cardano to solve cubic Equation of State 
def Compressibility(A,B,C): 
    D=(A/3)**3-(A*B/6)+(C/2) 
    E=(B/3)-(A/3)**2 
    Delta=(D**2)+(E**3) 
   
    if Delta == 0: 
      
        if D > 0: 
            Z1 = 2*(-abs(-D)**(1/3))-(A/3) 
            Z2 = -abs(-D)**(1/3)-(A/3) 
            Z3 = -abs(-D)**(1/3)-(A/3) 
             
        elif D <= 0: 
            Z1=2*((-D)**(1/3))-(A/3) 
            Z2=(-D)**(1/3)-(A/3) 
            Z3=(-D)**(1/3)-(A/3)                                 
            return Z1,Z2,Z3 
     
    elif Delta > 0:  
        global G 
        if -D + (Delta)**(1/2) < 0: 
           F= -(abs(-D + (Delta)**(1/2)))**(1/3) 
        else: 
            F = (-D + (Delta)**(1/2))**(1/3)  
 
        if -D - (Delta)**(1/2) < 0: 
            G= -(abs(-D - (Delta)**(1/2)))**(1/3) 
     
        else: 
            G = (-D - (Delta)**(1/2))**(1/3)  
     
        Z = F + G-(A/3)      
        return Z 
     
    elif Delta < 0:              
        TETA=np.acos(-D/np.sqrt(-E**3)) 
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        Z1=2*np.sqrt(-E)*np.cos(TETA/3)-A/3 
        Z2=2*np.sqrt(-E)*np.cos((TETA/3)+(2/3)*np.pi)-A/3 
        Z3=2*np.sqrt(-E)*np.cos((TETA/3)+(4/3)*np.pi)-A/3 
    return Z1,Z2,Z3 
 
#Root number identification 
def RootNumber(A,B,C): 
    D=(A/3)**3-(A*B/6)+(C/2) 
    E=(B/3)-(A/3)**2 
    Delta=(D**2)+(E**3) 
    if Delta == 0: 
        RN=2 
        return RN 
    elif Delta > 0:  
        RN=1 
        return RN 
    elif Delta < 0:  
        RN=2 
        return RN 
 
#Mixture composition generation for material balance, N indicates the resolution 
def Mixture(N): 
    X1=np.linspace(0,1,N) 
    X2=np.linspace(0,1,N) 
    X3=np.linspace(0,1,N) 
    X4=np.linspace(0,1,N) 
    X5=np.linspace(0,1,N) 
    X6=np.linspace(0,1,N) 
    one=np.zeros(X1.size*X2.size*X3.size*X4.size*X5.size*X6.size) 
    two=np.zeros(X1.size*X2.size*X3.size*X4.size*X5.size*X6.size) 
    three=np.zeros(X1.size*X2.size*X3.size*X4.size*X5.size*X6.size) 
    fourth=np.zeros(X1.size*X2.size*X3.size*X4.size*X5.size*X6.size) 
    five=np.zeros(X1.size*X2.size*X3.size*X4.size*X5.size*X6.size) 
    six=np.zeros(X1.size*X2.size*X3.size*X4.size*X5.size*X6.size) 
    l=0 
    for j in X1:                     
        for k in X2: 
            for f in X3: 
                for h in X4: 
                    for o in X5: 
                        for q in X6: 
                            one[l]=j 
                            two[l]=k 
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                            three[l]=f 
                            fourth[l]=h 
                            five[l]=o 
                            six[l]=q 
                            l=l+1 
 
    one=one.reshape(-1,1) 
    two=two.reshape(-1,1) 
    three=three.reshape(-1,1)    
    fourth=fourth.reshape(-1,1)   
    five=five.reshape(-1,1)   
    six=six.reshape(-1,1)  
    Summ=one+two+three+fourth+five+six 
    Xarray=np.concatenate((one,two,three,fourth,five,six,Summ), axis=1) 
    item = 1 
    index =np.where(Summ==item)[0] 
    Xarray1=Xarray[index] 
    Mixcomp=np.delete(Xarray1, 6, axis=1) 
    return Mixcomp 
 
#Database generation 
Pressure=np.arange(0,27.89,0.1) 
Concentration=Mixture(0.01) 
T=313.706 
af=np.array([0.008,0.131,0.240,0.618,0.957,1.268]) 
Tc=np.array([190.6000,344.20556,463.222222,605.75,751.016667,942.4777778]) 
Nc=6 
Pc=np.array([46.00173748,44.99234683,33.99591831,21.74878308,16.54049284,16.417
76638]) 
bi = 
np.array([[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]]) 
Fug=np.zeros(Pressure.size*Concentration[0].size) 
l=0 
for P in Pressure: 
    for x in Concentration: 
        Fug[l]=lnfug(af,T,Tc,P,Pc,Nc,bi,x) 
        l=l+1 
Data=np.concatenate((Pressure,Concentration,Fug), axis=1) 
np.savetxt('Database.dat',Data) 
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Appendix B. Artificial Neural Network models 

 This code generates the ANNs for the fugacity coefficient using the database as 

described in Appendix A. The code generates the datasets for training, validation and 

testing, train the neural networks and evaluate its performance. Keras was used to train the 

neural network models with the backpropagation algorithm.  

#Import libraries  
import numpy as np 
from keras.models import Sequential 
from keras.layers import Dense 
from keras.callbacks import ModelCheckpoint   
import matplotlib.pyplot as plt 
import random 
 
#Load database  
Data = np.loadtxt('Database.dat') 
X= Data[:,[1,2,3,4,5,6]] 
Pressure=[:,0].reshape(-1,1) 
Min_P=np.min(Pressure) 
Max_P=np.max(Pressure) 
 
#Neural Networks for the fugacity coefficient  
Nc=np.arange(7,12,1) #Number of components in the mixture 
for i in Nc: 
    N=6+i 
    Fug= Data[:,N].reshape(-1,1) #Fugacity coefficient  
    Min_Fug=np.min(Fug) 
    Max_Fug=np.max(Fug) 
    limits= np.array([[Min_Fug],[Max_Fug]]) 
    np.savetxt("Fuglimits"+str(i)+".txt",limits) 
 
   #Randomly Database splitting for training, testing and validation 
    test=np.array(random.sample(range(X.shape[0]),int(np.round(X.shape[0]*0.10)))) 
    P1=np.delete(Pressure,test,0) 
    X1=np.delete(X,test,0) 
     
    P_test=Pressure[test] 
    X_test=X[test] 
  
    Fugset1=np.delete(Fug,test,0) 
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    fug_test=Fug[test] 
     
    
val=np.array(random.sample(range(Fugset1.shape[0]),int(np.round(Fugset1.shape[0]*0.1
0)))) 
    P_training=np.delete(P1,val,0) 
    X_training=np.delete(X1,val,0) 
    fug_training=np.delete(Fugset1,val,0) 
     
    P_val=P1[val] 
    X_val=X1[val] 
    fug_val=Fugset1[val] 
     
    plot=np.array(random.sample(range(Fug.shape[0]),1000)) 
    P_plot=Pressure[plot] 
    X_plot=X[plot] 
    fug_plot=Fug[plot] 
     
    #Database normalization 
    nP_training=np.divide((P_training-Min_P),(Max_P- Min_P)) 
    nP_test=np.divide((P_test-Min_P),(Max_P- Min_P)) 
    nP_val=np.divide((P_val-Min_P),(Max_P- Min_P)) 
    nP_plot=np.divide((P_plot-Min_P),(Max_P- Min_P)) 
     
    norm_data_training=np.concatenate((nP_training,X_training),axis=1) 
    norm_data_test=np.concatenate((nP_test,X_test),axis=1) 
    norm_data_val=np.concatenate((nP_val,X_val),axis=1) 
    norm_data_plot=np.concatenate((nP_plot,X_plot),axis=1) 
     
    #Label normalization 
    nFug_training=np.divide((fug_training-Min_Fug),(Max_Fug- Min_Fug)) 
    nFug_test=np.divide((fug_test-Min_Fug),(Max_Fug- Min_Fug)).reshape(-1,1) 
    nFug_val=np.divide((fug_val-Min_Fug),(Max_Fug- Min_Fug)).reshape(-1,1) 
    nFug_plot=np.divide((fug_plot-Min_Fug),(Max_Fug- Min_Fug)).reshape(-1,1) 
     
    #Neural network Keras assembly  
    model=Sequential() 
    model.add(Dense(20,activation = 'relu', use_bias=True, input_dim=7)) 
    model.add(Dense(20,activation = 'relu', use_bias=True)) 
    model.add(Dense(1)) 
    model.compile(optimizer='adam' ,loss='mse',metrics=['mae','mape']) 
     #Model name  
    filepath="Component_str(i)+".hdf5" 
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    checkpointer=ModelCheckpoint(filepath, monitor='val_loss', verbose=1, 
save_best_only=True, save_weights_only=False, mode='min') 
    #Neural Network training with backpropagation 
history=model.fit(norm_data_training,nFug_training,epochs=20,batch_size=100,callback
s=[checkpointer],validation_data=(norm_data_val,nFug_val)) 
 
    # summarize history for loss 
    plt.figure() 
    plt.plot(history.history['loss']) 
    plt.plot(history.history['val_loss']) 
    plt.title('model loss') 
    plt.ylabel('loss') 
    plt.xlabel('epoch') 
    plt.legend(['train', 'test'], loc='upper left') 
    plt.show() 
     
    #Model predicton on testing data 
    from keras.models import load_model 
    Best=load_model(filepath) 
    standirized_fug=Best.predict(norm_data_plot,batch_size=1000).reshape(-1, 1) 
    Fug_NN=(np.multiply(standirized_fug,(Max_Fug-Min_Fug))+Min_Fug).reshape(-1,1) 
    Fug=Fug.reshape(-1, 1) 
    plt.plot(fug_plot,fug_plot,color='Black',linewidth=1.0) 
    plt.scatter(fug_plot,Fug_NN,s=5,color='gray') 
    plt.title('Accuracy comparison C5') 
    plt.xlabel('EOS Model') 
    plt.ylabel('NN Model') 
     
    #Model Evaluation 
    standirized_fug_test=Best.predict(norm_data_test,batch_size=4346175).reshape(-1, 1) 
    Fug_NN_test=(np.multiply(standirized_fug_test,(Max_Fug-
Min_Fug))+Min_Fug).reshape(-1,1) 
    def mean_absolute_percentage_error(y_true, y_pred):  
        y_true, y_pred = np.array(y_true), np.array(y_pred) 
        return np.mean(np.abs((y_true - y_pred) / y_true)) * 100 
    from sklearn.metrics import r2_score, mean_squared_error 
    r2=r2_score(fug_test,Fug_NN_test)  
    mape=mean_absolute_percentage_error(fug_test,Fug_NN_test) 
    mse=mean_squared_error(fug_test,Fug_NN_test) 
    metrics= np.array([[r2],[mape],[mse]]) 
    np.savetxt("Metrics"+str(i)+".txt",metrics) 
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Appendix C Artificial Neural Network Flash 

 This code uses ANNs to calculate the fugacity coefficient as described in chapter 

4. The models used in this flash calculations correspond to the fluid model of case 1.  

 
NN flash 
import numpy as np 
from keras.models import load_model 
NN1=load_model(' Component1.hdf5') 
NN2=load_model(' Component2.hdf5') 
NN3=load_model('Component3.hdf5') 
NN4=load_model('Component4.hdf5') 
NN5=load_model('Component5.hdf5') 
NN6=load_model('Component6.hdf5') 
 
#Extract weights and bias from Keras 
     
w1=[] 
b1=[] 
for layer in NN1.layers: 
    weights= layer.get_weights()[0] 
    bias=layer.get_weights()[1] 
    w1.append(weights) 
    b1.append(bias) 
 
w2=[] 
b2=[] 
for layer in NN2.layers: 
    weights= layer.get_weights()[0] 
    bias=layer.get_weights()[1] 
    w2.append(weights) 
    b2.append(bias) 
 
 
 
     
w3=[] 
b3=[] 
for layer in NN3.layers: 
    weights= layer.get_weights()[0] 
    bias=layer.get_weights()[1] 
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    w3.append(weights) 
    b3.append(bias) 
     
w4=[] 
b4=[] 
for layer in NN4.layers: 
    weights= layer.get_weights()[0] 
    bias=layer.get_weights()[1] 
    w4.append(weights) 
    b4.append(bias) 
     
w5=[] 
b5=[] 
for layer in NN5.layers: 
    weights= layer.get_weights()[0] 
    bias=layer.get_weights()[1] 
    w5.append(weights) 
    b5.append(bias) 
     
w6=[] 
b6=[] 
for layer in NN6.layers: 
    weights= layer.get_weights()[0] 
    bias=layer.get_weights()[1] 
    w6.append(weights) 
    b6.append(bias) 
     
weights=[w1,w2,w3,w4,w5,w6] 
bias=[b1,b2,b3,b4,b5,b6] 
 
P=10 
X=np.array([0.0917166666666667,0.155916666666667,0.172716666666667,0.3360166
66666667,0.166716666666667,0.0769166666666667]) 
T=313.706 
af=np.array([0.008,0.131,0.240,0.618,0.957,1.268]) 
Tc=np.array([190.6000,344.20556,463.222222,605.75,751.016667,942.4777778]) 
Nc=6 
Pc=np.array([46.00173748,44.99234683,33.99591831,21.74878308,16.54049284,16.417
76638]) 
Fugmax=np.array([0.8509604729089526,-0.035248585700825785,-
0.5206856081534699,-0.7108217921364027,-0.9097244029847029,-
1.127952250637442,-1.6578438405221156,-2.1894188142990103,-3.13814748798403,-
5.4719367618593715]) 
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Fugmin=np.array([-0.060246650178461425,-0.49843491827529496,-
0.9844384647848845,-1.472792683003422,-2.0102446974914265,-
2.5768514689564306,-4.078493849514273,-5.561646380581826,-8.23884036197259,-
15.044247653802742]) 
Pmin=np.array([0.1]) 
Pmax=np.array([27.899000000000026]) 
 
def NNflash(P,T,Nc,X,af,Tc,Pc,weights,bias): 
    Tr=Tred(T,Tc) 
    Pr=Pred(P,Pc) 
    Kw=will(Pr,af,Tr) 
    Ress=1 
    s=0 
    while True: 
        V=RR(Kw,X,Nc)  
        XLiq=Xliq(X,V,Kw) 
        Yvap=Yvapo(XLiq,Kw) 
        Fugliq=lnfug(P,XLiq,weights,bias,Fugmax,Fugmin,Pmin,Pmax) 
        Fugvap=lnfug(P,Yvap,weights,bias,Fugmax,Fugmin,Pmin,Pmax) 
        Conv=conve(XLiq,Yvap,Fugliq,Fugvap) 
        Ress=resi(Conv) 
        Kw=kww(Fugliq,Fugvap) 
        s=s+1 
        if(Ress < 1e-6): 
            break    
 
def lnfug(P,XLiq,weights,bias,Fugmax,Fugmin,Pmin,Pmax): 
    #Pressure normalization 
    nP=np.divide((P-Pmin),(Pmax- Pmin)) 
    v=np.concatenate((nP,X),axis=0).reshape(1,-1)#Input data for neural network 
    #Feedfoward calculation  
    fugcoefficient=[] 
    for i in range(0,Nc): 
        w=weights[i] 
        b=bias[i] 
        f11 = np.dot(v,w[0])+b[0] #first layer  
        f11a = np.maximum(f11, 0) #activation of first layer 
        f12 = np.dot(f11a,w[1])+b[1] #second layer 
        f12a=np.maximum(f12, 0) #activation second layer 
        f13= np.dot(f12a,w[2])+b[2] #output layer 
        fugcoeff= np.sum(f13) #normilized output 
        lnfug=(np.multiply(fugcoeff,(Fugmax[i]-Fugmin[i]))+Fugmin[i]).reshape(-1,1) #Re-
scaled fugacity coefficient 
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        fugcoefficient.append(lnfug) 
    return np.array(fugcoefficient).reshape(-1,1) 
 
def will(Pr,af,Tr): 
 Kw2=np.multiply(np.divide(1,Pr),np.exp((np.multiply(np.multiply(5.373,(1+af)),(1-
(1/Tr))))))        
 return Kw2 
 
  
def Pred(P,Pc): 
    Pr=np.divide(P,Pc) 
    return Pr 
 
 
def Tred(T,Tc): 
    Tr=np.divide(T,Tc)  
    return Tr 
       
  
def RR(Kw,X,Nc): 
    Kmax=1/(1-np.max(Kw)) 
    Kmin=1/(1-np.min(Kw)) 
    V=np.divide((Kmax+Kmin),2) 
    Err=1 
    while True: 
        fv = 0 
        dfv = 0 
        for i in range(0,Nc): 
            fv = fv+(1-Kw[i])*(X[i])/(1-(1-Kw[i])*V) 
            dfv=dfv+(Kw[i]-1)**2*(X[i])/((Kw[i]-1)*V+1)**2 
        Vnew=V-(fv/dfv) 
        Err=abs(fv) 
        V=Vnew 
        if(Err < 1e-6): 
            break     
    return V 
   
 
def Xliq(X,V,Kw): 
    XLiq2=np.divide(X,(V*Kw+(1-V))) 
    return XLiq2 
 
 



 171 

def Yvapo(XLiq,Kw): 
    Yvap2=np.multiply(XLiq,Kw)  
    return Yvap2 
 
 
def conve(XLiq,Yvap,Fugliq,Fugvap): 
    Conv=np.log(XLiq)-np.log(Yvap)+Fugliq-Fugvap 
    return Conv 
 
 
def resi(Conv): 
    Ress=np.linalg.norm(Conv) 
    return Ress 
 
 
def kww(Fugliq,Fugvap): 
    Kw2=np.exp(Fugliq-Fugvap) 
    return Kw2 
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Glossary 

Roman symbols 

a Attraction parameter for cubic EOS 

A Dimensionless attraction parameter for cubic EOS 

b Covolume parameter for cubic EOS or bias term 

B Dimensionless covolume parameter for cubic EOS 

𝑓%3 Fugacity of component i in phase j 

G Gibbs free energy 

𝐺 Molar Gibbs free energy 

𝐺̅%3 Partial Gibbs free energy of component i in phase j 

𝑔% Activation functions in first hidden layer 

ℎ% Activation function in second hidden layer 

J Loss function 

𝑘%3 Binary interaction coefficient 

𝐾%3 K-value of component i in phase j 

Nc Number of components 

Np Number of phases 

N𝑣 Number of inputs in neural network 

𝑁𝑛 Number of neurons in hidden layer 

𝑁% Number of inputs of a neuron 

P Pressure 

𝑃& Critical pressure 

R Gas constant 

𝑆%̅ Partial molar entropy of component i  

T Temperature 
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𝑇& Critical temperature 

V Volume or vapor phase mole fraction 

𝑉5% partial molar volume of component i 

𝑤%3 Weight value of input i in neuron j 

𝑥%3 Mole fraction of component i in phase j or output of input i in neuron j 

𝑥% Normalized feature 

𝑥% Original feature  

𝑦% Mole fraction of component i vapor phase 

𝑦% Target value at instance 𝑖 

𝑦% Predicted value at instance 𝑖 

𝑧% Mole fraction of component i in a mixture 

𝑍3 Compressibility factor of phase j 

 

Greek letters 

α Output of a neuron 

𝛽3 Mole fraction of phase j 

𝜑%3 Fugacity coefficient of component of component i in phase j 

𝜐 net stimuli of a neuron 

𝜇 Step size in the minimization problem. 

𝛼(𝑇) Temperature dependent parameter in equation of state 

𝜔 Acentric factor 

𝜀 Parameter to express equation of state in cubic form 

𝛽 Parameter to express equation of state in cubic form 

𝛾 Parameter to express equation of state in cubic form 
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Superscripts 

𝐼𝐺𝑀 Ideal gas mixture 

𝐼𝐺 Ideal gas 

𝑘 Iteration step 

ℓ Layer number 

L Output layer 

 

Subscripts 

𝐶 Critical property 

𝑚𝑎𝑥 Maximum 

𝑚𝑖𝑥 Minimum 

 

Abbreviations 

BIP Binary Interaction Parameter 

EOS Equation of State 

EOR Enhanced Oil Recovery 

𝑀𝑆𝐸 Mean square error 

𝑀𝐴𝐸 Mean absolute error 

msec Microseconds: Second to the 10-6 

NN Neural Network 

RR Rachford – Rice equation 

UTCOM IMPEC multiphase reservoir simulation developed at the University of Texas 

at Austin 

FNN Feed Forward Neural Network 
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