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Abstract

Task-Trajectory Analysis Package in the Robot

Operating System

Christina Elisabeth Petlowany, M.S.E.

The University of Texas at Austin, 2019

Co-Supervisor: Sheldon Landsberger
Co-Supervisor: Mitch Pryor

For many manufacturing tasks, such as welding and cutting, the task

trajectory, or path, is known a priori in the object’s reference frame. What is

not known is whether or not the robot can reach the entirety of the trajectory

given the relative location of the object frame to the robot’s base frame and its

reachable and/or dexterous workspace. The problem increases in complexity

with each additional object in the robot’s workspace. Some robots need to

perform tasks in cluttered or confined environments, such as a glovebox, and

the ability to know if and where the manipulator can perform a certain task

is crucial for both design and operation.

This thesis describes the development, design, and implementation of

a Task-Trajectory Analysis Package (T-TAP) within the Robot Operating
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System (ROS) framework. Reachability has been extensively discussed in the

literature, but current reachability visualization tools do not account for task

data, and instead describe the robot’s global workspace and thus take a long

time to compute. Such tools may be useful for designing robotic systems, but

their value diminishes when analyzing a specific task and environment. T-

TAP focuses on the task space and is capable of producing real-time or near

real-time feedback about the validity of a path. The results are shown in an

easy-to-interpret visualization of the path points and their relative quality as

measured using selected performance metrics.

T-TAP contains several capabilities. The first, and simplest, validates

reachability for discrete points along the trajectory. An inverse kinematic

(IK) solver is used to plan from one trajectory point to the next. The user

can use standard ROS IK solvers or utilize their own IK solver. Next, T-TAP

uses the Jacobian to analyze the system’s performance as it completes the

proposed trajectory. It ensures that joint and velocity limits are not violated,

singularities are avoided, and is extensible to include additional user-define

performance metrics.

T-TAP requires no prior computations, is hardware agnostic, and can

be run entirely in simulation. It can reduce the time required to place and

plan a trajectory by an order of magnitude. It is designed to work seamlessly

with existing ROS path-planning packages. The operator needs only to send

the path to T-TAP and T-TAP will analyze the trajectory. This information

will allow the operator to intelligently adjust the path so that it is reachable
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and viable.
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Chapter 1

Introduction

The nuclear industry has been slow to incorporate automation. How-

ever, worker safety concerns like radiation exposure and ergonomic injuries

make the introduction of robotics to nuclear manufacturing an ideal option.

The nuclear industry may adopt robotic systems more quickly after it is easier

to deliver robotic solutions for different tasks. Gloveboxes, see Figure 1.1, are

used in the nuclear industry to protect workers from radiation. However, the

use of gloveboxes commonly leads to ergonomic injuries for the workers. Addi-

tionally, the weakest point of the glovebox is the glove, which means the spot

most likely to fail and cause a breach is where the worker handles the radioac-

tive material. For these, and many other reasons, researchers have focused on

automating glovebox activities.

One example of successful glovebox automation is the Los Alamos Na-

tional Laboratory (LANL) Advanced Recovery and Integrated Extraction Sys-

tem (ARIES), shown in Figure 1.2 [34]. ARIES is an automated system that

dismantles plutonium pits. While ARIES was successful, it can perform only

one task and is not easily adaptable to other tasks.

The Nuclear and Applied Robotics Group (NRG) at The University of
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Figure 1.1: A glovebox as used in the nuclear industry at the Rocky Flats
Nuclear Weapons Plant [42].

Texas at Austin has made several forays into glovebox automation. Peterson

et al. [32] demonstrated material reduction inside of a glovebox. Paredes et

al. [31] performed three tasks inside a multi-use glovebox: drilling, sorting,

and surface finishing, shown in Figure 1.3. The last task provided the impetus

for this effort. Paredes et al. used the ROS Descartes trajectory planning

package [14] in order to create smooth paths over the surface of an object.

However, the Descartes planning system fails if the robot fails to reach just

one point and does not currently provide information to the user on which

2



Figure 1.2: Model of the ARIES glovebox [34].

point, or points, in the trajectory failed, or why. Therefore, the user must

iteratively attempt to find a location to execute the trajectory where the robot

can a) reach all of the points and b) execute the trajectory without violating

joint limits, velocity limits, or other constraints. A way to analyze the health

of any given trajectory would greatly improve robot trajectory planning and

execution.

Additionally, the glovebox is a relatively small cubicle volume, about

100 cubic feet, and, as in the case of Paredes et al. [31], quickly becomes

crowded when multiple tasks need to be performed. The addition of one task

may cause other tasks to be rearranged or removed. The ability to identify
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Figure 1.3: The three tasks of the multi-use workcell: drilling, sorting, and
surface finishing [1].

where tasks can be performed would help the user design the workcell and

easily add more tasks. Beyond glovebox automation, such a tool would be

useful in other application areas and domains including small batch manufac-

turing, cooperative robotics, surgical robotics and assistive robots where task

trajectories are often known and repeatable. There have been previous efforts

related to this problem in the literature and industry which are discussed in

more detail in 2. For example, there are multiple research efforts that have

attempted to describe, define, and/or visualize the space the robot can reach.

1.1 Definitions

Below we briefly define several common terms in robotic kinematics

that are related to this effort. This section is included in the introduction

to create a shared vocabulary for the reader. A point in Cartesian space is

defined as x =
[
x y z α β γ

]
.

For this paper, a path is defined as a set of ordered points through

which the tool of the robot must pass. The definition of a trajectory is similar

to a path but includes velocity, acceleration or other derivative information for
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the robot’s end-effector (EEF) or tool. Therefore, a path informs only the

curve’s location whereas a trajectory is both position- and time-based. While

a path is primarily restricted by the dexterous workspace and joint limits,

trajectories can be further restricted by velocity limits, acceleration limits,

singularities, and other peculiarities in a given rate-based inverse kinematic

algorithm. Furthermore, if the task involves a payload or contact, the system

may be limited by payload, actuator current limits or joint torque limits.

Joint limits are required for joints that cannot rotate indefinitely. Joints

also have velocity limits to ensure that safe velocities are not exceeded. A

singularity occurs when the configuration of the robot is such that the robot

cannot move in a certain direction [28], for example if two axes of rotation are

coincident, then motion in an output manifold is lost.

Intuitively, a robot arm has a limited reach much like a human arm. As

an example, a two Degree-of-Freedom (DoF) robot will be able to reach an area

in a plane as shown in Figure 1.4. Most joints are prismatic, or sliding joints,

or revolute, or rotating joints. The number of directions a joint can move in

determines the DoF of a particular joint. The DoF of the robot, n, is usually

equal to the sum of every joint’s DoF. A three DoF robot with non-coplanar

joints will be able to place its EEF within a volume in space (SE(3)). The

reachable volume or area is defined as the robot workspace, see Figure 1.5.

In order to reach a specific point (x, y, z) with a given orientation (xrot,

yrot, zrot), a robot must have at least six DoF. The area of a workspace where

a robot can reach a point from any orientation is known as the dexterous

5



Figure 1.4: The workspace (in gray) of a two-link robot arm that rotates about
the origin. Left: the link lengths are equal. Right: the second link is shorter
than the first link.

Figure 1.5: The workspace of a Universal Robotics UR3 robot arm [3].

workspace [26]. The collection of points a robot can reach is known as the

reachable workspace. Robots with greater DoF, n, than the dimension

of the task space, m, are redundant, n > m, as the robot can approach

the EEF location spanning one or more continuous joint position ranges or

manifolds [40]. The task workspace is different than the robot workspace.
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For example, a pick and place task may require only 3 DoF (m = 3) if the

object can be picked up from any orientation.

Frames define a point of origin for a coordinate system with respect

to parts of the robot. For example, for a fixed manipulator, the base frame

is a stationary frame located at the origin at the base of the robot. In the case

of mobile robots, the base frame may move. The tool frame has its origin

at the EEF or tool point and moves with the tool. There is a frame for each

joint and the math for transferring from one frame to another can be used

to determine the configuration dependent Jacobian matrix which is a linear

mapping of the joint velocities to the EEF velocities.

The transformation matrix from reference frame i to frame j is given

by the matrix i
jA:

i
jA =

[
i
jR

i
jo

0 1

]
(1.1)

Where i
jR is the relative rotation and i

jo is the displacement between i

and j. To move between successive reference frames, we multiply A matrices.

Kinematics are the study of how different robot joint positions trans-

late to positions in space, as shown in Equation 1.2 where x are the EEF

coordinates in space and Θ are the joint positions. J is the Jacobian matrix

that maps the joint velocities to Cartesian EEF velocites.

ẋ = JΘ̇ (1.2)
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Inverse kinematics translate the Cartesian position of an EEF to the

associated robot joint positions. Inverse kinematics are used to command the

robot to desired positions. They solve for Θ in the above equation. Calculating

the inverse of the Jacobian is impossible when the Jacobian is not a square

matrix (number of rows is equal to number of columns). When this occurs,

the Pseudoinverse is commonly used to find a valid inverse of the Jacobian.

The null space of a Jacobian is the set of vectors v where:

Jv = 0 (1.3)

Performance metrics provide a way to monitor the performance of

a robotic system with respect to some operational interest. For example, the

condition number is a metric that correlates mathematically to a robot’s

proximity to singular positions. Collision distance can be used to describe

the distance to collision. Joint Range Availabilty (JRA) characterizes

robot positions by the closeness of the joint limits [18].

The dynamics of a robotic system model how a robot moves with

respect to force inputs including joint torques, EEF forces, gravity compen-

sation, Coriolis/centripedal effects and body contact forces. For this effort,

the dynamics of the system can largely be ignored as tasks are within the

industrial manipulator’s payload limitations. Such payloads are typically de-

termined by considering mass moved at both full acceleration and extension.

Since glovebox motions are sufficiently slow to be considered quasi-static and
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the manipulators cannot be fully extended in the confined environments, is-

sues related to system dynamics can be neglected. Scenarios where the system

dynamics cannot be neglected are considered outside the current scope of this

effort, but such efforts would also include the methodologies presented in this

effort.

1.2 Problem Statement

The reachability analysis methods found in the vast majority of the

literature (and reviewed in 2) do not include task-based information. Typically,

the task agnosticism and generalization of these approaches has been a touted

feature, but these approaches have rarely been applied to design and/or deploy

systems as complex as glovebox automation dealing with confined/crowded

spaces, trajectory complexity, and task variation/uncertainty. Based on our

experience, existing tools, while useful for evaluating a system’s capabilities,

are not useful for investigating an existing system’s ability to complete new

tasks. The identified tools are:

• Computationally expensive, and cannot provide immediate feedback to

a system developer,

• Do not include the obstacles in their analysis,

• Do not account for the task spaces where m < 6, and

• Typically focus on reachability which can validate paths, but not trajec-

tories.
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Thus, the Task-Trajectory Analysis Package (T-TAP) would greatly

help developers more quickly and easily utilize robotic systems to complete

new or modified task trajectories.

1.3 Objectives

The objective of this thesis is to develop improved visualization tech-

niques for evaluating a robot’s ability to execute complex task trajectories

and then implement the techniques as a tool in ROS. The focus will be on

stationary serial manipulators, but without any assumptions concerning the

joint types, number of joints, or dimension of the task space. While the main

focus of this effort is to aid the user in choosing a location for the trajectory

in the global space, the T-TAP will also help users select functional workspace

layouts in crowded environments.

The key functions of such a tool should include:

• generalized to work with any task spaces where m ≤ 6;

• alerting the user to which designated points along the trajectory’s path

are reachable (or not);

• for reachable paths, informing the user if the trajectory will fail and and

for what reason(s) (joint limit violation, velocity limit violation, collision,

singularity, etc.);

• visually reporting these results to the user; and

10



• visualizing calculated performance metrics over the trajectory and sim-

plifying the inclusion of new metrics.

Furthermore, efforts will be made to ensure the usability of the proposed

system including minimizing the calculation and simplifying the inclusion of

new environmental factors such as new obstacles. The list above shows that

the problem is divided into two parts, the first dealing with whether a robot

can reach all of the points in the path. This step is simple, but necessary

to quickly and efficiently filter out poor task or robot placement. Once the

robot can reach the path, the second part deals with whether the robot can

reach those points given the timing constraints on the trajectory, notes if

and where the trajectory fails and how, and provides performance metrics for

the trajectory to monitor the ”health” of the execution. These performance

metrics will provide the operator with insights on how to modify the task (EEF

velocity, part placement, rearranging other glovebox items, etc.) so that it can

be completed.

1.4 Organization

Chapter 1 showed the need for tools that describe a robot’s workspace

(particularly for complex tasks in confined environments) and reviewed the

relevant terms and concepts. Chapter 2 reviews related methods in the liter-

ature or industry for analyzing workspaces. Chapter 3 describe the design of

the T-TAP and its capabilities. Chapter 4 discusses the implementation of the

11



T-TAP into ROS. Chapter 5 demonstrates and evaluates the T-TAP in use for

relevant test cases using both simulation and hardware as well as compares its

performance and capabilities to previously identified methodologies from the

literature. Chapter 6 summarizes the developed tool(s), documents areas for

future work, and concludes the thesis.
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Chapter 2

Literature Review

This chapter covers efforts related to defining a system’s capability

to perform tasks and current trajectory planners used to complete such tasks.

Most tools currently focus on reachability so they are reviewed first. Second we

review existing planners. Since our goal is not to develop trajectory planners,

but rather to more effectively utilize existing planners, it will be necessary

to understand current practices and capabilities. Next, since the goal is to

give the system designer/developer information that assists them with task

placement(s) within a robot’s workspace, the literature related to evaluating

robotic performance in general is reviewed to identify additional performance

parameters that may be of use as a part of this effort.

2.1 Existing Reachability Tools

Reachability tools have mostly focused on problems related to system

design or understanding the overall capabilities of existing systems. Thus,

most solutions use a pre-calculated reachability map. These are calculated

with forward kinematics, inverse kinematics, or using other methods such as

link sweeping. They can be roughly categorized into those that leverage for-

13



ward kinematics, inverse kinematics, or algorithms that do not rely on the

kinematic model at all.

2.1.1 Forward Kinematics and No Kinematics

Forward-Kinematics-based and No-Kinematics-based methods typically

create reachability maps through iterative methods, such as Monte Carlo sam-

ple or joint sweeping. Müller et al. [30] created a reachability map used for

identifying reachable poses for grasping. Each arm joint is rotated 0.5 degrees

in between joint limits to determine the reachable workspace. The reachability

map is precomputed for the 5-DoF Nao robot arm, as shown in Figure 2.1,

and used to grasp coffee mugs. Additional motion planning capabilities are

needed to account for obstacles. The shortest distances between the fingers

and the obstacles are calculated for each point in the possible paths to ensure

there are no collisions. Burget and Bennewitz [9] extend the forward kinemat-

ics reachability map to an inverse reachability map that can provide suitable

robot base locations, as shown in Figure 2.2 for performing tasks. This method

was implemented on the Nao humanoid robot for use with specified grasping

poses. Alciatore and Ng [5] use random sampling of joint positions to describe

the workspace with the Monte Carlo Method, see Figure 2.3. They do not

discuss obstacle avoidance.

A few solutions exist that do not utilize inverse or forward kinemat-

ics. The sweeping method [15] starts at the last link in the robot, moves the

link through its full range of motion, takes the created shape and sweeps it

14



Figure 2.1: Reachability map of the Nao robot where red is most reachable
and green is least reachable [30].

along the next link’s range of motion. This is repeated until there a full repre-

sentation of the reachable workspace, though it is hard to visualize vacancies

internal to the outer boundary of the swept volume. While computationally

efficient, this approach also does not account for self-collision or calculate the

dexterous workspace. Kieffer et al. [21] use neural nets to learn the relation-

ship between Cartesian EEF coordinates and joint positions for a 2 DoF robot.

This method does not include collision objects. Baranes and Oudeyer [6] use

active learning to obtain an inverse kinematics relationship. They use a re-

dundant 15 DoF robot and have the robot learn its reachability in the task

space while performing a task.
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Figure 2.2: Suitable base positions of the Nao robot for a given grasp [9].

2.1.2 Inverse Kinematics

Most Inverse-Kinematics-based (IK) methods divide the possible workspace

(usually estimated as a cube with sides twice as long as the robot arms and

the robot centered in the cube) into discretized points. These methods use IK

techniques to plan to each point from different angles of approach in order to

determine reachability:

ReachabilityIndex = R/N ∗ 100 (2.1)
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Figure 2.3: Monte Carlo points for a 2D robot workspace [5].

Where N is the number of possible approaches to the point and R is

the number of reachable approaches. This reachability map can then be used

to find suitable robot base positions or task trajectory locations.

2.1.2.1 Inverse Kinematics Reachability Maps

Zacharias et al. [48] provide a method for workspace discretization to

create a reachability map. Zacharias et al. also created a capability map. The

capability map is a reachability map featuring cones instead of spheres that

give an indication of the directions from which the robot can reach each loca-

tion. In the realm of trajectory reachability, Zacharias et al. use the reachabil-

17



ity map to search for plausible linear trajectories [47] and 3D trajectories [49].

In both papers, collision checking occurs after trajectories are generated but

before they are executed. In [49] they note problems sampling trajectories,

namely aliasing where infrequent sampling can lead to curve smoothing, as

shown in Figure 2.4.

Figure 2.4: Improper sampling frequency leading to a smoother curve [49].

Vahrenkamp et al. [43] take the inverse of the reachability map. The

inverted reachability map shows if an object or pose is reachable from a base

position. Dong and Trinkle [13] create a map that can support switching

robot EEFs. They name it the orientation-based reachability map and it is or-

ganized by orientation. Whereas applying transforms destroys position-based

reachability maps, applying a transform to an orientation-based reachability

map creates a different orientation-based reachability map. Diankov imple-

mented the reachability and inverted reachability maps into software called

Open Robotics Automation Virtual Environment (OpenRAVE) [12]. Diankov

also included a powerful inverse kinematics solver called ikfast which can
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solve the IK problem for robot chains with prismatic or rotary joints. This

cannot solve for timed trajectories and is difficult to implement for each robot.

If the robot configuration changes, the solver must be recalculated.

In the NRG, Williams created a manipulabity-based method of deter-

mining task reachability [45]. Williams determines the manipulability of a

task plane based on a robot position. In this case, manipulability differs from

reachability in that reachability is calculated over a sphere and manipulability

is calculated over a circle. This information is used to help plan robot locations

for performing tasks in a glovebox.

Figure 2.5: Task planes for different grasping positions for a Yaskawa Motoman
SIA-10 robot [45].
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One package that exists in ROS is the Reuleaux package [29], based

on [48]. The Reuleaux package begins its calculations by first discretizing the

robot workspace. It creates a cubic estimation of the robot’s workspace which

it then divides into discrete units. Each unit is filled with a sphere. Then, the

program removes poses where the robot will be in collision with its self.

Each of the spheres created during the workspace discretization is sur-

rounded by possible poses pointing towards the sphere, as shown in Figure 2.6.

For each of these poses, Reuleaux uses an IK solver to determine whether the

pose is reachable or not. This is translated into a reachability map, as shown

in Figure 2.7.

Reuleaux can also create a capability map to show the directionality of

the reachability map and, given task poses, determine suitable base locations

for mobile robots to perform a task using the inverse of the reachability map.

Reuleaux does not incorporate obstacle avoidance nor is it extensible to all

robots. The IK method used to solve for all points in the robot workspace

is suitable only for < 8 DoF robots. Additionally, computation times often

exceed two hours depending on the density of the reachability map. However,

it can work for all task spaces depending on the search method used by the

developer to identify acceptable areas for performing tasks.

2.2 Task Trajectory Planners

The sections above outline existing tools for determining either reacha-

bility of a given robot in terms of its reachable workspace, dexterous workspace,
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Figure 2.6: Poses surrounding a sphere for the inverse kinematics calculations
[29].

or capability to complete a given trajectory. But other tools exist to define

and/or execute a given point-to-point move or follow a given trajectory. Thus,

it is necessary to quickly review existing planners to determine if they include

planning capabilities and/or how they handle conditions where the task can-

not be executed. This review of current trajectory planners suggests we can

improve the usability of existing trajectory planners instead of developing yet

another solution in a crowded field. The focus will also be on planners that

are compatible with ROS.
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Figure 2.7: The Reuleaux reachability map for a LWR 7 DoF arm. Red
indicates areas of low reachability and blue indicates areas of high reachability
[29].

Existing ROS trajectory planners include Descartes [14], MoveIt! [41]

and Trajopt [39]. Descartes uses a graph-based search to identify low-cost

trajectories, particularly for tasks where the robot is redundant relative to the

task output space. A cost-based minimization algorithm generates smooth

trajectories that follow the given trajectory step time [14]. The user must

input a 6 DoF task, but may reduce the number of DoF by adding freedom

about an axis. A successful Descartes trajectory will show the user Figure 2.8
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in the terminal and the robot will perform the trajectory.

Figure 2.8: The output for a successful Descartes trajectory.

The Descartes trajectory planner was used in the NRG’s multi-task

glovebox efforts [31] and we observed its failures could be placed into two cat-

egories: the robot cannot reach one or more of the points, or the robot cannot

move between the points with the desired velocity without exceeding defined

joint velocity limits. In the event of a failure, the information reported to the

developer is shown in Figure 2.9. Such failures are identified by executing the

path and can only be corrected via trial-and-error adjustments to the task

and/or robot’s configuration.

MoveIt! plans joint and EEF positions to generate moves either to a

point or along a constrained path, such as with a fixed EEF orientation, or

a Cartesian path, which consists of moves in the x, y, or z directions [11].

It does not handle timed moves or trajectories except with post-processing

where timestamps and velocity or acceleration values may be appended to a
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Figure 2.9: The output for a failed Descartes trajectory.

previously planned path. Depending on the path, it may not be possible to

achieve the desired trajectory. Moveit! fails when a move cannot be performed

and does not provide any further information to the user unless a robot link

is in collision.

Trajopt is a trajectory optimization method that can use sparse sam-

pling to create collision-free paths [39]. Covariant Hamiltonian Optimization

for Motion Planning (CHOMP) can improve sampled trajectories and optimize

based on dynamic or task-based criteria [37]. For example, CHOMP can take

a trajectory with collisions and find a collision-free trajectory while optimizing

for joint velocities [11].
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2.3 Performance Metrics

Researchers have previously developed a range of metrics to evaluate

the performance of robotic manipulators for a variety of motivating reasons

including redundancy resolution [19], system design [22], obstacle avoidance

[27], as well as task optimization [25]. While not all the identified criteria

would be relevant or beneficial in assisting an operator in part placement,

several in the literature that could be useful are identified and reviewed in this

section.

Several performance metrics can be used to evaluate a system’s reach-

ability during design or in real-time. Such metrics can also be used to define

the redundancy resolution problem as an optimization problem. Metrics com-

monly defined in the literature include manipulability [46], dexterity, smooth-

ness, transmissibility, system condition, etc. Manipulability, for example, de-

fines a robot’s ability to change the position or orientation of the EEF [46]

given the current joint configuration. Yashikawa’s manipulability metric is

given in Equation 2.2.

w =
√
det(J(Θ)JT(Θ)) (2.2)

Where (J)(bf(Θ)) is the Jacobian of the robot with joint angles bf(Θ)

and T symbolizes the transpose of a matrix.

Alternatively, one can use the manipulability ellipsoid [46] with princi-

pal axes θ1u1, θ2u2, ... , θmum where θi are the singular values and ui are the
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column vectors of the singular value decomposition:

J = UΣVT (2.3)

Dexterity can have many different physical meanings, from the manip-

ulator’s ability to reach a point from different orientations to the capability of

the manipulator to perform fine, accurate motions [22]. Smoothness describes

the motion of the EEF over a trajectory. Efficiency refers to minimizing some

measure of efficiency such as kinetic energy [35]. Another common metric

for dexterity or singularity avoidance (which are intrinsically related) is the

condition number, commonly defined as:

c(JT) = ‖JT‖‖J−T‖ (2.4)

It can also be used to measure the accuracy of an applied force [38]. Near

singularities, the condition number approaches infinity.

There are also task-based quality measures, such as µ [25] among others,

which measure the quality of grasping and thus are not relevant to this review.

2.4 Summary and Analysis

Most existing tools use a reachability map computed either with for-

ward or inverse kinematics. These reachability maps can be extended to inverse

reachability maps to search for ideal robot base placements. The sweeping

method only describes the robot’s reachable workspace.
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The solutions listed above are not ideal for many applications. The

maps can take hours to compute for a single robot configuration. In the case of

Zacharias et al. [48], it took 12.4 hours to build all maps. As the maps describe

the global robot workspace, they provide significant amounts of unnecessary

information when looking at a single task. The maps are also robot-dependent;

if the tool or robot changes, the maps must be recomputed. Dong and Trinkle

attempt to solve this problem using their orientation-based reachability map

[13] but can still account for only tool changes and not changes in the robot

or robot configuration. This dependency is based on the need to solve the

forward or inverse kinematics problem for each specific robot. Applied to the

entire robot workspace, this is computationally expensive.

Furthermore, users need to use complex search algorithms to find where

trajectories can be performed [47,49]. They provide too much information for

the user to visually identify where the desired trajectory is possible.

Many of these solutions do not account for dynamic environments.

Most perform collision checking after generating plausible trajectories [47,49],

which may not be ideal for crowded environments where many or all possible

trajectories may be in collision.

Thus there is a need to develop a task-specific tool for verifying and

analyzing a robot’s ability to complete a specific trajectory in a given envi-

ronment, and provide guidance to the user in the event that the proposed

trajectory is not possible. While planners such as MoveIt! provide a baseline

capability to verify that selected points along a trajectory are reachable, it
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cannot efficiently validate the continuum of a trajectory’s curves, nor can it

advise on the robot’s ability to complete the trajectory. While other planners

including Descartes and TrajOpt, can inform the operator of a failure in ex-

ecuting its trajectory, none inform the user of how it fails or provide useful

information on how to adjust the task space to eliminate the failure. Opera-

tors typically resort to trial and error in order to assure the task is completed.

Such an approach is untenable if the environments are complex or the system

must complete multiple tasks in a single space. Furthermore, these trajectory

planners are unable to exploit the advantages that may exist if the task space

is less than the 6-dimensional Cartesian Space. Finally, a variety of perfor-

mance metrics were identified in the literature that could be calculated along

the identified trajectory and communicated to the system developer to provide

beneficial feedback and eliminate (or reduce) the frustrations associated with

trial-and-error task placement.

The next chapter will use the lessons listed here to develop the Task-

Trajectory Analysis Package (T-TAP) with three key components: reachability

verification, trajectory verification, and presentation of relevant performance

metrics calculated during the task execution.
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Chapter 3

Development

Chapter 2 showed the need for a task-based trajectory analysis tool.

Current reachability tools usually describe the robot’s entire reachable workspace

using a global reachability metric, not the accessibility of the task workspace.

This chapter describes the mathematical constructs and algorithms of the

Task-Trajectory Analysis Package (T-TAP) which include:

• reduction of task space (when m < 6) for both paths and trajectories,

• general reachability of the path,

• reachability of the trajectory based on:

– adherence to joint position limits,

– compliance with joint velocity limits based on time parameteriza-

tion,

– overall health of the trajectory given by the condition number or

other selected metrics.

3.1 Requirements

In order to provide practical feedback to the user, T-TAP must accom-

plish certain requirements. T-TAP must be ”quick,” where quick is defined
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as taking minutes to run, not hours. Less than ten minutes for most paths is

desirable. Additionally, as most current solutions do not account for obstacles,

T-TAP must be able to account for obstacles including environments where

obstacle placement may change.

Since many tasks exist with m < 6, the T-TAP should be able to work

with any task where m < 6.

Finally, the T-TAP must provide visual feedback to the user. The T-

TAP must identify path reachability and trajectory feasibilty with respect to

robot design or performance constraints. For trajectories, T-TAP must show

whether joint limits were met. Selected metrics must be visualized and should

be extensible to include additional metrics.

These requirements are organized in Table 3.1.

Requirement Definition

Quick Run Time Run time of less than 10 minutes for most tasks

Obstacle Awareness Accounts for obstacles and movement of obstacles

Task Generality Works for tasks with m ≤ 6

Path Reachability
Visualization

Identifies where in the task the robot can and cannot reach
and displays this to the user

Joint Limit Check Ensures all joint limits are met

Metric Visualization Visualizes the selected metrics in a way that is intuitive to
the user

Metric Extensibility Can include additional metrics

Table 3.1: Table of requirements and their definitions.
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3.2 Path Reachability

The first step is to quickly verify whether the points along a trajectory

are reachable by the robot. This step occurs first since all generated trajec-

tories are guaranteed to fail if the robot cannot reach each individual point

without any other constraints. While relatively simple to check using common

methods, there are several secondary requirements that should be considered

in the trajectory reachability step, including:

• speed of the trajectory with respect to joint velocity limits,

• warnings for attainable but poorly conditioned points,

• and visualization of failed point(s) to assist the user in re-positioning the

task.

Zacharias et al. [47,49] search the reachability map for areas where de-

fined trajectories can be completed. This requires the prior calculation of the

reachability map, which can take 4 hours or more, depending on the discretiza-

tion size of the map. For a simple check of a trajectory, this time frame is not

ideal. Additionally, fitting a discrete trajectory to a discretized map brings up

other difficulties, namely the problem of fitting path points to the discretized

workspace. This can lead to the aliasing issue described in Chapter 2.

With any changes to the robot configuration or environment, the reach-

ability map must be recalculated. This limits hardware agnosticism. Using

this knowledge, a desirable solution would check each pre-calculated path point
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instead of computing an entire map. Therefore, we use the robot model and

an inverse kinematics solver to plan to each point from a starting position and

determine whether that point is reachable from the starting position.

Alternatively, we could plan to one point, then plan to the next point

from the previous point. We selected the current solution in favor of the

alternate solution due to speed considerations. If we plan to one point and

then want to use that point to plan to the next, we need the IK solver to find

a plan, then to wait for the robot simulation to execute that plan and update

its position. Whereas if we plan from the same starting point, we only need to

wait for the IK solver to find a plan (or time out, as is discussed in Chapter 4)

before we can immediately start planning to the next point without needing

to wait for an updated robot state.

Paths are given in the form of waypoints: specified points along the

path. These waypoints include x,y,z positions and quaternion orientations;

the reasoning for this is discussed in Chapter 4. The specific IK solver utilized

is left to the user’s discretion. ROS-related options will be discussed in Chapter

4. To update the trajectory reachability with a change in obstacles or robot

configuration, one must simply alter the robot model and rerun the code. The

IK solver will account for the differences in the robot configuration and/or

environment. Collision checking is performed inherently in the IK solver and

is discussed in further detail in Chapter 4.

The code begins by marking every point in the path as blue to indicate

which points have not been tested. This was done to allow the user to imme-
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mark a l l po in t s blue
for i =1:number o f po ints ,

from s t a r t i n g pos i t i on , plan to po int i
i f s u c c e s s f u l ,

mark po int as green
else

mark point as red

Code 3.1: Pseudocode for path reachability

diately visualize the path they sent to the robot and check to make sure that

it is correct. It also allows the user to see the code progress. As each point is

tested, the point is marked either red or green, red showing a failed point and

green showing a successful point.

Code 3.1 demonstrates the algorithms used to determine trajectory

reachability:

A* is one existing algorithm that plans to a point [16]. It searches

along nodes to find the minimum cost path. Moreover, it searches the fewest

amount of nodes needed to guarantee a lowest cost solution. Rapidly-exploring

Random Trees (RRT) provide a way to quickly search the workspace for vi-

able paths, without putting an emphasis on minimum cost paths [24]. These

are extended for use in redundant systems [8]. Some planning methods use

artificial potential fields to steer the planned path away from obstacles and

towards a goal [44]. ROS has several built-in options, which will be discussed

in the next chapter.

To account for tasks with space m < 6, we search near the value of the
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undefined variable, stopping when we can reach a point or when we exceed

a set time limit. For example, if the rotation about z of the end effector is

irrelevant, we randomize the value of that variable within ten degrees of the set

value. For the x,y, and z variables, we allow ten centimeters of wiggle room.

We search near the given value to try to find paths that are as continuous and

smooth as possible. We use the randomized method as opposed to iterating

through possible values as the iterative method quickly blows up when as m

decreases below 6. Note that the user must provide a starting value for every

variable.

One computationally expensive part of the path analysis code is the

planning visualization, which can be toggled on and off. The code run time

also increases dramatically when m << 6. Different, more intelligent methods

for searching the task space are possible and do exist, but are outside the scope

of this work. Potential solutions are described in 6 under Future Work. The

code is tested for its run time in Chapter 5.

The path reachability portion of the T-TAP does not support velocity

limits or singularities as they relate to traversing a trajectory, but does ensure

joint limits are met for each waypoint.

3.3 Trajectory Analysis

Once all of the points on a proposed trajectory are reachable, we can

analyze the trajectory. While higher order kinematic and dynamic analysis

is possible, this work focuses on the first order kinematics governed by the
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following equation.

ẋ = JΘ̇ (3.1)

Where x is a vector of Cartesian velocities, J is the Jacobian matrix,

and Θ̇ is a vector of joint velocities. The Jacobian is a function of the robot’s

current joint position. For small ∆Θ, this equation can be written:

∆x = J∆Θ (3.2)

Equation 3.2 shows that a change in Θ results in a change in x that is

proportional to J. If J is known, we can convert changes in x to changes in

Θ. I.e. we can convert changes in the end-effector position to changes in the

joint positions of the robot:

∆Θ = J−1∆x (3.3)

Where J−1 is the inverse of the Jacobian matrix. We assume that J

is known, as many programs can solve for J given the robot configuration.

However, if J is not a square matrix (i.e. m = n), no inverse exists for J.

Therefore, we must use the pseudoinverse of J. There are several different

ways to calculate a pseudoinverse, the most common being the Moore-Penrose

pseudoinverse:
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J+ = JT(JJT)−1 (3.4)

Equation 3.4 holds only for m < n. For m > n:

J+ = (JTJ)−1JT (3.5)

In Equations 3.4 and 3.5, JT is the transpose of J and J+ is the pseu-

doinverse. These equations require that J is full rank [23].

Another method of obtaining the pseudoinverse is through Singular

Value Decomposition (SVD) [4, 10]:

J+ = VΣ+UT (3.6)

Where the matrices U (a matrix of left singular vectors), V (a matrix

of right singular vectors), and Σ (a diagonal matrix containing the singular

values of J) are derived from the decomposition of J, given by:

J = UΣVT (3.7)

Σ+ is the pseudoinverse of Σ. This pseudoinverse is created by taking

the reciprocal of the nonzero values of Σ.

We use the SVD formulation of the pseudoinverse, as it does not require

a full-rank matrix J nor does it require changing the formula based onm > n or
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m < n. Given a robot starting position on the trajectory, we can use Equation

3.8 to calculate the joint positions for the next point on the trajectory. The

trajectory point format is the same as the path point format described above,

with the addition of a time step to describe the time it takes the robot to

travel between waypoints.

∆Θ = J+∆x (3.8)

For tasks with m ≤ 6, we can remove the corresponding rows of the

Jacobian matrix and x vector to account for reduced output space of the task.

Once we calculate the joint positions, we check to make sure that the

newly calculated joint positions are within the joint position limits. Given

a time step that dictates the time spent moving from point to point in the

trajectory, we calculate the joint velocities and ensure that these are within

the joint velocity limits. If a trajectory exceeds only velocity limits, the time

step can be increased to create a successful trajectory. Once a robot exceeds

joint limits, we exit the code as the rest of the trajectory is impossible.

Next, we ensure that the new joint position is not in collision with the

environment or in self-collision. First, we obtain the collision scene from the

robot environment. We check that each trajectory point is not in collision.

When the robot collides with an object, we exit the code and identify the

collision with a marker showing the collision point. This way, the user knows

where the collision occurred and can adjust the trajectory as needed.
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s t a r t with robot at t r a j e c t o r y po int 1
for i =2:number o f po ints ,

get Jacobian
determine change in x from point i−1 to po int i
remove rows o f the Jacobian /x as needed
c a l c u l a t e pseudo inver se o f Jacobian
c a l c u l a t e change in j o i n t ang l e s
i f in j o i n t p o s i t i o n l i m i t s

continue
else

break
c a l c u l a t e j o i n t v e l o c i t i e s
i f in j o i n t v e l o c i t y l i m i t s

continue
else

break
i f not in c o l l i s i o n

continue
else

show c o l l i s i o n po int
break

c a l c u l a t e met r i c s
c r e a t e v i s u a l i z a t i o n o f met r i c s

Code 3.2: Pseudocode for trajectory analysis

For the new trajectory point, we calculate the desired metrics and dis-

play them for the user.

This process is shown in the pseudocode below:

While other metrics can be added to the code, the selected metric for

this effort was the condition number. We selected this metric to identify when

the robot is running into a singularity, as the existence of singularities along a
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trajectory can cause the trajectory to fail or otherwise behave in an undesirable

manner. Undesirable behavior includes erratic, jerky movements that occur

as the robot can no longer move in the desired direction. To check for these

singularities, we calculate the condition number.

There are many ways to calculate a condition number. One common

method, identified in Chapter 2, is shown in Equation 3.9.

c(JT) = ‖JT‖‖J−T‖ (3.9)

We use the SVD version of the condition number, which is the ratio

of largest to smallest singular value [17]. The singular values are found in

the matrix Σ, as described above. The SVD condition number avoids the use

of complicated matrix norm calculations and circumvents the choice of which

norm to use, which may vary based on the application.

A large condition number implies that the system is close to a singu-

larity. After a large condition number occurs, the rest of the trajectory is not

viable and the program exits the loop of trajectory calculations. The selec-

tion of the cutoff for condition numbers is described in Chapter 4. Condition

numbers are displayed according to three binned categories. Low condition

numbers are green, condition numbers approaching the cutoff are yellow, and

condition numbers exceeding the cutoff are red.

Once the calculations are complete for every waypoint in the trajectory,

we show the user the final trajectory. We do not update the position of the
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robot during calculations as this was proven to be computationally expensive

and increased the run time of the code.

With this framework for the T-TAP, we can now implement the T-TAP

in ROS.
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Chapter 4

Implementation

The chosen platform for the implementation of this project is the ROS

[36]. ROS is an open-source platform for robot development. Many motion

planners and trajectory planners, such as MoveIt! [41] and Descartes [14] al-

ready exist in ROS. T-TAP was coded in C++, one of the languages supported

by ROS.

The system was designed to be hardware agnostic for all serial manip-

ulators, although it was tested on the SIA5 (a redundant robot) and UR3 (a

non-redundant robot). To use T-TAP, the user needs a visualization of the

robot and collision scene in RViz, as shown in Figure 4.1, to fill out the config

file, and to give the needed trajectory to either the path reachability or trajec-

tory reachability program. T-TAP uses the same trajectory input file format

as the Descartes tutorials, that is, an Eigen::Affine3d vector of x,y,z posi-

tions and quaternion orientations. This type of vector was selected because it

can be converted into different message types as needed for different applica-

tions. For example, it can be converted to a geometry msgs::Pose using the

tf::poseEigenToMsg method.

The config file includes information such as the name of the robot move
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Figure 4.1: The SIA5 and glovebox in the RViz environment.

group, the fixed frame of the robot, the topic name for the joint trajectory

command (needed for trajectory reachability only), the joint state topic, the

time step (needed for trajectory reachability only), the task free variables, and

the reduced task space time out time (needed for path reachability only).

4.1 Path Reachability

T-TAP uses the robot visualization and collision scene as the robot en-

vironment for the path reachability test. The robot visualization also informs

the code as to which robot is being used for motion planning. First, T-TAP

displays each untested point as blue in RViz using visualization markers. Then,

it tests the reachability of each point using the built-in inverse kinematics of

MoveIt!. IK algorithms are discussed in more detail below. T-TAP deter-

mines whether the robot can reach the given point from the current state of
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the robot. The inverse kinematics of MoveIt! ensures that the final pose is

not in collision with any environment objects. Points that are reachable are

marked as green and points that are not are marked red.

When m < 6, T-TAP reduces the task space by allowing for wiggle

room around the reduced output space. T-TAP does this by randomizing the

reduced variables to values near the starting value, stopping when a reachable

point is found or when a set time limit is reached. The user must still send a

starting guess for that variable. For example, if the initial guess for the EEF

rotation about z is 0 degrees, but the output space does not include rotation

about z, random values from -10 to 10 degrees will be tested.

Note that it is possible that the robot cannot reach a point from its

current state but could reach that point from another pose. Therefore the

selection of the starting pose of the robot is critical, but currently left to the

user to decide. Selection of a ”smart” starting configuration is outside the

scope of this work but is discussed in the Future Work section of Chapter 6.

As discussed in Chapter 5, the need for a better starting position occurred

only once during testing.

Once the calculation is complete, the reachability of the trajectory is

displayed. However, this algorithm is not perfect. Built-in planners have a

timeout feature. If a solution to the inverse kinematics problem cannot be

found in a certain set time limit, no more attempts to find a solution are

made. In T-TAP, this is marked as an unreachable point. We leave the time

limit in order to keep the runtime of T-TAP as quick as possible, though this
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means that sometimes reachable points will be marked as unreachable. The

user may edit this time as they see necessary, although there is a standard

time limit set in MoveIt! that is suitable for most trajectories. Unless the

robot environment is very complex, such as the glovebox environment where

there is an enclosed space with many collision objects, it will generally not be

necessary for the user to edit the time limit. The user may use any kinematics

solver they desire, although the KDL Kinematics plugin is native to ROS. If

a closed-form solver exists for your robot, as it does for the UR3, the timeout

feature will likely not be a problem.

A closed-form solution occurs when an equation (or equations) exist

that fully describe the behavior of the robot and create a solution to the IK

problem. Closed-form solutions exist only for robots with certain geometries

[33]. For example, if a 6-DoF arm has three primsatic joints and three revolute

joints, a closed-form solution exists. Robot arms with 7 DoF or more do not

have a closed-form solution and require a numerical solution.

The KDL Kinematics plugin is a numerical solution that uses the linear

least squares problem to solve for joint angles [20]. Given the forward kinemat-

ics equation as shown in Equation 4.1, the least squares problem minimizes

Equation 4.2 to obtain a solution to Equation 4.1.

ẋ = JΘ̇ (4.1)
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‖ẋ− JΘ̇‖ (4.2)

The value in Equation 4.2 is minimized using gradient descent, such as

Newton-Raphson, which produces a initial guess for the next iteration using

the IK equation shown in Equation 4.3. A pseudoinverse is used if necessary.

With an initial guess for Θ̇, this process is iterated until a solution is found

within a specified tolerance or until a maximum number of iterations is reached.

∆Θ = J−1∆x (4.3)

Another commonly used ROS kinematics solver is TRAC-IK [7]. TRAC-

IK utilizes two different solvers: an updated KDL solver that improves the

handling of local minima and SQP-SS, a sequential quadratic programming

solver that better handles joint limits and minimizes sum of squares error.

These solvers are run on different threads and the most quickly computed

solution is used. To switch between the KDL Kinematics plugin and TRAC-

IK, one downloads TRAC-IK and edits the kinematics.yaml file in the robot’s

MoveIt! package.

IKFast creates an analytical, closed-form solution for most robot arms

(DoF < 8) [2]. However, creating this analytical solution is a lengthy and

complex process. The user must download OpenRAVE, create a collada file,

create the IKFast solution, and then create an IKFast plugin. Additionally,

IKFast must be updated for changes in the robot configuration.

45



Overall, the native KDL Kinematics plugin is suitable for most applica-

tions, though TRAC-IK, IKFast, or a closed-form solution will likely perform

better. If a closed-form solution exists, the user should utilize that solution.

TRAC-IK is recommended over the use of the KDL Kinematics plugin, but

not required. IKFast is not recommended due to its complex implementation

unless an IKFast solution is already in use.

4.2 Trajectory Verification

Once the path reachability has been confirmed, the user can analyze

trajectory reachability. The trajectory reachability portion of T-TAP pulls

robot and collision scene information from RViz and MoveIt! T-TAP then

operates in a series of steps listed in Figure 4.2 and described below.
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Figure 4.2: T-TAP steps.

a) To initialize T-TAP, we pull configuration data from the parameter

server, initialize robot kinematics and collision scene, obtain robot information
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from MoveIt!, obtain collision scene from /move group/monitored planning scene

topic, set the planning scene to the collision scene (used for collision detec-

tion), obtain the current robot joint positions from the /joint states topic

published by the robot state or by a robot simulator, get the names of the

joints from the kinematic state, set the kinematic state to the current joint

positions, and initialize visualization markers.

b) Next, fill in the trajectory.

c) Convert the first trajectory point to a geometry msgs::Pose Stamped

type and send the robot to the first point in the trajectory using MoveIt!.

d) T-TAP looks at the current position and the next trajectory position.

We find the change in x vector, ∆x, from the current robot position to the next

trajectory point. We obtain the joint angles from the current robot position.

e) Obtain the Jacobian of the current kinematic state and remove the

rows of the Jacobian and ∆x according to the reduced task space of the tra-

jectory.

f) Apply SVD to the Jacobian and calculate the pseudoinverse.

g) Calculate ∆Θ.

h) Add ∆Θ to Θ.

i) Calculate Θ̇ using ∆Θ and the time step.

j) Get the Jacobian of the new state.

k) Use the new Jacobian to calculate the condition number and display
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it.

l) Check to see if we should stay in the loop. If c < cmax, if joint limits

are upheld, if there are no collisions, and if we are not at the last trajectory

point, we increment i and restart the loop.

If the above conditions fail, we exit the loop and display whichever

portion of the trajectory was completed.

T-TAP uses several classes which all have different applications in the

code. The planning scene::PlanningScene and moveit::planning inter-

face::PlanningSceneInterface classes are utilized for collision detection.

After we load the already existing collision scene into the planning scene, we

use the checkCollision method to check if the current robot state has any

collisions, either with itself or with the environment.

After T-TAP determines if any collisions exist, the collision detect-

ion::CollisionRequest class uses getCollisionMarkersFromContacts to

display the collisions. These are published to the /interactive robot marray

topic.

The robot state::RobotState class is used for obtaining the Jacobian

using the getJacobian method. Since the Jacobian is an Eigen::MatrixXd,

the built-in SVD function of Eigen can be used to calculate the pseudoinverse

and the condition number. The robot state::RobotState class is also used

to check joint position limits and joint velocity limits using satisfiesPosit-

ionBounds and satisfiesVelocityBounds.
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For visualization, we use visualization msgs::MarkerArray and vis-

ualization msgs::Marker to display collision points and condition numbers.

These are published using a ROS publisher to the /condition and /interact-

ive robot marray topics, respectively.

These classes are part of MoveIt! and are used to limit what the user

needs to download in addition to T-TAP. Since MoveIt! is paired with ROS,

the user does not need to download any packages in addition to T-TAP.

As in the path reachability section of T-TAP, the starting position of

the robot is critical. In this case, the robot plans to the first point, although

the user can edit the code to use a pre-determined starting pose. Since the

robot plans to the first point, the results of the trajectory reachability may

change each time the user runs the code as the starting position may change.

Intelligent selection of the starting pose is discussed in the future work section

of Chapter 6.

The condition number cutoff was determined through testing during the

development of T-TAP. For this case, the cutoff, cmax, is a condition number

of 100. In testing, T-TAP would preform well until condition numbers of

about 60. Then the condition number would jump (usually to 300+) and the

behavior of the robot would become erratic. Therefore, we stop the robot

when the condition number exceeds 100 as a conservative cutoff. The user

may need to edit the condition number cutoff based on the task or robot.
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4.3 Summary

This chapter describes the implementation of T-TAP into ROS. MoveIt!

is heavily utilized to reduce the number of packages the user must download.

The next chapter shows how the requirements listed in 3 were met by T-TAP.
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Chapter 5

Demonstration

Chapter 3 determined the requirements needed for the proposed tool,

T-TAP, summarized in Table 5.1.

Requirement Definition
Quick Run Time Run time of less than 10 minutes for most tasks
Obstacle Awareness Accounts for obstacles and movement of obstacles
Task Generality Works for tasks with m ≤ 6
Path Reachability
Visualization

Identifies where in the task the robot can and cannot
reach and displays this to the user

Joint Limit Check Ensures all joint limits are met
Metric Visualization Visualizes the selected metrics in a way that is intuitive

to the user
Metric Extensibility Can include additional metrics

Table 5.1: Table of requirements and their definitions.

The demonstrations shown in this chapter include a surface finish task

and an inspection task and were selected to exhibit the fulfillment of these

requirements

5.1 SIA5 Path Demonstration

The path demonstration is shown for the SIA5 surface finish task de-

scribed in Chapter 1.
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5.1.1 Surface Finish Task

The surface finish task is taken from the multi-use workcell described

by Paredes et al. [31]. The tool of the SIA5 robot follows a path along the

surface of a hemispherical object. For this effort, placement of the task was

arduous and repetitive, as there was no visual feedback to determine why the

task location was failing. Instead, the task location was iteratively displaced

in small amounts to try to find a reachable position near the chuck. When that

failed, random positions for the task location were attempted until a reachable

position was found. The final position of the task was selected not because it

was optimal, but because it was difficult to find a reachable position.

Figure 5.1 shows the surface finish path over the chuck, which was the

originally desired position for the task. At this location, the robot simulation

could not reach the furthest points on the hemisphere. For example, it took

hours of trial and error to conclude that the robot could not reach the surface

finish task when it was placed over the chuck. Meanwhile, it took the T-TAP

code 5 minutes and 35 seconds to identify that the robot could not reach all

the points as well as what specific points in the trajectory were not reachable.
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Figure 5.1: The desired surface finish task location. Red dots are unreachable
by the robot and green dots are reachable.

Moving the path closer to the base of the robot by seven centimeters

made the path fully executable, as can be seen in Figure 5.2. Therefore the

chuck should be moved closer to the base of the robot if possible. The T-TAP

displayed this result in 6 minutes and 07 seconds.
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Figure 5.2: The suggested surface finish task location.

Next, we analyzed the path reachability by reducing the output space

of the task from 6 to 3. The task was placed in its original location shown

in Figure 5.1. We loosened all orientation constraints on the task to see if

this improved task reachability. Figure 5.3 shows the result of this change.

The path overall had more reachable points, although some points were still

problematic. The time out period for the reduced output space reachability

was set to 30 seconds to allow for multiple retries with the reduced task space.

This run of the code took 10 minutes and 34 seconds, which is slightly higher

the subjectively selected run time of less than 10 minutes. However, it is
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possible that the code could be optimized to reduce the run time.

Figure 5.3: Updated reachability with loose EEF orientation constraints.

Finally, we move the task position down three centimeters so that the

task intentionally collides with the chuck to ensure that the obstacle awareness

is functional, which is confirmed in Figure 5.4. This run took 5 minutes and

30 seconds.
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Figure 5.4: Reachability with collision.

This demonstration showed T-TAP’s quick run time, obstacle aware-

ness, task generality, and path reachability capabilities. Table 5.2 shows which

requirements were met by this demonstration.

5.2 SIA5 Trajectory Validation using T-TAP

Next, we input the reachable path into the trajectory reachability code.

The trajectory was reachable, as shown in Figure 5.5, with a time step of 1

57



Requirement Definition

Quick Run Time Run time of less than 10 minutes for most tasks X
Obstacle Awareness Accounts for obstacles and movement of obstacles X
Task Generality Works for tasks with m ≤ 6 X
Path Reachability
Visualization

Identifies where in the task the robot can and cannot reach
and displays this to the user

X

Joint Limit Check Ensures all joint limits are met

Metric Visualization Visualizes the selected metrics in a way that is intuitive to
the user

Metric Extensibility Can include additional metrics

Table 5.2: Table of requirements and their definitions.

second to travel between waypoints. This time step was selected as it was

sufficiently slow to avoid joint velocity limit issues, but in a real task would be

driven by the task speed. This run of the code took 3 minutes and 24 seconds.

In this case, the condition number is displayed to the user based on the cutoff

values discussed in Chapter 4. It is simple to add a new metric. The metric

calculation can be added into the loop and a new marker publisher can be

created.
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Figure 5.5: Trajectory reachability.

To check for obstacle awareness, we again move the trajectory to a spot

where it will collide with the chuck. The results of this test are shown in Figure

5.6. This took 35 seconds as the first waypoint was in collision.

59



Figure 5.6: Trajectory collision with the collision point marked purple.

Next, we want to see if reducing the output space of the task will make

the original task location achievable. To do this, we remove all orientation

constraints on the task. This run of the code took 3 minutes and 38 seconds.

The results are shown in Figures 5.7 and 5.8.
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Figure 5.7: Reachability of the orientation-relaxed trajectory.
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Figure 5.8: Robot executing the orientation-relaxed trajectory.

To check the joint limit capabilities of the T-TAP, we set the time

step to 0.1 seconds, which should breach some velocity limits. The terminal

printout of this test is shown in Figure 5.9. It shows the user which joints

are in violation and which type of violation is occurring. As the joint velocity

limit failed at the first point, this step took only 33 seconds.

Figure 5.9: Trajectory reachability with joint limits exceeded.
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All requirements except for path reachability were met by this demon-

stration. This is summarized in Table 5.3.

Requirement Definition

Quick Run Time Run time of less than 10 minutes for most tasks X
Obstacle Awareness Accounts for obstacles and movement of obstacles X
Task Generality Works for tasks with m ≤ 6 X
Path Reachability
Visualization

Identifies where in the task the robot can and cannot reach
and displays this to the user

Joint Limit Check Ensures all joint limits are met X
Metric Visualization Visualizes the selected metrics in a way that is intuitive to

the user
X

Metric Extensibility Can include additional metrics X

Table 5.3: Table of requirements and their definitions.

5.3 UR3 Path Demonstration

To show that the T-TAP works on non-redundant robot arms, we ran a

inspection task demonstration on the Universal Robotics UR3. The inspection

task is inspired by a previous demonstration in the NRG. LANL had a need

to inspect detonator caps. The caps are placed in a tray, as shown in Figure

5.10, and a camera attached to a UR3 moves over the detonators to determine

whether the caps are face up or not. The user needs to place the tray in a

location where the camera can view each of the caps.
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Figure 5.10: Mock detonator caps in a tray.

Figure 5.11 shows a reachable tray position. This run took 27 seconds

and overall it took less than 15 minutes to find a position where all of the

detonators could be reached.
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Figure 5.11: A reachable tray position.

5.4 UR3 Trajectory Demonstration

Next we analyze the inspection trajectory. Figure 5.12 shows the re-

sults. This starting position was a poor choice as the robot ran into joint

limits, as shown in Figure 5.13. This took 32 seconds to run. The author rec-

ommends selecting another starting position to see if that improves the results

or removing the position constraints on the wrist 3 axis. Aside from this test,

starting pose was not a major factor in the success of a trajectory. However,

the code is shown to be functional on a UR3.
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Figure 5.12: The inspection trajectory analysis.

Figure 5.13: The inspection trajectory analysis error code.

5.5 Summary

Path reachability and trajectory verification were shown on both the

SIA5 and UR3 robot arms. T-TAP was tested to ensure it met all of the

requirements. All failure conditions were created and tested such as: exceeding

joint limits and collisions. The effects of a reduced task output space were

66



studied and shown to improve the likelihood of a successful trajectory. These

tasks may seem simple but demonstrate the needed capabilities of T-TAP.

More complex tasks are possible but would test the capabilities of the robot

and not T-TAP.
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Chapter 6

Conclusions and Future Work

6.1 Summary

Selecting a location in the workspace where a robot can complete a task

is a well-defined problem in the literature. In Chapter 2, we find that existing

solutions to this problem are (as noted in Chapter 1):

• Computationally expensive, and cannot provide immediate feedback to

a system developer,

• Do not include the obstacles in their analysis,

• Do not account for the task spaces where m < 6, and

• Typically focus on reachability which can validate paths, but not trajec-

tories.

This work describes the creation of a new solution, T-TAP, that has

the following features:

• generalized to work with any task spaces where m ≤ 6;

• alerting the user to which designated points along the trajectory’s path

are reachable (or not);
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• for reachable paths, informing the user if the trajectory will fail and and

for what reason(s) (joint limit violation, velocity limit violation, collision,

singularity, etc.);

• visually reporting these results to the user; and

• visualizing calculated performance metrics over the trajectory and sim-

plifying the inclusion of new metrics.

This system was designed to reduce the burden on the user when adding

new tasks for a robot to perform, thus lowering the barriers to automation.

6.2 Future Work

There are several areas of future work that were determined to be out-

side of the scope of this project. First, the selection of a starting robot pose

for the trajectory is significant. A poorly chosen starting pose could easily

cause the trajectory to fail, i.e. if the starting pose is close to joint position

limits. An updated version of T-TAP could include methods for choosing the

starting pose, such as selecting a pose where the joint positions are as close to

the middle of the joint range as possible. Otherwise, the randomized starting

poses could be tested and the one that creates the best trajectory, using the

condition number or other metrics as a guide, would be selected as the starting

position.

T-TAP path analysis removes constraints on a task with m < 6 by

searching around the given point for a successful, new waypoint. This does
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not capture scenarios where the successful point is just out of reach of our

widened search area. Another method for reducing the task output space for

the path code may be beneficial, depending on the user’s needs.

Due to the inverse kinematics formulation, Equation 6.1 holds only

for small ∆Θ. This limits the step size between waypoints of the trajectory.

More research is needed to determine an acceptable maximum step size for a

trajectory. Additionally, the step size could be analyzed against performance

efficiency and the minimum amount of points required to confirm the reacha-

bility of the trajectory.

∆Θ = J+∆x (6.1)

Additionally, T-TAP could feature adaptive step sizing, where the step

size decreases as the trajectory becomes problematic, for example when the

robot is approaching a singularity. Another potential feature is the ability

to dynamically adjust points in RViz to avoid problematic areas. Some tasks

also have probabilistic uncertainty for the point location, which is currently

not handled in this version of T-TAP.

While T-TAP accounts for obstacles when checking a path or trajectory,

it does not intelligently avoid obstacles. Utilizing potential fields or some other

method for object avoidance would improve the performance of T-TAP.

T-TAP was created for stationary robot arms, but it could be updated

to work on mobile manipulators and assist in the selection of a base position
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for the mobile manipulator to perform a task.

6.3 Conclusion

T-TAP helps the user visualize path and trajectory reachability. It does

this in two steps; first analyzing reachability of the path and then validating the

desired trajectory given timing information. Chapter 1 provided a motivating

example and a shared vocabulary for this effort. The motivating example was

the multiuse workcell, shown in Figure 6.1, where selecting the placement of

the varied tasks was problematic.

Figure 6.1: The three tasks of the multi-use workcell: drilling, sorting, and
surface finishing [1].

Chapter 2 examined the research in this area and determined that no

existing solution was sufficient for the problem. Existing solutions such as

Reuleaux produce reachability maps, such as the one shown in Figure 6.2,

that do not give the user easily understood, task-dependent reachability. Ad-

ditionally, solutions such as Reuleaux take hours to compute.
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Figure 6.2: The Reuleaux reachability map for a LWR 7 DoF arm. Red
indicates areas of low reachability and blue indicates areas of high reachability
[29].

Chapter 3 detailed the invention of T-TAP and created a list of require-

ments for T-TAP: quick run time, obstacle awareness, task generality, path

reachability verification, joint limit checks, metric visualization, and metric

extensibility. These requirements are listed in Table 6.1.
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Requirement Definition

Quick Run Time Run time of less than 10 minutes for most tasks

Obstacle Awareness Accounts for obstacles and movement of obstacles

Task Generality Works for tasks with m ≤ 6

Path Reachability
Visualization

Identifies where in the task the robot can and cannot reach
and displays this to the user

Joint Limit Check Ensures all joint limits are met

Metric Visualization Visualizes the selected metrics in a way that is intuitive to
the user

Metric Extensibility Can include additional metrics

Table 6.1: Table of requirements and their definitions.

After testing each point in a path for reachability, T-TAP operates

around Equation 6.2 to calculate the change in joint angles for a change in x.

T-TAP steps through the trajectory to verify whether or not the trajectory is

viable.

∆Θ = J+∆x (6.2)

Chapter 4 showed the creation of T-TAP in ROS, which follows the

steps shown in Figure 6.3.
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Figure 6.3: T-TAP steps.

Chapter 5 proved that all of the requirements were met with demonstra-

tions that displayed the capabilities of T-TAP, such as that shown in Figure
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6.4.

Figure 6.4: The results of the path reachability analysis for a surface finish
task. Red dots are unreachable by the robot and green dots are reachable.
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