arXiv:0812.1087v2 [gr-gc] 6 Feb 2009

New results for Petrov type D
pure radiation fields

Liselotte De Groote and Norbert Van den Bergh

Ghent University, Department of Mathematical Analysis
Galglaan 2, 9000 Ghent, Belgium
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INTRODUCTION

In 1990 Wils[1] showed that aligned (and therefore geodasit shear-free) pure ra-
diation fields of Petrov type D, with or without cosmologicainstant, are necessarily
non-twisting. The diverging solutions then belong to théfReon-Trautman class and
are all explicitly known[2]. In the non-diverging case, hewer, only a few type D ex-
amples are available[3]; here we present new solutionsigeig to the latter class.

A pure radiation field has an energy-momentum tensor of tha g, = @k?kP with
kak® = 0. Solutions are said to belong to Kundt's class, if the spaeealso admits a
null congruence, generated by a vectorfiglavhich is non-diverging (i.e. which is both
non-expanding and twist-free and therefore also geoddsit)vacuum and physically
reasonable matter content, the Goldberg-Sachs theorefreaipat the Kundt space-
times must be algebraically special (type Il, D, lll or N oméormally flat), with k
being the repeated principal null direction of the Weyl tani the case of a pure radi-
ation field one can furthermore show[2], making use of théengrgy condition, thek
andk are aligned and that the associated null congruence is-fieeait is known that,
in the physically important case of a Petrov type D spacetmoepure radiation field
can be a (null) Maxwell field[4], or a (null) neutrino or scafeeld|3].

As shown by Kundt[5] in 1961 the line-elements admitting adgsic, shear-free and
non-diverging null congruence can all be expressed in tira:fo

ds? = 2P~2dZdZ — 2du(dv+ Hdu+WdZ +Wd?), (1)

in which P is a real function of(,Z,u) andH,W are respectively real and complex

functions of({, {,u,v), to be determined by appropriate field equations.

The vacuum solutions of this type have been known for a veng lbme[6]. A
procedure (based on Theorem 31.1lin [2]) is also availalitevalg one to generate
non-vacuum solutions of Kundt’s class, from vacuum sohgidHowever, in this way
the Petrov type of the metric generally will be changed frortoDI. Insisting that the
Petrov type does not change, constrains the funéifipaf the ‘background-metric’ and
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it was not certain whether one could generate all pure radiaolutions in this way.

This technique was used in [3], where the authors managezh&irtict a family of type

D pure radiation fields and where they conjectured that tkesgions were the only
aligned type D pure radiation fields of Kundt’s class. Below stiow that the solutions
obtained in|[3] only cover a small part of the entire family.d follow-up paper[7] we

will show that the solutions presented here actuaMigausthe full aligned Petrov type
D pure radiation class.

KUNDT TYPE D PURE RADIATION FIELDS

The most obvious way to find all type D pure radiation fields ahidt’s class, is to start
from the general Kundt metri€l(1), express that the solstiee are looking for are of
Petrov type D, and to make sure that the field equations fa @diation are satisfied.
This however introduces a hard to solve system of non-lineaditions. We therefore
prefer to start from the general Newman Penrose equatiahtagxtract from these all
possible invariant information, before introducing anypbnates.

First we introduce the basic assumptions expressing teaiuh congruence tangent
to k is geodesic, shear-free and non-divergings: o0 = p = 0. Next we use the type
D condition in order to choose the null tetrad such #atand ®,, are the only non-
vanishing components of respectively the Weyl tensor antth@fraceless part of the
Ricci tensor. From the Bianchi identities it then followsthhe spin-coefficiemk = 0,
while appropriate boosts and rotations allow one togt0 andt —a — 3 = 0. Next
a rather technical proof shows that the spin-coefficrehtis to be real. This divides the
solutions into two cases: one in which= 0 and one in whicht £ 0.

The caserr=0

If 1= 0 we obtain the following explicit expressions for the spoefficientu and
curvature componentgt = 0, W, = —1—""2, @, = —4av. We also obtain the following

total derivatives ' representing the basis one-forms):
R
da = (2a%+ 1—6)(w1+ w?) +Aaw?,
- R
dy = dyw' + dyw?® + Ayw® — gw“,
dv = —2av(w! + w?) +Avw®.

The remaining equations to be satisfied are then given by:

oy+9doy=0,
Aa _Ey: a(V_ y)7
oy— oy =2a(y—Yy).



From the expression fab,, and the total derivatives af andv, one can see that both
a andv can not be constants. This allows one, after a few calculgtito rewrite the
basis one-forms as follows:

2iavB+Av 1 1.
w' = AV Gu— dv + ZiCdx,
4av 4av 2

w® = du, @* = dv+Hdu,

whereB and C are real functions ofu,v,x) andH is a real function of(u,v, v,X).
The remaining system of equations can be fully integratea Jubclasses have to be
distinguished (in both casbsmandn are arbitrary functions af, whileais a parameter
related to the Ricci scalar By = —32a2):

Aa =0

If Aa = 0 we obtain the basis one-forms:

1 (xy-+2i)2%ib iy 1
1 lxy+2)db oy 1
W = 7 y du+ 8adx+ 4aydy,
w® =du, w*=dv+ %(Sazv2 — my+ 2n)du, (2)

resulting ina = aandv = amy,

Aa #0
If Aa # 0 the basis one-forms reduce to:
1 . . icoshy 1
1 —_——— — _
W = 4(cosh>< i sinhx sinhy)bdu + a dx+ 4ady,
w° =du, w*=dv+ }(8a2v2 — msinhy + 2n)du, (3)

2

resulting ina = atanhy andv = amcoshy.

The caserr# 0

In this case we find explicit expressions for the spin-coieffitsa, 3, 4 and ford,,:

got¥ 1L 1. po_i¥ 1L 1
4T 2m 2 - 4m 2m 2

v(Wy+ 2L
H=0 Doy = — (¥2 )



We also find the total derivatives:

dy = Ayw? + (W, — 1° — L) w?,

Wy +2L
dv = —%(wlﬁ-wz) +Avw?®,

dr= —(m + % +L) (@' + w?),
d¥, = —3mWs (W' + w?),
from which we see tha¥, = W,(m), in particular:
— W+ P+ L =k(cW,)?3,  k,cconstants (4)

Note thatrr is not a constant, otherwis#é, would be constant and henee= 0. This
shows that we can use (or W) as a coordinate, but we prefer to write= 11(2),
W, = Yy(2) etc.

In this case we can write the basis one-forms as follows:

1
1 . .
w = —Zpdz+|pdy,

kcavZ — mz8 —nZ
> du,

z

(5)

w® =du, w*=dv— Z%dz—

with arbitrary functionsn andn of u, andp = /c2/z+kc? — LZ2.
This results it = —p/z, W, = ¢?/Z° and yields the line-element:

mPZ3 + nZ — kAv?
2

z

ds®> =2

2 1Y dudz— 202dv2 — L
du” +2dudv — 4_dudz — 2p dy? 2p2d22,

which fork = 1 andm= 0 reduces to the metric of [3].
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