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New results for Petrov type D
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Abstract. We present a new family of Petrov type D pure radiation spacetimes with a shear-free,
non-diverging geodesic principal null congruence.
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INTRODUCTION

In 1990 Wils[1] showed that aligned (and therefore geodesicand shear-free) pure ra-
diation fields of Petrov type D, with or without cosmologicalconstant, are necessarily
non-twisting. The diverging solutions then belong to the Robinson-Trautman class and
are all explicitly known[2]. In the non-diverging case, however, only a few type D ex-
amples are available[3]; here we present new solutions belonging to the latter class.

A pure radiation field has an energy-momentum tensor of the form Tab = φkakb with
kaka = 0. Solutions are said to belong to Kundt’s class, if the spacetime also admits a
null congruence, generated by a vectorfieldk̃, which is non-diverging (i.e. which is both
non-expanding and twist-free and therefore also geodesic). For vacuum and physically
reasonable matter content, the Goldberg-Sachs theorem implies that the Kundt space-
times must be algebraically special (type II, D, III or N or conformally flat), with k̃
being the repeated principal null direction of the Weyl tensor. In the case of a pure radi-
ation field one can furthermore show[2], making use of the null energy condition, thatk
andk̃ are aligned and that the associated null congruence is shear-free. It is known that,
in the physically important case of a Petrov type D spacetime, no pure radiation field
can be a (null) Maxwell field[4], or a (null) neutrino or scalar field[3].

As shown by Kundt[5] in 1961 the line-elements admitting a geodesic, shear-free and
non-diverging null congruence can all be expressed in the form:

ds2 = 2P−2dζdζ −2du(dv+Hdu+Wdζ +Wdζ ), (1)

in which P is a real function of(ζ ,ζ ,u) andH,W are respectively real and complex
functions of(ζ ,ζ ,u,v), to be determined by appropriate field equations.

The vacuum solutions of this type have been known for a very long time[6]. A
procedure (based on Theorem 31.1 in [2]) is also available allowing one to generate
non-vacuum solutions of Kundt’s class, from vacuum solutions. However, in this way
the Petrov type of the metric generally will be changed from Dto II. Insisting that the
Petrov type does not change, constrains the functionH0 of the ‘background-metric’ and
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it was not certain whether one could generate all pure radiation solutions in this way.
This technique was used in [3], where the authors managed to construct a family of type
D pure radiation fields and where they conjectured that thesesolutions were the only
aligned type D pure radiation fields of Kundt’s class. Below we show that the solutions
obtained in [3] only cover a small part of the entire family. In a follow-up paper[7] we
will show that the solutions presented here actuallyexhaustthe full aligned Petrov type
D pure radiation class.

KUNDT TYPE D PURE RADIATION FIELDS

The most obvious way to find all type D pure radiation fields of Kundt’s class, is to start
from the general Kundt metric (1), express that the solutions we are looking for are of
Petrov type D, and to make sure that the field equations for pure radiation are satisfied.
This however introduces a hard to solve system of non-linearconditions. We therefore
prefer to start from the general Newman Penrose equations and to extract from these all
possible invariant information, before introducing any coordinates.

First we introduce the basic assumptions expressing that the null congruence tangent
to k is geodesic, shear-free and non-diverging,κ = σ = ρ = 0. Next we use the type
D condition in order to choose the null tetrad such thatΨ2 andΦ22 are the only non-
vanishing components of respectively the Weyl tensor and ofthe traceless part of the
Ricci tensor. From the Bianchi identities it then follows that the spin-coefficientλ = 0,
while appropriate boosts and rotations allow one to putε = 0 andτ −α −β = 0. Next
a rather technical proof shows that the spin-coefficientπ has to be real. This divides the
solutions into two cases: one in whichπ = 0 and one in whichπ 6= 0.

The caseπ = 0

If π = 0 we obtain the following explicit expressions for the spin-coefficientµ and
curvature components:µ = 0, Ψ2 = − R

12, Φ22 = −4αν. We also obtain the following
total derivatives (ωωω i representing the basis one-forms):

dα = (2α2+
R
16

)(ωωω1+ωωω2)+∆αωωω3,

dγ = δγωωω1+δγωωω2+∆γωωω3−
R
8

ωωω4,

dν =−2αν(ωωω1+ωωω2)+∆νωωω3.

The remaining equations to be satisfied are then given by:

δγ +δγ = 0,

∆α −δ γ = α(γ − γ),
δγ −δγ = 2α(γ − γ).



From the expression forΦ22 and the total derivatives ofα andν, one can see that both
α andν can not be constants. This allows one, after a few calculations, to rewrite the
basis one-forms as follows:

ωωω1 =
2iανB+∆ν

4αν
du−

1
4αν

dν +
1
2

iCdx,

ωωω3 = du, ωωω4 = dv+Hdu,

whereB andC are real functions of(u,ν,x) and H is a real function of(u,v,ν,x).
The remaining system of equations can be fully integrated. Two subclasses have to be
distinguished (in both casesb,mandn are arbitrary functions ofu, whilea is a parameter
related to the Ricci scalar byR=−32a2):

∆α = 0

If ∆α = 0 we obtain the basis one-forms:

ωωω1 =−
1
4
(xy+2i)2ib

y
du+

iy
8a

dx+
1

4ay
dy,

ωωω3 = du, ωωω4 = dv+
1
2
(8a2v2−my+2n)du, (2)

resulting inα = a andν = amy.

∆α 6= 0

If ∆α 6= 0 the basis one-forms reduce to:

ωωω1 =−
1
4
(coshx− i sinhx sinhy)bdu+

i coshy
4a

dx+
1
4a

dy,

ωωω3 = du, ωωω4 = dv+
1
2
(8a2v2−msinhy+2n)du, (3)

resulting inα = atanhy andν = amcoshy.

The caseπ 6= 0

In this case we find explicit expressions for the spin-coefficientsα,β ,µ and forΦ22:

α =
1
4

Ψ2

π
+

1
2

L
π
−

1
2

π β =−
1
4

Ψ2

π
−

1
2

L
π
−

1
2

π

µ = 0 Φ22 =−
ν(Ψ2+2L)

π
.



We also find the total derivatives:

dγ = ∆γωωω3+(Ψ2−π2−L)ωωω4,

dν =−
ν(Ψ2+2L)

2π
(ωωω1+ωωω2)+∆νωωω3,

dπ =−(π2+
Ψ2

2
+L)(ωωω1+ωωω2),

dΨ2 =−3πΨ2(ωωω1+ωωω2),

from which we see thatΨ2 = Ψ2(π), in particular:

−Ψ2+π2+L = k(cΨ2)
2/3, k,c constants. (4)

Note thatπ is not a constant, otherwiseΨ2 would be constant and henceπ = 0. This
shows that we can useπ (or Ψ2) as a coordinate, but we prefer to writeπ = π(z),
Ψ2 = Ψ2(z) etc.

In this case we can write the basis one-forms as follows:

ωωω1 =
1

2p
dz+ ipdy,

ωωω3 = du, ωωω4 = dv−2
v
z
dz−

kc2v2−m2z3−nz4

z2 du, (5)

with arbitrary functionsm andn of u, andp=
√

c2/z+kc2−Lz2.
This results inπ =−p/z, Ψ2 = c2/z3 and yields the line-element:

ds2 = 2
m2z3+nz4−kc2v2

z2 du2+2dudv−4
v
z
dudz−2p2dy2−

1
2p2dz2,

which fork= 1 andm= 0 reduces to the metric of [3].
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