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Optimal covariant quantum networks
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Abstract. A sequential network of quantum operations is efficientlyatibed by itsgjuantum comb
[1], a non-negative operator with suitable normalizationstraints. Here we analyze the case of
networks enjoying symmetry with respect to the action of@gigroup of physical transformations,
introducing the notion of covariant combs and testers, andipg the basic structure theorems for
these objects. As an application, we discuss the optingriident of reference frames (without pre-
established common references) with multiple rounds ohtjua communication, showing thit
allowing an arbitrary amount of classical communicatioeslnot improve the alignment, ainga
single round of quantum communication is sufficient.

A quantum comb![1] describes a quantum network withopen slots in which
an ordered sequence of variable quantum devices can beeithsdrus programming
the quantum operation of the resulting circuit. Mathenalyc a comb implements an
admissible supermaj2, 3], that transforms an input network Nf quantum operations
into an output quantum operation. Having at disposal a lsleittormalism opens the
possibility of optimizing the architecture of quantum ciits for a large number of
computational, cryptographic, and game-theoreticalgaskch as discrimination of
single-party strategies, cloning of quantum transfororetj and storing of quantum
algorithms into quantum memories [1) 4| 5, 6]. For examplenum combs allow one
to find the optimal networks for the estimation of an unknowsugp transformation with
N uses at disposal, a problem that has been solved in the gashdhe particular case
of phase estimation|[7]. Using combs and supermaps one oaa jrfull generality that
a parallel disposition of thE black boxes is sufficient to achieve the optimal estimation
of the unknown group element [5], thus reducing the problerthe optimal parallel
estimation of group transformations already solved in [83f.

In this paper we summarize the main concepts and methodsogedeso far in the
optimization of quantum networks, with focus on the caseatfworks with symmetry
properties, and we present an original result on multi-doprotocols for reference
frame alignment.

1. BASIC NOTIONS OF QUANTUM CIRCUITSARCHITECTURE

1.1. Quantum N-combs

Consider a sequential network Nf quantum operations (QOs) with memory, as in
Fig.[d. Due to the presence of internal memories, there casth® networks that are
indistinguishable from it in all experiments that involvelpthe incoming and outgoing
guantum systems. The quantum comb is the equivalence diadlsnetworks having
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the same input/output relations, irrespectively of whaigeas inside. The equivalence
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FIGURE 1. N-comb: sequential network &f quantum operations with memory. The network contains
input and output systems (free wires in the diagram), as agelhternal memories (wires connecting the
boxes).

class is in one-to-one correspondence with the Choi opesétbe network, WhICh can
be computed as thiénk product[1] of the Choi operators of the qu) . Here

we adopt the convention that the input (output) spaces ferQl ¢ are |nd|cated
as 7 (%”2,-+1) Accordingly, the Choi operator of the network is a non-riega

operatorRN) e Lin (®2N 1 2 ). The quantum comb can be then identified with such
a Choi operator. For networks of channels (trace-presgi@i@s) one has the recursive
normalization condition

Trac 1R = la 2@ R&Y k=1, N (1)

where R® ¢ Lin <®2k Lo ) andR? = 1. Eq. [1) is the translation in terms of
Choi operators of the fact that thé-partite channelZN) = &_10%n_20--- 0 %,
sending states on the even Hilbert spaSe&y ;) to states on the odd ones

St(®,’2';01 A1), 1S a deterministicausal automatofg, [10], namely a channel where
the reduced dynamics of an input state at ®eepends only on input states at steps
k' <k, and not at stepk > k. With different motivations from supermaps and causal
automata, EqL(1) also appeared in the work by Gutoski andod&toward a general
formulation of quantum games [4].

We call DetComb <®2N Lo ) the set of non-negative operators satisfying [Eq.(1),
andProbComb (@25 7 ) the set

2N—1 2N—1
ProbComb < ® jiﬁ) = {R(N) >0]| 38NV ¢ DetComb < ® jiﬁ) 'RV < S<N)} .

=0 =0
(2)
It is possible to prove that any operat®fN) € DetComb (®2N WG ) is the Choi

operator of some sequential network iéfchannels, or, equivalently, of some causal
channel#zN) [9, |3]. The minimal Stinespring dilation of the channel imnts of the
Choi operator is given by [11]

2N (p) = TraVpVT] <|odd®v ) |lodd)) @ leven 3)
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FIGURE 2. N-instrument: sequence df channels followed with postselection on the last ancilla.

where %qq = QR Hoxi1, Hoven= RR—g #x, T denotes transposition w.r.t. a fixed
orthonormal basis,”7a = Supp (R(N)T> is the minimal ancilla space)qqq)) is the

unnormalized maximally entangled state ﬁﬁﬁ, andV is an isometry from7ayen
to Hoqq ® HA.

1.2. Quantum N-instruments

Let Q be a measurable space anfQ)) be its o-algebra of events. A quantuid-

instrumenR™) on®@$N 1.7 is an operator-valued measure that associates to any event

B € 0(Q) anN-combR{" € ProbComb <®%§61%), and satisfies the normalization

2N-1
Rg\l) € DetComb < ® jiﬁ) . (4)
=0

Theorem 1 (Dilation of N-instruments) For any N-instrument R) on %N "7

there exist a deterministic N-comtNs € DetComb <®j2§51%’j’> with 7 = 7 for

j=0,...,2N -2, and.75_, = H#oN-1® 5, and a POVM P on the ancilla#Za such
that

RN = Try [S<N> (|o®---®|2N,1®P§>] VB e a(Q), (5)
T denoting transposition w.r.t. a fixed orthonormal basis.

The meaning of the theorem is that a quantdsimstrument can be always achieved by
a network ofN channels with postselection induced by the measurement amcilla
exiting from theN-th channel, as in Fig 2.

Proof. DiagonalizeRgzN) as R&N) = Si_1il@) (@], and takeZa = Supp (Rg\')r) =
Span{|@*) | i =1,....,r}, |@) ;= Sa(nj@)*|n). Consider the purificatior8N) =

(N)3 N2 wh N3\ o « N-1,.\ o 4 B ]
IRy W {(Rg | where [R,"?)) = 3ivAil@)|g") € (RS #]) ©® #a. By con




struction, SN is a deterministic comb inDetComb <®]2§51,%”j’). Now define

(N (N

the POVM P by Ps = [ng]% R RS )}%, where R}

1
Rg\l)z on its support. It is immediate to check that for any evBr¢ o(Q) we have

R = Tra[SV) (lo® -+~ @ lon_1 ® PL)]. W

This theorem is similar in spirit to Ozawa'’s dilation thelwréor quantum instruments
[12]. The important difference here thBtis a POVM on a finite-dimensional ancilla
space, rather than a von Neumann measurement in infinitendiore

1
)] ? is the inverse of

1.3. Quantum N-testers

An N-testerT™) is an(N + 1)-instrument where the first and last Hilbert spac#8,
and N1, respectively, are one-dimensional. Accordingly, we daift ack by one

unit the numeration of Hilbert spaces, so thaBi€ o(Q) is an event, theFrB(N) is an
operator or®{", .#]. With this shifting, the normalization of the tester is givey

T8 =ln_1 @ =N
Troo[=¥] = Iy 3=V k=2 N (6)
Tro=W] =1,

with =¥ € Lin (@27 ).
A tester represents a quantum network starting with a stafgapation and finishing

with a measurement on the ancilla. When such a network isemted to a network of
N quantum operations as in Fid. 3, the only outputs are measuneoutcomes.
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FIGURE 3. Testing a network oN quantum operation%)i'\‘:’ol. TheN-tester consists in the prepara-
tion of an input stat@y, followed by channel§ 2, ..., Zn-1}, and a final measuremely.

Precisely, if the comb of the measured networlRi¥) € ProbComb ((Xﬁﬂglji”),
then the probabilities of any event are given by the germzdlBorn rule![[1, 13]

p(BRM) =TTV RN} vBeg(Q). 7)



For deterministic combB™) € DetComb (®jzﬁalj‘lj> the probabilities sum up to one:

p(QRN) = TrT VRN =1, (8)

Clearly, sinceT (N7 is also a tester, the Born rule can be written in the familiayw
without the transpose. However, here we preferred to writ@gbilities in terms of the

combsRN) andTB(N) of the measured and measuring networks, respectivelyctntfae
Born rule is nothing but a particular case of link product @jd the transpose appears
as the signature of the interlinking of the two networks.

Proposition 1 (Decomposition of N-testers[5]) Let TN) be a quantum N-tester on
Q5 #], and consider the ancilla spacé#a = Supp (ngN)T). Let.” be the linear

supermap fronProbComb <®]2§51%’j) to St(.77a) given by

NI

7 RY) = [1V7] : R T 9)

and P be the POVM o, defined by

Nl

Py — [ng'\”}_ TN [ng'\”}_% . (10)

The supermap” transforms deterministic combs into normalized statesiefancilla.
The probabilities of events are given by

p(BIRM) = Tr(Tg™" RN = Tr[Rs.7 (RM)] (11)
This proposition reduces any measurement on an input goramétwork to a measure-
ment on a suitable state, which is obtained by linear transition of the input comb. As

we will see in the following, this simple result has very sigaonsequences in quantum
estimation.

Proof. If RN is in DetComb <®?§51%>, then TE.(RN)] = Tr[T{V'RN)] = 1,
having used Eq[{8). Eq.(IL1) is an obvious consequence didfiritions of.¥ and
P. B

Propositior L reduces the discrimination of two networkihtodiscrimination of two
states. This allows us to define an operational notion oadist between networks [5],
whose meaning is directly related to minimum error discniation:

— ma [1007] (R0 —R0) [0

: 12
o™ (12)

H RN _ gV
1

with ||Al|1 = Tr|A|. Remarkably, the above norm can be strictly greater thadidmond
(cb) norm of the differencez™) — #(N)" of the two multipartite channel$|[5]. This
means that a scheme such as in Eig. 3 can achieve a strididy bistcrimination than a
parallel scheme where a multipartite entangled state ignfédte unknown channel and
a multipartite measurement is performed on the output.



2. COVARIANT QUANTUM NETWORKS

2.1. Covariant N-combs

Let G be a group, acting on the Hilbert spac#;)i"y* via the a unitary represen-

tation {Ug j | g € G}. Denote byZ4 j the mapZ4j(p) = Ug7ijij. Suppose that the
causal channe?™) from St(Qp " #k) to St(RR_4 #a+1) is covariant namely

N—1 N—1
2N o <® %g,2k> (p) = <® %g,2k+1> o 2™ (p) . (13)
k=0 k=0

Then the corresponding comb, which we eaiVarianteither, satisfies the commutation
property
N—1
R(N), ® (Ug72k+1 X UJ,ZK)] - O Vg € G . (14)
k=0

For covariant combs, the minimal dilation of the memory are?(N) given by Eq.[(B)
satisfies the commutation relation

N-1 N-1
[(@ Ug,2k+1> ®Uga|V =V <® Ug,2k> : (15)

k=0 k=0

whereUg 4 is the compression o(@lﬁ'*ol(u*

—0 (Ug +1®Ug,2k)) to the invariant subspace
JEA = Supp <R(N)T>.

2.2. Covariant N-instrumentsand testers

Suppose that the group acts on the outcome spa€e For B € o(Q), denote by
gB:= {gw | w € B}. A covariantN-instrumentR(N) is defined by the property

N—1
Rgé) = <®(%g72k+1®02/gT2k)> <R|(3N)> . (16)

k=0

A covariant tester is simply a covariaNrinstrument with one-dimensionatg and
Jton—1 and with all remaining labels shifted back by unit. We nowmge thatG is
compact and? is transitive, i.e. for any paiw, wp € Q there always exists a group
elemenig € G such thatw, = gw;.

Theorem 2 (Structure of covariant N-instruments/testers) Let G be compact and
be transitive, with normalized Haar measuwtev. Let ap € Q be a point ofQ, and let
Go={g€ G | g = wp} be the stabilizer ofw. Leto : Q — G be a measurable section,



such thatw = g,wp. If RN is a covariant instrument, then there exists a non-negative
operator E%N) such that

R [ bl
B

N—1 N—1 f
Dy = <®(U0w,2k+l®ugw72k)> DG <®(an72k+1®U§}w72k)> 17)

k=0 k=0
N N—1
Dé )7 ®(Ugo72k+l ®U5072k>] =0 \V/go € Gq.
k=0

Proof. Simple generalization of the standard proof for covariadVRIs [14].
For a covarianN-instrument/tester, Eq._(IL6) implies the commutation

N—1

[R&N% ®(ug72k+1®ug,zk>] =0 VgeG. (18)
k=0

This implies additional group structure in the results oedren]l and Propositidd 1.

In particular, for covariant testers, the map: ProbComb (®j2261%> — St(p) isa

covariant supermap

N-1
7o (@(%’52k+1®%,zk>> (RM) =Uga #(RM) U, (19)
k=0

whereUg a is the compression R} <U52k+1®Ug72k> to the invariant subspace

a=Supp (TV7) € @251 4.

3. OPTIMAL COVARIANT ESTIMATION OF QUANTUM
NETWORKS

Let {Rﬂ}') € DetComb <®]2§51<74) |weQ} be a family of quantum networks

parametrized by. We now want to find the optimal tester to estimate the paranoet
For simplicity, we consider here the special case in whikk G, for some compact

groupG, andR(SN) has the form

k=0 k=0

N—1 N-1 f
Ry = <®(U972k+1®U5,2k>> Ry <®(Ug72k+l®ug,2k>> (20)

Let c(§,9) be a cost function, penalizing the differences between stimated param-
eterg and the true on@. Suppose that(g,g) is left-invariant, namelyc(hg,hg) =



¢(§,g) Yh € G. The optimal estimation is then given by the testél) that minimizes
the average cost

(© = [.dg [ c6.) TT"RE"). @y

where dy is the normalized Haar measure, afglf (§) Tr [Tég')TR(N)] denotes inte-

s)
gration of f against the scalar measuug = Tr[T\""RN)]. An alternative notion of
optimality is the minimization of the worst-case cost

Cwe = max(/G c(6,9) Tr[Tég)TRéN)O . (22)

geG

However, it it easy to prove that in the covariant settingsitsufficient to consider
covariant testers, for which the average and worst-cagecoogide:

Theorem 3 There exists a covariant testeéNI; = Jgdg DE,N), with density

N—1 N—1 T
N . N .
Dy = <®(Ug,2k+1®ug,2k)> Dy <®(Ug72k+1®ug72k)> (23)

k=0 k=0

that is optimal both for the average and worst-case cost.

Proof. The standard averaging argument [14]F iV is an optimal tester, then the tester

TN defined byTy" = [ dh@N (%7 i1 © %h ) <Th(ﬂ)8> is covariant and has the

same average and worst-case codt@s. Moreover, for any covariant tester, the average
and worst-case cost coincide.

4. APPLICATIONS

4.1. Optimal estimation of group transformationswith N copies

Suppose we have at dispoddluses of a black box performing the unknown group
transformatiorlJy, and that we want to find the optimal network for estimatgdn
this case the parametric family of networksﬁg\‘) = (JUgh) {{(Ug|)=N, where|Ug)) :=
(Ug@ D[, 1)) =59, [i)]i). Using Propositiof]1 and E4_{19), the optimal estimation
on these networks is reduced to the optimal estimation onatiw@ila statespy =
5 (RéN)) =Ugpa” (R(()N)> U;A, with R(()N) = (J){(1)®N. Since the ancilla space is an
invariant subspace c@?ﬁa 1 7 and the representatiddy 4 is a sub-representation of
Qk=0(Ug,2k+1®12¢), it is clear that the minimum cost in the estimation is lowenbded
by the minimum cost achievable in a parallel scheme, Wh&}’ejﬂiltaryU(j@N ® lref IS

applied to a multipartite entangled state9ﬂ®521%®%ef), with %+ suitable
reference space. In this way the optimal estimation is reduo the optimal parallel
estimation of Ref. [8].



4.2. Optimal alignment of reference frameswith multi-round
protocols

Two distant parties Alice and Bob, who lack a shared refexen@me, can try to
establish one by sending suitable physical systems, sudatoaks and gyroscopes
for time and orientation references, respectively. In thamum scenario, the role of
elementary clocks and gyroscopes is played by spiphrticles, and it has been shown
that the optimal protocol using particles in a single round of quantum communication
from Alice to Bob has a r.m.s. error scaling to zero gl Xwith suitable constants)
for both for clock synchronization [15] and Cartesian axkgnanent [16]. However,
the optimal protocol for establishing reference framedhwitany rounds of quantum
communication and arbitrary amount of classical commuitnaas been not analyzed
yet. In principle, an adaptive strategy might improve thgrahent, if not by changing
the scaling withN, at least by improving the constant. With the formalism ofartant
combs and testers, however, it is rather straightforwaptdwee that this is not the case.

Let us consider the general case in which the mismatch batviee’s and Bob’s
reference frames is represented by an unknown elegpeftsome group of physi-
cal transformation§s. The unitary (projective) representation in the Hilberasgs of
guantum systems yields the passive transformation ofssthie to the change from
Alice’s to Bob’s viewpoint: a single-particle state that|ig®) is Alice’s reference
frame becomegp®) = Ug|¢/™) in Bob’s one, a single-particle operator becomes
0B = Uy0™ud, and a single-particle operaticsi® becomess'® = 245" %,
Consider a protocol withrrounds of quantum communicationrounds from Alice to
Bob andr from Bob to Alice) withg; quantum particles exchanged per round. We also
allow an unbounded amount of classical communicationgssrted by the exchange of
G-invariant systems prepared in classical (diagonal) stdtiee goal of the protocol is to
give the best possible estimaefthe mismatcly. Notice that, since Alice and Bob are
not restricted in sending classical data, we can imagineowitloss of generality that the
estimateg’is produced by Bob (if it were produced by Alice, she couldajfa/transmit
this classical information to Bob). The protocol is thenresented by the interlinking
of two networks of quantum operation$:Alice’s network is a deterministic-comb
RA) ¢ DetComb (A ® H#B_A® %), Where#a_s (M) is the Hilbert space
of all particles sent from Alice to Bob (from Bob to Alice), &z is the Hilbert space

of the invariant systems used for classical communicatodji) Bob’s network is an
r-testeer(gB) on the same Hilbert spaces. When switching to Bob’s referéraene, all
Alice’s operations are conjugated by unitaries, and hericbetomes

Rg’B) — (Uég)NAHB Q Ug*®NBaA Q |C) R(FA) (Uég)NAHB Q Ug*®NBaA ® |C) ) (24)

whereNa_.g (Ng_.a) is the number of particles traveling from Alice to Bob (frdob

to Alice). Notice that we have the identity on the classical systems, since classical
communication (strings of bits) is invariant under chargfesference frame. Therefore,
for any left-invariant cost functiorc(§,g) we are in the case of covariant network

estimation treated before. The estimatiorgdfom the networkSR’g’B) is then reduced
to the estimation ofj from the stategpy = y(Rg’B)) = Ug7ApoUJA, whereUga is a



sub-representation afg"™*~® © U582 Ic. For G = U (1) andG = SU(2) Ug and
Ug are equivalent representations (up to global phases)gehtéieis exactly the same
estimation that can be achieved by sendig.g + Ng_,a particles in a single round.
Even for groups for whiclug and Ug are not equivalent (such &iJ(d)), one can
achieve the same estimation precision in a single round tgisgNa_.g particles and
Ns_,a charge-conjugate particles from Alice to Bob. This proves ainyway there is no
advantage in using more than one round of quantum commiomn¢aind that classical
communication is completely useless.

This work is supported by the EC through the project CORNERC Gacknowledges
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