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Abstract. A sequential network of quantum operations is efficiently described by itsquantum comb
[1], a non-negative operator with suitable normalization constraints. Here we analyze the case of
networks enjoying symmetry with respect to the action of a given group of physical transformations,
introducing the notion of covariant combs and testers, and proving the basic structure theorems for
these objects. As an application, we discuss the optimal alignment of reference frames (without pre-
established common references) with multiple rounds of quantum communication, showing thati)
allowing an arbitrary amount of classical communication does not improve the alignment, andii) a
single round of quantum communication is sufficient.

A quantum comb [1] describes a quantum network withN open slots in which
an ordered sequence of variable quantum devices can be inserted, thus programming
the quantum operation of the resulting circuit. Mathematically, a comb implements an
admissible supermap[2, 3], that transforms an input network ofN quantum operations
into an output quantum operation. Having at disposal a suitable formalism opens the
possibility of optimizing the architecture of quantum circuits for a large number of
computational, cryptographic, and game-theoretical tasks, such as discrimination of
single-party strategies, cloning of quantum transformations, and storing of quantum
algorithms into quantum memories [1, 4, 5, 6]. For example, quantum combs allow one
to find the optimal networks for the estimation of an unknown group transformation with
N uses at disposal, a problem that has been solved in the past only in the particular case
of phase estimation [7]. Using combs and supermaps one can prove in full generality that
a parallel disposition of theN black boxes is sufficient to achieve the optimal estimation
of the unknown group element [5], thus reducing the problem to the optimal parallel
estimation of group transformations already solved in Ref.[8].

In this paper we summarize the main concepts and methods developed so far in the
optimization of quantum networks, with focus on the case of networks with symmetry
properties, and we present an original result on multi-round protocols for reference
frame alignment.

1. BASIC NOTIONS OF QUANTUM CIRCUITS ARCHITECTURE

1.1. Quantum N-combs

Consider a sequential network ofN quantum operations (QOs) with memory, as in
Fig. 1. Due to the presence of internal memories, there can beother networks that are
indistinguishable from it in all experiments that involve only the incoming and outgoing
quantum systems. The quantum comb is the equivalence class of all networks having
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the same input/output relations, irrespectively of what happens inside. The equivalence

C0 C1 CN−2 CN−1

FIGURE 1. N-comb: sequential network ofN quantum operations with memory. The network contains
input and output systems (free wires in the diagram), as wellas internal memories (wires connecting the
boxes).

class is in one-to-one correspondence with the Choi operator of the network, which can
be computed as thelink product [1] of the Choi operators of the QOs(Ci)

N−1
i=0 . Here

we adopt the convention that the input (output) spaces for the QO C j are indicated
as H2 j (H2 j+1). Accordingly, the Choi operator of the network is a non-negative

operatorR(N) ∈ Lin
(

⊗2N−1
j=0 H j

)

. The quantum comb can be then identified with such

a Choi operator. For networks of channels (trace-preserving QOs) one has the recursive
normalization condition

Tr2k−1[R
(k)] = I2k−2⊗R(k−1) k= 1, . . . ,N (1)

where R(k) ∈ Lin
(

⊗2k−1
j=0 H j

)

, and R(0) = 1. Eq. (1) is the translation in terms of

Choi operators of the fact that theN-partite channelR(N) = CN−1 ◦CN−2 ◦ · · · ◦C0,
sending states on the even Hilbert spacesSt(

⊗N−1
k=0 H2k) to states on the odd ones

St(
⊗N−1

k=0 H2k+1), is a deterministiccausal automaton[9, 10], namely a channel where
the reduced dynamics of an input state at stepk depends only on input states at steps
k′ ≤ k, and not at stepsk′ > k. With different motivations from supermaps and causal
automata, Eq. (1) also appeared in the work by Gutoski and Watrous toward a general
formulation of quantum games [4].

We callDetComb
(

⊗2N−1
j=0 H j

)

the set of non-negative operators satisfying Eq.(1),

andProbComb
(

⊗2N−1
j=0 H j

)

the set

ProbComb

(

2N−1
⊗

j=0

H j

)

=

{

R(N) ≥ 0 | ∃S(N) ∈ DetComb

(

2N−1
⊗

j=0

H j

)

: R(N) ≤ S(N)

}

.

(2)

It is possible to prove that any operatorR(N) ∈ DetComb
(

⊗2N−1
j=0 H j

)

is the Choi

operator of some sequential network ofN channels, or, equivalently, of some causal
channelR(N) [9, 3]. The minimal Stinespring dilation of the channel in terms of the
Choi operator is given by [11]

R
(N)(ρ) = TrA[VρV†] V =

(

Iodd⊗
√

R(N)τ
)

(|Iodd〉〉⊗ Ieven) , (3)



✘
✙
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PB

FIGURE 2. N-instrument: sequence ofN channels followed with postselection on the last ancilla.

whereHodd =
⊗N−1

k=0 H2k+1, Heven=
⊗N−1

k=0 H2k, τ denotes transposition w.r.t. a fixed

orthonormal basis,HA = Supp
(

R(N)τ
)

is the minimal ancilla space,|Iodd〉〉 is the

unnormalized maximally entangled state onH
⊗2

odd, andV is an isometry fromHeven
to Hodd⊗HA.

1.2. Quantum N-instruments

Let Ω be a measurable space andσ(Ω) be itsσ -algebra of events. A quantumN-
instrumentR(N) on

⊗2N−1
j=0 H j is an operator-valued measure that associates to any event

B∈ σ(Ω) anN-combR(N)
B ∈ ProbComb

(

⊗2N−1
j=0 H j

)

, and satisfies the normalization

R(N)
Ω ∈ DetComb

(

2N−1
⊗

j=0

H j

)

. (4)

Theorem 1 (Dilation of N-instruments) For any N-instrument R(N) on
⊗2N−1

j=0 H j

there exist a deterministic N-comb S(N) ∈ DetComb
(

⊗2N−1
j=0 H ′

j

)

with H ′
j = H j for

j = 0, . . . ,2N−2, andH ′
2N−1 = H2N−1⊗HA, and a POVM P on the ancillaHA such

that
R(N)

B = TrA

[

S(N) (I0⊗·· ·⊗ I2N−1⊗Pτ
B)
]

∀B∈ σ(Ω) , (5)

τ denoting transposition w.r.t. a fixed orthonormal basis.

The meaning of the theorem is that a quantumN-instrument can be always achieved by
a network ofN channels with postselection induced by the measurement on an ancilla
exiting from theN-th channel, as in Fig. 2.

Proof. DiagonalizeR(N)
Ω as R(N)

Ω = ∑r
i=1λi |φi〉〈φi|, and takeHA = Supp

(

R(N)τ
Ω

)

=

Span{|φ∗
i 〉 | i = 1, . . . , r}, |φ∗

i 〉 := ∑n〈n|φi〉∗|n〉. Consider the purificationS(N) =

|R(N) 1
2

Ω 〉〉〈〈R(N) 1
2

Ω | where |R(N) 1
2

Ω 〉〉 = ∑i
√

λi |φi〉|φ∗
i 〉 ∈

(

⊗2N−1
j=0 H j

)

⊗ HA. By con-



struction, S(N) is a deterministic comb inDetComb
(

⊗2N−1
j=0 H ′

j

)

. Now define

the POVM P by PB =
[

R(N)
Ω

]− 1
2

R(N)
B

[

R(N)
Ω

]− 1
2
, where

[

R(N)
Ω

]− 1
2

is the inverse of

R
(N) 1

2
Ω on its support. It is immediate to check that for any eventB ∈ σ(Ω) we have

R(N)
B = TrA[S(N) (I0⊗·· ·⊗ I2N−1⊗Pτ

B)]. �
This theorem is similar in spirit to Ozawa’s dilation theorem for quantum instruments

[12]. The important difference here thatP is a POVM on a finite-dimensional ancilla
space, rather than a von Neumann measurement in infinite dimension.

1.3. Quantum N-testers

An N-testerT(N) is an(N+1)-instrument where the first and last Hilbert spaces,H0
andH2N+1, respectively, are one-dimensional. Accordingly, we can shift back by one

unit the numeration of Hilbert spaces, so that, ifB ∈ σ(Ω) is an event, thenT(N)
B is an

operator on
⊗2N−1

j=0 H j . With this shifting, the normalization of the tester is given by

T(N)
Ω = I2N−1⊗Ξ(N−1)

Tr2k−2[Ξ(k)] = I2k−3⊗Ξ(k−1) k= 2, . . . ,N

Tr0[Ξ(1)] = 1 ,

(6)

with Ξ(k) ∈ Lin
(

⊗2k−2
j=0 H j

)

.

A tester represents a quantum network starting with a state preparation and finishing
with a measurement on the ancilla. When such a network is connected to a network of
N quantum operations as in Fig. 3, the only outputs are measurement outcomes.

✬

✫

✩

✪
ρ0 D1 DN−1

C0 CN−1

PB

FIGURE 3. Testing a network ofN quantum operations(Ci)
N−1
i=0 . TheN-tester consists in the prepara-

tion of an input stateρ0, followed by channels{D1, . . . ,DN−1}, and a final measurementPB.

Precisely, if the comb of the measured network isR(N) ∈ ProbComb
(

⊗2N−1
j=0 H j

)

,

then the probabilities of any event are given by the generalized Born rule [1, 13]

p(B|R(N)) = Tr[T(N)τ
B R(N)] ∀B∈ σ(Ω) . (7)



For deterministic combsR(N) ∈DetComb
(

⊗2N−1
j=0 H j

)

the probabilities sum up to one:

p(Ω|R(N)) = Tr[T(N)τ
Ω R(N)] = 1 . (8)

Clearly, sinceT(N)τ is also a tester, the Born rule can be written in the familiar way
without the transpose. However, here we preferred to write probabilities in terms of the

combsR(N) andT(N)
B of the measured and measuring networks, respectively. In fact, the

Born rule is nothing but a particular case of link product [1], and the transpose appears
as the signature of the interlinking of the two networks.

Proposition 1 (Decomposition of N-testers [5]) Let T(N) be a quantum N-tester on
⊗2N−1

j=0 H j , and consider the ancilla spaceHA = Supp
(

T(N)τ
Ω

)

. Let S be the linear

supermap fromProbComb
(

⊗2N−1
j=0 H j

)

to St(HA) given by

S (R(N)) =
[

T(N)τ
Ω

]
1
2

R(N)
[

T(N)τ
Ω

]
1
2

(9)

and P be the POVM onHA defined by

PB =
[

T(N)
Ω

]− 1
2

T(N)
B

[

T(N)
Ω

]− 1
2
. (10)

The supermapS transforms deterministic combs into normalized states of the ancilla.
The probabilities of events are given by

p(B|R(N)) = Tr[T(N)τ
B R(N)] = Tr[Pτ

BS (R(N))] . (11)

This proposition reduces any measurement on an input quantum network to a measure-
ment on a suitable state, which is obtained by linear transformation of the input comb. As
we will see in the following, this simple result has very strong consequences in quantum
estimation.

Proof. If R(N) is in DetComb
(

⊗2N−1
j=0 H j

)

, then Tr[S (R(N))] = Tr[T(N)τ
Ω R(N)] = 1,

having used Eq. (8). Eq. (11) is an obvious consequence of thedefinitions ofS and
P. �

Proposition 1 reduces the discrimination of two networks tothe discrimination of two
states. This allows us to define an operational notion of distance between networks [5],
whose meaning is directly related to minimum error discrimination:

∣

∣

∣

∣

∣

∣
R(N)−R(N)′

∣

∣

∣

∣

∣

∣

op
= max

T(N)
Ω

∣

∣

∣

∣

∣

∣

∣

∣

[

T(N)τ
Ω

]
1
2
(

R(N)−R(N)′
)[

T(N)τ
Ω

]
1
2

∣

∣

∣

∣

∣

∣

∣

∣

1
, (12)

with ||A||1= Tr |A|. Remarkably, the above norm can be strictly greater than thediamond
(cb) norm of the differenceR(N) −R(N)′ of the two multipartite channels [5]. This
means that a scheme such as in Fig. 3 can achieve a strictly better discrimination than a
parallel scheme where a multipartite entangled state is fedin the unknown channel and
a multipartite measurement is performed on the output.



2. COVARIANT QUANTUM NETWORKS

2.1. Covariant N-combs

Let G be a group, acting on the Hilbert space(H j)
2N−1
j=0 via the a unitary represen-

tation{Ug, j | g ∈ G}. Denote byUg, j the mapUg, j(ρ) = Ug, jρU†
g, j . Suppose that the

causal channelR(N) from St(
⊗N−1

k=0 H2k) to St(
⊗N−1

k=0 H2k+1) is covariant, namely

R
(N) ◦

(

N−1
⊗

k=0

Ug,2k

)

(ρ) =

(

N−1
⊗

k=0

Ug,2k+1

)

◦R
(N)(ρ) . (13)

Then the corresponding comb, which we callcovarianteither, satisfies the commutation
property

[

R(N),
N−1
⊗

k=0

(Ug,2k+1⊗U∗
g,2k)

]

= 0 ∀g∈ G . (14)

For covariant combs, the minimal dilation of the memory channelR(N) given by Eq. (3)
satisfies the commutation relation

[(

N−1
⊗

k=0

Ug,2k+1

)

⊗Ug,A

]

V =V

(

N−1
⊗

k=0

Ug,2k

)

, (15)

whereUg,A is the compression of
(

⊗N−1
k=0 (U

∗
g,2k+1⊗Ug,2k)

)

to the invariant subspace

HA = Supp
(

R(N)τ
)

.

2.2. Covariant N-instruments and testers

Suppose that the groupG acts on the outcome spaceΩ. For B ∈ σ(Ω), denote by
gB := {gω | ω ∈ B}. A covariantN-instrumentR(N) is defined by the property

R(N)
gB =

(

N−1
⊗

k=0

(Ug,2k+1⊗U
∗

g,2k)

)

(

R(N)
B

)

. (16)

A covariant tester is simply a covariantN-instrument with one-dimensionalH0 and
H2N−1 and with all remaining labels shifted back by unit. We now suppose thatG is
compact andΩ is transitive, i.e. for any pairω1,ω2 ∈ Ω there always exists a group
elementg∈ G such thatω2 = gω1.

Theorem 2 (Structure of covariant N-instruments/testers) Let G be compact andΩ
be transitive, with normalized Haar measuredω. Let ω0 ∈ Ω be a point ofΩ, and let
G0= {g∈G | gω0=ω0} be the stabilizer ofω0. Letσ : Ω→G be a measurable section,



such thatω = σωω0. If R(N) is a covariant instrument, then there exists a non-negative

operator D(N)
0 such that

R(N)
B =

∫

B
dω D(N)

ω

D(N)
ω =

(

N−1
⊗

k=0

(Uσω ,2k+1⊗U∗
σω ,2k)

)

D(N)
0

(

N−1
⊗

k=0

(Uσω ,2k+1⊗U∗
σω ,2k)

)†

[

D(N)
0 ,

N−1
⊗

k=0

(Ug0,2k+1⊗U∗
g0,2k)

]

= 0 ∀g0 ∈ G0 .

(17)

Proof. Simple generalization of the standard proof for covariant POVMs [14].
For a covariantN-instrument/tester, Eq. (16) implies the commutation

[

R(N)
Ω ,

N−1
⊗

k=0

(Ug,2k+1⊗U∗
g,2k)

]

= 0 ∀g∈ G . (18)

This implies additional group structure in the results of Theorem 1 and Proposition 1.

In particular, for covariant testers, the mapS : ProbComb
(

⊗2N−1
j=0 H j

)

→ St(HA) is a
covariant supermap:

S ◦
(

N−1
⊗

k=0

(U ∗
g,2k+1⊗Ug,2k)

)

(

R(N)
)

=Ug,A S (R(N))U†
g,A , (19)

whereUg,A is the compression of
⊗N−1

k=0

(

U∗
g,2k+1⊗Ug,2k

)

to the invariant subspace

HA = Supp
(

T(N)τ
Ω

)

⊆⊗2N−1
j=0 H j .

3. OPTIMAL COVARIANT ESTIMATION OF QUANTUM
NETWORKS

Let
{

R(N)
ω ∈ DetComb

(

⊗2N−1
j=0 H j

)

| ω ∈ Ω
}

be a family of quantum networks

parametrized byω. We now want to find the optimal tester to estimate the parameter ω.
For simplicity, we consider here the special case in whichΩ ≡ G, for some compact

groupG, andR(N)
g has the form

R(N)
g =

(

N−1
⊗

k=0

(Ug,2k+1⊗U∗
g,2k)

)

R(N)
0

(

N−1
⊗

k=0

(Ug,2k+1⊗U∗
g,2k)

)†

(20)

Let c(ĝ,g) be a cost function, penalizing the differences between the estimated param-
eter ĝ and the true oneg. Suppose thatc(ĝ,g) is left-invariant, namelyc(hĝ,hg) =



c(ĝ,g) ∀h ∈ G. The optimal estimation is then given by the testerT(N) that minimizes
the average cost

〈c〉=
∫

G
dg

∫

G
c(ĝ,g) Tr[T(N)τ

dĝ R(N)
g ] , (21)

where dg is the normalized Haar measure, and
∫

G f (ĝ) Tr
[

T(N)τ
dĝ R(N)

]

denotes inte-

gration of f against the scalar measureµB = Tr[T(N)τ
B R(N)]. An alternative notion of

optimality is the minimization of the worst-case cost

cwc = max
g∈G

(

∫

G
c(ĝ,g) Tr[T(N)τ

dĝ R(N)
g ]

)

. (22)

However, it it easy to prove that in the covariant setting it is sufficient to consider
covariant testers, for which the average and worst-case cost coincide:

Theorem 3 There exists a covariant tester T(N)
B =

∫

Bdg D(N)
g , with density

D(N)
g =

(

N−1
⊗

k=0

(U∗
g,2k+1⊗Ug,2k)

)

D(N)
0

(

N−1
⊗

k=0

(U∗
g,2k+1⊗Ug,2k)

)†

(23)

that is optimal both for the average and worst-case cost.

Proof. The standard averaging argument [14]: ifT(N) is an optimal tester, then the tester

T(N) defined byT(N)
B =

∫

G dh
⊗N−1

k=0 (U
∗

h,2k+1⊗Uh,2k)
(

T(N)

h−1B

)

is covariant and has the

same average and worst-case cost asT(N). Moreover, for any covariant tester, the average
and worst-case cost coincide.

4. APPLICATIONS

4.1. Optimal estimation of group transformations with N copies

Suppose we have at disposalN uses of a black box performing the unknown group
transformationUg, and that we want to find the optimal network for estimatingg. In

this case the parametric family of networks isR(N)
g = (|Ug〉〉〈〈Ug|)⊗N, where|Ug〉〉 :=

(Ug⊗ I)|I〉〉, |I〉〉= ∑d
i=1 |i〉|i〉. Using Proposition 1 and Eq. (19), the optimal estimation

on these networks is reduced to the optimal estimation on theancilla statesρg =

S

(

R(N)
g

)

=Ug,AS

(

R(N)
0

)

U†
g,A, with R(N)

0 = (|I〉〉〈〈I |)⊗N. Since the ancilla space is an

invariant subspace of
⊗2N−1

j=0 H j and the representationUg,A is a sub-representation of
⊗

k=0(Ug,2k+1⊗ I2k), it is clear that the minimum cost in the estimation is lower bounded
by the minimum cost achievable in a parallel scheme, where the unitaryU⊗N

g ⊗ Ire f is
applied to a multipartite entangled state inSt(

⊗N
k=1Hk ⊗Hre f), with Hre f suitable

reference space. In this way the optimal estimation is reduced to the optimal parallel
estimation of Ref. [8].



4.2. Optimal alignment of reference frames with multi-round
protocols

Two distant parties Alice and Bob, who lack a shared reference frame, can try to
establish one by sending suitable physical systems, such asclocks and gyroscopes
for time and orientation references, respectively. In the quantum scenario, the role of
elementary clocks and gyroscopes is played by spin 1/2 particles, and it has been shown
that the optimal protocol usingN particles in a single round of quantum communication
from Alice to Bob has a r.m.s. error scaling to zero as 1/N (with suitable constants)
for both for clock synchronization [15] and Cartesian axes alignment [16]. However,
the optimal protocol for establishing reference frames with many rounds of quantum
communication and arbitrary amount of classical communication has been not analyzed
yet. In principle, an adaptive strategy might improve the alignment, if not by changing
the scaling withN, at least by improving the constant. With the formalism of covariant
combs and testers, however, it is rather straightforward toprove that this is not the case.

Let us consider the general case in which the mismatch between Alice’s and Bob’s
reference frames is represented by an unknown elementg of some group of physi-
cal transformationsG. The unitary (projective) representation in the Hilbert spaces of
quantum systems yields the passive transformation of states due to the change from
Alice’s to Bob’s viewpoint: a single-particle state that is|ψ(A)〉 is Alice’s reference
frame becomes|ψ(B)〉=Ug|ψ(A)〉 in Bob’s one, a single-particle operatorO(A) becomes
O(B) = UgO(A)U†

g , and a single-particle operationC (A) becomesC (B) = UgC
(A)U †

g .
Consider a protocol with 2r rounds of quantum communication (r rounds from Alice to
Bob andr from Bob to Alice) withqi quantum particles exchanged per round. We also
allow an unbounded amount of classical communication, represented by the exchange of
G-invariant systems prepared in classical (diagonal) states. The goal of the protocol is to
give the best possible estimate ˆg of the mismatchg. Notice that, since Alice and Bob are
not restricted in sending classical data, we can imagine without loss of generality that the
estimate ˆg is produced by Bob (if it were produced by Alice, she could always transmit
this classical information to Bob). The protocol is then represented by the interlinking
of two networks of quantum operations:i) Alice’s network is a deterministicr-comb
R(r,A) ∈ DetComb (HA→B⊗HB→A⊗HC), whereHA→B (HB→A) is the Hilbert space
of all particles sent from Alice to Bob (from Bob to Alice), and HC is the Hilbert space
of the invariant systems used for classical communication,and ii) Bob’s network is an

r-testerT(r,B)
dĝ on the same Hilbert spaces. When switching to Bob’s reference frame, all

Alice’s operations are conjugated by unitaries, and her comb becomes

R(r,B)
g =

(

U⊗NA→B
g ⊗U∗⊗NB→A

g ⊗ IC
)

R(r,A) (U⊗NA→B
g ⊗U∗⊗NB→A

g ⊗ IC
)

. (24)

whereNA→B (NB→A) is the number of particles traveling from Alice to Bob (fromBob
to Alice). Notice that we have the identityIC on the classical systems, since classical
communication (strings of bits) is invariant under changesof reference frame. Therefore,
for any left-invariant cost functionc(ĝ,g) we are in the case of covariant network

estimation treated before. The estimation ofg from the networksR(r,B)
g is then reduced

to the estimation ofg from the statesρg = S (R(r,B)
g ) = Ug,Aρ0U

†
g,A, whereUg,A is a



sub-representation ofU⊗NA→B
g ⊗U∗⊗NB→A

g ⊗ IC. For G = U(1) andG = SU(2) Ug and
U∗

g are equivalent representations (up to global phases), hence this is exactly the same
estimation that can be achieved by sendingNA→B+NB→A particles in a single round.
Even for groups for whichUg andU∗

g are not equivalent (such asSU(d)), one can
achieve the same estimation precision in a single round by sendingNA→B particles and
NB→A charge-conjugate particles from Alice to Bob. This proves that anyway there is no
advantage in using more than one round of quantum communication, and that classical
communication is completely useless.

This work is supported by the EC through the project CORNER. G. C. acknowledges
financial support from the Risk and Security Study Center, IUSS Pavia.
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