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Abstract – Simulations were used to study the influence of model adequacy and data structure
on the estimation of genetic parameters for traits governed by direct and maternal effects.
To test model adequacy, several data sets were simulated according to different underlying
genetic assumptions and analysed by comparing the correct and incorrect models. Results
showed that omission of one of the random effects leads to an incorrect decomposition of the
other components. If maternal genetic effects exist but are neglected, direct heritability is
overestimated, and sometimes more than double. The bias depends on the value of the genetic
correlation between direct and maternal effects. To study the influence of data structure on the
estimation of genetic parameters, several populations were simulated, with different degrees of
known paternity and different levels of genetic connectedness between flocks. Results showed
that the lack of connectedness affects estimates when flocks have different genetic means because
no distinction can be made between genetic and environmental differences between flocks. In
this case, direct and maternal heritabilities are under-estimated, whereas maternal environmental
effects are overestimated. The insufficiency of pedigree leads to biased estimates of genetic
parameters.
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1. INTRODUCTION

The animal model is extensively used for predicting genetic values and
estimating genetic parameters, because the optimum combined use of all
relationships and performances improves accuracy. However, despite the
theoretical advantages of this model, some data and model conditions can
affect the validity and precision of the estimation of variance components.

The first source of bias lies in the choice of the genetic model used to
analyse data. Concerning maternally influenced traits, there is still discrepancy
between the theoretical studies about genetic parameter estimation and practical
applications. The reasons for this can be problems of convergence with variance
components estimation software, or data structure (for example incomplete ped-
igree), or unavailability of efficient techniques (software or hardware) as is the
case in some developing countries. When traits are governed by both direct and
maternal effects, fitting only direct effects leads to an overestimation of direct
heritability. For growth traits, most of the estimations of direct heritability
with both direct and maternal effects vary between 0.20 and 0.30 [30,38,47].
When maternal effects are ignored, direct heritabilities published can reach
0.73 for daily gain before weaning, [23], 0.48 or 0.50 for birth weight [29],
0.35 for four-month weight [27], 0.56 for weights before weaning [6] or 0.45
for weaning weight [7]. However, the relative part of direct and maternal
effects (genetic or environmental) and the nature and magnitude of the relation
between these effects are determining conditions for the effectiveness of a
selection scheme. Literature on the influence of model adequacy in order to
estimate variance components is limited. There are some publications in which
various models were tested in order to find the most adapted to analyse data.
For example, simulations were used to study biometrical aspects of direct and
maternal effects [41,43]. Meyer [33] studied the precision of genetic para-
meter estimation with different family structures. Robinson [41] and Lee and
Pollak [28] tested the sire × year variation on the genetic correlation between
direct and maternal effects. Quintanilla Aguado [39] studied the importance of
the models on maternal effects analysis by fitting an environmental correlation
between the dam and the offspring. These previous publications reported biases
when using incorrect models. In this article, we quantify this bias for different
values of true genetic parameters.

Data structure is the second source of bias likely to affect the estimation of
variance components. In traditional farming systems, it is sometimes difficult
to identify animals and to record performances and/or genealogy. The amount
and the quality of the data are then affected by practical constraints. Although
this is often the case in developing countries, this can also concern industrialised
countries, in particular as regards hardy breeds managed in large flocks with
several males used simultaneously for natural service. One of the consequences
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can be the use of a very incomplete pedigree resulting in a less thorough
relationship matrix used in the animal model. Moreover, the lack of artificial
insemination and a poor exchange of sires across breeding units limit gene flow
and cause a partial or complete lack of genetic connectedness. Even in selection
schemes under intensive breeding conditions, disconnectedness can be a prob-
lem when prediction of genetic values is done on a national scale and artificial
insemination is organised into regions, as is the case for instance for the Mont-
béliarde and Holstein cattle breeds in France [19,20] or in North-American
breeds [3,24,44]. The effect of data structure has been extensively studied in
the context of genetic evaluation of animals. Absence of connectedness and
poor genealogical information are responsible for biases and loss of accuracy in
the prediction of genetic values by an animal or sire model [1,21,44]. However,
not much is known about the effect of data structure on the estimation of genetic
parameters by an animal model, especially in the presence of maternal effects.
Diaz et al. [10] and Eccleston [11] studied the influence of disconnectedness on
models with direct effects and found that it would act only on the precision of the
estimation. Now, to propose strategies for improvement, it is necessary to assess
the relative importance of deviations from the ideal situation. The second pur-
pose of this article is to test, by simulation, the influence of data structure on the
estimation of genetic parameters for traits subject to direct and maternal effects.

2. MODEL ADEQUACY

2.1. Data simulation

2.1.1. Simulated population

The simulation program was written in Fortran and NAG Libraries were
used for all random processes.

As model adequacy can be a real problem in populations under extensive
conditions where data structure and unavailability of efficient techniques can
be a constraint for the use of the correct model, we used a known African
sheep population [12,13,35] to set some parameters of the simulated popula-
tion (prolificacy, replacement rate, male/female ratio). Compared to the real
population, the number of animals per flock was increased in order to avoid
confusion between animal and flock effects. The base population consisted
of 1 260 unrelated animals (60 males and 1 200 females) assigned randomly
to 20 flocks of 63 animals each (3 males and 60 females). Once the base
population was created, the simulation was carried out over 6 years. Each year,
random mating (no matter what flock animals came from) was practised with a
ratio of one male for twenty females. The offspring were generated according
to a prolificacy of 115%. Each year, 1/3 of the males and 1/5 of the females
were replaced by offspring at random. The remaining offspring was discarded
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so that the number of animals per flock and the number of flocks were constant
over time. The average number of offspring per female was equal to 2.7. The
data set corresponds to a fully connected population with complete pedigree.

2.1.2. Models used for simulating data
The simulated models were similar to those used in Robinson’s study [41],

with A representing the genetic direct effects, M the genetic maternal effects,
R the genetic correlation between direct and maternal effects, and C the maternal
environmental effects. Some authors (Hohenboken and Brinks [22], Koch [25],
Foulley and Ménissier [17] and Cantet [8]) have shown that a more complex
biological model could exist, this model including a non genetic correlation
between maternal effects of dams and daughters. Several biometrical models
have been proposed to consider this correlation [8,40,41]. We could have used
this model in our simulations, but we wanted to limit this work to the models
most frequently used for the study of maternal effects. The models and the
corresponding (co)variances are presented in Table I.

For the base population (which represents founder parents), random effects
were sampled from normal distributions with zero mean and variances cor-
responding to each random effect. Direct genetic value Ai for individuals i
was simulated in a distribution N(0, σAo) and maternal genetic value Mi for
individuals i was simulated using:

Mi = rAoAm × (σAm/σAo) × Ai +
√(

1 − r2
AoAm

) × Qi × σAm

where rAoAm is the genetic correlation between direct and maternal effects and Qi

is a random variable sampled from a standard normal distribution N(0, 1). Since
dams were unknown for these animals, when the simulated model included
maternal effects, no record was generated for this base population.

In real data, the distribution of flock effects was close to a normal distribution.
We then used a random variable distributed according to N(0, σ2

t ) to generate
this tk effect for flock k which was considered as fixed in the variance component
estimation model.

Over the successive years, genetic effects of the offspring were calculated
as the mid-parent values, plus a Mendelian deviation, calculated following the
formula [15]:

Wi(o) = Ri

√
1

2

(
1 − Fp + Fm

2

)
σAo (1)

Wi(m) = rAoAm × (σAm/σAo) Wi(o) +
√

1 − r2
AoAm

× R′
i ×

√
1

2

(
1 − Fp + Fm

2

)
σAm (2)
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Table I. Models used to simulate and analyse data.

Simulation models (Co)variances fitted

A σ2
eσ

2
Ao

AMR0 σ2
eσ

2
Aoσ

2
Am

AMRi∗ σ2
eσ

2
Aoσ

2
AmσAoAm

AMR0C σ2
eσ

2
Aoσ

2
Amσ2

C

AMRi∗C σ2
eσ

2
Aoσ

2
AmσAoAmσ2

C

Analysis models (Co)variances estimated

A σ2
eσ

2
Ao

AMR σ2
eσ

2
Aoσ

2
AmσAoAm

AC σ2
eσ

2
Aoσ

2
C

AMRC σ2
eσ

2
Aoσ

2
AmσAoAmσ2

C

Simulation models:
A: model with direct genetic effects; AMR0: model with uncorrelated direct and
maternal genetic effects; AMRi: model with correlated direct and maternal genetic
effects; AMR0C: model with uncorrelated direct and maternal genetic effects, and
maternal environmental effects; AMRiC: model with correlated direct and maternal
genetic effects, and maternal environmental effects;
∗Ri = σAoAm/σAoσAm, Ri = −0.25 or −0.50.
Analysis models:
A: model with direct genetic effects; AC: model with direct genetic effects and
maternal environmental effects; AMR: model with direct and maternal genetic effects;
AMRC: model with direct genetic effects, maternal genetic effects and maternal
environmental effects.

where Wi(o) and Wi(m) are Mendelian deviations of the offspring (i) for the
direct effect (o) and the maternal effect (m), respectively; Ri and R′

i are
independent random variables sampled from a standard normal distribution
N(0, 1); Fp and Fm are coefficients of inbreeding of the sire (Fp) and the dam
(Fm), respectively. The calculation of inbreeding coefficients was made using
the algorithm proposed by Meuwissen and Luo [32]. Residual effects were
simulated for offspring according to N(0, σ2

E) for direct effects and N(0, σ2
C)

for maternal environmental effect. Residuals corresponding to records of dams
were independent from residuals corresponding to records of their progeny.
Finally, a file of about 9 500 animals with a single record per animal (except
for the base population) was obtained corresponding to six years of simulation.

2.1.3. Values of parameters used in the simulation

Two sets of genetic parameters values were used for the simulations. The first
set (called population 1) was supposed to reflect genetic parameter values found
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in the literature for growth traits in cattle and sheep of temperate climate [30,
38,47]: 0.20 for direct heritability (h2

Ao), 0.30 for maternal heritability (h2
Am)

and 0.05 for the part of variance due to maternal environmental effects (c2).
The second set (called population 2) was chosen to reflect what can be found
in countries with high constraints. They were close to genetic parameters
estimated on a Tunisian breed of sheep [5]: 0.05 for h2

Ao, 0.10 for h2
Am and 0.25

for c2. The genetic correlation between direct and maternal effects (rAoAm)

has often been found to be negative or equal to zero in cattle and sheep [2,
17,31,34]. Consequently, three values, 0, −0.25 and −0.50 were used for
both populations. Seven simulation models were used for each population,
model A including direct effects only, models AMR0, AMR25 and AMR50
including direct and maternal effects under the three alternative values of the
genetic correlation, and models AMR0C, AMR25C and AMR50C which, in
addition to the direct and maternal genetic effects, considered the maternal
environmental effect. Values of variance components are presented in Table II.

Fifty replicates were made for each population and each of the seven models
simulated. A distinct seed for the random number generator was set for each
replicate. The same seed was used to simulate the genetic mean of flocks in
order to limit the variability of samples.

2.2. Data analysis

The VCE program [37] was used to estimate genetic parameters by means of
REML methodology. Four models were used for analysing the seven simulated
data sets for each population. The first three models included direct effects
only (model A), maternal and direct genetic effects (model AMR), maternal and
direct genetic effects plus maternal environmental effects (model AMRC). In
addition, a model including direct genetic and strictly environmental maternal
effects (model AC) was used, and this fourth model assumes that maternal
effect has no genetic component in the dam. These four analysis models,
presented in Table I, were fitted to each of the seven data sets simulated under
the genetic assumptions described above for populations 1 and 2. The average
and the empirical standard deviation were calculated over the fifty replicates
obtained for each model and each population.

2.3. Results and discussion

Results are shown in Tables III and IV for populations 1 and 2, respectively.
Empirical standard deviations between replicates varied between 0.02 and
0.04 for heritabilities of direct and maternal effects. They were higher for
the genetic correlation, particularly when true values tended to zero (AMR0,
AMR0C) and when direct and maternal heritabilities were small (population 2).
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Table II. Values of variance components and parameters used for simulation.

Variances,
covariances
and parameters

A AMR0 AMR25 AMR50 AMR0C AMR25C AMR50C

Population 1

σ2
P 200.0 356.3 354.4 355.4 355.9 354.7 354.7

h2
Ao 0.2 0.2 0.2 0.2 0.2 0.2 0.2

h2
Am 0.3 0.3 0.3 0.3 0.3 0.3 0.3

rAoAm – 0 −0.25 −0.50 0 −0.25 −0.50

σAoAm/σ2
P – – −0.06 −0.12 – −0.06 −0.12

c2 – – – – 0.05 0.05 0.05

Population 2

σ2
P 243.2 377.9 388.2 387.1 385.0 385.0 385.0

h2
Ao 0.05 0.05 0.05 0.05 0.05 0.05 0.05

h2
Am 0.10 0.10 0.10 0.10 0.10 0.10 0.10

rAoAm – 0 −0.25 −0.50 0 0 0

σAoAm/σ2
P – – −0.02 −0.04 −0.02 −0.04

c2 – – – – 0.25 0.25 0.25

A: model with direct genetic effects. AMR0: model with uncorrelated direct and
maternal genetic effects. AMR25: model with correlated direct and maternal genetic
effects (rAoAm = −0.25). AMR50: model with correlated direct and maternal
genetic effects (rAoAm = −0.50). AMR0C: model with uncorrelated direct and
maternal genetic effects , and maternal environmental effects. AMR25C: model
with correlated direct and maternal genetic effects (rAoAm = −0.25), and maternal
environmental effects. AMR50C: model with correlated direct and maternal genetic
effects (rAoAm = −0.50), and maternal environmental effects.
σ2

P: phenotypic variance; h2
Ao: direct heritability; h2

Am: maternal heritability; rAoAm:
genetic correlation between direct and maternal effects; c2: part of variance due to
maternal environmental effects.

For both populations, average parameters estimated with the true model (same
simulation and analysis models) were very close to true values.

2.3.1. Simulation model A (only direct effects)

When data simulated according to a direct effect model were analysed with
a more complex model (models AMR or AMRC), the direct heritability was
unbiased and maternal effects (genetic or environmental) were estimated as
equal to zero. Genetic correlation could not be estimated, because the maternal
genetic variance was equal to zero in most of the cases.



376 V. Clément et al.

Ta
bl

e
II

I.
M

od
el

ad
eq

ua
cy

:
es

tim
at

io
n

of
ge

ne
tic

pa
ra

m
et

er
s

fo
r

di
ff

er
en

t
si

m
ul

at
io

n
m

od
el

s
an

d
di

ff
er

en
t

an
al

ys
is

m
od

el
s

fo
r

po
pu

la
tio

n
1.

(c
on

tin
ue

d
on

th
e

ne
xt

pa
ge

)

G
en

et
ic

Si
m

ul
at

io
n

m
od

el
s

Pa
ra

m
et

er
s

A
A

M
R

0
A

M
R

25
A

M
R

50
A

M
R

0C
A

M
R

25
C

A
M

R
50

C

T
ru

e
va

lu
es

:

h2 A
o

0.
20

0.
20

0.
20

0.
20

0.
20

0.
20

0.
20

h2 A
m

–
0.

30
0.

30
0.

30
0.

30
0.

30
0.

30

r A
oA

m
–

0
−0

.2
5

−0
.5

0
0

−0
.2

5
−0

.5
0

c2
–

–
–

–
0.

05
0.

05
0.

05

σ
2 P

20
0

35
6.

3
35

4.
4

35
5.

4
35

5.
9

35
4.

7
35

4.
7

A
na

ly
si

s
M

od
el

s:

A
h2 A

o
0.

20
±

0.
02

0.
42

±
0.

02
0.

34
±

0.
02

0.
25

±
0.

03
0.

43
±

0.
02

0.
35

±
0.

02
0.

27
±

0.
02

A
C

h2 A
o

0.
20

±
0.

02
0.

29
±

0.
03

0.
23

±
0.

02
0.

16
±

0.
02

0.
28

±
0.

02
0.

22
±

0.
02

0.
16

±
0.

02

c2
0.

01
±

0.
01

0.
24

±
0.

02
0.

21
±

0.
02

0.
18

±
0.

02
0.

30
±

0.
02

0.
27

±
0.

02
0.

23
±

0.
02

A
M

R
h2 A

o
0.

20
±

0.
03

0.
20

±
0.

03
0.

20
±

0.
03

0.
20

±
0.

03
0.

20
±

0.
03

0.
20

±
0.

03
0.

21
±

0.
03

h2 A
m

0.
01

±
0.

01
0.

30
±

0.
02

0.
30

±
0.

02
0.

30
±

0.
03

0.
36

±
0.

02
0.

34
±

0.
04

0.
36

±
0.

02

r A
oA

m
ne

0.
01

±
0.

11
−0

.2
3

±
0.

08
−0

.5
0

±
0.

06
−0

.0
3

±
0.

07
−0

.2
7

±
0.

09
−0

.5
0

±
0.

06

A
M

R
C

h2 A
o

0.
21

±
0.

03
0.

19
±

0.
02

0.
20

±
0.

02
0.

20
±

0.
03

0.
20

±
0.

03
0.

21
±

0.
02

0.
20

±
0.

03
h2 A

m
0.

01
±

0.
01

0.
29

±
0.

03
0.

30
±

0.
03

0.
29

±
0.

02
0.

30
±

0.
03

0.
31

±
0.

03
0.

30
±

0.
04

r A
oA

m
ne

0.
02

±
0.

09
−0

.2
7

±
0.

08
−0

.5
1

±
0.

06
0.

02
±

0.
12

−0
.2

4
±

0.
09

−0
.5

1
±

0.
07

c2
0.

01
±

0.
01

0
±

0.
01

0.
03

±
0.

02
0

±
0.

01
0.

05
±

0.
02

0.
05

±
0.

02
0.

05
±

0.
03



Model adequacy and data structure 377

Ta
bl

e
II

I.
C

on
tin

ue
d.

h2 A
o
:

di
re

ct
he

ri
ta

bi
lit

y;
h2 A

m
:

m
at

er
na

lh
er

ita
bi

lit
y;

r A
oA

m
:

ge
ne

tic
co

rr
el

at
io

n
be

tw
ee

n
di

re
ct

an
d

m
at

er
na

le
ff

ec
ts

;c
2
:

pa
rt

of
va

ri
an

ce
du

e
to

m
at

er
na

le
nv

ir
on

m
en

ta
le

ff
ec

ts
;σ

2 P
:

ph
en

ot
yp

ic
va

ri
an

ce
;n

e:
ca

nn
ot

be
es

tim
at

ed
;i

n
bo

ld
:

tr
ue

m
od

el
.

Si
m

ul
at

io
n

m
od

el
s:

A
:

m
od

el
w

ith
di

re
ct

ge
ne

tic
ef

fe
ct

s.
A

M
R

0:
m

od
el

w
ith

un
co

rr
el

at
ed

di
re

ct
an

d
m

at
er

na
l

ge
ne

tic
ef

fe
ct

s.
A

M
R

25
:

m
od

el
w

ith
co

rr
el

at
ed

di
re

ct
an

d
m

at
er

na
l

ge
ne

tic
ef

fe
ct

s
(r

A
oA

m
=

−0
.2

5)
.

A
M

R
50

:
m

od
el

w
ith

co
rr

el
at

ed
di

re
ct

an
d

m
at

er
na

l
ge

ne
tic

ef
fe

ct
s
(r

A
oA

m
=

−0
.5

0)
.

A
M

R
0C

:m
od

el
w

ith
un

co
rr

el
at

ed
di

re
ct

an
d

m
at

er
na

lg
en

et
ic

ef
fe

ct
s,

an
d

m
at

er
na

le
nv

ir
on

m
en

ta
le

ff
ec

ts
.

A
M

R
25

C
:m

od
el

w
ith

co
rr

el
at

ed
di

re
ct

an
d

m
at

er
na

lg
en

et
ic

ef
fe

ct
s(

r A
oA

m
=

−0
.2

5)
,a

nd
m

at
er

na
le

nv
ir

on
m

en
ta

le
ff

ec
ts

.
A

M
R

50
C

:
m

od
el

w
ith

co
rr

el
at

ed
di

re
ct

an
d

m
at

er
na

lg
en

et
ic

ef
fe

ct
s
(r

A
oA

m
=

−0
.5

0)
,a

nd
m

at
er

na
le

nv
ir

on
m

en
ta

le
ff

ec
ts

.
A

na
ly

si
s

m
od

el
s:

A
:m

od
el

w
ith

di
re

ct
ge

ne
tic

ef
fe

ct
s.

A
C

:m
od

el
w

ith
di

re
ct

ge
ne

tic
ef

fe
ct

s
an

d
m

at
er

na
le

nv
ir

on
m

en
ta

le
ff

ec
ts

.
A

M
R

:m
od

el
w

ith
di

re
ct

an
d

m
at

er
na

lg
en

et
ic

ef
fe

ct
s.

A
M

R
C

:m
od

el
w

ith
di

re
ct

ge
ne

tic
ef

fe
ct

s,
m

at
er

na
lg

en
et

ic
ef

fe
ct

s
an

d
m

at
er

na
le

nv
ir

on
m

en
ta

l
ef

fe
ct

s.



378 V. Clément et al.

Ta
bl

e
IV

.
E

st
im

at
io

n
of

ge
ne

tic
pa

ra
m

et
er

s
fo

r
di

ff
er

en
ts

im
ul

at
io

n
m

od
el

s
an

d
di

ff
er

en
ta

na
ly

si
s

m
od

el
s

fo
r

po
pu

la
tio

n
2.

(c
on

tin
ue

d
on

th
e

ne
xt

pa
ge

)

G
en

et
ic

Si
m

ul
at

io
n

m
od

el
s

Pa
ra

m
et

er
s

A
A

M
R

0
A

M
R

25
A

M
R

50
A

M
R

0C
A

M
R

25
C

A
M

R
50

C

T
ru

e
va

lu
es h2 A

o
0.

05
0.

05
0.

05
0.

05
0.

05
0.

05
0.

05

h2 A
m

–
0.

10
0.

10
0.

10
0.

10
0.

10
0.

10

r A
oA

m
–

0
−0

.2
5

−0
.5

0
0

−0
.2

5
−0

.5
0

c2
–

–
–

–
0.

25
0.

25
0.

25

σ
2 P

20
0

35
6.

3
35

4.
4

35
5.

4
35

5.
9

35
4.

7
35

4.
7

A
na

ly
si

s
M

od
el

s:

A
h2 A

o
0.

05
±

0.
02

0.
13

±
0.

02
0.

11
±

0.
02

0.
07

±
0.

02
0.

23
±

0.
02

0.
18

±
0.

02
0.

16
±

0.
03

A
C

h2 A
o

0.
05

±
0.

02
0.

09
±

0.
02

0.
07

±
0.

02
0.

05
±

0.
02

0.
07

±
0.

02
0.

05
±

0.
02

0.
04

±
0.

04

c2
0.

01
±

0.
01

0.
09

±
0.

02
0.

08
±

0.
02

0.
07

±
0.

01
0.

34
±

0.
01

0.
31

±
0.

01
0.

33
±

0.
01

A
M

R
h2 A

o
0.

05
±

0.
02

0.
05

±
0.

02
0.

05
±

0.
02

0.
05

±
0.

02
0.

06
±

0.
02

0.
06

±
0.

02
0.

06
±

0.
02

h2 A
m

0.
01

±
0.

01
0.

11
±

0.
02

0.
11

±
0.

02
0.

11
±

0.
03

0.
40

±
0.

02
0.

38
±

0.
02

0.
40

±
0.

02

r A
oA

m
n.

e.
0.

03
±

0.
28

−0
.2

4
±

0.
26

−0
.5

1
±

0.
21

−0
.4

0
±

0.
08

−0
.5

5
±

0.
14

−0
.6

9
±

0.
12

A
M

R
C

h2 A
o

0.
06

±
0.

02
0.

05
±

0.
02

0.
05

±
0.

02
0.

05
±

0.
02

0.
05

±
0.

02
0.

05
±

0.
02

0.
05

±
0.

02
h2 A

m
0.

01
±

0.
01

0.
10

±
0.

02
0.

11
±

0.
02

0.
10

±
0.

02
0.

10
±

0.
03

0.
10

±
0.

03
0.

11
±

0.
03

r A
oA

m
ne

0.
01

±
0.

19
−0

.2
4

±
0.

29
−0

.5
1

±
0.

20
0.

04
±

0.
31

−0
.2

6
±

0.
24

−0
.5

0
±

0.
16

c2
0

±
0.

01
0.

01
±

0.
01

0.
01

±
0.

01
0

±
0.

01
0.

25
±

0.
02

0.
25

±
0.

03
0.

25
±

0.
03



Model adequacy and data structure 379

Ta
bl

e
IV

.
C

on
tin

ue
d.

h2 A
o
:

di
re

ct
he

ri
ta

bi
lit

y;
h2 A

m
:

m
at

er
na

lh
er

ita
bi

lit
y;

r A
oA

m
:

ge
ne

tic
co

rr
el

at
io

n
be

tw
ee

n
di

re
ct

an
d

m
at

er
na

le
ff

ec
ts

;c
2
:

pa
rt

of
va

ri
an

ce
du

e
to

m
at

er
na

le
nv

ir
on

m
en

ta
le

ff
ec

ts
;σ

2 P
:

ph
en

ot
yp

ic
va

ri
an

ce
;n

e:
ca

nn
ot

be
es

tim
at

ed
;i

n
bo

ld
:

tr
ue

m
od

el
.

Si
m

ul
at

io
n

m
od

el
s:

A
:

m
od

el
w

ith
di

re
ct

ge
ne

tic
ef

fe
ct

s.
A

M
R

0:
m

od
el

w
ith

un
co

rr
el

at
ed

di
re

ct
an

d
m

at
er

ne
l

ge
ne

tic
ef

fe
ct

s.
A

M
R

25
:

m
od

el
w

ith
co

rr
el

at
ed

di
re

ct
an

d
m

at
er

na
l

ge
ne

tic
ef

fe
ct

s
(r

A
oA

m
=

−0
.2

5)
.

A
M

R
50

:
m

od
el

w
ith

co
rr

el
at

ed
di

re
ct

an
d

m
at

er
na

l
ge

ne
tic

ef
fe

ct
s
(r

A
oA

m
=

−0
.5

0)
.

A
M

R
0C

:m
od

el
w

ith
un

co
rr

el
at

ed
di

re
ct

an
d

m
at

er
na

lg
en

et
ic

ef
fe

ct
s,

an
d

m
at

er
na

le
nv

ir
on

m
en

ta
le

ff
ec

ts
.

A
M

R
25

C
:m

od
el

w
ith

co
rr

el
at

ed
di

re
ct

an
d

m
at

er
na

lg
en

et
ic

ef
fe

ct
s(

r A
oA

m
=

−0
.2

5)
,a

nd
m

at
er

na
le

nv
ir

on
m

en
ta

le
ff

ec
ts

.
A

M
R

50
C

:
m

od
el

w
ith

co
rr

el
at

ed
di

re
ct

an
d

m
at

er
na

lg
en

et
ic

ef
fe

ct
s
(r

A
oA

m
=

−0
.5

0)
,a

nd
m

at
er

na
le

nv
ir

on
m

en
ta

le
ff

ec
ts

.
A

na
ly

si
s

m
od

el
s:

A
:m

od
el

w
ith

di
re

ct
ge

ne
tic

ef
fe

ct
s.

A
C

:m
od

el
w

ith
di

re
ct

ge
ne

tic
ef

fe
ct

s
an

d
m

at
er

na
le

nv
ir

on
m

en
ta

le
ff

ec
ts

.
A

M
R

:m
od

el
w

ith
di

re
ct

an
d

m
at

er
na

lg
en

et
ic

ef
fe

ct
s.

A
M

R
C

:m
od

el
w

ith
di

re
ct

ge
ne

tic
ef

fe
ct

s,
m

at
er

na
lg

en
et

ic
ef

fe
ct

s
an

d
m

at
er

na
le

nv
ir

on
m

en
ta

l
ef

fe
ct

s.



380 V. Clément et al.

2.3.2. Simulation models AMR0, AMR25, AMR50
(direct and maternal genetic effects)

When the dam effect was neglected (analysis model A) on data simulated
according to a model with direct and maternal genetic effects, the direct
heritability was overestimated. Estimates of direct heritability could reach
more than twice the true value when genetic correlation was equal to zero

(ĥ
2
Ao = 0.42 for population 1 and 0.13 for population 2). The importance of the

bias increased as the genetic correlation was reached zero. These results agree
with those obtained by Waldron et al. [47] or Nasholm and Danell [36] on real
data, and by Southwood et al. [43], Robinson [41] or Quintanilla Aguado [39]
on simulated data. Results obtained for a selected population are similar [42].
When maternal effects are partially neglected, it is difficult, with an animal
model, to distinguish between maternal effects and the contribution of the dam
to the genotype of her offspring, the direct genetic variance being inflated by
part of the genetic maternal variance. It seems that another part of maternal
heritability is included in the residual variance.

When adding an environmental maternal effect (analysis model AC), results
were closer to true values: estimated direct genetic and residual variances
and the estimated direct heritability decreased, part of the overall variance
being accounted for by the added maternal effect. The direct heritability was

slightly overestimated (ĥ
2

Ao = 0.23 for population 1 and 0.07 for population 2)
for the simulation model AMR25. For the simulation model AMR50, the
direct heritability was equal to the true value for population 2 and slightly

under-estimated (ĥ
2

Ao = 0.16) for population 1. The introduction of this non-
genetic maternal effect allowed us to take into account a fraction of the genetic
maternal effects, which in the previous model was included in the direct genetic
and residual variances. However, and particularly for the first population,
the estimated environmental maternal variance contained only a part of the
genetic maternal variance. Accounting for non-genetic maternal effects does
not compensate for the overall overestimation due to the maternal genetic
effects being ignored.

With the introduction of both genetic and environmental maternal effects
(analysis model AMRC which is an overparameterised model compared to the
simulation model) estimates were similar to those estimated with the correct
model.

2.3.3. Simulation models AMR0C, AMR25C, AMR50C (genetic
direct effects, genetic and environmental maternal effects)

For those more complex simulation models, the direct heritability was
overestimated when using analysis model A. As compared to the simulation
excluding maternal environmental effects (AMR0, AMR25, AMR50), this
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overestimation was similar in population 1, much higher in population 2,
because a part of the environmental maternal effect seems to be included
in direct genetic variation: when an environmental effect was added into the
analysis model (AC) for population 2, direct heritability was not overestimated
anymore. As before, the bias found on direct heritability depended on the value
of the genetic correlation: the overestimation was less important for a genetic
correlation of −0.50, as if the existence of a negative correlation between
direct and maternal effects partially compensates the bias. Hence, as for the
cases AMR0, AMR25 and AMR50, we can expect that direct heritability will
be even more biased for higher values of the genetic correlation. This is on
agreement with the study of Waldron et al. [47] using real data: genetic correl-
ation estimated with a model including correlated direct and maternal effects
varied between 0.09 and 0.30; with a model excluding maternal genetic effects,
direct heritability was 1.3 to 3 times higher than the heritability estimated with
the full model. Meyer [33] showed that there is a strong negative correlation
(from −0.9 to −0.6) between genetic maternal variance and direct-maternal
covariance estimators. This result shows that each modification of one of
the components leads to a variation of the second one in the opposite direction
which could explain why the gap between the true heritability and the estimated
direct heritability increases when genetic correlation tends to positive values.

With the analysis model AMR, for the first population, the direct herit-
ability and the genetic correlation were correctly estimated, but the maternal

heritability was overestimated (ĥ
2

Am = 0.36). For the second population,
only the direct heritability was correctly estimated. The estimated maternal
heritability was four times higher than the true value and the genetic correl-
ation was very negative (rAoAm = −0.40). The suppression of the common
environment effect due to the dam acted on estimated genetic maternal effects
by increasing them above their true value, irrespective of the true value of
the genetic correlation. In fact, genetic maternal and environmental maternal
effects are confounded depending upon the relationship among mothers. The
value of maternal heritability estimated by this reduced model corresponded
approximately to the maternal heritability increased by the c2 value. Moreover,
when environmental maternal effects were important, as in population 2, the
high increase of maternal heritability was compensated by a decrease of genetic
correlation. These results agree with those of Waldron et al. [47] and Meyer [34]
in cattle and those of Koerhuis and Thompson [26] in broiler chickens. These
authors observed a decrease of the maternal heritability on growth traits from an
equivalent value of environmental maternal effects, when the latter are included
in the model. A strong negative correlation between genetic and environmental
maternal variance estimators helps to understand this result.

Generally speaking, a reduced model (with one or several random effects
omitted) led to a variable bias, up to more than 50% of the true value, arising
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from a confusion between different variance components. On the contrary,
fitting unnecessary random effects neither yielded biased estimates (genetic
parameters relative to these effects being either equal to zero, or which cannot
be estimated) nor substantial losses in the precision of estimates. This result is
opposite to Meyer’s [33] results who found an influence of unnecessary effects
on the precision of variance component estimation.

It seems, as pointed out by Cantet et al. [9] that there has been an evol-
ution of estimates for growth traits over the last fifteen years. Estimates
of direct heritability tend to increase, whereas those of maternal heritability
decrease. The negative values of genetic correlation estimates are less negative
than before. The overestimation of maternal heritability when environmental
maternal effects are omitted should thus be related to the fact that estimates of
maternal heritability obtained with older methods prior to the REML-animal
model tend to be higher than those of more recent works. Indeed, the dam-
offspring relationship, which was widely used to estimate genetic parameters
before the use of the animal model contains a common environment effect
provided by the dam to her offspring and leads, when this effect is neglected,
to an overestimation of the corresponding parameter [16,17,25]. The variance
estimated by the dam-offspring relationship also contains a dominance covari-
ance between direct and maternal effects, which can be another source of bias.

3. DATA STRUCTURE

3.1. Data simulation

Effects of data structure on the quality of parameter estimation were studied
considering characteristics of the population as simulated in the previous part,
the only differences being relative to level of connectedness and percentage of
sires known. The model used for simulating data included direct effects, genetic
and environmental maternal effects. To simplify the model, we assumed that
direct and maternal effects were uncorrelated (model AMR0C of the precedent
part).

Four levels of connectedness among flocks were simulated (connected,
disconnected, 1 link sire, 2 link sires), which corresponded to four types of
mating. In each situation, there was a ratio of one male for twenty females,
and mating occurred randomly. Whatever the design, the offspring stayed in
their dam’s flock, so connections, when occurring, were only ensured by link
sires. By and large, a part of the males and females were randomly mated
within-flock (within-flock mating), the other part being randomly mated with
reproducers from other flocks (between-flock mating). The number of animals
of each type of mating (within- or between-flock) is presented in Table V. In the
connected design, the between-flock mating represented 100% of the mating.
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In the 2 link sires design, 2 males per flock contributed to connectedness by
between-flock mating, the other mating being within flocks. In the 1 link sire
design, between-flock mating concerned only 1 male and 20 females per flock.
In the disconnected design, mating occurred within flock only. The coefficient
of connectedness γ proposed by Foulley et al. [14] was applied in this paper.
Nevertheless, in the same way as Hanocq and Boichard [20], this applied to
measure connectedness between flocks instead of connectedness between sires.
Thus with such an approach, γ can be defined as the ratio of the value of the
prediction error variance of a contrast between two flocks using the full model
to its value calculated under the reduced model. The full model involved both
a fixed flock effect and a random sire effect. The reduced model, obtained
by excluding the sire effect from the model, represented the optimal statistical
situation from a connectedness viewpoint. The value of γ and the percentage
of offspring coming from a link sire are presented in Table V. These levels
of connectedness concern the direct effects: only the sires can have offspring
in different flocks. Connectedness from a maternal viewpoint is only the
consequence of connectedness at direct level ensured by sires.

Four pedigree structures were used to estimate genetic parameters: 100, 50,
20 or 10% of sires known. To simulate unknown paternity, a given percentage
of sire identifications was randomly set to zero. Preliminary simulations on
similar simulated populations (results not presented) have shown that below
10% of known sires, the number of different relationships was insufficient
to estimate all variance components and estimated parameters depend on the
starting value of the variance component estimation programme. With at least
10% of known sires, simulated and estimated parameters were equal.

Two situations were modelled. In the first one, the population was genetically
homogeneous, whereas in the second one, flocks initially had different genetic
means.

Connectedness level and knowledge of paternity corresponded to two dif-
ferent problems. Connectedness level was performed first by a mating plan
assuming that all sires were known. When all relationships and performance
were simulated, some sires were randomly sampled and supposed unknown
for variance component estimation. Therefore, knowledge of paternity is an
additional problem, independent of the population structure, but liable to hide
the lack of connectedness.

3.1.1. Base population

Flocks with different genetic levels (cases GD10, GD20, GD30)

When flocks had different genetic levels, the genetic variance could be
divided into two parts, the within-flock genetic variance (σ2

Ao within for direct
effects and σ2

Am within for maternal effects) and the between-flock genetic variance
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(σ2
Ao between for direct effects and σ2

Am between for maternal effects). Thus the (direct
or maternal) genetic value of an animal of the base population was the sum of
its genetic value in the population, plus the genetic mean of the flock in which it
was born. No record was performed for animals of the base population because
dams are unknown.

The same genetic means were used for all replicates in order to limit the
variability of the sample, and after checking that, in spite of the small number of
flocks, the distribution was not too different from a normal distribution. For the
relative part of within and between-flock variances, three cases were simulated:
direct and maternal within-flock variances were equal to 90% (GD10), 80%
(GD20) and 70% (GD30) of the total variance, and direct and maternal between-
flock variances were equal to 10% (GD10), 20% (GD20) and 30% (GD30) of
the total variance.

Same genetic level for all flocks (case GD0)

In this extreme situation, direct and maternal within-flock variances were
equal to 100% of the total variance.

3.1.2. Subsequent years

The genetic simulation model was

Yijk = µ + Ai + Mj + Cj + tk + Eijk

where Yijk is the record of animal i with dam j in flock k;
µ is the phenotypic mean of the population;
Ai is direct genetic value of animal i;
Mj is the maternal genetic value of dam j;
Cj is the maternal environmental effect;
tk is the environmental effect of flock k;
Eijk is the residual.

For offspring, residual effects were randomly generated and direct and
maternal genetic values were equal to the average value of parents, plus the
Mendelian deviation calculated using formulae (1) and (2), but the value used
for variances σ2

Ao and σ2
Am varied according to the mating system. The within-

family genetic variance (due to meiosis) depends on the gene pool to which
it is possible to refer in the base population [15,46]. For a fully connected
system, one may consider all flocks as a single population, and consequently,
the within-family variance was computed from the total genetic variance in
the base population. In contrast, for a completely disconnected system, one
may consider each flock as a separate sub-population, and the within-family
variance was computed only from the within-flocks genetic variance in the base
population. For a partially disconnected system (1 or 2 link sires), the situation
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is intermediate between the previous two. Therefore, in this case, the within-
family variance was computed by combining both within- and between-flock
genetic variances according to the probabilities of gene origin of the considered
parents.

A hundred replicates was run for each type of data set tested, with a distinct
seed for the random number generator for each replicate. The same seed was
used to simulate the genetic mean of flocks in order to limit the variability of
samples.

Values of the variance components and parameters correspond to situation
AMR0C of population 1 (Tab. II).

3.2. Data analysis

Data were analysed using the model with direct and maternal genetic effects
and environmental maternal effects (model AMRC). A fixed flock effect was
fitted in all situations. The data sets studied corresponded to the four connec-
tedness designs (connected, 1 or 2 link sires, unconnected), the four levels of
pedigree information (100, 50, 20 and 10% of paternity known) and degree of
genetic differences among flocks (GD0, GD10, GD20 and GD30).

The average and the empirical standard deviation over replicates are calcu-
lated for variance components: σ2

E, σ2
Ao, σ2

Am, σAoAm and σ2
C.

3.3. Results and discussion

Variances and covariance are presented in Tables VI and VII.

3.3.1. Precision of the estimates

As shown in Table VI, and in contrast to what has been observed by several
authors for the estimation of genetic parameters [10,11] or for the prediction
of genetic value [1,21,45], no clear pattern of reduction of precision related
to a lack of connectedness was observed in this study, but it is possible that
the number of replicates was insufficient to see an effect of connectedness on
the precision of the estimates. However, standard deviation between replicates
of covariance increased when genetic difference between flocks became more
important.

Regardless of the level of connectedness, the alteration of genealogical
information, through a progressive elimination of paternity, acted on the pre-
cision of variances and covariance, as shown in Table VII. Including the
complete pedigree via the relationship matrix allows for a better dissociation,
on, one hand, of genetic and environmental effects, and on the other hand,
genetic effects among the latter, and provides greater precision.



Model adequacy and data structure 387

Table VI. Estimated parameters with different levels of connectedness for a situation
with full pedigree information and same genetic levels between flocks (GD0) or for
situations with a genetic difference between flocks equal to 10% (GD10), 20% (GD20)
and 30% (GD30) of the overall genetic variance.

Genetic difference between flocks

Variances GD0 GD10 GD20 GD30

L
ev

el
s

of
co

nn
ec

te
dn

es
s

Connected σ2
Ao 69.7 ± 9.0 68.9 ± 10.7 66.7 ± 9.8 67.6 ± 10.5

σ2
Am 105.1 ± 14.9 95.3 ± 12.5 91.5 ± 9.7 82.1 ± 11.0

σAoAm 0.9 ± 1.7 0.2 ± 2.7 2.9 ± 5.2 −5.4 ± 9.2

σ2
E 161.3 ± 5.3 161.1 ± 7.1 163.0 ± 5.6 161.5 ± 6.3

σ2
c 18.1 ± 8.8 21.1 ± 7.9 22.8 ± 6.5 27.9 ± 8.3

σ2
P 355.0 ± 9.8 346.6 ± 4.2 341.1 ± 7.3 333.7 ± 2.5

2 link sires σ2
Ao 69.5 ± 9.8 67.7 ± 9.7 66.4 ± 11.1 59.5 ± 10.9

σ2
Am 101.4 ± 14.9 97.1 ± 11.9 85.1 ± 12.0 74.4 ± 11.9

σAoAm 3.4 ± 1.3 −2.1 ± 8.6 −3.3 ± 8.9 −4.6 ± 11.8

σ2
E 161.1 ± 5.9 160.0 ± 6.6 157.0 ± 5.7 156.3 ± 6.0

σ2
c 18.6 ± 8.2 20.3 ± 6.3 22.7 ± 7.9 23.3 ± 7.1

σ2
P 353.9 ± 10.0 342.9 ± 7.8 328.0 ± 9.2 308.9 ± 7.3

1 link sire σ2
Ao 69.6 ± 10.1 65.8 ± 9.8 64.4 ± 8.9 59.1 ± 7.5

σ2
Am 99.5 ± 16.7 93.6 ± 12.1 82.4 ± 11.1 76.2 ± 10.5

σAoAm 4.5 ± 1.3 −0.2 ± 2.1 −2.5 ± 7.2 −3.8 ± 9.0

σ2
E 161.2 ± 6.3 158.3 ± 5.9 159.0 ± 4.8 158.5 ± 5.4

σ2
c 20.7 ± 9.9 19.9 ± 8.0 24.4 ± 8.3 25.2 ± 7.6

σ2
P 355.5 ± 1.9 337.3 ± 3.7 327.7 ± 6.1 315.2 ± 3.7

Disconnected σ2
Ao 69.3 ± 11.7 65.5 ± 9.7 54.6 ± 10.9 48.3 ± 9.8

σ2
Am 107.9 ± 13.5 94.2 ± 13.5 83.3 ± 12.8 75.9 ± 11.3

σAoAm −1.3 ± 1.3 0.1 ± 4.8 0.8 ± 8.0 −0.4 ± 14.1

σ2
E 159.7 ± 6.0 159.6 ± 5.5 161.2 ± 7.0 161.1 ± 6.1

σ2
c 18.1 ± 7.3 18.4 ± 8.2 18.2 ± 8.1 16.8 ± 5.4

σ2
P 353.8 ± 2.2 337.0 ± 3.7 318.1 ± 5.6 301.8 ± 9.0

σ2
Ao: direct genetic variance; σ2

Am: genetic maternal variance; σAoAm: genetic covariance
between direct and maternal effects; σ2

C: part of variance due to maternal environmental
effects; σ2

P: phenotypic variance.
GD0: no genetic difference between flocks. GD10: genetic difference between flocks
equal to 10% of the overall genetic variance. GD20: genetic difference between flocks
equal to 20% of the overall genetic variance. GD30: genetic difference between flocks
equal to 30% of the overall genetic variance.
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Table VII. Estimated parameters with different percentages of known paternity for
different situations of connectedness and a genetic difference between flocks equal to
30% of overall genetic variance (GD30).

Levels of connectedness

Genetic
Parameters Con

ne
cte

dn
es

s

2 lin
k sir

es

1 lin
k sir

e

Disc
on

ne
cte

dn
es

s

K
no

w
n

pa
te

rn
ity

100% paternity σ2
Ao 67.6 ± 10.5 59.5 ± 10.9 59.1 ± 7.5 48.3 ± 9.8

σ2
Am 82.1 ± 11.0 74.4 ± 11.9 76.2 ± 10.5 75.9 ± 11.3

σAoAm −5.4 ± 2.7 −4.6 ± 3.4 −3.8 ± 2.4 −0.4 ± 3.9

σ2
e 161.5 ± 6.3 156.3 ± 6.0 158.5 ± 5.4 161.1 ± 6.1

σ2
c 27.9 ± 8.3 23.3 ± 7.1 25.2 ± 7.6 16.8 ± 5.4

σ2
P 333.7 ± 2.5 308.9 ± 7.3 315.2 ± 3.7 301.8 ± 9.0

50% paternity σ2
Ao 64.0 ± 11.3 56.6 ± 11.9 49.4 ± 11.3 35.7 ± 8.9

σ2
Am 80.3 ± 13.2 77.6 ± 14.0 75.0 ± 13.9 73.6 ± 14.0

σAoAm −0.9 ± 4.9 −2.4 ± 6.0 0.7 ± 2.9 5.4 ± 4.3

σ2
e 164.3 ± 7.8 160.4 ± 6.9 162.2 ± 6.9 166.6 ± 6.5

σ2
c 26.6 ± 7.2 25.8 ± 8.2 21.2 ± 8.7 17.5 ± 8.1

σ2
P 334.3 ± 4.9 318.1 ± 13.1 308.4 ± 8.5 298.9 ± 2.4

20% paternity σ2
Ao 63.5 ± 18.6 54.2 ± 13.6 43.5 ± 15.4 35.8 ± 12.4

σ2
Am 76.1 ± 17.2 75.8 ± 14.6 72.5 ± 14.9 72.8 ± 13.2

σAoAm 0.3 ± 8.2 −1.2 ± 12.6 2.1 ± 7.2 6.3 ± 7.1

σ2
e 163.8 ± 13.5 161.9 ± 9.8 164.9 ± 10.0 166.0 ± 9.5

σ2
c 29.9 ± 10.0 26.6 ± 9.1 24.2 ± 9.9 17.0 ± 8.1

σ2
P 336.7 ± 7.9 317.3 ± 8.9 307.3 ± 8.5 298.0 ± 3.8

10% paternity σ2
Ao 61.8 ± 21.6 54.1 ± 22.8 43.6 ± 20.8 28.4 ± 15.3

σ2
Am 74.9 ± 13.1 77.2 ± 15.0 71.4 ± 14.7 69.8 ± 15.0

σAoAm 2.7 ± 11.9 −1.7 ± 11.8 2.8 ± 10.0 8.5 ± 13.1

σ2
e 164.9 ± 15.9 161.9 ± 17.5 165.0 ± 15.0 172.0 ± 11.5

σ2
c 31.3 ± 9.7 26.2 ± 9.2 23.8 ± 9.2 18.6 ± 9.1

σ2
P 335.4 ± 3.1 317.7 ± 4.9 306.6 ± 12.4 297.2 ± 7.3

σ2
Ao: direct genetic variance; σ2

Am: genetic maternal variance; σAoAm: genetic covariance between
direct and maternal effect; σ2

C: part of variance due to maternal environnemental effects; σ2
P:

phenotypic variance.
GD0: no genetic difference between flocks. GD10: genetic difference between flocks equal to
10% of the overall genetic variance. GD20: genetic difference between flocks equal to 20% of
the overall genetic variance. GD30: genetic difference between flocks equal to 30% of the overall
genetic variance.
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3.3.2. Bias of the estimates

Influence of disconnectedness and genetic difference between flocks

With all sires known, and no initial genetic difference between flocks and
the connected design (Tab. VI), the means over replicates of estimated variance
components were close to true values. A decrease of gene flow across flocks
(1 or 2 link sire designs) had no effect on direct genetic variance estimates,
but led to a decrease of estimated maternal genetic variance. In the GD0
case, estimated environmental maternal and residual effects remained stable
whatever the connectedness level was.

In the connected design, when genetic difference between flocks increased
(GD10, GD20, GD30) estimated direct and maternal genetic variances
decreased, but the trend was much more marked for maternal variance which
went down to 77% of the true value for a genetic difference of 30%, whereas
direct variance was equal to 95% of the true value. In parallel, estimated
maternal environmental variance increased when genetic difference between
flocks became more important.

Observed results depended on the connectedness level but also on the
replacement rate of the females (each year, 1/5 of the females was replaced).
At the beginning of the simulation, the direct and maternal genetic variances
corresponded to within-flock genetic variance. When no connection was gen-
erated, the genetic variance estimated remained equal to within-flock genetic
variance. This is what is observed in the disconnected design: estimated direct
and maternal genetic variances for the cases GD10, GD20 and GD30 were
equal to approximately 10, 20 and 30% of the true value, respectively. We
can conclude that part of the genetic variability was eliminated with flock
effect, so for the disconnected situation, the totality of the genetic variability
between flocks disappeared. In the three other cases, the situation was different.
Progressively, the establishment of connections across flocks took place by way
of link sires which allowed estimability of genetic differences between flocks
and to take them into account in the overall genetic variance estimation. This
latter increased and got closer to the true value. According to Kennedy and
Trus [24], relationships across flocks make possible to reduce the sampling
error for genetic difference between flocks, by adding a sampling positive
covariance between them. When no link sires exist, neither the between-flock
genetic variance nor the environmental variance between flocks are accounted
for and, with such a data structure, the animal model is not able to dissociate
both components [24]. Thus across flock relationships, in order to restore
connection, is required to separate correctly fixed and random effects and to
estimate between-flock genetic variability. As connectedness was ensured by
sires, the gap between true and estimated direct genetic variance decreased
rapidly as simulation progressed. However, our simulation demonstrated that
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when genetic difference between flocks was high (GD30), the genetic connec-
tedness achieved during six years was insufficient for a correct estimation of the
variance components. Other results (not presented) showed that with a larger
number of years of simulation, estimated values were closer to true values (for
example, when the simulation was conducted during three more years, direct
and maternal genetic variances were equal to 69.9 and 88.9, respectively, in the
connected situation for the GD30 case).

Concerning maternal genetic variance, more time is required to ensure
that simulated connected design is efficient. For example, at the end of the
simulation, the maternal grand-dams had still passed on 78% of the gene of
their flock and the dams, 39%. Therefore, six years were not sufficient to take
into account the overall genetic variability, which was still close to within-flock
genetic variance.

Influence of percentage of knowledge of paternity and disconnectedness

Because of the similarity of the results between the different cases tested,
only the GD30 situation is described (Tab. VII) for different levels of connec-
tedness and different percentages of sires known. In the connected population,
with all sires known, both direct and maternal genetic variances were under-
estimated, whereas maternal environmental variance was overestimated. When
connectedness was incomplete, estimated genetic variances still decreased, for
the disconnected design, down to 68% of the true value for direct genetic
variance, and to 71% of the true value for genetic maternal variance, with part of
the genetic variability being eliminated with flock effect. Elimination of a part
of paternity accentuated the under-estimation of direct and maternal variances:
when only 10% of sires were known, in the disconnected population, estimated
direct genetic variance was equal to only 40% of the true value. Thus discon-
necting the system and discarding sires correspond to two different mechanisms
(one of which is due to population structure, the other to data recording), but
lead to the same result in terms of variance component estimation. Recording
an incomplete pedigree can mask a connectedness problem. Whatever the
percentage of known sires, when the connectedness level decreased, estimated
covariance between direct and maternal genetic effects increased. Estimated
maternal environmental variance was higher than its true value, except for the
disconnected designs where this component was unbiased.

It seems that with the disconnectedness situation and incomplete sire iden-
tification, some additional variability is attributed to the dam-offspring genetic
covariance and direct and maternal heritabilities are under-estimated. These
results are in accordance with Gerstmayr’s observations [18]: when one of the
heritability estimates (direct or maternal) increases, the dam-offspring genetic
correlation decreases, and inversely.
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The optimal situation for which the flocks all have the same genetic level is
probably rather rare, in particular when the animals can have various genetic
origins. The choice of the threshold beyond which the number of known sires
will become sufficient to obtain an unbiased and relatively precise estimate
depends on the data structure of the studied population. For extensive systems,
one reliable solution could be the use of DNA markers. The conditions for
successful DNA fingerprinting depend not only on the cost of the method,
but also on the breeding system of the animals (number of males, numbers of
animals per flock, grazing area, etc.). Barnett [4] showed that, recently, the
cost generated when applying these methods to determine maternal pedigree
in Australian flocks of Merino sheep for the prediction of genetic values, was
higher than the return from extra productivity.

4. CONCLUSION

The aim of this article was to study some of the genetic parameter estimation
difficulties. The adequation of the estimation model is of particular interest
since a reduced model leads to biased estimates. The importance of the bias
depends on the true values of genetic parameters. When maternal heritability is
low, exclusion of the dam effect does not affect the estimates much. However,
estimated direct heritability can be more than doubled when maternal effects
with a high influence on the trait are ignored. The bias was accentuated when
the true genetic correlation was close to zero. When maternal effects with an
environmental origin have a low influence on the trait, as it has been found in
literature concerning temperate climates, the consequences on the estimates are
only minor. However, when part of the variance due to maternal environmental
effect reached 0.20, estimates of the other parameters were biased.

Data structure can affect the precision of variance components. Insuffi-
cient paternal genealogical information increases empirical standard deviations
between replicates of the estimates, whereas insufficient genetic connectedness
do not seem to act on the precision of the estimates. Data structure can also
affect the unbiaseness of variance components: estimations are biased by the
absence of genetic connection and unknown paternity. The fact that flocks have
different genetic means highly accentuates the bias, so the use of link sires to
establish connections is a major concern. Finally, extreme cases where sires
are totally unknown or with no genetic connection between flocks, can make
parameters non-estimable.

However, while data structure and analysis model affect the quality of the
estimation, some situations will not be greatly affected. A bias of 10% for
example will not be a problem for estimating genetic parameters, while it will
have serious effects on the prediction of genetic values in a selection scheme.
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It might be useful, under such conditions to consider the application of DNA
fingerprinting for pedigree determination.

Even if the animal model has the capacity to thoroughly describe gene-
alogical relationships, the analysis of a variance model and the structure of
the animal population must be carefully controlled to get correct variance
component estimations. In conclusion, the animal model is able to correctly
dissociate variance components provided that all the necessary information is
available.

These results were obtained in simplified simulation conditions. With real
data, the problem becomes more complex and there are several additional
causes of bias – due in particular to incorrect definition of the model – which
are likely to interact. The statistical model can be inadequate for example
if (co)variances are not well-described, as in the case of discrete traits or
heterogeneous variances. A good definition of the biological model is important
because direct and maternal effects can interact depending on environmental
conditions. Finally, the genetic model can be different or more complex than
the models used in the present experiment. This is the case, for example
when trait expression is governed by a limited number of genes, or in a mixed
inheritance situation or when dominance and epistatic effects are present.
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