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ABSTRACT

The key aim of this thesis is to demonstrate new paradigms in designing stiffness changing
soft materials. The systems developed and studied in this work have salient and unprece-
dented features such as (1) the ability to controllably stiffen up to 100 times (10,000 %)
when exposed to an external stimulus of temperature or magnetic field, (2) the ability to
uncontrollably assemble into a ultra-soft hydrogel by undergoing 10,000 fold volume ex-
pansion within 0.4 s, and (3) transformation from a repulsive colloidal glassy state to a
particulate gel thus undergoing change in the dynamics and mechanical properties. With
a combination of rigorous experiments and mathematical models, this thesis offers novel
ways to achieve functionality in soft materials and may have numerous applications in the
fields of soft robotics, defense, and direct-write additive manufacturing.

In part one of this thesis, a naturally produced biomaterial, hagfish slime is studied to
understand its design principles. Hagfish slime is a unique predator defense material con-
taining a network of long fibrous threads each 10 − 15 cm in length. Hagfish releases the
threads in a condensed coiled state known as skeins (∼ 100 µm), which must unravel within
a fraction of a second and form a soft hydrogel to thwart a predator attack. The mecha-
nisms of how the hagfish controls the unraveling rates, and the properties of the resulting
gel are not well understood. The combined experimental and theoretical approach adopted
in this thesis address these questions. First, the hypothesis that the viscous hydrodynamics
may be responsible for the rapid unravelling rates is considered, and the scenario of a sin-
gle skein unspooling as the fiber peels away due to viscous drag is discussed. As a result,
its is shown that under reasonable physiological conditions viscous-drag-induced unravel-
ling can occur within a few hundred milliseconds, comparable with the physiological time
scales. Subsequently, through the rheological study on slime networks it is shown that key
rheological and structural features of hagfish slime are insensitive to its concentration, in
spite of the uncontrolled gelation process, and this peculiar characteristic may be vital for
its physiological use.

In part two, the linear and nonlinear rheology of a model system of soft microgel suspen-
sions is investigated. The interaction pair-potential between the microgel is temperature-

ii



dependent. By increasing concentration of the suspension, a transition from a viscous
liquid to an entropic glass to a soft jammed state at low temperatures where the micro-
gels interact via a repulsive potential. Increasing the temperature of the suspension beyond
the Lower Critical Solution Temperature [LCST], introduces additional attractive interac-
tions, and results in the formation of particulate gels. The competition between repulsive
and attractive interactions gives a rich temperature-dependent rheological response that is
also concentration-dependent. An integrated experimental and quantitative theoretical ap-
proach is presented to understand the key linear and nonlinear of the suspensions in various
regimes.

In part three, two novel soft composite systems capable of unprecedented change in their
mechanical properties in response to magnetic and thermal excitation are developed. The
composites were formed by integrating stimuli-responsive particles (thermoresponsive mi-
crogels and magnetic particles) into the strain stiffening network of biopolymer fibrin. The
interactions between the stimuli-responsive particles and biopolymer mesh is hypothesized
to induces local stresses in the mesh, which inherently stiffens under the stress owing to
its semiflexible nature. This helps achieve a higher sensitivity to the external field in the
fabricated composites compared to the traditional flexible-polymer matrix of composite
systems. Phenomenological models are developed that quantify this hypothesis, and the de-
rived predictions are qualitatively consistent with the experimental data. This approach of
using composites based on semiflexible polymers with strong inherent nonlinearity offers
a promising method for developing functional materials with actively tunable mechanical
properties.
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2.9 Parameter dependence of “effective" unraveling. Comparison of timescale tdep,50%

for unraveling half the total length of the fiber for different values of m,
as the dimensionless quantity ℘ is varied in different unraveling sce-
narios. (A) pinned thread in uniform flow, (B) pinned skein in uniform
flow, (C) free thread and skein in straining flow, and (D) symmetric
free skeins in straining flow. Other parameters used are r = 1µm,
R0 = 50µm, L0 = 2R0, U = 1 m/s, and λ = 10 s−1. The dotted
horizontal line represents the physiologically observed timescale (= 0.4 s). . 28
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10 − 15 cm [64]. (C) Hagfish slime samples of varying exudate con-
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3.2 Microstructure of hagfish slime. Differential interference contrast (DIC)
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3.3 Viscoelastic properties vary linearly with concentration. The average
elastic (G′1) and viscous (G′′1) moduli extracted from the linear regime
(γ0 = 10%, ω = 0.2 rad/s) of oscillatory shear deformation follow a
power-law dependence of 1.12±0.04 and 1.28±0.11 respectively. The
inset shows the input and output signals for the concentration, 0.67 wt%,
processed in MITLAOS [71]. . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Linear viscoelastic creep-relaxation. Material deformation, strain γ(t),
is observed under an applied shear stress, σ0 (0.01 Pa in this case) for
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3.5 Nonlinear shear properties of Hagfish slime. (A) Constant step stress
was applied at t = 0 to the sample (0.25 wt %). Three distinct responses
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rameter G, a quasi-property, varies linearly with the exudate concentra-
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3.8 Comparison of concentration dependence of the relaxation exponent
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rheometer (AR2000, TA Instruments), with a cup and bob set up, was
used to probe the shear properties of slime. . . . . . . . . . . . . . . . . . 59

4.2 Experimental set up used to measure Darcy permeability. . . . . . . . . . . 60
4.3 Permeability measurements. Custom-built set up used for permeability

measurements. The solvent flows through the slime sample under an
applied pressure. The outflow is recorded as a function of time. . . . . . . . 61

4.4 Extensional experiments on slime. (A-E) Images from extensional ex-
periment at different extensional strains. Slime is stretched between two
plate by moving the top plate at a fixed extensional rate (0.01/s) while
holding the bottom plate fixed. (F) Sample can withstand extreme ex-
tensional deformation (stretch ratio > 100) without breaking. . . . . . . . . 61

xvii
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5.2 Concentration dependence of linear storage modulus, G′. For low con-
centrations (c < 1.5 wt%), G′ varies over 3 orders of magnitude and
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5.3 Nonlinear viscoelastic moduli (first harmonic G′1 closed symbols, G′′1
open symbols) measured at varying strain amplitudes at a fixed fre-
quency ω = 1 rad/s. At low strains, the response is predominantly
elastic, G′1 > G′′1 and G′1 ∼ constant. Beyond the linear regime, G′1
monotonically decreases, while G′′1 achieves a maximum value as the
material undergoes yielding. With further increase in strain, suspen-
sions at all concentrations have a dominant liquid-like response, with
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5.6 Schematic of our model for microgel radius as a function of concen-
tration. In principle, there can be four regimes. At low concentration,
the size is fixed at its c → 0 dilute limit value as measured by DLS.
Two intermediate regimes have different concentration dependences in
the glassy and "soft jammed" regimes which we envision as physically
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5.10 Equilibrium pair correlation function as a function of reduced interparti-
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6.2 Linear storage modulus, G′ for various concentrations of pNIPAM mi-
crogel suspensions as a function of temperature at an angular frequency
of 1 rad/s. The suspensions show a rich dependence on the temperature.
At each concentration (wt%), changing temperature affects both the ef-
fective volume fraction since the microgel particles swell/de-swell, and
the interparticle interactions (repulsive to attractive across the LCST)
that exist between the particle. . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3 Concentration dependence of linear elastic shear modulus, G′, at var-
ious temperatures. At temperatures below the LCST, i.e. 10, 20 and
30◦C, G′ shows two regimes of concentration dependence: a strong
apparent power-law dependence on concentration (G′ ∼ cn, n > 1)
followed by a roughly linear concentration dependence. Above the
LCST (40◦C), the modulus monotonically increases with the concen-
tration due to increasing strength of attractive interactions between the
microgel particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4 Steady state shear flow curves at different temperatures. (a) For c =
3 wt%, increasing the temperature monotonically shifts the flow curves
vertically downwards attributable to the temperature-dependent effec-
tive volume fractions and interparticle interaction potential. Open sym-
bols are the experimental data and the solid lines are the variance weighted
fits of Herschel-Bulkley (HB) model . (inset) HB fit parameters are
plotted as a function temperature. The yield strength (σHBy ) shows a
monotonic decrease with increasing temperature while the character-
istic shear rate (γ̇c) increases monotonically. The flow index (n), not
shown here, increases with temperature, indicating increasing fluidity
at higher temperatures at 3 wt%. (b) For c = 7 wt%, flow curves
show non-monotonic temperature-dependent trends. (inset) The yield
strength (σHBy ) initially increases with temperature, and then drops,
hence showing a contrasting behavior to c = 3 wt%. The characteris-
tic shear rate (γ̇c) shows a weak temperature-dependence decay initially
followed by a monotonic increase similar to c = 3 wt%. The flow index
(n), not shown here, shows similar trends as γ̇c . . . . . . . . . . . . . . . . 121
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6.5 The Herschel-Bulkley fit parameters (σHBy , γ̇c and n) obtained from fits
to the steady shear data for various concentrations at 10◦C (purple) and
(yellow). The solid lines are the least squares power-law fits. Power-
law exponents vary with the concentration regimes and the tempera-
ture. σHBy shows a strong concentration dependence below the "soft
jamming transition", past which the dependence weakens at both tem-
peratures. (inset–n) Flow index are marginally higher at 25◦C com-
pared to 10◦C below the "soft jamming" crossover transition implying
increasing fluid-like nature at 25◦C. Above the "soft jamming" transi-
tion, n reaches a constant value of roughly 0.41 in both cases. (inset–γ̇c)
Characteristic shear rate at 10◦C has a nearly constant value below the
"soft jamming" transition followed by a decreasing trend above it. At
25◦C, no specific trends could be observed in γ̇c. Raw experimental
data and HB fits are shown in the Appendix Fig. D.3. . . . . . . . . . . . . 123

6.6 Comparison of the relative change of modulus at low temperatures com-
pared to its value at the LCST. The theoretical predictions (red) captures
the trends observed in the experiments (blue). (Inset) shows the change
in volume fraction as a function of concentration at two temperatures,
10◦C (Purple) and 32◦C (Orange). . . . . . . . . . . . . . . . . . . . . . . 128

6.7 Equilibrium pair structure for a volume fraction of φ = 0.60, and range
of attraction a = 0.01d. (Inset) shows static structure factor for the
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6.8 Examples of dynamic free for a given volume fraction of φ = 0.60 with
range of attraction a = 0.01d and strengths of attraction 0kBT (pure
Hertzian repulsive case, blue), kBT (green) and 2.5kBT (red). (Inset)
shows the important length scales associated with dynamic free energy
and the local barrier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.9 Storage Modulus at 40◦C. Black dots represent experimental points and
black dotted line is the exponential fit to the data. Blue, Green and Red
lines are theoretical calculations done with −βε = 3, 6 & 9 and fixed
range of interaction a = 0.01d. (Inset) shows estimates of effective
volume fractions as a function of concentration at high T . (inset) shows
effective volume fraction estimated at high temperature as a function of
concentration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.10 Theoretical linear elastic Shear Modulus (red) at 40◦C as a function
of concentration. Black points are experimental observations. (Inset)
shows concentration dependence of strength of attraction that produces
the correct shear modulus. . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.11 Prediction for absolute yield stress as a function of concentration. (In-
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7.1 Hydrodynamic diameter of self-crosslinked pure pNIPAM microgels,
measured using dynamic light scattering, as a function of temperature.
The "phase transition" in pNIPAM across the LCST leads to the sharp
change in the volume of the microgel particles (data courtesy: Jin Gu
Kang and Paul Braun). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.2 At all concentrations of pure pNIPAM suspensions, G′ decreases with
temperature. G′ values above the LCST (shaded region) show a non-
monotonic trend with concentration. This is attributed to the sample
inhomogeneity above the LCST (repeat measurements in Appendix Fig. E.4).145

7.3 Concentration dependence of G′ of pure pNIPAM suspensions at low
temperature, 25◦C, shows a strong apparent power-law (best fit shown
by the dashed black line) which is indicative of concentrations in the
glassy fluid regime before the soft jamming crossover. For context, the
estimated effective volume fraction φ and particle radiusR is shown for
both low and high temperature (see right vertical axis). . . . . . . . . . . . 145

7.4 The concentration dependence of the linear elastic modulus G0 agrees
closely with the theoretical predictions for semiflexible polymer networks. . 146

7.5 Strain stiffening response of the oscillatory first-harmonic elastic mod-
ulus (G′1) (filled symbols) is prominent when shear strains exceed 10-
20 %. The normal force measurements for these experiments is pro-
vided in Appendix Fig. E.5. . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.6 Composite formation by polymerizing fibrinogen into a fibrin network
in the presence of pNIPAM microgel suspensions at different particle
loading cp [wt%]. Evolution of viscoelastic moduli show weak effects
from the pNIPAM that are non-monotonic but tend to increase the over-
all linear moduli. (see Appendix Fig. E.6 for all other compositions)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.7 Dependence of composite rheology on temperature. The linear moduli
and normal force for two different compositions of composites: 6.4 mg/ml
fibrin with 3 wt% microgels (top) and 0.4 mg/ml fibrin with 0.5 wt%
microgels (bottom) are shown. The composite is prepared by polymer-
izing fibrin in the microgel suspension at a fixed temperature 25◦C fol-
lowed by the application of repeated temperature increase (shaded red)
and decrease (shaded blue) at 1◦C/min to probe the temperature depen-
dence. The linear moduli show reversible stiffening as the temperature
is raised above the LCST (strain amplitude 1 %, angular frequency 1 rad/s). 151
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7.8 Temperature dependence of the storage modulus of pNIPAM-fibrin com-
posites. (A) The concentration of fibrinogen and thrombin is held con-
stant at 0.4 mg/ml and 0.5 U/ml, respectively, while the concentration
of pNIPAM microgels is varied. Varying the concentration of pNIPAM
microgels stiffens the network as the temperature is increased above
LCST. (B) Similar data for 6.4 mg/ml fibrin and 0.5 U/ml thrombin.
Note that only the second temperature ramp-up cycle is shown in the
figures. Data for all other compositions is given in Appendix Figs. E.7,
and repeat measurements at selected compositions are shown in Ap-
pendix Figs. E.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.9 Stiffening ratio (relative modulus change) for all fibrin concentrations
cf plotted as a function of microgel content cp in the composites. Inset
shows absolute change in modulus for the same compositions. (Raw
data for cf = 0.4, 6.4 mg/ml in Fig. 7.8; all other raw data in Appendix
Figs. E.7 and E.8.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.10 Confocal images of fibrin-microgel composite at (A) T = 25◦C and (B)
T = 35◦C . The fibrin fibers (tagged red) and the microgels (tagged
green) have a concentration of cf = 3.5 mg/ml and cP = 3 wt%, re-
spectively. Above the LCST(∼ 32◦C), de-swelling of microgels can be
observed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.11 Nonlinear response of fibrin-microgel composites at selected compo-
sitions, each at low and high temperature (compared to LCST). Both
below and above the LCST, the composites retain a strain-stiffening re-
sponse similar to pure fibrin hydrogel in Fig. 7.5. . . . . . . . . . . . . . . 154

7.12 Effectively stretched polymer network model. At low temperature (T
< LCST), the fibrin network is polymerized around the swollen mi-
crogel. The sketch of a single two dimensional lattice shows the key
length scales in the network: the contour length larc of the polymer
in between the nodes/crosslinks, and the end-to-end distance between
the crosslinks. When the temperature is raised above the LCST of the
microgel, its size abruptly shrinks to and this imposes a strain on the
attached fibrin network. The consequence of this strain is in a mean-
field-like sense is schematically shown in the two dimensional lattice
sketch, where the end-to-end distance changes to λf l0 but larc remains
constant as a result of the inextensibility assumption. . . . . . . . . . . . . 157

7.13 Model predictions (curves) of the linear shear modulus normalized by
its values at x = x0. The finite extensibility of the fibers between fixed
junctions leads to a drastic increase in the stiffness of the network as
apparent from the plots. The symbols are experimentally measured val-
ues of Σ and by forcing σ to match the model we infer m for various
compositions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.14 The values of m (closed symbols) for which the experimental stiffening
ratio and model predictions match. The maximum value of m given
by Eq. 7.6 are plotted as open circles. Inset shows the monotonically
decreasing trend of m as a function of effective volume fraction of microgels.161
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7.15 Schematic describes the adjustment of a entangled polymer mesh cell
that encapsulates a microgel particle as the particle de-swells beyond its
LCST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.16 Model predictions (open symbols) of relative stiffening from Eq. 7.8.
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the composite. (b) The CI particles are polydisperesed with a mean size
of 2 µm and a standard deviation of 0.75 µm (obtained using a normal
distribution fit to the data). . . . . . . . . . . . . . . . . . . . . . . . . . . 170
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8.12 3D reconstruction of X-ray CT images for Fibrin-CI composite (φCI =
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A.1 Schematic of a fiber (red) peeling from a substrate (black). . . . . . . . . . 205
A.2 (A) Evidence of hagfish (Eptatretus sp. 2) defense against suction feed-

ing predator (Polyprion americanus, Atlantic wreckfish) (adapted from
Zintzen et al. [23], by permission from SpringerNature). A suction
feeding fish induces flow into its mouth by expanding its buccal cavity
and drawnig its prey along with the flow. We hypothesize the suction
flow to aid in unraveling of thread cells and set up the slime network.
(B) The one-dimensional suction flow profile (A.1) with an assumption
of constant velocity inside the predator’s mouth. (C) A schematic of the
fish-thread-skein system (not to scale). . . . . . . . . . . . . . . . . . . . . 207

A.3 Numerical solution (dashed black line) of (A.2) for the parameter values
R0 = 50µm, L0 = 2R0, ℘ = 0.5, m = 1/2, and velocity profile
given by (A.1) with u(xg = 0, t) = 1 m/s with varying the location
of the pinned point. Yellow, orange and green are the solution to the
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gape size (= 10 cm). Solid black line is the numerical solution for
the case of constant velocity of 1 m/s. The dotted line is the upper
bound L = L0 + Ut, with U = 1 m/s. . . . . . . . . . . . . . . . . . . . . 208

B.1 Fractal analysis of microstructure of hagfish slime (0.8 mg/ml). The
first column gives the raw DIC image followed by the thresholded im-
ages in the second column. The fractal dimension of obtained using the
power-law fit to the data, as shown in third column. . . . . . . . . . . . . . 212
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B.3 Fractal analysis of microstructure of hagfish slime (0.08 mg/ml). . . . . . . 214
B.4 Amplitude and Frequency sweep data. (A) Average elastic modulus,

G′1, response for different exudate concentrations. G′1 shows strain soft-
ening above γ0 = 20%. Dashed lines indicate: (1) Instrument low
torque limit, (2) Instrument inertia limit and (3) Sample inertia limit.
(B) Average loss modulus, G′′1 is plotted for different exudate concen-
trations. The experimental data for distilled water using the same exper-
imental set-up (black open circles), matches the theoretical prediction
for G′′1 (solid black line) outside the low torque limit. This exemplifies
that the data collected on this experimental set-up is free from any un-
desirable surface effects and instrument inertia. (C) The ratio of G′′1 and
G′1, has values within narrow band (0.2 − 0.3) in the linear viscoelas-
tic regime (γ0 < 20%). The encircled data in the plots was used to
determine the modulus-concentration dependence in Figure 3. (D) Fre-
quency sweeps for hagfish slime at two different concentrations. The
effects due to the instrument inertia limits the reliability of data beyond
a certain frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
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B.5 Lissajous curves. The raw data in form of Lissajous curves is shown for
different concentrations at five different strain amplitudes (A) 1.74%
(B) 12% (C) 23% (D) 83% (E) 1100%. (A) and (B) correspond to the
strains corresponding to the linear viscoelastic regime, hence the shape
of the stress-strain curve for a sinusoidal deformation is an ellipse. Non-
linear behavior is apparent from the Lissajous curves in (C) and (D),
where the shape deviated from an ellipse. The sample has an intracycle
strain-stiffening response. At very high strain,(E), the network junc-
tions are broken and the viscous nature dominates the response. . . . . . . . 218

B.6 Normalized Lissajous curves. Same data as Figure B.5, normalized by
the maximum strain and stress for each case for the ease of comparison. . . 219

B.7 Repeat data for creep tests at different concentrations. (A) 0.083 wt %,
(B) 0.25 wt %, (C) 0.58 wt %, (D) 0.75 wt % for an applied stress of
0.01 Pa which corresponds to the linear viscoelastic regime. . . . . . . . . . 220
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B.8 Figure on from previous page. (A) A schematic depicting the difference
between the secant and tangent modulus. In the linear elastic regime of
a material, the relationship between stress, (σ), and strain (γ), is a sim-
ple, linear relationship: σ = G0γ, where G0 is the elastic modulus and
has a constant value. A linear response is typically observed in mate-
rials at small enough range of stresses and strains. At larger stresses
or strains, the nonlinear effects can start to dominate the response. In
nonlinear regime, the linear relationship is no longer followed. We can
see that from the schematic data in the red curve. The secant modu-
lus (G0 = σ

γ
) will have a different magnitude than the tangent modulus

(K ′ = dσ
dγ

). Hence, in the nonlinear response, there are different mea-
sures of elastic modulus, which are generally not equal. (B) A Maxwell
model in series with an inertial mass is used to extract viscoelastic in-
formation from the inertia-elastic ringing observed at short times. (C)
Maxwell model response superimposed with decaying oscillations is
used fit the creep compliance response at short times. A fit is shown
for a 0.41 wt % sample. Four successive peaks from the damping os-
cillations are used to evaluate all the parameters (X , Y ,Z,ω∗ and ∆).
A comparison of experimental data and constitutive model fit is shown.
The agreement between experiment and fit is excellent. The model de-
viates significantly at longer times as shown in inset. (D) The fit pa-
rameters are used to extract a viscoelastic storage (K ′) and loss moduli
(K ′′). A short time secant modulus (G0) can be evaluated from the un-
derlying Maxwell evaluation (G0 = 1

Y
). (E) Tangent moduli plotted as

a function of exudate concentration for an input stress of 0.01 Pa. Both
storage and loss moduli depend linearly on the exudate concentration.
(E) The secant modulus, G0, has a linear concentration dependence as
well. Similar observations are made for the stress input of 0.0316 Pa,
shown in (F) and (G). (H). tan δk = K ′′/K ′ varies within a narrow
band (0.25−0.4) for all concentrations, suggesting that the viscoelastic
nature of the slime remains similar at short timescales. . . . . . . . . . . . 223

B.9 Nonlinear creep of hagfish slime. Creep response at various applied
stresses. The response changes from linear viscoelastic power-law solid
at low stresses to viscous high stress, with a yield/failure stress in be-
tween. The data shown if for different concentrations of hagfish defense
gel (A) 0.083 wt %, (B) 0.41 wt %, (C) 0.58 wt %, (D) 0.75 wt %, (E)
1.67 wt %, (F) 5.80 wt %. . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

B.10 Stiffening tangent moduli with stress. With increase in the input stress,
the samples at all concentrations, show a stiffening of tangent moduli,
before yielding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

B.11 The fractional Kelvin-Voigt model reduces to a typical Kelvin-Voigt
model with a spring and dashpot in parallel for α = 0. An effective
dashpot is obtained for α = 1. . . . . . . . . . . . . . . . . . . . . . . . . 230
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B.12 Constitutive model for comparing experiments. (A) A fractional Kelvin-
Voigt model, with parameter η,G, α gives a power-law creep response.
The response for four different values of α and other parameters fixed
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CHAPTER 1

INTRODUCTION

Responsive soft materials have emerged as an exciting area of research over the last two
decades due to the rising demand in their engineering applications such a soft robotics, drug
delivery, tissue engineering etc. Such materials are capable of achieving a wide range of
switchable material properties when exposed to various external conditions, and thus pro-
vide a new dimension to the design of materials. The key idea in several such materials is
the conformational and chemical changes that occur within the material as its environment
is changed. Such changes often occur on multiple scales, ranging from nanoscale (e.g. in
block copolymer brushes, ferrogels), to microscale (e.g. in magnetoyield stress fluids), to
macroscale (e.g. geometric instabilities in venus-fly trap). Hierarchical relations often exist
between different scales.

1.1 Reconfigurable and Functional Composites

One of the key approaches towards rationally designing responsive soft materials is to de-
sign composites with multiple components. The components can be triggered by an internal
or external stimulus, to drive new assemblies by changing geometric features, interaction
potentials etc. Useful functional behavior can be realized from such assemblies which can
offer new solutions in several fields such as energy harvesting and soft robotics.

1.1.1 Responsive Materials in Biology

Many naturally occurring materials exhibit switchable material properties in response to
changing physiochemical conditions. Such adaptation behavior is vital for functions such
as defense, sensing, motility etc. In general, such responsiveness/adaptation arises from a
cascade of events occurring on many hierarchical levels. Fig. 1.1 a-b shows the stiffness
change in a sea cucumber near the contacted area. The modulus changes by a factor of
10 (from ∼ 5 to ∼ 50 MPa). The change is attributed to neurally controlled secretion
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of glycoproteins that transiently connect the high-aspect ratio collagen fibers in the inner
dermis [1, 2]. Fig. 1.1 c shows the example of a spruce cone which responds to changes in
the relative humidity [3, 4]. This mechanism is attributed to the bilayered structure of the
cones. The active outer layer of tissue has closely packed long parallel thick-walled cells
that expand longitudinally when exposed to humidity and shrink when dried. The inner
layer does not respond as strongly as the outer layer [3, 5]. Fig. 1.1 d-e shows the dynamics
of a Venus flytrap. The mechanism of snapping is initiated by the mechanical stimulation
of trigger hair, which causes the plant to change its principal natural curvatures by the
movement of water in its hydrated leaves. This change provides mechanisms for elastic
energy storage and release. The leaf then stretches until it reaches a point of instability,
and undergoes span-buckling instability [6]. The hydrated nature of lead induces the rapid
damping of the vibrations.

1.1.2 Bioinspired Responsive Materials and Beyond

The fascinating adaptive response of biological structures has motivated the design of nu-
merous material systems that can either mimic the biological design or provide new so-
lutions in other domains. An understanding of the underlying phenomenon on various
structural scales paves the way for the development of synthetic materials that have numer-
ous applications in growing fields of biomedical devices and soft robotics. Inspired by the
stiffness variation in the sea cucumber, Capadona et al.[1] developed a polymer nanocom-
posite based on a host rubbery polymer and rigid cellulose nanofibers that can reversibly
soften by a factor of 40 upon exposure to a chemical regulator. Zhao et al.[7] designed
a hydrogel assembly inspired by the snap-buckling instability in a Venus flytrap [6] that
exhibits such an instability based on bistable states. A building block of three hydrogels
(non-responsive, thermo-responsive, and pH-responsive) achieved reversible switching as
shown in Fig. 1.2 a-b. Inspired by the passive movement of pine cones based on its bi-
layered structure and anisotropic response to hydration, biomimetic structures have been
proposed based. Such structures are made from bilayered films from different materials [5]
or varying the extent of crosslinking in the layers [8]. Fig. 1.2 c shows the demonstration of
a bilayered structure analogous to the pine cone made from a paper and plastic layer which
can bloom and close based on the surrounding moisture.

Other strategies in designing stimuli-responsive materials have been established and
evolved over the last few decades. Field-responsive materials can undergo reversible or
irreversible transition in response to applied stimulus. Various physical stimuli have been
of much interest since they can be applied remotely. Common examples of such stimuli
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(a) (b)

(c)

(d) (e)

Figure 1.1: Biological responsive systems. (a-b) Sea Cucumber in its relaxed state and
stiff state when touched (image adapted from [1]). (c) A spruce cone responds to ambient
humidity, it changes shape and opens up when dry (top) and close when wet (bottom)
(adapted from [4]). (d-e) A Venus flytrap undergoing a snap-buckling instability in going

from an open to close state (adapted from [6]).

are photo [9, 10], electro [11, 12], magneto [13, 14], ultra-sound [15, 16] and temperature
[17]. Fig. 1.3 a shows the temperature-controlled sol-gel transition in an organogel based
on Azobenzene-containing poly(aryl ether) dendron. The gel undergoes morphological
transformation from a nanofiberous network to a microsphere suspension [18]. Fig. 1.3 b
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(a) (b)

(c)

Figure 1.2: (a-b) Reversible snapping of hydrogel assembly (scale bar=5 mm). At neutral
pH in (a), increasing temperature from 20 to 40◦C leads to snapping. At 20◦C in (b),
changing pH from 7.0 to 2.0 leads to snap-back of assembly (adapted from [7]). (c) A
pine-cone inspired flower-like structure (petal length ≈ 4 cm) of paper-plastic exhibits
controllable blooming and wilting. The structure blooms in water and closes when water

supply is exhausted (adapted from [5]).

shows a magnetoresponsive lattice structure built from magnetically active particle-filled
tubes. Upon exposure to various strengths of magnetic field, the elements of the structure
vary in their mechanical strength, and hence can bend/buckle to varying degrees [19].

1.1.3 Stimuli-Responsive Polymer-Colloid Composites

Polymer-colloid composites offer attractive opportunities to design new materials by tailor-
ing the properties of individual components or tuning the interaction between the different
components. However, synthesizing such composites is often a challenging task because of
competing interactions between different building blocks. A common strategy in success-
fully designing stimuli-responsive materials is to organize the stimuli-responsive (active)
component into a passive matrix. Under an external or internal stimulus, the collective
interactions between the components are altered, hence new equilibrium/non-equilibrium
rules are established. This process can potentially alter the physical properties of the com-
posite.
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(a)

(b)

Figure 1.3: (a) Thermoresponsive sol-gel transition in an organogel. On cooling the
organogel undergoes morphological change from nanofibers to microspheres and turns into
suspension (liquid) (adapted from [18]. (b) Magentomechanical behavior of a lattice struc-

ture made from polymer tubes filled with magnetic particles. (adapted from [19]).

Typical polymer-colloid composites are composed of a colloidal component dispersed in
a polymeric matrix. Generally, the colloid size is either larger or comparable to the mesh
size. Traditionally, addition of hard colloidal particles in elastomers has been employed as
a means to enhance the mechanical properties of the composite (filler effect). Interesting
phenomenon arises when a colloidal component is composited with either polymer melts or
transiently crosslinked networks. For example, in the case of nanocomposite polymer melts
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the glass transition temperature and the viscosity of composite melt changes. Additionally,
the interactions between the polymer-colloid can lead to various possible microstates. For
example, attractive interactions between the colloidal component can drive the aggrega-
tion of suspended colloids if the polymer-colloid attraction strength is not strong enough.
Progress has been made on the theoretical front by Schweizer and coworkers to quantita-
tively predict the microstructure of such composites.

Different paradigms can be realized when the colloidal size is smaller than the polymeric
matrix mesh size. The colloids in such composites can diffuse/move faster and provide ex-
citing opportunities to design re-organizable microstructures, thus enabling more dramatic
stimuli-responsive property changes. The recent developments in the reversible actuation of
colloidal assemblies combined with the large mesh size polymer networks can help achieve
unprecedented material systems.

1.2 Systems of Interest

The responsive soft materials studied in this thesis have an underlying fibrous structure.
The properties (material and geometric) of individual fibers and their connectivity in a net-
work form determines the bulk materials properties. The specific systems studied include
hagfish slime, volume-changing microgels synthesized from flexible chain polymers, and
composites from semiflexible polymer fibrin. Significant work has been done with respect
to certain aspects of these systems in the literature. This thesis addresses some of the lin-
gering questions and introduces some new ideas for the development of novel materials.
One of the pioneers in the field of rheology and viscoelasticity, John Ferry, also pioneered
the work on hagfish slime and fibrin (see Fig. 1.4).

1.2.1 Hagfish Slime: A Volume Expanding Hydrogel

Hagfish slime is a defense mechanism of deep sea dwelling hagfish against predator at-
tacks. Slime is formed outside the body of a hagfish from a very small quantity of biomate-
rial (exudate) which is secreted from hagfish slime glands which then expands in sea water
achieving expansion ratios up to 10,000 [21] as shown in Fig. 1.5. This process occurs
within a fraction of a second (≈ 100 − 400 ms) [22, 23]. Several key aspect of this bio-
physical process lack a rigorous understanding. The specific questions that are addressed
as a part of this thesis are:

• How to account for fast timescales of slime formation?
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Figure 1.4: John Douglas Ferry, who made significant contributions to polymer science
and viscoelasticity, published one of the earliest work on the hagfish slime [20]. Ferry’s
early fibrinogen work (1942-1957) led to 41 publications. His later work (1971-1988)
produced an additional 36 papers. (source: National Academy of Sciences Biographical

Memoirs)

• How robust is the slime formation?

• How sensitive are the properties to the concentration?

• What roles do the various constituents of slime play?

Chapter 2 describes a theoretical framework based on experimental observations of a
single thread cell unraveling, and makes a conclusive case for the hypothesis that hydro-
dynamic stress is a leading cause for such fast unraveling. Chapters 3 and 4 focus on the
mechanics of hagfish slime networks.

1.2.2 Soft pNIPAM Microgel Suspensions

Self-crosslinked poly(N-isopropylacrylamide) (pNIPAM) microgel suspensions are used
as a model system to probe the linear-nonlinear rheology of such systems. Such a sys-
tem brings additional complexity in its dynamics compared to hard-sphere colloids since
the particles are deformable with a fluctuating internal polymeric microstructure, which
can lead to their size and even shape becoming a function of thermodynamic state (volume
fraction, temperature, ionic strength) and deformation. Most microgels are charged and can
be created with diverse chemistry, which introduces concentration-dependent complexities
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Figure 1.5: (a) Hagfish produces large volumes of slime when threatened (image courtesy:
Vancouver Aquarium You Tube channel). (b) Slime is produced by release of small volume

of exudate which expands rapidly in sea water.

associated with osmotic decompression, the poorly known internal density profile (often
core-shell), and variable single particle mechanical stiffness. Hence, the effective inter-
action potential between microgel particles is a complex issue, consistent with a lack of
universal signatures in their rheology. Through a combined experimental and theoretical
study we address the following questions:

• Quantitatively understand structure, quiescent relaxation, shear elasticity, and non-
linear yielding of dense repulsive microgel suspensions

• Quantitatively understand the transition from a glassy state to a gel-like response
when the temperature is varied across the LCST

Chapter 5 describes the mechanics of such concentration-varying suspensions at low
temperatures and Chapter 6 focuses on the temperature-dependent effects in such suspen-
sions.

1.2.3 Stimuli-Responsive Semiflexible Polymer-Colloid Composite

New paradigms in designing stiffness changing soft materials are described and demon-
strated. Our approach involves combining stimuli-responsive particles (thermoresponsive
microgels and magnetically active particles) with a semiflexible biopolymer network of
fibrin. When exposed to an external stimulus of thermal excitation or magnetic field, the
interactions between the embedded particles and fibrin network lead to an unprecedented
increase in stiffness by up to 100 times. We hypothesize that the stimuli responsive parti-
cles induce local stress in the biopolymer matrix which intrinsically stiffens under stress.
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Figure 1.6: Stimuli-responsive polymer-colloid composites. (a) The microgel deswelling
across a critical temperature induced changes in the polymer matrix. (b) The magnetic

interactions between dipoles stresses the polymer matrix.

In the case of thermoresponsive composites the drastic deswelling of the microgels deform
fibrin filaments, thus leading to stiffening. The interactions between magnetic dipoles plays
an analogous role in the case of magnetoresponsive composites. Phenomenological models
are developed that quantify these hypothesis, and the derived predictions are qualitatively
consistent with the experimental data.

Chapter 7 describes the fabrication, characterization, and modeling of thermoresponsive
composites, and Chapter 8 focuses on the magnetoresponsive composites.
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CHAPTER 2

UNRAVELING HAGFISH SLIME

2.1 Introduction

Marine organisms present numerous interesting examples of fluid-structure interactions
that are necessary for their physiological functions such as feeding [24, 25], motion [26],
mechanosensing [27], and defense [28]. A rather remarkable and unusual example of fluid-
structure interaction is the production of hagfish slime, also known as hagfish defense gel.
The hagfish is an eel-shaped deep-sea creature that produces the slime when it is pro-
voked [29]. Slime is formed from a small amount of biomaterial ejected from the hagfish’s
slime glands into the surrounding water [21]. The biomaterial expands by a factor of 10,000
(by volume) into a mucus-like cohesive mass, which is hypothesized to choke predators and
thus provide defense against attacks (Fig. 2.1A) [23]. Such defense mechanisms have been
observed in several species of hagfish [30, 23].

The secreted biomaterial has two main constituents — gland mucus cells and gland
thread cells — responsible for the mucus and fibrous component of slime, respectively [29,
31]. The plasma membranes of both kinds of cells shear off when secreted from the slime
glands [31, 32]. In the present study we focus on the secreted thread cells, referred to
as skein from here on. Skeins possess a remarkable structure wherein a long filament
(10–16 cm in length) is efficiently packed in canonical loops into a prolate spheroid (120–
150µm by 50–60µm) [31, 21] (Fig. 2.1B). When mixed with the surrounding water, the
fiber (1–3µm thread diameter) unravels from the skein (Fig. 2.1C) and forms a fibrous
network with other threads and mucous vesicles. This process occurs on timescales of a
predator attack (100–400 ms), as apparent from the video evidence [23, 22].

While several studies have revealed the mechanical and biochemical aspects [33, 34, 35,

This chapter appeared in the following peer-reviewed publication: Chaudhary, G., R. H. Ewoldt, and J.-
L. Thiffeault, "Unraveling hagfish slime," Journal of the Royal Society Interface, 16(150), 20180710 (2019),
doi: https://doi.org/10.1098/rsif.2018.0710
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Figure 2.1: Slime defends hagfish against predator attacks. (A) Sequence of events during
a predator attack (adapted from Zintzen et al. [23], by permission from SpringerNature).
On being attacked, the hagfish produces a large quantity of slime that chokes the predator.
The process of secretion and slime creation took less than 0.4 s. (B) Slime is formed from
the secreted biomaterial, in part containing prolate-shaped skein. (C) A skein unravels
under the hydrodynamic forces from the surrounding flow field and produces a micron-
width fiber of length 10–15 cm. (D) The unraveled fibers and mucous vesicles entrain a
large volume of water to form a cohesive network. Details on materials and microscopy

are provided in the Appendix A.1.

36, 37] of slime, little is known about mechanisms involved in its rapid deployment. More
recently, efforts have been made to understand the mechano-chemical aspects of the mucus
components, and their swelling and rupture [38, 39], but such an approach has yet to be
extended to the mechano-chemical processes in the unraveling of skeins. Newby [40] pos-
tulated that the fiber is coiled under a considerable pressure and the rupture of the cell
membrane allows the fiber to uncoil. However, later studies [41, 22, 42] have shown
that convective mixing is essential for the production of fibers and slime. More recently,
Bernards et al. [32] experimentally demonstrated that Pacific hagfish skeins can unravel
even in the absence of flow, potentially due to chemical release of the adhesives hold-
ing the fiber together, but the timescales observed in their work are orders of magnitude
larger than physiological timescales during the attack. Therefore, the key question about
the fast timescales involved in this process remains to be answered. Deeper insights into
the remarkable process of slime formation will aid the development of bioinspired material
systems with novel functionality, such as materials with fast autonomous expansion and
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deployment. Motivated by the aforementioned experimental studies, our objective in this
paper is to investigate the role of viscous hydrodynamics in skein unraveling via a simple
physical model, and thus supply a qualitative understanding of the unraveling process.

The key question we answer here is whether the viscous hydrodynamic unraveling alone
can account for the fast unraveling timescales that are observed in physiological scenarios.
We hypothesize that suction feeding in marine predators creates sufficient hydrodynamic
stresses to aid in the unraveling of skeins and set up the slime network. We develop funda-
mental insight by considering only the simplest flow fields — uniform flow and extensional
flow. Our modeling framework, however, generalizes to complex flow fields that occur in
physiological conditions.

In Sec. 2.2, we present a simple qualitative experiment demonstrating the force-induced
unraveling of a hagfish skein. This motivates the model paradigm that follows. Section 2.3
outlines the problem statement, and we derive the general governing equations. In Sec. 2.4,
the equations are solved for skein unraveling in one-dimensional flows under different
physically-relevant scenarios. In Sec. 2.5 we discuss the results in more detail, includ-
ing the influence of constitutive model parameters for the peel strength, and comment on
the qualitative comparisons between the experimental studies and theoretical work.

2.2 Unraveling Experiment

To motivate the mathematical modeling, we perform a simple experiment demonstrating
the force-induced unraveling of thread from a skein (Fig. 2.2). A skein, obtained from
Atlantic hagfish, is held in place by weak interactions with the substrate, and a force is
applied to the dangling end using a syringe tip that naturally sticks to the filament. Fig-
ure 2.2 shows the unraveling skein at different time frames. Frame 1 shows the unforced
and stable configuration, with no unraveling. Unraveling occurs only when a force is ap-
plied from frame 2 onward. There are events when the thread peels away in clumps, but the
orderly unraveling recovers quickly. A minimum peeling force seems required to unravel
the thread from the skein. A simple estimate of the minimum peeling force based on weak
adhesion (van der Waals interaction) between unraveling fiber and skein gives an estimate
of 0.1µN (see Appendix A.2).
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Figure 2.2: Unraveling a thread skein by pulling, as viewed with brightfield microscopy.
Bottom right scale bar 50µm.

initial thread unraveled thread

s = 0 s = L0 s = L(t)

x(L, t) = X(t)

skein

Figure 2.3: Simplified model of thread being drawn from a skein. The thread has
length L(t) with initial length L(0) = L0. Here s is the arclength material (Lagrangian)
coordinate along the unraveled thread, with 0 ≤ s ≤ L(t). The fixed lab (Eulerian) coordi-
nate of the thread is x(s, t), with the thread peeling from the skein at x(L(t), t) = X(t).

2.3 Problem Formulation

To determine if viscous hydrodynamic forces can account for fast skein unraveling, we
consider a model of an inextensible slender thread unraveling from a spherical skein. The
thread unravels and separates from the skein in response to a local force due to a viscous
fluid flow surrounding the connected thread and skein. A schematic representation is shown
in Fig. 2.3. Here x(s, t) is the Eulerian (lab) coordinate of the centerline of the filament
as a function of the Lagrangian (material) thread arclength s, 0 ≤ s ≤ L(t), with L(t)

the time-dependent unraveled thread length. The thread is peeling from the skein at the
Eulerian point x(L(t), t) = X(t), which may depend on time if the skein is allowed to
move.

2.3.1 Hydrodynamic Force Balance

We assume inertial effects, filament self-interactions, and external Brownian and gravita-
tional forces to be negligible. The fluid dynamics in this situation are described by the
Stokes equations. For the most general case of a thread in viscous flow, a local balance of
filament forces and viscous forces (using local drag theory for a slender filament) is given
by [43]

8πµ δ (xt − u(x, t)) = − ((1 + 2δ) I + (1− 2δ) ŝŝ) · f . (2.1)
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Here the tangent to the thread is ŝ, the dynamic viscosity is µ, and

δ = −1/ log(ε2e) > 0, with ε = r/L, (2.2)

are the slenderness parameter and thread aspect ratio, respectively, with r the thread radius.
The internal net force per unit length, f , of an inextensible filament is expressed by

the Euler–Bernoulli bending theory for an elastic beam, and has both tensile and bending
components:

f(s) = −(T xs)s + E xssss , |xs| = 1. (2.3)

Here E is the bending modulus of the thread, T (s, t) is the tension in the filament, and
each subscript s denotes one derivative, e.g. xs = ∂x/∂s. The inextensibility condition
is |xs| = 1, so s and distance along the thread must always coincide.

In the spirit of rheology, we consider the response to simple flows to isolate key features
of the complex behavior, obtain analytical results, and gain an understanding of the un-
raveling process. We only consider cases with zero curvature, xss = 0, immersed in one-
dimensional flow fields, with the thread aligned with the flow streamlines. Equation 2.1
then reduces to a one-dimensional statement that the component of internal net filament
force per unit length f(s) along the streamline (taken as the x direction) is equal to the
local viscous drag per unit length:

4πµ δ (xt − u(x, t)) = −f. (2.4)

Then the one-dimensional form of Eq. (2.3) with xssss = 0 and the inextensibility condi-
tion xs = 1 gives f = −Ts, so that

Ts = 4πµ δ (xt − u(x, t)) . (2.5)

With xs = 1 and x(L, t) = X(t) we have x = X − L + s, where X is the skein position,
and thus xt = Ẋ − L̇. We integrate (2.5) from s = 0 to L to find

T |s=L − T |s=0 = 4πµL δ

(
Ẋ − L̇− 1

L

∫ L

0

u(X − L+ s, t) ds

)
. (2.6)

We then change the integration variable to x = X − L+ s, and finally obtain

TL − T0 = −4πµL δ
(
L̇− Ẋ + ū(L,X, t)

)
(2.7)
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where TL = T |s=L, T0 = T |s=0, and ū(L,X, t) is the average velocity on the filament:

ū(L,X, t) :=
1

L

∫ X

X−L
u(x, t) dx . (2.8)

Equation (2.7) expresses the balance between the tension forces at the end of the thread
and the drag force on the thread. We shall use this equation to derive a peeling formula
for different thread-skein configurations in Sec. 2.4. But first we need to examine how the
thread will peel from the skein to unravel.

2.3.2 Unraveling from the Skein

The relationship between R and L, respectively the radius of the spherical skein and the
length of the unraveled thread, is described by volume conservation

d

dt

(
4
3
πηR3 + πr2L

)
= 0 =⇒ L̇ = −4ηR2Ṙ/r2. (2.9)

Here r is the thread radius and 0 < η ≤ 1 is the packing fraction of thread into the
spherical skein, assumed independent of R. (In this section we keep the packing fraction
as a variable, but in all later numerical simulations we take η = 1, since the skein is fairly
tightly packed.) Explicitly, we have

R3 = R3
0 − 3

4
(L− L0)r2/η (2.10)

with R0 the initial skein radius and L0 the initial unraveled length. A convenient way of
relating R and L is

R = R0

(
Lmax − L
Lmax − L0

)1/3

, Lmax := L0 + 4
3
ηR3

0/r
2 (2.11)

where Lmax is the total length of thread that can be extracted and L0 is the initial unraveled
length.

Next, we use a modified form of the work-energy theorem [44] to describe the unraveling
dynamics,

Ėtotal = (TL − FP(V ))V, V = L̇ , (2.12)

where Ėtotal is the rate of change in total energy of the system, TL is the net force (given
by Eq. (2.7)) drawing out the thread at a peeling velocity V , and FP(V ) is a velocity-
dependent peeling force acting at the peeling site. Neglecting the inertia and changes to the
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elastic energy of the peeling thread gives

TL = FP(V ), V = L̇ . (2.13)

A natural dimensionless quantity that will determine the dynamics of the unraveling
process is given by the ratio of the net viscous drag force on the thread and the resisting
peel force, each of which depends on a characteristic velocity U :

℘ := FD(U)/FP(U) . (2.14)

The functional form of the peeling force, FP(V ), in general is dependent on parameters
such as the chemistry of peeling surfaces, velocity of peeling, etc. In the absence of a
known functional form for hagfish thread peeling, we use a simple constitutive form of
peeling force that includes a wide range of behavior, given by

FP(V ) = αV m, 0 ≤ m ≤ 1, (2.15)

for constant α > 0 and m. Such a power-law form of peeling force has been observed in
several engineered and biological systems [45, 46, 18, 47, 48]. Several other parametric
forms of velocity-dependent peeling force exist that are functionally more complex [49,
50]. However, to obtain simple and insightful solutions, we use the power-law form defined
above. The form (2.14) allows for the limiting case m = 0, a constant peeling force, e.g. to
simply counteract van der Waals attractions at the peel site.

For m > 0, we can rearrange equation (2.13) for the velocity, V = L̇ = (TL/α)1/m.
Using (2.9) we can then obtain a solution for the case where the tension at the peeling
point, TL, is constant:

4
3
(R3

0 −R3) = (TL/α)1/m r2t/η , (2.16)

whereR0 = R(0). From (2.16) we can easily extract the ‘depletion time’ or ‘full-unraveling
time’ tdep by setting R = 0:

tdep =
4ηR3

0

3r2
(TL/α)−1/m . (2.17)

In the next section we compute this timescale when the skeins are subjected to different
hydrodynamic flow scenarios, which cause different time histories of tension, TL(t).
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2.4 Skein in One-dimensional Flow

Having described the unraveling dynamics in Sec. 2.3.2 for the case of constant tension,
TL, we now consider a skein in a hydrodynamic flow where generally TL varies in time
as the thread-skein geometry changes during unraveling. In physiological scenarios the
flow can arise from the hagfish-predator motion, or the suction feeding of the predator, or
a combination of both. To simplify the problem we assume an incompressible flow of the
form

u(x, y, t) = (u(x, t),−yux(x, t)). (2.18)

The thread will be assumed to lie along the x axis. We solve for the depletion time for four
relevant cases: Pinned thread in uniform flow (Sec. 2.4.1); Pinned skein in uniform flow
(Sec. 2.4.2); Free skein and thread in extensional flow (Sec. 2.4.3); and Free skein splitting
into two smaller skeins in extensional flow (Sec. 2.4.4).

2.4.1 Pinned Thread

The simplest case to consider is the thread pinned at s = 0 in Fig. 2.3, with a uniform flow
to the right, u(x, t) = U . This situation can arise in a controlled experiment if the thread is
pinned down, or in the physiological unraveling process if the end of the thread is caught
in the network of other threads, or stuck on the mouth of a predator.

The tension in the thread at s = L balances the Stokes drag on the skein of radius R,
TL = T (L(t), t) = 6πµR (u(L, t)− L̇). Using (2.13) and (2.15), we obtain the governing
equation for unraveling as

(L̇)m = 6πµα−1R(L) (u(L, t)− L̇). (2.19)

From (2.9), since L̇ > 0 (the thread never ‘re-spools’), the unspooling speed satisfies L̇ ≤ u(L, t),
i.e. the thread cannot unspool faster than the ambient flow speed. The radius R(L) is given
by (2.10).

We nondimensionalize (2.19) using a characteristic length scale R0 and flow speed U
which gives

(L̇∗)m = ℘R∗(L∗) (u∗(L∗, t∗)− L̇∗) (2.20)

where L̇∗ = L̇/U , R∗ = R/R0 and u∗(L∗, t∗) = u(L, t)/U are the nondimensional unrav-
eling rate, skein radius, and flow rate, respectively. The nondimensional timescale naturally
results from these choices as t∗ = t/(R0/U). The dimensionless quantity ℘ on the right
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hand side of (2.20) is given by

℘ =
6πµR0 U

αUm
= 6πµR0 U

1−mα−1 . (2.21)

This is the ratio of characteristic drag to peeling force, as defined in (2.14). If ℘ is large (e.g.
zero resistance to peeling), then (2.19) implies L̇ ≈ u(L, t), that is, in this drag-dominated
limit the drag force so easily unravels the skein that it advects with the local flow velocity.
In the opposite limit of small ℘, we get L̇ ≈ 0 and the skein cannot unravel. Hence, we
require ℘� 1 for a fast unravel time.

To achieve the criterion ℘ � 1, at a flow of speed U = 1 m/s and a skein of initial ra-
dius R0 = 50µm, we require the peeling resistance at this velocity to satisfy FP(1 m/s)�
1.4 × 10−6 N. The estimated van der Waals peeling force is much lower than this thresh-
old, FvdW ∼ 10µN. At such a flow speed a skein containing 16.7 cm of thread (an upper
bound physiological value) will unravel affinely (kinematically matching the flow speed) in
roughly 167 ms. This lower bound estimate is commensurate with the rapidity with which
hagfish slime is created (100–400 ms).

In Fig. 2.4 we show a numerical solution of (2.19) with a uniform flow for some typical
physical parameters values, and assuming a moderately-large force ratio ℘ = 10. (Equa-
tion (2.19) is an implicit relation for L̇ which must be solved numerically at every time
step; it is a Differential-Algebraic Equation rather than a simple ODE [49].) For these pa-
rameters, the kinematic lower bound on the depletion time is Lmax/U ≈ 167 ms, and the
numerical value is tdep ≈ 194 ms.

There is a mathematical oddity where the skein might not get depleted in finite time,
depending on the exponent m. To see this, consider a skein close to depletion, L = Lmax−
Uτ , where τ > 0 is small. The equation for τ is

(−τ̇)m = ℘

(
Uτ

Lmax − L0

)1/3

(1 + τ̇), τ̇ < 0. (2.22)

Since τ is small and we expect the thread to be drawn out slowly as it is almost exhausted,
we take 1 + τ̇ ≈ 1. Hence, we have the approximate form

(−τ̇)m ≈ Cm τ 1/3, Cm := ℘ (U/(Lmax − L0))1/3 (2.23)

for some constant C > 0, with solution

τ(t) ≈
[
τ

1− 1
3m

0 −
(
1− 1

3m

)
C t
] 3m

3m−1

. (2.24)
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The behavior of this solution as the skein is almost depleted depends on m. For m > 1/3,
the exponent 3m/(3m − 1) in (2.24) is greater than one, so τ(t) → 0 as t approaches the
depletion time, with τ ′(tdep) = 0 so that L(t) has slope zero when the skein is depleted (as
can be seen at the very end in Fig. 2.4). We can thus rewrite (2.24) as

τ(t) ≈
[(

1− 1
3m

)
C (tdep − t)

] 3m
3m−1 , m > 1/3, t↗ tdep. (2.25)

For m < 1/3, the exponent 3m/(3m − 1) is negative, but the factor 1 − 1
3m

inside the
brackets is also negative, so that τ(t) asymptotes to zero as t→∞ and the skein never gets
fully depleted. In that case we write (2.24) as

τ(t) ≈
[(

1
3m
− 1
)

C t
]− 3m

1−3m , m < 1/3, t→∞. (2.26)

Physically, for m < 1/3 the drag force (∼ τ 1/3) is decreasing faster than the peeling force
(∼ (τ̇)m).

In practice, it is difficult to see the difference between m ≶ 1/3 numerically. The thread
appears to get depleted even for m < 1/3 because of limited numerical precision as L
approaches Lmax. The symptom of a problem is that the depletion time starts depending
on the numerical resolution for m < 1/3. Of course, the skeins in the hagfish slime do
not need to get fully depleted to create the gel, so a power m < 1/3 is still applicable.
When comparing the different flow scenarios we will explore a range of m and define an
“effective deployment” time tdep,50%, when 50% of the thread length is unraveled.

2.4.2 Pinned Skein

When the skein is pinned and the thread is free at the other end, the tension arises from
hydrodynamic drag on the thread. Such a scenario can arise if the skein is arrested in the
network of other fibers or in a mucus network.

Consider a free thread ending at s = 0 and a pinned skein at s = L(t) (Fig. 2.3), so that
the Eulerian skein position X is fixed and is thus not a function of time. Unlike the pinned
thread case in Sec. 2.4.1, where a shrinking skein led to a decreasing drag, here the tension
increases with time as the extended thread provides more drag.

We formulate the problem by imposing boundary conditions at the free end, T0 =

T (0, t) = 0, and pinned end, x(L(t), t) = X . From (2.7) with T0 = Ẋ = 0 and TL =

α (L̇)m, the equation for the growth of the thread is

(L̇)m = −4πµα−1L δ(L)
(
L̇+ ū(L,X, t)

)
. (2.27)
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Figure 2.4: Numerical solution (solid line) of (2.19) for the parameter values R0 = 50µm,
L0 = 2R0, ℘ = 10, m = 1/2, U = 1 m/s. The – — line is the upper bound L = L0 + Ut.
The horizontal dashed line is at L = Lmax, when the skein is fully unraveled. Even for such

a moderate force ratio ℘ = 10 the thread unravels almost as fast as the upper bound.

The slenderness parameter δ depends on L through its definition (2.2). Because the thread
extends to the left in Fig. 2.3, we must have ū(L,X, t) < 0 to avoid unphysical respooling.
The pinned thread equation (2.19) and the pinned skein equation (2.27) have a very similar
form, though the drag in the former (∼ R(L)) decreases with L and that in the latter
(∼ Lδ(L)) increases with L.

Using a characteristic velocity U and a characteristic length scale L0, we obtain the
nondimensional form of (2.27) as

(L̇∗)m = −℘L∗δ(L∗)(ū∗(L∗, X∗, t∗) + L̇∗
)
, (2.28)

where L̇∗ = L̇/U , L∗ = L/L0, and u∗(L∗, t∗) = u(L, t)/U are nondimensional unrav-
eling rate, unraveled length and flow rate, respectively. The natural dimensionless force
ratio (2.14) is

℘ = 4πµL0 U
1−m α−1. (2.29)

This differs from ℘ in (2.21) by replacing R0 with L0. It is sensible in this pinned skein
case to use the initial thread length L0, since drag on the thread controls the unraveling rate.

Figure 2.5 shows a numerical solution of (2.27) for our reference parameter values using
a constant velocity field, u(L,X, t) = −U = −1 m/s. As before, the lower bound on the
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Figure 2.5: Numerical solution (solid line) of (2.27) for the parameter values R0 = 50µm,
L0 = 2R0, ℘ = 1/2, m = 1/2, U = 1 m/s. The – — line is the upper bound L = L0 +Ut.
The horizontal dashed line is at L = Lmax, when the skein is fully unraveled. Even for such

a small force ratio ℘ the thread unravels almost as fast as the upper bound.

depletion time is Lmax/U ≈ 167 ms, and now the numerical value is tdep ≈ 226 ms. This
is slower than what we observed in the pinned thread case (tdep ≈ 194 ms), but here we
are using the much smaller force ratio ℘ = 1/2. This shows that the pinned skein case can
unravel almost as fast as the lower bound for a much smaller value of ℘, since the drag on
the thread increases with L, as reflected by the accelerating speed L̇ in Fig. 2.5. This is in
contrast to the deceleration in Fig. 2.4 for the pinned thread, where drag decreases as the
skein radius diminishes.

2.4.3 Free Skein and Thread

In the previous two cases, we took either the thread or skein to be pinned; here we consider
the case where neither is pinned, and both are free to move with the flow. This scenario
is possible if both the thread and the skein are not stuck to the existing fibrous network,
or at the beginning of the slime formation when none of the skeins have unraveled to a
significant extent.

The force at the peeling point x(L(t), t) = X(t) is then determined by the balance
of two forces: Stokes drag on the spherical skein, F1 = 6πµR (u(X, t) − Ẋ), and drag
on the thread, F2 = −4πµLδ (L̇ − Ẋ + ū(L,X, t)). The latter is obtained from (2.7)
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with TL = F2 and T0 = 0. Since both the skein and thread are free and we have neglected
inertia, F1 + F2 = 0, which we can use to solve for Ẋ , the velocity of the peeling point
in the Eulerian (lab) frame. Coupling this with the peel force constitutive model (2.13)–
(2.15), the unspooling rate equation is then α(L̇)m = F1 = −F2. The dynamics of this
scenario are governed by the system

(L̇)m = −12πµα−1RLδ

2Lδ + 3R
(L̇+ ū(L,X, t)− u(X, t)), (2.30a)

Ẋ =
2Lδ

2Lδ + 3R
(L̇+ ū(L,X, t)) +

3R

2Lδ + 3R
u(X, t), (2.30b)

where ū(L,X, t) is the thread-averaged velocity (2.8). The velocity (2.30b) for the thread-
skein system is the average of a velocity L̇+ ū(L,X, t) arising from drag on the thread and
a velocity u(X, t) arising from drag on the skein, weighed by the relative strength of the
drags.

The difference ū(L,X, t)−u(X, t) that appears in (2.30a) implies that adding a constant
to the velocity field does not change the unspooling dynamics, as expected since the thread-
skein system is freely advected by the flow, and only relative velocities generate drag.
Hence, unlike our previous two cases in Secs. 2.4.1–2.4.2, a spatially-varying flow field is
required for unraveling. For a linear velocity field u(x, t) = λx, i.e. uniaxial extensional
flow with extensional strain rate λ, we have u(X, t)− ū(L,X, t) = 1

2
λL independent ofX ,

so that we can solve the L̇ equation (2.30a) by itself:

(L̇)m =
6πµα−1RL

L+ (3R/2δ)
(1

2
λL− L̇). (2.31)

The mass conservation equation (2.10) then relates R to L, and the slenderness parame-
ter (2.2) relates δ to L.

To define a characteristic length scale for this problem, should we use R0 or L0 as a
length scale? Both are important for the unraveling process to start quickly, but typically L0

is a bit larger than R0. A compromise is to use R0 as the viscous drag length scale and U =

λL0 as the velocity scale. The choice of R0 emphasizes the magnitude of the drag on the
skein, and λL0 reflects the amplitude of velocity gradients over the longer length L0. We
thus obtain the dimensionless form of (2.31) as

(L̇∗)m = ℘
R∗L∗

L∗ + (3R∗/2δ)
(1

2
L∗ − L̇∗) (2.32)

where L̇∗ = L̇/λL0, R∗ = R/R0, and L∗ = L/R0 are nondimensional unraveling rate,
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Figure 2.6: Numerical solution (solid line) of (2.31) for the parameter values R0 = 50µm,
L0 = 2R0, ℘ = 10, m = 1/2, λ = 10 s−1. The – — line is the upper bound L0 exp(1

2
λt).

The horizontal dashed line is at L1 = Lmax, when the skein is fully unraveled.

skein radius and unraveled length, respectively. The natural dimensionless number in this
case is

℘ =
6πµR0 U

αUm
= 6πµR0 (λL0)1−m α−1. (2.33)

Assuming as before that L̇ ≥ 0 (the thread doesn’t ‘re-spool’), the right-hand side
of (2.31) implies L̇ ≤ 1

2
λL, which gives the constraint that L(t) ≤ L0 e

1
2
λt. This con-

straint is the kinematic limit where the thread extends at a rate dictated by the strain rate in
the flow. This implies that the depletion time satisfies

tdep ≥ 2λ−1 log(Lmax/L0). (2.34)

In the two pinned cases we considered before, the lower bound on the depletion time was
of the form tdep ≥ Lmax/U , independent of L0. The lower bound (2.34) depends explicitly
on the ratio Lmax/L0, so a very short initial thread length will take a long time to unravel,
even if ℘ is large.

When the thread is almost depleted, the unspooling rate decreases due to the factor of R
in (2.31). To see this explicitly, put L = Lmax−Uτ in (2.31) and assume τ and τ̇ are small:

(−τ̇)m ≈ 1
2
℘

(
Uτ

Lmax − L0

)1/3
Lmax

L0

, τ � 1. (2.35)
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Figure 2.7: Thread being drawn from two skeins.

This is exactly the same form as (2.23), with a different constant C. We conclude that once
again the criterion for finite-time complete unraveling is m > 1/3, as it was for the pinned
thread case (Sec. 2.4.1). But as before this is not very physically consequential, as it only
applies to the last phase of unspooling when the skein is almost completely unraveled.

Figure 2.6 shows a numerical solution of (2.31) for our reference parameter values and
with a strain rate λ = 10 s−1 for ℘ = 10. (We choose λ such that λLmax is of the same
order of magnitude as U = 1 m/s in the pinned cases.) The lower bound (2.34) on the
depletion time is 1.48 s, and the numerical value is tdep ≈ 1.73 s. This is slower than what
we observed in the two pinned cases (tdep < 1 s), due to the factor 2 log(Lmax/L0) ≈ 14.8.
The slowdown due to the short initial thread length is thus considerable in this case. A
longer initial length or a higher strain rate would be needed to make the times comparable.

2.4.4 Two Free Skeins (Skein Splitting)

Another scenario of unraveling is when a skein splits into smaller connected fractions,
which then unravel. This scenario is possible since the hagfish ejects the skein through its
slime gland and the resulting shear forces (from the ejection process and fluid’s viscous
drag) can break the skein into two.

Here we consider the simple case of a skein breaking into two halves. The unraveling
may be faster since the initial viscous drag is dominated by two skeins, rather than a skein
and a small initial length of thread. A diagram of this configuration is show in Fig. 2.7: we
model the broken skein as two spheres, of radius R1 and R2 respectively, connected by an
unraveled length of thread, which can unspool at both ends. We fix a reference point s = 0

between the two skeins such that x(0, t) = X(t). The thread then extends a length L1(t)

towards the first skein (right) and L2(t) towards the second skein (left), with L = L1 + L2

the total unraveled length. Without loss of generality we take L1(0) = L2(0) = 1
2
L0. The

peeling force at the first skein (s = L1, x = X + L1) is the sum of the drag forces due to
the second skein (s = −L2, x = X − L2) and drag on the thread:

T |s=L1 = −6πµR2(u(X − L2, t)− (Ẋ − L̇2))− 4πµLδ (ū(L,X, t)− Ẋ) (2.36)
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where now ū(L,X, t) := 1
L1+L2

∫ X+L1

X−L2
u(x, t) dx. Since the thread and skeins are free, the

peeling force at s = L1 (2.36) must balance the viscous drag force on the first skein:

T |s=L1 = 6πµR1(u(X + L1, t)− (Ẋ + L̇1)). (2.37)

Equating (2.36) and (2.37), we can solve for Ẋ:

Ẋ =
3R1(u(X + L1, t)− L̇1) + 3R2(u(X − L2, t) + L̇2) + 2Lδ ū(L,X, t)

3(R1 +R2) + 2Lδ
. (2.38)

We use this to eliminate Ẋ from (2.37):

T |s=L1 =
6πµR1

3(R1 +R2) + 2Lδ
(3R2(u(X + L1, t)− u(X − L2, t)− L̇)

+ 2Lδ(u(X + L1, t)− ū(L,X, t)− L̇1)). (2.39)

We can then also carry out the same calculation for the second skein, at s = −L2, and find

T |s=−L2 =
6πµR2

3(R1 +R2) + 2Lδ
(3R1(u(X + L1, t)− u(X − L2, t)− L̇)

− 2Lδ(u(X + L2, t)− ū(L,X, t) + L̇2)). (2.40)

Now it is a matter of solving the coupled peeling equation α(L̇1)m = T |s=L1 , α(L̇2)m =

T |s=−L2 . To keep things simple, let us take a symmetric configuration centered on x =

X = 0 where the two skeins are initially of equal size. (Unequal splitting would result in a
depletion time in between this case of even splitting and the free skein-thread of Sec. 2.4.3.)
We take an antisymmetric velocity field u(x, t) = −u(−x, t) that pulls apart the skeins,
such as for an extensional flow u = λx. Then R1 = R2 and L1 = L2 for all time,
and ū = 0. The tensions (2.39) and (2.40) are then equal and greatly simplify to T |s=L1 =

T |s=−L2 = 6πµR1 (u(L1, t)− L̇1). Thus, the dynamics for this case is governed by

α(L̇1)m = 6πµR1 (u(L1, t)− L̇1). (2.41)

The drag force on the thread has dropped out, since the antisymmetric velocity field leads
to canceling forces on the thread. Another way to think of (2.41) is to observe that in
making a symmetric configuration, with the two skeins being pulled apart by a straining
flow centered on the origin, we have effectively ‘pinned’ the thread at x = 0. We have thus
recovered our pinned thread equation (2.19) from Sec. 2.4.1, with the notable difference
that now we cannot use a constant velocity field U , but must resort to a straining flow λx
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Figure 2.8: Numerical solution (solid line) for the thread half-length L1(t) using the force
for two symmetric free skeins (Eq. (2.41)) for the parameter values R1(0) = 50µm,
L1(0) = 2R1(0), ℘ = 10, m = 1/2, λ = 10 s−1. The – — line is the upper
bound L1(0) exp(λt). The horizontal dashed line is at L1 = L1max, when the skein is

fully unraveled.

or some other nonuniform flow.
We nondimensionalize (2.41) using a characteristic length scale R0 and obtain

(L̇∗1)m = ℘R∗1 (u∗(L∗1, t
∗)− L̇∗1), (2.42)

where L̇∗ = L̇/λR0 and R∗ = R/R0 are the nondimensional unraveling rate and skein
radius, respectively. The natural dimensionless number in this case is

℘ =
6πµλR2

0

α (λR0)m
= 6πµR2−m

0 λ1−m α−1. (2.43)

Figure 2.8 shows the unraveling dynamics associated with a split skein using parameter
values similar to the free configuration of Sec. 2.4.3 and Fig. 2.6. The free skein unravels
faster when split, as expected (0.756 s vs 1.73 s), owing to a stronger effective drag force
and a kinematic upper bound with a rate λ rather than 1

2
λ. There is an important difference

between using the free thread-skein equation (2.30) and the free split-skein equation (2.41):
the former has a drag slaved to a short initial thread length, whereas for the latter the drag
depends on the initial radius of the split skein, which can easily be larger.

In addition to the four cases discussed in this section, we also analyzed a slightly more
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realistic scenario of suction flow where velocity decays away from the mouth of the preda-
tor and we consider a pinned skein at different locations away from the mouth. We use
an approximate flow profile from the experimental data available in the literature (Ap-
pendix A.3). In general, such a flow profile is both spatially and temporally varying, but
we neglect time-dependent variations for our analysis. The peak velocity (at the mouth
of predator) was chosen to match the characteristic velocity (U = 1 m/s). The velocity
decays over a characteristic length scale on the order of the gape size (e.g. opening size
of the mouth). We estimate gape size from the video evidence [23] of slime deployment,
resulting in extensional strain rates between 0.28–2.2 s−1), with the rate being highest at
the predator mouth. These are smaller extension rates than considered in the earlier cases
of this section. The choice of pinning location drastically affects the unraveling time. A
depletion time of ∼ 0.4 s was obtained for the case where the skein is pinned at a distance
equal to 1/3 of the gape size of the predator. This is longer than the unravel time we found
for the pinned skein in a uniform flow (≈ 0.22 s), due to the decaying velocity away from
the predator’s mouth, but the unraveling time still falls close to natural unraveling time
scales. More complicated spatially and temporally varying flow fields can be treated in a
similar way; we expect the timescales in such cases to be on the order of those we found,
given that in real scenarios the thread-skein system can be very close to or in the mouth of
the predator, and the nondimensional quantity ℘ is likely to be sufficiently large.

2.5 Discussion

2.5.1 The Role of the Dimensionless Parameters ℘ and m

The unraveling times for various cases discussed in Sec. 2.4 depend on the dimensionless
quantity ℘, but also separately on the model parameter m in the peeling force law. This
is clear from the dimensionless governing equations in Sec. 2.4 that depend on these two
dimensionless parameters separately, although m also appears in the definition of ℘. The
power-law exponent m determines the peeling force dependence on the unraveling rate.
Such a rate dependence exists in peeling scenarios due to the viscoelastic nature of adhesion
at the peeling site. In the case of hagfish thread peeling from the skein, the dependence can
possibly arise from viscoelastic timescales involved in the deformation of mucous vesicles
or the polymeric solution of mucus [35], or the protein adhesive between the loops of
thread [32]. The peeling resistance also depends on the dimensional constant factor, α, but
its influence on unraveling is built into the dimensionless factor ℘, for which ℘ ∼ α−1.
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Figure 2.9: Parameter dependence of “effective" unraveling. Comparison of
timescale tdep,50% for unraveling half the total length of the fiber for different values of
m, as the dimensionless quantity ℘ is varied in different unraveling scenarios. (A) pinned
thread in uniform flow, (B) pinned skein in uniform flow, (C) free thread and skein in
straining flow, and (D) symmetric free skeins in straining flow. Other parameters used are
r = 1µm, R0 = 50µm, L0 = 2R0, U = 1 m/s, and λ = 10 s−1. The dotted horizontal line

represents the physiologically observed timescale (= 0.4 s).

Figure 2.9 compares all four flow scenarios of Sec. 2.4 as a function of ℘ and m in terms
of the effective deployment time, i.e. the time to unravel half of the thread length, tdep,50%.
(This effective time is used because some flows cannot fully deplete the skein in finite time
for m < 1/3, as discussed in Sec. 2.4. Moreover, in practice the threads do not need to
be fully unraveled to create slime.) The flow parameters are identical to those previously
described. For all cases, the limit of high drag and low peel resistance, ℘� 1, converges to
the kinematic limit of unraveling where unconstrained portions of the skein-thread system
exactly advect with the local flow velocity. At the other extreme, viscous drag is weak
compared to peel resistance and for some small value of ℘ unraveling is too slow to match
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physiological timescales.
The power-law exponent m is a secondary effect compared to ℘. In general, for ℘ > 10,

m has negligible effect on unraveling times. For ℘ < 10, the dependence on m is case-
specific. For the cases of pinned thread (Sec. 2.4.1), pinned skein (Sec. 2.4.2), and free
skein-thread (Sec. 2.4.3), a larger value ofm leads to a smaller unraveling time (while keep-
ing the same value of ℘). For the case of skein splitting in an extensional flow (Sec. 2.4.4),
such a monotonic trend is not observed and above a critical value of ℘ the unraveling is
faster for small values of m. This presumably arises from the nonlinearity in the peel force
constitutive equation. For example, taking m = 1 as a reference case, making m < 1

increases the dimensionless peel resistance for L̇∗ < 1, but decreases the peel resistance
for L̇∗ > 1. As such, whether the unraveling rate is L̇∗ ≷ 1, the exponent m can accelerate
or decelerate the unraveling process.

The value of m affects the minimum required ℘min to achieve unravel times comparable
to physiological timescales (i.e. tdep,50% at or below the dotted lines in Fig. 2.9). For the
uniform velocity field cases (U = 1 m/s), ℘min is a weaker function of m for the pinned
thread case, ℘min = 0.29–1.32, compared to the pinned skein case, ℘min = 0.03–3. For
the cases of a free skein-thread in extensional flow, even with splitting, tdep,50% never falls
below 400 ms even at high ℘. That is, tdep,50% is higher than the physiological unravel
timescales by a factor of 2 or 3. However, as stated earlier, the timescales in such cases are
determined by the specific choice of strain rate, λ, and the initial unravel length L0. Such
kinematic and geometric parameters are certainly variable in reality, and small changes
could easily decrease the unravel timescales, as previously discussed. In any case, m be-
comes important only when depletion timescales are much larger than the kinematic limit,
clearly showing that m is of secondary concern compared to ℘.

An important caveat to the m = 0 case of FP = α = constant is that peeling cannot
occur (L̇ = 0) if the viscous drag falls below a critical value. For example, if either the
initial skein radius R0 or thread length L0 is too small, the viscous drag force is less than
FP and unraveling cannot occur. Thus, in Fig. 2.9 a minimum value of ℘ is needed for the
m = 0 cases. The minimum values ranges from about 1–10, depending on the case and
the corresponding definition of ℘ for the flow and geometry. In three cases, the viscous
drag can potentially increase during unraveling as the thread elongates (Fig. 2.9B–D). In
these cases, the minimum ℘ is associated with initiating the peeling process. For the other
case of the pinned thread, Fig. 2.9A, the viscous drag decreases during unraveling, since it
is slaved to the skein radius which decreases in size during the process. Unraveling here
will eventually stop at a critical value of R. This therefore feeds back to requiring a larger
critical initial value of ℘ to unravel by 50%, and is used in Fig. 2.9A to determine the
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domain of ℘ for the m = 0 case.

2.5.2 Estimating the Parameter ℘

A key question remains: what is ℘ in physiological scenarios? For this we must know
the peeling force parameters in the constitutive model, and no direct experimental mea-
surements are yet available. Here we make estimates for the two extreme conditions of
m = 1 and m = 0, i.e. a linear dependence on velocity (akin to a constant viscous damping
coefficient) and a constant peel force, respectively.

For the m = 1 case, we consider viscous resistance acting at the peel site with stress
σ = µuε̇, where µu is the uniaxial extensional viscosity between the separating thread and
the skein (related to shear viscosity as µu = 3µ), and ε̇ = L̇/Lc is the local extensional
strain rate that depends on the peel velocity L̇ and the characteristic velocity gradient length
Lc. The stress acts over the characteristic thread-thread contact area, which we assume
scales as A ≈ d2, i.e. contact across the diameter and the length of contact along the thread
also scales with the diameter. The peel force is then

FP ≈ µu
(
L̇/Lc

)
d2. (2.44)

Comparing to the peeling law in (2.15), FP = αL̇m, we get

α = µud
2/Lc; m = 1. (2.45)

Substituting this into ℘ = FD/FP, and considering the majority of cases where drag is set
by the skein radius R0, i.e. equations (2.21), (2.33), (2.43), we obtain

℘ =
6πµR0 U

µu
(
L̇/Lc

)
d2

= 6π
µ

µu

U

L̇

R0Lc
d2

(2.46)

where important ratios have been grouped. The simplest case is peel viscosity arising from
the surrounding viscous liquid at the peel site. In other words, the viscosity causing drag
is also resisting peeling, and to cast in terms of extensional viscosity we take µu = 3µ, a
result for a Newtonian fluid. The viscosity µ may be that of sea water, or a surrounding
mucous vesicle solution with higher viscosity, but under these assumptions the ratio µ/µu
is still the same. Furthermore, typically U/L̇ & 1, and the velocity gradient length scale is
likely set by the thread radius, Lc ≈ r. Then (2.46) dramatically simplifies to

℘ = 2πR0/d (2.47)
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which clearly estimates ℘ � 1, or more specifically for R0 = 50µm and d = 2µm,
℘ ≈ 160. If drag is instead dominated by the thread length L0, e.g. for the pinned skein
case of Sec. 2.4.2, then the numerator in (2.46) would be modified by replacing 6πR0 with
4πL0. We expect L0 to be the same order as R0, e.g. a single curl in the coil. But if L0 is
smaller, it would decrease ℘ accordingly.

Our specific assumptions can modify the details, but in general we estimate that physio-
logical conditions for m = 1 would give ℘ > 1, if not ℘� 1. The velocity gradient length
scale Lc could be smaller than the thread radius r. A decrease in Lc/r makes ℘ proportion-
ally smaller, but it is difficult to imagine this being more dramatic than, say, a factor of 10.
The velocity ratio U/L̇, if anything, will be larger than 1, and this proportionally increases
the estimate of ℘. The viscosity ratio µ/µu could be smaller, e.g. if the viscosity of pro-
teins between thread wrappings is larger than the surrounding viscous liquid. However, we
note that the surrounding viscous liquid can have a very large viscosity, e.g. the measured
extensional viscosity of hagfish mucous vesicle solutions obtained by Böni et al. [35] is
µu ≈ 10 Pa · s. This is much higher than water, µu ≈ 3 mPa · s. An additional mechanism
of increasing drag, and ℘, is for mucous vesicles to bind on the thread during the unraveling
process (Fig. 2.10), which would transmit additional forces to the drag term, as suggested
by Winegard et al. [42]. Such a scenario is possible since mucous vesicles and threads cells
are densely packed inside the slime glands and are released simultaneously. For all of these
variations, ℘ > 1 seems very likely for physiological conditions in this constant viscosity
estimate for m = 1.

100 µm

A B

Figure 2.10: (A) Mucous vesicles aggregating on unraveling thread (adapted from Koch et
al. [41], by permission from SpringerNature). (B) Mucous vesicles aggregated on unravel-
ing thread elongated along with the fiber under the flow (adapted from Winegard et al. [42],

by permission from The Journal of Experimental Biology).

To estimate physiological ℘ for m = 0, the other extreme of a constant force resisting
peel, we consider peel strength interactions between the skein fibers solely due to van der
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Waals forces. We estimate FP = α ≈ 10−7 N (see Appendix A.2). Substituting into
℘ = FD/FP, and considering cases where drag is set by the skein radius, i.e. Eqs. (2.21),
(2.33), (2.43), with R0 = 50 µm, water viscosity µ = 1 mPa · s, and U = 1 m/s, gives
℘ ≈ 90. We see that ℘ � 1 with these assumptions. Even if the force resisting peeling is
larger by a factor of 10 or 100, still ℘ & 1 and viscous hydrodynamics can provide rapid
unraveling that can be very close to the kinematically-derived lower bounds on unraveling
time.

2.6 Conclusion

Our analysis shows that, under reasonable physiological conditions, unraveling due to vis-
cous drag can occur within a few hundred milliseconds and is accelerated if the skein is
pinned at a surface, such as the mouth of a predator. A dimensionless ratio of viscous drag
to peeling resistance, ℘ = FD/FP, appears in the dynamical equations and is the primary
factor determining unraveling timescales. Large ℘ corresponds to fast unraveling that ap-
proaches a kinematic limit wherein free portions of the thread-skein system directly advect
with the local flow velocity. For characteristic velocity U , the bound is tdep ≥ Lmax/U ,
whereas for extensional flows with strain rate λ, tdep ≥ λ−1 log(Lmax/L0), where L0 is the
initial thread length.

The modeling approach captures essential features and insight by considering a single
dilute skein unraveling in idealized flow fields. Future modeling efforts could build on our
work by expanding and detailing several aspects, primarily with new experimental mea-
surements of peel strength for skein unraveling, but also details of physiological flow fields
including characteristic velocities and strain-rates. Real physiological scenarios are more
complex due to chaotic flows and multi-body interactions (multiple skeins, mucous vesi-
cles). Our model does not consider such interactions, or the important feature of unraveled
threads interacting to create a network. At leading order, we expect such modeling to
require more complex flow fields that create extension (to unravel fibers) but also bring
different fibers together. Mixing flows would be excellent candidates for theoretical anal-
ysis, and any experimental characterization of physiological flow fields should keep this
perspective in mind, e.g. simple suction flow with extension, but no mixing, may not be
sufficient to create a network of unraveled threads.

Although the physiological flow fields may be different from the ones that were used in
the analysis, our results underline the importance of viscous hydrodynamics and boundary
conditions on the process. Recent work [32] found that Pacific hagfish skeins undergo
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spontaneous unraveling in salt solution. However, the unraveling timescales (∼ min) are
much larger than the in physiological timescales (∼ 0.4 s) during the attack. It is possible
that ion transport to the peeling site may help in peeling the adhesive contacts, which may
be diffusion-limited without flow. Although it is known that flow is required to accelerate
unraveling to tdep,50% < 1 s, it is not yet clear whether flow-enhanced ion transport may
also contribute to a faster unraveling, in addition to the drag effects. The effects of various
salt ions on the swelling and rupture of mucin vesciles have been studied in the past [38,
39], but the influence of such ionic effects on the skeins and their deployment is not yet
known. If ion transport and chemistry are important, this would modify the FP behavior
and require modeling of transport at the peel site due to flow. Our results do not rule out the
possibility of ion-mediated unraveling but provides an alternate mechanism of unraveling
which may be occurring alone or in conjunction with a multitude of other processes.
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CHAPTER 3

CONCENTRATION-INDEPENDENT
MECHANICS AND STRUCTURE OF HAGFISH

SLIME

3.1 Introduction

Many species of animals have evolved mechanisms for defending themselves against preda-
tors. One such strategy utilized by the deep-sea dwelling hagfishes involves the production
of a large volume of a gel-like material, commonly known as hagfish slime or defense gel.
Hagfish slime is known to clog the gills of fish predators and threaten them with suffocation
[22, 23]. It is different from many other animal secretions in the sense that its rheological
complexity is vital to its function, unlike many other secretions where typically the toxi-
city/ chemical deterrence of the secretion is important e.g. in several arthropods [51, 52],
molluscs [53, 54, 55, 56] and mammals [57, 58]. Rheological complexity is also known to
influence the physiological performance of several other animal secretions e.g. snail slime
[59], frog saliva [60] and coral mucus [61]. Interestingly, unlike most other secretions that
are ejected/secreted from an animal’s body, hagfish slime is not fully formed until outside
the body of the animal in the surrounding water. A very small quantity of biomaterial (ex-
udate) is secreted from hagfish slime glands (Figure 3.1 A-B), which then expands in sea
water achieving expansion ratios up to 10,000 [21]. This process occurs within a fraction
of a second (≈ 100− 400 ms) [22, 23]. Exudate contains two primary components: thread
cells and mucin vesicles [40]. A thread cell is made up of an intermediate filament-based
fiber coiled into an ovoid (∼ 150 µm) [40]. Mucin vesicles (∼ 5 − 7 µm) are glycopro-
tein containing membrane-bound vesicles. Once the exudate is ejected into the sea water,
advective mixing causes thread cells to unravel into long fibers [22], up to 10 − 15 cm in
length and 1 − 3 µm in diameter, and mucin vesicles swell and rupture [39], to set up a
fibrous network [21]. The fiber intermediate-filaments are composed of α and γ proteins

This chapter appeared in the following peer-reviewed publication: Chaudhary, G., D. S. Fudge, B.
Macias-Rodriguez, and R. H. Ewoldt, "Concentration-independent mechanics and structure of hagfish slime,"
Acta Biomaterialia, 79, 123-134 (2018),doi: https://doi.org/10.1016/j.actbio.2018.08.022
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[62, 63] and undergo an α↔ β transition at large strains [64]. The composition of hagfish
mucus resembles that of mucin glycoproteins but the relative composition of components,
namely: protein, carbohydrates, sulfate and lipids, is different [65]. Recent work focused
on exploring the effect of the relative concentration of mucus and thread cells [41, 42]
found that mucus is essential for slime formation although its detailed role in slime produc-
tion and functioning remain to be discovered. Several other works have explored the roles
of organic and inorganic ions and compounds on slime production [38, 39].

Recent work [33, 35, 66] on the mechanics of hagfish slime suggests that this material
has predominantly elastic properties with a very low elastic modulus( ∼ 0.01 Pa). A very
narrow range (0.01 − 0.08 wt %) of concentration was considered in these studies. How-
ever, hagfish exudate is ejected into a comparably infinite sea of water and the animal itself
cannot directly control the concentration of the resulting network nor its mechanical prop-
erties. It is thus vital to understand how the concentration of slime affects its properties and
the resulting performance of this material. A recent work [67], focused on water retention
in slime over the concentration range of (0.005 − 0.1) wt%, but many questions about the
mechanics are yet to be answered.

In this paper, we focus on the viscoelastic shear rheology of this gel over two orders of
magnitude variation in its concentration a much wider range compared to our own prior
work [33] and those of others [35, 66]. We found that irrespective of concentration, the
gel has similar viscoelastic time-dependent properties with constant power law exponent
(n = 0.18± 0.01), a constant ratio tan δ = G′′/G′, and varying overall stiffness that scales
exactly linearly with the concentration (∼ c0.99±0.05). The power-law creep compliance,
with an exponent that is independent of concentration, suggests an underlying self-similar
structure at all concentrations. We consider constitutive modeling to understand the time-
dependent material properties and find that a three-parameter fractional Kelvin-Voigt model
has an excellent agreement with the linear creep response for all concentrations. We gain
insights into the structure-property relationship based on the mechanics of an individual
fiber and develop a scaling estimate for the bulk response that agrees with our experimental
observation.
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Figure 3.1: Hagfish slime is produced ex vivo with an uncontrolled concentration.(A) Hag-
fish producing slime in a large tank of sea water. Since the exudate is released into a large
volume of water, its concentration dependent properties become vital for its functional re-
quirements. Even in the released slime the concentration can vary as apparent from the
image (dashed circle corresponds to low concentration, solid circle corresponds to high
concentration) (image adapted with permission from Vancouver Aquarium YouTube chan-
nel). (B) Hagfish (image adapted [39] with permission ) locally ejects a small quantity
of biomaterial from its specialized slime pores near the site of stimulus. Thread cells and
mucus are major components of the secreted biomaterial, which under the hydrodynamic
forces produce slime within a fraction of a second. The fibrous component in slime comes
from the Gland Thread Cells that are ovoids of coiled intermediate filament-based fiber (ar-
rowhead) and unravel into long fibers (arrow) when mixed in sea water. These fibers have a
diameter of 1− 3 µm and have length up to 10− 15 cm [64]. (C) Hagfish slime samples of
varying exudate concentrations (wt %) prepared in the lab by mixing fresh exudate with sea
water. Samples with apparent concentration 0.025 wt % and 0.050 wt % have significant
sol fraction (circle) in them while samples with concentration 0.083 wt % or greater appear

to have a sample spanning network with negligible sol fraction.

36



3.2 Materials and Methods

3.2.1 Sample Preparation

Pacific hagfish (Eptatretus stoutii) were maintained at the University of Guelph as previ-
ously described [42]. All housing, feeding, and experimental conditions were approved
by the University of Guelph Animal Care Committee (Animal Utilization Protocol 2519).
Hagfish were anesthetized before the extraction of exudate. Electrical stimulation near the
slime glands resulted in the secretion of the exudate locally near the site of stimulation
[42]. The exudate was collected directly from multiple fish using a spatula, stored in a
microcentrifuge tube at 10◦ C (no buffer or oil was used to stabilize) and used within 2-5
hours from the time of extraction to ensure sample viability. A precise volume of exudate
was pipetted out and introduced into a larger Falcon tube containing artificially prepared
sea water (prepared using commercially available marine salt mix from Coralife, Energy
Savers Unlimited, Inc., Carson, CA, USA) at 10◦C and the contents were sloshed back and
forth in the closed falcon tube six times, similar to prior work [33]. For microscopy studies,
smaller volumes (1 ml) of sample were prepared in 1.5 ml microcentrifuge tubes using a
similar protocol. Following this, the sample appeared to be a fibrous cohesive mass. Sam-
ples with varying concentration of exudate were prepared using this protocol. A few such
samples are shown in Figure 3.1 C. Samples with concentrations 0.025 wt % and 0.05 wt %

had a significant quantity of free solvent present (sol fraction), since the network could not
span the entire solvent volume. Only the samples with a volume spanning network were
tested in experiments (0.083 wt % and above). We note that the concentration range tested
in this work is higher than the estimates of natural slime concentration [21]. However, as
the images of physiologically produced slime (Figure 3.1 A) suggest, the concentration
varies spatially in the same sample and hence the local concentration can be very different
from the reported physiological concentration.

3.2.2 Microscopy

Gel samples of various exudate concentrations were transferred to glass slides with small
wells. A Nikon 90i Eclipse microscope was used to visualize the network with differential
interference contrast (DIC).
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3.2.3 Rheometry Methods

The viscoelasticity of hagfish slime was probed using rotational rheometers (model AR2000
from TA instruments and model MCR302 from Anton Paar). These are both torque-
controlled instruments (a.k.a. combined-motor-transducer type). A single gap concentric-
cylinder geometry with fixed outer measuring cup and torque controlled inner bob (with
a conical bottom) was used in all experiments. The inner cylinder radius Ri = 14 mm
and length L = 41.5 mm for the AR2000. For the MCR302, Ri = 13.33 mm and
L = 40.01 mm. The gap between the two cylinders was 1 mm and 1.13 mm for the
AR2000 and MCR302, respectively. It should be noted that the gap of the rheometer is
much smaller than the total contour length of the fibers, which may be up to (10-15) cm
[22]. This may raise questions about the continuum assumptions of the material within
this confinement. Except for the lowest concentration (0.08 wt%), we note that the typical
mesh size of the network is actually much smaller than the millimetric gap, as suggested by
DIC images (Figure 3.2). This supports a continuum perspective of the material response.
Sample volume was chosen so as to “overfill" above the thin gap region, thus reducing the
surface tension effects [68]. This is important since water alone may appear elastic due
to surface tension artifacts [69]. As a control experiment, we measure water alone. All
tests were done at 10 ◦C and a solvent trap (a two-piece metal cover) was used to minimize
evaporation. Compression and pre-stress of the material may also be a concern. Since the
bob is lowered into the gelled material, it may cause deformation and alignment of the fi-
brous structure. We had no method of assessing the isotropic structure of the network, but
we note that we allowed the sample to relax after loading, the moduli we obtain here are
comparable with earlier published literature from our group and others [33, 35, 66], and
we do not observe normal forces which may be caused by confinement and penetration of
the bob. We therefore interpret our measurements as continuum properties of the material.
Studies of confinement effects or sample pre-stress are outside the scope of our work here.

Two types of rheological characterizations were performed: creep-relaxation and oscil-
latory shear. In creep-relaxation tests, the input torque (stress) is a step function up from
zero (creep) and then back to zero (relaxation) and the resulting strain was measured as
a function of time. In oscillatory shear experiments, sinusoidal deformations of various
strain amplitudes and fixed frequency were applied to the sample and the resulting torque
signals measured. The tests provide observations of the time-dependent and deformation
amplitude-dependent viscoelastic properties of the gel.
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500 µm

A B C

Figure 3.2: Microstructure of hagfish slime. Differential interference contrast (DIC) im-
ages of hagfish slime at three concentrations: (A) 0.08 wt %,(B) 0.4 wt % and (C) 0.8 wt %.
Threads (solid arrow) assemble into a network as a result of advective mixing of released
exudate with sea water. The network also has packed thread cells (inside dashed circle)
which are not fully unraveled. Air bubbles (inside solid square) are entrapped during mix-

ing. Mucus, although present, cannot be seen at this scale.

3.3 Results

3.3.1 Microscopy

Advective mixing of exudate with sea water creates a fibrous gel network. Figure 3.2
shows DIC images of gel networks at three different concentrations: 0.08 wt %, 0.4 wt %

and 0.8 wt %. A network of unraveled fibers can be seen in the images. The fiber density
increases with concentration as expected and the topology of the network appears essen-
tially the same. Contacts between fibers are also evident which may be physical junctions.
Some intact thread cells can be seen, which are perhaps due to inefficient mixing from our
protocol compared to what hagfish can achieve naturally. A few air bubbles are present
in the sample, which get entrapped during mixing. It is worth noting that we are not able
to see mucus in these images which would need some other imaging technique such as
fluorescent labeling [42].

3.3.2 Linear Oscillatory Shear

Linear viscoelastic moduli are shown in Figure 3.3 as a function of the concentration of
exudate. A fixed angular frequency ω = 0.2 rad/s was used for all the tests, for which
elasticity dominates dissipation. Amplitude sweep data for all the concentrations are shown
in the Appendix Figures B.4 A-C, which show that γ0 = 10% is reasonably in the linear
regime (i.e. less than 20% change). Only the first-harmonic response is shown which
represents the average energy storage and loss [70, 71]. As expected, the moduli increase
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with the concentration. Consistent with the literature [72, 35, 66]; G′ has an extremely low
value G′ = 0.02 Pa, at the lowest concentration of 0.083 wt %.

The linear viscoelastic moduli, G′ and G′′, corresponding to ω = 0.2 rad/s, show a
power-law dependence (G ∼ ck) on the concentration, with exponents 1.12 ± 0.04 and
1.28±0.11, respectively. This approximate linear dependence is different from many other
biopolymer networks [73, 74, 75, 76, 77]. A comparison with some common biological
materials is given in the Table 3.1. Consequently, the loss tangent, tan δ = G′′/G′, is
independent of the concentration and has values in a very narrow range, tan δ = 0.2− 0.3,
in the linear regime. More insights into this unique linear concentration dependence of
moduli will be provided in the later discussion based on a network model.
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Figure 3.3: Viscoelastic properties vary linearly with concentration. The average elastic
(G′1) and viscous (G′′1) moduli extracted from the linear regime (γ0 = 10%, ω = 0.2 rad/s)
of oscillatory shear deformation follow a power-law dependence of 1.12 ± 0.04 and
1.28±0.11 respectively. The inset shows the input and output signals for the concentration,

0.67 wt%, processed in MITLAOS [71].

From the nonlinear amplitude sweeps (Appendix Figures B.4 A-B), the strain depen-
dence is similar over the range of concentrations probed i.e. data appears to be vertically
shifted for subsequent concentrations. Similar responses are also evident in the raw oscil-
latory waveform, e.g. shown as parametric Lissajous curves (Appendix Figures B.5-B.6).
The average network response softens above a critical strain γcritical ∼ 20% and the loss
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Table 3.1: Concentration dependence (G′ ∼ ck) for various biomaterial gels

Material k
Semi-flexible networks [73, 74] 2-2.5
Methylcellulose [75] 2.27
Hagfish gel 1.1
Desmin [76] 0.71
Vimentin [76] 0.48
Human Keratin K8/K18 [77] 0.53

tangent increases due to increasing dissipation at higher strains (Appendix Figures B.4 C).
Although the material shows an average softening response (decreasingG′1) with increasing
strain, intracycle stiffening can be observed from the Lissajous curves before the sample
fails (Appendix Figures B.5-B.6). This indicates that more elasticity is lost at strain γ = 0

than is lost at the extremes γ = ±γ0.
The material being very soft presents several challenges in its rheological characteri-

zation [68] on commercial rheometers due to several experimental artefacts. Our control
experiments on water agree well with the theoretical predictions for water (Appendix Fig-
ures B.4 B). We did not observe any apparent dominant elastic response from water [35]
arising from surface tension artifacts [69]. We also estimate and avoid the effects of low
torque, instrument inertia, and sample inertia on the measurements [68]. Hence, we believe
our measurements have negligible contributions from experimental limits and represent the
true material response from the hagfish slime.

3.3.3 Time-Dependent Viscoelasticity

We use creep-relaxation tests to understand the time-dependent viscoelastic properties of
hagfish slime. Figure 3.4 shows the observed strain in the samples when a step shear stress
of 0.01 Pa is applied for 90 s followed by stress free relaxation (repeat measurements in
Appendix Figure B.7). As expected, the samples become stiffer with increasing concentra-
tion, i.e. deform less, consistent with the viscoelastic moduli results in Figure 3.3. Upon
careful inspection, the strain evolution has a power-law response at longer times rather than
a solid-like plateau response described in the literature for hagfish slime [33, 35]. Such a
power-law response is observed for several other systems such as foams [78], microgels
[79, 80], biopolymer networks [81, 82, 83], gelling suspensions [84], physically cross-
linked polymers [85], and protein gels [86, 87]. It is generally believed to originate from
the fractal nature of the underlying microstructure [85, 88, 89, 90]. In creep, there is a
monotonic dependence on concentration (wt %). However, this is not observed in relax-
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Figure 3.4: Linear viscoelastic creep-relaxation. Material deformation, strain γ(t), is ob-
served under an applied shear stress, σ0 (0.01 Pa in this case) for 90 s. The stress is then
removed and the material is allowed to relax. The materials stiffen as the concentration
is increased. (Inset) at very short times inertio-elastic ringing is observed as a result of

coupling between instrument inertia and material elasticity.

ation. Such a response might arise due to non-linear effects which are easily achieved in
such soft samples even at very low stress.

We observe oscillations in the strain response at shorter time scales, which can be seen
more clearly in the inset of Figure 3.4 when the same data are shown on a log-log scale.
It is well established that such damped oscillations arise following a coupling between in-
strument inertia and sample elasticity [91, 92, 33]. The power-law scaling γ ∼ t2 at very
short times is due to instrument inertia [91, 68]. Such effects limit our understanding at
very short time scales, which is very relevant to the functional properties of this material,
considering the short duration of predator attacks. Hence, to reveal short time material
properties we use constitutive model fits to the inertio-elastic ringing [91, 92, 33, 93] (de-
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tails in Appendix B.4.). The linear-viscoelastic information we obtain at short timescales
from creep-ringing analysis, namely the tangent storage and loss moduli, K ′ and K ′′, have
a near linear dependence on concentration, i.e. K ′ = c0.91±0.08, K ′′ = c0.92±0.08 (Appendix
Figure B.8). This is consistent with the results from linear oscillatory experiments, Fig-
ure 3.3. In a later section, we will describe a constitutive model to compare the viscoelastic
creep data across all tested time scales.

3.3.4 Nonlinear Creep

Increasing the stress in creep compliance tests probes the nonlinear properties of hagfish
gel, and are relevant to understand the large deformations of the material during a predator
attack. A similar approach was followed in prior work [33] but was limited to a single con-
centration. Figure 3.5 A shows a representative result for concentration c = 0.25 wt %. For
all concentrations (Appendix Figure B.9), we perform creep tests similar to those in Fig-
ure 3.5 A. The nature of the response is remarkably similar over the range of concentrations
tested.

At low applied stresses, the creep compliance, J(t) = γ(t)
σ0

, is linear viscoelastic; as
discussed it follows a power-law solid-like response. A small increase in the input stress
results in a very similar material response, though slightly stiffer (lower compliance).

As the applied stress is increased further, the creep compliance shows a clear transition
from a power-law solid-like response to a liquid-like behavior. We refer to this transition
as material failure. When failure occurred, we could not distinguish if the observed failure
was the yielding of the material itself (cohesive failure), or material slipping at the sur-
face of the geometry (adhesive failure), since the sample is not directly visible during the
experiment. Either case could be important for the physiological function of the slime.
Here, adhesive failure is more likely because the failure stresses only range from 0.1–13 Pa
whereas video observations of actual attacks [23] seem to imply that the slime remains
cohesive under larger stresses. With further increase in the stress, J(t) varies linearly with
time, i.e. a viscous response with a steady shear viscosity. The creep response is very sim-
ilar to typical yield stress fluids [77], some of which also have power-law creep behavior
instead of a solid-like response [94]. We did not systematically check for recovery of solid-
like behavior after failure, which would be expected for a yield-stress fluid, though our
prior work observed partial recovery [33]. It was also outside the scope here to assess other
questions of yielding, such as the dependence of the failure stress on fatigue history, or if
delayed failure may occur at smaller stresses. We did run some creep tests for longer times,
up to 600 s, and did not observe delayed failure.
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Figure 3.5: Nonlinear shear properties of Hagfish slime. (A) Constant step stress was
applied at t = 0 to the sample (0.25 wt %). Three distinct responses can be observed as the
applied stress amplitude is increased. The material showed a power-law response for low
stresses (up to 0.0316 Pa), followed by material failure which is evident from the transition
of a power-law response to liquid-like response at a higher stress value (0.1 Pa) and a
further increase in the applied stress (0.316 Pa) causes the material to flow as a viscous
liquid. (B) For all concentrations, the range of stress where material exhibits a power-law
creep response (unfilled circle) and the material failure stress(crossed circle) are shown.
The failure stress increase is increases with the concentration of exudate (see Appendix

Figure B.9) for full details of nonlinear creep tests at other concentrations.

The threshold shear stress at failure is a function of concentration as shown in Fig-
ure 3.5 B. It should be noted that since we are increasing the stress input in a discrete
manner, we may not resolve the exact failure stress. In Figure 3.5 B, we indicate failure
as the stress at which the material failure was first observed. Failure stress varied be-
tween 0.1–13 Pa for the concentrations tested and generally increased with concentration.
These failure stresses are consistent with those observed in oscillatory amplitude sweep
tests (Appendix Figure B.4 A-B). Stiffening before failure is also consistent across several
test protocols. The tangent moduli obtained from creep-ringing analysis shows stiffening as
the stress is increased (Appendix Figure B.10), agreeing with the observations made from
the raw stress-strain Lissajous curves from the oscillatory shear experiments (Appendix
Figure B.5-B.6).

3.3.5 Fractional Constitutive Model for Linear Viscoelasticity

The material functions used to describe the concentration dependence in earlier sections,
G′, G′′ and K ′, K ′′, are insufficient for describing the full linear viscoelastic material re-
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sponse, since they only provide information about a fixed time scale (frequency). To quan-
titatively compare the linear viscoelastic response across the range of concentrations and
timescales, we use a fractional constitutive model. A brief overview of fractional constitu-
tive models is given in Appendix B.6. For more details on fractional constitutive models
we refer readers to other literature [95, 96, 97, 98, 99, 100]. Simply put, fractional time
derivatives represent a continuous relaxation spectrum with a power-law distribution of
timescales [100]. A major benefit is a small number of model parameters. Here we utilize
a special case of a three-parameter fractional Kelvin-Voigt model which has a dashpot (η)
in parallel with a spring-pot (α, G). The governing differential equation for such a model
is given by

σ(t) =
[
η
d

dt
+G

dα

dtα

]
γ(t) (3.1)

where 0 ≤ α ≤ 1 is the fractional order of the derivative and G is a quasi-property which
describes the strength of a spring-pot (i.e. the strength of the power-law relaxation spec-
trum).

Since the instrument inertia effects are prevalent in creep measurements at short times,
to extract the viscoelastic information at such time scales we solve the equation of motion
for the spindle of a stress controlled rheometer, given by

I

b

d2

dt2
γ(t) = H(t)σ0 − σ(t) (3.2)

where I is the total moment of inertia of the rheometer spindle with measuring system
attached and b is a geometric factor dependent on the instrument and geometry used. The
values obtained from rheometer calibration are I = 19.593 µN ms2 and b = 8.026 ×
10−4 m3. σ0 is the applied stress and H(t) is the Heaviside step function. The stress
response from the sample, σ(t), is modeled by a fractional Kelvin-Voigt model as described
by Eq.3.1. Hence, a coupled fractional order initial value problem can be obtained from
Eq.3.1 and Eq.3.2

[I
b

d2

dt2
+ η

d

dt
+G

dα

dtα

]
γ(t) = H(t)σ0. (3.3)

Since the material has no deformation at t = 0, the initial conditions are γ(t = 0) =

γ̇(t = 0) = 0. The initial value problem in Eq.3.3 is numerically solved using a method
previously described [101]. The constitutive model predictions are compared to the exper-
imental data over the entire concentration range with η, G and α as fit parameters. The
best fits were obtained by minimizing the residual sum of squares in MATLAB. The fitting
results are shown in Figure 3.6. It is evident that a 3 parameter fractional Kelvin-Voigt
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Figure 3.6: Three-parameter fractional Kelvin-Voigt model describes the linear viscoelas-
tic creep response at all time scales. Different colors show varying sample concentration
and the black curves are the fractional Kelvin-Voigt fits to the experimental data. Consti-
tutive model fits have an excellent agreement with the creep data across all concentrations.
Distinct regimes in the creep data, namely instrument inertial response at the start, creep
ringing at shorter time scales and power-law response at longer times, are described using

only three parameters (η, G, α).

model fits the data reasonably well at all timescales and, remarkably, all concentrations.
Very slight disagreement can be seen during the oscillatory ringing for the extremes of
concentration, but for our purposes it is unnecessarily complex to add additional model
parameters to improve this aspect of the fit.

The dependence of the fit parameters on concentration is shown in Figure 3.7. Appendix
table B.1 lists the fit parameters and associated fit uncertainty for all cases.

3.4 Discussion

3.4.1 Interpreting Fractional Model Fit Parameters

The springpot strength parameter G does not directly represent any physical property [102,
98]; this is evident from its dimensions which have non-integer powers of time. However,
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analogous to gel strength S. (inset) the parameter η does not show a monotonic trend with
concentration, its values take a narrow range (0.001 − 0.01 Pa.s). (B) Fractional order
(solid circles), α, is nearly constant with an average value of 0.18± 0.01, indicating a self-
similarity in the structure across the wide range of tested concentrations. A constant fractal
dimension (open circles), df , of 1.63 ± 0.07 extracted from the fractional order is consis-
tent with the observation of fractal microstructure using a box-counting method (solid stars,

details in Appendix B.1), though a direct numerical comparison cannot be made.

this quantity is analogous to gel stiffness, S, which describes the “strength" of a critical gel
(J(t) = 1

SΓ(1−n)Γ(1+n)
tn) [85]. G combines information about the elastic strength of the

material with a time scale and the fractional order, α.
Across the concentration range, α has a very narrow range (0.13 - 0.24) with an average

value of 0.18. This implies that the relative elastic and viscous contributions from the
spring-pot stay nearly the same over the concentration range tested [99]. This was also
observed in our oscillatory shear experiments where tan δ = G′′/G′ has values in a narrow
range (0.2−0.3) in the linear regime (Appendix Figure B.4 C). Moreover, the near constant
value of fractional order, α, allows for the comparison of G across the concentration range.
Remarkably, the quasi-property, G, shows a power-law dependence on concentration (G ∼
ck) with an exponent k = 0.99 ± 0.05, essentially unity, consistent with linear oscillatory
experiments and viscoelastic information extracted from creep-ringing. This is the most
conclusive evidence for linear scaling of the gel strength with concentration. Unlike G′

which was measured at a single frequency (Figure 3.3),G represents gel strength across the
entire range of viscoelastic time scales. The three different measures for the concentration
dependence of hagfish slime are compared in the Table 3.2.

The fractional order, α, has been associated to the critical gel relaxation exponent or crit-
ical scaling, n, which in turn can be related to the fractal dimension of the network [103,
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Table 3.2: Comparison of different measures of concentration dependence

Measure Concentration dependence

Linear oscillatory shear G′ ∼ c1.12±0.04, G′′ ∼ c1.28±0.11

Creep ringing K ′ ∼ c0.91±0.08, K ′′ ∼ c0.92±0.08

Fractional Kelvin-Voigt G ∼ c0.99±0.05

104, 105, 106, 90] α is the the power-law exponent at long times in the creep test, identi-
cal to n). Many theoretical relations linking the fractal dimension, df , of the gel network
and the exponent, n, have been proposed depending on several factors, e.g. monodisper-
sity/polydispersity [85]. One such relation has been derived for a fractal network with
arbitrary mechanical network of springs with the same spring constant [103]. It has been
shown that for the networks whose stress-strain relation can be described by a spring-pot
or with a fractional equation, σ(t) = G dα

dtα
γ(t), the fractal dimension, ds, of the network at

larger times is related to the observed power-law scaling, α, as

α = 1− df
2
. (3.4)

We use this relation to obtain the fractal dimension, df , for different concentrations of hag-
fish slime. We find the fractal dimension has a nearly constant value of df = 1.64 ± 0.07.

We also use a box-counting method to evaluate a 2D fractal dimension from the DIC
images for slime samples (details in Appendix B.1). There are limitations with the box-
counting approach that require caution when interpreting the numerical result or attempt-
ing to compare to the result from viscoelastic measurements. Notably, only a limited 2D
section of the 3D sample is used and only the fibers (not mucin) are visible in the im-
ages. Additional limitations of the box-counting approach are discussed in the (details in
Appendix B.1). Despite these limitations, the box-counting fractal dimension is valuable
because it identifies a fractal dimension that is almost independent of concentration or fiber
number density. This helps show a possible rheology-to-structure connection and supports
the observation of a constant fractal dimension suggested by the viscoelastic power law
exponent. It has been shown that given constant stoichiometry of a single polymer network
(ratio of polymer to crosslinker), the fractal dimension should not change [105]. Hence,
the concentration-independence of the fractal dimension might be attributed to the constant
ratio of mucus to thread cells (stoichiometry) in the hagfish exudate [64], but moreover
suggesting that the flow-induced structural connectivity in the hagfish slime networks stays
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similar at all concentrations.
It should be noted that several other theoretical models that describe relations between

relaxation exponent (α) and structural properties (df ) are found in literature which may give
different numerical value of fractal dimension, df e.g. α =

d(d+2−2df )

2(d+2−df )
gives df = 2.33± 0.01

for a polydisperse fractal with full screening of excluded volume [88, 105, 107] where
d = 3 for three-dimensional space. Regardless, the fractal dimension following any such
relation will be nearly constant since the power-law exponent of hagfish slime has a near
constant value. Hence, we interpret the self-similar viscoelasticity in hagfish slime as hav-
ing its origins in a self-similar material structure. Figure 3.8 shows the comparisons of
various materials adapted from the literature [108, 109, 110, 75, 111, 112, 113, 114, 115,
116, 117, 118, 119, 120, 121] and the concentration dependence of their power-law relax-
ation exponents. Appendix table B.2 provides the data used in this figure. All the materials
in Figure 3.8 can be described by a single viscoelastic relaxation exponent, α. For most
materials α decreases with increasing concentration, which is consistent with the common
intuition of increasing solid-like character of the materials. However, some materials like κ-
carrageenan [118] and gelatin [122] are known to show concentration independence across
a certain (narrow) range. Such universality in the concentration dependence is related to
the self-similar global structure of the material.

The parameter η, which represents the viscosity in parallel with the gel network, has
best fit values between (1−10) mPa.s, consistent with very weak concentration of polymer
suspended in water. This non-monotonicity suggests that the amount of free polymer (e.g.
mucus and intact thread cells) in the solvent may be variable. We find that this parameter
has negligible effect in fitting the power-law creep data, but is included here to make the
fractional model thermodynamically valid [97].

3.4.2 A Structure-Rheology Model

The ultrasoft mechanics of hagfish slime is attributable to the underlying dilute network of
very long fibers as shown in Figure 3.2. Understanding the network mechanics of hagfish
gel requires an understanding of the mechanics of individual fibers. Although an attempt
has been made to relate the fiber mechanics to the underlying molecular structure and ar-
rangement of intermediate filaments [64], here we focus on the mesoscale structure of the
fibrous network. Unraveled fibers have natural bends in them likely due to their previously
coiled state inside the thread cell [123, 124]. Here, we treat the individual fibers as cylin-
drical elastic rods of radius, a. The bending rigidity of a fiber is given by EI = π

4
Efa

4,
where Ef is the Young’s modulus, reported to be Ef = 6.8 MPa [64]. We treat the fibers as
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relative viscous/solid-like properties. The data sets for materials other than hagfish slime

are obtained from literature (Appendix table B.2).
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athermal elastic rods and neglect any thermal energy changes during deformation. Under
an applied deformation, the bends in a fiber tend to straighten out. Due to its geometry, the
fiber will be nearly inextensible and experience negligible physical stretch (lengthening)
unless nearly all the bends are straightened out [125].

The resulting shear modulus can be derived by considering the elastic energy of the
deformed fiber network. The energy involved in deforming an inextensible fiber of to-
tal length L from its natural curvature κ0 to a new curvature κ(γ, s) can be expressed
as Efiber =

∫ L
0
dsEI

2
(κ(γ, s) − κ0)2, s is the curvilinear distance along the fiber [126].

We approximate κ(γ, s) as a Taylor series expansion about the natural curvature κ0 ,
κ(γ, s) = κ0 + dκ

dγ

∣∣
γ=0

γ +O(γ2). Hence, we can write the bending energy per unit volume
from all the fibers as enetwork = ρEI

2
〈(dκ
dγ

∣∣
γ=0

)2〉γ2, where ρ is the total length of all fibers
per unit volume.

Under a small deformation, the deformation energy per unit volume due to a differential
applied shear strain γ is given by w = 1

2
Gγ2, where G is elastic shear modulus. Assuming

negligible dissipation and a purely elastic response, an energy balance in the system gives
enetwork = w. Hence, we obtain the shear modulus as

G = ρEI〈(dκ
dγ

∣∣
γ=0

)2〉. (3.5)

We evaluate the terms in angular brackets in Eq.3.5 using purely geometric arguments
utilizing the inextensiblity of the fibers and in the limit of zero strain. The details are given
in the Appendix B.8. We have assumed an isotropic distribution of fibers to evaluate the
bulk response per unit volume. This however may not be true in general considering some
of the microstructural images where the threads appear to align roughly orthogonal to each
other. However, estimating a fiber orientation function is beyond the scope of present work.
Here, we directly use the final expression for shear modulus

G = ρEI

(
3 + 20(h

l
)2
)2

64h2
(
1 + 4(h

l
)2
)4 (3.6)

where l is defined as the end-to-end length of a curl in fiber i.e. the half-wavelength of
naturally curved fiber, and h is the amplitude of the curl from the end-to-end vector (inset
Figure 3.9). ρ is evaluated from the concentration (wt%). It is evident from Eq.3.6 that
for h

l
� 1, G ∼ ρEI

h2
, implying that it is more difficult to bend fibers as amplitude of curl,

h, decreases. That is, straighter fibers cause higher stiffness of the network, all else being
equal. The sensitivity to h is more extreme at increasing values of h/l, e.g. G ∼ ρEI l

4

h6
for

h/l & 1.
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We also observe (shown in Appendix B.8) that as long as the ratio h
l
� 1, the contribu-

tion from the term involving h
l

changes narrowly. This gives G ∼ ρ, a linear dependence
on total fiber length concentration, which agrees remarkably with our experimental obser-
vations discussed earlier.

The linear dependence of concentration is a direct consequence of the following as-
sumptions: (i) The deformation of each length of fiber is assumed affine, independent of
connectivity. (ii) We assume the effective spring constant of each fiber is set by its material
and geometric properties, and these are independent of concentration. For example, l and h
are independent of concentration (as a consequence of their packing inside the thread cells)
and the spring constant does not depend on the distance between crosslinks. This in gen-
eral may not be true for other networks which are chemically or physically cross-linked or
where the monomers polymerize to form a volume spanning network [127]. In such cases,
unlike the hagfish slime, the mesh size or the distance between cross-links sets up the
curvature of the fiber hence this mesh size and concentration play a stronger role in the me-
chanics of the network. (iii) We assume the fiber network orientation, even if anisotropic,
is independent of concentration. Even for an anisotropic network, the linear dependence
on concentration would also appear if the same anisotropy exists for each concentration.

Contrary to a pure bending response from the fibers, we also evaluate the modulus arising
from pure stretching of fibers (details in Appendix B.8.). The modulus obtained from such
a response is orders of magnitude higher that the experimentally measured results. This
is expected, since it is more difficult to physically stretch the fibers than bend them. We
also neglected any irreversibility (e.g. dissipation) during the deformation. We argue that
such effects primarily come from the weak cross-link connections between the fibers and
mucus-like molecules and the frictional interactions between the fibers, which have been
shown to be weak [33, 125]. Although individual fiber hysteresis effects were observed in
single fiber studies [64], we neglect such effects here in the structure-rheology modeling,
since we focus our understanding to small deformations and the overall elastic strength of
the network. We also show (in Appendix B.8) that the mucus component in the hagfish
slime at the probed concentrations cannot form a volume spanning network of their own.
This is consistent with prior work in the literature [21, 35]. Yet, the mucus component can
affect the mechanics of the slime by forming local networks within the fibrous mesh [42].
Such effects are beyond the scope of the present model. Hence, the mesoscale model we
described serves as a leading-order model for hagfish slime.

Figure 3.9 shows the comparison between the modulus evaluated using Eq.3.6 and the
experimental measurements. Eq.3.6 fits to the experimental data using just a single fit
parameter as front factor i.e. Gfit = βG and minimizing the residual sum of squares, while
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fixing the values of Young’s modulusE and fiber geometric parameters a, h, and l to values
known from the literature or microstructural images. The best fit value of β = 0.37± 0.03

gives an excellent agreement with the experiments. The most sensitive parameter for this
estimate is the radius a, given the sensitivity of Eq.3.6 to the fiber radius a through the
second moment of area I ∼ a4. The fit parameter β can show wide variation, (0.0728 −
10), considering the full range of radius for slime threads reported in the literature, (0.4 −
1.5) µm [21, 31]. In the absence of a more precise average radius of the fibers, we assume
a uniform average radius, a = 1 µm, which reasonably captures the average radius of
fibers in the network. Other sources of uncertainty include the fiber Young’s modulus and
curvature length scales l and h. There is an expected spread in the values of l and h since the
packing of canonical loops of fiber inside a thread cell will produce a distribution of these
length scales. For simplicity, we use average values obtained from microscopic images of
l = 121 ± 32µm and h = 23 ± 3.7µm, that is, h/l = 0.17 ± 0.04. Nevertheless, the
agreement between the model prediction and experimental data, using an average value of
fiber radius, supports our assumption of pure bending response from the fibrous network.
We see the slight disagreement between the model and experimental result at the highest
concentration, we attribute this mismatch to the contribution from mucus networks, as the
highest concentration is close to the overlap concentration for the hagfish mucus component
(details in Appendix B.8.5).

3.5 Summary

We studied the concentration-dependent shear rheology of hagfish slime to understand how
the concentration of slime influences its physiological function, especially given that the
process of slime formation is very fast ∼ 100 − 400 ms [22, 23] and the concentration is
uncontrolled in an "infinite" sea of water. We did not explicitly test this material in an "infi-
nite" solvent scenario. Our mixing protocol was in a finite volume of water, and our results
must be interpreted within the limits of this protocol. Nonetheless, our concentration-
dependent results have strong implications for the uncontrolled, concentration-dependent
gel structure that forms under physiological conditions in the ocean. Contrary to the recent
proposition that the linear viscoelastic moduli remain largely constant with the concentra-
tion of exudate [35], our experiments show that the linear viscoelastic moduli of hagfish
slime have a linear dependence on the exudate concentration. Both the linear oscillatory
shear and creep measurements agree well with each other.

Notably, such a linear concentration dependence has not been observed in other interme-
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Figure 3.9: Bending-dominated response leads to the ultra-soft mechanics of hagfish slime.
The shear elastic modulus measured via oscillatory rheology in the linear regime agrees
well with the linear elastic shear modulus predicted using purely bending response from
the curved fibers. A single fit parameter, β = 0.37 ± 0.03, is used as a proportionality
constant between the modulus evaluated from Eq.3.6 and the fit value. (Inset) A schematic
of structural elements (fibers) of the hagfish slime arranged in a random order. The length
of fibers is comparable to the sample length. The two parameters h and l which represent

the height and chord length of a bent fiber are obtained from the microscopic images.

54



diate filament (IFs) based fibrous networks [128, 76, 129, 130]. IFs in hagfish threads are
bundled intracellularly with a high degree of axial alignment into thick (∼ 2 µm) and very
long fibers (∼ 10 cm) [131, 63]. The thread is produced and organized into canonical loops
within the thread cell [123]. We hypothesize that this unusual organization of thread (i.e.
canonical loop packing [123]) sets up characteristic length scales in hagfish slime threads,
which determine the thread’s mechanical response and lead to a distinct mechanical re-
sponse of the network.

We explain our experimental observations through a mesoscale network model and demon-
strate that as the elastic elements (i.e. the fibers) in the slime increase in concentration, the
elastic modulus increases proportionally. Interestingly, the ultra-soft mechanics arise from
a bending-dominated response from underlying fibers. Although the gel strength (or linear
modulus) is not constant with concentration, we find that the time-dependent viscoelastic
response is similar for all the concentrations tested, with a nearly constant power-law relax-
ation exponent. We relate this observation to the underlying fractal nature of slime based
on a simple fractional constitutive model.

We conclude that hagfish slime is concentration-independent in its normalized viscoelas-
tic time-dependent response and its self-similar structure. This is a rather unique feature of
hagfish slime compared to a wide range of other material systems.

We hypothesize that like many other naturally occurring fractals, self-similar structure
in hagfish slime arises due to its uncontrolled production governed by several underlying
physical phenomenon like convective mixing, diffusion, swelling, unraveling etc [132]. We
speculate that the fractal structure might have certain robust and functional advantages as
is the case in many other biological system [133, 134]. Such an investigation is beyond the
scope of current work. Remarkably, the fractal dimension is constant across concentrations,
unusual in most materials. We hypothesize that the relative concentration of mucus and
threads in the slime might play a role in maintaining the constant fractal dimension of
hagfish slime.

There are potential physiological implications of our results. The viscous and elastic
properties of hagfish slime are comparable and their relative contribution in dissipating and
storing an applied deformation, respectively, is also constant over the range of concentra-
tion explored (tan δ = G′′/G′ ≈ 0.2−0.3). Being a very soft material (G′ ≈ 0.02 Pa) slime
is compliant and easily conforms to surfaces, e.g. mouth/gills of the predator. The creep
experiments show that it does not flow under small enough stress and relaxes following a
weak power law, thus allowing it to persist on gills and continue its clogging function. The
huge stretch ratios that hagfish slime can withstand without failure understandably makes
it difficult for the predator to remove the gel adhered to its gills (as evident from video evi-
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dence [23]). We speculate that the extremely soft mechanics enables it to make contact with
the substrate at molecular dimensions, necessary for adhesive bond formation between gel
and substrate [135]. We propose that such features are possibly provided by the dissipative
mucus networks [136, 137, 138, 139, 140], which are known to be much smaller in length
scale compared to threads. Thus the invariant dissipation ratio tan δ makes slime robust
with respect to its adhesive properties.

Our observations present several novel findings and are a significant advance in under-
standing the behavior of this unique material system. The research will impact not only the
design of bioinspired materials with a clogging/entangling functionality, but provide new
design paradigms for polymeric and fibrous materials in general. This new understanding
could bring about radical changes in materials available for personal defense, oil-drilling
leakage safeguards, or fibrous cell cultures. For bioinspired design of ultra-soft materials
like hagfish slime, Eq.3.6 provides the design guidelines. The aspect ratio h

l
and ρ in a

synthetic material can be tuned to get an ultra-soft gel from a given material, i.e. a given
EI . The quantity l is very low for many rubber-like materials but ρ is much higher in
those cases compared to hagfish slime. Hence, at low concentration i.e. a low ρ, such ma-
terials are unlikely to show solid-like behavior since a volume spanning network cannot
be formed. Therefore, another necessary characteristic is the length of fibers. Fibers with
length scales comparable to that of the bulk sample will more easily form a connected
network. It will be interesting to know if the slime achieves a constant expansion ratio
regardless of its concentration. Such efforts were limited by the mixing protocol adopted
here. Nevertheless, our results highlight the rather unique features of this material and offer
a new target for bioinspired design of materials aimed at achieving robust concentration-
independent structure and mechanical properties.
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CHAPTER 4

LARGE DEFORMATION AND PERMEABILITY
OF HAGFISH SLIME

4.1 Introduction

Building on the work described in Chapter 3, we further explore the mechanics of hagfish
slime. Most studies on slime mechanics [33, 35, 66] focused on the shear rheology limited
to small deformations. It is reasonable to assume that in case of predator attacks, the large
deformation properties of slime are critical for performance. Probing large deformation
response of slime is challenging due to its ultra-soft nature. Additionally, the roles of
individual components, i.e. mucus and threads, and there contribution towards the overall
mechanics of slime remains to be discovered. Understanding of the large deformation
mechanics and the roles of individual components will elucidate the bioinspired design of
materials similar to hagfish slime.

In this work, the extensional properties of slime under very large deformations are re-
ported for the first time, and comparisons the mechanical properties of slime in shear
and extension. Slime is found to be significantly stiffer in extension than in shear. The
mesoscale network model based on the mechanics of an individual fiber as described in
Chapter 3 is extended to explain the distinct modes of deformation in shear and extension.
It is shown that varying the relative composition of mucus to threads in slime compared to
the physiological composition drastically affects the mechanics.

Additionally, a concentration-dependent permeability study is utilized to further investi-
gate the roles played by individual components of slime, namely, thread cells and mucus.
Our results provide vital insights into the roles of individual components, and it is evident
from our observations that mucus networks play a vital role in significantly reducing the
permeability of the fibrous network formed by threads.

Dr. Atsuko Negishi, Evan McKenzie and Dr. Douglas Fudge (Integrative Biology, University of Guelph)
provided slime exudate and filtered mucin vesicles used in the experiments.
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4.2 Materials and Methods

4.2.1 Sample Preparation and Microscopy

The sample preparation protocol adopted here is same as the Sec. 3.2.1.

4.2.2 Mechanical Characterization

The viscoelasticity of hagfish slime was probed using a rotational rheometers (model MCR302
from Anton Paar). This is a torque-controlled instruments (a.k.a. combined-motor-transducer
type). A single gap concentric-cylinder geometry with fixed outer measuring cup and
torque controlled inner bob (with a conical bottom) was used in all experiments. The
inner cylinder radius Ri = 13.33 mm and length L = 40.01 mm for the AR2000. The gap
between the two cylinders was 1.13 mm. Sample volume was chosen so as to “overfill"
above the thin gap region, thus reducing the surface tension effects [68]. This is important
since water alone may appear elastic due to surface tension artifacts [69]. As a control
experiment, we measure water alone. All tests were done at 10 ◦C and a solvent trap was
used to minimize evaporation. Oscillatory shear experiments were performed, in which
sinusoidal deformations of various strain amplitudes and fixed frequency were applied to
the sample and the resulting torque signals measured.

For probing the extensional properties, we used an Instron Universal Testing machine
(model 3343) with a 5 N static load cell (equipment courtesy: Fudge lab, University of
Guelph). All experiments were done in a bath (BioPlus Temperature Controlled Bath) at
room temperature, with same solvent as used for preparing slime samples. Custom made
plates (37 mm in diameter) were used to sandwich the slime samples. An adhesive backed
80 grit sand screen provided sufficient adhesion to hold the sample in contact with the plates
during stretching. Sample was left in the unstretched position, for 5 min before stretching
to allow it to equilibrate in the sample. All experiments were done at a constant stretching
rate of 0.1 1/s, with a moving upper plate and a fixed bottom plate. To ensure that the force
measurements are not influenced by the varying bouyant force on the upper plate, the rod
which was used to attach the upper plate with the load cell was made very thin (1.5mm).
The measured response with and without the slime sample are different by at least an order
of magnitude. Hence, our experimental measurements the actual response from the sample
and free from any other effects/artefacts.

The permeability was measured by a custom-built set up shown in Fig. 4.2. A pressure
holder (XX4004740, EMP Millipore co., MA) fitted with a pressure filter was used to hold
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Figure 4.1: Mechanical characterization. (a) Properties were probed by deforming the
sample in two different deformation modes. Extension: sample is sandwiched between two
parallel plates which separate at a set rate. Shear: slime is sandwiched between two parallel
plates held at fixed distance and one plate moving parallel to the other. (b) Experimental
set up used for extensional test. Experiments were performed in a water bath filled with
artificial sea water. A transducer attached to the top plate provides the axial force as the
sample is stretched. (c) A commercial rheometer (AR2000, TA Instruments), with a cup

and bob set up, was used to probe the shear properties of slime.
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mesh

Figure 4.2: Experimental set up used to measure Darcy permeability.

a fixed volume of sample. The liquid column was then allowed to flow through the sample
under an externally applied pressure from a compressed nitrogen reservoir. The outflow
from the filter was collected and weighted as a function of time using a mass balance.

4.3 Results

4.3.1 Exudate Concentration Effects

Figure 4.4 shows the images of slime being stretched at an engineering extension rate of
0.1 1/s. It is evident that slime can easily undergo very large stretched without breaking.
In most of the extension experiments, the sample did not break or separated any of the
two plates. The length of water bath limited the maximum stretch ratio that could be
reached. The engineering stress-strain curves for various exudate concentrations are shown
in Fig. 4.5 A. As the concentration of exudate in the sample is increased, sample stiffens.
The trend at all the concentrations are similar. A monotonic increase in stress with strain
is observed initially, followed by a maximum in the stress, which corresponds the yielding.
Post yielding, the stress monotonically decreases with increasing strain. We extract an
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Figure 4.3: Permeability measurements. Custom-built set up used for permeability mea-
surements. The solvent flows through the slime sample under an applied pressure. The

outflow is recorded as a function of time.

A EDCB
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Figure 4.4: Extensional experiments on slime. (A-E) Images from extensional experiment
at different extensional strains. Slime is stretched between two plate by moving the top
plate at a fixed extensional rate (0.01/s) while holding the bottom plate fixed. (F) Sample

can withstand extreme extensional deformation (stretch ratio > 100) without breaking.
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effective extension modulus (Fig. 4.6 a) from the slope of stress strain curve below γ ≤
5 (best fits by minimizing the residual sum of squares). The extension modulus shows
a power-law dependence on concentration, the power law exponent close of unity, E ∼
c0.90±0.10. The area under the stress-strain curves, We =

∫
σdγ, is interpreted as extension

work, which increases with increasing exudate concentration (Fig. 4.6 c.). The yield stress,
corresponding to the yielding point, is plotted in Fig. 4.6 b. In Fig. 4.6, the results from
shear rheology from Chapter 3. The properties in uniaxial extension are significantly higher
than in shear.

4.3.2 Pure Mucus

Linear viscoelasticity of pure mucus, probed by oscillatory shear at a fixed angular fre-
quency, ω = 1 rad/s and strain amplitude, γ = 2.5% is shown in Fig. 4.7. At all the
concentrations, the pure mucus solutions show a dominant elasticity, G′′ > G′. This is con-
sistent with literature [35]. BothG′ andG′′ increase with concentration,G′ ∼ c0.41±0.09 and
G′′ ∼ c0.44±0.05. An apparent viscosity is extracted from the linear loss modulus η = G′′/ω.
Inset of Fig. 4.7 shows the relative viscosity, ηr = η/ηs, where ηs is the solvent viscosity.
The relative viscosity has a power-law dependence on concentration, ηr ∼ 0.44 ± 0.04.
Such a power-law concentration dependence is very close to the theoretical predictions for
polyelectrolyte solutions in the dilute and semi-dilute limit (Fuoss law) [141, 142]. The
concentration dependence in G′ is very different from dilute polyelectrolyte solutions. Al-
though, we see a dominant elastic response in pure mucus rheology, we note that the the
value of elastic moduli are significantly smaller than the elastic modulus on slime samples.

4.3.3 Varying Mucus Concentration in Slime

To probe the effects on varying mucus in slime samples. We vary the relative concentration
of mucus to threads from the physiological concentration in exudate. First, we increase the
concentration of mucus while holding the concentration of slime fixed. Fig. 4.8 A shows
the linear viscoelastic moduli at ω = 1 rad/s and γ = 2.5%. Increasing the concentration of
mucus, has a very weak effect on the elasticity of slime, G′ ∼ c0.18±0.03. This is consistent
with the observation that the elasticity of pure mucus networks is weaker compared to
slime. Thus, the dominant component of elasticity in hagfish slime comes from the threads.
The loss modulus shows a stronger dependence on concentration, G′′ ∼ 0.55± 0.12. This
is similar to the concentration dependence of G′′ for pure mucus solutions (Fig. 4.7). We
also decreased the mucus concentration in slime compared to physiological concentrations
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(a)

(b)

Figure 4.5: Extensional testing of hagfish slime. (a) Engineering Stress vs strain data for
the samples with varying exudate concentration. The highest reported strain corresponds
to the deformation when the upper plate is totally submerged in the solvent. Data at all
the concentration follow similar trend, the stress increases with strain followed by a yield
point, post which stress decreases with any increase in the strain. (b) Stress-strain curves
for samples with varying mucus content while holding the concentration of threads fixed.

At same applied strain, sample with more mucus content tend to soften.
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Figure 4.6: Hagfish slime is stiffer in extension than shear. (a) Comparison of elastic
modulus of slime in shear and extension. The extension modulus is roughly 2 orders of
magnitude larger than the shear modulus. Both extension and shear elastic moduli show an
approximate linear dependence on the exudate concentration. (b) Increasing concentration
of slime increases its yield strength both in shear and extension, but the yield strength in
extension is roughly two orders of magnitude higher than in shear. (c) Comparison between
the work done in extending and shearing the sample shows that it is much easier to shear

the sample than stretch it.
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Figure 4.7: Hagfish mucus shear properties. The linear shear moduli of pure mucus sam-
ples (no threads) as a function of mucus concentration show a very weak power-law de-
pendence on concentration. The rheological response shows a weakly dominant elastic
character. (Inset) Relative viscosity of pure mucus samples closely agree with the Fuoss

law for dilute/semidilute polyelectrolyte solutions.

by adding varying concentrations of dithiothreitol (DTT). DTT is known to disrupt the
disulfide bonds in mucus networks. Fig. 4.8 B shows the linear viscoelastic moduli for
a fixed concentration of exudate as the concentration of DTT is varied. As expected, the
linear viscoelasticity decreases with increasing DTT. This is consistent with the results
observation of reduced slime volume in presence on DTT [41, 42]. It is important to note
that disulphide bonds are also present with in several intermediate filament dimers [143,
144] which may as well get affected by the DTT addition.

Figure 4.5 B shows the engineering stress-strain curves in uniaxial extension when the
concentration of mucus in varied increased while holding the concentration of threads fixed.
Contrary to what was observed in the cases of increasing exudate concentration, Fig. 4.9 A,
adding more mucus, makes slime more compliant. Similar trend is observed in the exten-
sion work. It is also observed that although the yield stress decreases with increasing mu-
cus, corresponding yield strain increases, Fig. 4.9 B. Thus, the effect of increasing relative
mucus to thread concentration in slime results in different properties in shear and extension.
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Figure 4.8: Effect of varying mucus concentration on shear properties of slime. (a) In-
creasing mucus content in slime while holding the thread concentration fixed has a weak
effect on the shear elastic properties. Loss modulus has a stronger dependence on increas-
ing mucus concentration, the power-law dependence of loss modulus closely follows Fuoss
law. Inset shows same data normalized by the modulus (vertical axis) and mucus concen-
tration (horizontal axis) of the samples formed at physiological exudate concentration. (b)
Disrupting the mucus networks using varying concentration of DTT (dithiothreitol) has a

detrimental effects on both elastic and viscous properties of slime.
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Figure 4.9: Mucus content affects the extensional properties of slime. (a) Extension mod-
ulus of slime samples with increasing mucus content while holding the concentration of
threads fixed, decreases contrary to the results in shear rheology, where elasticity weakly
increase with mucus concentration. Correspondingly, the work done in stretching the sam-
ples decreases. (b) The yield stress, extracted as the topmost point in stress-strain curves,
decreases with the increasing mucus content. However, the yield strain, increases for sam-
ples with more mucus content. The slime becomes more softer and ductile with increasing

mucus content.
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Figure 4.10: The mass of the solvent that flows through the slime sample under pressure
is plotted as a function of time for different applied pressures.

Figure 4.11: The Darcy permeability of hagfish slime as its concentration is varied. The
dashed line shows the best-fit power-law dependence of permeability on concentration,
κ ∼ c. The permeability of slime is much lower than the characteristic permeability of fish

gills (O(10−13 m2))
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4.3.4 Permeability Measurements

Figure 4.10 shows the raw-data from the experiments that was used to calculate the perme-
ability of hagfish slime. A constant pressure is applied to maintain the flow, and since the
gravitation head is negligible compared to the applied pressure, we assume that the pres-
sure difference, ∆P , deriving the flow is constant for a Papplied. The mass of solvent that is
collected on a weighing scale is used to calculate the volume flow rateQ of the solvent. The
calculated volume flow rate is roughly constant in the duration of experiments (although
some deviations as observed, but the load-time curve is linear to the leading order). An
apparent Darcy permeability κ can be calculated as

κ =
Q

A

µ

(∆P )/L
(4.1)

where A is the cross-sectional area of the setup and L is the thickness of the slime sample.
It is trivial to note from Fig. 4.10 that the flow rate (∼ as the slope of the load vs time
curve) increases as the pressure is increased. The apparent Darcy permeability for slime at
various concentrations is plotted in Fig. 4.11. The apparent permeability follows a inverse
relation with the concentration of exudate. Following this power-law trend, we estimate the
permeability of hagfish slime at its physiological concentrations to be O(10−13) m2. This
value of permeability is significantly lower than the representative value of permeability
of the interlamellar structures in fish gills (O(10−6) m2), hence is consistent with the idea
of slime choking the predators. Note that, we verified that the permeability of the set-up
without slime is orders of magnitude higher than the the values shown in Fig. 4.11 hence
our measurements should be representative of the intrinsic permeability of slime. Fig. 4.12
shows the effects of varying the pressure difference on the measurements. We find that
the flow rate weakly increases with the applied pressure. For an undeformed structure
(constant permeability), a linear relationship between the flow rate and pressure difference
is expected. However, since slime is very soft and easily deformable, we expected the
effective permeability to decrease as the pressure is increased.

4.4 Discussion and Modeling

4.4.1 Structure-Property Relationship in Uniaxial Extension

From the experimental observation, it is apparent that elasticity of hagfish slime is at-
tributable to the underlying dilute network of very long fibers as shown in Figure 4.13 a.
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(a)

(b)

Figure 4.12: (a) Flow rate as the applied pressure is varied for different concentrations of
slime. (b) Effective permeability decreases with the applied pressure.

Here, we extend the network model from section 3.4.2. Contrary to the case of small ap-
plied deformation, where we showed that the bending/unbending of fibers dominates the
mechanical response of the network Fig. 4.13 b, we hypothesize that under large defor-
mations remove all the athermal bends in the fibers and the fiber stretches as shown in
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Figure 4.13: (a) DIC image of hagfish slime showing the network of threads. (b) Under
small shear deformations the bending-unbending of fibers gives relatively soft mechanics.
(c) When deformed with large extensional strain, all the athermal bends are pulled out and

the stretching of fibers provides a stiffer response.

Fig. 4.13 c. To evaluate the modulus in extension, we consider the pure stretching of fibers.
Fibers are essentially randomly oriented straight rods. Extension will lead to an increase
in the length of individual rods in the direction of stretch. A rod at oriented at an angle,
α, w.r.t. the direction of extension, stretches by ∆L = ε cos2 α under an extension, ε.
Hence the work done in stretching the rod is given by dWextension = 1

2
Ea2(ε cos4). To

sum over such contribution from fibers oriented in all directions is given by Wextension =
2
π

∫ π/2
0

dWextensiondα or Wextension = 3
16
ρEa2ε2. Hence, the extension modulus can be

obtained by energy balance as,

Y =
3

8
ρEa2 (4.2)

In section 3.4.2, we found that the linear shear modulus G ∼ EI/h2. Thus the ratio of
shear modulus in extension to bending modulus, Y/G scales as h2/a2 ∼ O(102). This
is expected, since it is more difficult to physically stretch the fibers than bend them. We
neglected any irreversibility (e.g. dissipation) and alignment during the deformation. Al-
though individual fiber hysteresis effects were observed in single fiber studies [64], we
neglect such effects here in the structure-rheology modeling, since we focus our under-
standing to small deformations and the overall elastic strength of the network.

So far, we have not considered the effect of mucus. We argue that effective elasticity
produced from mucus if significantly lower than that by threads. However, when we in-
crease the concentration of mucus while holding the concentration of threads fixed, we
see different effects in shear and extension as shown in Figs. 4.8 and 4.9. This is can be
explained by the different experimental conditions in shear and extension. In both cases,
sample preparation involves, mixing threads and mucin vesicles in fixed volume of solvent.
Thus, with increasing mucin vesicles, the swelling ratio of mucus network will decrease
(because the total solvent volume is fixed). This explains why the shear elastic modulus
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increases (number density of mucus fibers increases). However, the extension experiments
are performed inside a solvent bath containing same solvent as the sample. Thus there is
possibility of mucus swelling and the extent of network swelling will be determined by the
equilibrium thermodynamics. Mucus swelling will result in increasing the overall volume
of slime. Thus the thread length per unit volume, ρ, will decrease as more mucus is added
in abundance of solvent. Thus, the extension modulus decreases.

4.4.2 Interpretation of the Permeability Measurements

The permeability of hagfish slime is remarkably low, considering the large pore size struc-
ture of the network of threads inside the slime. In general, the permeability (κ) of a medium
is related to the total solid fraction (φ), and a characteristic length scale (a), and can be ex-
pressed as κ = a2f(φ). For a random isotropic fibrous network [145],

κ2 = a2
2

[
1

2

(
π

φ

)1/2

− 1

]2

[0.71407 exp(−0.51854φ2)] (4.3)

This provides an estimate of the contribution of threads in the slime network in its perme-
ability. For the fibrous network of slime, a ≈ 2 µm is the fiber diameter and in the range
of concentrations that we studied, φ ≈ 10−4 − 10−2. This gives κ ≈ 10−9 − 10−7 m2. We
conclude that the low permeability of hagfish slime cannot arise from pure thread network.
Hence, the mucus component that coexists with the thread network in slime must have a
drastic impact on the overall permeability.

Inspired by the work done by White et al. [146], we propose three possible microstruc-
tures for slime. Fig. 4.14 a shows an interpenetrated network of thread and mucus. The
threads form the larger pores, and the mucus form the smaller pores. The overall permeabil-
ity κ of the network is related to the permeability κ1 and κ2 of the individual components
(if the fiber radii are not very different), and their volume fractions, φ1 and φ2,

1

κ
=

φ1

φ1 + φ2

1

κ1(φ1)
+

φ2

φ1 + φ2

1

κ2(φ2)
(4.4)

For hagfish slime, we expect if the mucus exists in a network, the fiber diameter is likely
much smaller than that of thread. Under such conditions, the microstructures in Fig. 4.14 a
and b are essentially the same and the overall permeability can be described as [146]

κ

κ2

= 1− 5

3
φ1 +O(φ2

1) (4.5)
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Figure 4.14: Proposed microstructures for hagfish slime. (a) an interpenetrating network
of threads (thicker, longer fibers) and mucus network (thinner, shorter fibers). (b) A homo-
geneous mucus solution filling the pores of network formed by threads. (c) Swollen mucus

blobs in the pores of thread network.

The scenario presented in Fig. 4.14 c depicts the scenarios of swollen mucin vesicles
inside the thread network. The contribution from the swollen vesicles can be expressed as
κ2 = 2a2

9φ2
, where a is the radius of the swollen vesicle [147]. Fig. 4.15 shows the predic-

tions of the microstructural hypothesis. For the scenarios in Fig. 4.14 c, the the predictions
are based on assuming the swollen blob size of 15 µm. It is evident that such a microstru-
ture cannot provide the low permeability that is experimentally observed. The hypothesis
described in Fig. 4.14 a/b, shows a good agreement with the experiments. In this case,
the fiber diameter in the mucus diameter is assumed to be 4 nm. Such a value is close to
the ones reported for different mucus networks [148]. This indicates that the characteristic
mesh size in hagfish slime is set by the mucus networks. And the characteristic mesh size
can be estimated as ∼

√
κ = 10− 100 nm. Such a mesh size is consistent with the mucus

networks studied in the literature [149]. Mucus networks can either exist as volume span-
ning networks or local networks in the interstitial spaces of the thread network. The ability
of small amounts of fine fibers to greatly reduce the permeability of a fiber matrix has been
demonstrated for synthetic systems [146]. Slime appears to utilize similar principle.

4.4.3 Material Performance

An obvious objective of hagfish slime is to clog the gills of predators. Such a functional
requirement requires the material to be compliant (to easily contact the surface), posses a
low permeability (reduced water flow), high adhesion (stick to the gills/surfaces), and large
expansion ratios (evident from the videos). A qualitative comparison of Darcy permeability
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Figure 4.15: Comparison of predictions using the hypothesized microstructures (Fig. 4.14)
versus the experimental measurements. The hypothesis presented in Fig. 4.14 c, predicts
significantly higher permeability while the predictions Fig. 4.14 a, shows a good agreement

with the experiments (assuming 5 nm thick mucus fiber diameter).

versus volume fraction for various soft materials is given in the Ashby plot (Fig. 4.16). It is
evident that hagfish slime provides very low permeability at a very low volume fraction of
its constituent material. Fig. 4.17 is shown for the elastic modulus versus permeability. It is
evident that the slime is much compliant comparable to other common biomaterials, which
makes it easy to deform, and yet maintain relatively low permeability. Such a feature is
potentially a result of its structure where the bends in thick threads provide it a low modulus
thus making it compliant while the swollen mucus potentially lower its permeability.

4.5 Summary

A comparison of shear and extensional properties of hagfish slime and the effects of varying
the relative composition of constituents in slime is reported for the first time. Our results
suggest that slime is significantly stiffer in extension than in shear and can undergo huge
extensional deformations before failure. Varying the relative composition of mucus (M) to
threads (T) in slime compared to the physiological composition drastically affects the me-
chanics: lowering M/T, decreases the shear viscous and elastic properties while increasing
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Figure 4.16: Ashby diagram showing Darcy permeability for some common materials as
a function of volume fraction. The properties measured in this work indicate that hagfish
slime achieves remarkably low permeability at very low volume fraction of its constituents.
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Figure 4.17: Ashby diagram showing Elastic Modulus for some common materials versus
their Darcy permeability. The dashed blue line is the scaling prediction using the rubber
elasticity idea E ∼ 1/ξ3 and the Darcy permeability scales as κ ∼ ξ2, where ξ is the

characterisitic mesh size.
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M/T weakly increases the shear elastic and viscous properties and drastically reduces the
extensional properties, while increasing the ductility of slime.
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CHAPTER 5

LINEAR AND NONLINEAR RHEOLOGY OF
SOFT REPULSIVE PNIPAM MICROGEL

SUSPENSIONS

5.1 Introduction

Colloidal suspensions have been a major area of interest in the soft matter community for
decades. Much fundamental research has been done with model hard-sphere colloids, with
or without small polymer depletants, which have elucidated the understanding of physi-
cal phenomenon such as crystallization, phase separation, glassy dynamics, and nonlinear
rheology [150, 151, 152]. Other widely studied systems are dense suspensions of soft
colloids [153, 154]. However, they bring additional complexities since the particles are
deformable with a fluctuating internal polymeric microstructure, which can lead to their
size and even shape becoming a function of thermodynamic state (volume fraction, tem-
perature, ionic strength) and deformation. Most microgels are charged and can be created
with diverse chemistry, which introduces concentration-dependent complexities associated
with osmotic decompression, the poorly known internal density profile (often core-shell),
and variable single particle mechanical stiffness. Hence, the effective interaction potential
between microgel particles is a complex issue, consistent with a lack of universal signatures
in their rheology [155, 156]. Moreover, microgels can exist as dense Brownian suspensions
that can form kinetic glasses or gels, or at ultra-high concentration as paste-like materials
characterized by literal contacts between deformed particles. If the latter exist, the system
is typically viewed as in a "soft jammed" regime. However, whether the physics in this
regime is entirely akin to granular materials where large scale motion requires the applica-
tion of external mechanical energy is not well understood, and the answer may depend on

This chapter appeared in the following peer-reviewed publication: Ghosh*, A., G. Chaudhary*, J. G.
Kang, P. V. Braun, R. H. Ewoldt, and K. S. Schweizer, "Linear and nonlinear rheology and structural relax-
ation in dense glassy and jammed soft repulsive microgel suspensions," Soft Matter, 15, 1038-1052 (2019),
doi: 10.1039/C8SM02014K (*equal contribution)
Ashesh Ghosh made equal contribution towards this chapter. Gaurav Chaudhary led the experimental work
(Figs. 5.1-5.5) and Ashesh Ghosh led the theoretical work (Figs. 5.6-5.14).
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system and thermodynamic state.
In this chapter, we perform a coordinated experimental and theoretical study of the dy-

namics and rheology of soft, thermoresponsive poly(N-isopropylacrylamide) (pNIPAM)
based microgel suspensions under conditions where they are swollen in a good solvent and
repel. There have been extensive prior studies of similar systems [154, 157, 158, 159,
160], albeit mainly in the soft jamming regime with ionic microgels which are chemically
crosslinked and can osmotically de-swell with changing concentration [154, 157, 158].
Such microgel pastes are generally viewed as effectively athermal or granular.

Our study has several not very common features: (a) there is no chemical crosslinking
via added molecules of the microgel particles, (b) the microgels are only slightly charged,
and (c) experiments are performed over an exceptionally wide range of concentration that
spans the low viscosity fluid, glassy Brownian, and soft jammed regimes. These aspects
distinguish our experimental system from most others, and isolates particle compression
as solely due to many body steric effects with negligible ion-induced deswelling. We will
show that points (a) and (b) lead to mechanical behavior with features significantly different
than prior studies. Point (c) is also a strong focus of this work where in the first two con-
centration regimes there are no literal inter-particle "contacts" and the mechanical response
is influenced by Brownian caging processes driven by thermal fluctuations and external
stress [161, 162, 163]. The possibility that the ultra-dense regime is not granular-like is
also explored.

The remainder of this chapter is structured as follows. In section 5.2 we describe the
experimental materials and methods. Our key experimental results for the linear and non-
linear rheology are presented in section 5.3. Section 5.4 presents the basics of our theo-
retical modeling of single microgel structure, and the equilibrium and dynamical statistical
mechanical tools we employ to make predictions for collective packing structure, linear
elasticity, structural relaxation, and aspects of nonlinear rheology. Quantification of micro-
gel effective volume fraction is discussed in section 5.5, and predictions made for the linear
dynamic shear modulus and packing structure, with the former compared with our measure-
ments. Theoretical results for the equilibrium structural relaxation time, its variation with
deformation, and yielding properties are presented in section 5.6, with some comparison to
experiment. The paper concludes with a discussion in Section 5.7. Additional experimental
characterization and rheological results are presented in the Appendix C.
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5.2 Materials and Methods

5.2.1 Microgel Synthesis and Characterization

Slightly charged self-crosslinked pNIPAM microgels were synthesized under a ’crosslinker
free’ condition following the protocol described in literature [164] with modifications.
100 ml of Type I water (18.2 MΩ cm) was filtered through a 0.2 µm Acrodisc syringe
filter. Then, 146 mM (1.65 g) of N-isopropylacrylamide (NIPAM, 99 %, Acros) monomer
was dissolved in filtered water. The monomer solution was again filtered through a 0.2 µm
Acrodisc syringe filter into a 3-neck round bottom flask. The solution was stirred at
500 rpm, purged with nitrogen, and heated to 68◦C in a temperature-controlled oil bath until
the temperature of the solution became stable (1 hour typically). We then injected a solu-
tion of 2.8 mM (80 mg) potassium peroxodisulfate (KPS, 99 %+, Sigma-Aldrich) dissolved
in 1 ml of the pre-filtered Type 1 water through a 0.2 µm Acrodisc syringe filter to initiate
the polymerization. The mixture was left to react under continuous stirring at 500 rpm in
nitrogen atmosphere overnight. This leads to the formation of stable nanospheres instead
of linear chains if the solution is incubated at temperatures well above the lower critical
solution temperature (LCST) of PNIPAM (∼ 32◦C. The formation of gel nanospheres is
attributed to self-crosslinking by chain transfer reaction during and after polymerization
[165]. Microgels prepared with a similar preparation protocol have been referred to as
neutral in their charge [164, 166]. Here, we refer to such microgels as ’slightly charged’,
because the initiator used may possibly leave some charge on the colloids. After the poly-
merization, the solution was cooled down to the room temperature and filtered with a glass
wool five times to remove large particulates. The microgel particles were then thoroughly
purified via five cycles of a centrifuge/dispersion process. The centrifugation was done at
15000 x g of relative centrifugal force (RCF), and the dispersion was enabled by a mixed
process of the ultrasonication followed by the magnetic stirring. The cleaned particles were
then lyophilized for further characterization. A stock solution of c=9 wt% was then diluted
with deionized water to achieve the desired concentration of the slightly charged microgel
suspension.

The particle radius was determined by dynamic light scattering (DLS) (Zetasizer Nano
ZS, Malvern) and a Helium-Neon gas laser emitting at 632.8 nm on a very dilute suspension
(0.04 wt%) with a beam diameter of 0.63 mm (see Appendix Fig. C.1). The present work
focuses on the lower temperature regime where microgels are swollen and interact via
repulsive forces. In dilute solution, the microgel particles have a mean diameter of 2R =

551± 71 nm at 10◦C.
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5.2.2 Rheological Characterization

Rheological experiments are performed over a very wide range of microgel concentration
from 0.03 to 9 wt%. Viscoelasticity was probed using a rotational rheometer (model Dis-
covery Hybrid 3, TA instruments and model MCR 702 from Anton Paar) with plate-plate
geometry. These are both torque-controlled instruments (a.k.a. combined-motor-transducer
type). A 600 grit, adhesive-back sand paper (Norton Abrasives) was adhered to the contact
surfaces to suppress wall slip. The plate diameter was varied depending on the sample
concentration to obtain a measurable response higher than the minimum torque resolution.
A 60 mm plate was used for dilute samples 0.03-0.25 wt%, 40 mm plate for 0.25-1.5 wt%,
20 mm for 0.5-4.5 wt% , and 8 mm for 4.5-9 wt% samples. The typical gap in all ex-
periments was between (550-750) µm, far larger than the particle size, thus eliminating
confinement effects. A solvent trap, with a wet-tissue adhered to its interior, was used to
minimize solvent evaporation during the measurements. The temperature of the bottom
plate was controlled using a Peltier-system. To suppress sample aging effects and erase
any history, all samples were rejuvenated by shearing at 50 1/s for 60 s and then allowed to
relax for 12 min before taking measurements [154].

Two types of rheological characterization were performed: oscillatory shear and steady
shear. To probe the linear response, frequency sweeps were performed from ω = (0.03 −
100) rad/s at a strain amplitude of 1% at 10◦C. To probe the nonlinear response, strain
sweeps of amplitude γ0 = (0.1− 300)% at a fixed frequency of 1 rad/s were performed. In
the steady shear experiments, shear rates were typically varied from (300-0.01) 1/s while
waiting for the system to reach an apparent steady state as deduced by < 5% variation in
torque over a period of 30 s.

5.3 Experimental Results

5.3.1 Linear Rheology

Figure 5.1 shows the frequency-dependent linear storage, G′, and loss, G′′, moduli as a
function of frequency. One sees a nearly frequency independent G′, with a smaller G′′

that also is weakly frequency-dependent. Hence, G′′ < G′ for all concentrations above
0.4 wt% and the response is predominantly solid-like with the structural or flow relaxation
time obeying τα > ω−1

low ≈ 100 s. No crossover between G′ and G′′ was observed in the
range of frequencies probed, indicating the microgels do not show significant diffusion or
structural relaxation on the probing time scales.
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Figure 5.1: Linear rheological response (G′ closed symbols, G′′ open symbols) of the
slightly charged, self-crosslinked microgel suspensions. Frequency dependence at γ0 =
1%. Suspensions at c > 0.4 wt% do not flow on the longest probed time scales (∼ 100 s).
Experimental limits shown by the dotted horizontal line (minimum torque limit) and the

dashed line (instrument inertia limit) [68].

At higher frequencies, the commonly observed frequency dependence of G′′ ω1/2 for
a loosely and randomly packed emulsion is very roughly observed for the 0.75 wt% and
1 wt% samples [167]. However, there are systematic deviations – power laws are often
not well developed, and apparent scaling exponents, if force fit, can be larger or smaller
than 0.5, and tend to decrease as concentration grows. For concentrations below 1 wt%,
the inertia of the measuring system influences the torque measurements significantly and
makes it difficult to observe any reliable signatures [68] for high frequency measurements.

The linear storage modulus at a fixed frequency of ω = 1 rad/s and a strain amplitude
of γ0 = 1% is shown in Fig. 5.2. It monotonically grows with increasing concentration
(as also found at slightly higher temperatures, see Appendix Figure C.3). Three distinct
regimes of behavior are observed. For concentrations below c = 0.4 wt%, no measurable
elastic modulus is detected above the minimum torque limit of the instrument. This seems
consistent with measurements of the high shear rate viscosity (Appendix Figure C.2), where
an excellent agreement with the Einstein prediction of the dilute intrinsic viscosity is ob-
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Figure 5.2: Concentration dependence of linear storage modulus, G′. For low concentra-
tions (c < 1.5 wt%), G′ varies over 3 orders of magnitude and roughly follows a power
law concentration dependence, G′ ∼ c5.68±0.28. Above c = 1.5 wt%, the concentration
dependence changes to a roughly linear relation, G′ ∼ c. The red line shows a fit using
the classic rubber elasticity model (with monomer molecular weight of 113.6 g/mol and
3903 monomer units each polymer chain) discussed in the text. (inset) Comparison of the
concentration dependent storage modulus as observed in the current work that employs self
crosslinked slightly charged microgel suspensions (black circles) and prior studies of cross-
linked ionic microgels (yellow diamonds [160] and blue, green and red triangles [154]). A
wide concentration range spanning the glassy and "soft jammed" regimes is shown for all
the data with different concentration dependencies of shear modulus in the glassy regime.
A qualitative universality exists for soft microgels in the sense that, independent of chem-
istry, all soft particles show a stronger concentration dependence in the glassy regime and
roughly linear growth in the "soft jammed" regime. However, the apparent power laws
and soft jamming crossover points are highly variable, depending on microgel chemistry,
preparation protocol, their internal crosslink density, and the nature of the steric and/or

ionic driven deswelling behavior.

served in the concentration range (0.03-0.35) wt%, beyond which the viscosity strongly
grows. Since the microgels are only slightly charged, the latter is presumably due to re-
pulsive inter-microgel forces and transient caging in the suspension. Such a fundamental
change in the concentration range (0.4-0.5) wt% is consistent with a dynamic crossover
to a regime where there is little particle motion on the experimentally probed time scales
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[160, 168]. In hard sphere glasses the characteristic modulus scale is set by the thermal
energy per particle volume [153, 163], G ∼ kBT/(2R)3, where kB is Boltzmann constant,
T is temperature, and R is the particle radius, which for our system is G′ = 0.024 Pa for
2R = 550 nm. This estimate is fairly close to when we first observe a solid-like response:
G′ = 0.04 Pa and G′ = 0.14 Pa for 0.4 wt% and 0.5 wt% concentrations, respectively.

In the intermediate concentration range, defined as (0.4-1.25) wt%, the elastic modulus
shows a dramatic dependence on microgel concentration. A variance weighted fit of all data
yields G′ ∼ c5.64±0.28, but it seems clear the effective exponent weakly decreases with con-
centration. Similar observations have been made in literature [154, 160], but the apparent
power law exponent in Fig. 5.2 is generally very different for previous work using pNI-
PAM based suspensions. For example, Menut et al. [154] observed power law exponents
of 4.4, 6.1 and 14, respectively, for three p(NIPAAm-co-AAc) ionic microgel suspensions
of increasing single particle stiffness as synthesized by precipitation polymerization with
varying cross-linker concentration. Pellet and Cloitre [160] observed a power-law exponent
of 9.1 for a suspension of polyelectrolyte microgels synthesized by emulsion polymeriza-
tion. Given the narrow range of data in the "glassy regime" of that study, such a high
apparent exponent may simply indicate exponential growth.

In the highest concentration range of our experiments, defined as (1.5-9) wt%, the elastic
response again qualitatively changes. The modulus now grows weakly in a nearly linear
manner with concentration (variance weighted fit, G′ ∼ c1.17±0.07. How to interpret this
solely from mechanical data is neither obvious nor unique. We can envision three possibil-
ities. (1) It could indicate a transition to what is usually called a "soft jammed" state where
microgels are in literal contact, particles may deform and form facets, and elastic energy
is stored in a granular manner. This scenario predicts G′ ∝ (φ − φjam) [160], which to
be consistent with our data seems to require the effective volume fraction grows linearly
with microgel concentration (which is a priori unclear). (2) Discrete microgel particles
could somehow effectively "fuse" in the practical sense that the suspension behaves as a
connected macroscopic network of flexible "elastically active chains or strands". From
the classical theory of rubber elasticity, this scenario implies elasticity is fundamentally
of single strand (conformational) entropic origin, with G′ ∼ ρxkT , where ρx is the poly-
mer concentration divided by the number of monomer units in each polymer strand, Nx

[154, 169]. A comparison between our experimental data and the rubber elasticity model
[170] is given by the red line (variance weighted fit parameter, Nx = 3903) in Fig. 5.2.
(3) A third scenario is the change in concentration dependence of G′ reflects a crossover
from sterically-induced weak compression of core-shell microgels to a regime where the
microgels isotropically shrink in a manner that keeps its effective volume fraction fixed.
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This scenario retains the discrete picture of microgel particles, does not invoke facets or
literal interparticle contacts, and posits an interparticle collective origin of stress storage.
It will theoretically be developed in section 5.4, and shown to also lead to a linear growth
of G′ with microgel concentration. While we cannot completely rule out there might be
components of scenario (1) or (2) that contribute to the observed linear growth of elas-
tic modulus of our system, in this article we take a minimalist approach of exploring a
Brownian glassy suspension scenario for the entire concentration regime without invoking
athermal soft jamming.

The inset of Fig. 5.2 shows elastic modulus data from other labs for different types of
microgels, all of which are ionic. Clearly, one sees that at fixed concentration in wt%,
different microgel samples display a wide variety of modulus levels and sensitivity to con-
centration. This emphasizes that our present self-crosslinked slightly charged microgel
system with different chemistry does display a distinct elastic response. It also emphasizes
the far larger range of concentration probed in our study (factor ∼ 25) versus prior studies
(typically factor of 3-10). However, these prior studies all observe, to varying degrees, a
stronger growth of G′ at lower concentration followed by a much weaker growth at very
high microgel concentrations.

5.3.2 Nonlinear Rheology

Our nonlinear oscillatory shear measurements are shown in Fig. 5.3. Only the first-harmonic
responses are plotted, representing the average storage and loss of mechanical energy, here
indicated as G′1 and G′′1, respectively. The response at all concentrations is similar. At low
strains, the response is in the linear regime, with roughly a constant value ofG′1 andG′′1 and
G′1 > G′′1. At large strains, the response becomes nonlinear with G′1 showing a monotonic
decrease while G′′1 exhibits a maximum. An increasing G′′1 indicates more dissipation pre-
sumably due to deformation-induced microgel motion which can be qualitatively viewed as
a stress driven solid-to-fluid like transition or yielding [154, 163]. One measure of the latter
is the strain at which G′1 = G′′1, which occurs at rather high strain values of ∼ 25 − 50%

with systematic variation with concentration difficult to discern. More precise definitions
and analysis of yielding will be given in section 5.6.

Figure 5.4 shows the steady state flow curve of the microgel suspensions. Below c=0.4 wt%,
the response resembles a shear thinning fluid at high shear rates. At higher concentrations,
c > 0.4 wt%, the stress-strain rate response resembles that of a yield-stress fluid, although
for most samples there is no rigorous low shear plateau and the degree to which the data
is flat does not vary systematically with concentration. Such a response can be adequately
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Figure 5.3: Nonlinear viscoelastic moduli (first harmonic G′1 closed symbols, G′′1 open
symbols) measured at varying strain amplitudes at a fixed frequency ω = 1 rad/s. At low
strains, the response is predominantly elastic, G′1 > G′′1 and G′1 ∼ constant. Beyond the
linear regime,G′1 monotonically decreases, whileG′′1 achieves a maximum value as the ma-
terial undergoes yielding. With further increase in strain, suspensions at all concentrations
have a dominant liquid-like response, with both G′1 and G′′1 showing a monotonic decrease
and G′1 < G′′1 . The dotted line shows the minimum torque limit of the instrument and the

dashed line shows the instrument inertia limit [68].

captured by the empirical Herschel-Bulkley (HB) model given by: σ(γ̇) = σHBy + K(γ̇)n,
where σHBy is the apparent yield strength, n is the flow index, and K(γ̇)n describes the
shear-thinning behavior at high shear rates for n < 1 [163]. The parameter K has dimen-
sions that depend on n and does not represent a physical quantity. However, we can instead
use a modified form of the HB model [171],

σ(γ̇) = σHBy

(
1 +

γ̇

γ̇c

)
(5.1)

where the characteristic shear rate, γ̇c =
(
σHBy
K

)1/n

, is associated with a crossover from
rate-independent plastic flow to rate-dependent viscous flow. Eq. 5.1 is used to fit the
experimental data which directly yields the parameter γ̇c.

The HB fits to the data (assuming constant error weighting) and corresponding fit pa-
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Figure 5.4: Steady state shear flow curves for various suspension concentrations. For
c ≥ 0.4 wt%, all suspensions show an apparent yield stress response, achieving a near
plateau at low shear rates. For c < 0.4 wt%, the response closely resembles a shear thinning
fluid (power law stress-rate scaling with an apparent exponent smaller than 1) in the range
of shear rates probed. The solid curves are the Herschel-Bulkley model fits. The dotted

horizontal line shows the minimum torque limit of the instrument [68].

rameters (σHBy , γ̇c, n) are shown in Fig. 5.5. Similar to the observations made earlier for
the linear elastic modulus, we find a strong concentration dependence of σHBy ∼ c4.5 in
the intermediate concentration regime, which is however clearly weaker than that of the
G′ data in Fig. 5.3. We will refer to such behavior as indicating the "glassy regime". At
higher concentrations the yield stress grows roughly linearly with concentration, which for
descriptive purposes we refer to as the "soft jamming" regime. The flow index, n, decreases
monotonically with the concentration in the glassy regime, n ∼ c−0.48, followed by a nearly
constant value of 0.41 in the soft jamming regime. The lower inset of Fig. 5.5 shows that the
characteristic shear rate (γ̇c) is roughly constant in the glassy regime and follows a power
law relation, γ̇c ∼ c−2.5, in the soft jammed regime. As true of the linear elastic modulus,
Fig. 5.5 shows that the yielding properties of our microgel suspensions follow quite dif-
ferent trends from previous studies [160] of different ionic microgel systems. Specifically,
the yield stress in the soft jamming regime displays a stronger concentration dependence
(∼ c2), the exponent n values are generally larger, and γ̇c increases with the concentration
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Figure 5.5: Concentration dependence of the Herschel-Bulkley model fit parameters,
Eq. 5.1, for our slightly charged microgel suspensions (black circles, from data in Fig. 5.4).
Data for the ionic microgel suspensions [160] are shown as red triangles. Power-law scal-
ing exponents are indicated for each fit line. (Inset) Corresponding characteristic shear rate

data.

in the glassy regime until appearing to plateau in the soft jamming regime.

5.4 Theoretical Approach: Microgel Model, Packing,
Elasticity, Dynamics, and Rheology

5.4.1 Overview and Modeling of Single Microgel Structure in the
Condensed Phase

Much theoretical progress has been made in recent years by many workers [172, 173,
174, 175] for understanding the slow dynamics and rheology of simple colloidal particles
which can be treated as soft or hard spheres that interact via a central pair potential, V (r).

Ashesh Ghosh, Chemistry, University of Illinois, led the theoretical work
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If V (r) is known, then one can use a litany of statistical mechanical methods to analyze
their collective structure, equilibrium dynamics under Brownian conditions, and nonlinear
rheology. The approach Schweizer and co-workers have developed and widely applied in
prior work [176] is used here and proceeds in a series manner as follows. (1) Construct a
single particle model and V (r). (2) Use liquid state integral equation methods to predict
the intermolecular pair correlation function, g(r), and its Fourier space collective structure
factor, S(k). (3) Use (1) and (2) to construct predictive dynamical theories of thermally
activated equilibrium structural relaxation dynamics and mechanical properties, and (4)
combine (1)-(3) to construct a theory for the effect of deformation on non-equilibrium
dynamics and mechanics.

The daunting difficulty to quantitatively carryout such a program for microgels is that
they are soft fluctuating polymeric particles with many internal degrees of freedom. Quan-
titative knowledge of their internal structure in dense suspensions, as a function of thermo-
dynamic state variables (concentration, temperature), is scarce. This renders an a priori

theoretical analysis at the monomer level very difficult or impossible. It has led to almost
all theoretical and simulation studies adopting a coarse-grained center-of-mass (CM) level
description of the polymer microgel which interacts via a pair decomposable isotropic soft
repulsive potential where the influence of all internal degrees of freedom are effectively
pre-averaged. This corresponds to V (r) becoming a free energy or potential-of-mean force
(PMF) quantity. But an a priori quantitative theoretical construction of such a PMF for real
chemical systems is extremely difficult since it requires the following information. (i) How
a global measure of mean size (radius, R) of a single microgel changes as a function of
concentration and temperature, i.e. what is (c, T ) ? (ii) What is the functional form of V (r)

and how does it change with thermodynamic state? (iii) Even for a simple V (r) such as the
Herztian contact model (see below), the single particle modulus is variable, depending on
chemistry, preparation method, and crosslink density, and is a priori unknown. (iv) How
does the experimental concentration variable (weight percent) map to an effective volume
fraction as a function of concentration and temperature, i.e. φeff (c, T )? The inability to a

priori answer the above questions forces one to adopt models constrained by incomplete
knowledge. Physical ideas must be invoked, and parameters introduced, with the goal of
retaining some predictive power. Here we outline our approach, which is summarized in
Fig. 5.6.

Soft microgels are generally globally compact and compressible objects that are swollen
in a good solvent but have a (dense) core - (more dilute/hairy) corona structure [174, 177].
We take a microgel to be, on average, a spherical soft object. Its internal density ρ(r)

decreases continuously in a non-universal manner upon transitioning from its center to
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edge, ultimately becoming effectively zero at r = Reff . In the dilute low concentration
regime the microgel size is fixed and one can define a volume fraction φ = 4π

3
ρR3 which

grows linearly with concentration. As suggested by experiments of Schurtenberger et. al.
[156, 178], in an intermediate concentration regime of c1 < c < c2 (per the notation of
Fig. 5.6) the microgels begin to de-swell due to steric repulsions between particles, in a
manner that experiments suggest is initially weak. Crudely, experimental data in the latter
regime can be modeled as a power law, R ∼ c−1/x where x > 3, implying an effective
volume fraction that scales as φ ∼ c1−3/x. Motivated by the experimental data of Figure
5A of Conley et al. [178], we estimate x = 6. Beyond a "high enough" c ≥ c2, one
expects the more fuzzy "corona" of the microgel is largely squeezed out, leaving a dense
core which further decreases in size as concentration grows due to isotropic compression
in the sense that x = 3, as again suggested previously [178]. This leads to φ ∼ c0 where
the linear growth of microgel particle number density (ρ) with concentration is perfectly
compensated by their shrinking size. Ultimately, beyond an even higher concentration c3,
the internal concentration of microgels presumably saturates at a maximum value akin to a
collapsed molten globule with radius Rcollapsed.

Quantitative knowledge of such a complex, continuous, and material-specific variation of
microgel size with concentration is unknown for our system. Thus, we adopt the model of
Fig. 5.6 which has 3 crossover concentrations, one exponent parameter "x", and 3 charac-
teristic sizes. The crossover concentrations are determined using our elastic modulus data
and theory as explained in detail in section 5.4. Here we summarize the model adopted
there.

We assume that the lowest concentration regime extends up to c = 0.4 wt% and the
microgel size is constant and the same as in the c→ 0 dilute limit as determined from our
DLS measurements, 2R = 2R0 = 551 nm. A second regime is defined starting at c1 (0.4
wt%) and ending at c2 = 1.5 wt% (onset of "soft jamming" behavior of G′). Here we
assume the microgels begin to weakly contract and employ x = 6 as suggested in Conley
et al. [178]. This implies at c2 the microgel diameter is 2R = 442 nm. Beyond c2 a
third regime is entered and we adopt the 3 exponent to describe microgel shrinkage. This
implies at the highest concentration we study (9 wt%) one has 2R ≈ 244 nm. Interestingly,
as Fig. S1 shows, this is roughly the size of dilute microgels at high temperature beyond
the LCST where they undergo an enthalpy-driven collapse. Although a collapsed microgel
driven by poor solvent conditions need not be exactly the same size as what can be attained
via interparticle steric repulsion, it is not unreasonable they could be similar. Hence, in
terms of the scenario of Fig. 5.6 we deduce as a rough approximation c3 ∼ 9 wt%, and our
present measurements do not probe the ultra-high concentration fourth regime which may
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Figure 5.6: Schematic of our model for microgel radius as a function of concentration. In
principle, there can be four regimes. At low concentration, the size is fixed at its c → 0
dilute limit value as measured by DLS. Two intermediate regimes have different concentra-
tion dependences in the glassy and "soft jammed" regimes which we envision as physically
indicating first compression of the corona and then stronger shrinkage of the core due to
interparticle steric repulsions. The final, perhaps not observable, regime is when the core

is maximally compressed and microgel size saturates.

be impossible to explore in practice.
We employ a suite of older and recently developed theoretical tools to model our system.

The rest of this section provides a brief summary without derivation of these methods. All
details can be found in original papers, and for consistency we employ the same notation
developed in these prior theoretical works. Our present work is the first time the new acti-
vated dynamics (ECNLE) theory in equilibrium and under deformation has been employed
to study soft colloids.

Finally, for clarity we again emphasize that our goal is to attempt to understand all
concentration regimes (fluid, glassy suspension, so-called "soft jammed") for our lightly
crosslinked polymeric microgel based on the assumption of thermal equilibrium in the
Boltzmann sense. No athermal granular jamming or contact mechanical force network
concepts are invoked. This does not contradict the fact that the interparticle soft repulsive
interaction and the corresponding forces (modeled via the elastic Herztian model described
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below) are very strong compared to the thermal energy scale. Our goal is to predict the
equilibrium structure and relate it using statistical dynamical ideas to intermolecular stress
storage, the dynamic plateau shear modulus, and relaxation.

5.4.2 Center-of-Mass Hertzian Repulsion Model

The vast majority of modeling studies of soft microgels has employed the repulsive Hertzian
contact or harmonic interaction model. We adopt the former which is given by [172, 173],

βV (r) =

4E
15

(
1− r

d

)5/2 if r < d = 3Reff

0 if r ≥ d
(5.2)

where β = (kBT )−1 is the inverse thermal energy, r is the interparticle separation, and
d is the particle diameter. The front factor 4E

15
is the inverse dimensionless temperature

that controls the elastic stiffness of a particle and hence repulsion strength. E is a priori

unknown for our system, and d ≈ 2R where R ≈ Rg of the core-corona particle. From
its mechanics derivation, E is related to the sphere diameter d, Young’s modulus Y , and
Poisson ratio ν, as:

E =
Y d2

3kBT (1− ν2)
. (5.3)

Depending on the magnitude of the dimensionless temperature, the Hertzian potential can
describe ultra-soft microgels (E ≤ 103), intermediate soft microgels (103 ≤ E ≤ 106),
and effective hard spheres (E ≥ 106). The literal hard sphere limit is smoothly obtained as
E → ∞. Very recent simulations of soft microgel suspensions that explicitly considered
the polymeric internal degrees of freedom found the Hertzian pair potential to work fairly
well [179]. Again, no ionic interactions are taken into account in our modeling.

5.4.3 Equilibrium Packing Structure

We use the standard Ornstein-Zernike (OZ) integral equation [180, 181] approach to com-
pute the inter-particle pair structure. The OZ equation relates the non-random part of the
interparticle pair correlation function, h(r) = g(r) − 1 (where g(r) is the pair correlation
or radial distribution function), and the direct correlation function, c(r) via [180, 181],

h(r) = c(r) + ρ

∫
c(|~r − ~r′)h(r′)d~r′ (5.4)
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where ρ is the particle number density. Collective density fluctuations are controlled by the
static structure factor which in Fourier space is

S(k) = 1 + ρh(k) =
1

1− ρC(k)
. (5.5)

Numerical solution of the OZ equation requires a closure approximation that relates c(r),
g(r), V (r), and thermodynamic state (density, temperature). For soft colloids the hyper-
netted chain closure (HNC) relation works well and is given by,

c(r) = −βV (r)− ln(g(r)) + h(r). (5.6)

5.4.4 Dynamic Localization and Elasticity: Naive Mode Coupling
Theory

The starting point for describing the dynamics of a tagged particle in a liquid is the Gener-
alized Langevin Equation (GLE) for its position and velocity [180, 181],

m
d

dt
~V (t) + ζs~V (t) =

β

3

∫ ∞
0

dτ〈~fα(t). ~fα(t− τ)〉+ δ ~fα(t) + ξ(t) (5.7)

where ζs is a short time friction constant, ~fα(t) is the force on a tagged particle due to
the surrounding particles, and δ ~fα(t) and ξ(t) represent the random white noise (Gaus-
sian) force associated with the short time process. The naive ideal Mode-Coupling Theory
(NMCT) of single particle dynamics calculates the force-force time correlation function or
memory function by quantifying dynamical constraints at the pair structural level as [176]:

K(t) = 〈~fα(0). ~fα(t)〉 =
−β2

3

∫ ∞
0

d~k

(2π)3
ρ| ~MNMCT (k)|2S(k)Γs(k, t)Γc(k, t) (5.8)

where ~MNMCT (k) = kC(k)k̂ is the wave vector resolved effective force on a tagged par-
ticle, and the "dynamic propagators" Γs(k, t), Γc(k, t) are the t = 0 normalized single and
collective dynamic structure factors (decay to zero in a fluid phase, non-zero for solids).
At long times, localized states can exist and the Gaussian Debye-Waller factors are non-
zero, Γs(k, t→∞) = exp(−k2r2L

6
), where rL is the dynamic localization length associated

with a kinetically arrested state. The collective propagator is accounted for in a de Gennes
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narrowing manner as [176],

Γc(k, t→∞) ≡ Γs(
k√
S(k)

,∞) = exp(−k
2r2
L

6
). (5.9)

A self-consistent equation in the long time limit for the particle displacement can be derived
and is given by: 〈~fα(0). ~fα(t→∞)〉 r

2
L

2
= 3kBT

2
. From this, the ideal NMCT self-consistent

localization equation is [182]

1

r2
L

=
ρ

18π2

∫ ∞
0

C(k)2s(k) exp(−k
2r2
L

6
(1 + S−1(k))). (5.10)

One can also compute the elastic shear modulus associated with such an ideal glass state.
The calculation is relevant in practice if the product of the frequency of the measurement
and structural relaxation time obeys ωτα >> 1. A standard statistical mechanical for-
mula for the dynamic elastic shear modulus, based on projecting microscopic stress onto
a bilinear product of the collective density fields followed by factorization of multi-point
correlations to the 2-point level, is [180]:

G′ =
kBT

60π2

∫ ∞
0

dk[k2 d

dk
ln(S(k))]2 exp(− k2r2

L

3S(k)
) ≈ aφ

kBT

dr2
L

= a(ρkBT )

(
d

aL

)2

(5.11)
where "a" is a numerical prefactor. The final approximate "microrheology-like" relation
can be analytically derived for hard spheres and works well for Hertzian spheres [161,
162]. Tighter dynamic localization (smaller rL) leads to higher mechanical stiffness. We
comment that one might interpret Eq. 5.11 as suggesting an apparent equivalence of the
basic mathematical form of the "microrheology-like" relation to that of classic rubber elas-
ticity, G′ ∼ ρxkBT . But, there is no conceptual correspondence since ρ is the number of
microgels per unit volume in Eq. 5.11 and not the crosslink number density as in rubber
elasticity. Moreover, the localization length is an emergent dynamic quantity associated
with kinetic trapping of particles due to interparticle forces and is a strong function of the
thermodynamic state variables. Most fundamentally, the basis of Eq. 5.11 is the spatial
correlation in a (transiently in practice) kinetically arrested state of collective interparticle
microscopic stress defined by particle positions and interparticle forces, not the intra-strand
entropic stress per rubber elasticity.
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5.4.5 Quiescent Activated Structural Relaxation

To go beyond ideal MCT to treat thermally activated events that lead to slow structural
relaxation, the nonlinear Langevin equation (NLE) theory has been developed. It is based
on the scalar displacement of a tagged particle, r(t), as the central dynamic variable. In the
overdamped limit, the stochastic NLE for a particle trajectory is [176, 182]

Γs
d

dt
r = − ∂

∂r
Fdyn(r) + ξ(t) (5.12)

where ξ(t) is a Gaussian white noise and the key quantity is the dynamic free energy,
Fdyn. The gradient of the latter determines the instantaneous force on a moving tagged
particle due to its near neighbors and is given by [182]

βFdyn(r) =
3

2
ln(

3d2

2r2
)− ρ

2π2

∫ ∞
0

dk
k2c(k)2S(k)

1 + S−1(k)
exp(−k

2r2
L

6
(1 + S−1(k))) (5.13)

The first contribution is an ideal entropy like term that favors the delocalized fluid state, and
the second interaction free energy like term favors dynamic localization. The dynamic free
energy is constructed to recover NMCT per ∂

∂r
Fdyn(r)|r=rL = 0. At and above a critical

volume fraction φ > φc (≈ 0.43 for hard spheres [182]) a barrier in Fdyn(r) emerges at
r = rB of height FB with a corresponding transient localization length rL; see Fig. 5.7
for an example. The liquid structural relaxation time is estimated from the Kramers’ mean
barrier hopping time as [182]

τα
τs

= 1+
2

d2

∫ rB

rL

exp(βFdyn(x))

∫ x

0

dy exp(−βFdyn(y)) ≈ 1+
2π

K0KB

exp(βFB) (5.14)

where τs is a short time process relaxation time and K0 and KB are positive local curva-
tures of free energy at rL and rB, respectively. The approximate relation in Eq. 5.13 holds
when βFB & 1− 2. The short time scale is [183]:

τs = g(d)
d2

DDE

[1 +
1

36πφ

∫ ∞
0

dQ
Q2(S(Q)− 1)2

S(Q) + b(Q)
] (5.15)

where DSE is the Stokes-Einstein (SE) diffusivity in dilute solution. One can define
a short time friction constant ζs = ζ0[1 + d3

36πφ

∫∞
0
dQQ2(S(Q)−1)2

S(Q)+b(Q)
] where for a colloidal

suspension ζ0 = ζSEg(d). In the above equation τ0 ≡ d2

D0
, D0 = kBT

ζ0
, Q = kd, and

b−1(k) = 1− j0(k) + 2j2(k) where jn(x) is the spherical Bessel function of order n.
The above NLE based theory only captures the consequences of the local cage on tagged

particle hopping. Most recently, the "Elastically Collective NLE" theory (ECNLE) has
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been developed, widely applied, and quantitatively validated for dense suspensions of
hard sphere colloids, cold molecular liquids, and polymer melts [184, 183]. It includes
a longer range cooperative motion aspect of structural relaxation based on the idea that
the fluid surrounding a particle cage must elastically dilate by a small amount (via a
spontaneous thermal fluctuation) to accommodate large amplitude hopping. This elastic
energy contributes an extra barrier to the activated hopping process given by: βFel =

2πK0

∫∞
rcage

drr2ρg(r)u(r)2, where K0 is the harmonic spring constant of the dynamic free
energy which sets the energy scale of the elastic barrier, u(r) is the elastic displacement
field at a scalar distance r from the cage center u(r) = ∆reff (rc/r)

2, r > rc ∼ 1.5d, and
the amplitude ∆reff ≤ rL the explicit formula for which is given elsewhere [184, 183].
Physically, the local and elastic barrier are additive, so the hopping time is modified as a
multiplicative factor exp(βFel) in the Kramers time as βFTotal = βFB + βFel [184].

The conceptual ideas of ECNLE theory, key length and energy scales, and a representa-
tive dynamic free energy are shown in Fig. 5.7 for the Hertzian model. The location of the
maximum cage restoring force (r∗) obeys ∂2

∂r2
Fdyn(r) = 0, and the barrier location (rB),

jump distance (∆r = rB − rloc), and local barrier (βFB) are also indicated.

5.4.6 Rheology

The NLE and ECNLE theories can be extended to treat non-equilibrium materials under
deformation. Extensive applications to hard sphere colloids, polymer-colloid depletion
systems, polymer glasses, molecular colloids, and nanoparticle gels have been made [161,
162, 185, 186]. The approach assumes the dominant effect is the direct consequence of
applying stress to the material, which leads to an effective force on each particle in a micro-
rheological spirit. Technically, a stress ensemble (creep) is adopted to formulate the basic
ideas. It is asserted that a macroscopic stress manifests itself locally as a scalar applied
force on any tagged particle given by [185]

f = ad2σ (5.16)

where a = π6φ{ − 2/3}. Stress then modifies the dynamic free energy as [185]

βFdyn(r, σ) = βFdyn(r, σ = 0)− βπ
6
φ−2/3d2σr. (5.17)

External forces are assumed to not modify structural correlations on the local length
scales dynamically relevant in the theory, nor the short time relaxation process in τs. In-
creasing the applied stress weakens the localizing constraints of the dynamic free energy,
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Figure 5.7: A representative plot of the dynamic free energy in thermal energy units as a
function of dimensionless single particle displacement from its initial position for a dense
suspension. Here φ = 0.70 and E = 30000, with all important length scales and the
cage local barrier height indicated. The local minimum of the dynamic free energy, rloc,
defines the transient localization length, r = r∗ is the particle displacement where the cage
restoring force is a maximum, and the particle hop or jump distance is ∆r. The schematic
indicates a tagged particle at the center of a cage composed of its nearest neighbors, all of
which undergo large amplitude hops. To allow the latter, particles outside the cage region
undergo a long-range collective elastic radial dilational displacement of small amplitude

which results in an elastic contribution to the total dynamic activation barrier.

and hence reduces the barrier and can mechanically drive a glass-to-liquid transition. At
a critical value of stress, called the "absolute yield stress", σabs, the barrier is completely
destroyed, indicating an athermal type of solid-to-liquid transition. With increasing force
or stress below its absolute yield value, the localization length grows and the elastic shear
modulus decreases continuously. A simple nonlinear elastic mechanical equation-of-state
(relevant in practice at times short compared to stress relaxation times) previously adopted
implicitly defines strain as [161, 162, 185]:

σ = G′(σ)γ (5.18)
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This equation can be used to define an "absolute yield strain"

γy,abs =
σy,abs

G′(σy, abs)
(5.19)

Other types of yield strains such as a "dynamic yield strain" can also be defined as the
strain at whichG′′ has a maximum within the framework of a one structural relaxation time
model which is a function of applied deformation. The nonlinear loss modulus is modeled
as [184, 186]:

G′′ = G
(ωτα(γ))2

1 + (ωτα(γ))2
. (5.20)

"Mixed" yield strains can also be defined as [161, 162, 185]:

γy,mix =
σy,abs
G′(0)

. (5.21)

The stress dependent relaxation time follows from the same Kramers’ hopping time ex-
pression but where all dynamic free energy quantities are now stress-dependent,

τα(σ)

τs
= 1 +

2π√
K0(σ)KB(σ)

exp(β(FB(σ) + Fel(σ))). (5.22)

A predictive theory for the full stress-strain response, time-dependent creep, steady shear
flow curve, etc. can be constructed [187] but this is beyond the scope of the present work.

5.5 Model Calibration, Glassy Shear Modulus, and
Collective Structure Predictions

In this section, we employ the microgel model of section 5.4.1 to determine the effective
volume fraction for our microgel suspensions. We then use this knowledge to perform
theoretical calculations of the linear elastic shear modulus and compare to experiment.

5.5.1 Effective Microgel Radius and Volume Fraction in Dense
Suspensions

The effective volume fraction (φeff = π
6
ρd3) depends on concentration via the microgel

diameter, d(c). As discussed in section 5.4 and Fig. 5.6, experiments suggest there are
two regimes where the microgel radius first decreases weakly (Rg ∼ c−1/6) starting at
0.4 wt% whence φ ∼ c1/2, which then changes beginning at 1.5 wt% to a stronger shrinkage

98



Figure 5.8: Quantitative model employed for the microgel diameter (circles) and effective
volume fraction (triangles) as a function of concentration (i.e., quantitative realization of
the schematic of Fig. 5.6). Open symbols indicate the glassy regime while solid symbols
indicate the "soft jamming" regime. Here d = 550 nm in dilute solution and we assume

microgel compression starts at 0.4 wt%.

Rg ∼ c−1/3 and hence φeff 6= f(c). The chosen crossover concentration is motivated by
our physical hypothesis that the sharp change of the elastic modulus data in Fig. 5.2 is
an indication of a change of the scaling of microgel size with concentration. Fig. 5.8
presents the quantitative model employed for microgel size and effective volume fraction
as a function of concentration. The latter ranges from ∼ 0.5 to 0.88. As an independent
estimate of the effective volume fraction for our 0.5 wt% sample, we have applied our
approach to data from literature [140] for a similar microgel system and find it gives φ =

0.45 ∼ 0.55 for c = 0.5 wt%, consistent with Fig. 5.8.
The one remaining unknown in our model is the dimensionless strength of the Hertzian

repulsion, the parameterE in Eq. 5.2. For simplicity, and to avoid introducing an adjustable
function, we assume this is a material constant invariant to concentration. This simplifica-
tion seems consistent with the very recent simulation study [179] that included the internal
polymeric degrees of freedom of a microgel. We can then apply the theory ideas of sec-
tion 5.4 to calculate the dynamic elastic shear modulus. We ask the question whether it
is possible to theoretically predict the entire set of linear elastic modulus data in both the
glassy and soft jamming regimes of Fig. 5.2 based on a single constant value of varying E.
There is no guarantee the answer is yes.
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5.5.2 Linear Elastic Modulus: Theory versus Experiment

The inset of Fig. 5.9 shows model calculations of the dimensionless linear shear modulus,
G′/(kBT/d

3), over a wide range of E values. Recall that the data of Fig. 5.2 in the glassy
regime covers almost ∼ 3 decades of modulus variation. Given the theoretical model cal-
culations and experimental data, this places a constraint on possible values of E. Values of
E lower than those shown in the inset of Fig. 5.9 cannot possibly account for our observa-
tions. Based on these considerations, and visual comparison of the theory and experimental
results for the elastic modulus, we choose E = 30, 000 to explore the ability of the theory
to account for the entire G′ data set. This E value corresponds to a single particle Young’s
modulus of Y ≈ 1.5 kPa (ν = 0.5), which seems a reasonable value for our lightly self-
crosslinked and slightly charged microgels.

Before quantitatively confronting theory with experiment, we note that the NMCT-based
theory of the elastic shear modulus that employs the approximation of Eq. 5.11 is, of course,
not exact. It has been successfully employed to understand how particle and thermody-
namic state variables determine dependencies and trends of the elastic modulus in diverse
colloidal glass and gel forming suspensions [161, 162, 185, 188, 189, 185, 190, 191, 192]
and molecular and polymeric liquids [36,42]. However, concerning the absolute magni-
tude of the dynamic modulus, multiple previous studies and comparisons with diverse ex-
perimental systems (colloids, molecules, polymers) have consistently shown that NMCT
quantitatively overestimates particle localization and hence G′, which is at least partially
likely a consequence of its formulation at the single particle dynamics level [161, 162,
185, 188, 189, 185, 190, 191, 192, 184]. Specifically, Eq. 5.10 has been found to generi-
cally overpredict G′ by roughly one order of magnitude. Thus, we introduce a numerical
’fudge-factor’ to empirically rescale the theoretical result for all microgel concentrations,
G′ = 0.1GNMCT .

To compare theory with experiment, we use the model of Fig. 5.8 for the effective mi-
crogel diameter and volume fraction and (kBT )/(10 nm)3 = 4.2 Pa at room T . The results
are shown in absolute units in the main frame of Fig. 5.9, and the corresponding dimen-
sionless unit comparison in its inset. We first discuss the glassy regime. One sees from
the main frame that, rather remarkably and non-trivially, all the experimental data points
essentially fall onto the theoretical curve based on using E = 30, 000. Considering the
high uncertainties of the data for the lowest microgel concentration c = 0.4 wt%, we have
chosen to ignore this data point for the purpose of assessing the quality of the theoretical
analysis. The last data point in the glassy regime (c = 1.5 wt%) corresponds to φ = 0.88.
As discussed in the next section, this is very close to where structural "soft jamming" is pre-
dicted based on our calculations of the equilibrium structure of the suspension where the
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volume fraction at which the cage peak of g(r) is a maximum is the metric [193] adopted
to operationally define the soft jamming crossover.

The sensitivity of our elastic modulus predictions to the value of E is illustrated in
Fig. 5.9. The blue solid curve is for E = 30, 000, while the gray band covers results
over the range of E = 20, 000 to 40, 000. Red and black points show experimental data
below and beyond the onset of "soft jamming". The blue theory curve follows well a power
law concentration dependence of G′(c) ∼ c5.65 in the glassy regime, very similar to ex-
periment. Our calculations agree well with the data in the glassy regime for this relatively
narrow range of E, but not outside of it.

At concentrations beyond c = 1.5 wt%, the effective volume fraction is fixed per the
isotropic microgel compression idea discussed in section 5.4.1. Thus, this idea alone, in
conjunction with Eq. 5.11, immediately predicts a crossover of G′ to a linear growth with
concentration since the dynamic shear modulus scales as G′ ∼ kBT/d

3 ∼ c and the ratio
rL/d is a constant if the effective volume fraction is constant. The blue line in Fig. 5.9
beyond the soft jamming onset is the predicted linear G′(c) ∼ c dependence, and agrees
rather well with the data. We emphasize that our theoretical analysis in the very high
concentration regime is not in the spirit of granular jamming and a literal force contact
network, nor the idea that the suspension acts as a homogeneous rubber network, scenarios
(1) and (2) discussed in section 5.3. Effectively we retain a discrete particle picture with
stresses of interparticle Brownian origin due to caging. The "soft jamming crossover" in
Fig. 5.2 is thus interpreted as a consequence of the particle size decreasing as the 1/3 root
of concentration, which implies a constant effective volume fraction, but a shear stress scale
of kBT/R3 that grows linearly with concentration.

Finally we briefly note that the trends of our experimental shear modulus data in Fig. 5.2
and our corresponding theoretical calculations are both in qualitative accord with the mi-
cromechanical model simulations in literature [194]. Quantitative comparison is not ap-
propriate given the sensitivity to system details as illustrated in the inset of Fig. 5.2, use
of a measure of volume fraction in the theory work not identical to that of the simulations,
and most importantly that the simulations employ the essentially infinite frequency or equi-
librium formula for the shear elastic modulus of Zwanzig and Mountain [195]. The latter
is in conceptual contrast to our statistical dynamical theory which analyzes a dynamically
relaxed plateau shear modulus at finite frequency which is the emergent consequence of
particle localization.
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Figure 5.9: Linear elastic shear modulus in Pascals as a function of concentration. Points
indicate experimental data and curves are theoretical calculations using E = 30, 000. Be-
yond c = 1.5 wt%, volume fraction is constant and G′ ∼ c , which agrees well with
the experimental results. (Inset) Dimensionless modulus versus volume fraction φ for
E = 5000, 10000, 30000 and 105 (bottom to top). At high φ beyond soft jamming, the
theoretical G′ results tend to saturate or very weakly decrease, trends that are consistent
with previous findings for soft microgel potentials [161, 162]. After the last experimental
data point in inset, the volume fraction of the system is essentially constant as described in
Fig. 5.8. The gray bands in the main frame and inset indicate the range of variation of the
predicted elastic modulus as the repulsion strength in the Hertzian potential varies over the

range of E = 20000 to 40000.

5.5.3 Predicted Intermolecular and Collective Equilibrium Structure

Given the apparent success of our single microgel model for predicting the dynamic shear
modulus of our system, we now use it to explore its consequences for measurable aspects
of equilibrium structure. Fig. 5.10 shows predictions for the real and Fourier space pair
structure using the "best fit" value of E = 30, 000 over a wide range of volume fractions.
Fig. 5.11 quantifies various metrics of the structural correlations in wave-vector and real
space. Fig. 5.10 and Fig. 5.11 show that as the effective volume fraction grows, the "contact
value" (local maximum) of g(r) (crucial for transmitting repulsive forces between micro-
gels) first grows but then goes through a maximum at a volume fraction of ≈ 0.85 and
decreases beyond that; there is also a splitting of the second peak. This behavior was previ-
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Figure 5.10: Equilibrium pair correlation function as a function of reduced interparticle
separation for a fixed repulsion strength of E = 30, 000 over a wide range of indicated
volume fractions. (Inset) Static collective structure factor, S(k), for the same value of E
and volume fractions. The cartoon shows soft microgels in a transiently kinetically arrested

state which are modeled here as Hertzian elastic spheres.

ously found theoretically [161, 162], and in the simulations and experiments of Liu, Yodh
and coworkers [193]. The maximum of the contact value was taken to be an empirical mea-
sure of the "soft jamming crossover" by the latter workers. The emergence of a split second
peak occurs at essentially the same value of volume fraction φJ ≈ 0.85 as where the first
peak is a maximum, which is far beyond φrcp = 0.64 of jammed hard sphere suspensions.
We note in passing that our calculations based on OZ-HNC integral equation theory are
in qualitative accord with the simulations in the literature [194, 196], as also previously
discussed by Yang and Schweizer [161, 162]. On the other hand, S(k) shows a monotonic
growth of cage coherence defined as the amplitude of the first peak of the static structure
factor, S(k∗), with increasing volume fraction. The inset of Fig. 5.10 presents calculations
of the zero wave-vector value of S(k), S0 = ρkBTκT , which is a dimensionless measure
of the osmotic compressibility of the suspension. It decreases strongly and monotonically
with increasing volume fraction. Integration over concentration of the inverse of this quan-
tity provides the osmotic pressure [197]. In principle the results of Fig. 5.9 and 5.10 can be
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Figure 5.11: Characteristic structural features as a function of volume fraction φ for
Hertzian spheres at a fixed repulsion strength of E = 30, 000. Amplitude of the first
peak of g(r), denoted as g(d), is a measure of the degree of real space short range order
between nearest neighbors in the liquid. Amplitude of the first peak of the collective static
structure factor as defined in section VC, S(k∗), which quantifies the collective coherence
of cage packing associated with the nearest neighbors. (Inset) Zero wave-vector value of
the collective static structure factor, S0 ≡ S(k = 0) = ρkBTκT , which is a dimensionless

osmotic compressibility.

tested via new experiments on our microgel samples such as confocal imaging, scattering,
and thermodynamic measurements. We now use the obtained structural knowledge to make
further dynamical and rheological predictions in the next section.

5.6 Dynamics and Rheology Predictions and Comparison to
Experiment

To convert our dimensionless theoretical time scales into absolute time scales relevant to
our system, we estimate the short relaxation time of Eq. 5.15 and find τs ≥ 200 s since
the peak value of g(r) obeys g(d) ≥ 4, and the factor in square brackets in Eq. 5.14 is
∼ 100 at the high effective volume fractions of interest. This estimate also employed the
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experimental particle radius, the SE diffusivity DSE = (kBT )/(6πηR), a water viscosity
of 10−3 N.s/m2, and T = 10◦C. We note τ = d2/DSE = 0.4 s for a d = 550 nm diameter
particle.

5.6.1 Quiescent Relaxation

To test if our theoretical approach is consistent with the nearly flat frequency dependence
of the shear modulus observed experimentally (Fig. 5.1), we consider a simple Maxwell
model defined as

G′(ω) = G′
(ωτα)2

1 + (ωτα)2
(5.23)

where G′ is given by Eq. 5.11. A flat frequency dependence requires ωτα ≥ 1. In the
experiments the lowest frequency probed is ∼ 10−2 rad.s−1. Using this and our calculation
of the short time scale τs ≥ 200 s, we find ωτs ≥ 2. Indeed, the actual structural relaxation
time, estimated here as the Kramers time, is much larger than τs. Since we interpret in a
Maxwell model spirit the structural and longest stress relaxation times to be essentially the
same to leading order, the inequality ωτα >> 1 applies and thus the dynamic theory is
consistent with the observation of no terminal flow on the experimental time scale under
quiescent conditions.

As discussed in section IVE, the dynamic free energy has several key length scales per
Fig. 5.7 shows examples usingE = 30, 000. All length scales are 1−2 decades smaller than
the particle size. The transient localization length (rloc) and location of maximum force (r∗)
monotonically decrease (initially strongly) with volume fraction, and then tend to saturate
as the soft jamming point is approached. The jump distance grows monotonically. Our
predictions of localization length can potentially be tested using confocal microscopy or
simulations. Calculations of the local cage, collective elastic, and total barriers discussed
in section section 5.4 are shown in Fig. 5.14a. All grow monotonically and strongly with
volume fraction over the range shown. The collective elastic barrier increases more strongly
with concentration, as also true for hard spheres and other glass forming liquids [184]. The
elastic and local barriers cross at a much higher volume fraction than for hard spheres, and
the crossing point decreases as E grows (not shown).

5.6.2 Nonlinear Response

With increasing deformation or stress, both dynamical barriers decrease and the structural
relaxation time strongly decreases. Figure 5.13 B shows this is an extremely dramatic effect
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Figure 5.12: Characteristic length scales of the dynamic free energy (c.f. Fig.5.7) as a
function of volume fraction for fixed E = 30, 000. Dimensionless dynamic localization
length, rloc/d (red), and location of maximum cage restoring force, r∗/d (green). (Inset)

Particle jump distance, = rB − rloc.

Figure 5.13: (A) Dimensionless dynamic free energy barriers (c.f. Fig. 5.7) for E = 30,000.
The local, elastic, and total dynamic barriers discussed and defined in section 5.4 are shown
as a function of volume fraction. (B) Alpha relaxation time (in seconds) for five microgel

concentrations in wt% as a function of stress in Pascals.
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for five different concentrations below the soft jamming threshold. The last point in each
plot corresponds to when the localized form of the dynamic free energy is first destroyed
(and hence the total barrier vanishes), which signals the absolute yield stress.

Figure 5.13 B can also be used to operationally define a dynamic yield stress in the spirit
of a mechanically-driven glass to liquid transition. Typically, the kinetic criterion used
is set by the maximum experimental observation time. For example, the dynamic yield
stress could correspond to the stress value when τα = 10x s where x ∼ 2 − 4. But here
we choose to do a simpler analysis by defining [161, 198, 185] a dynamic yield stress as
σy,dyn = γy,dynG

′(γy,dyn) in analogy with Eq. 5.18, where γy,dyn is the dynamic yield strain
defined at the maximum of the strain dependent loss modulus, G′′(γ) of Eq. 5.20. Another
way of defining yield strain is where the strain dependent storage and loss moduli cross,
G′′(γ) = G′(γ). Within the simple nonlinear Maxwell model framework of Eq. 5.20, these
two definitions are the same. Experimentally, these two criteria may be different. We take
the peak in G′′ as the dynamic yield strain and the crossover as the absolute yield strain
for comparison to theory. Figure 5.14 presents our theoretical results for the dynamic and
absolute yield stresses and strains, and compares them in a no adjustable parameter manner
to experiment.

Figure 5.14 shows rather good agreement between different theoretical measures of the
yield stress (smooth curves) and experimental data analyzed in 3 different ways (data
points) in both the glassy and soft jamming regimes (except for the lowest concentration
sample for which the data is most uncertain). The inset compares yield strains from theory
and experiment. Overall, the agreement is good in the glassy regime where the system has
yield strains of modest magnitude, ∼ 10 − 20 %. Agreement between theory and experi-
ment is not very good beyond the putative "soft jamming" crossover. While theory predicts
γy ∼ c0, experiment suggests a strong yield strain dependence on concentration at very
high concentrations, leading to a large yield strain value of ∼ 72% for the 9 wt% sam-
ple. This is much larger than the theoretical predictions and may reflect the arbitrariness of
defining yield strains from real experimental data. Using a different definition, the mixed
yield strain (defined in Eq. 5.21) evaluated using our experimental data as the ratio of the
HB yield stress to plateau modulus (γmixy = σHBy /G0), results in a nearly constant yield
strain γmixy ∼ c0 in the highest concentration regime.
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Figure 5.14: Comparison of the yield stress and yield strain from experiment (symbols)
and theory with no additional fit parameters (solid curves). Experimental Hershel-Buckley
(black), dynamic (blue), and absolute (green) yield stresses as defined in Sec.VI B (from
data in Fig. 5.3, Fig 5.4 and Fig. S4). (Inset) Experimental yield strain values (points) and
the predicted theoretical dynamic and absolute yield strains as defined in Sec.VI B. These
theoretical results are based on the parameters deduced by aligning theory and experiment

for the linear shear modulus and involve no horizontal or vertical shifts.

5.7 Summary and Conclusions

We have presented an integrated experimental and quantitative theoretical study of the lin-
ear and nonlinear rheology of self-crosslinked, slightly charged pNIPAM microgel suspen-
sions at low temperatures where they repel. An exceptionally wide range of concentrations
were studied that span the fluid, glassy and so-called "soft jammed" regimes. In the inter-
mediate glassy regime, we measured over 3 orders of magnitude an apparent power law
dependence of the elastic shear modulus on concentration, G′ ∼ c5.64. This variation ap-
pears distinct compared to prior studies of crosslinked ionic microgel suspensions. At high
enough concentrations, there is a rather sharp crossover to a nearly linear growth of the
dynamic shear modulus. To theoretically understand these quiescent observations within
a single framework we constructed a minimalist model of single microgel size as a func-
tion of concentration that includes steric de-swelling effects (neglecting any ion-induced
deswelling) which differ in the so-called glassy and highest concentration or soft jammed
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regimes. Using a Hertzian repulsion interparticle potential and a suite of statistical me-
chanical theories, we made quantitative predictions for the microgel collective structure,
dynamic localization length, and elastic shear modulus. Based on a constant Hertz repul-
sion strength parameter (E), determined by requiring the theory to reproduce the measured
elastic modulus over the entire concentration regime studied, we demonstrated good agree-
ment between theory and experiment for E ≈ 30, 000. The various parameters used in
theory are summarized in Appendix table C.1. Experimentally testable predictions were
made for the structure of the suspensions.

We also measured several nonlinear rheological properties with a focus on the yield stress
and strain. Again significant differences of our data compared to published studies using
crosslinked ionic microgels were found [154, 157, 158, 159, 160]. A theoretical analysis
was also performed (now with no adjustable parameters) to predict the structural relaxation
time in equilibrium, how it changes under deformation, and the yield stress and strain as
a function of microgel concentration. Reasonable agreement with our observations was
obtained. To the best of our knowledge, this is the first theoretical attempt to quantitatively
understand structure, quiescent relaxation and shear elasticity, and yielding of dense mi-
crogel suspensions using microscopic force based methods that include activated hopping
processes.

We expect the ideas and approach presented here will be useful for other realizations
of microgel suspensions based on different chemistries and also other types of soft poly-
meric particles in the core-shell family. A key input to the modeling is knowledge of the
interparticle pair potential and the microgel size and effective volume fraction as a function
of concentration. Given these, the statistical mechanical theories discussed in this article
can be employed to predict packing structure in real and Fourier space, the shear elastic
modulus, structural relaxation time, and nonlinear rheological properties. Our integrated
experimental-theoretical approach will be applied in a future article to study how heating
induced changes of microgel size and stickiness impact linear and nonlinear viscoelasticity.
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CHAPTER 6

LINEAR AND NONLINEAR
VISCOELASTICITY OF DENSE ATTRACTIVE

MICROGEL SUSPENSIONS

6.1 Introduction

Colloidal suspensions show diverse dynamical behavior with externally controllable pa-
rameters such as volume fractions, interparticle interaction potential and external applied
stress. A wide range colloidal systems have been explored in the literature and phase di-
agrams have been proposed for the jamming transition in such systems. While for purely
repulsive interparticle pair potentials between the particles, crowding of colloidal parti-
cles leads to the formation of colloidal glasses which do not relax on the observational
timescales in the absence on an external stress, a fundamentally different state is realized
when the particles interact via attractive interparticle pair potential. For attractive colloidal
suspensions, the particles can form aggregations, and provide solid-like characteristics if
a volume spanning network is formed. Efforts have been made in the past to develop a
theoretical understanding for such systems. Additional complications in the understand-
ing of such systems are introduced while dealing with the suspensions made from soft,
deformable particles. Suspensions formed with soft microgels are one such systems. Mi-
crogel particles are formed from crosslinked polymer chains which can imbibe solvent.
Such particles can change their volume (hence the effective volume fraction of suspension)
depending on several factors such as polymer-solvent interactions and osmotic pressure.
Additionally, the fluctuating internal polymeric structures in the microgels, their chemistry,
and internal density profile result in additional complexity in developing a theoretical un-
derstanding of suspensions formed with microgels particles.

Microgels synthesized from Poly(N-isopropylacrylamide) (pNIPAM) have widely em-
ployed to study the dynamics of soft particle suspensions. The temperature-sensitivity of
such particles allows for the in situ control of the particle size and interparticle-pair po-

Ashesh Ghosh made equal contribution towards this chapter. Gaurav Chaudhary led the experimental
work (Fig. 6.1-6.5) and Ashesh Ghosh led the theoretical work (Fig. 6.5-6.10).
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tential which affects structural and dynamical features of such suspensions. Previous work
with such suspensions have focused both on the low-temperature dynamical behavior of
such systems, where the particles interact via repulsive interactions. Others have also stud-
ied the transition in the dynamical behavior from a repulsive glass-like to attractive colloidal
gel-like state as the temperature of highly packed pNIPAM microgel suspension is changed
beyond the Lower Critical Solution Temperature (LCST) of pNIPAM polymer.

Our prior work with purely repulsive slightly charged pNIPAM microgel suspensions
at low temperature has focused on understanding both linear and nonlinear rheological re-
sponse from experimental and theoretical point of view. In the linear viscoelastic regime
our experiments have suggested concentration-dependent power-law growth of elastic shear
modulus with concentration at low temperature. At low concentrations G′ ∼ cx, (x > 1)

have been observed that changes at a critical concentration (we call it csj for reasons ex-
plained later) to a linear growth i.e. G′ ∼ c. We also observed similar trends in the yield
stress of the suspensions . Based on the recent experiments [178] focused on understanding
the concentration-dependence of microgels particle size at low T , microgel effective radius
(Rg) was modeled to have distinct power-law concentration-dependence above (strong con-
centration dependence Rg ∼ c−1/3) and below (much weaker concentration dependence
Rg ∼ c−1/6) the critical concentration (csj). Using a suit of liquid state structure and sta-
tistical mechanical theories and modeling the microgel particles as soft repulsive Hertzian
spheres, a good agreement between experiment and theory was demonstrated. Theoretical
predictions for equilibrium pair structure of the microgels and alpha relaxation time we
also made. The central findings are described in Chapter 5.

Building on our prior work in this paper we focus on understanding the role of tempera-
ture on the linear and nonlinear viscoelastic properties of similar slightly charged pNIPAM
microgel suspensions. We experimentally study the dynamical behavior of such suspen-
sions over a wide range of concentration and temperature. Varying the temperature of
the suspension has two salient effects on the suspensions: (1) microgel particles continu-
ously de-swell as a function of temperature below the LCST with a sharp decrease in the
size across the LCST, and (2) the interparticle-pair potential function changes from purely
repulsive below the LCST to an additional attractive potential. Detailed discussion are pro-
vided in subsequent sections. We extend our theoretical model [199] to understand the
wide range of temperature-dependent behavior with primarily focused on relative change
in linear shear elastic modulus below the LCST and, modulus dependence on concentration
at temperatures greater than the LCST.

The rest of the chapter is structured as follows. Section 6.2 describes materials and
methods used for preparation and characterization of pNIPAM microgel suspensions. Key
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experimental results in both linear and nonlinear regime are presented in section 6.3. A
brief review of statistical mechanical theory to understand colloidal suspensions is provided
in section 6.4, before moving onto specific modeling of microgels below and above LCST
in section 6.5 and 6.6. Comparisons with experimental findings has also been done in
corresponding places. Finally, the article concludes with a detailed discussion and summary
of key findings of our research. Additional details can be found in the Appendix D.

6.2 Materials and Methods

6.2.1 Microgel Synthesis and Characterization1

Slightly charged self-crosslinked pNIPAM microgels were synthesized under a ’crosslinker
free’ condition following the protocol described in literature [164] with modifications.
100 ml of Type I water (18.2 MΩ cm) was filtered through a 0.2 µm Acrodisc syringe filter.
Then, 146 mM (1.65 g) of N-isopropylacrylamide (NIPAM, 99 %, Acros) monomer was
dissolved in filtered water. The monomer solution was again filtered through a 0.2 Âţm
Acrodisc syringe filter into a 3-neck round bottom flask. The solution was stirred at
500 rpm, purged with nitrogen, and heated to 68◦C in a temperature-controlled oil bath until
the temperature of the solution became stable (1 hour typically). We then injected a solu-
tion of 2.8 mM (80 mg) potassium peroxodisulfate (KPS, 99 %+, Sigma-Aldrich) dissolved
in 1 ml of the pre-filtered Type 1 water through a 0.2 µm Acrodisc syringe filter to initiate
the polymerization. The mixture was left to react under continuous stirring at 500 rpm in
nitrogen atmosphere overnight. This leads to the formation of stable nanospheres instead
of linear chains if the solution is incubated at temperatures well above the lower critical
solution temperature (LCST) of PNIPAM (∼ 32◦C). The formation of gel nanospheres is
attributed to self-crosslinking by chain transfer reaction during and after polymerization
[165]. Microgels prepared with a similar preparation protocol have been referred to as
neutral in their charge [164, 166]. Here, we refer to such microgels as ’slightly charged’,
because the initiator used may possibly leave some charge on the colloids.

After the polymerization, the solution was cooled down to the room temperature and
filtered with a glass wool five times to remove large particulates. The microgel particles
were then thoroughly purified via five cycles of a centrifuge/dispersion process. The cen-
trifugation was done at 15000 x g of relative centrifugal force (RCF), and the dispersion
was enabled by a mixed process of the ultrasonication followed by the magnetic stirring.

1contributed by Jin Gu Kang and Paul Braun
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The cleaned particles were then lyophilized for further characterization. A stock solution
of c = 9 wt% was then diluted with deionized water to achieve the desired concentration
of the slightly charged microgel suspension.

The particle radius was determined by dynamic light scattering (DLS) (Zetasizer Nano
ZS, Malvern) and a Helium-Neon gas laser emitting at 632.8 nm on a very dilute suspension
(0.04 wt%) with a beam diameter of 0.63 mm. DLS was performed at varying temperatures
between 10− 40◦C in both heating and cooling cycles.

6.2.2 Rheological Characterization

Rheological experiments are performed over a very wide range of microgel concentration
from 0.03 to 9 wt%. Viscoelasticity was probed using a rotational rheometer (model Dis-
covery Hybrid 3, TA instruments and model MCR 702 from Anton Paar) with plate-plate
geometry. These are both torque-controlled instruments (a.k.a. combined-motor-transducer
type). A 600 grit, adhesive-back sand paper (Norton Abrasives) was adhered to the contact
surfaces to suppress wall slip. The plate diameter was varied depending on the sample
concentration to obtain a measurable response higher than the minimum torque resolution.
A 60 mm plate was used for dilute samples 0.03-0.25 wt%, 40 mm plate for 0.25-1.5 wt%,
20 mm for 0.5-4.5 wt%, and 8 mm for 4.5-9 wt% samples. The typical gap in all ex-
periments was between (550-750) µm, far larger than the particle size, thus eliminating
confinement effects. A solvent trap, with a wet-tissue adhered to its interior, was used to
minimize solvent evaporation during the measurements. The temperature of the bottom
plate was controlled using a Peltier-system. To suppress sample aging effects and erase
any history, all samples were rejuvenated by shearing at 50 1/s for 60 s and then allowed to
relax for 12 min before taking measurements [154].

Two types of rheological characterization were performed: oscillatory shear and steady
shear. To probe the linear temperature dependent response, samples were probed at ω =

1 rad/s at a strain amplitude of 1 % while the temperature was varied from 10 − 40◦C. In
the steady shear experiments, shear rates were typically varied from (300-0.01) 1/s while
waiting for the system to reach an apparent steady state as deduced by < 5 % variation in
torque over a period of 30 s at fixed temperatures.
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Figure 6.1: Temperature dependence of the hydrodynamic diameter of pNIPAM microgel
particle measured using dynamic light scattering of an aqueous suspension of microgels.
The "intramolecular" phase transition of the pNIPAM polymer across the LCST leads to a
drastically change in the particle size. (DLS data courtesy: Jin Gu Kang and Paul Braun)

6.3 Experimental Results

6.3.1 Temperature-Dependent Particle Volume

In dilute suspensions (0.04 wt%) the microgel particles have a mean diameter of 550 nm
at 10− 40◦C. The dependence of hydrodynamic diameter of the suspension temperature is
shown in Fig. 6.1. In both heating and cooling cycles, we observe a sharp change in the size
of the microgel across the LCST (∼ 32◦C). The particle size reduces to a mean diameter
of 250 nm at 45◦C. Such a large variation in size is attributed to the "intramolecular" phase
transition in pNIPAM polymer chains at the LCST due to the changing solvent quantity. As
a result the volume of solvent a ’free’ microgel can imbibe in the equilibrium configuration
changes drastically [200]. A modest hysteresis in the hydrodynamic diameter while cooling
and heating the suspension is observed and is consistent with the prior studies [201, 202].
Microgels prepared by such a crosslinker free preparation protocol are known to be highly
deformable and ultra soft [164]. Our estimates for the individual particle modulus is around
1.5 kPa in the fully swollen state based on our previous work [201, 199].
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6.3.2 Temperature-Dependent Linear Rheology

At low temperature (10◦C) the microgel suspensions for c > 0.4 wt% exhibit a predom-
inant solid-like response with the linear storage modulus G′ larger than the linear loss
modulus G′′ in the probed frequency range. G′ is nearly frequency-independent (Fig 5.1).
We also found that the response at different temperatures (above and below the LCST) is
nearly frequency-independent for selected concentrations (Appendix Figure D.2). The lin-
ear moduli (G′, G′′) at a fixed angular frequency of ω = 1 rad/s and a strain amplitude of
γ0 = 1 %, as a function of the temperature are shown in Fig. 6.2 in the concentration range
(0.4 − 9 wt%). We note that the c = 0.4 wt% gives a very weak torque response at all
probed temperatures which can be clearly observed as the noise in the sinusoidal response
of the material. Above this concentration, the torque signals are significantly larger that the
instrument specified low torque limit (below the LCST) and hence can be reliably resolved
[68].

The diverse rheological response of suspensions at various concentrations to the tem-
perature can be observed from Fig. 6.2 as the temperature is raised up to and beyond the
LCST. Experimentally, visible changes in the transparency and color of the suspension
were observed. Local microgel aggregation was also observed at low concentrations as the
attractive intra- and interparticle interactions emerge across the LCST. In the entire con-
centration regime, the temperature-dependence of the linear viscoelastic response can be
broadly divided into three categories: weak softening, strong softening-to-stiffening and
stiffening.

In the concentration range 0.4-1.25 wt%, the moduli monotonically decrease as the tem-
perature is raised from 10 to 30◦C. From our prior work [199], we conclude that the suspen-
sion in this concentration regime at 10◦C behaves as glassy liquid with repulsive interpar-
ticle interaction pair potentials. In the physical sense, each microgel particle is entrapped
in a cage formed by its neighbors. Such cages store elastic energy under small deforma-
tions, and provides a dominant elastic nature to the suspension. The time scale of collective
relaxation of such cages under small deformations is generally much larger than the exper-
imental time scales, and hence the suspension behaves as a predominant solid (G′ > G′′)
on the observational time scales. From 10 to 20◦C, similar physics appear to be the deter-
mining the overall dynamics. A weak softening in the shear moduli can be observed which
is seemingly related to the decreasing effective volume fraction of particles as they weakly
deswell in this temperature regime (Fig. 6.1). Weak temperature dependence of the inter-
action potential between the microgel particles can be another reason for such a response.
A rather sharp decrease in the values of moduli is observed between 20 to 30◦C at concen-
trations: 0.75, 1 and 1.25 wt%; while the concentrations: 0.4, 0.5 and 0.75 wt% show less
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drastic change. A further increase in the temperature 30 to 40◦C leads to non-monotonic
tends in the shear moduli both with temperature and concentration. The non-monotonic
trends in this concentration regime can be attributed to the spatially heterogeneous clus-
tering of deswollen microgel particles, as the attractive interactions between the particles
emerge across the LCST.

The suspensions in the concentration regime 1.5-4.5 wt% at low temperatures (10 to
20◦C) shows a similar weak softening response similar to c < 1.5 wt%. The softening
effect weakens with the increasing concentration in this regime. Increasing the temper-
ature from 20 to 32◦C leads to drastic softening in the linear moduli but the suspension
maintains a predominant elastic response (G′ > G′′). A further increase in the temperature
above the LCST, i.e. in the range 32-40◦C, a monotonic increase in the linear moduli with
the temperature is observed. Such a softening-to-stiffening trend in the linear moduli is
hypothesized to be a consequence of two effects: (1) changing effective volume fraction of
particles across the LCST, and (2) the emergence of attractive interactions between the par-
ticles across the LCST. Our expectation is that, well above the LCST, the effective volume
fraction of suspension should be approximately constant (since the DLS data in Fig. 6.1
suggests fairly weak dependence of particle size on temperature above the LCST) and the
increase in the moduli is directly related to the increasing attractive interactions between
the particles. It is well established in the literature that the attraction strength between
the pNIPAM polymers increase with the temperature above the LCST, and the formation
of particle networks provide a dominant solid-like response. At the lower concentrations,
(0.4 − 1.25 wt%), even though the interactions between the particles switch from repul-
sive to attractive, we suspect that the volume fractions of the particles at high temperatures
in this regime is low enough, and hence a volume spanning (percolated) particle network
cannot be formed in the explored temperature regime.

Finally, at the c = 7 and 9 wt%, the linear moduli does not shown any apparent soft-
ening below the LCST, rather the moduli show a very weak stiffening as the temperature
of the suspension is increased from 10− 32◦C. A further increase in the temperature leads
to a drastic stiffening in the moduli, and the stiffening effect is more prominent at 9 wt%
compared to 7 wt%. The trends above the LCST can be attributed to the emergence of
attractive interactions between the particles in highly crowded suspensions. Below the
LCST, the weak increase in the moduli is suggestive of the weak dependence of the inter-
action potential on the temperature. At such high concentrations, the microgels are highly
compressed close to their collapse size due to steric effects[199, 201, 178], hence we ex-
pect the temperature changes may not have as drastic effect on the effective volume fraction
contrary to the lower concentration regimes. Such ideas will be quantitatively explored in
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Figure 6.2: Linear storage modulus, G′ for various concentrations of pNIPAM microgel
suspensions as a function of temperature at an angular frequency of 1 rad/s. The suspen-
sions show a rich dependence on the temperature. At each concentration (wt%), changing
temperature affects both the effective volume fraction since the microgel particles swell/de-
swell, and the interparticle interactions (repulsive to attractive across the LCST) that exist

between the particle.

a later sections.
In an earlier work on similar pNIPAM microgel suspension system [203], it was shown

that at an intermediate temperature between the repulsive glassy and attractive particle-gel
state, the interparticle potential vanishes and a liquid-like state is achieved (also called re-
entrant glass melting regime). However, in the concentrations range of 1.5-9 wt%, we do
not observe such response and the samples remain predominantly elastic, (G′ > G′′), in the
entire temperature range. Below 1.5 wt% it is not clear from the experimental data whether
such a liquid state is realized due to instrument low torque limitations. Another differ-
ence that we observe is in the frequency dependence of linear viscoelastic moduli above
the LCST. The previous work shows a weak power-law dependent viscoelastic moduli.
We do not explore the frequency dependence systematically at all concentrations and tem-
peratures, but our frequency-dependent experiments (Fig. D.2) at selected concentrations
and temperatures, do not establish clear power-law dependence. Several limitations on the
experimental artifacts render the measurements impossible over wide range of frequencies.

The linear moduli at all temperatures show a monotonic increase with the concentra-
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tion. Fig. 3 shows the concentration dependence of G′ at various temperatures. The
measurements at low concentrations (0.4 –0.5 wt%) at 10 and 20◦C show a good agree-
ment the characteristic modulus scale for thermal hard-sphere suspensions in glassy state,
G′ ∼ kBT/(2R)3, where kB is the Boltzmann constant, T is the temperature, and R is the
radius of the suspension. For our microgel system such a scaling estimates gives a value
of G′ = 0.024 Pa for 2R = 550 nm. At 10, 20 and 30◦C the elastic modulus shows a
dramatic dependence on concentration (G′ ∼ cn, n > 1) in the range (0.4 - 1.25 wt%)
followed by a weaker concentration dependence (G′ ∼ c) in the range (1.5 - 9 wt%). Such
a trend has also been observed in several other studies on related systems with different
power-law exponents n which depends on several aspects such as stiffness, chemistry of
the particles among other factors [154, 160, 199, 201]. The power-law fits for various
temperatures are shown in the Fig.3. The power-law exponent n increases with increasing
temperature below the LCST. This is likely a consequence of increasing particle stiffness
as the particle volume decreases with increasing temperature and is consistent with prior
literature [154] We note that at 30 and 40◦C, the measurements at low concentration are
influenced by the low torque limit in the rheometer and the apparent plateau-like response
at these temperatures is likely a consequence of such an experimental artifact and is not
the true rheological response of suspension. The transition in the power-law response at
10, 20 and 30◦C has been attributed to the ’soft jamming’ crossover transition in repulsive
soft glasses in several studies in the literature. The "soft jamming" crossover transition
takes place at a higher concentration as the suspension as the temperature is raised from
10 and 30◦C. Because of the discrete concentrations chosen in experiments, we cannot es-
tablish the "soft jamming" transition concentration as a function of temperature. However,
it is apparent from the experimental trends that such a trend persists. This is because of
the temperature induced particle de-swelling, and hence a higher particle number density
(concentration) is required to reach the effective volume fraction necessary for such tran-
sition. In our prior work [199], we estimate that such a transition occurs at an effective
volume fraction of 0.88. We also attributed the linear relationship of elastic modulus with
the concentration above the "soft jamming" crossover transition to the isotropic shrinking
of the cores of repulsive microgel particles which results in a constant effective volume
fraction, and the modulus grows linear with number density of particles as the concentra-
tion is increased. At 40◦C, a "soft jamming" crossover transition is not observed rather the
modulus shows a strong dependence on the suspension concentration, which is attributable
to increasing attractive interactions at higher concentrations. More quantification will be
made in a following section.
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Figure 6.3: Concentration dependence of linear elastic shear modulus, G′, at various tem-
peratures. At temperatures below the LCST, i.e. 10, 20 and 30◦C, G′ shows two regimes
of concentration dependence: a strong apparent power-law dependence on concentration
(G′ ∼ cn, n > 1) followed by a roughly linear concentration dependence. Above the
LCST (40◦C), the modulus monotonically increases with the concentration due to increas-

ing strength of attractive interactions between the microgel particles.
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6.3.3 Nonlinear Rheology

Figure 6.4 shows the steady state flow curves for the suspensions at two concentrations (3
and 7 wt%) probed at various temperatures. The response at these temperatures resem-
bles that of a yield-stress fluid for both the concentrations with the stress value reaching an
apparent plateau value at low shear rate. At c = 3 wt% the flow curves appear to shift ver-
tically downwards at higher temperatures. Such a trend is not observed for c = 7 wt% with
the flow response showing a non-monotonic temperature-dependence. We could not ex-
plore the flow response at temperatures above the LCST due significant evaporation issues,
but the high shear rate viscosity at all the concentrations above the LCST was significantly
lower than the corresponding values below the LCST. The response in the concentration
regime of interest and probed temperature range is sufficiently captured by a Herschel-
Bulkley (HB) model given by[171]

σ(γ̇) = σHBy

(
1 +

γ̇

γ̇c

)n
(6.1)

where σHBy is the apparent yield strength and n is the flow index. The characteristic
shear rate, γ̇c is interpreted as a crossover shear rate for the transition between the rate-
independent plastic flow to a rate-dependent viscous flow. For c = 3 wt%, σHBy decreases
with increasing temperature below the LCST, similar to the trends of decreasing G′ at this
concentration while γ̇c shows a monotonic increase as shown in Fig. 6.4 a inset. n in-
creases with temperature with its values varying from 0.43 to 0.56 which can be attributed
to the increase in the fluidity of the suspension at high shear rates and temperatures. For
c = 7 wt%, Fig. 6.4 b, such a trend is not followed. σHBy initially stays nearly independent
of the concentration but then increases to reach a maximum value (at ≈ 25◦C), followed
by a weak decrease at the highest probed temperature (30◦C). Note that the change in the
flow curves and hence the HB fits parameters is very subtle with temperature. Similar non-
monotonic trends were also observed at c = 4.5 and 9 wt% (see Appendix Fig. D.4). We
attribute such non-trivial effects in the nonlinear rheology to the complex nature of inter-
particle interaction potential and the varying effective volume fraction of the suspension
with the temperature.

Figure 6.5 shows the Herschel-Bulkley fit parameters as a function of suspension con-
centration at two temperatures: 10 and 25◦C. Full range of flow curves at all concentrations
and corresponding HB fits are given in Appendix Fig.D.3. Similar to the observations made
earlier forG′ at the temperatures below the LCST, follows a strong apparent power-law con-
centration dependence below the "soft jamming" crossover transition, followed by a weak
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(a)

(b)

Figure 6.4: Steady state shear flow curves at different temperatures. (a) For c = 3 wt%,
increasing the temperature monotonically shifts the flow curves vertically downwards at-
tributable to the temperature-dependent effective volume fractions and interparticle interac-
tion potential. Open symbols are the experimental data and the solid lines are the variance
weighted fits of Herschel-Bulkley (HB) model . (inset) HB fit parameters are plotted as
a function temperature. The yield strength (σHBy ) shows a monotonic decrease with in-
creasing temperature while the characteristic shear rate (γ̇c) increases monotonically. The
flow index (n), not shown here, increases with temperature, indicating increasing fluidity
at higher temperatures at 3 wt%. (b) For c = 7 wt%, flow curves show non-monotonic
temperature-dependent trends. (inset) The yield strength (σHBy ) initially increases with
temperature, and then drops, hence showing a contrasting behavior to c = 3 wt%. The
characteristic shear rate (γ̇c) shows a weak temperature-dependence decay initially fol-
lowed by a monotonic increase similar to c = 3 wt%. The flow index (n), not shown here,

shows similar trends as γ̇c
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concentration dependence at both the temperatures. Power-law indices in the different con-
centration regimes are also temperature-dependent. σHBy at 25◦C is lower than that at 10◦C
below a certain concentration followed by a opposite trend beyond it. Above the "soft jam-
ming" transition, both linear elastic shear modulus G′ and show a nearly linear dependence
on concentration at 10◦C while at 25◦C power-law concentration dependence of deviates
from linearity different unlike G′. Such differences further exemplify the complex effects
in the dynamics due to coupled effects from varying interparticle interactions and effective
volume fraction with temperature. Differences can also be observed in the trends in γ̇c
shown in the inset of Fig. 6.3. However, clear trends cannot be established from the experi-
mental data. The flow index, n, shows similar trends at both the temperatures. n decreases
monotonically with the concentration below the "soft jamming" transition, followed by a
nearly constant value of 0.41 in the jammed regime. The values of n are marginally higher
at 25◦C at all concentrations indicating an increased fluid-like nature of the suspension at
high temperature undergoing deformation at large shear rates.

6.4 Theoretical Background2

Equilibrium pair structure, equilibrium Brownian dynamics, rheology, barrier hopping and
related dynamical problems of a system of particles is intricately related to the knowledge
of central potential of the system. Given the central potential of interaction, one can use
Liquid State Ornstein-Zernike (OZ) theory along with either Percus-Yevick (PY), or, hy-
pernetted chain closure (HNC) relation to determine pair level structure of the system of
particles. Thus, we get interparticle pair correlation function, g(r), static structure factor
in fourier space, S(k), and, direct correlation function c(r) from OZ theory given a closure
and pair potential of the system.

Structural information at the pair level is tied to dynamical phenomena at the ideal naive
mode coupling theory (NMCT) level. The position and velocity of a tagged particle can be
given by the Generalized Langevin Equation (GLE) where the central quantity to be deter-
mined is the force-force time correlation function. The NMCT description for force-force
time correlation function projects dynamical correlations at the pair level. Non-zero gaus-
sian Debye Waller (DW) factors consistent with the existence of a localized state alongside
deGennes narrowing accounting for local and coupled channels of force relaxation gives

2Ashesh Ghosh (Chemistry, University of Illinois) led the theoretical work
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"

Figure 6.5: The Herschel-Bulkley fit parameters (σHBy , γ̇c and n) obtained from fits to
the steady shear data for various concentrations at 10◦C (purple) and (yellow). The solid
lines are the least squares power-law fits. Power-law exponents vary with the concentra-
tion regimes and the temperature. σHBy shows a strong concentration dependence below
the "soft jamming transition", past which the dependence weakens at both temperatures.
(inset–n) Flow index are marginally higher at 25◦C compared to 10◦C below the "soft jam-
ming" crossover transition implying increasing fluid-like nature at 25◦C. Above the "soft
jamming" transition, n reaches a constant value of roughly 0.41 in both cases. (inset–γ̇c)
Characteristic shear rate at 10◦C has a nearly constant value below the "soft jamming"
transition followed by a decreasing trend above it. At 25◦C, no specific trends could be

observed in γ̇c. Raw experimental data and HB fits are shown in the Appendix Fig. D.3.
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the self-consistent NMCT dynamic localization equation, as,

1

r2
L

=
ρ

18π2

∫ ∞
0

C(k)2S(k) exp(−k
2r2
L

6
(1 + S−1(k))). (6.2)

where rL is the dynamic localization length, ρ is the particle number density, C(k) is the
direct correlation function in Fourier space and, S(k) is the static structure factor. Exis-
tence of a solution to the localization equation predicts a localized state where particles
are trapped within their neighboring cages under interparticle caging forces. One can de-
rive a dynamic elastic modulus formula in ideal NMCT limit starting from stress-stress
correlation functions, as,

G′ =
kBT

60π2

∫ ∞
0

dk[k2 d

dk
ln(S(k))]2 exp(− k2r2

L

3S(k)
) ≈ aφ

kBT

dr2
L

= a(ρkBT )

(
d

aL

)2

(6.3)

where a is a pre-factor. We note that elastic shear modulus goes inversely with dynamic
localization length.

Beyond ideal NMCT localization transition, we can consider a dynamic free energy,
Fdyn(r) that controls the force on a tagged particle, and the particle moves under the influ-
ence of the force in presence of random noise, ξ(t), as,

ζs
d

dt
r = − ∂

∂r
Fdyn(r) + ξ(t) (6.4)

Expression for the dynamic free energy is given as,

βFdyn(r) =
3

2
ln(

3d2

2r2
)− ρ

2π2

∫ ∞
0

dk
k2c(k)2S(k)

1 + S−1(k)
exp(−k

2r2
L

6
(1 + S−1(k))) (6.5)

where d is the particle diameter. Dynamic free energy has a minimum at r = rL and
a maximum at r = rB with a barrier height of FB for volume fractions higher than mode
coupling crossover transition. Collective elasticity can be taken into account by considering
cage scale hopping requires cage expansion that costs energy to the system, giving rise to
an elastic barrier Felastic on top of local cage scale FB. Liquid structural relaxation time
can be calculated as the Kramers time required to hop barrier of height (FB + Felastic).

The theory above in extendable to consider the effect of external deformation, where, an
externally applied deformation is thought to manifest itself as microscopic stress altering
the dynamic free energy. With the assumption that structural correlations remain unaltered
at their equilibrium values, it is possible to calculate a local barrier, elastic barrier, elastic
modulus and hopping times. With increasing stress, dynamic free energy liquifies or, the
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barrier height decreases as a continuous function of increasing stress. The critical stress
where FB = 0, is termed as the absolute yield stress (σabs). Similarly, an absolute yield
strain can be defined from the implicit stress strain relation, σ = G′(σ)γ with γ being the
strain.

6.5 Temperature-Dependence in Repulsive Regime

6.5.1 Modeling Microgels in Repulsive Regime

Simulations and theory have modeled the core-shell microgels as a central Hertzian contact
potential before. Based on pair potential information, one can determine structural corre-
lations at the pair level that can eventually be tied to dynamical problems of interest using
sophisticated statistical mechanics based theories as sketched in the previous section. Low
temperature behavior of microgels have been studied systematically under the assumptions
mentioned in the introduction where microgel concentration dependence at low tempera-
ture is modeled with different qualitative regimes and shown to produce good agreements
with experiments. Microgels below LCST are modeled with Hertzian pair potential [172,
204], given as,

βV (r) =

4E
15

(
1− r

d

)5/2 if r < d = 2Reff

0 if r ≥ d
(6.6)

where β = (kBT )−1 is the inverse thermal energy, r is the interparticle separation, and d
is the particle diameter. The front factor 4E/15 is the inverse dimensionless temperature
which controls the elastic stiffness of a particle. Structural correlations of soft microgels
are better modeled using HNC closure in OZ theory, thus HNC closure relation is used.
Comparison to low T experiments have provided E = 30, 000 for the microgels studied
here. Thus, we will use the same E to understand T dependence.

Temperature sensitive pNIPAM microgels show a strong temperature dependent coil to
globule transition as it goes through LCST around 31-33◦C. With increasing temperature,
the microgels expel more amounts of water to reach a collapsed globule state at higher
temperatures. The diameter of microgels change linearly until very close to LCST, as un-
derstood from dynamic light scattering measurements of the size of microgels as a function
of temperature. Close to LCST, we see a rather abrupt change in diameter and finally it has
a fixed size that correspond to the fully collapsed state that can expel no more water. Initial
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linear diameter dependence can be modeled by the following equation,

d(c, T ) = d(c, T0)− α(c)(T − T0) (6.7)

where diameter of microgels is a function of both concentration and temperature. To
note, temperature dependent de-swelling is different from concentration dependent one
and happen because of qualitatively different reasons, the latter one being purely steric de-
swelling. As the concentration grows, the soft microgels jam against each other and this
jamming causes the water to expel out. In previous work, we have provided a prediction of
how the size of the particles at low T change as concentration goes higher. The different
regions with pre-jammed and post jammed concentration dependence has been discussed
before in detail.

For the pNIPAM system considered here, we find α = 3 for dilute suspensions as per
Eq. 6.7. It should be noted that concentration dependent steric de-swelling puts the higher
concentration (c > 4.5 wt%) microgels at such an initial size that is already collapsed
and cannot expel more water with increasing temperature. From the storage modulus data,
we see at and after a certain concentration of microgels, storage modulus is independent
of temperature for T <LCST. We hypothesize that, for these concentrations, steric de-
swelling causes the particles to have similar size of a collapsed globule and small tempera-
ture dependent size change can be ignored (d(T ) = d(T0)) for T <LCST for c > cthreshold,
thus volume fraction of the microgels remain constant. Hence, we see for low concentra-
tions (c = 0.5 wt%), α(c) = 3 and for c > cthreshold, we have α(c) = 0. Consistent with the
storage modulus data, we assume α(c) vanishes at a concentration of c = 5.5 wt%. Looking
at the storage modulus response this seems reasonable since intermediate of concentrations
of 4.5 wt% and 7 wt% we see (G′(10◦C))G′(32◦C)) goes to 1 that can be taken as a signa-
ture of non-changing size of the microgels within the temperature range 10 − 32◦C. As a
simple model in conjunction with experimental observations, we thus assume α(c) decays
linearly with increasing concentration from 3 to 0, given as, α(c) = α0 − 0.6(c − 0.5)

where α(c = 0.5 wt%) = α0 = 3. To note, we understand that the precise concentration
where α(c) → 0 can be taken anywhere in the range 5 − 6 wt%, results based on them
differ so little compared with the choice of 5.5 wt%, decision has been made to only look
at 5.5 wt%.

We consider Hertzian repulsive pair potential, to calculate temperature dependent change
in storage modulus with repulsion parameter, E = 30000. Here E is in units of kBT and
can be related to single particle modulus via, E = βY d3/2(1 − ν2). As T increases the
diameter of microgels change as per equation 6.7, where d(c, T0) = d(c, 10◦C) is set by
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the models adopted before for change of size of microgels at low T . Considering this,
temperature dependence of the volume fraction for T <LCST accounts for changing size
of microgels as a function of T for fixed concentrations,

φc;T = φ(c;T = 10◦C)

(
d(c;T )

d(c; 10◦C)

)3

(6.8)

The conversion factor for storage modulus from dimensionless units to Pa also follow a
similar relation due to changing size and volume fraction, where with increasing T , non-
dimensional parameter increases as d decrease.

6.5.2 Comparison to Experiments

Considering the above-mentioned factors, we can calculate theoretical plots for storage
modulus for all concentrations that show drop in storage modulus with T . But given the
complex de-swelling behavior and size change of microgels at different concentrations we
decide to only look at the ratio of low temperature to around LCST elastic storage modulus.
We see for all concentrations; theoretical calculation provides the same order of magnitude
decay in storage modulus with a difference by a factor of 2-5 for certain concentrations.
This suggest the actual size of particles might be decreasing more than as calculated by our
simple model and the precise nature of size decay might not be linear as assumed by our
simple model. We also note that, mode coupling based elastic shear modulus exist above
the NMCT crossover and thus, for c < 0.75 wt%, high T, we do not have any number from
theory.

Fig. 6.6 looks at the ratio of storage modulus at low temperature at 10◦C to a high temper-
ature value at LCST where G′(T ) shows a minimum. Qualitatively theory and experiment
show the same trend even though the numbers differ. At low concentration, since the vol-
ume fraction to begin with at high temperature is low, states are very close to mode coupling
crossover point and thus theory might not predict a ratio of modulus. At higher concen-
trations, c > 5.5 wt%, since there is no temperature dependent de-swelling, the ratio is
trivially same as 1, since both size and volume fraction becomes temperature independent.
One interesting observation is, both theoretical predictions and experimental observations
predict the ratio (G′(10◦C)/G′(32◦C)) maximizes around jamming concentration, presum-
ably due to change in volume fraction between high and low T maximizes around jamming
point as shown in the inset.
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Figure 6.6: Comparison of the relative change of modulus at low temperatures compared
to its value at the LCST. The theoretical predictions (red) captures the trends observed
in the experiments (blue). (Inset) shows the change in volume fraction as a function of

concentration at two temperatures, 10◦C (Purple) and 32◦C (Orange).

6.6 Theoretical Analysis of Temperature Dependence above
LCST: Attractive Regime

6.6.1 Model at T >LCST

pNIPAM microgels undergo a coil to globule collapse beyond LCST and interactions be-
tween microgels become attractive in a smooth temperature dependent fashion. Keeping
in mind an effective pair potential that works for the entire range of temperature where
microgel swelling de-swelling behavior takes place is yet to be developed, we try to model
the attraction at high temperature by the following attractive potential,

βV (r) =

−ε+ 4E
15

(
1− r

d

)5/2 if r < d = 2Reff

−ε exp
(
− r−d

a

)
if r ≥ d

(6.9)

where β = (kBT )−1 is the inverse thermal energy, r is the interparticle separation, d is the
particle diameter, a is the range of interaction and ε is the strength (amplitude) of attraction.
Hydrophobic force law is seen to follow exponential decay with distance between surfaces
where average decay length is of the order few water diameter (dH2O = 0.3 nm) for mi-
crometer sized surfaces. Considering this, we take the range of attraction to be a = 0.01d
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given at high T, d = 250 nm. To keep in mind, we do not know how to turn on attrac-
tion as a continuous and smooth function of temperature as the systems swiftly transitions
through LCST, thus, we analyze only the highest T behavior studied in experiments where
T >LCST and there is much experimental evidence supporting particles behave attrac-
tively.

6.6.2 Effect of Attraction on Structural Correlations and Dynamic Free
Energy

As a short-range attraction is introduced on top of repulsive center of mass potential, struc-
ture of the system changes; reflected through equilibrium pair correlation functions (not
shown here). Liquid state OZ equation with HNC closure can again be used to understand
dynamical correlations at the pair structure level, and structure can be related to dynamics
as per the theory briefly mentioned in section 6.4. As strength of attraction grows, peak of
radial distribution function g(r = d) increases indicating more ordering at contact. In the
given example below, we look at g(r) for φ = 0.60 at range of attraction a = 0.01d for
three strengths of attraction of 0, 1.0 and 2.5 kBT . g(d) is seen to increase from 7.6 to 10.3
to 14.6 as one moves from attraction strength of 0 to 2.5. Similarly, we can look at the static
structure factor, where the peak value of S(k = k∗) goes from 3.40 to 3.06 to 2.81 by going
from 0 to 2.5kBT attraction. The softening of cage coherence as a function of strength of
attraction for short range attractive potentials is intricately related to phenomenon such as
’glass-melting’ and ’re–entrant glass transition’ and beyond the scope of discussion in this
paper.

Strength of attraction increases bonding forces acting between the particles on top of in-
creasing caging forces. Since NMCT motivated dynamic free energy depends on changing
structural correlations and caging forces, we can expect dynamic free energy to change as
a function of attraction strength where range of attraction is kept fixed. Here we show one
example of how dynamic free energy changes as strength of attraction is increased at a fixed
volume fraction and fixed range of attraction. The important length scales associated with
dynamic free energy such as, localization length (rL), barrier location (rB) and location of
maximum force (r∗) are shown in inset figure as well as the local barrier (FB). We see from
the following figure, the local barrier grows a lot (goes from 5kBT to 16kBT ) with strength
of attraction for the model system shown.

From Fig. 6.8, some interesting features should be noted, as, (i) Location of the min-
imum of free energy or the localization length rL decreases gradually as the strength of
attraction is increased. rL/d values for the system given above is found to be, 0.024 (blue),
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Figure 6.7: Equilibrium pair structure for a volume fraction of φ = 0.60, and range of
attraction a = 0.01d. (Inset) shows static structure factor for the same system parameters

at three different strengths of attraction.

Figure 6.8: Examples of dynamic free for a given volume fraction of φ = 0.60 with range
of attraction a = 0.01d and strengths of attraction 0kBT (pure Hertzian repulsive case,
blue), kBT (green) and 2.5kBT (red). (Inset) shows the important length scales associated

with dynamic free energy and the local barrier.
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0.014 (green), and, 0.009 (red), respectively. We already know G′ ∝ φ
r2L

, which means as
strength of attraction increases, elastic shear modulus grows for a fixed volume fraction and
fixed range of attraction. (ii) Location of maximum force (r∗, where ∂2Fdyn(r)/∂r2 = 0)
moves inwards as strength of attraction grows and slope of dynamic free energy at r = r∗

increase with increasing βε. Maximum force in the dynamic free energy (fmax) in units
of kBT/d are given as, 46 (blue), 110 (green), and, 332 (red) respectively. This quantity
correlates directly with absolute yield stress and thus we can safely say yield stress grows
with increasing βε for a fixed volume fraction and range of attraction. (iii) Barrier location
rB moves inward and local barrier height increases with growing βε, indicating stronger
localized state. Increasing jump distance of states obtained at higher attraction strength
increases the collective elastic barrier which leads to higher alpha relaxation times.

6.6.3 Comparison with Experimental Observations

Looking at Fig. 6.1 and Fig. 6.2 we can say that, concentration dependent de-swelling at
low T puts the microgel size comparable to high T collapsed state (In other words, within
the studied temperature and concentration space, concentration dependent de-swelling and
temperature dependent de-swelling has similar effect on the particle diameter).

From Fig. 6.2 in experiments, we can safely say, for lowest concentrations up-to 1.25 wt%,
storage modulus for T >LCST does not show a gradual increase in modulus presumably
due to very low volume fraction of the samples as we estimated as per inset of Fig. 6.9.
Starting from 1.5 wt% to the highest concentration of 9 wt%, we see a gradual increase of
storage modulus as temperature grows. Due to our inability to fully understand, (i) how
to switch from repulsive to attractive interaction continuously as a function of tempera-
ture, or, in other words a singular potential that works for all temperature ranges is yet to
be developed and (ii) the growth of βε(T ) as a function of T in the post LCST region,
we have decided to understand the concentration dependence of storage modulus at high-
est T = 40◦C. We note that within the given range of concentration, G′ grows by almost
∼ 5 orders of magnitude. Fig. 6.9 shows the experimental data at T = 40◦C along with
theoretical attempts to understand the data.

Given the step like increase in storage modulus data (black points), we consider the least
square fit to be the best representation of concentration dependence of experimental G′

which goes as, G′ ≈ 1.21 exp (1.33c) where c is the concentration in wt%. Our theoretical
attempts to understand the experimental results is thus aimed to look at the trend in modulus
growth given by black dotted line rather than the precise black points. Theory calculations
are done exactly the same way as sketched in Section 6.4, whereG′ is given. To convert the
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Figure 6.9: Storage Modulus at 40◦C. Black dots represent experimental points and black
dotted line is the exponential fit to the data. Blue, Green and Red lines are theoretical
calculations done with −βε = 3, 6 & 9 and fixed range of interaction a = 0.01d. (In-
set) shows estimates of effective volume fractions as a function of concentration at high
T . (inset) shows effective volume fraction estimated at high temperature as a function of

concentration.
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Figure 6.10: Theoretical linear elastic Shear Modulus (red) at 40◦C as a function of con-
centration. Black points are experimental observations. (Inset) shows concentration depen-

dence of strength of attraction that produces the correct shear modulus.

theoretical G′ into an experimentally verifiable number, (i) we use the ’fudge-factor’ of 0.1 
to compensate for the overestimation in MCT results the same way it was used to analyze 
low temperature concentration dependence and (ii) non-dimensional kBT/ d3 is converted 
to Pa units using kBT /(250 nm)3 ≈ 0.256 Pa. Hertzian model parameter E relevant with 
the given potential in Eq. 6.9 is taken to be unchanged, i.e. E = 30000. Calculations are 
presented in Fig. 6.9 for given attraction strengths of −βε = 3 (red), 6 (magenta) and 9 
(green) for given range of attraction a = 0.01d. Thus, we note, to produce experimental G′

the strength of attraction must increase as a function of concentration. Explanation for this 
is provided later. We have also studied other ranges of attraction (not shown for the purpose 
of this paper), that does not change the numbers much (has to do with how MCT deals with 
attractive forces, detailed discussion on this is beyond the scope of the paper). An estimate 
of volume fractions at highest T = 40◦C is given in inset of Fig. 6.9 where the collapsed 
size is taken to be 2Rcollapsed = 250 nm and Eq. 6.8 is used to determine temperature 
dependent volume fraction. We note that, unlike the low T case, at high temperature, 
microgel volume fraction grows linearly with concentration.

In Fig. 6.10 we look at how theoretical linear elastic shear modulus changes with con-
centration and inset shows concentration dependence of the attraction strength required
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to produce sensible theory-experiment agreement. The black points are experimental ob-
servations at respective concentrations for 40◦C. Red solid line corresponds to theoretical
calculations that are all done for range of attraction a = 0.01d. To note, for all the concen-
tration considered here, theoretical alpha relaxation time is "high" compared to 100 sec-
onds. Strength of attraction is seen to grow from 3kBT to 11kBT over the concentration
range of 1.5 to 9 wt%.

To understand the concentration dependence of strength of attraction, we consider the
nature of attractive interactions as hydrophobic. Interaction strength per unit area between
two identical hydrophobic surfaces at a distance D is given by,

Wh = 2γHy exp(−D/Dh) (6.10)

where Wh is the hydrophobic energy per unit area, γ is the inter-facial energy of hydrocar-
bon in water, HY is the hydrophobicity parameter (=1 for perfectly hydrophobic surface,
taken to be the case at 40◦C), D is the distance between two surfaces and Dh is the hy-
drophobic decay length (usually 0.3-1 nm or, 1-3 dH2O). Interfacial energy of hydrocarbon
in water is taken to 50 kJ/mol at 25◦C . Now as concentration goes up, the surface area
of contact grows and as a result, the total interaction energy (can be calculated by WhAc,
where Ac is the area of contact) increases. Theoretical prediction for area of hydrophobic
interaction considering D = Dh or D = 0 gives the contact area for Hertzian particles to
be 0.25-1.5 nm2 where we consider the same value for interfacial energy.

We can calculate absolute yield stress and absolute yield strain as a function of concen-
tration (strength of attraction increases with concentration) which is shown in Fig. 6.11. We
see the growth of absolute yield stress is linear similar to increase in elastic shear modulus
both of which change roughly exponentially with concentration. Here, absolute yielding is
related to maximum force on the dynamic free energy or where barrier goes to zero. For
the absolute yield strain, measured as σyabs/G

′(σ = 0) decreases with concentration. For
the purpose of this work, a predictive plot for dynamic yield stress/strain is not shown but
as discussed for pure repulsive case at low T , both absolute and dynamic criteria follow
same qualitative trend.

6.7 Conclusions and Summary

We studied the dynamical response of suspensions made from thermoresponsive pNIPAM
microgel particles experimentally and theoretically. The particles used in this study are
slightly charged and self-crosslinked, distinct from ionic microgels that have been utilized
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Figure 6.11: Prediction for absolute yield stress as a function of concentration. (Inset)
shows absolute yield strain as a function of concentration

in prior studies, a feature that we have demonstrated in our prior work [199] leads to several
key distinct features in the rheology. The particular focus of this work is on the temper-
ature induced effects on the dynamics of such suspensions. Temperature change has two
key effects: (1) size of individual microgel particle is a function of temperature, hence
the effective volume fraction of suspension varies with the temperature in addition to the
concentration-dependent steric effects, and (2) the interparticle interaction pair-potential
changes from repulsive to attractive as the temperature is raised beyond the LCST. While
a few previous studies have experimentally studied the response of such thermoresponsive
suspensions in highly packed state, our work provides insights into the coupled concentra-
tion and temperature-dependent dynamics of in these systems over a very wide range.

The concentration regime that we have explored spans the low viscosity liquid, glassy
and "soft jammed" regimes at low temperatures (below the LCST) where the microgels
interact via repulsive pair potential. In the entire concentration regime, we performed a
systematic study of the effect of temperature on the linear and nonlinear rheological prop-
erties of the suspensions. The coupled effect of (1) and (2) results in a diverse set of
dynamical behavior, which to the best of our knowledge has not been explored in the pre-
vious studies. In addition to the experiments, we also gain insights into the underlying
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physics by theoretical modeling the suspensions and their dynamics. We use a suite of
existing statistical mechanical theories, along with the knowledge of single microgel par-
ticle size, and simple approximations for interparticle particle pair-potential functions to
make quantitative predictions for several structural and rheological properties. We used the
temperature-independent Hertzian potential function to model the repulsive-glassy behav-
ior of the suspension below the LCST. The interactions were modeled via an exponentially
decaying attractive potential in addition to the Hertzian repulsion above the LCST. The the-
oretical prediction show close agreement to the linear elastic shear modulus and the yield
stress of the suspensions in the entire concentration regime. Additionally, we make testable
predictions for several other structural and rheological properties that will be a subject of
our future experimental efforts.

We believe the ideas presented in this work are applicable (with modifications) to diverse
range of suspensions, both repulsive and attractive. Our approach also establishes the ways
to design the key rheological properties of the suspensions from the parameters such as
individual particle stiffness, polymer-solvent interactions, and interparticle interactions, all
of which in principle can be controlled independently.
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CHAPTER 7

THERMORESPONSIVE STIFFENING WITH
MICROGEL PARTICLES IN A SEMIFLEXIBLE

FIBRIN NETWORK

7.1 Introduction

Stimuli responsive materials are important for diverse applications including actuators, sen-
sors, tissue engineering, drug delivery, and soft robotics where they provide functionalities
difficult to obtain by using passive materials [205, 198, 206, 207]. Our interest here is
in stimuli-responsive particle-filled polymer composites [18, 208]. Such systems typically
consist of a dense flexible chain polymer matrix (e.g., crosslinked elastomer) that exhibits
a broad linear elastic regime and a mean physical mesh size that is small compared to
the added rigid particles. Here we consider a different polymer-particle composite scenario
based on semiflexible biopolymer networks, which exhibit strong elastic nonlinearities, and
particles that are soft and comparable in size to the network mesh.

We report fabrication, characterization, and modeling of a two-component stimuli-responsive
particle-biopolymer composite in an aqueous suspension which responds to increasing tem-
perature by stiffening, even though the two components independently soften under the
same conditions. Biopolymer networks are ubiquitous in living organisms, present as both
intracellular scaffolds and extracellular matrices which are vital for the structural integrity
of biological structures [209, 210, 211], and play key roles in physiological processes such
as cell migration, cytokinesis, and mechano-responsiveness [212, 213, 214, 215]. A key
feature is that their mechanical properties are dependent not only on dynamic biochemical
processes, but also on applied deformation. Biopolymer networks are well known for their
distinctive nonlinear stiffening response under deformation (stress or strain), which dis-
tinguishes them from flexible polymeric networks (such as crosslinked elastomers) which

This chapter appeared in the following peer-reviewed publication: Chaudhary, G., A. Ghosh, N. A.
Bharadwaj, J. G. Kang, P. V. Braun, K. S. Schweizer, and R. H. Ewoldt, "Thermoresponsive stiffening
with microgel particles in a semiflexible fibrin network," Macromolecules, 52 (8), 3029-3041 (2019), doi:
doi.org/10.1021/acs.macromol.9b00124
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generally show softening at large strains and overall are not nearly as deformation respon-
sive [216, 217, 218]. The nonlinear strain-stiffening behavior is a direct consequence of
the stiffness and large persistence length of underlying polymer filaments which constitute
these networks [74, 219, 220, 127, 221]. Such biopolymers are classified as semiflexi-
ble due to their large bending stiffness, and do not form random coils [127]. The semi-
flexible nature also strongly modifies the nature of physical entanglements and influence
of chemical crosslinking on the mechanical response, resulting in structural and dynam-
ical length scales which are very different from their flexible counterparts [222]. From
a property perspective, using a large mesh semiflexible polymer network presents several
opportunities for novel material design [223, 224, 225] and have already found applica-
tions in tissue-engineering and cell culture scaffolds [226, 227] because of such distinctive
structural and dynamic-mechanical properties, and offer new mechanisms of developing
stimuli-responsive systems which are fundamentally different from the flexible polymer
based composite systems.

In the current work the biopolymers and corresponding network architecture is formed
via in situ polymerization around a pre-existing dispersion of temperature-sensitive Poly(N-
isopropylacrylamide) (pNIPAM)-based microgel particles. In dilute solution, pNIPAM
particles collapse at temperatures above the lower-critical solution temperature (LCST)
of ∼ 32◦C [228]. We employ a very large volume fraction of microgels (32-78 %) in con-
trast to an earlier study [229] on a microgel-containing fibrin composite where the microgel
volume fraction was less than 17 %. Moreover, this earlier study [229] did not focus on
stimuli-responsive stiffening, but rather examined cell mobility through fibrin networks,
showing that a composite of fibrin with microgel particles had enhanced cell mobility via
the formation of colloidal tunnels compared to typical high density fibrin networks. Here,
we show that at these large microgel volume fractions there is a near negligible modifi-
cation of elastic stiffness of the composite network below the pNIPAM LCST where the
microgels are swollen. Upon increasing temperature above the LCST, the composite con-
trollably stiffens which we hypothesize is due to microgel collapse modifying the fibrin
network structure. A key idea is that a very small amount of local stretch in the fibrin
network can lead to noticeable stiffening. This functional response was not present in
the previous work on fibrin containing low volume fractions of microgels [229]. Further-
more, the mechanical behavior of our system is potentially richer at large microgel volume
fractions since they can in principle form soft glass or gel-like states in the composite in
a manner which could be modified by geometric or other fiber-induced physical factors.
With growing efforts towards the development of synthetic semiflexible polymer networks
[230, 231, 232], our efforts provide novel design principles for realizing new classes of
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smart responsive materials.

7.2 Materials and Methods

7.2.1 Microgel Synthesis and Characterization1

Ultra-low crosslinked pNIPAM microgels were synthesized under a ’cross-linker free’
condition following a published protocol [164]. Free-radical polymerization of NIPAM
(Sigma-Aldrich) in water was initiated using potassium persulfate at 45◦C and the temper-
ature was gradually increased to 65◦C in the absence of added cross-linker. The formation
of microgel particles is attributed to self-crosslinking by chain transfer reaction during and
after polymerization [165]. Typically, such microgels have a dense core and a more di-
lute/hairy corona structure which we assume to be, on average, a spherical soft object. The
internal density ρ decreases continuously in a non-universal manner as one transitions from
its center to edge.

As shown elsewhere [164], initiating polymerization at low temperature leads to a lower
radical concentration in the solution and hence a low concentration of particle nuclei. Par-
ticle growth is achieved via favorable radical propagation relative to the nucleation of new
particles process because of the higher concentration of monomer compared to nuclei. With
a gradual increase in temperature more radicals are generated while monomer is consumed
[164]. A detailed preparation protocol is provided in the Appendix E.1. A stock solution
of 9 wt% polymer microgel particles was then diluted with Type 1 water to achieve the
desired concentrations of the uncharged microgel suspension.

The particle radius as a function of temperature was determined by dynamic light scatter-
ing (DLS) (Zetasizer Nano ZS, Malvern) with a Helium-Neon gas laser emitting at 632 nm
on a very dilute suspension (0.04 wt%) with a beam diameter of 0.63 mm. The temperature
of the samples was controlled with a step size of 2.5◦C by the automated heating/cooling
module built in the instrument. The equilibration time at each temperature was 150 s.

7.2.2 Sample Preparation

The aqueous buffer used in all the samples was produced by mixing 25 mM HEPES,
150 mM NaCl, and 20 mM CaCl2 in type 1 water and adjusting the pH to 7.4. Pure
microgel suspensions were produced by diluting the stock solution of microgels with an

1contributed by Jin Gu Kang and Paul Braun
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estimated mass of aqueous buffer. Bovine fibrinogen (free of plasminogen and fibronectin)
and thrombin were acquired commercially (Enzyme Research Laboratories, South Bend,
IN, USA) and stocked at −70◦C. Prior to composite preparation, fibrinogen was thawed at
37◦C and diluted to the required concentration with the aqueous buffer. To prepare pure fib-
rin hydrogels, predetermined volumes of solutions of fibrinogen and thrombin were mixed
in a centrifuge tube and immediately loaded between the plates on the rheometer. For
preparing composites, a predetermined mass of pNIPAM microgels was added to the di-
luted fibrinogen solution in a microcentrifuge tube and the contents were mixed using a
vortex mixer at 1000 r.p.m until the microgels were well dispersed visually. The solution
was kept on ice and diluted thrombin was added to the fibrin-microgel solution to initiate
gelation. The sample was quickly loaded between the rheometer plates and allowed to gel
at a constant temperature of 25◦C for an hour while probing its viscoelasticity using a very
low oscillatory strain (1 % strain amplitude). This was done to ensure that the sample gels
to a stable shear modulus before any temperatures ramps are applied. The small strains ap-
plied during network formation do not have a significant effect on rheological properties,
as evidenced from our pure fibrin rheological properties being similar to those reported
throughout the literature [233, 224].

7.2.3 Rheological Characterization

Viscoelastic properties of all materials were probed using a torque controlled rotational
rheometer (model Discovery Hybrid 3, TA instruments and MCR702, Anton Paar) using
a plate-plate geometry. A 20 mm diameter steel plate was used in all experiments with a
600 grit, adhesive-back sand paper (Norton Abrasives) adhered to the contact surfaces to
suppress wall slip. A fixed gap setting was used in each experiment. Typical gaps var-
ied between 750− 1100µm, significantly large compared to the microgel or polymer pore
size, thus eliminating any confinement effects. The reported nonlinear measurements are
without any parallel plate corrections. A solvent trap with a wet-tissue adhered to its in-
terior was used to minimize water evaporation. The temperature of the bottom plate was
controlled using a water-cooled Peltier system. For the pure microgel suspension experi-
ments, all the samples were rejuvenated by shearing at 50 1/s for 60 s, and then relaxed for
12 min before taking data to suppress sample aging effects and erase any history [154]. For
the pure fibrin and composite rheology, fibrinogen was allowed to polymerize for an hour
while probing its viscoelasticity at an oscillatory strain with small amplitude (in the linear
regime) and an angular frequency , after which time approximately constant plateau values
of linear moduli were observed as a function of time. Temperature sweeps from 25− 35◦C
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(up and down) were performed at a constant rate of 25◦C/min while probing the linear vis-
coelasticity of the samples. Strain amplitude sweeps were also performed on the pure fibrin
hydrogels and fibrin-microgel composites to probe the strain dependent viscoelasticity at a
fixed angular frequency of 1 rad/s.

7.2.4 Microscopy

Two-color fluorescence microscopy experiments were performed on the composite using
a laser scanning confocal microscope (LSM 700, Zeiss, Germany). A 63x oil-immersion
objective lens (NA 1.4) was used. The microgels were labeled with rhodamine green (In-
vitrogen, USA) and fibrinogen was labeled with TAMRA-SE red (Thermofisher Scientific,
USA) with excitation/emission wavelength of 504/535 nm and 547/576 nm respectively.
The temperature of the sample was controlled using a heated stage (Delta T, Bioptechs,
USA).

7.3 Results

7.3.1 Microgel Characterization

In dilute solution (0.04 wt%), the size of microgels strongly depends on temperature.
Fig. 7.1 shows the average hydrodynamic diameter of the microgels measured via DLS.
More details about the intensity distribution and polydispersity in size are provided in the
Appendix E.2. The averaged hydrodynamic diameter varies roughly from 2 to 0.6 µm as
the temperature is varied between 25 − 35◦C at 1◦C/min with an abrupt decrease around
the LCST of pNIPAM. This is attributed to an intramolecular "phase transition" of the pNI-
PAM polymer across the LCST and hence the volume of solvent the microgel can imbibe
changes abruptly to achieve an equilibrium configuration [234, 200]. Hysteresis is observed
in the hydrodynamic diameter while cooling and heating the suspension which is consis-
tent with other studies in the literature [235]. Microgels prepared by such a crosslinker-free
preparation protocol are known to be highly deformable and ultra soft [164]. We did not
explicitly measured the microgel stiffness, but our estimates using the Flory-Rehner the-
ory [169, 234] (see Appendix E.4) yields an elastic shear modulus of 1.6 kPa at 25◦C and
4.6 kPa at 35◦C. This is consistent with our earlier work, where we have estimated a similar
particle stiffness based on an independent statistical mechanical analysis [199].
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Figure 7.1: Hydrodynamic diameter of self-crosslinked pure pNIPAM microgels, mea-
sured using dynamic light scattering, as a function of temperature. The "phase transition"
in pNIPAM across the LCST leads to the sharp change in the volume of the microgel par-

ticles (data courtesy: Jin Gu Kang and Paul Braun).
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7.3.2 Pure Microgel Suspension Rheology

The linear elastic shear modulus G′ for pure microgel suspensions at various concentra-
tions is shown in Fig. 7.2 as temperature is varied from 25 to 35◦C. At all concentrations,
the response is predominantly elastic (G′ > G′′) in the probed temperature range at 1 rad/s
(G′′ data is shown in Appendix Fig. E.3). At low temperature, G′ monotonically increases
with suspension concentration, owing to an increasing volume fraction of swollen micro-
gels which are known to interact via repulsive pair potentials [199, 194, 192]. A linear
concentration dependence (G′ ∼ cP ) is expected in the ultra-high volume fraction soft
jamming regime and a stronger concentration dependence has been observed below it in
the glassy fluid regime in earlier studies on similar microgel suspensions [154, 199, 160].
The observed scaling of (G′ ∼ c2.65

P ) in the glassy regime is slightly lower than other micro-
gel systems with different chemistry and synthesis procedures where power laws ranging
from 4-12 have been observed [154, 199, 160].The power law dependence in the glassy
fluid regime does not follow a universal scaling with concentration since it is dependent on
microgel softness, chemistry, synthesis, etc. [154, 199, 160]. Based on the concentration
dependence of G′ (Fig. 7.3), we conclude that the explored concentration regime of pure
microgels is in the glassy fluid regime, well below the soft jamming crossover. The ori-
gin of elasticity in such suspensions is associated with a kinetically arrested/caged state of
microgels which do not relax on the observation time scales [163, 199].

With increase in temperature (but below the LCST), the microgels undergo continuous
and modest de-swelling, reducing the effective volume fraction of the suspension which
results in a lower G′. Across the LCST (∼ 32◦C), the microgels shrink abruptly accompa-
nied by the emergence of attractive interactions between the microgels which leads to the
formation of local aggregates of de-swollen particles. We observe a non-monotonic trend
in G′ versus concentration at temperatures close to the LCST. This may be attributable to
the inhomogeneity in the suspension that has low effective volume fraction of aggregated
de-swollen microgels. The repeat measurements are shown in Appendix E.4. A key point
to note is thatG′ drops by nearly an order of magnitude as the temperature is increased from
25 − 35◦C in the glassy fluid regime. Unlike previously published literature on pNIPAM
based microgel suspensions, which stiffen across the LCST due to attractive interactions
between the microgels [203], we observe no re-emergent stiffening in G′ above LCST. We
attribute this lack of stiffening to the lower concentrations (well below soft jamming) and
the different chemistry of the microgels used in the current work.

A major challenge in working with suspensions of soft microgels is determining the
effective volume fraction. The compressible microgels can swell/de-swell depending on
osmotic pressure which is as a function of concentration. We do not have a priori informa-
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tion about the size of microgels as a function of varying concentration or osmotic pressure.
Hence, to estimate the volume fraction of microgel suspensions at low temperature, we
adopt an approach suggested by recent experiments on similar microgels [178]. In the di-
lute low concentration regime, the microgel size is fixed and one can define an effective
(hydrodynamic) volume fraction by determining an intrinsic viscosity [η] from the steady
shear experiments with very dilute suspensions (Appendix E.10). From this, we obtain a
volume fraction φ = 0.22 at cp = 0.25 wt%. In an intermediate concentration regime
of cp1 < cp < cp2 per Fig. 5.6, the microgels begin to de-swell due to steric repulsions
between particles, in a manner that experiments suggest is initially weak. Crudely, exper-
imental data (of microgel radius R) in the latter regime can be modeled as a power law of
R ∼ c

−1/6
p , implying an effective volume fraction that scales as φ c1/2

p . Beyond some "high
enough" cp > cp2 , one expects that the more fuzzy "corona" part of the microgel is largely
squeezed out, leaving a dense core which at yet higher concentration undergoes isotropic
compression in the sense that R ∼ c

−1/3
p , as again suggested in literature [178]. This leads

to φ ∼ c0
p where the linear growth in microgel concentration is perfectly compensated

by their shrinking size. Ultimately beyond an even higher concentration cp3, the internal
concentration of microgels presumably saturates at a maximum value similar to that of a
collapsed globule with radius Rcollapsed. In our experiments we always remain below, i.e.
in the glassy fluid regime. Hence, for the range of concentration 0.3− 3 wt% that we have
used in preparing composites, the volume fraction at 25◦C varies from φ = 0.28 − 0.78

as shown in Fig. 7.3. We can also estimate an effective volume fraction (a lower bound)
at temperatures beyond the LCST assuming all the microgels shrink to the same collapsed
size as indicated by the DLS experiments. The volume fraction in the deswollen state 35◦C

varies from φ = 0.012− 0.072.

7.3.3 Pure Fibrin Hydrogel Rheology

Fibrinogen polymerizes into a polymer network of fibrin filaments in the presence of throm-
bin following a cascade of events [236]. Pure fibrin networks have a viscoelastic solid-like
response in the linear response regime. The concentration dependence of the linear elastic
shear modulus G0 (Fig. 7.5) follows a power-law dependence on the concentration of fib-
rinogen; here we observe G′ ∼ c2.1±0.1

f . The power-law exponent is close to the theoretical
scaling exponent of 2.2 for semiflexible polymer networks at low-strains due to an entropic
single fiber stress storage [74, 237]. Fig. 7.5 shows the nonlinear shear strain-stiffening
response of pure fibrin networks at various concentrations (at 25◦C) when probed with an
oscillatory strain of increasing strain amplitude . The stiffening, indicated by the increasing
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Figure 7.2: At all concentrations of pure pNIPAM suspensions, G′ decreases with tem-
perature. G′ values above the LCST (shaded region) show a non-monotonic trend with
concentration. This is attributed to the sample inhomogeneity above the LCST (repeat

measurements in Appendix Fig. E.4).

Figure 7.3: Concentration dependence of G′ of pure pNIPAM suspensions at low temper-
ature, 25◦C, shows a strong apparent power-law (best fit shown by the dashed black line)
which is indicative of concentrations in the glassy fluid regime before the soft jamming
crossover. For context, the estimated effective volume fraction φ and particle radius R is

shown for both low and high temperature (see right vertical axis).
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Figure 7.4: The concentration dependence of the linear elastic modulus G0 agrees closely
with the theoretical predictions for semiflexible polymer networks.

first-harmonic (average) elastic modulus, is most apparent when the imposed shear strain
is greater than 10-20 %. This is attributable to the nonlinear force displacement relation-
ship of the individual strands as their thermal slack is reduced with external deformation
[74, 237, 238]. Alternative explanations for such strain stiffening also exist in the literature
based on the non affine network rearrangements in the network [239]. The average shear
elastic modulus at the maximum strain before the network breaks irreversibly is roughly 10
times higher than the linear elastic modulus As a function of increasing temperature, the
pure fibrin networks. The average shear elastic modulus at the maximum strain before the
network breaks irreversibly is roughly 10 times higher than the linear elastic modulus. As
a function of increasing temperature, the pure fibrin networks show a very weak softening
at all concentrations used here (Fig. E.5).

7.3.4 Fibrin-Microgel Composite Rheology

Figure 4 demonstrates that fibrin networks readily form in the presence of these microgel
colloidal particles at the concentrations studied (Appendix Fig. E.6 for all other compo-
sitions). Polymerizing fibrinogen in the presence of colloidal particles is a complex pro-
cess since colloids can disrupt network formation [224]. We observe similar formation
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Figure 7.5: Strain stiffening response of the oscillatory first-harmonic elastic modulus
(G′1) (filled symbols) is prominent when shear strains exceed 10-20 %. The normal force

measurements for these experiments is provided in Appendix Fig. E.5.

timescales even in the presence of microgel particles and the linear moduli approach a con-
stant plateau at long times, indicating that all the available fibrinogen has been converted
into fibrin. Composites are predominantly elastic (G′ > G′′) with an elastic modulus simi-
lar to that of pure fibrin (c.f. Fig. 7.4).

The particles do tend to slightly increase the elastic modulus of the composite, though
the trend is non-monotonic and seemingly unsystematic. It is striking that the effects are
so small, considering the high effective volume fraction φ of the microgel particles (from
Fig. 7.3, for cp > 1 wt%,φ > 45 %,). In traditional polymer-colloid composites involving
’hard’ colloidal inclusions in a flexible polymer network, the mechanical stiffness is more
dramatically increased by the reinforcement effects from inclusions [240]. We attribute the
weaker inclusion effects here to several distinct features of the fibrin composites. Foremost
is the fact that fibrin networks have large pore sizes compared to the inclusion, i.e. pore size
is on order of microns, similar to the diameter of the microgel particles, unlike in flexible
polymer composites where the mesh size is typically much smaller than the inclusion. Ad-
ditionally, the preparation protocol involves gelling a premixed solution of fibrinogen and
microgels. We expect some fraction of fibrinogen may get adsorbed on the particles and
becomes unavailable to form the fibrin network as indicated in one previous work [224].
Furthermore, the salt concentration in the hydrogel composite will vary as a function of
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the microgel concentration since the microgel stock solution was prepared with deionized
water. The architecture and mechanics of fibrin networks are known to depend on salt con-
centration [236]. For example, with microgel concentration varying from 0 − 3 wt%, the
Ca2+ concentration in the composite will decrease from 20-6.4 mM. For pure fibrin net-
works, it has been shown [236] that decreasing salt concentration in this range will tend to
decrease the mesh size, decrease the fiber diameter, increase the fiber and branch density,
and increase the elastic modulus by about a factor of two. For our composites, the smaller
mesh size would serve to improve trapping of the microgel particles and a higher fibrin
network modulus may partly contribute to the composite elastic modulus increasing by a
factor of 2-3 with increased microgel particle loading (Fig. 7.6). Finally, the microgels are
soft and very lightly crosslinked, hence there can be a possible modification of microgel
coronas due to the fibrin network [229] and fibrin polymer chains may penetrate the mi-
crogel corona. We note that some of the aforementioned features, can be eliminated in
experiments by a better chemical control of the species, which will a subject of the future
work. Any further investigation into such very complex effects is beyond the scope of this
work, but it is clear from Fig. 7.6 and Appendix Fig. E.6 that composites successfully form
and at fixed temperature, the microgel inclusions have only a slight effect on the elastic
modulus.

Increasing the temperature shrinks the microgel particles, decreasing their effective vol-
ume fraction. But in qualitative contrast to standard composites, this results in a strik-
ing increase of the overall elastic stiffness of the composite. Figure 7.7 shows the linear
viscoelastic moduli and how they respond to temperature cycling. Two extreme compo-
sitions are shown in Fig. 7.7, a high concentration of both fibrin and microgel (cf =

6.4 mg/ml, cp = 3 wt% microgels) and a low concentration of both fibrin and microgel
(cf = 0.4 mg/ml, cp = 0.5 wt% microgels). Thrombin concentration is held fixed at
0.5 U/ml for both the composites. Although the fibrin concentration (and hence the elastic-
ity) is different in both the cases, the temperature-dependent response is very similar. As
the temperature is increased at a rate of 1◦C/min, initially at 25 − 28◦C a weak decrease
in the linear shear moduli (G′, G′′) is observed, followed by a sharp increase in the linear
moduli within a narrow temperature range of 28−32◦C around the microgel LCST. Further
increase in temperature 32 − 35◦C leads to a weak increase in the moduli. The response
is reversible in the cooling cycle accompanied by a hysteresis (Appendix Fig. E.9). The
latter can be attributed to hysteresis in the deswelling/swelling of pure microgels during
heating/cooling cycles (Fig. 7.1).

The temperature-dependent response of the composite is contrary to that observed for
pure microgel suspensions (Fig. 7.2) and pure fibrin network, where monotonically de-
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Figure 7.6: Composite formation by polymerizing fibrinogen into a fibrin network in the
presence of pNIPAM microgel suspensions at different particle loading cp [wt%]. Evolu-
tion of viscoelastic moduli show weak effects from the pNIPAM that are non-monotonic
but tend to increase the overall linear moduli. (see Appendix Fig. E.6 for all other compo-

sitions)
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creases with increasing temperature. The normal force variation during the heating/cooling
cycles is also shown in Fig. 7.7. No clear trend for a composite with 0.4 mg/ml fibrin is
seen, with roughly constant, i.e. changes are less than the instrument resolution of 0.05 N
(i.e. a resolution of 300 Pa average normal stress on the bounding surface, σN ≈ FN/πr

2,
r being the radius of the sample/plate). However, for the higher-concentration composite
(cf = 6.4 mg/ml) we observe a measurable during the heating and cooling cycles. The
normal force acts to pull down the upper rheometer plate (gap is kept fixed) during the
heating cycle as temperature crosses the LCST, up to FN = −0.11 N (700 Pa), while dur-
ing the cooling cycle this normal force vanishes. This is likely a consequence of decreasing
volume of microgels as they shrink, resulting in a tensile force within the network and a
downward force on the upper plate.

Beyond the LCST, temperature-induced stiffening is observed for all compositions stud-
ied. Fig. 7.8 shows the effect of increasing microgel concentration for the two extremes of
high and low fibrin concentration (data for all compositions is given in Appendix Figs. E.7
and E.8, only the second heating cycle is shown for comparison. Increasing the concen-
tration of microgel particles increases the relative stiffening of the linear moduli. We also
observe a similar response in G′′ but for all cases the response is predominantly elastic at
all temperatures, i.e. G′ > G′′. Similar observations were made for other fibrin concentra-
tions (cf = 0.8, 1.6, 3.2 mg/ml) (Appendix Figs. E.7 and E.8). The mild softening of the
modulus in the range 25 − 28◦C appears to follow the same trend as the softening of the
shear modulus of pure microgel suspensions. However, this effect is not noticeable when
the modulus of pure fibrin is significantly higher than that of pure microgel suspensions.
The weak stiffening of the modulus in the range of 32 − 35◦C is directly correlated to the
weak decrease in the microgel size.

To compare the thermoresponsive stiffening across the concentrations, we plot in Fig. 7.9
the stiffening observed in all cases as the dimensionless ratio, G′35◦C/G

′
min . Here, G′min is

the minimum value of the composite elastic modulus before it begins to stiffen (indicated
in Fig. 7.8 B), and G′35◦C is the modulus at 35◦C. Some general trends are evident from
Fig. 7.9. A higher concentration of microgel particles leads to a higher stiffening ratio. The
stiffening in terms of absolute difference is even more dramatic, as shown in the inset of
Fig. 7.9. The fibrin concentration also plays a significant role. The absolute changes are
larger at higher cf , i.e. for stiffer networks. But, interestingly, the relative changes (main
Fig. 7.9) are larger at lower cf , i.e. softer networks have more dramatic relative changes
in stiffness. A wide range of baseline modulus is covered by these compositions since
the linear modulus of the fibrin network scales sensitively with concentration (G0 ∼ c2.1

f ,
Fig. 7.4).

150



Figure 7.7: Dependence of composite rheology on temperature. The linear moduli and
normal force for two different compositions of composites: 6.4 mg/ml fibrin with 3 wt%
microgels (top) and 0.4 mg/ml fibrin with 0.5 wt% microgels (bottom) are shown. The
composite is prepared by polymerizing fibrin in the microgel suspension at a fixed temper-
ature 25◦C followed by the application of repeated temperature increase (shaded red) and
decrease (shaded blue) at 1◦C/min to probe the temperature dependence. The linear moduli
show reversible stiffening as the temperature is raised above the LCST (strain amplitude

1 %, angular frequency 1 rad/s).

151



Figure 7.8: Temperature dependence of the storage modulus of pNIPAM-fibrin compos-
ites. (A) The concentration of fibrinogen and thrombin is held constant at 0.4 mg/ml and
0.5 U/ml, respectively, while the concentration of pNIPAM microgels is varied. Varying
the concentration of pNIPAM microgels stiffens the network as the temperature is increased
above LCST. (B) Similar data for 6.4 mg/ml fibrin and 0.5 U/ml thrombin. Note that only
the second temperature ramp-up cycle is shown in the figures. Data for all other composi-
tions is given in Appendix Figs. E.7, and repeat measurements at selected compositions are

shown in Appendix Figs. E.8.

We used confocal imaging to investigate the structure of the fibrin matrix in the com-
posites and test our assumption that microgel particles are shrinking within the network
at elevated temperature. Fig. 7.10 shows the confocal images of the composite at 25 and
35◦C. Qualitatively, it appears that the presence of microgels does not interfere with the
formation of the fibrous network, which appears similar to that of pure fibrin hydrogels.
The volume fraction of microgels decreases as the sample is heated from 25 to 35◦C as is
apparent by the decreasing intensity of emission from tagged microgel particles, consistent
with microgel particle shrinking at elevated temperatures. However, no apparent change
can be observed in the fibrous network visually between 25 to 35◦C. In contrast to the pure
microgel suspensions, where we observed the aggregation of particles above the LCST,
such behavior is not apparent when the particles are in the fibrin matrix. This is expected
since the de-swollen size of particles is similar to that of fibrin mesh which perhaps hinders
the particle aggregation. We do not make quantitative comparisons of the network topology
features with and without the microgels.

Fig. 7.11 verifies that strain-stiffening is retained in the composites, a property native
to pure fibrin (Fig. 7.5) which we hypothesize may play a central role in the temperature-
induced stiffening caused by de-swelling microgel particles. Large-amplitude oscillatory
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Figure 7.9: Stiffening ratio (relative modulus change) for all fibrin concentrations cf plot-
ted as a function of microgel content cp in the composites. Inset shows absolute change
in modulus for the same compositions. (Raw data for cf = 0.4, 6.4 mg/ml in Fig. 7.8; all

other raw data in Appendix Figs. E.7 and E.8.)

shear (LAOS) results in Fig. 7.11 are shown in terms of the first-harmonic elastic modulus
(representing the average energy storage during the deformation [241]), as the shear strain
amplitude is varied at 25 and 35◦C for three different compositions of the composite. At
25◦C, all three composites show strain-stiffening behavior similar to pure fibrin (Fig. 7.5).
At 35◦C, the composites still show strain stiffening, but it is less dramatic. The reason is
associated with a higher initial plateau modulus in the linear regime, but a similar final
elastic modulus at the largest imposed strain. The retention of strain-stiffening features in
the fibrin matrix below and above the LCST suggest that the large deformation rheological
response in the composite is being dominated by fibrin, i.e. the presence of microgels dur-
ing the fibrin polymerization may not affect the underlying mechanism of strain-stiffening
of the network. However, as mentioned earlier, the salt concentration in the composites is
different than the pure fibrin network, which may lead to architectural/topological differ-
ences between the composite fibrin networks and pure fibrin networks [236]. Regardless,
the thermoresponsive stiffening is still observed at all compositions, and may be linked to
the underlying strain-stiffening of fibers, an idea that will be explored in the discussions.
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Figure 7.10: Confocal images of fibrin-microgel composite at (A) T = 25◦C and (B) T =
35◦C . The fibrin fibers (tagged red) and the microgels (tagged green) have a concentration
of cf = 3.5 mg/ml and cP = 3 wt%, respectively. Above the LCST(∼ 32◦C), de-swelling

of microgels can be observed.

Figure 7.11: Nonlinear response of fibrin-microgel composites at selected compositions,
each at low and high temperature (compared to LCST). Both below and above the LCST,
the composites retain a strain-stiffening response similar to pure fibrin hydrogel in Fig. 7.5.
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7.4 Discussion and Theoretical Modeling

Although soft microgels have been previously incorporated into fibrous matrices to modu-
late properties (e.g. transport [229] and mechanical [242, 243, 244]), the thermoresponsive
sensitivity we report here is unique. While the individual components mechanically soften
when the temperature is raised from 25 − 35◦C, the composites show significant stiffen-
ing. The fundamental question then arises as to the physical mechanism. There are various
speculative hypotheses in the literature that might be relevant to our observations, although
the problem is very complicated for many reasons including the crucial aspect that the pre-
cise nature of the coupling between the components is not well understood. Prior work on
pNIPAM microgel-flexible polymer composites attributed the thermosensitive response to
the transition of microgels from soft to hard fillers, [244] and the ability to microgels to act
as additional crosslinking. Such continuum ideas are unemployable to our system since the
microgels are relatively soft and even in their de-swollen state are not large compared to
the mechanical length scale (polymer mesh) of the matrix. Nevertheless, if we adopt this
perspective, then based on our volume fraction estimates for the range of microgel con-
centration studied (above the LCST, only φP = 0.012− 0.07) one predicts Gc/Gm is only
∼ (1.03 − 1.17), far smaller than we observe. We therefore conclude that the stiffening
mechanism observed in our experiments is qualitatively different from that proposed for
previously studied systems [243, 244].

Our limited goal in this section is to formulate speculative, but we think plausible, mi-
croscopic physical models for the stiffening mechanism. Two mechanisms are considered,
both based on the idea of microgel-induced modification of the network beyond the LCST.
We hypothesize that microgels de-swell at high temperatures in the composite as they do
in dilute solution, and a strong fibrin-microgel attraction (of hydrophobic or other physic-
ochemical origin which does not break on the relevant experimental time scale) allows the
microgel shrinking to pull on the surrounding network. This induces a structural change in
the fibrous mesh surrounding the de-swollen microgels and results in an overall stiffening
of the composite. Fibrin adsorption on various hydrophobic surfaces has been demon-
strated in the past [245, 246], and we hypothesize for the current system that the exposed
hydrophobic domains in pNIPAM chains (beyond the LCST) provide sites for the assumed
attractions [246]. We note that the effective interactions between the fibrin and pNIPAM
microgels in this work are unknown, and a precise knowledge and control over such inter-
actions may enable several other interesting paradigms.

The problem, in principle, could be approached from an equilibrium thermodynamics
perspective where the total composite free energy is minimized. The latter involves the
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competing effects of distortion of the fibrous mesh, polymer-microgel interactions, and mi-
crogel deswelling. But quantification of these factors requires knowledge of the details of
connectivity and interactions between the fibrous mesh and microgel, the nature of junc-
tions in the fibrous mesh (chemical crosslinks or physical entanglements), and free energy
functionals for the fibrin network and microgels. Such an analysis is beyond the scope of
current work.

We construct two simple physical models which differ with regard to how the network
is hypothesized to change when microgels shrink: (i) an effectively stretched polymer net-
work model (fixed junctions), and (ii) an adjusted mesh model (mobile junctions). In both
cases, the de-swelling of microgel particles will generate contractile forces in the fibrous
network to which they are attached. However, the effects of such contractile force is re-
alized differently in the two models, and thus the underlying physical origins of stiffening
are different. Based on fibrin networks that we have used in the experiments, we expect
the first model with fixed junctions (crosslinked network) to describe our fibrin-based sys-
tem, since our preparation protocol is known to create fixed junctions [236, 233, 218]. The
second model (adjusted mesh model) is included as a plausible scenario for semiflexible
networks where physical entanglements are important, such as uncrosslinked fibrin, actin,
or carbon nanotubes, showing the possible extension of our work to these broader scenar-
ios.

7.4.1 Stretched Network Model (Fixed Junctions)

The observation of a negative pull (normal force) on the upper rheometer plate above the
LCST indicates that a net tensile stress exists in this state. We hypothesize that microgel
deswelling results in a microscopic stress in the fibers which manifests itself as a bulk
contractile pull in the network. Such microscopic deformations may be responsible for
the stiffened composite response above the LCST. For example, the average value of the
tensile (normal) stress τN ≈ 700 Pa for the sample with cf = 6.4 mg/ml and cP = 3 wt%
(from Fig. 7.7) is significantly higher than the average shear stress at the onset of nonlinear
strain stiffening of the network (τc ≈ 50 Pa, obtained by τc ≈ G0γc, where γc is the
characteristic strain at which the shear response begins to show measurable nonlinearity, in
this case γc ≈ 0.1 from Fig. 7.5). However, a direct comparison cannot be made since these
measured normal stresses arise from different modes of deformation. Further, the normal
stresses at other composite compositions were below the instrument measuring limit, and
hence cannot be reliably resolved.

We note that the hypothesis of microscopic internal strain induced stiffening was invoked
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Figure 7.12: Effectively stretched polymer network model. At low temperature (T <
LCST), the fibrin network is polymerized around the swollen microgel. The sketch of a
single two dimensional lattice shows the key length scales in the network: the contour
length larc of the polymer in between the nodes/crosslinks, and the end-to-end distance
between the crosslinks. When the temperature is raised above the LCST of the microgel,
its size abruptly shrinks to and this imposes a strain on the attached fibrin network. The
consequence of this strain is in a mean-field-like sense is schematically shown in the two
dimensional lattice sketch, where the end-to-end distance changes to λf l0 but larc remains

constant as a result of the inextensibility assumption.

in recent work involving multiaxial deformation of fibrin networks [247]. These workers
hypothesized that external uniaxial extension applied to the network removes undulations
in some of the fibers (along with changing the orientation of fibers from the undeformed
state) and results in a higher shear modulus, whereas uniaxial compression induces a higher
level of undulations and buckling, resulting in a softening response of the network. Defor-
mation fields in that work are qualitatively different from our experiments. In the case
of our fibrin-microgel composite, the deformation fields are spatially inhomogeneous on
the scale of the mesh surrounding the microgel particles. In the simplistic scenario of a
fibrous mesh bound to a deswelling microgel, we expect the fibers aligned in the radial
direction experience a stretch and fibers aligned orthogonal experience a compression. The
bulk network response will thus have two contrasting contributions: a stiffening response
from the stretched fibers and a softening response from the compressed fibers. From our
experimental observations, the mechanical response from stiffened fibers dominates the
bulk response. The nonlinear shear response of our fibrin-microgel composites (Fig. 7.11)
shows similarities to fibrin networks with imposed uniaxial extension [247]. In the pre-
stressed state (here above LCST, in the prior work for extensional pre-strain), the onset of
stiffening shifts to a higher value of applied shear strain in all the cases probed. Thus, we
suspect similar underlying origins of the induced stiffening, i.e. the nonlinear deformation
(strain-stiffening) response of individual fibers.

To test if such a hypothesis is physically consistent with our experimental observations,
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we adopt a constitutive model for semiflexible polymer networks from the literature. The
polymer network is assumed to have fixed junctions (e.g., effective chemically crosslinked
at the branch points or nodes) consistent with the observations from the literature where the
fibrin networks were formed using similar preparation protocols to the one followed in the
current work [236, 233, 218]. The Euclidean distance between the nodes, l, is different than
the fiber arc length, larc, such that the normalized end-to-end distance, x = l/larc < 1 in
the reference state. Adopting a mean-field-like approach to model the fiber inextensibility,
an analytical form for the free energy of a semiflexible polymer chain as a function x has
been previously derived [220]

ufiber = kBTπ
2ν(1− x2) +

kBT

πν(1− x2)
(7.1)

where kB is Boltzmann’s constant, ν = κ/2KBTLc is a dimensionless stiffness parame-
ter with bending rigidity κ defined as and lp = 32µm is the fiber persistence length assum-
ing that the fibers in the network are composed of many protofibrils that are held together by
molecular bonds [236, 218] (a precise value of lp depends on the fibrinogen, thrombin, and
salt concentration but for the purpose of simplicity of analysis, we assume a fixed value
at all concentrations). The two terms on the right hand side of the Eq. 7.1 represent the
contributions from fiber bending energy and entropy, respectively. The force-displacement
(f − x) relationship for such a fiber derived from Eq. 7.1 diverges as f ∼ (1 − x)−2 as
x → 1, a result of finite extensibility of a fiber pulled taut when l = larc. Eq. 7.1 has
been previously employed [220, 221, 238] to constitutively model the nonlinear shear elas-
tic response of semiflexible polymer networks assuming a 3-chain and an 8-chain network
model. The advantage of using cubic lattice models is the ability to obtain analytic expres-
sions for the shear stress. We use a 3-chain model since it captures some salient features
of semiflexible polymer networks such as negative normal stresses in shear in addition to
generic strain-stiffening effects. We refer the readers to previously published work for de-
tails of the models [221, 238]. Here, we directly employ the constitutive relation for the
nominal linear shear modulus G in the limit of zero shear strain for a 3-chain network
model given by

G(x, ν) =
2

3
nfkBTx

2[
1− x4

νπ[1− 2x2 + x4]2
− νπ2] (7.2)

where nf is the density of crosslinked chains. Eq. 7.2 was derived for a pure semiflexible
polymer network in which each mesh/lattice cell is deformed affinely with an external shear
strain. The deformation field in the network resulting from a de-swelling microgel is more
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complex and highly dependent on the geometry and nature of fiber-microgel contacts. A
quantification of such inhomogeneous deformation of the mesh is possible in principle but
is beyond the scope of the current work.

To simplify the analysis, we therefore adopt a mean field like approach. Based on our
experimental observations of a net stiffening response, we assume that microgel particle
deswelling results in the entire fibrous network changing to an "effectively stretched" state.
In the stretched state some of the thermal undulations in the fibers are removed compared
to their conformations below the LCST, i.e. x > x0, where x0 is the fiber normalized end-
to-end distance for the reference state (25◦C). As a result we expect the individual fiber
response to stiffen, which then results in bulk network stiffening. Our approach assumes
that the effective stretch in the entire network is uniform regardless of the spatial orientation
and location of fibers relative to the microgel. The effective stretch λ is defined from the
change in the volume of the fibrous network compared to a reference state

λ3 =
V

V0

. (7.3)

We will consider the fibrin network at 25◦C (initial state) and 35◦C (final state). The volume
of the fibrous network is the fraction of the total volume of the composite Vt based on the
theoretical effective volume fraction φP of microgels, V = (1− φP )Vt.

The theoretical microgel de-swelling may not exactly transfer to a volume increase of the
fibrin phase due to, for example, imperfect adhesive contact between microgels and fibrin,
or a good adhesive contact for which the stiffness of the fibers resists microgel de-swelling.
We therefore introduce a prefactorm to map the theoretical to the actual volume increase of
the fibrin phase. For the case of perfect binding and complete de-swelling, m = 1, whereas
the other extreme applies if the fibrin network volume is unchanged. For realistic scenarios
we expect 0 < m < 1. Hence, we can write

λf = mλ = m

(
1− φP,35◦C

1− φP,25◦C

)
(7.4)

where φP,25◦C and φP,35◦C are the theoretical effective microgel volume fractions at 25 and
35◦C respectively. Since the free energy contribution from fibrin is highly nonlinear Eq. 7.1
and strongly depends on λ, it is reasonable to expect beyond a certain value of λ that the
free energy cost of deforming the fibrin network becomes larger than the lowering of free
energy associated with full deswelling of the microgels. Hence, in equilibrium the microgel
deswelling may be limited by the deformation of attached fibrin matrix and the particles
would not achieve exactly the same size reduction as in dilute suspension, and thus λf < λ.
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Figure 7.13: Model predictions (curves) of the linear shear modulus normalized by its
values at x = x0. The finite extensibility of the fibers between fixed junctions leads to a
drastic increase in the stiffness of the network as apparent from the plots. The symbols are
experimentally measured values of Σ and by forcing σ to match the model we infer m for

various compositions.

Within the mean field approach, the fibers are in a pre-stretched state when the microgels
shrink with end-to-end distance x = λfx0. The shear modulus is predicted to change,
based on Eq. 7.2, from G(x0) to G(x). The relative stiffening as the temperature is varied
across the LCST can now can be expressed as the ratio Σ = G(x)/G(x0). Being more
explicit about functional dependence, Σ = (x, x0, ν) where x0 and ν are set by the fibrin
concentration, cf . The stretched state x = λfx0 depends on the factor m and the microgel
effective volume φP through Eq. 7.4, and φP in turn depends on the microgel concentration
cP . Thus the stiffening ratio can be expressed in terms of known material composition
(cf , cP ) and the unknown factor m as

Σ(cP , cf ,m) =
G(m; cP , cf )

G0(cp, cf )
. (7.5)

In Eq. 5, m is the only unknown fit parameter. Other parameters are a priori known from
the fibrin and microgel concentrations, and we use literature data to determine values of l0
and lc (see Appendix table E.3). Fig. 7.13 shows the computed value of Σ as a function
of the end-to-end distance x = mλ0/larc. The front factor m (Fig. 7.14) was determined
by requiring the predictions of Eq. 7.5 agree with the experimentally observed stiffness
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Figure 7.14: The values of m (closed symbols) for which the experimental stiffening ratio
and model predictions match. The maximum value of m given by Eq. 7.6 are plotted as
open circles. Inset shows the monotonically decreasing trend ofm as a function of effective

volume fraction of microgels.
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ratios at various compositions (cf , cP ). We find that a marginal change (0.5-5 %) in x is
sufficient to observe the range of stiffness in the modulus that we experimentally observed.
The reason for such strong sensitivity is the result of the intrinsic nonlinear response of
such fibers, where a small deformation is enough to pull out some thermal slack from the
polymer chains and is enough to produce a highly nonlinear force-displacement relation.
This is also supported by the evidence of a minimal apparent change in the fibrin network
topology as seen from the confocal images in Fig. 7.10. It is also consistent with the
mild level of stiffening that we observe in contrast to pure fibrin networks which can in
principle stiffen to a much larger extent under large external deformation (by reorientation,
straightening, bending, and buckling) [239, 248, 127]. However, it should be noted that the
values of x represent the stretching in an average sense. In reality, the orientation-dependent
stretch can be much different than the average x.

The computed values of m, the efficiencies of transferred volumetric strain to the fibrin
network, are plotted in Fig. 7.14 as a function of the fibrin concentration. They vary within
a narrow range, m = 0.62− 0.91, for the full range of compositions probed in the experi-
ments (inset shows the values of at various volume fraction of microgels and the numerical
values of are provided in the Appendix table E.2). It is significant that the efficiency factor
m is always rather large, that is, most of the strain of the shrinking particle is transferred
to the surrounding fibrin network. More interesting is that m is nearly constant for each
particle concentration (i.e. negligible dependence on fibrin concentration cf ) and shows a
monotonic decrease with particle concentration cP . Taken together, along with the experi-
mental observation of tension in the network at high temperature, these trends support the
hypothesis of shrinking microgel particles causing tensile stress in the fibrin which creates
overall stiffening due to the inherent strong nonlinearity of the fibrous network. Note that
the values of m will also depend on the initial value x = x0, in the current work we have
used the values available in literature [248].Hence, the values of m (and x) in the deformed
state will be different from the ones shown in Fig. 7.13 if a different x0 values were used.

A remaining uncertainty of this model is to a priori predict m, rather than infer it from
our measurements. This would require much more detailed knowledge about the interac-
tion of microgel particles with the fibrin network. Nevertheless, we can still rationalize
the trend of decreasing m with particle concentration by considering that finite fiber exten-
sibility implies an upper bound on m (shown in Fig. 7.14). That is, the full strain of the
shrinking microgel particles cannot be transferred to the surrounding network if this strain
goes beyond the finite extensibility limit at x = 1. Finite extensibility therefore imposes
x < 1 which creates an upper bound on λf , which can be translated to an upper bound on
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m as

m < mmax =
1

x0

(
1− φt
1− φf

)1/3

. (7.6)

We find mmax varies from 0.65 − 0.96, generally decreasing as a function of microgel
particle loading as shown in Fig. 7.14 (open symbols). Our experimentally inferred values
of m are fairly close to this upper bound limit. It is possible for mmax = 1, but we never
see this in our composition space due to the high volume fraction of microgel particles. In
this limit, even a small volume change of particles requires a large relative volume change
of the fibrin, and it is the relative volume change that creates the stretch λ in Eq. 7.3.
Designing composites such that mmax < 1 is a strategy for dramatic stiffening, since the
full theoretical de-swelling of microgel particles is beyond the finite extensibility limit.
In practice, m = mmax cannot be achieved exactly, but the fixed junction model helps
elucidate how close the limit is approached in our experiments.

7.4.2 Mesh Adjustment Model (Mobile Junctions)

In addition to the crosslinked semiflexible network that we considered in the experiments
and stretched network model, a similar design concept can be extended to physically entan-
gled semiflexible networks such as actin and collagen or stiff networks such as microtubules
and carbon nanotubes. For such cases we present a physical hypothesis on how such a net-
work might change when it experiences attractive interactions with deswelling microgels.
We model the junctions between the fibers as physical entanglements (mobile junctions). In
such cases, a microgel-induced change of the network mesh size (∼entanglement length)
could be a potential mechanism for composite stiffening which does not necessarily in-
volve significant deformation of fibers. In this minimalist model, we assume that the fibers
can slide relative to each other at the entanglement points and adjust their network mesh
size ξ and entanglement density locally without (to leading order) bending, compressing,
or stretching of filaments which is energetically expensive. A schematic of this idea, which
we call the "mesh adjustment model", is given in Fig. 7.15

To quantify this idea we adopt the well-known analysis for the linear shear elasticity of
semiflexible entangled polymer networks [74, 127]. In the limit of infinitesimal strain, the
linear elastic modulus can be written as G ∼ ρkBT l

2
p

l3e
. Here, the leading factor of ∼ ξ−2

is a (stoichiometric) contribution to the modulus. In addition, the entanglement length is
given by le ∼ ξ4/5l

1/5
P [74, 127]. Hence the linear elastic modulus can be expressed as

G ∼ ρkBT l
7/5
P ξ−12/5. Note that there are two different types of filament density depen-

dences: (a) dependence of number density of polymers that does not correlate with struc-
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Figure 7.15: Schematic describes the adjustment of a entangled polymer mesh cell that
encapsulates a microgel particle as the particle de-swells beyond its LCST.
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tural changes, and (b) one that directly impacts the force-extension behavior of individual
fibers via the entanglement length le. For the simple "adjusted mesh" model described
below we assume contribution (b) is the source of reinforcement.

We consider the pure polymer matrix to have an average mesh size ξ, and hence total
network volume of Vt = Nξ3, where N is the total number of 3-d meshes or pores. If the
composites are synthesized at low temperature by polymerizing the monomers around the
microgel, we hypothesize that the initial volume fraction of microgels determines the cov-
ered fraction of polymer meshes, where "covered fraction" means meshes that encapsulate
a single microgel particle. Our central hypothesis for the reinforcement mechanism then
is that at the temperatures beyond the LCST there are strong polymer-microgel adhesive
contacts which induce the covered meshes to attain a size equal to that of a completely
de-swollen microgel D0. Note that this hypothesis assumes the microgels collapse in the
composite to the same degree as they do in dilute solution. Such a strong collapse seems
physically plausible, or at least consistent with, the idea that the fibers do not deform per the
core assumption of the "adjusted mesh" model. Conservation of total volume then implies
that the meshes not encapsulating a microgel must expand to compensate for the shrunken
meshes. This allows us to write

Nξ3 = NφD3
0 +N(1− φ)ξ3

1 (7.7)

where ξ1 is the average size of the expanded or "renormalized" mesh which is given in
terms of the known average mesh size for pure fibrin (ξ) and the de-swollen microgel
diameter D0. In an effective medium spirit where a mesh is the elementary unit, we now
invoke the scaling relation for shear elastic modulus described earlier to write the composite
modulus as a weighted sum of contributions from shrunken meshes (which locally stiffen)
and loosened ones (which locally soften):

=
Gcomposite

Gnetwork

= φ

(
ξ

D0

)12/5

+ (1− φ)

(
ξ

ξ1

)12/5

. (7.8)

The above equation for the composite modulus above LCST is normalized to its pure net-
work value. A caveat is that we find the above simple model gives a renormalized mesh
size when the pure network mesh size is smaller than the core diameter of microgel, or,
more precisely, ξ < φ1/3D0. We make quantitative predictions for stiffening adopting such
a simple approach (Eq. 8) in Appendix table ?? and Fig. 7.16. The stiffening ratio pre-
dictions generally under predict the stiffness ratios that we observed from our experiments
with crosslinked fibrin networks. This is expected since unlike the case of crosslinked poly-
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Figure 7.16: Model predictions (open symbols) of relative stiffening from Eq. 7.8. The
dashed line is the best-fit line to the model predictions.

mer network, the polymer chains in the entangled polymer matrix are not deformed (to the
leading order), and the stiffening is a consequence of the appearance of two different mesh
sizes (shrunk and loosened mesh) and their relative contribution to the network elasticity.
Yet, this mobile junction models shows that similar thermo-responsive stiffening may be
possible with semiflexible networks even in the absence of fixed crosslinks.

7.5 Conclusions

We experimentally demonstrated and theoretically modeled a new stimuli-responsive particle-
polymer composite system which is able to achieve a multifold change in its shear elastic
modulus under thermal excitation. The constituents, a semiflexible biopolymer network of
fibrin and thermoresponsive ultra-soft microgels, provide a novel mechanism for achiev-
ing triggerable in situ stiffening. The fundamental principle governing the responsiveness
of the composite is the coupling between the strain-stiffening polymeric network of fibrin

166



and the thermoresponsive microgels. The degree of achievable stiffness depends on the
composition of both polymer and microgels. Our modeling approaches provide physical
insights into the microscale mechanics of the composites and rationalizes the composition-
dependent experimental trends.

Biopolymers in general perform varying functions in living organisms. Their ability to
achieve a large range of mechanical properties makes them vital for many biological func-
tions and important candidates for the development of bioinspired functional materials. Our
approach highlights an effective way of harnessing the intrinsically nonlinear properties of
a semiflexible polymer network into functional material design that can find applications in
several potential areas such as soft robotics and biomedicine where modulating and tuning
stiffness can provide novel functionality.

The nominal stiffness increase (factor of three) at the highest concentration of biopoly-
mer and microgels also highlights the limitations in the approach that we have adopted.
Biopolymer fibrin in principle can stiffen to a significantly large extent (approximately ten
times the linear shear modulus) under an applied deformation, which we achieve only for
the softest networks. One possible way to improve the performance of the fabricated com-
posites and extend similar design principles to stiffer biopolymer matrices will be to either
strengthen the coupling (attractions) between the microgel and the fibrous network or to
fabricate microgels capable of a higher degree of volume change.

The thermoresponsive stiffening concept is not limited to biomaterial systems. Syn-
thetic semi-flexible networks are being developed and becoming better understood [230,
231, 232]. The concept described here should in principle work with any network with
strong nonlinearities where stiffness is sensitive to structural changes of the network, so
long as the embedded particle free energy changes are sufficiently strong to modify the
surrounding network. Our modeling approach provides a general understanding to design
and engineer such composites and potentially optimize performance by a rational design of
the components.
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CHAPTER 8

SEMIFLEXIBLE MAGNETORESPONSIVE
COMPOSITE

8.1 Introduction

In Chapter 7, we presented a new paradigm for designing soft materials with large changes
of reversibly triggerable stiffness based on volume changing particles embedded in the
semiflexible polymer mesh. In this chapter, we build on similar ideas, but instead of thermal
excitation, we use a magnetic field as an external stimulus. Building on the preliminary idea
presented in a previous work [249], we embed iron particles at very low volume fractions
(φ < 4 % v/v) in the fibrin matrices, and utilize the interactions between the particles
(with induced magnetic dipoles) using an externally controlled magnetic field to control
the overall stiffness of the composite. We then describe a simple model which quantifies
the contribution of inter-particle interactions and the mesh stiffening.

8.2 Materials and Methods

8.2.1 Sample Preparation

The carbonyl iron (CI) particles used in the study were obtained from Sigma Aldrich. The
particles were functionalized with aminopropyl trimethoxysilane. The particles were incu-
bated in a solution of silane with 90% ethanol for 12 h while on a shake table, and then
washed 3-4 times with deionized water before use. Bovine fibrinogen (free of plasminogen
and fibronectin) and thrombin were acquired commercially (Enzyme Research Laborato-
ries, South Bend, IN, USA) and stocked at 70◦C. The aqueous buffer used in all the samples
was produced by mixing 25 mM HEPES, 150 mM NaCl, and 20 mM CaCl2 in type 1 water
and adjusting the pH to 7.4. Prior to composite preparation, fibrinogen was thawed at 37◦C
and diluted to the required concentration with the aqueous buffer. To prepare pure fibrin
hydrogels, predetermined volumes of solutions of fibrinogen and thrombin were mixed in
a centrifuge tube and immediately loaded between the plates on the rheometer. Fibrin-CI
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composites of varying concentrations were prepared by mixing predetermined quantities of
CI particles and fibrinogen followed by polymerizing fibrinogen with thrombin at 20◦C for
an hour. Aqueous solutions of Carbopol 940 (obtained from Acros Organics) were prepared
by mixing with deionised water overnight. The solutions were then neutralized to pH=7
using sodium hydroxide solution. Xanthan gum (Sigma Aldrich) solution was prepared by
mixing Xanthan powder with deionised water for 3 hours.

8.2.2 Rheological Characterization

Viscoelastic properties of all materials were probed using a torque-controlled rotational
rheometer (Discovery Hybrid 3, TA instruments) using a plate-plate geometry. A 20 mm
diameter aluminum plate was used in all experiments with a fixed gap setting (1 mm). A
uniform magnetic field of controlled strength was produced using the magnetorheological
accessory (TA instruments) to study the field-dependent rheological properties (Fig. 8.1).
Strain amplitude sweeps were also performed on the pure fibrin hydrogels and fibrin–
particle composites to probe the strain-dependent viscoelasticity at a fixed angular fre-
quency of 1 rad/s.

Figure 8.1: The rheological setup consists of a coil (under the bottom plate) producing a
nearly uniform magnetic field in the region between the top non magnetic aluminum plate

with field lines perpendicular to the direction of shear.
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8.2.3 Microscopy

Samples for scanning electron microscopy were prepared using the methods from literature
[250]. The fixed samples were critical point dried which lead to a significant reduction in
the sample volume, and then coated with gold-palladium (≈ 5 nm). Low vacuum mode
of SEM (FEI Quanta FEG 450 ESEM) was used to image the sample. For x-ray micro-
computed tomography, MicroXCT-200 (Xradia) was used, and the samples were prepared
and held in a microcentrifudge tube. A commercially purchased permanent magnet was
used to provide magnetic field while imaging the sample.

8.3 Results

Figure 8.2 a shows the SEM image of the dry CI powder used in this work. Particle size
distribution obtained from such images is shown in Fig. 8.2 b. Particles are roughly spheri-
cal in shape, though small deviations can be visually observed. The mean particle diameter
is 2a = 2 µm with a standard deviation of 0.75 µm.

(a)

0 2 4
diameter [ m]

0

20

40

60

(b)

Figure 8.2: (a) Scanning electron micrograph of the Carbonyl Iron particles used in the
composite. (b) The CI particles are polydisperesed with a mean size of 2 µm and a standard

deviation of 0.75 µm (obtained using a normal distribution fit to the data).

In the following subsections, the results describing the effects of incorporating the mag-
netic particles within various base matrices are described. We will first look at the effect of
such particles in yield stress fluids of various yield strengths. In such cases, the particle are
expected to undergo large displacements and align into chains in the direction of magnetic
field lines when the sample is subjected to strong enough magnetic field. The resistance
of such chains to an applied shear deformation leads to the observed stiffening in the com-
posite. The rheological results for the effect of magnetic particles embedded in crosslinked
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fibrin matrices of various mesh sizes are then presented. Figures 8.9 and 8.10 show the
key experimental observations. As will be described in a later section, the magnetorespon-
sive stiffening that is observed for fibrin-particle composite is dependent on the relative
size of particle compared to the fibrous mesh. Although stiffening is observed in both the
cases, the qualitatively and quantitative trends in stiffening is different, and depends on the
particle displacement inside the fibrous matrix: large displacements (chaining) and small
displacements (nonlinear mesh stiffening).

8.3.1 CI Particles in Yield Stress Matrix

Figure 8.3: The magnetorheological response of suspensions of CI particles in a yield
stress fluid of Xanthan gum (yield stress≈ 0.3 Pa) at various particle concentrations. The
shear modulus at all compositions increases with a nearly quadratic dependence on the field

strength, and then saturates at higher field strength.
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Figure 8.4: The magnetorheological response of various Carbopol yield stress fluids with
the same CI particle volume fraction. The relative change in the shear modulus is higher
for a weaker concentration of carbopol (or lower yield stress sample). (inset) linear shear

modulus of the Carbopol composites at B = 0.

The magnetorheological (MR) response from a suspension of CI particles at various volume
fractions (φCI) in a yield stress fluid (Xanthan gum, yield stress σy ≈ 0.3 Pa) is shown in
Fig. 8.3. The linear elastic shear moduli G′ of the samples, probed via oscillatory shear
with a strain amplitude γ0 = 1 % and and angular frequency ω = 1 rad/s, is shown as the
magnetic field strength (B) is varied. The distinct regimes in the power-law response of
G′ with (B) is observed. Below 0 < B < 0.3 T, the samples roughly follows a quadratic
(∼ B2) dependence of the field strength followed by a roughly linear dependence in the
range 0.3 < B < 0.6 T, and the MR effect essentially saturates at higher field strength
0.6 < B < 1 T. This is consistent with the prior observation of the saturation magnetization
of similar particles beyond B < 0.6 T. The scaling of (∼ B2) at low field strength has been
observed previously [13, 251], and is well understood theoretically.

Fig. 8.4 shows the magnetorheological response of a suspension of CI particles (φCI =

1.5 % v/v) in the yield stress fluid of carbopol of varying yield strengths (σy = 5, 70 and
100 Pa. The linear shear modulus G′(B) is normalized by the modulus at B = 0. The rel-
ative stiffening, i.e. G′(B)/G0, is higher for a softer matrix (lower yield strength). Unlike
Fig. 8.3, in this case the modulus has a weak increase at low field strengths, followed by a
stronger stiffening which eventually saturates. The microCT images in Fig. 8.5 show the
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distribution of CI particles in a carbopol matrix with yield strength of 70 Pa. In the absence
of a magnetic field the particles are well-dispersed inside the carbopol matrix. When ex-
posed to a magnetic field by holding a permanent magnet underneath the sample, the CI
particles undergo large displacements, and align into chains along the direction of the field.
The concentration of particles is higher at the bottom of the image (sample is held on the
top of a permanent magnet).

Figure 8.5: CI particles dispersed inside a Carbopol (yield stress fluid) matrix in the ab-
sence of a magnetic field (left) undergo large displacements to form chains in the direction
of magnetic field lines (right). Nonuniform magnetic field is produced by a permanent

magnet held under the sample.

8.3.2 Pure Fibrin Shear Rheology

Fibrinogen polymerizes into a polymer network of fibrin filaments in the presence of throm-
bin following a cascade of events [236]. Pure fibrin networks have a viscoelastic solid-like
response in the linear response regime. Fig. 8.7 shows the nonlinear shear strain-stiffening
response of pure fibrin networks at cf = 1.6 and 6.4 mg/ml when probed with an oscil-
latory strain of increasing strain amplitude. The stiffening, indicated by the increasing
first-harmonic (average) elastic modulus, is most apparent when the imposed shear strain
is greater than 10-20 %. This is attributable to the nonlinear force displacement relation-
ship of the individual strands as their thermal slack is reduced with external deformation
[74, 237, 238]. Alternative explanations for such strain stiffening also exist in the literature
based on the non-affine network rearrangements in the network [239]. The average shear
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Figure 8.6: 3D reconstruction of X-ray CT images for Carbopol-CI particle composite.

elastic modulus at the maximum strain before the network breaks irreversibly is roughly 10
times higher than the linear elastic modulus. In this work, the idea that small deformation
(on global or local level) can nonlinearly stiffen the semiflexible networks will be utilized
to design magnetically responsive soft materials that can stiffen under the application of an
external field.

8.3.3 Fibrin-CI Composites

The polymerization of fibrinogen occurs in the presence of CI particles to produce an in-
terconnected network, similar to the pure fibrin, as shown in the electron micrograph in
Fig. 8.8 b. Thus, the presence of CI particles seem to negligibly affect the formation of the
fibrin network. Since the volume fraction of CI particles is relatively small, φCI < 5 % v/v,
the presence of particles does not offer any significant chemical or physical deterrence to
the network formation [224]. The bulk sample, as shown in Fig. 8.8 a, is stable for long
durations (observed for ∼ 2 week period) when its solvent loss from evaporation is pre-
vented.

Figures 8.9 and 8.10 show the effect of magnetic field on the linear shear modulus of
the CI-fibrin composite prepared with different concentration for fibrin, 1.6 mg/ml and
6.4 mg/ml, respectively. To make quantitative comparison of the MR effect at various com-
positions, we plot the shear modulus normalized by its value in the absence of a magnetic
field, i.e. G(B)/G0. The value of G0 at various low φCI, is very weakly dependent on φCI
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Figure 8.7: The crosslinked networks of fibrin used in the this work exhibit a strong strain-
stiffening response at nominal deformations.

and is close to the linear elastic shear modulus of pure fibrin network as shown in the fig-
ure insets. In both the composites, several common signatures in the rheological response
can be observed. For very low φCI, less that 0.4% v/v for cf = 1.6 mg/ml and 0.6% v/v
for cf = 6.4 mg/ml, increasing magnetic field strength leads to a very modest increase in
the shear modulus of the sample. Above certain value of φCI, a drastic change in the shear
modulus is observed above a specific value of magnetic field strength (Bcrit). Bcrit decreases
with increasing φCI. The normalized shear modulus, above Bcrit, shows a strong apparent
power-law dependence on the magnetic field density, G/G0 ∼ Bn, where n ≈ 3 − 4.5.
At the highest applied field (B = 1 T), for most cases, a monotonic trend between G/G0

and φCI is observed. However, while at cf = 1.6 mg/ml, the normalized shear modulus
roughly approaches a plateau value, such a trend is not observed at cf = 6.4 mg/ml. Note
that because of the non-monotonicity in the values ofG0 with φCI, the shear modulusG(B)

versus B will shift non-monotonicity, but the qualitatively trends do not change.
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(a) (b)

Figure 8.8: (a) A fibrin-CI composite fabricated using the method described in this work.
(b) SEM image shows that fibrinogen successfully polymerizes around the CI particles and
causes no apparent changes in the network architecture compared to a pure fibrin network.

Figure 8.9: The relative stiffening, G(B)/G0, of the fibrin-CI composite with
(cf = 1.6 mg/ml) compared to its value in the absence of the field as the strength of
the field is varied. A strong stiffening of the composite, higher than the expected ∼ B2

scaling, can be observed above a certain concentration.
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Figure 8.10: The relative stiffening, G(B)/G0, of the fibrin-CI composite with
(cf = 6.4 mg/ml) also shows strong sensitivity to the magnetic field.

Figures 8.12 and 8.13 show the X-ray micro CT images of various samples in the pres-
ence and absence of the magnetic field. Three-dimensional views of the all the samples are
provided in the SI. Note that the field in these images is being produced by a permanent
magnet positioned just under the sample. Hence, the magnetic field strength is not uniform
inside the sample, but rather have a gradient in its strength with field strength decreasing
away from the magnet. Hence, we cannot make a one-to-one comparisons between the the
microstructure of the composites under uniform field and xµCT images. However, certain
vital observations can be made. The CI particles are homogeneously distributed in the fibrin
meshes in the absence of magnetic field. Under the field, we observe slight rearrangement
of particles. It is unclear from the images whether the particles get displaced to align into
small chains, but large displacements and formation of particle chains as seen in the case
with yield stress fluid composites (Fig. 8.5) are clearly not seen in both the cases.
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Figure 8.11: Fibrin-CI composite (φCI = 2 % and cf = 1.6 mg/ml) with uniform distribu-
tion of CI particles in the absence of field (left). CI particles undergo small displacements

(compared to large displacements in Fig. 8.5) in the presence of magnetic field (right).

B=0 B≠0

B≠0B=0

B≠0B=0

Figure 8.12: 3D reconstruction of X-ray CT images for Fibrin-CI composite (φCI = 2 %
and cf = 1.6 mg/ml).
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Figure 8.13: Fibrin-CI composite (φCI = 2 % and cf = 6.4 mg/ml) with uniform distribu-
tion of CI particles in the absence of field (left). CI particles undergo small displacements

(compared to large displacements in Fig. 8.5) in the presence of magnetic field (right).B=0 B≠0

B≠0B=0

B≠0B=0

Figure 8.14: 3D reconstruction of X-ray CT images for Fibrin-CI composite (φCI = 2 %
and cf = 6.4 mg/ml).

8.3.4 Fibrin-Submicron Fe Composites

Extending the idea presented in the previous subsection, the effect of relative particle to
mesh size on the magnetorheological effect is explored further. In this case, submicron
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sized (30-100 nm) Fe particles, much smaller than the mean fibrin mesh size, are utilized.
Figures 8.15 and 8.16 show the effect of magnetic field strength for the composites prepared
with submicron Fe particles using the same fibrin concentrations as used in last subsection.
The shear modulus of the composite in the absence of a magnetic field is affected by the
presence of particles. Generally, we find the shear elastic modulus of the composite is lower
than the pure network modulus. Such an effect has been observed in the past with systems
of particle inside fibrin matrices. The effect of varying magnetic field strength is different
from CI-fibrin system discussed earlier. The normalized shear modulus G(B)/G0, shows a
monotonic increase with the increasing B. Compared to the composites prepared with sub-
micron particles, the power-law sensitivity of the shear modulus to the magnetic field also
decreases and stays close a quadratic dependence i.e. G

G0
∼ B2. However, in some cases

we do observe a stronger dependence as shown in Fig. 8.16. The observations that we make
for submicron Fe-fibrin system are similar to a magneto-yield stress fluid (CI particles sus-
pended in a yield stress matrix of carbopol). The concentrations of carbopol were selected
to get a linear shear modulus close to the fibrin matrices that we have employed. The field-
dependence at various concentrations show similar trends to that of Fe-fibrin composites,
where we found a monotonic increase in shear modulus with the strength of applied field.

Figure 8.15: The relative stiffening, G(B)/G0, of the fibrin-submicron Fe composite with
cf = 1.6 mg/ml. The composites do not show the strong stiffening effect as with the micron

sized particles of φCI below a critical concentration.
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Figure 8.16: The relative stiffening, G(B)/G0, of the fibrin-submicron Fe composite with
cf = 1.6 mg/ml.

The submicron Fe particles inside organize into aggregates inside the fibrin network in
the absence of magnetic field as shown in Fig. 8.17. It is unclear from the current exper-
imental evidence whether this is simply a consequence of effective attractive interactions
between the particles that drive formation of such blobs against the thermal fluctuation
forces or if the polymerization of fibrinogen influences the arrangements of particles or
perhaps a combination of both. Under an external field particles chain-up and accumulate
towards the direction of higher field strength under the magnetic field. Such an observation
points towards the idea that the stiffening observed in such cases is a consequence of sub-
micron Fe particles forming chains in the direction of the magnetic field which resist the
external deformations leading to net stiffening.

8.3.5 Nonlinear Rheology Fibrin-CI Composites

In order to understand the origin of stiffness in the particle-fibrin composites, the nonlin-
ear response of the composite is studied. Figure 8.19 shows the rheological response of
the composites formed with fixed concentration of fibrin (cf = 6.4 mg/ml) and varying
content of CI particles (φCI) under oscillatory shear deformation of increasing amplitudes.
The strength of uniform magnetic field is also varied as shown. At low φCI = 0.8% (Fig-
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Figure 8.17: Submicron Fe particles arrange into aggregates inside the fibrin mesh
(6.4 mg/ml) in the absence of magnetic field (left). The Fe aggregates undergo large dis-

placements, and align to form chains along the magnetic field lines (right).

ure 8.19 a), the linear shear modulus stiffens by a factor of 2 − 3 while the nonlinear
stiffening nature G′1 of the composite appears to be the same as the pure fibrin network
(Fig. 8.19) even in the presence of magnetic field. This suggests that the presence of parti-
cles in the fibrin network negligibly interferes with the strain-stiffening nature of the fibrin.
At φCI = 2.5%, while the nonlinear response at B = 0 T is similar to the pure fibrin net-
work, the shear modulus has an increases by a factor 4 − 8 with the increasing magnetic
field strength. The nonlinear response under a magnetic field at this concentration is dis-
tinct from the composite with φCI = 0.8% or the pure fibrin network. Instead of a leading
order stiffening in G′1 that was observed for the composite with φCI = 0.8% (Fig.8.19 a)
and pure fibrin network (Fig.8.19 b), G′1 softens at leading order followed by stiffening at
higher strains. At even higher particle volume fraction φCI = 4% (Fig. 8.19 c), the linear
shear modulus shows an increase by a factor of 6-20 in the presence of magnetic field.
However, in this case while a leading order softening is observed, the network only stiff-
ens very weakly with further increase in strain amplitude. It is important to note that the
softening response is observed in the low strain amplitude range, γ0 = 0.01− 0.1, which is
typically below the critical strain at which the stiffening becomes significant in pure fibrin
or in composite, γ0,crit ≈ 0.1.

The experimental observations in Fig. 8.19 can be explained from the understanding of
nonlinear stiffening mechanisms in semiflexible polymers. The leading order reason for
nonlinear stiffening is the presence of floppy modes such as small thermal undulations in
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Figure 8.18: 3D reconstruction of X-ray CT images for Fibrin-submicron Fe composite
(φFe = 2 % and cf = 6.4 mg/ml).

the filaments which are pulled-out under an applied deformation. Our hypothesis is that
the presence of magnetic dipoles within the network contribute to composite stiffening in
a similar way. The interaction forces between the particles (which depend on both φCI and
B) deforms the fibrin matrix. This deformation pulls out the floppy modes in the principle
direction of extension, thus leading to the field-dependent stiffening of the linear modulus.

A key observation is that in all the cases, the onset of nonlinear stiffening is nearly at the
same applied strain amplitude. This suggests that most likely the underlying cause of even-
tual stiffening is the pulling out of floppy modes from the fibers (even in cases, Fig. 8.19 b
and c, where we observed a softening response at intermediate strains). The key question
that remains is regarding the leading order cause of softening at intermediate strains in at
φCI = 2.5% and 4 %. One possibility of irreversible breaking of crosslinked junctions in
the fibers which are nonlinearly deformed due magnetic forces and are further deformed by
the external shear field. Obviously in the presence of two simultaneous deformation fields,
analysis is more involved and is beyond our current scope.

8.4 Discussion and Modeling

As observed in the last section, the fibrin-magentic particle composites magnetorheolog-
ical features which have not been reported for the previously studied magnetorheological
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Figure 8.19: (a) At φCI = 0.8% v/v, the a modest stiffening of linear shear modulus
is observed, while the stiffening under nonlinear deformation (large strains) is apparently
similar to that of pure fibrin network (Fig. 8.7). (b) While the linear modulus is enhanced by
increasing φCI to 2.5%, the nonlinear properties show a leading order softening followed by
stiffening. (c) At an even high particle concentration, φCI to 4%, the leading order softening
in response to nonlinear external deformation is still observed followed by a fairly weak

stiffening.
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systems, e.g. higher power-law sensitivity og stiffenss ratio to the magnetic field strength.
First, comparisons of the magnetorheological performance of the systems studied here are
made with the literature though material performance charts that highlight such differences.
Next, a modeling approach is presented to describe such features of magnetorheological
response in the composites. To this effect, some of the established ideas in the magnetorhe-
ological modeling and semiflexible polymer networks are utilized.

8.4.1 Material Performance Charts

Figure 8.20, plots the stiffness-change properties of various magnetorheological elastic
systems that have been presented in the literature [252, 253, 254, 255, 256, 257, 14, 258].
Fig. 8.20 a plots the power-law exponent of the shear modulus dependence of magnetic
field strength (G ∼ Bn) against the linear shear modulus of the systems in the absence
of field. Two key features are evident: (1) the sensitivity (quantified by the value of n)
is significantly higher for our systems than the systems presented in the literature both
via experiments and theory, and (2) the fibrin-magnetic particle composites are relatively
much softer than the traditionally studied systems. Fig. 8.20 b shows the range relative
stiffening, G(B)/G0, achievable under the application of an external magnetic field (G ∼
Bn) against the linear shear modulus of the systems in the absence of field. Again, we see
that the relative stiffening that we can achieve via fibrin-particle composites is significantly
higher. Note that this however does not mean the absolute change in the stiffness follows
the same trend. In the following sections, we model the systems studied in this work and
provide insights into the microstructural features that may dominant the mechanics of the
composites we presented.

8.4.2 Modeling Magnetorheologcal Response

The MR effect in magnetorheological fluids, hydrogels, and elastomers is attributed to
interactions between magnetic particles that act as magnetic dipoles under an externally
applied magnetic field [259, 260]. In magnetoelastomers, depending on whether a field is
applied before or after crosslinking, particles can either form chains or have other types
of distribution. Most experimental and theoretical studies on magnetoelastomers have em-
ployed flexible polymeric scaffolds, and in general such systems have micron sized par-
ticles embedded in a polymer matrix whose mesh size is significantly smaller than the
particle size, essentially a continuum elastic matrix [261, 13, 262, 263, 251, 259, 260, 14].
In continuum sense, the flexible polymeric matrices exhibit a linear stress-strain relation up
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Figure 8.20: Material performance charts. (a) Ashby style chart comparing the maxi-
mum sensitivity (power-law exponent, n for various systems studied in the literature in
comparison to the systems considered in this study against the linear shear modulus G0 in
the absence of magnetic field. (b) Ashby chart comparing the maximum stiffening ratio
(G(B)/G0) in various systems. In all the cases the intensity of magnetic field strength

varies between (0− 1)T.
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to large strains when compared to their semiflexible counterparts, and hence their mechani-
cal properties can be described by a constant elastic modulus for the particle displacements
involved.

A simple explanation of the magnetic field-dependent stiffening of material response is
the field-dependent magnetic interaction energy that exists between the magnetic particles
(dipoles) in addition to the elastic deformation energy of the polymer matrix [262, 263,
251]. Hence, the shear modulus can be expressed as a superposition of the elastic modulus
from the polymer chains deformation and the changing magnetic dipole interactions as a
result of the applied external deformation,

G(B) = G0 +Gm(B) (8.1)

An inherent assumption in such an analysis is that the deformation energy of the polymer
matrix and the magnetic dipole interaction energy are independent of each other. Next, an
approach described in the literature is used to evaluate the term Gm(B) on the right hand
side of Eq. 8.1.

Evaluating Magnetic Dipole Interactions

The potential energy between magnetic dipoles Fm can be expressed as a sum over all the
possible pair-potentials between the dipoles with the dipole moments mi and mj , connected
by a radial vector Rij , as follows [262, 264]

Fm = − 1

V

µrµ0

4π

∑
i,j
i6=j

[
3(mi · Rij)(mj · Rij)

|Rij|5
− (mi ·mj)

|Rij|3

]
(8.2)

where µ0 is the permeability of vacuum, V is the volume of the sample, and µr is the relative
permeability of the medium (assumed to be 1 from here on). Assuming two particles (with
magnetic dipoles mi and mi) and having identical geometry and magnetic properties, the
dipole strength |mi| = |mi| = m can be expressed in terms of the particle magnetizationM
asm = v0M , where v0 = 4π

3
a3 is the particle volume, a being the radius of the particle. The

particle magnetization can then be related to the external magnetic field strength B = |B|
by the Fröhlich-Kennely equation [265]

M [B] =
Ms(µini − 1)(B/µ0)

Ms + (µini − 1)(B/µ0)
(8.3)
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(a) (b)

Figure 8.21: Spatial distribution of particles. (a) A uniform distribution assumed to be
represented by a cubic lattice structure. (b) A chained distribution.

whereMs is the saturation magnetization and µini is the magnetic permeability of the parti-
cle. Without losing any generality, we assume the external magnetic field B is aligned with
the y-axis, and a simple shear deformation (in the x − y plane) modifies the x-component
of Rij . The total magnetic interaction energy of the sample (Eq. 8.2) hence can written as

Fm(γ,B) = −µ0M [B]2

4π

N

V

∑
i

[
3(Ri,y)

2 − |Ri(γ)|2

|Ri(γ)|5

]
(8.4)

where N is the total number of dipoles and Ri is the radius vector Ri,j with j − th particle
centered at the origin. Hence, the contribution to the shear modulus from the magnetic
interactions can be evaluated as

Gm(B) =
∂2

∂γ2
Fm(γ,B)

∣∣∣∣∣
γ→0

. (8.5)

At low field strength Eq.8.3 gives M ∼ B, hence m ∼ B. Thus Eq. 8.5 implies
Gm ∼ B2. Under an external shear deformation, the contribution from magnetic in-
teractions is additive to that of elastic contribution from polymer chains. This leads the
commonly observed enhancement in the shear modulus of magnetoelastomers of the form,
G = G0 + cB2, where G0 is the elastic shear modulus of the polymer matrix (with rigid in-
clusions and absence of magnetic field). To simplify the evaluation of magnetic interaction
energy, we assume two simplified particle distributions as shown in Fig. 8.21. A simple
cubic arrangement is used to approximate the uniform particle distribution and a chained
distribution mimics the scenario when the particles undergo large displacements and align
to form chains in the direction of field lines.
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Modeling Yield Stress Fluid-Magnetic Particle Composites

Next, the comparison of the simple procedure described above to account for the MR effect
in linear elastic materials is made against the results that were obtained for the MR yield
stress fluids. The idea here to verify that the simple model is able to capture the quantitative
trends in the well studied systems of MR yield stress fluids.

Our experiments with CI particles suspended in yield stress fluids of Xanthan gum
(Fig. 8.3) and carbopol (Fig. 8.4.) closely agree with the model describe above. Dipoles
in both the cases align into chains along the direction of magnetic field lines (Fig. 8.5). In
general for the system involving magnetic particles suspended in matrices (polymeric net-
work or yield stress fluid), its is energetically favorable (lower magnetic potential energy)
for the magnetic dipoles to align into chains parallel to the direction of external magnetic
field. However, particles need to overcome several other barriers to reach such a configura-
tion, e.g. in the case of submicron or nanoscale particles, the thermal fluctuations may tend
to perturb the particles from the chained structures, or in a yield stress fluid, the dispersed
particle must overcome the static yield strength, σy, of the matrix to plastically deform the
surrounding matrix and align into chains. An estimate of such magnetic stresses on the
surrounding fluid matrix is given by

τmag =
fmag
4πa2

. (8.6)

The magnetic force between two attracting dipoles of strength m(B) with their centers
separated by a distance R is given by [13]

fm =
3µ0m(B)2

R4
(8.7)

Since, the magnetic stress depends on magnetic field strength, we expect that beyond a
critical value of magnetic field, the magnetic dipoles will be uniformly distributed within
the matrix, and once the magnetic stress exceeds the yield strength, they will begin to align
into chains. Hence, at low field strengths we expect that the predictions based on cubic
lattice (uniform) distribution to agree with the experiments, and at high field strengths, the
chained distribution predictions should match the experimental observations. For the cases
of CI particles in Xanthan gum, since the yield strength of fluid is very small, we expect the
chained predictions to match the experiments in almost the entire range of field strengths.
Fig. 8.22 shows the close agreement between the experiments with Xanthan-CI systems
and the model predictions.

For the case of varying yield strength fluids in Carbopol-CI system we expect the de-
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Figure 8.22: Comparison of model predictions with the experiments. The predictions
assuming chained distribution (dashed lines) agree well with the response of magnetorhe-

ological system of Xanthan gum and CI powder.
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Figure 8.23: Comparison of model predictions with the experiments for the Carbopol-CI
system. The cubic lattice predictions (dotted lines) match well the the experiments at low
strengths of magnetic field, while at high field strengths the chained distribution predictions
(dashed lines) agree well. (inset) The estimate of the stress imposed by a magnetic parti-
cle (dipole) on the surrounding matrix is shows by the solid line and the experimentally
measured yield strength of the composite in the absence of field is shown by solid circles.

viation from cubic lattice arrangement beyond a threshold magnetic field. The inset of
Fig. 8.23 shows the comparison of estimated magnetic stress and the yield strength of var-
ious experimental systems. The trends from predictions show that the deviation from the
cubic lattice predictions beyond a critical field strength. At high field strengths, the chained
predictions closely follow experiments in all cases. As noted before, since the model in an
equilibrium state model, it is unable to predict trends when the distribution changes from
cubic to chain-like.

Modeling Fibrin-Magnetic Particle Composites

The fibrin-particle composite systems that we discussed in this work have several con-
trasting features to the analysis described in previous sections: (1) the mesh size (ξ) of
semiflexible fibrin network is comparable to the CI particle (2a) or much larger than the
submicron Fe particle, (2) the fibrin network exhibits a highly nonlinear stiffening response
(Fig. 8.7) compared to the flexible polymers used in prior studies [251, 263, 14]. Hence,
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the linear continuum approach that we summarized before is not directly applicable to the
fibrin-particle composite presented in this work. Based on our rheological and microstruc-
tural observations, we expect new physics in the underlying system. In the fibrin-particle
composite system that we used in experiment, the fibrin mesh is chemically cross-linked
with fixed junctions. The volume fraction of fibers is typically very low and the compos-
ite has significant pores filled with solvent (water). Hence, particle rearrangement in the
crosslinked fibrin matrix will depend on the size of particles relative to ξ of the crosslinked
network.

We envision three different scenarios purely based on the geometric constraints as shown
in Fig. 8.24. The distinct scenarios that we envision are (a) 2a > ξ, particles are physically
arrested inside the fibrous mesh, e.g. for the case of CI particles in the fibrin mesh with
cf = 6.4 mg/ml, (b) 2a < ξ, particles can move through the mesh when they experience
magnetic forces, and can align into chains, e.g. for the case of submicron Fe particles in
the fibrin mesh with cf = 1.6, 6.4 mg/ml, and (c) 2a ≈ ξ, particles can show both the
arrested and chained behaviour, e.g. for the case of CI particles in the fibrin mesh with
cf = 1.6 mg/ml. Such scenarios are qualitatively consistent with the X-ray CT images.

Figure 8.24: Schematic of different cases considered in this work. The ratio of particle
size to mesh size is varied either by changing the particle size (micron size CI particles and

submicron sized Fe particles) or by varying the fiber concentration.

Interaction forces between the embedded magnetic dipoles can likely deform the sur-
rounding matrix, and the magnitude of such forces will be determined by the particle dis-
tribution function, particle volume fraction, and strength of the applied field. Owing to
the strain-stiffening nature of the crosslinked fibrin matrix, even nominal deformations can
induce a nonlinear response from the matrix (Fig. 8.7). Hence, unlike the typical approach
adopted in magentoelastomers, where the flexible polymer matrix would typically not un-
dergo noticeable nonlinear deformation, we propose that in our system, the elastic energy
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of the fibrin matrix is indirectly dependent on the magnetic field strength.
Fig. 8.25 shows the estimated values of stress that dipoles, distributed uniformly inside

the fibrin network, apply on the mesh. In both the cases, cf = 1.6 and 6.4 mg/ml, it is
evident that the magnetic stress exceeds the critical stress value, beyond which significant
nonlinear response of fibrin network is observed, beyond a critical magnetic field strength
at various particle concentrations. In the case of cf = 1.6 mg/ml, we also expect that the
dipoles can irreversibly deform the mesh. Thus, the overall stiffening that we observe for
fibrin-magnetic particle composites has a contribution for stiffening polymer mesh (that
depends on the strength of magnetic interactions between the particles).

We now derive a scaling prediction for the fibrin mesh stiffening as a function of mag-
netic field strength. We assume individual filaments between the chemically crosslinked
junctions are inextensible. As the network is stressed, the thermal undulations in the fibers
are pulled out. The force-extension relationship for such an inextensible fiber scales as
f ∼ (1 − x)2 as x → 1, where x is the the end-to-end distance between the junctions
normalized by the contour length of the fiber between the junctions [237, 220, 127]. Thus,
the spring constant k for such a fiber scales as k ∼ ∂

∂x
f ∼ f 3/2 ∼ σ3/2. Thus, the shear

modulus, G ∼ σ3/2 [237, 220]. By force balance, the stress σ experienced by a fiber at a
radial distance r from the center of a magnetic dipole scales as σ ∼ fm/r

2. Thus, we get
the scaling relationship between shear modulus and the magnetic dipole moment as,

G ∼ m(B)3/(r3R6). (8.8)

Figure 8.27 shows the comparison of model predictions with the experiments for the case
with cf = 1.6 mg/ml fibrin network. We envision this case is represented by Fig. 8.24 b.
It is evident that the predictions from uniform distribution (cubic lattice) agree well with
the experiments at low field strength. Beyond a critical field strength, the uniform modulus
predictions underpredict the observed modulus. We also find that the predictions from
assuming a chained structure typically over predicts the observed modulus. The trends
from the scaling predictions described by the scaling law discussed above tends to describe
the stiffening, but there are systematic deviations from the experiments. Since the mean
mesh size in this case is comparable to the particle diameter, we expect a combination of
all the above effects. Note that the scaling law is shifted by an empirical front factor to
visually match the modulus at the onset of sharp stiffening.

Figure 8.28 shows the comparison of model predictions with the experiments for the case
with cf = 6.4 mg/ml fibrin network. We envision this case is represented by Fig. 8.24 b.
Similar to the case with cf = 1.6 mg/ml fibrin, it is evident that the predictions from
uniform distribution (cubic lattice) agree well with the experiments at low field strength.
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Figure 8.25: Characteristic magnetic stress on the fibrin mesh due to dipole interaction as
the CI particle volume fraction and the field strength (B) is varied for (a) cf = 1.6 mg/ml
and (b) cf = 6.4 mg/ml. The dashed purple lines show the characteristic stress at the
onset of nonlinear stiffening in fibrin mesh. The solid purple lines indicate the stress to

irreversibly deform the crosslinked fibrin networks.
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Figure 8.26: Schematic of the fibrin-CI composite model. An isotropic inextensible fibrous
network with mean end-to-end distance l0 between the crosslinked junctions and contour
length larc is assumed to be deformed by an embedded magnetic dipole which experiences a
force due to other dipoles. In mean-field sense we assume that this in-homogeneous defor-
mation results in a deformed state where the end-to-end distance between the crosslinked
junctions changes by a factor λ. λ depends on the stiffness of the polymer matrix, volume

fraction φCI of the particles and the magnetic field density B.

Figure 8.27: Model predictions for CI-fibrin composite (cf = 1.6 mg/ml) (case
Fig. 8.24 b). At low field strength the cubic lattice predictions (dotted lines) agree closely
with the experiments. At high field strengths, the chained-distribution predictions (dashed

lines) overestimate the stiffening. The solid-lines show the predictions from Eq. 8.8.
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Figure 8.28: Model predictions for CI-fibrin composite (cf = 6.4 mg/ml) (case
Fig. 8.24 c). At low field strength the cubic lattice predictions (dotted lines) agree closely
with the experiments. At high field strengths, the chained-distribution predictions (dashed

lines) overestimate the stiffening. The solid-lines show the predictions from Eq. 8.8.

Beyond a critical field strength, the uniform distribution model predictions do not capture
the sharp change in the modulus. The chained structure typically over predicts the observed
modulus. In this case,we find that the trends from the the scaling predictions described
by the scaling law discussed above, tend to closely follow the stiffening trend, but there
are systematic deviations from the experiments. The deviations can be attributed to the
polydispersity in the particle size distribution. The particles which are much smaller than
the mean mesh size, may form chains. But we conclude that the leading order effect comes
from a superposition of components from uniformly distributed dipole interactions and
fibrin mesh stiffening.

Figure 8.29 shows the comparison of model predictions with the experiments for the
fibrin-Fe composite at cf = 1.6 mg/ml. In this case, we expect the formation of chains at
large enough magnetic fields. Since, the particles form aggregates at low field strengths,
magnetic interactions need to overcome the interactions holding the particles in aggregates.
At large fields, we see the chained-model predictions closely in agreement with the exper-
iments. At high concentration of particles (φFe = 0.5 %), the scaling predictions from the
mesh stiffening model also comes in close agreement with the experiments. Figure 8.30
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shows the comparison of model predictions with the experiments for the fibrin-Fe compos-
ite at cf = 6.4 mg/ml. Here also we find that the chained predictions match the experiments
fairly well at low concentrations (φFe < 2 %). But at highest concentration (φFe = 4 %),
we find that even the chained prediction cannot account for the observed stiffening. The
previously described scaling law matches the stiffening in this case very well.

Figure 8.29: Model predictions for fibrin-Fe composite (cf = 1.6 mg/ml) (case Fig. 8.24 a)
Dotted and dashed lines represent the predictions assuming uniform (cubic lattice) and

chained distribution, respectively. The solid-lines show the predictions from Eq. 8.8.

The different systems that we utilized in this work are capable of achieving magnetic
field responsive stiffening. We found that mechanisms of achieving stiffness are different,
and hence so is the sensitivity of modulus to the field-strength. For the case of magnetic
particles suspended in a yield-stress fluid, we observe that the dipoles undergo large dis-
placements to align into chains in the direction of applied field, which is the primary reason
for drastic stiffening. In the scenarios presented in Figs. 8.24 a and b (fibrin-Fe and fibrin-
CI systems (cf = 1.6 mg/ml)), we find that a combination of particles partially chaining
and deforming the polymeric mesh lead to the drastic stiffening. While in the case pre-
sented in Fig. 8.24 c fibrin-CI systems (cf = 6.4 mg/ml)) the leading case of stiffening is
dipole induced network deformation.
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Figure 8.30: Model predictions for fibrin-Fe composite (cf = 6.4 mg/ml) (case Fig. 8.24 a)
Dotted and dashed lines represent the predictions assuming uniform (cubic lattice) and

chained distribution, respectively. The solid-lines show the predictions from Eq. 8.8.

8.5 Summary

We presented a new approach of fabricating magnetically responsive soft composites us-
ing semiflexible polymer matrix (chemically crosslinked fibrin). Our results highlight that
unlike traditional magnetorheological elastomers formed using flexible polymer scaffolds,
the senstivity to the applied fields can be drastically enhanced due to the strain-induced
stiffening of the semiflexible polymer matrix. Additionally, we show that the geomet-
ric length-scales that originate in the composites (particle size and mesh size) dictate the
physics behind the stiffening response. The simple scaling arguments that we present elu-
cidate the microstructural understanding of the system. With the continuing progress in the
fields of soft robotics, drug delivery and artificial muscles, and the recent progress made in
synthesis of synthetic semiflexible network, the ideas described here should pave the way
for design of materials for new applications.
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CHAPTER 9

CONCLUSIONS AND OUTLOOK

From the results discussed in the previous chapters of this thesis, it is clear that the combina-
tion of polymer-colloids or polymers of very different length scales can produce materials
with properties that are very different from their constituents in pure state. This is at-
tributable to the competing physical phenomenon that occurs in the individual constituents,
and the coupling of such phenomenon across the constituents that leads to unprecedented
material response. Three major themes were studied as a part of this thesis.

First, a naturally occurring hydrogel, hagfish slime, that has an ultra-soft material re-
sponse was studied. Through a combination of experiments and mathematical modeling,
some of the key features of slime and the process of its formation were discovered. Through
a non-standard method of relating rheology to material structure, and a comparative study
across various soft systems, it was shown that unlike any other soft material, the relaxation
exponent (and the fractal dimension) of hagfish slime remarkably constant across a very
wide range of concentration. Such a remarkable feature may be desirable in the scenarios
where the applications require the use of material in an uncontrolled setting. For example,
hagfish slime inspired nonlethal weapons that can capsize or clog the target, and slime in-
spired adhesives which can work underwater. The results also indicate the double-network
structure of hagfish slime where the large pore size network of threads dominate the lin-
ear/nonlinear properties of slime while the mucus network is likely formed with a much
smaller pore size and gives slime its low permeability. Such an idea can be utilized to de-
velop new materials where the strength and permeability can be independently controlled.

Hydrodynamic unraveling of hagfish skein was another key idea that was established in
this thesis. Not only does it provide an alternative and rigorous view about the fast unrav-
eling process, it has the potential to provide new ways of designing biomaterials which can
undergo on demand expansion. For example, in drug delivery, where the drugs that can be
injected/consumed in a compact way expand dramatically at the target site. Of course more
insights into the packing and hierarchical looping of hagfish skein should accompany such
efforts.

New understanding for the dynamics of pure pNIPAM suspensions focused on eluci-
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dating the dynamics of such suspensions in different regimes. To the best of our knowl-
edge, this is the first attempt to quantitatively understand structure, quiescent relaxation and
shear elasticity, and nonlinear yielding of dense microgel suspensions using microscopic
force based theoretical methods that include activated hopping processes. Further, the rich
temperature-dependent behavior was studied, and we showed that the temperature leads to
a concentration-dependent particle size change but also changes the interactions potential
between the particles. With the growing interest in self-assembly of soft functional colloids
that can form structures on various length scales, the fundamental work performed in this
thesis can offer new ways to assemble structures. A key application that can benefit from
this understanding is direct-wire writing (3D printing). The controllable stiffness (and yield
strength) of such suspensions make them a strong candidate for such an application.

The stiffness changing soft composites that were demonstrated as a part of this work offer
new methods of designing responsive soft materials. The proof-of-concept idea of utilizing
the intrinsically nonlinear stiffening of semiflexible biopolymers with responsive particle
suspensions can now be extended to new directions. In order to further control the inter-
actions between the polymer-colloid and control the base stiffness of the composite, the
possibility of using synthetic semiflexible polymers will be an exciting direction for future
work. Recent development in the synthetic semiflexible networks from polyisocyanopep-
tides [230, 231, 232] with known and controllable chemistry for programming composites
to exhibit dramatic stimuli-responsiveness such as strain-stiffening. An alternative route
to achieve stimuli responsiveness using the core-shell structured colloidal particles that go
beyond the present microgel design. Such particles hold the potential to be tuned over a
wider range of reversible sticking/unsticking from the polymer mesh and thus expand the
change of composite bulk properties induced by the particles.

Another fascinating direction that will enhance the potential of the magnetoelastomers
(with mesh size bigger then the particle size) is to chemically tune the particles (e.g. repul-
sion) that can drive the particles back to uniform distributions within the polymer matrix
after they have formed chains. This may offer the use of such composites where insulator-
conductor transitions are required.

The flexibility in tuning the mechanical properties of the composites make them a po-
tential material to develop adaptable manipulators for various biomedical applications e.g
artificial muscles, grippers and tissue scaffolds. The degree of compliance which the com-
posites offer both in their field sensitivity and dynamic moduli can be advantageous in
wearable medical devices e.g. soft orthodics for human ankle-foot rehabilitation, cardiac
actuators, soft wearable motion sensing suits etc [266, 267, 268, 269]. Such an approach
may have drastic impact in healthcare as it offers improved tools for patient rehabilitation
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and well-being. A potential challenge in using stimuli responsive composites is the re-
quirement of large amounts of magnetic power to induce property changes. The superior
sensitivity of the developed composites which may require low strength of magnetic field
to modulate mechanics may overcome that challenge. One approach is to distribute the par-
ticles inhomogeneously inside the polymer mesh. This will locally vary the stiffness and
can produce movements like bending/folding. The success of such robotic structures will
rely on the ability to fabricate them. The advancement in 3D printing methods for soft ma-
terials has aided the construction of complex structures capable of functionality. Although
printing a biomaterial such as fibrin is challenging using traditional fabrication methods,
recently developed methods such as reversibly embedding soft gels into a secondary hy-
drogel [270] offers way to 3D print.

Recently, development of small scale soft robots capable of multimodal locomotion [271,
272, 273] using composite materials have gained significant attention (based on the prin-
ciple that magnetic composites change their shape under the influence of magnetic field
(magnetostriction)). Using the stimuli-responsive composites, strategies for movements
like crawling can be developed by combining the ideas of inhomogeneous distribution of
particles inside the mesh and a spatial-time varying external field. This experience should
feed into achieving complex motion like flapping of wings which may enable swimming-
like motion [274, 275]. Based on the success in initial efforts, careful consideration can
be given to efficiently design the robot body plan and architecture. Consideration of
biomimetic approaches that can be helpful in understanding the optimal design features
from real organisms. A key difference in the proposed work compared to the literature will
be the high degree of inhomogenity in the stress, and deformation field in the robots de-
signed with the novel stimuli responsive material. This will help enhance the performance
of the robot.
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APPENDIX A

HYDRODYNAMIC UNRAVELING OF
HAGFISH SKEIN

A.1 Materials and Microscopy

Pacific (Eptatretus stoutii) and Atlantic (Myxine glutinosa) hagfish were maintained at the
University of Guelph as previously described [42]. All housing, feeding, and experimental
conditions were approved by the University of Guelph Animal Care Committee (Animal
Utilization Protocol 2519). Hagfish were anesthetized before the extraction of exudate.
Electrical stimulation near the slime glands resulted in the secretion of the exudate locally
near the site of stimulation [42]. The exudate was collected directly from fish using a
spatula, stored in a microcentrifuge tube at 10◦C. No buffer or oil was used to stabilize the
exudate from Pacific hagfish and it was used within 2–5 hours from the time of extraction to
ensure sample viability. The exudate extracted from Atlantic hagfish was stabilized under
mineral oil and stored on ice for transport to the testing location [38].

For microscopy studies, an inverted optical microscope with brightfield imaging was
used. To visualize a single skein unraveling, a very small volume of Atlantic hagfish ex-
udate was added to a pool of artificial sea water and an isolated skein was located and
observed under a flow created by manually disturbing the sample. For the network images,
a precise volume of exudate from Pacific hagfish was introduced into a centrifuge tube
containing artificial sea water (1 ml) and the contents were sloshed back and forth in the
closed tube six times, similar to prior work [33]. Following this the sample looked like
a cohesive mass. Gel samples of various exudate concentrations were transferred to glass
slides with small wells. A Nikon 90i Eclipse microscope was used to visualize the network
with differential interference contrast (DIC) to image the slime network.

A.2 Minimum Peeling Force

Assuming only van der Waals interactions exist at the peeling site, we estimate of the
minimum peeling force required for peeling. For an inextensible fiber, with negligible
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Figure A.1: Schematic of a fiber (red) peeling from a substrate (black).

bending energy storage during peeling, the work done by the peeling force FP in moving
a point on the fiber by a distance δP is FP δP (schematic in Fig. A.1). The energy involved
in creating new surface at the peeling site is equal to the van der Waals interaction energy
released at the peeling site, given by EAAP, where EA is adhesion energy per unit area
for van der Waals surfaces. The area created at the peeling site is AP ≈ (2r) δ, where r
is the thread radius and δ is the displacement length of the peeling front created by the
fiber displacement δP. The energy balance, rearranged, gives FP = 2EA r (δ/δP). For
a wide range of peeling angles θ, δP ∼ δ (note that δP = δ for θ = π/2), and we get
FP ∼ 2EAr. A typical adhesion energy for van der Waals surfaces is 50–60 mJ/m2 [276,
277] and r ≈ 1µm, which gives FP ≈ 0.1µN.

A.3 Hagfish Defense in Suction Flow

Evidence of hagfish defense with slime secretion is available for both biting and suction
feeding predators [23, 35]. Here, we treat the case where the predator creates a suction
flow to engulf the prey. A good approximation of suction flow is provided by numerous
experimental and computational studies [278, 279, 280, 281, 282]. A one dimensionless
parametrization of an observed suction flow with bluegill fish is

u(x∗g, t) = u(x∗g = 0, t)(1− 2.19x∗g + 1.86x∗2g − 0.70x∗3g + 0.09x∗4g ) (A.1)

where u(x∗g = 0, t) is the flow speed at the mouth of the predator and x∗g is the non-
dimensional distance from the predator mouth normalized by the gape size (the diameter of
the open mouth). In (A.1), both the velocity and the extensional strain rate decay for x∗ > 0

(away from the mouth of the predator). The form (A.1) represents a time-varying velocity
profile at the mouth of predator. Note that (A.1) applies outside the mouth. We do not have
data for the flow profile inside the mouth, but for our purpose here we assume a constant
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centerline velocity equal to the peak velocity (velocity at the gape), as if the flow was
sucked into a constant diameter tube with a negligibly small boundary layer (Fig.A.2B).
The velocity field is continuous, though the spatial derivative is not. This discontinuous
strain rate is not a problem since we eventually integrate the velocity to get an average
over the unraveled length. To simplify the analysis, we use a time-invariant version of this
velocity profile. We note that (A.1) is obtained by polynomial fit to PIV data, and hence
should only be used in the range of x∗g in which it makes physical sense, i.e. monotonically
decreasing ∂u(x∗g, t)/∂x

∗
g, which is true only for x∗g < 1.36. We use a gape length of 10 cm,

an approximate scale obtained from Fig.A.2A.
We solve for the case of a skein pinned at different locations x∗ where the unraveling

force is due to the drag on the unraveled fiber under the suction flow given by Eq. (A.1)
(Fig. A.2C). The governing equations are the same as derived in the paper:

(L̇)m = −4πµα−1L δ(L)
(
L̇+ ū(L,X, t)

)
. (A.2)

Figure A.3 shows the numerical solution for this case. Compared to the case of uniform
velocity field of 1 m/s solved in the paper, the unraveling time is longer with a spatially-
varying velocity that decays away from the predator’s mouth. The location of the pinning
point of the skein has a huge impact on the unraveling timescales as shown in Fig. A.3, since
being farther from the predator means a lower flow velocity and extensional strain rate. The
strain rate for the chosen velocity profile outside the predator’s mouth lies between 2.19 s−1

at x∗g = 0 and 0.27 s−1 at x∗g = 0.9. From the video evidence of hagfish-predator attack,
we note that exudate is released at a distance less than one-third of the gape size. This
proximity to the mouth, in this flow field, results in an unraveling timescale close to the
physiological one. Note that we used a velocity profile that was experimentally obtained
for suction feeding fish with a gape size of only 1.5 cm (bluegill). We therefore expect the
magnitude of velocity in the real scenarios to be higher, and hence the unraveling times
will be smaller for hagfish predators. It does pose the interesting possibility that smaller
fish, with weaker suction flow, may not create a flow field that unravels the hagfish threads
within hundreds of milliseconds.
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Figure A.2: (A) Evidence of hagfish (Eptatretus sp. 2) defense against suction feeding
predator (Polyprion americanus, Atlantic wreckfish) (adapted from Zintzen et al. [23], by
permission from SpringerNature). A suction feeding fish induces flow into its mouth by
expanding its buccal cavity and drawnig its prey along with the flow. We hypothesize the
suction flow to aid in unraveling of thread cells and set up the slime network. (B) The
one-dimensional suction flow profile (A.1) with an assumption of constant velocity inside

the predator’s mouth. (C) A schematic of the fish-thread-skein system (not to scale).
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Figure A.3: Numerical solution (dashed black line) of (A.2) for the parameter valuesR0 =
50µm, L0 = 2R0, ℘ = 0.5, m = 1/2, and velocity profile given by (A.1) with u(xg =
0, t) = 1 m/s with varying the location of the pinned point. Yellow, orange and green are
the solution to the cases where the skin in pinned at locations 3/10, 6/10 and 9/10 of the
gape size (= 10 cm). Solid black line is the numerical solution for the case of constant

velocity of 1 m/s. The dotted line is the upper bound L = L0 + Ut, with U = 1 m/s.
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APPENDIX B

RHEOLOGY OF HAGFISH SLIME

B.1 Box-counting Fractal Dimension Evaluation

The universality in the time-dependence of strain evolution in creep experiments suggests
an underlying self-similar structure. Such self-similarity very often arises from the fractal
nature of the structure. A structure is deemed fractal if it is self-similar or length-scale
independent (at least in a good approximation for some limited range of length scales). As a
result, the structure appears the same under different magnifications. Most structures found
in nature do not display exact self-similarity but rather statistical or average self similarity
(i.e. the correlation function describing the structure has a scale invariant). Moreover, their
scaling is not valid for all length scales, e.g. for a biopolymer fiber network, at length-
scales larger than the mean distance between crosslinks, the scaling does not longer hold.
A popular method to determine the fractal dimension, df , of a structure is using the box
counting algorithm [283]. In simplest terms, box-counting involves super-imposing smaller
and smaller square grids of normalized length, r (where r is box length divided by the
characteristic length of the mapped area) over a thresholded image. The number of boxes
occupied by the entity of fractal structure, N, is given by

N ∼ r−df (B.1)

where N is the number of boxes of a linear size r that covers the structural features present
in a two-dimensional plane. df is the box-counting fractal dimension. At a given value of
r, the number of boxes needed to cover an array of features should be minimized; hence,
the grid is progressively rotated at 90◦ at set angular increments. The number of occupied
boxes is counted and only the minimum value ofN is used to calculate df . If the set is frac-
tal, the log-log plot ofN versus l obeys a straight line with slope−df , which takes absolute
values in the interval [1 − 2]. To obtain evenly spaced points in the log-log plot, the box
sizes employed follow a geometric progression (TruSoftInt’l Inc., 1999). The maximum
size of the box was selected as to not greatly exceed the distance between the crosslinks.
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Prior to analysis, images were inverted using Fiji Software [284], to represent fibers as
white features in a black background. Additionally, undesirable features like intact thread
cells or air bubbles were also removed. N(r) was calculated using the box counting method
included in Benoit 1.3 software package (TruSoft International Inc., St. Petersburg, FL).
To estimate the fractal dimension, we fit the power-law form described by Eq.B.1, mini-
mizing the residual sum of squares. The fits to the complete data sets obtained from the
Benoit software are shown by the red lines in the figures S1-S3. In using this method, it
is important to note some of the major limitations of the box fractal dimension including:
(1) the range of the power law: is limited in one end by the finite resolution of the fractal
object and on the other end by the fractal’s own finite size and (2) lack of general means
of calibration (i.e. there are not standard profiles or correction factors applicable to the
data) and (3) lack of provision for weighting according to the number of data points inside
the box (i.e. a box is counted as occupied and it is considered in the calculation of N(d)
irrespective of whether it contains one point or a relatively large number of points). The
main uncertainties associated with the implementation of the box-counting algorithm and
sample preparation include: (1) Lack of standard method for estimation of the slope from
the log-log plot. In our study, we have chosen to calculate the slope from the entire plot,
while some other researchers opt to fit only a section of the plot, which would change the
power law exponent. (2) Non-uniformly populated samples especially at higher concentra-
tions of slime. In this case, a lack of effective weighting to the boxes as earlier mentioned,
can affect the estimation of the fractal dimension. Additionally, we also evaluate the box-
counting fractal dimension using an improved box-counting technique [285]. This method
defines a lower limit on fractal behaviour (rcutoff ) using the condition ds

dr
→ 0, where s is

the standard deviation from a linear regression equation fitted to log(N) versus log(r) with
data for r < rcutoff sequentially excluded. We observe an increased value of df using the
improved box-counting technique, consistent with the literature. Nevertheless, our analysis
shows that the network of fibers in hagfish slime is able to assemble into a fractal structure
under mixing, Fig. S1-S3. To estimate the true fractal dimension of hagfish slime, we fur-
ther need to take into account the structures formed by the mucus in the slime. Such effort
is beyond the scope of the work described here.
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Figure B.1: Fractal analysis of microstructure of hagfish slime (0.8 mg/ml). The first
column gives the raw DIC image followed by the thresholded images in the second column.
The fractal dimension of obtained using the power-law fit to the data, as shown in third

column.
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Figure B.2: Fractal analysis of microstructure of hagfish slime (0.4 mg/ml).
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Figure B.3: Fractal analysis of microstructure of hagfish slime (0.08 mg/ml).
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B.2 Strain-dependent Viscoelasticity

Samples were subjected to oscillatory shear deformation with increasing strain amplitude
(0.01−4000%) and a fixed angular frequency (ω = 0.2) rad/s to study their strain dependent
properties. A low frequency was intentionally chosen so as to have negligible instrument
inertia and sample inertia effects in the measurements. Amplitude sweeps for five different
concentrations are plotted in Figure B.4. Only the first harmonic response is shown which
represents the average storage, G′1, (Figure B.4 A) and loss modulus, G′′1, (Figure B.4 B).
As expected the elastic modulus increases with the concentration. G′1 has an extremely low
value ∼ 0.02 Pa, at the lowest concentration of 0.083 wt %. It is interesting to note that the
basic nature of the average response over the range of concentrations probed is similar in
nature (data appears to be vertically shifted).

The material being very soft, presents several challenges in its rheological characteriza-
tion [68, 69] on commercial rheometers. The measurements can be significantly affected
by various experimental artifacts. Here, we demarcate the region, in Figure B.4 A and Fig-
ure B.4 B, where the experimental data should have negligible effect from such artifacts
and should be believable. We identify three main experimental limits, namely: (i) the in-
strument torque limit, (ii) instrument inertia limit and (iii) the sample inertia limit, which
are relevant to the measurement we made. We refer the reader to literature [68] for the
details on plotting these limits.

We also show the data for the control experiment on distilled water obtained on the same
experimental setup. We use this as a control experiment to understand the effects of surface
tension in our experiments. It has been shown that surface tension artifacts can affect the
rheological measurement in very soft samples or low torque rheometry. Such effects can
even show up as apparent elastic modulus in case of a low-viscosity liquid such as water
[69] and can be misleading. Our oscillatory shear measurements for water confirm that
surface tension artifacts are negligible in our measurements. The elastic modulus, G′water
was measured to be O(10−8) Pa. The measured loss modulus of water, G′′water of O(10−4),
is at least an order of magnitude lower that measured response at the lowest concentra-
tion of hagfish slime. Moreover, G′′water shows an excellent agreement with the theoretical
prediction i.e. G′′water = ηwω, where ηw is the viscosity of water (ηw = 10−3 Pa.s) and
ω is the angular frequency of sinusoidal deformation (ω = 0.15 rad/s). The theoretical
G′′water is co-plotted with the experimental data in Figure B.4 B and we find that the match
is reasonably good once the torque signal is out of torque noise floor. Hence, we believe
that our measurements are reporting the true material response and are free from the above
mentioned experimental artifacts and limitations.
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The plot in Figure B.4 A-B, show the first harmonic response which softens above strain
amplitude 20% for all the concentrations. We also analyze the raw stress response signal to
understand the local material response. Figure B.5 A-E shows Lissajous curves for various
concentrations obtained using MITLAOS software. Lissajous curves at all concentrations
have similar features. At low strains (20%), a linear viscoelastic response is observed, ev-
ident by an elliptical curve where as at higher strains, non-linear effects (deviation from
elliptical shape) become evident. A clear intra-cycle strain stiffening can be seen in Fig-
ure B.5 D. At very high strains, viscous effects start dominating. Normalized Lissajous
curves are also shown, Figure B.6 A-E for each concentration tested, where stress and
strain are normalized by their respective maximum values in the oscillatory cycle.
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A

C

B

D

Figure B.4: Amplitude and Frequency sweep data. (A) Average elastic modulus, G′1, re-
sponse for different exudate concentrations. G′1 shows strain softening above γ0 = 20%.
Dashed lines indicate: (1) Instrument low torque limit, (2) Instrument inertia limit and (3)
Sample inertia limit. (B) Average loss modulus, G′′1 is plotted for different exudate con-
centrations. The experimental data for distilled water using the same experimental set-up
(black open circles), matches the theoretical prediction for G′′1 (solid black line) outside the
low torque limit. This exemplifies that the data collected on this experimental set-up is free
from any undesirable surface effects and instrument inertia. (C) The ratio of G′′1 and G′1,
has values within narrow band (0.2−0.3) in the linear viscoelastic regime (γ0 < 20%). The
encircled data in the plots was used to determine the modulus-concentration dependence
in Figure 3. (D) Frequency sweeps for hagfish slime at two different concentrations. The
effects due to the instrument inertia limits the reliability of data beyond a certain frequency.
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Figure B.5: Lissajous curves. The raw data in form of Lissajous curves is shown for
different concentrations at five different strain amplitudes (A) 1.74% (B) 12% (C) 23%
(D) 83% (E) 1100%. (A) and (B) correspond to the strains corresponding to the linear
viscoelastic regime, hence the shape of the stress-strain curve for a sinusoidal deformation
is an ellipse. Nonlinear behavior is apparent from the Lissajous curves in (C) and (D),
where the shape deviated from an ellipse. The sample has an intracycle strain-stiffening
response. At very high strain,(E), the network junctions are broken and the viscous nature

dominates the response.
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Figure B.6: Normalized Lissajous curves. Same data as Figure B.5, normalized by the
maximum strain and stress for each case for the ease of comparison.
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B.3 Time-dependent Viscoelasticity

The repeat measurements in the linear viscoelastic creep are shown for different concen-
trations in Figure B.7 at a stress of 0.01 Pa corresponding to the linear viscoelastic regime.
Repeat measurements are for different sample loading.
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Figure B.7: Repeat data for creep tests at different concentrations. (A) 0.083 wt %, (B)
0.25 wt %, (C) 0.58 wt %, (D) 0.75 wt % for an applied stress of 0.01 Pa which corresponds

to the linear viscoelastic regime.
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B.4 Creep-ringing Analysis

It has been shown that viscoelastic properties of a soft material can be extracted from
inertio-elastic oscillations if the ringing frequency, ω∗ and logarithmic decrement of ringing
amplitude,∆ are known [92, 33, 93]. Following the methods described in literature [91,
33], we extracted local, tangent material response (Figure B.8 A) of this material. We use
a Maxwell model (Figure B.8 B) superimposed with decaying oscillations to approximate
ω∗ and ∆

J(t) = Xexp(−∆
ω∗t

2π
)sin(ω∗t+ ψ) + Y + Zt (B.2)

where X is the ringing amplitude, Y is the initial compliance and Z is the fluidity. ψ is
an arbitrary phase angle. Using the methods described in literature[33], we find the exact
values of ω∗ and ∆ by fitting Eq.B.2 to the creep data. Hence, we estimated tangent moduli
K ′ and K ′′ using the following expressions

K ′ ≈ Iω∗2

b

(
1 +

(∆

2π

)2
)
, K ′′ ≈ Iω∗2

b

(∆

2π

)
(B.3)

A secant modulus, G0 can also be defined, G0 = 1
Y

. Using this procedure for the
creep data across all the concentrations, we obtained the viscoelastic information at shorter
timescales. We found that tangent moduli, K ′ and K ′′, show a power-law dependence on
exudate concentration. The power-law exponents are 0.91 ± 0.08 and 0.92 ± 0.08 for K ′

and K ′′ respectively, corresponding to an applied shear stress of 0.01 Pa (Figure B.8 D).
For an input stress of 0.0316 Pa, power-law exponents are 0.90± 0.08 and 0.83± 0.06 for
K ′ and K ′′, respectively (Figure B.8 F). Thus, tangent moduli, similar to the scaling of the
average elastic modulus from amplitude sweep, also vary linearly with concentration. The
ratio of K ′′ and K ′ was nearly constant for all the tested concentrations (Figure B.8 H).
Secant modulus, G0, also shows a linear variation with concentration (power-law expo-
nents 1.1 ± 0.1 and 0.95 ± 0.1 for input stress of 0.01 Pa and 0.0316 Pa, respectively)
(Figure B.8 D & F). The ratio of K ′′ and K ′, tan δk, has a very narrow range (0.25-0.4),
similar to what was observed in the linear oscillatory experiments (Figure B.8 H).

221



A

Strain, γ

S
tre

ss
,σ

tangent
secant

G0= σ/γ
K' = dσ/dγ

B

C

E F

G

σ0 = 0.01 Pa

σ0 = 0.0316 Paσ0 = 0.01 Pa

Tangent moduli (K’, k’’) derived from ringing

{
J(t) = X exp(-Δω*t/2 π ) sin(ω*t + Ψ) + Y + Zt

H

σ0 = 0.0316 Pa

D

I,bηG

222

Figure B.8 (cont.)



Figure B.8: Figure on from previous page. (A) A schematic depicting the difference be-
tween the secant and tangent modulus. In the linear elastic regime of a material, the re-
lationship between stress, (σ), and strain (γ), is a simple, linear relationship: σ = G0γ,
where G0 is the elastic modulus and has a constant value. A linear response is typically
observed in materials at small enough range of stresses and strains. At larger stresses or
strains, the nonlinear effects can start to dominate the response. In nonlinear regime, the
linear relationship is no longer followed. We can see that from the schematic data in the
red curve. The secant modulus (G0 = σ

γ
) will have a different magnitude than the tangent

modulus (K ′ = dσ
dγ

). Hence, in the nonlinear response, there are different measures of elas-
tic modulus, which are generally not equal. (B) A Maxwell model in series with an inertial
mass is used to extract viscoelastic information from the inertia-elastic ringing observed at
short times. (C) Maxwell model response superimposed with decaying oscillations is used
fit the creep compliance response at short times. A fit is shown for a 0.41 wt % sample.
Four successive peaks from the damping oscillations are used to evaluate all the parame-
ters (X , Y ,Z,ω∗ and ∆). A comparison of experimental data and constitutive model fit is
shown. The agreement between experiment and fit is excellent. The model deviates sig-
nificantly at longer times as shown in inset. (D) The fit parameters are used to extract a
viscoelastic storage (K ′) and loss moduli (K ′′). A short time secant modulus (G0) can be
evaluated from the underlying Maxwell evaluation (G0 = 1

Y
). (E) Tangent moduli plotted

as a function of exudate concentration for an input stress of 0.01 Pa. Both storage and
loss moduli depend linearly on the exudate concentration. (E) The secant modulus, G0,
has a linear concentration dependence as well. Similar observations are made for the stress
input of 0.0316 Pa, shown in (F) and (G). (H). tan δk = K ′′/K ′ varies within a narrow
band (0.25− 0.4) for all concentrations, suggesting that the viscoelastic nature of the slime

remains similar at short timescales.
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B.5 Nonlinear Creep

The non-linear creep for various concentrations are shown in Fig.SB.9. The data at all the
concentrations have similar nature of response. A solid-like power-law creep response is
observed in the viscoelastic regime. The network becomes stiff with a small increase in
stress input. As stress is increased further, the material yields to a liquid-like response.
Above this stress, purely viscous response (slope=1) was observed. We use the same anal-
ysis to derive tangent moduli from the creep experiments at all the stresses. It can be seen
in the Figure B.10 that the tangent storage modulus, K ′′, and tangent loss modulus, K ′,
both show stiffening as the input stress is increased. It should be noted that tangent stor-
age modulus, K ′ is higher than the secant modulus, G0, at both the input stresses and at
all concentrations indicating that we are probing non-linear properties of the material [33]
(Figure B.10 C).
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Figure B.9: Nonlinear creep of hagfish slime. Creep response at various applied stresses.
The response changes from linear viscoelastic power-law solid at low stresses to viscous
high stress, with a yield/failure stress in between. The data shown if for different concentra-
tions of hagfish defense gel (A) 0.083 wt %, (B) 0.41 wt %, (C) 0.58 wt %, (D) 0.75 wt %,

(E) 1.67 wt %, (F) 5.80 wt %.
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Figure B.10: Stiffening tangent moduli with stress. With increase in the input stress, the
samples at all concentrations, show a stiffening of tangent moduli, before yielding.
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B.6 Fractional Constitutive Model

We utilize constitutive models to compare the data over all the tested time scales and con-
centrations. Classically, a combination of mechanical elements, springs and dashpots, is
used to model viscoelastic materials. Such models involve only integer derivative opera-
tors to describe the material response of complex materials. However, they tend to become
complex and hence impractical in describing the material response in certain cases. For
example, it would require a very large number of springs and dashpots arranged in a com-
plex fashion to describe a power-law behavior which is very common in many materials.
Increasing the number of elements results in higher number of parameters to describe the
material response and it is difficult to ascribe a physical meaning to them. Recently, consti-
tutive models involving fractional-order operators have become very popular for describing
material response of several different material system. We utilize such a fractional consti-
tutive model to describe slime behavior.
The concept and applicability of fractional models has been discussed in detail in literature
[95, 97, 98, 104]. The basic element in a fractional model is a spring-pot that combines
the features of classical elements: spring and dashpot. It has been demonstrated that a
spring-pot has a physical behavior similar to a hierarchical arrangement of infinite number
of springs and dashpots [95]. The mathematical description of a spring-pot is given by the
fractional differential equation

σ(t) = G
dα

dtα
γ(t) = G

∫ t

0

(t− t′)−αγ̇(t′)dt′ (B.4)

where α is the order of derivative and its values lies in [0, 1], σ(t) is the stress in the material
and γ(t) is the strain. G is a quasi-property and has units of [Pa sα]. Eq.B.4 appears as
an interpolation between a linear elastic behavior, σ(t) ∝ γ(t), for α = 0 and liquid-like
behaviour, σ(t) ∝ d

dt
γ(t), for α = 1. For 0 < α < 1, it describes viscoelastic behavior.

An inherent advantage in using fractional order operator is clear from its definition. Unlike
the integer order derivatives which involve local information of the function of γ(t), a
fractional order derivation requires its whole history, which makes it ideal for describing
materials with memory [97]. The second equality in the governing equation for spring-pot
comes from the Caputo definition of fractional derivative [95].
We use a special case of a generalized fractional Kelvin-Voigt model to describe the obser-
vations from creep experiments. A dashpot(η) in parallel with a spring-pot(α,G) is used
(Figure B.11 B). The governing equation for such a model can be written as
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σ(t) =
(
η
d

dt
+G

dα

dtα

)
γ(t) (B.5)

Such a model can be analytically solved and provides a closed form expression for creep
compliance, J(t)

J(t) =
t

η
E1−α,2[−

( t
τ

)1−α
] (B.6)

where τ =
[
η
G

] 1
1−α

. E1−α,2 is the Mittag-Leffler function given by E1−α,2(t) =∑∞
j=0

tj

Γ((1−α)j+2)
. Γ(x) is the gamma function. To account for the instrument inertia which

is very prevalent in the creep experiments at short times, we solve the equation of motion
for the spindle of a stress controlled rheometer, in addition to Eq.B.5, given by

I

b

d2

dt2
γ(t) = H(t)σ0 − σ(t) (B.7)

where I is the moment of inertia of the rheometer spindle with measuring system attached
and b is the geometric factor dependent on the instrument and geometry used. A coupled
fractional order equation can be easily obtained that will describe the instrument and mate-
rial response to a step stress input

[I
b

d2

dt2
+ η

d

dt
+G

dα

dtα

]
γ(t) = H(t)σ0 (B.8)

Since the material has no deformation at the start,t = 0, γ(0) = γ̇(0) = 0. This equation
can be solved analytically using Laplace transform. However, here we obtain the solution
numerically using the methods described in literature[101]. The numerical solutions to the
fractional Kelvin-Voigt model, with and without inertial mass, are plotted in Figure B.12
for various values. The numerical solution converges to the analytical solution that was
obtained without considering inertial effects as in Eq.B.6 at long times after the inertial
effects subside and material deformation alone produces stress. Similar approach was used
in literature[98] with a fractional Maxwell model.
The constitutive model predictions are compared to the experimental data over the entire
concentration range with η, G and α as fit parameters. The best fits were obtained by mini-
mizing the residual sum of squares in MATLAB. The fitting results are given in Table B.1.

228



C
on

ce
nt

ra
tio

n
[w

t%
]

G
η

α
0.

08
3

0.
02

24
(0

.0
22

13
-0

.0
22

75
)

0.
00

34
03

(0
.0

02
90

8-
0.

00
38

98
)

0.
19

08
(0

.1
87

-0
.1

94
7)

0.
25

0.
07

11
9

(0
.0

79
2-

0.
07

14
7)

0.
00

99
79

(0
.0

09
66

9-
0.

01
02

9)
0.

13
06

(0
.1

29
5-

0.
13

18
)

0.
41

0.
15

29
(0

.1
52

-0
.1

53
9)

0.
00

62
62

(0
.0

05
48

3-
0.

00
70

41
)

0.
15

56
(0

.1
52

7-
0.

15
75

)
0.

58
0.

19
57

(0
.1

94
5-

0.
19

7)
0.

00
1

0.
18

27
(0

.1
80

7-
0.

18
46

)
0.

75
0.

25
24

(0
.2

50
8-

0.
25

4)
0.

00
39

79
(0

.0
02

76
5-

0.
00

51
93

1)
0.

18
16

(0
.1

79
7-

0.
18

35
)

1.
67

0.
39

1
(0

.3
86

-0
.3

96
)

0.
00

1
0.

23
67

(0
.2

32
8-

0.
24

05
)

5.
80

1.
46

2
(1

.4
41

-1
.4

83
)

0.
00

1
0.

19
96

(0
.1

95
2-

0.
20

41
)

Table B.1: Fractional constitutive parameters (with 95 % confidence interval).
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Figure B.11: The fractional Kelvin-Voigt model reduces to a typical Kelvin-Voigt model
with a spring and dashpot in parallel for α = 0. An effective dashpot is obtained for α = 1.
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Figure B.12: Constitutive model for comparing experiments. (A) A fractional Kelvin-
Voigt model, with parameter η,G, α gives a power-law creep response. The response for
four different values of α and other parameters fixed (η = 1, G = 10 and σ0 = 1). A
Viscoelastic-solid like response is obtained for α = 0 and viscous-liquid like response is
obtained for α = 1. (B) A fractional Kelvin-Voigt model with an inertial element in series
captures inertial response and creep ringing at shorter time scales while predicting a power-
law creep response at long times. The plotted data is four different values of α, keeping

other parameters fixed η = 1, G = 10, σ0 = 1, I = 1, b = 1.
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B.7 Relaxation exponent (n or α) for various systems

The data used to plot Figure 8 in the paper is given in table. Table B.2.

Materials Conc. [wt %] Exponent

Collagen ( type I rat tail collagen (RTC))
[108]

0.4 0.84

0.6 0.72
0.8 0.65

Agarose [109] 0.1 0.08
0.15 0.07
0.2 0.1
0.25 0.09
0.3 0.2
0.35 0.1

Human Fibrinogen ( Diluted human blood)
[110]

0.27 0.69

0.23 0.71
0.21 0.73
0.12 0.77
0.07 0.83

Methylcellulose (Different MW methocellu-
lose) [75]
MC 530 0.35 0.85

0.5 0.75
1.5 0.54
2.5 0.54

MC 300 0.75 0.8
1.1 0.72
1.7 0.74
2.5 0.69
4 0.54

MC 150 1.36 0.9
3.12 0.81
5.18 0.72
7.63 0.6
9.1 0.54
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Cellulose solutions [111] 2.5 0.890
2.67 0.891
2.85 0.892
3 0.889

Lentinan (extracted from L. edodes) [112] 0.2 0.85
0.3 0.58
0.4 0.36
0.5 0.29
0.6 0.2
0.7 0.22
0.8 0.19

Pectin (low-methoxyl pectin sample) [113] 1.5 0.6
2 0.69
2.5 0.69
3 0.55

Chitosan (unmodified chitosan and
hydrophobically-modified chitosan ) [114]

3.9 0.36

3 0.46
1.75 0.46

Guar (Borate crosslinked Hydroxypro-
plyguar) [115]

0.21 0.5

0.35 0.42
0.5 0.31
0.6 0.25
0.7 0.21
1 0.18
1.5 0.145

Ethyl(hydroxyethyl)cellulose [116] 1 0.3
2 0.56
4 0.64

Alginate (with different man-
nuronate/guluronate ratios) [117]
AG-M1H 3 0.83

5 0.76
7 0.74

AG-G1H 3 0.53
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5 0.49
7 0.31

κ-carrageenan (Ca2+ induced gelation)[118] 2 0.52
2.5 0.52
3 0.523
3.5 0.52
4 0.523

Gellan gum (Deacetylated potassium-type
gellan gum aqueous solutions) [119]

1 0.75

1.5 0.52
2 0.49
2.5 0.39

Alginate [120] 2 0.76
3 0.73
4 0.7
5 0.67

Alginate ( Different molecular weights and
M/G ratio ) [121]
Ca-ML GL 2 0.68

3 0.69
4 0.64
5 0.64
6 0.64

Ca-ML GH 2 0.72
3 0.71
4 0.71
5 0.7
6 0.68

Ca-MH GL 2 0.77
3 0.55
4 0.43
5 0.42
6 0.41

Ca-MH GH 2 0.72
3 0.5
4 0.37
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5 0.37
6 0.37

Table B.2: Relaxation exponents for different systems as the concentration of primary
component is varied.
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B.8 Structure-Property Relationship

In this section we lay out the details of the expressions used in the section on structure-
property relationship. We first describe the mechanics of a single fiber with natural bends
in it. The individual fibers can be treated as cylindrical elastic rods of radius a ≈ 1.25 µm.
The Young’s modulus has been reported to be Ef = 6.8 MPa for hagfish defense gel fibers.
We treat the fibers as athermal elastic rods and neglect any thermal energy changes during
deformation. Under an applied deformation, the bends in a fiber tend to straighten out. The
fiber may not experience a physical stretch unless all the bends in it are straightened out
depending on its geometry, hence acts inextensible.

B.8.1 Energy Balance in a Bending Filament

The energy involved in deforming an inextensible fiber of total length l from its a natural
curvature κ0 to a new curvature κ(γ, s) can be expressed as

Efiber =

∫ l

0

ds
EI

2
(κ(γ, s)− κ0)2 (B.9)

Under a small applied strain, γ, we express κ(γ, s) as Taylor expansion around the natural
configuration,

κ(γ, s) = κ(0, s) +
dκ

dγ

∣∣∣∣
γ=0

γ +O(γ2)

Hence, Eq.B.9 becomes

Efiber =

∫ l

0

ds
EI

2
(
dκ

dγ

∣∣∣∣
γ=0

)2γ2

Thus, the bending energy per unit volume can be written as

enetwork = ρ
EI

2
〈(dκ
dγ

∣∣∣∣
γ=0

)2〉γ2

where EI is the flexural rigidity of the fiber and ρ is the total fiber length per unit volume.

〈(dκ
dγ

∣∣∣∣
γ=0

)2〉 is the average of square of differential change in the curvature of fibers under

an applied differential strain.
Assuming a small deformation, the deformation energy per unit volume due to a differential
applied strain (dγ) is given by
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w =
1

2
Gγ2 (B.10)

Assuming, negligible dissipation and a purely elastic response, energy balance in the dif-
ferential volume gives,

enetwork = w (B.11)

or
G = ρEI〈(dκ

dγ

∣∣∣∣
γ=0

)2〉 (B.12)

In the following section, we derive the closed form expression for 〈(dκ
dγ

∣∣∣∣
γ=0

)2〉 from geom-

etry of the problem.
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B.8.2 Bending of Curved Filament

l1

R
1

l2

R
2

h
1

h
2

d
1

d
2

Figure B.13: Relevant parameters for an arc (in red) deforming to a new configuration
under deformation (in blue).

Let the initial configuration of a curved fiber is shown by the red arc (Figure B.13). The
blue arc is the final (strained) configuration. Subscripts 1 and 2 are for initial and final
configurations, respectively. We are assuming that the initial and final configurations are
axisymmetric.
The chord length l1 is strained by an extensional strain, ε, hence

l2 = l1(1 + ε) (B.13)

The approximate formula for the arc length is given by [286]
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s ≈
(
l2 +

16

3
h2

) 1
2

(B.14)

This approximation is accurate to within 0.3% for 0◦ ≤ θ ≤ 90◦, where θ is the angle the
arc subtends at the center. Even for 90◦ < θ < 180◦, this is a reasonable approximation,
e.g. for θ = 115◦ the error is 0.5%, for θ = 180◦ the error is 2.8%. For higher accuracy
we can write an infinite series for the arc length, but it leads to unnecessary complexity for
our purposes here.
Let s1 and s2 be the arc lengths of initial and final configuration.
Assuming pure bending deformation, s1 = s2.

s1 = s2

l21 +
16

3
h2

1 = l22 +
16

3
h2

2

Using Eq.B.13 to write l2 in terms of l1,

h2 =

(
h2

1 −
3

16
l21((1 + ε)2 − 1)

) 1
2

or,

h2 =

(
h2

1 −
3

16
l21(2ε+ ε2)

) 1
2

(B.15)

The chord length, l, is given by

l = 2 (h(2R− h))
1
2 (B.16)

Therefore, using Eq.B.15 and Eq.B.16 we get

l1(1 + ε)l2 = 2

((
h2

1 −
3

16
l21(2ε+ ε2)

) 1
2

(
2R2 −

(
h2

1 −
3

16
l21(2ε+ ε2

) 1
2

)) 1
2

(B.17)

using Eq.B.13,

l21(1 + ε)2

4

(
h2

1 −
3

8
l21ε−

3

16
l21 ε

2

)− 1
2

=

(
2R2 −

(
h2

1 −
3

8
l21ε−

3

16
l21 ε

2

) 1
2

)
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Writing the equation for a general R under a strain ε

R =
1

2

(
l2(1 + ε)2

4

(
h2 − 3

8
l2ε− 3

16
l2 ε2

)− 1
2

+

(
h2 − 3

8
l2ε− 3

16
l2 ε2

) 1
2

)
(B.18)

Taking derivative with respect to ε,

dR

dε
=

1

4
l2(1 + ε)

(
h2 − 3

8
l2ε− 3

16
l2 ε2

)− 1
2

+
1

4

l2(1 + ε)2

4

(
h2 − 3

8
l2ε− 3

16
l2 ε2

)− 3
2
(

3

8
l2 +

3

8
l2 ε

)
−1

4

(
h2 − 3

8
l2ε− 3

16
l2 ε2

)− 1
2
(

3

8
l2 +

3

8
l2 ε

)
Curvature (κ) of an arc is defined as the inverse of the radius of curvature, R

κ =
1

R
dκ

dε
= − 1

R2

dR

dε

Substituting the value of dR
dε

, we get

dκ

dε
= − 1

R2
[
1

4
l2(1 + ε)

(
h2 − 3

8
l2ε− 3

16
l2 ε2

)− 1
2

+
1

4

l2(1 + ε)2

4

(
h2 − 3

8
l2ε− 3

16
l2 ε2

)− 3
2
(

3

8
l2 +

3

8
l2 ε

)
−1

4

(
h2 − 3

8
l2ε− 3

16
l2 ε2

)− 1
2
(

3

8
l2 +

3

8
l2 ε

)
]

This analysis is valid for a fiber extension under an extensional strain aligned with the end-
to-end vector of fiber (or chord). However, in a more general case of the fiber oriented
randomly in two-dimensional space, the equation for dκ

dε
can be used with slight modifica-

tion as discussed next.
Consider the schematic shown in Figure B.15, under a small shear strain a fiber (dashed
red) with its end-to-end vector inclined at an angle, α, with respect to the direction of shear.
Under shear, the deformed orientation of fiber is shown by dashed blue curve. Imposing
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Figure B.14: Schematic of a body under shear. The fibrous microstructure also elongates
and rotates depending on its orientation with respect to the direction of shear.
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Figure B.15: A schematic of a fiber with an orientation α with respect to the direction of
shear
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the geometric constraints under the assumption of small strain we get,

l2 = l1(1 + γ sinα cos α) (B.19)

Comparing Eq.B.13 and B.19, it is clear that for an inclined curved fiber, ε gets replaced
by γ sinαcos α. Hence, we can just replace ε in the previously derived results with
γ sinα cos α to obtain

dκ

dγ
= − 1

R2
[
1

4
l2(1 + γ sinα cosα)

(
h2 − 3

8
l2γ sinα cosα− 3

16
l2 (γ sinα cosα)2

)− 1
2

(sinα cosα)

+
1

4

l2(1 + γ sinα cosα)2

4

(
h2 − 3

8
l2γ sinα cosα− 3

16
l2 (γ sinα cosα)2

)− 3
2

·
(
3

8
l2sinα cosα+

3

8
l2 γ sin2α cos2α

)
−1

4

(
h2 − 3

8
l2γ sinα cosα− 3

16
l2 (γ sinα cosα)2

)− 1
2
(
3

8
l2sinα cosα+

3

8
l2 γ sin2α cos2α

)
]

As γ → 0, we get

dκ

dγ

∣∣∣∣
γ=0

= − l

32R2

(
3

4

(
l

h

)3

+ 5
l

h

)
sinα cos α (B.20)

Substituting the value of R in the above equation we get

dκ

dγ

∣∣∣∣
γ=0

= − l
2 (3l2 + 20h2) sin(2α)

4h (l2 + 4h2)2 (B.21)

To find 〈(dκ
dγ

∣∣
γ=0

)2〉, we average the square of Eq.B.21 over all the fiber orientations con-
tributing to the elastic response in a 2D plane, i.e. 0 < θ < π

2

〈(dκ
dγ

∣∣∣∣
γ=0

)2〉 =
1

π

∫ π
2

0

(
dκ

dγ

∣∣∣∣
γ=0

)2dα (B.22)

Hence,

〈(dκ
dγ

∣∣∣∣
γ=0

)2〉 =
l4 (3l2 + 20h2)

2

64h2 (l2 + 4h2)4

or

〈(dκ
dγ

∣∣∣∣
γ=0

)2〉 =

(
3 + 20(h

l
)2
)2

64h2
(
1 + 4(h

l
)2
)4 (B.23)

Substituting Eq.B.23 into Eq.B.12 we get
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Figure B.16: For h
l
< 1, the shear modulus is a very weak function of h

l

G = ρEI

(
3 + 20(h

l
)2
)2

64h2
(
1 + 4(h

l
)2
)4 (B.24)

G = ρEI
1

h2
φ(
h

l
) (B.25)

Eq.B.24 intuitively makes sense. First, shear modulus increases with decreasing h. Higher
h means more curvy fiber, hence easier to straighten it. We also find that the factor φ(h

l
) =

(3+20(h
l
)2)

2

64(1+4(h
l
)2)

4 appearing in the expression of shear modulus is nearly constant for h
l
< 1

(Fig. B.16), hence weakly changes the shear modulus.

B.8.3 Pure Stretching Response

In this section, we evaluate the fibrous network modulus, assuming the fibers to be straight
elastic rods without any bends. Hence, applied deformation will lead to stretching of fibers
depending on their orientation with respect to the applied strain
In is clear from the above Figure B.15 that under an applied shear strain, γ, elastic rod,
length l1 will stretch, new length l2, and rotate. The deformation of a rod aligned at an
angle α to the direction of shear
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Figure B.17: A schematic of a straight elastic rod with an orientation α with respect to the
direction of shear

∆l

l
= γ sinα cos α (B.26)

Hence, the energy stored per unit length in the elastic rod is given by

dEstretch =
1

2
Efa

2(γ sinα cos α)2 (B.27)

where a is the fiber radius.
To get an average response from the network of randomly oriented chains, we average over
all orientations. Hence,

〈dEstretch〉 =
1
2
Efa

2
∫ π

2

0
(γ sinα cos α)2dα

π
(B.28)

Hence,
〈dEstretch〉 =

1

32
Efa

2γ2 (B.29)

We can now evaluate the a shear modulus, Gstretch, based on the response from stretched
fibers by an energy balance with the applied deformation. We obtain

Gstretch =
ρ

16
Efa

2 (B.30)

where ρ is the total fiber length per unit volume.
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B.8.4 Estimates

From the microscopic images, we find the average values of the parameters involved in the
expressions (Table S B.3). We evaluate the modulus from the estimates in Eq.B.24 and
B.30.

Table B.3: Relevant parameters for hagfish defense gel

parameter value

geometric dimension, h 23± 3.7 µm
geometric dimension, l 121± 32 µm
fiber radius, a 1 µm
fiber length, Lfiber 10 cm

thread cell radius, Rthread cell 50 µm
Young’s modulus, Ef 6.8 MPa

ρ is proportional to the total number of fibers, n, in the sample which in turn is proportional
to the volume of exudate (Vexudate) that is introduced into the artificial sea water to produce
the hagfish defense gel sample. Hence, we can find the total number of thread cells given by
the ratio of exudate volume to that of the volume of a single thread cell (Assuming sphere of
radius, R). Hence we obtain, n = 0.5∗0.33∗Vexudate

Vthread cell
. The factor 0.5 appears because exudate

has mucins and thread cells in approximately equal proportion. Since 66% of exudate is
water by volume, the factor 0.33 appears as a front factor.
Alternatively, we can express n in terms of the sample concentration of final sample. Here
we assume that the density of exudate is similar to that of water, since 66% of exudate is
water [33]. The Vthread cell is assumed to be equal to a sphere of radius, Rthread cell. Having
obtained, n, we find the effective length per unit volume, ρ =

Lfibern

V , where Lfiber is the
total fiber length and V is the total sample volume.
Using the parameters given in the table B.3 and hence find the modulus estimate. For a
concentration of 0.17 wt %, we find a bending dominated response with a shear modulus,
G = 0.03 Pa whereas we find that a stretching dominated response gives a shear modulus
Gstretch = 60 Pa. The experimental measurement using oscillatory shear gives a value
of 0.02 Pa. The slight mismatch may arise because of several factors such as, viscous
dissipation,fraction of intact thread cells in the sample etc. Similarly, we can evaluate the
shear modulus arising from a pure bending and stretching response from the fibers for all
concentrations. Hence, we believe the linear response from the hagfish defense gel is purely
a bending dominated response.

244



Error Propagation

Neglecting correlations between the variables (a, l, h), we can propagate error in Eq. B.24
as follows

Gsd =

√(
∂G

∂a

)2

a2
sd +

(
∂G

∂h

)2

h2
sd +

(
∂G

∂l

)2

l2sd (B.31)

We estimate the values of parameters h and l from multiple microscopic images. The
values are listed Table B.1. For the parameter,r, our microscopic images could not provide
sufficient resolution to determine the values and standard deviation. So, we make a rough
estimate of the standard deviation in r as, 5% of r.
This gives a standard deviation, Gsd, using Eq.B.31 in the elastic modulus, G, which is
around 43% of G.

B.8.5 Response from Mucus Networks

We now evaluate the contribution from the mucus network in the mechanics of hagfish de-
fense gel. It has been well reported in the literature [21, 35] that the concentration of mucus
in hagfish slime is much lower than various other mucus secretions. Figure B.18 shows
the dependence of mucus steady shear viscosity as the concentration of mucus is varied
(adapted with permission [21]). The data is well described by a power series expansion

η

ηs
= 1 + [η]cm (B.32)

where η is the dynamic viscosity of mucus solution, ηs is the solvent viscosity and cm

is the concentration of mucus in mg/L. [η] is the intrinsic viscosity. A linear fit to the
experimental data provides the value of [η] = 0.0005L/mg. The efficiency of the linear fit
in describing the data also indicates that the tested concentrations are in the dilute regime
i.e. the individual polymer chains are not interacting on the bulk scales. A system where
the chains are starting to interact or overlap show much stronger concentration dependence
that linearity. A critical overlap concentration is often defined as c∗ = 1

[η]
. For hagfish

mucus, c∗ = 1.4
0.0005

mg
L

or 0.3 wt %. As, mentioned earlier hagfish exudate is 66% water,
hence mucus corresponds to 0.17% of the total exudate mass (assuming equal proportion
of mucus and threads). Hence, we expect that for exudate concentration below≈ 1.7 wt %,
mucus concentration is below the critical overlap concentration required to form a volume
spanning network. Therefore, we argue that in the concentration range that we have probed,
mucus does not form a volume spanning network of their own, they can rather form local
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Figure B.18: Concentration dependence of steady shear viscosity of pure mucus solutions
(adapted with permission [21]). Viscosity follows a linear relationship with the concentra-
tion. The purple squares shows the data for solutions prepared in sea water and the blue

circles are for the solutions prepared in distilled water.

networks within the fibrous mesh. Such effects are beyond the scope of our zeroth order
model, since it would require appropriate assumptions about the fiber-mucus interactions
and the geometric details of it.
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APPENDIX C

RHEOLOGY OF REPULSIVE PNIPAM
MICROGEL SUSPENSIONS

parameter value method

2R 550 nm Measured by DLS at low concentration
(0.4 wt%)

c1 0.4 wt% Lowest concentration studied in experi-
ments

c2 1.5 wt% Observed concentration where G′(c) plot
turns to linear dependence

(φ0.5 wt%, E) (0.5067, 30000) Volume fraction φ0.5 wt% and softness pa-
rameter E are determined simultaneously
from the inset of Fig. 4.9 the theoretical
prediction of modulus to match the mod-
ulus at 0.5 wt% and additionally requir-
ing that theory produces a similar order
of magnitude growth in G′ as that of ex-
periments before soft jamming occurs.
φ ∼ c1/2 for 0.5 < c < 1.5 wt% and φ ∼
c0 for 1.5 < c < 9 wt%

Table C.1: Parameters used in theory.

247



Figure C.1: Temperature dependence of the hydrodynamic diameter in the low concen-
tration limit (0.04 wt%) of slightly charged microgels measured via DLS. As temperature
increases in the region T = 10− 32◦C, there is a weak roughly linear decrease of the aver-
age hydrodynamic diameter. As the lower critical solution temperature (LCST) of pNIPAM

microgels is crossed, microgels become hydrophobic and undergo massive deswelling.
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Figure C.2: At low concentrations, the relative viscosity ηr = η∞/ηs at infinite shear
rate (obtained using a Carreau-Yasuda model fits, η(γ̇) = η∞ + (η0 − η∞)[1 + (kγ̇)1]

n−1
a

agrees well with the Einstein equation ( η
ηs

= 1 + 2.5φ). For dilute suspensions (c→ 0), the
effective volume fraction can be related to the mass fraction using, 2.5φ = [η]c, where [η] is
the intrinsic viscosity ([η] = 4.02± 0.45 wt%−1). The solvent viscosity, ηs, is taken as that
of deionized water (=0.001 Pa.s). At higher concentrations (c > 0.35 wt%) the viscosity
strongly deviates in an upward direction due to inter-particle repulsions, consistent with

our observation of a measurable linear elastic moduli at c = 0.4 wt%.
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Figure C.3: (A) Storage modulus, G′ and (B) Loss modulus, G′′ , for various microgel
concentrations in the temperature range (10 − 15)◦C probed at a fixed strain amplitude
of γ0 = 1% in the linear response regime at an angular frequency of ω = 1 rad/s The
temperature is increased at a rate of 1◦C/min. The rheological properties are temperature

independent in the range of probed temperature.

Figure C.4: Cubic spline fits to the amplitude sweep data to extract the yield properties.
The strain amplitude at which a cubic spline fit to G′′1 achieves a maximum is taken as the
dynamic yield strain and the point of intersection of cubic spline fits to G′1 and G′′1 is taken

as the absolute yield strain.
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APPENDIX D

RHEOLOGY OF DENSE ATTRACTIVE
MICROGEL SUSPENSIONS

Figure D.1: Loss modulus for various suspension concentrations as a function of temper-
ature.

251



Figure D.2: Frequency sweep data for pure pNIPAM suspensions at various concentrations
and temperatures.
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(a)

(b)

Figure D.3: Steady state shear flow curves for various suspension concentrations at
(A)10◦C and (B)25◦C. The solid lines shows the Herschel-Bulkley variance weighted

fits to the experimental data.
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(a)

(b)

Figure D.4: Steady state shear flow curves at (a) 4.5 wt% and (b) 9 wt%.
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Figure D.5: At low concentration, the relative viscosity ηr = η∞/η0 at infinite shear rate
agrees well with Einstein equation ( η

ηs
= 1 + 2.5φ). For dilute suspensions (c → 0), the

effective volume fraction can be related to the mass fraction using, 2.5φ = [η]c, where [η]
is the intrinsic viscosity and ηs is the pure solvent viscosity. We obtain variance weighted
best fit values of [η] = 4± 0.4 wt−1 and [η] = 3± 0.2 wt−1 at 10◦C and 25◦C, respectively.
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APPENDIX E

THERMORESPONSIVE COMPOSITE

E.1 Microgel Synthesis

The lightly cross-linked monodisperse PNIPAM microgels were prepared by the surfactant-
free emulsion polymerization (SFEP) method. 100 ml of Type I water (18.2 MÎl’ cm)
was filtered through a 0.2 µm Acrodisc syringe filter. Then, 146 mM (1.65 g) of N-
isopropylacrylamide (NIPAM, 99%, Acros) monomer was dissolved in filtered water. The
monomer solution was again filtered through a 0.2 µm Acrodisc syringe filter into a 3-neck
round bottom flask. The solution was stirred at 500 rpm, purged with nitrogen, and heated
to 45◦C in a temperature-controlled oil bath until the temperature of the solution became
stable (1 hour typically). We then injected a solution of 2.8 mM (80 mg) potassium perox-
odisulfate (KPS, 99 %+, Sigma-Aldrich) dissolved in 1 ml of the pre-filtered Type 1 water
through a 0.2 µm Acrodisc syringe filter to initiate the polymerization. The temperature
was increased to 68oC roughly at a rate of 30◦C/hr. The mixture was left to react under
continuous stirring at 500 rpm in nitrogen atmosphere overnight. After the polymerization,
the solution was cooled down to room temperature and filtered with a glass wool pad five
times to remove large particulates. The microgel particles were then thoroughly purified
via five cycles of a centrifuge/dispersion process. The centrifugation was done at 15000 x
g of relative centrifugal force (RCF), and dispersion was enabled by a mixing process of
ultrasonication followed by magnetic stirring. The cleaned particles were then lyophilized
for further characterization.

E.2 Average Fiber Length

The values of and used in the effectively stretched polymer network model are obtained
from literature [248] and extrapolated to estimate the values at missing concentrations
(highlighted). The extrapolation was performed by assuming l0 = Ac

−2/5
f l

1/5
p . Table E.1

gives the values of parameters used in the manuscript.
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cf [mg/ml] l0 [µm] larc [µm] x0

0.4 7.17 8.2 0.92
0.8 5.15 5.7 0.93
1.6 3.8 4 0.95
3.2 3.1 3.26 0.951
6.4 2.37 2.49 0.952

Table E.1: Length scales of fibrin network used in the effective stretching polymer network
model

cf [mg/ml], cP [wt%] m

0.4, 0.5 0.915
0.4, 1 0.864

0.8, 0.5 0.908
0.8, 1 0.851
0.8, 2 0.749

1.6, 0.5 0.892
1.6, 1 0.823
1.6, 2 0.738

3.2, 0.5 0.885
3.2, 1 0.832
3.2, 2 0.730
3.2, 3 0.629
6.4, 1 0.827
6.4, 2 0.726
6.4, 3 0.625

Table E.2: Parameter m extracted from the effectively stretched polymer network model

The values of m for various composite compositions are given in the following table E.2:

E.3 Mesh Size of Fibrin

The mean mesh size and concentration of pure fibrin networks are related as ξ ∼ ρ−1/2,
where ρ is the fiber length density [218]. Piechocka et al. [218] have determined ρ to be
6.1× 1011 m−2 for c = 1 mg/ml. We employ the known ÏĄ to estimate average mesh size
of pure fibrin as,

ξ =

(
1

6.1× 1011cf

)1/2

(E.1)

The quantitative estimates we employ are given in the table E.3
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cf [mg/ml] ξ [µm]

0.4 2.02
0.8 1.43
1.6 1.01
3.2 0.72
6.4 0.51

Table E.3: Fibrin mesh size as a function of fibrin concentration

cf [mg/ml], cP [wt%] ξ1[µm] stiffening ratio

0.4, 0.5 2.35 7.29
0.4, 1 2.57 9.9

0.8, 0.5 1.65 3.42
0.8, 1 1.80 4.46
0.8, 2 2.20 6.05

1.6, 0.5 1.15 1.75
1.6, 1 1.24 2.10
1.6, 2 1.5 2.68

3.2, 0.5 0.76 1.1
3.2, 1 0.81 1.15
3.2, 2 0.93 1.27
3.2, 3 1.2 1.40
6.4, 1 0.33 1.68
6.4, 2
6.4, 3

Table E.4: Model parameters for the adjustable mesh model

The various parameters involved in the adjusted mesh model are given in the following
table E.4.

E.4 Elastic Modulus of a Single Microgel Particle and its
Deswelling in the Fibrin Mesh

We first model the thermoresponsive phase transition behavior of a single pNIPAM mi-
crogel in a dilute aqueous suspension. Such systems have been widely modeled using
Flory-Rehner theory [169, 234] The key idea is the balance of elastic (πelastic) and mixing
(πmix) components of osmotic pressure (π) within the particle to calculate an equilibrium
degree of swelling [234]

π = πelastic + πmix = 0 (E.2)
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φ0 0.81
χ2 0.3
χ3 0.27
χ4 0.72
A -7.13
Θ 305.65

Table E.5: Fit parameters for the Flory-Rehner model employed

π =
kBT

α3

(
φ0

Ngel

[
φ

2φ0

− (
φ

φ0

)1/3

]
+ [−φ− ln(1− φ)− χφ2]

)
= 0 (E.3)

where Ngel is the average number of monomers between crosslinks, kB is Boltzmann’s
constant, φ is the polymer volume fraction in a microgel, φ0 is the polymer volume fraction
in the collapsed state, α is the monomer size, and χ is the Flory-Huggins parameter. To
describe microgel collapse, a temperature and concentration dependence of χ is necessary
[287]. The following form has been widely used in the literature

χ = χ1 + χ2φ+ χ3φ
2 + χ4φ

3 (E.4)

where χ1 = 0.5 − A(1 − Θ/T ), Θ is the theta temperature, A depends of the mixing
thermodynamics, and χ2, χ3, χ4 are the temperature independent coefficients that account
for higher order interactions between polymer and solvent molecules [60].For the case of
isotropic swelling, φ/φ0 = (d0/d)3 where d0 and d are particle sizes in reference and
current state, respectively. We use the mean hydrodynamic diameter obtained from our
light scattering experiments,d. Hence, by using the equilibrium condition of Eq.(S2), we
extract the fit parameters: N, φ0, A,Θ, χ2, χ3, χ4. Fig. S1 shows the best fit curve to the
DLS data. The values of fit parameter are given in table E.5.
The shear modulus for polymer networks in solvent is given by [37,40]

µ =

(
φ0kBT

2Ngelα3

)(
φ

φ0

)1/3

(E.5)

The parameter α cannot be obtained from fitting, hence we used its literature value
α = 6.7 × 10−10 m [37]. This gives a shear modulus of 1.5 kPa for the fully swollen
microgel particle in dilute suspension at 25◦C using the DLS data and the fit parameters
described above. For evaluating the shear modulus of particle in its shrunk state above the
LCST temperature we employ the classic rubber elasticity theory for cross-linked polymer
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Figure E.1: The Flory-Rehner theory fit to the DLS data appears to capture the trends in
the microgel hydrodynamic size.

cP [mg/ml] φeff,i [25◦C] φeff,i [35◦C]

0.25 0.23 0.005
0.5 0.32 0.012
1 0.45 0.024
2 0.64 0.048
3 0.78 0.072

Table E.6: The effective volume fraction of the microgel suspensions used in the experi-
ments.

networks in absence of solvent to estimate the shear elastic modulus as [37],

µ =

(
kBT

2Ngelα3

)
φ (E.6)

We obtain a microgel shear modulus of 4.6 kPa at 35◦C.
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Figure E.2: Intensity versus microgel size data from the dynamic light scattering measure-
ments (DLS) showing the distribution of particle sizes.
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Figure E.3: The loss modulus G′′ for pure pNIPAM suspensions.

Figure E.4: (A) Repeatability of measurements for pure pNIPAM microgel suspensions.
The data sets shown are for cp = 3 wt%. Above the LCST (shaded region), distinct trends
can be observed in the values ofG′ because of the aggregation of microgels due to attractive
interactions. Since the samples are unable to form a volume spanning network above the
LCST, the inhomogeneity in the sample possibly are the origin of the variable behavior
observed. (B) A photograph of the sample above the LCST showing the aggregation of

microgels and there inhomogeneous distribution in the solvent.
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Figure E.5: Axial force for pure fibrin networks at various concentration studied as a
function of applied shear strain amplitude.
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Figure E.6: Gelation of fibrin-pNIPAM composites. The concentration of pNIPAM mi-
crogels [wt%] used in the composites is given in the legend.
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Figure E.7 (cont.) 



Figure E.7: Temperature-dependent viscoelasticity of composites with varying fibrin con-
centrations. The linear storage modulus G′, the linear loss modulus G′′, and the axial
(normal) force FN is shown for all the samples. The negative normal force indicates a

downward pull on the upper plate of the rheometer.

Figure E.8: Repeat measurements at selected compositions of composites.
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Figure E.9: Hysteresis in the stiffening and softening response in heating and cooling cycle
(fibrin-3.2 mg/ml and microgels-2 wt%).
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Figure E.10: Relative viscosity as a function of pNIPAM microgel wt% along with an
empirical fit to the experimental data. The parameters [η] and kH are the intrinsic viscosity
and Huggins coefficient, respectively. For a dilute suspension (cP → 0), the effective

volume fraction can be related to the mass fraction as 2.5φ = [η]cP .
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Macromolecules 36, 8780–8785 (2003).

178. Conley, G. M., Aebischer, P., Nöjd, S., Schurtenberger, P. & Scheffold, F. Jamming
and overpacking fuzzy microgels: Deformation, interpenetration, and compression.
Science Advances 3, 1–8 (2017).

179. Rovigatti, L., Gnan, N., Ninarello, A. & Zaccarelli, E. On the validity of the Hertzian

model: the case of soft colloids 2018. eprint: arXiv:1808.04769.

180. Hansen, J.-P. & McDonald, I. R. Theory of simple liquids (Elsevier Science, 2014).

181. Zwanzig, R. Nonequilibrium Statistical Mechanics (Wiley-Blackwell, 2001).

182. Saltzman, E. J. & Schweizer, K. S. Transport coefficients in glassy colloidal fluids.
The Journal of Chemical Physics 119, 1197–1203 (2003).

282

arXiv:1808.04769


183. Mirigian, S. & Schweizer, K. S. Dynamical Theory of Segmental Relaxation and
Emergent Elasticity in Supercooled Polymer Melts. Macromolecules 48, 1901–1913
(2015).

184. Mirigian, S. & Schweizer, K. S. Elastically cooperative activated barrier hopping
theory of relaxation in viscous fluids.I.General formulation and application to hard
sphere fluids. The Journal of Chemical Physics 140, 194506 (2014).

185. Kobelev, V. & Schweizer, K. S. Strain softening, yielding, and shear thinning in
glassy colloidal suspensions. Phys. Rev. E 71, 021401 (2 2005).

186. Zhang, R. & Schweizer, K. S. Theory of nonlinear elasticity, stress-induced relax-
ation, and dynamic yielding in dense fluids of hard nonspherical colloids. The Jour-

nal of Chemical Physics 136, 154902 (2012).

187. Chen, K., Saltzman, E. J. & Schweizer, K. S. Molecular Theories of Segmental
Dynamics and Mechanical Response in Deeply Supercooled Polymer Melts and
Glasses. Annual Review of Condensed Matter Physics 1, 277–300 (2010).

188. Chen, Y.-L. & Schweizer, K. S. Microscopic theory of gelation and elasticity in
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