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ABSTRACT 

The introduction of Ride- hailing Services into our transport systems has been rapidly transforming 

the way people travel. Ride-hailing services provide multi-modality and fill transit gaps, but they 

also impact the modal share of other modes such as public transit and car ownership. This study 

delves into links between ride-hailing services and private vehicles ownership. It also addresses the 

questions about the impact of ridesharing services on public transit use and the role neighborhood 

context plays on the link between ride-hailing and car-ownership, using a Path Analysis. The primary 

database for the research is the NHTS 2017 survey. Data compilation is done to establish a dataset 

of cities with TNCs operating in them and the duration of operation.  

Main findings of the study are as follows: 

First, the relationship between public transit and ridesharing is found to be statistically insignificant 

while a descriptive analysis shows that ride sharing services complement public transit more 

especially in small towns. Second, ride-hailing has a significant and comparatively large impact on 

car ownership.  Due to the bidirectional nature of the model, we were able to study the reverse 

relationship as well. The model did not show car-ownership having a significant impact on 

frequency of rideshare use. Finally, through a moderation estimation that urban form does play a 

significant role in impacting the role of rideshare on car ownership. The length of duration since the 

introduction of TNCs in a city plays an important role on car ownership. The longer TNCs have been 

around, the smaller the value of car ownership is. Denser Urban forms deepen this relationship 

while sprawled neighborhoods weaken the correlation.  
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Based on this research a few areas have been identified as areas with critical data deficiency which 

are needed to understand and properly manage the ever-changing travel behavior. These areas 

include the links between city types, public transit and rideshare.   
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CHAPTER 1: INTRODUCTION 

Advances in technology are rapidly transforming the global transportation system. Technology 

assisted services like Intelligent Transportation Systems, Smart Cards, Wayfinding and Navigation 

Apps, and GPS can impact travel behavior in multiple ways, such as removing uncertainties, 

increasing mode choice or improving accessibility.  

These advancements have given rise to shared mobility services such as ride-hailing. They are also 

known as Mobility Service Providers (MSP), Transportation Network Companies (TNCs), ride-hailing 

services or ride-sourcing. The evolving market for shared mobility services has expanded 

exponentially since the introduction of smart phones. Since 2009, the rise of peer-to-peer 

ridesharing services such as Lyft and Uber have redefined the transportation system, globally. Not 

only did they account to 10 % of all work-related trips made in 20161, they have transformed the 

structure of the US modal split to an extent that ride-hailing can be considered its own category. 

Although initially concentrated in dense markets such as cities and university campuses, these 

services have a growing presence in the U.S. market (Alemi et all, 2018). As per the 2017 NHTS 

statistics 9.81% of Americans use ride-hailing at least once a month (Conway et all, 2018). SFCTA 

2017’s report showed that in San Francisco, the total share of ride-hailing trips can exceed 15% of 

all trips on a typical weekday and account for 20% of all VMT within city limits2. By 2035, the 

number of ride-railing users in the United States is expected to amount to 82.7m3. 

                                                 
1 Lyft Revenue and Usage Statistics (2019). (2019, April 29). Retrieved from https://www.businessofapps.com/data/lyft-
statistics/ 
2 San Francisco County Transportation Authority (SFCTA). 2017. “TNCs Today: A Profile of San Francisco Transportation Network 
Company Activity”. available at http://www.sfcta.org/sites/default/files/content/Planning/TNCs/TNCs_Today_112917.pdf (last 
accessed on January 22, 2018). 
3 Ride Hailing - United States: Statista Market Forecast. (n.d.). Retrieved from https://www.statista.com/outlook/368/109/ride 

hailing/united-states#market-users 
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With the rapid rise of ride-hailing, several challenges have arisen. The primary challenge is the lack 

of data. Presently, no policy exists which mandates TNCs to share their data with local or regional 

planning authorities. As most TNCs refuse to volunteer information, data availability is reduced to 

either primary collection or state/federal surveys. The lack of data cripples a planner’s ability to 

make informed decisions such as those regarding public transit investments or transportation 

infrastructure (Clewlow et al.,2017). This research aims to reduce some of the data shortage 

present today.  

Another key challenge that has emerged with ride-hailing is the increase in multi-modality. 

Although ride-hail fills mobility gaps, there has been research (Clewlow et al.,2017) that shows ride-

hailing replaces transit usage, active transportation trips and, to a lesser extent, personal vehicle 

trips. This changing modal split needs to be addressed while making transportation decisions. 

Improper transit or infrastructure investments can be a wasteful use of tax dollars.   

 Ride-hailing is sometimes referred to as disruptive transportation. The business model of TNCs has 

‘disrupted’ the existing Taxicab Industry. Drivers have migrated to TNCs as their competitively lower 

process attract more customers. Taxicabs also have high overheads costs due to compliance 

regulations. Since TNCs take up to 25 % of driver’s fares while traditional taxi services take 8%, 

there have been global protests by drivers for better wages and other labor issues. Extensive 

research has been done regarding this topic.  

1.1. Research background 

It is evident that ride-hailing services are transformative to transportation systems and are changing 

travel behavior such as mode choice, car ownership, vehicle shedding, etc. There is a developing 
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body of analysis by transportation researchers which assess these impacts. The lack of data 

pertaining to the users is limited and as such, studies have been limited to either a national level, 

which use NHTS data, or to the cities of San Francisco and New York, which have had a few 

independent surveys conducted. The presented research aims to understand the extent of the 

impacts of ride-hailing services on travel mobility, in particular, on public transit and car ownership. 

The following section elaborates on the hypothesis, aims and methodology undertaken of this 

research. 

1.2. Hypothesis 

This research is an inquiry into the impacts of ride-hailing Services on Public Transit and Car 

Ownership in the United States through Structural Equation Modeling (SEM) and path analysis. Due 

to nation-wide samples, this study chose the 2017 National Household Travel Survey as its primary 

data source. The main motivations of this research are to understand whether ride-hailing 

complements or competes with Public Transit, whether it impacts car ownership and what impact 

neighborhood context has on links between car ownership and ride-hailing use. It accounts for 

variables such as city size, neighborhood type, number of cars per household, number of drivers per 

household, mode to work, years since introduction of TNCs, as the research accepts the answer to 

the primary research question may be context related. The final result of this study finds the 

relationship between public transit frequency and frequency of ride-hail usage at a household level 

through a path analysis analyzed through SEM.  

The study consists of five chapters. The first chapter briefly introduces the background and aims 

and methodology of the research. The second chapter reviews relevant literature to the research 

question and establishes the variables to be taken into consideration for this study. The next 
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chapter expands upon the methodology and rationalizes using SEM for the research design. The 

fourth chapter consists of the descriptive analysis and the SEM result. The last chapter concludes 

the results and presents limitations of the research. 

1.3. Need for the Study 

Transportation networks and mobility are critical for providing access to basic services such as 

employment, health, education, commerce and recreation. Ride-hailing services are rapidly 

changing the global transportation system. With prices that can compete with transit fares 

(Sadowsky, 2017), the use of such services is rapidly rising. A common perception is that such 

services provide better accessibility, faster service, and point to point convenience. This study 

questions these perceptions in order to establish policies and regulations that need to be put in 

place to effectively cultivate this new means of transport. This can only be done by understanding 

the relationship ride-hailing has with other modes of transport such as public transit and private 

vehicles. Under this umbrella topic, this study shall determine the impact of ride-hailing services on 

public transit and car ownership.  

1.4. Research Objectives 

The research questions identified for the study are: 

• Do ride-hailing services compete with, or complement Public Transit? 

• Are ride-hailing services replacing private vehicles? 

• What role does Neighborhood Context play on the links between Car Ownership, Ride 

hailing and Public Transit? 
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1.5. Research Procedure 

A research methodology was formed after establishing the scope and limitations of the study.  

1. Conduct a thorough study of existing literature. Study similar research papers to understand 

the different statistical methods used to analyze variables related to the research question. 

Identify and select variables to be further analyzed.  

2. Conduct a descriptive analysis based on the selected variables using the selected dataset to 

determine trends and relationships. Choose and implement advanced statistical techniques. 

3. After choosing the statistical technique, SEM in this case, formulate the model and try 

different iterations until the most accurate model is formulated. 

4. Use the model to find the relationship between the selected variables and determine the 

impact of ride-hailing services on public transit and car ownership. 
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CHAPTER 2: LITERATURE REVIEW 

There is an emerging body of literature investigating the relationship between ride-hailing services 

and travel behavior, such as car ownership, mode to work and vehicle miles travelled. The main 

goal of this chapter is to identify variables which can be further analyzed to assess the impact of 

ride-hailing services on travel behavior. These are identified through the existing literature and 

chosen for their relativity to the research goals. At the end of the segment, the results are 

summarized to show relevant findings. 

2.1. Ride-Hailing and travel demand impacts 

A large share of the body of literature pertaining to ride-hailing is related to its impact on travel 

demand, user and driver behavior. Although studies on car-sharing have been conducted as early as 

the 1990s (Muheim et al, 1999; Klintman, 1998), they largely analyzed examples of contractual 

sharing of cars, carpooling or car rentals. Cervero’s work: City CarShare, First-Year Travel Demand 

Impacts (2003) is one of the earliest studies based on empirical data from TNCs in North America. 

The study, conducted 9 months after the introduction of Uber in San Francisco, shows preliminary 

evidence of ride-hailing trips subsequently gaining popularity and Uber inducing motorized travel. A 

demographic profile showed that most users did not own cars and active trips were being replaced 

by ride-hailing trips. Cervero’s research showed that ride-hailing was not popular in areas well 

served by transit.  

Further studies expanded on the demographic profile of the user base (Dias et al, 2017; Alemi et al, 

2018) who were found to be well-educated, environmentally conscious, older millennials with 

higher incomes, residing in high-density areas.  
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Alemi’s work (2018) used a binary logit model to identify which variables impact the use of 

ridesharing services among individuals born between 1965-1997 in California. The study 

incorporated attitudinal attributes of the users to find that young, non-Hispanic individuals were 

most likely to use ride-hailing. These individuals actively used technology, had ‘variety-seeking’ 

attitudes, were likely to make more long-distance business trips and travel frequently by plane (Diaz 

et al, 2017; Alemi et al, 2018). It was suggested, and widely accepted, that factors such as land-use 

mix and regional accessibility by car also significantly impacted the use of ride-hail services.  

Other common trends studied in this body of literature were ride-hailing and dynamic pricing 

(Clewlow, 2017; Feng et al, 2017; Korolko et al, 2018; Li et al, 2016) and driver regulations (Beer et 

all, 2017). The common conclusion from most studies was that dynamic pricing when coupled with 

advanced matching, results in reduced wait times for both drivers and users and some studies (Li, et 

al, 2016; Feng et al, 2017) suggested new pricing methods. It was also found that driver-related 

regulations, primarily fingerprint-based background checks faced opposition from TNCs.  

2.2. Do Ride-Hailing Services compete with, or complement Public Transit? 

One of the relationships more relevant to our research is that of ride-hailing and public transit. 

Boisjoly’s (2018) multilevel mixed-effect regression approach illustrates that vehicle revenue 

kilometers (VRK) and car ownership are the main factors impacting public transport ridership. Their 

study which captures the 2002-2015 data of 25 transit authorities from US and Canada shows that 

ridesharing, though not statistically significant, has a positive relationship with transit ridership. The 

study concludes that transit ridership has decreased over time mainly due to vehicle revenue 

kilometers (VRK) and car ownership. VRK is positively and significantly associated with ridership, a 

10% increase in VRK is associated with an 8.27% increase in ridership. Ridesharing does not 

negatively impact transit ridership but may, along with bicycle-sharing systems, complement it.  
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This concept of ridesharing complementing transit use is seen in greater detail in Sadowsky’s (2017) 

discontinuity regression analysis. The study uses a discontinuity regression model using variables 

like probability of mode choice, cost, speed, access and egress time, waiting time, trip distance to 

understand the relationship between public transit and ridesharing facilities by using monthly 

public transit ridership data from the Federal Transit Authority. The study speculates that initially, 

the introduction of the ridesharing service, Uber, complemented public transit by acting as a 

solution to last-mile connectivity. Subsequent entry of competitors like Lyft resulted in competitive 

prices which transformed ridesharing services from complementing public transit to competing with 

them (and each other). This resulted in an over-all reduction of public transit ridership.  

Certain recent studies (Clewlow,2017) have proposed that ridesharing facilities complement heavy 

rail systems but compete with bus services and light rail services. This is subject to the frequency 

and quality of the various services. Most ridesharing trips replace trips that would otherwise have 

not been made, or made by walking, biking or public transit therefore, indirectly, ridesharing may 

contribute to greater VMT miles rather than reducing them. 

One behavior that these studies do not capture is ‘confidence of having a ride back’. If a user is 

confident that they have a mode of transport to reach back home, they will more likely be willing to 

use a combination of public transport and ride share without worrying about factors such as late-

night transit service operations, availability and frequency of taxi or ride-hailing facilities, etc. 

(Sadowsky, 2017). Ridesharing facilities can complement public transport through this factor. 

2.3. Do ridesharing services impact private vehicles?  

Although there has been a considerable number of empirical studies that tried to prove the impact 

of ridesharing services on private vehicles (Clewlow, 2017), they have shown mixed results. Clewlow 
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took an empirical approach to the topic by collecting data through an online self-administered 

travel and residential choice survey which was targeted at neighborhoods identified through the 

2011-2013 ACS statistics. It was found that though car ownership among ride-hail users was 

comparable to non-users, 9% of the sample population disposed a vehicle since they started using 

ridesharing services. Rodier’s (2018) analysis supported this claim but suggested a much smaller 

value. The total extent of increase was labeled ambiguous due to the various uncertainties involved. 

Some studies like Rayle’s 2015 research did not give empirical proof tying car ownership reduction 

with ride-hail use but had findings which suggested it. Rayle’s research was on the user behavior of 

ridesharing services in San Francisco and it compared the travel time for public transit and rise-

sharing services as well as an overall comparison between taxis and ridesharing services. The data 

was based on a survey of 380 users and showed that the services were most used by individuals 

looking for short wait times and fast point-to-point service without the inconvenience of parking. It 

suggested that though ridesharing affected use of personal vehicles, it did not play any significant 

role in ownership of personal vehicles.  

Many empirical studies (Rodier, 2018; Kamargianni, et al, 2018) which explored this relationship 

used similar independent variables like auto ownership, trip generation, destination choice, mode 

choice, network vehicle travel, and land use. 

2.4.  Key Findings 

The key findings from the literature study conducted are that users of ridesharing services are most 

likely to be 18-29 years old with high incomes and high educational attainments who are non-

Hispanic in ethnicity. These individuals tend to embrace technology, are environmentally conscious 

and have variety-seeking attitudes.  
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The presence of ridesharing services and bicycle sharing are associated with higher levels of transit 

ridership but are not statistically significant. Initially the presence of ridesharing services 

complemented transit ridership as it acted as a last-mile connectivity solution but inter-competing 

prices among ride-hail services has resulted in competition with transit services, leading to low 

transit ridership. Models trying to determine the relationship between ride-hailing and public 

transport cannot capture ‘the confidence of having a ride back’. This behavior complements public 

transport as users are confident that they have a mode of transport to reach back home even if 

they do not use their private vehicles. Most ridesharing trips replace trips which otherwise would 

not have been made, walking, biking and public transport trips. This is reflected in findings that 

ridesharing facilities complement heavy rail systems but compete with bus services and light rail 

services. 

Ride-hailing users who disposed of a vehicle use ride-hailing more frequently. Ride-hailing has 

slightly reduced car-ownership, but it has increased total overall VMTs and subsequently 

greenhouse emissions.  

More diverse land-use mix and greater regional accessibility by car have a higher probability of 

using ride-hailing services. TNCs are less likely to operate in cities where background checks are 

mandatory for drivers.  

One of the critical limitations of the literature studied was the absence of neighborhood context or 

urban form as potential factor which could impact the relationship of ride-hailing and car 

ownership. This is addressed in our research.  



 11  

 

CHAPTER 3: RESEARCH DESIGN 

The biggest shortcomings seen through the literature analysis was the lack of data provided by the 

TNCs. In an effort to capture nation-wide trends with relative accuracy, the NHTS 2017 data set was 

selected as the primary data source. Data compilation was also undertaken to create a data set of 

all cities in the US which had operational TNCs. The data set was compiled up to May 2017 as the 

NHTS 2017 data collection was done between April 2016 to May 2017.  

3.1. National Household Travel Survey (NHTS), 2017 

The NHTS is a national level sample survey conducted by the Federal Highway Administration 

(FHWA). It was first conducted in 1969 and was originally known as the Nationwide Personal 

Transportation Survey (NPTS). It has since been conducted 7 more times, the latest being 2017. It is 

conducted every 5-9 years and is the primary source of travel behavior for the American citizens7. 

As per its website, it is the only source of national data that allows one to analyze trends in personal 

and household travel. The 2017 survey was conducted from March 2016- May 2017 and was the 

first survey to include questions about ride-hailing services. Users were asked how many ride-

hailing trips they made in the last 30 days through the survey question “how many times have you 

purchased a ride-hailing service with a smartphone ride-hailing application (e.g., Uber, Lyft, or 

Sidecar) in the past 30 days?”. Ridehailing was also included in the taxi trip mode8.  

                                                 
7 Federal Highway Administration. (2017). 2017 National Household Travel Survey, U.S. Department of Transportation, 
Washington, DC. Available online: https://nhts.ornl.gov. 
8 Trends in Taxi Usage and the Advent of Ridehailing, 1995–2017; M. W. Conway, D. Salon, D. King, Arizona State University, 
2018; NHTS Data for Transportation Applications Conference Washington, DC 
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The NHTS sample is selected through a random sampling based on addresses. It is entirely 

voluntarily and in 2017 the survey had a response rate of 15%.  A total of 129,696 households were 

surveyed which included 264,234 individuals.  

3.1.1. Data Cleaning and Management 

The sample for this study contains 85920 households, about 66% of the total sample set. The 

original data set were present in 4 different subsets: At a household level, at a person level, at a trip 

level and at a vehicle level. 

First these files were cleaned so they included only the variables selected. Then, the files at the 

person, trip and vehicle level were aggregated to the household level and matched to the 

corresponding entries. This resulted in a single file which contained all the selected variables 

present in the NHTS 2017 database. The public database did not contain any information about the 

‘location’ of the individual entries.  

NHTS was then approached and we were provided a database that contained the census tract for 

each individual entry. This information was joined to the information we had isolated from the 

public database. The details of the variables used in the data set are given in Appendix A. 

Based on the census tracts, each entry was then assigned a Composite Index Score i.e. Ewing’s 

Sprawl Index calculated at a census tract level9. As only Ewing’s sprawl Index only exists for 85% of 

census tracts. Some entries which did not receive a score had to be removed.  

                                                 
9 Geographic Information Systems and Science for Cancer Control. (n.d.). Retrieved from 

https://gis.cancer.gov/tools/urban-sprawl/ 



 13  

 

The data was then further cleaned and all NHTS entries which contained information such as ‘Not 

ascertained, don't know, I prefer not to answer’ etc. for any of the selected variables were 

removed. The final data set for this study contained 66% of the original entries.  

The next step was to fix the categorical variables. The reference categories were recoded to suit the 

study needs. Certain variables had to be disaggregated and coded in binary in order to be used. 

Finally, each entry was assigned a variable based on the number of years since a TNC was 

introduced to the city. This data had been compiled manually and was matched to the dataset 

through the census tracts level.   

Finally, mean centering was done on ‘Urban Form’ (Ewing’s Sprawl index) and ‘Number of years 

since TNC was introduced’ variables as their moderated effect was to be calculated in the final 

model. 

It should be noted, that the variable ‘Number of years since TNC was introduced’ contains 

information regarding the duration of only UberX and Lyft in an area. While uber (formerly called 

UberCab) started in 2009, it was initially a luxury car service which charged 1.5 times the price of a 

regular taxi. Uber X, which is the affordable, most widely used service, started in 2010 and was 

more accurate as a starting point than Uber luxury cars.  

3.1.2. Variable Selection  

Several variables were identified through which the impact of ridesharing services on travel 

behavior can be evaluated. It is evident that socio-economic factors play an important role in the 

usage of ride-hailing services, hence the socio-economic variables selected for this study are age, 

race, household size, income level, educational attainment and house ownership. Some other 
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variables which were identified to be important from the literature study are ‘Online Services’, 

defined by variables like web use, use of smartphones, frequency of online delivery etc.  

Urban form, urban-rural locations and density were other recurring factors across the empirical 

studies. There was strong evidence that the relationship between public transit and ride hailing was 

influenced by urban sprawl. For this research Ewing’s sprawl Index was selected to characterize 

Urban form.  

There was also evidence uncovered from the literature analysis that introduction of TNCs, and 

number of TNCs played an important role in how ride hailing impacted car ownership. As the 

studies looked at, gave inconclusive results, it was decided to incorporate ‘time since introduction 

of TNC’ as an important variable 

The multiple independent variables that were selected underwent basic descriptive analysis 

(Expanded on in Chapter 4) to determine relationships. Certain variables were then dropped from 

the model as it was found that they did not have a significant association or were causing 

multicollinearity errors.  

3.2. Methodology 

As stated in Chapter 1, two types of analysis were conducted. The preliminary analysis includes 

basic descriptive data to understand the user base. An advanced statistical analysis in the form of 

Path analysis through Structural Equation Modelling was then conducted to understand the precise 

impacts of ridesharing on public transit and car ownership.  

Although various statistical methods were considered such as Machine Learning, Propensity score 

matching and Multiple-multivariate regression, Path Analysis through Structural Equation Modelling 
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was chosen over other methods. It was chosen as Path Analysis helps build causal relationships 

between variables and these relationships can be bi-directional. SEM affords multivariate analysis 

while incorporating other analysis methods which gives it a flexibility to create detailed, complex 

models. It also allows for mediation and moderation effects of certain variables to be calculated as 

well.  The Path Analysis was conducted through the LAVAAN package in R, which gave it the ability 

to standardize the parameters and calculate fit measures for the model.  

3.2.1. Path Model 

The path model constructed, composes of one latent variable (Online Activities), three regressions 

and one residual covariance. ‘Frequency of Public Transit use in a month per household’, 

‘Frequency of ride-hailing use in a month per household’ and ‘car ownership per driver per 

household’ are the three dependent variables. Car-ownership acts as an independent variable for 

both the public transit and ride-hailing variables. ‘Number of years since ridesharing was 

introduced’ is the independent rideshare variable which is used for calculating the moderating 

effect of neighborhood context on car ownership.  

The variables are explained in Appendix A 
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Figure 1: Path Model  

 

The final model is described as (abbreviated): 

Model <-  ‘ Online Activities = ~ Web-Use + Smartphones + Delivery 

Car Ownership ~ PT% MSA + HHsize + HHIncome + HO + EAttain + Age + Race + CI + 

YearsTNC + CI: YearsTNC  

Public Transit ~ PT% MSA + HHsize + HHIncome + HO + EAttain + Age + Race + CI + Car 

Ownership 

Rideshare ~ PT% MSA + HHsize + HHIncome + HO + EAttain + Age + Race + CI + Car 

Ownership + Online Activities  ’ 

Where Online Activities in a latent variable created;  

Web-Use = frequency of internet use 

Smartphones = frequency of smartphone use 

Rideshare



 17  

 

Delivery = frequency of online shopping in a month;  

Car Ownership = No. of Cars per driver in a household 

PT% MSA = Percent of Transit Commuters in an MSA 

HHsize = household size 

HHIncome  = household income 

HO = home ownership status 

EAttain  = educational attainment of head of household 

Age = age of head of household  

Race = race of head of household 

CI =  Ewing’s sprawl index for the appropriate census tract 

YearsTNC = No. of years since introduction of either UberX or Lyft  

Public transit = No. of times public transit is used by a household in a month 

Rideshare = No. of times rideshare is used by a household in a month 

For the entire formula used please refer to Appendix B 
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CHAPTER 4: RESULTS 

This chapter presents the findings of the descriptive and statistical analysis conducted and 

interprets them.  

4.1. Descriptive Analysis: Relationship between Ride-hailing Usage and Selected Variables 

First a preliminary analysis was conducted to determine the relationships between ride-hailing and 

some selected variables to understand their impact on frequency of ride-hailing usage. NHTS 2017 

was used as the base dataset. The data was categorized according to city types. Out of the 5 city 

types present, only 4 were taken into consideration. They were small-town, second city, suburban 

and urban. The rural city type was excluded. Their distribution is shown in the following graph: 

 
Figure 2: Distribution of City Types in NHTS 2017 data set 

4.1.1. Transit Mode to Work at different city types 

The first variable to be considered was the mode to work, specifically the frequency of people using 

transit services to go to work. As the original dataset included various modes, it was recoded into 2 

classes: 1 = people who take transit to work and 0 = people who do not take transit to work. This 

variable was then compared to the number of times these users used ridesharing facilities in a 

month. The results are displayed in Figures 3 and 4. 

29%

26%

29%

16%

Small Town Second City Suburban Urban
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Figure 3: Frequency of Ride-hailing Usage for individuals who use transit and those who do not 

 

 

Figure 4: Mode to work by different city types and frequency of ride-hailing facility usage

 Suburban 
Transit 

Suburban 
Not Transit 

Small Town 
Transit 

Small Town 
Not Transit 

Urban Town 
Transit 

Urban Town 
Not Transit 

Second City 
Transit 

Second City 
Not Transit 

Min 0 0 0 0 0 0 0 0 

1st 0 0 0 0 0 0 0 0 

median 0 0 0 0 0 0 0 0 

Mean 1.21 0.32 0.52 0.11 2.68 0.99 0.89 0.27 

third 0 0 0 0 4 0 0 0 

Max 80 66 20 60 30 99 30 90 

Figure 5: Quartile values of mode to work for different city types vs frequency of ride hail services per month  

Transit Users 

Non-Transit Users 
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As the box chart cannot be seen clearly due to large number of 0 values (for frequency of ride-

hailing services usage), Figure 5 is given to depict the value of the box chart. As can be seen, the 

average ride-hailing frequency for Transit is much higher in most city types by approximately 4 

times. The difference is greatest in small towns and least in Urban Towns indicating that rider 

sharing services complement public transit more in small towns and less in urban areas.  It should 

also be noted that the max is higher in non-transit categories indicating that some people who do 

not take transit to work travel almost 99 times per month using ride-hailing services. 

4.1.2. VMT and Ride-hailing by City Type 

The next variable to be considered is VMT. It is compared at a household level to the frequency of 

ride hail services usage of the household.  Figure 6 to 10 shows the different relations obtained by a 

simple scatterplot for the 4 city types and as a whole. From the scatterplot, the R2 value is 

determined to see the degree of co-relation between the 2 variables. It should be noted that all 

values have been aggregated to a household level.  

  

Figure 6: VMT by Total Households 
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Figure 7: VMT by Second City Households 

 
Figure 8: VMT by Suburban Households 

  

Figure 9: VMT by Small Town Households 

 

Figure 10: VMT by Urban Households 
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As is observed from the graphs, the R2  values range from 0.0005 to 0.002 indicating a very small 

relationship between the two variables.  

Urban Areas had the only positive co-relation between frequency of ride-hailing usage and VMT in 

all four city types. This indicates that the more miles travelled in a household, the more likely they 

are of using ride-hailing services. Whereas, in other city types, the more miles travelled in a 

household, the less likely they are of using ride hail services. Among the insignificant R2 values, 

small towns have a slightly higher co-relation than urban areas indicating that VMT plays a larger 

role in ride hail frequency usage in small towns and very little in urban towns.  

As the R2 values are so small, VMT is not considered a good fit and is dropped from the final model. 

4.1.3. No. of Cars per Household and Ride-hailing Frequency by City Type 

The last variable to be considered is the number of cars per household. This is again compared to 

the frequency of ride-hailing services usage aggregated to a household level. In Figures 11 to15, this 

relationship is depicted through simple scatterplots categorized by different city types. The R2 value 

of each relationship is determined to calculate the extent of co-relation between the variables.  

 
Figure 11: No of Cars per total household vs frequency of ride-hailing service usage per month 
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Figure 12 : No of Cars per Second City households vs ride-hailing  

 

Figure 13: No of Cars per Suburban households vs ride-hailing 

 

Figure 14: No of Cars per Small Town households vs ride-hailing 
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Figure 15: No of Cars per Urban households vs ride-hailing 

As can be seen from the figures above, the two variables had a positive co-relation for all city types 

except urban yet the whole has a negative co-relation. This is interesting, because the urban city is 

the smallest category for this case.  The R2 values are insignificant indicating little co-relation. They 

range between 0.0006 to 0.0012.  

Since the descriptive analysis showed little co-relation between car ownership and use of 

ridesharing services, there arose a need to consider other factors. The city types also offered 

interesting findings and it was evident that they were important, but it was decided that the NHTS 

classification was not expansive enough to use, urban form was therefore the important factor and 

a new variable for it was needed. Ewing’s Sprawl Index was therefore introduced to the model, 

replacing the city type classifications of NHTS. 

4.2. Path Analysis 

The model for this research as described in Chapter 3 was run using the LAVAAN package in R. The 

results of the SEM are given in detail in Annexure 3. The results of the model are as follows : 
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Figure 16: Path Analysis of Model with Outputs 

Years since Rideshare 

Introduction 

Loren     - Insignificant 

Ipsi         - Significant 
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It can be seen from Figure 16 that the model yielded interesting results. In terms of the socio-

demographic variables, age of the household head plays no significant role on any of the dependent 

variables. Race is mostly only significant towards frequency of public transport use. Educational 

attainment is significant only towards ride-hailing frequency. Having the highest educational 

attainment till high school or less makes an individual have a negative impact on frequency of ride-

hailing services, whereas if a person has some college attainment, they have a positive impact on 

ride-hailing frequency. The relationship of income with ride-hailing use is insignificant and is 

different categories of income have different impacts on ride-hailing use with no discernable 

pattern. 

Household size has a negative relationship with both public transit use and car ownership. It has an 

insignificant impact on ride-hailing use. Renters have a negative relationship with car ownership 

and ride-hailing usage but a positive relationship with public transit use. 

The percent of transit commuters to work have a very slight but positive relation to ride-hailing 

usage. They have a negative impact on car ownership. 

When looking at the latent variable: Online Activities, an interesting trend is seen. Although web 

use and online delivery have positive relations with the latent variable, use of smart phone has 

negative impacts. The overall impact of online activities is insignificant on ride-hailing usage.  

4.2.1. Impact of Urban Form and Duration of TNC presence on Dependent Variables 

One of the key findings of this research is the link between car-ownership and ride-hailing and how 

urban form affects it. 



 27  

 

As shown in Figure 17, both Sprawl Index and Year since start of a Rideshare11 have negative link 

with Car ownership. When the moderation effect of time on the sprawl index is considered, this 

negative relationship becomes larger. 

 

Figure 17: Change in Car Ownership through 1-unit deviation in Sprawl Index and Years since TNC 

This can be read as ΔSprawl Index + ΔYears +ΔSprawl Index: Years = Δ Sprawl Index* Years 

Therefore, ΔCar Ownership = Δ Sprawl Index* Year  

ΔCar Ownership = - 0.121 -0.034-0.008 = -0.163  

So a one unit change in urban form and duration of TNCs will result in a decrease by 0.163 in car 

ownership. 

This suggests that neighborhood context does impact the link between car ownership and ride 

hailing services. This suggests that ride hailing in denser neighborhoods reduces car ownership 

more strongly than in sprawled neighborhoods 

                                                 
11 Either UberX or Lyft 
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Next let us consider the dependent variable: ride-hailing use. Both Urban Form and Car Ownership 

have insignificant effects on ride-hailing. This shows that although the impact of car ownership on 

ride-hailing is not explained through this model, the impact of ride-hailing on car ownership is 

explained.  

Finally, let us consider Public Transit Use. Urban form has a positive, significant and comparative 

large impact on public transit use. This means that denser areas induce public transit use. Car 

ownership plays a negative impact on public transit and public transit and ride-hailing have an 

insignificant covariance.  
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CHAPTER 5: CONCLUSION 

Ride-hailing services have transformed today’s transportation systems. In order to make informed 

decisions to manage and cultivate the change bought by ride-hailing, the transforming travel 

patterns need to be understood. Unfortunately, the rapid growth of such services has left us with a 

severe data shortage. The purpose of this research is to try and fill this data gap by defining the links 

between ride-hailing, public transit and car ownership.  

Using Path Analysis implemented through Structural Equation Modeling to formulate a model 

describing the relationships between sociodemographic variable, technology dependent variables, 

use of public transit, car ownership and ride-hailing services, this research was able to defining 

these links and study their causal relationships.   

The first of the three key questions analyzed in this study was the relationship between public 

transit and ride-sharing. Although the statistical model used in the research estimated that 

rideshare and public transit had an insignificant covariance, initial findings suggested that ride 

sharing services complement public transit more in small towns and less in urban areas.  This gives 

scope for further research about the topic. 

The second topic analyzed through this model was the link between ridesharing and car ownership. 

The model estimated that ride-hailing had a significant and comparatively large impact on car 

ownership.  Due to the bidirectional nature of the model, we were able to study the reverse 

relationship as well. The model did not show car-ownership having a significant impact on 

frequency of rideshare use. 
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The final relationship to be studied was the impact of neighborhood context on the links between 

car ownership and ride-hailing. It was suggested through a moderation estimation that urban form 

does play a significant role in impacting the role of rideshare on car ownership. The length of 

duration since the introduction of TNCs in a city plays an important role on car ownership. The 

longer TNCs have been around, the smaller the value of car ownership is. Denser Urban forms 

deepen this relationship while sprawled neighborhoods weaken the correlation.  

5.1. Research Limitations 

The study is limited to the data provided by the National Household Travel Survey, 2017. The 

sample size consists of 129,696 households (0.15% of all households in the US) with a 15% response 

rate. There is a massive amount of mobility data owned by private mobility agencies which is not 

shared with the public. This data can give an in-depth overview of the impact of ride-hailing 

services. Apart from the variables considered in the study, there are several more contextual 

variables which undoubtedly have not been considered. Only data from 2017 has been analyzed 

and therefore the study does not give any temporal trends.  Data regarding establishment of ride 

hailing services in individual cities has been compiled using various sources such as news articles 

and blogs as no such public dataset exists.  

5.2. Future Research and Policy Implications.  

Although this research is unable to provide answers for all the questions, it gives enough evidence 

to warrant further studies in certain areas such as exploring the relationship between city types, 

rideshare usage and public transit. This research can serve as a base point for further research to 

completely understand the links between the three. 
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The evolving transport systems of today’s world are leaving planners with little to no data to make 

informed, viable decisions. This research presents opportunities for planners in cities where TNCs 

have recently been introduced to evaluate their policies and regulations to better respond to the 

undeniable rise of shared economy. Ridesharing and other Shared economy models like Airbnb, 

crowdfunding and couch surfing can have significant externalities on urban development aspects 

such as neighborhood context, parking requirements, transportation networks, retail sector etc. 

and proper research needs to be done to effectively manage them.   
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APPENDIX A: SUMMARY OF VARIABLES 

This section gives a detailed summary of all the variables used in the descriptive analysis and the 

final model. Some of the Categorical variables are unordered to set the reference term as a median 

value. 

Table A.1. Summary of Variables 

Name and Description Variable Code Source Type Categories 

Home Ownership Status HOMEOWN NHTS C 

01=Own  
02=Rent  
03=Some other 
arrangement 

Count of household vehicles HHVEHCNT NHTS N  

Count of household vehicles per driver CarsPerDriver - N  

Household income HHFAMINC NHTS C 

2 = Less than $10,000 
3 = $10,000 to $24,999 
1 = $25,000 to $49,999 
4= $50,000 to $99,999 
5 = $100,000 to $199,999 
6 = $200,000 or more  

Frequency of Smartphone Use to 
Access the Internet 

SPHONE NHTS C 

02 = Daily 
03 = A few times a week  
01 = A few times a month 
04 = A few times a year 
05 = Never 

Number of drivers in household DRVRCNT NHTS N  

Race of household respondent HH_RACE NHTS C 

1 = Non-Hispanic White 
2 = Non-Hispanic AA 
3 = Hispanic 
4 = Others 

Age of household respondent R_AGE NHTS C 

2 = 24 and under 
3 = 25-34 
1 = 35 -54 
4 = 54-65 
5 = 65+ 

Educational Attainment of head of 
household 

EDUC NHTS C 

2 = less than high school 
3 = high school 
1 = some college 
4 = bachelors and above 

Count of Ride-hailing App Usage in a 
month aggregated at household level 

RIDE-HAILING NHTS N  
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Name and Description Variable Code Source Type Categories 

Count of household members HHSIZE NHTS N  

Frequency of internet use WEBUSE17 NHTS C 

02=Daily 
03=A few times a week  
01=A few times a month 
04=A few times a year 
05=Never 

Count of Times Purchased Online for 
Delivery in Last 30 Days 

DELIVER NHTS N  

Count of Public Transit Usage in Last 
30 Days 

PTUSE NHTS N  

Ewing’s Sprawl Index at Census Tract 
level 

Composite 
Index 

Ewing N  

Percentage of work trips taken by 
public transit on total work trips at an 
MSA level 

msa_pt 
American 
Fact 
Finder 

N  

Years since Introduction of TNCs Uber 
X or Lyft to city up to June 2017 

Years - N  

Trip distance in miles for personally 
driven vehicle trips 

VMT NHTS N  

Urban / Rural indicator - Block group 
(City Type) 

HBHUR NHTS C 

C=Second City 
R=Rural  
S=Suburban  
T=Small Town  
U=Urban  

Code: In Column ‘Type’ N = Numeric Variables;  C = Categorical Variables  

In column ‘ categories’,  classes in red are the base reference class in the multivariate model. 
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 APPENDIX B: CODE USED TO DESCRIBE FINAL MODEL 

The model for the research is described by ‘final.model’. The dataset is called ‘tryfive’ and the fitted 

output is termed ‘final.fit’. The model is standardized, and fit measures are calculated.  

final.model <- ' 

OnlineActivities =~ WEBUSE17+ DELIVER + SPHONE 

CarsPerDriver ~ msa_pt + HHSIZE + income2 + income3 + income4 + income5 + income6 + 

homeown2 + homeown3 + educ2 + educ3 + educ4 + Age2 + Age3 + Age4 + Age5 + Race2 + Race3 + 

Race4 + CIMean:YearsMean  + YearsMean+ CIMean 

PTUSE ~ msa_pt + HHSIZE + income2 + income3 + income4 + income5 + income6 + homeown2 + 

homeown3 + educ2 + educ3 + educ4 + Age2 + Age3 + Age4 + Age5 + Race2 + Race3 + Race4 + 

CIMean + CarsPerDriver 

RIDE-HAILING ~ msa_pt + HHSIZE + income2 + income3 + income4 + income5 + income6 + 

homeown2 + homeown3 + educ2 + educ3 + educ4 + Age2 + Age3 + Age4 + Age5 + Race2 + Race3 + 

Race4 + CIMean + CarsPerDriver + OnlineActivities  

PTUSE ~~ RIDE-HAILING 

‘ 

final.fit<- sem(final.model, data= tryfive) 

summary (final.fit, standardized=TRUE, fit.measures=TRUE, rsquare=TRUE) 
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APPENDIX C: R SUMMARY OUTPUT FOR MODEL 

Results of SEM for the model:  

lavaan 0.6-4 ended normally after 300 iterations 

Optimization method                           NLMINB 

Number of free parameters                         75 

Number of observations                         85919 

Estimator                                         ML 

Model Fit Test Statistic                   22508.049 

Degrees of freedom                                78 

P-value (Chi-square)                           0.000 

Model test baseline model: 

Minimum Function Test Statistic            75389.377 
Degrees of freedom                               147 

P-value                                        0.000 

User model versus baseline model: 

Comparative Fit Index (CFI)                    0.702 

Tucker-Lewis Index (TLI)                       0.438 

Loglikelihood and Information Criteria: 

Loglikelihood user model (H0)             -1008250.218 

Loglikelihood unrestricted model (H1)     -996996.193 

Number of free parameters                         75 

Akaike (AIC)                              2016650.435 

Bayesian (BIC)                            2017352.522 

Sample-size adjusted Bayesian (BIC)       2017114.170 

Root Mean Square Error of Approximation: 
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  RMSEA                                          0.058 

  90 Percent Confidence Interval          0.057  0.058 

  P-value RMSEA <= 0.05                          0.000 

Standardized Root Mean Square Residual: 

  SRMR                                           0.032 

Parameter Estimates: 

  Information                                 Expected 

  Information saturated (h1) model          Structured 

  Standard Errors                             Standard 

 

Latent Variables: 

                      Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 

  OnlineActivities =~                                                       

    WEBUSE17             1.000                               0.416    0.620 

    DELIVER             -2.818    0.048  -58.313    0.000   -1.172   -0.252 

    SPHONE               2.270    0.045   50.397    0.000    0.944    0.805 

 

Regressions: 

                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 

  CarsPerDriver ~                                                        

    msa_pt           -0.583    0.032  -18.273    0.000   -0.583   -0.066 

    HHSIZE           -0.061    0.002  -36.168    0.000   -0.061   -0.123 

    income2          -0.335    0.010  -33.274    0.000   -0.335   -0.118 

    income3          -0.142    0.007  -20.820    0.000   -0.142   -0.080 

    income4           0.063    0.005   11.760    0.000    0.063    0.050 
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    income5           0.099    0.006   16.670    0.000    0.099    0.071 

    income6           0.157    0.009   18.314    0.000    0.157    0.068 

    homeown2         -0.201    0.005  -41.868    0.000   -0.201   -0.149 

    homeown3         -0.060    0.024   -2.539    0.011   -0.060   -0.008 

    educ2             0.002    0.013    0.173    0.863    0.002    0.001 

    educ3            -0.014    0.006   -2.209    0.027   -0.014   -0.008 

    educ4            -0.011    0.004   -2.567    0.010   -0.011   -0.009 

    Age2              0.016    0.013    1.196    0.232    0.016    0.004 

    Age3              0.000    0.006    0.004    0.997    0.000    0.000 

    Age4              0.000    0.005    0.046    0.963    0.000    0.000 

    Age5              0.004    0.005    0.866    0.386    0.004    0.003 

    Race2            -0.011    0.007   -1.596    0.110   -0.011   -0.005 

    Race3            -0.044    0.009   -4.625    0.000   -0.044   -0.015 

    Race4             0.053    0.006    8.508    0.000    0.053    0.028 

    CIMean:YearsMn   -0.000    0.000  -10.364    0.000   -0.000   -0.034 

    YearsMean        -0.002    0.001   -2.273    0.023   -0.002   -0.008 

    CIMean           -0.003    0.000  -34.707    0.000   -0.003   -0.121 

  PTUSE ~                                                                

    msa_pt           16.108    0.254   63.353    0.000   16.108    0.211 

    HHSIZE           -0.149    0.014  -10.290    0.000   -0.149   -0.035 

    income2           1.213    0.086   14.052    0.000    1.213    0.049 

    income3           0.292    0.058    5.035    0.000    0.292    0.019 

    income4           0.216    0.046    4.703    0.000    0.216    0.020 

    income5           0.484    0.050    9.588    0.000    0.484    0.040 

    income6           0.956    0.073   13.096    0.000    0.956    0.048 
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    homeown2          0.999    0.041   24.139    0.000    0.999    0.085 

    homeown3          0.217    0.201    1.081    0.280    0.217    0.003 

    educ2            -0.063    0.113   -0.554    0.580   -0.063   -0.002 

    educ3             0.015    0.053    0.291    0.771    0.015    0.001 

    educ4            -0.007    0.037   -0.184    0.854   -0.007   -0.001 

    Age2             -0.011    0.112   -0.094    0.925   -0.011   -0.000 

    Age3              0.052    0.055    0.949    0.343    0.052    0.003 

    Age4              0.001    0.044    0.024    0.981    0.001    0.000 

    Age5              0.017    0.041    0.412    0.681    0.017    0.002 

    Race2             1.034    0.061   17.030    0.000    1.034    0.056 

    Race3             0.497    0.080    6.186    0.000    0.497    0.020 

    Race4             0.408    0.053    7.708    0.000    0.408    0.025 

    CIMean            0.029    0.001   38.944    0.000    0.029    0.134 

    CarsPerDriver    -1.123    0.029  -38.668    0.000   -1.123   -0.130 

  RIDE-HAILING ~                                                            

    msa_pt            0.362    0.167    2.172    0.030    0.362    0.008 

    HHSIZE           -0.011    0.009   -1.202    0.230   -0.011   -0.004 

    income2          -0.012    0.057   -0.207    0.836   -0.012   -0.001 

    income3           0.013    0.038    0.344    0.731    0.013    0.001 

    income4           0.004    0.030    0.118    0.906    0.004    0.001 

    income5          -0.017    0.033   -0.523    0.601   -0.017   -0.002 

    income6           0.024    0.048    0.493    0.622    0.024    0.002 

    homeown2         -0.053    0.027   -1.961    0.050   -0.053   -0.007 

    homeown3          0.262    0.132    1.989    0.047    0.262    0.007 

    educ2            -0.190    0.074   -2.563    0.010   -0.190   -0.009 
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    educ3            -0.208    0.035   -5.974    0.000   -0.208   -0.023 

    educ4             0.626    0.024   25.885    0.000    0.626    0.100 

    Age2             -0.004    0.074   -0.053    0.958   -0.004   -0.000 

    Age3             -0.052    0.036   -1.449    0.147   -0.052   -0.005 

    Age4              0.014    0.029    0.480    0.631    0.014    0.002 

    Age5             -0.025    0.027   -0.931    0.352   -0.025   -0.004 

    Race2             0.070    0.040    1.760    0.078    0.070    0.006 

    Race3             0.114    0.053    2.161    0.031    0.114    0.007 

    Race4            -0.001    0.035   -0.023    0.982   -0.001   -0.000 

    CIMean            0.000    0.000    0.523    0.601    0.000    0.002 

    CarsPerDriver     0.005    0.019    0.273    0.785    0.005    0.001 

    OnlineActivits    0.047    0.030    1.555    0.120    0.019    0.006 

 

Covariances: 

                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 

 .PTUSE ~~                                                               

   .RIDE-HAILING        -0.021    0.050   -0.419    0.675   -0.021   -0.001 

 

Variances: 

                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all 

   WEBUSE17          0.277    0.004   76.534    0.000    0.277    0.616 

   DELIVER          20.291    0.101  199.938    0.000   20.291    0.937 

   SPHONE            0.485    0.018   27.668    0.000    0.485    0.352 

   CarsPerDriver     0.307    0.001  207.267    0.000    0.307    0.889 

   PTUSE            22.258    0.107  207.267    0.000   22.258    0.859 
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   RIDE-HAILING         9.550    0.046  207.264    0.000    9.550    0.987 

   OnlineActivits    0.173    0.004   45.797    0.000    1.000    1.000 

 

R-Square: 

                   Estimate 

    WEBUSE17          0.384 

    DELIVER           0.063 

    SPHONE            0.648 

    CarsPerDriver     0.111 

    PTUSE             0.141 

RIDE-HAILING         0.013 


