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Abstract

The first essay describes a shape constrained density estimator, which, in terms
of the assumptions on the functional form of the population density, can be viewed
as a middle ground between fully nonparametric and fully parametric estimators. For
example, typical constraints require the estimator to be log−concave or, more generally,
ρ−concave; (Koenker and Mizera, 2010). In cases in which the true population density
satisfies the shape constraint, these density estimators often compare favorably to their
fully nonparametric counterparts; see for example, (Cule et al., 2010; Koenker and
Mizera, 2010). The particular shape constrained density estimator proposed here is
defined as the minimum of the entropy regularized Wasserstein metric provided by
Cuturi (2013), which can be found with a nearly linear time complexity in the number
of points in the mesh (Altschuler et al., 2017). It is also a common thread that links
all three essays.

After providing results on consistency, limiting distribution, and rate of convergence
for the estimator, the paper moves onto testing if a population density satisfies a shape
constraint. This is done by deriving the limiting distribution of the regularized Wasser-
stein metric at the estimator. In the interest of tractability these results are initially
described in terms of ρ−concave shape constraints. The final result provides the ad-
ditional requirements that arbitrary shape constraints must satisfy for these results to
hold. The generalization is then used to explore whether the California Department of
Transportation’s decision to award construction contracts with the use of a first price
auction is cost minimizing. The shape constraint in this case is given by Myerson’s
(1981) regularity condition, which is a requirement for the first price auction to be cost
minimizing.

The next essay provides a novel nonparametric estimator of the mode of a random
variable conditional on covariates, which is also known as a modal regression. The
estimator is defined by first finding several paths through the data, and then aggregating
these paths together with the use of a regularized Wasserstein barycenter. The initial
paths each minimize a combination of distance between subsequent points as well as the
curvature along the path. The paper provides a result on consistency, and shows that
the estimator has a time complexity that is O(n2), where n is the number of points in
the sample. An approximation is also provided that has a time complexity of O(n1+2β),

where β ∈ (0, 1/2). Simulations are also provided, and then the estimator is used in an
application to find the mode of undergraduate GPA, conditional on high school GPA
and college entrance tests on cumulative undergraduate GPA.

Note that the estimators provided in these first two essays require minimizing the
regularized Wasserstein metric. In their textbook treatment, Peyré and Cuturi (2019)
state that second order methods are not an “applicable” approach for optimization in
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this setting. This is because of the large scale of many applications of interest, as well as
because the Hessian is dense, poorly scaled, and not expressible in closed form. In the
third paper we provide functions to evaluate products with this Hessian and its inverse
that have a nearly linear time complexity. We also provide recommendations to allow
these methods to be applied in standard second order optimization implementations,
and discuss how in certain favorable cases these approaches have a provably nearly
linear time complexity. Afterward, numerical experiments are carried out outside of
these favorable cases. When the derivatives of the constraints are sufficiently sparse,
the computational efficiency of the approach in this setting is also favorable.
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Chapter 1

Shape-Constrained Density Estimation
Via Optimal Transport

Abstract

Constraining the maximum likelihood estimator to satisfy a sufficiently strong con-
straint, log−concavity being a common example, has the effect of restoring consistency
without requiring additional parameters. Since many results in economics require den-
sities to satisfy a shape constraint, these estimators are also attractive for the struc-
tural estimation of economic models. In all the examples provided by Bagnoli and
Bergstrom (2005) and Ewerhart (2013), log−concavity is sufficient to ensure that the
density satisfies the required conditions. However, in many cases log−concavity is far
from necessary, and it has the unfortunate side effect of ruling out sub-exponential tail
behavior.

In this paper, we use optimal transport to formulate a shape constrained density
estimator. We initially describe the estimator using a ρ−concavity constraint. In this
setting we provide results on consistency, asymptotic distribution, convexity of the op-
timization problem defining the estimator, and formulate a test for the null hypothesis
that the population density satisfies a shape constraint. Afterward, we provide sufficient
conditions for these results to hold using an arbitrary shape constraint. This generaliza-
tion is used to explore whether the California Department of Transportation’s decision
to award construction contracts with the use of a first price auction is cost minimizing.
We estimate the marginal costs of construction firms subject to Myerson’s (1981) reg-
ularity condition, which is a requirement for the first price reverse auction to be cost
minimizing. The proposed test fails to reject that the regularity condition is satisfied.
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1.1 Introduction

Nonparametric density estimation has the advantage over its parametric counterparts of not
requiring the underlying population density to belong to a specific family. In the case of
distribution functions, Kiefer and Wolfowitz (1956) showed that the empirical distribution
function is a maximum likelihood estimator; however, attempting to use this distribution
function to directly define a nonparametric density estimate results in a series of point masses
located at each of the datapoints. Grenander (1956) provided the first example of a shape
constrained density estimator as a way to extricate the maximum likelihood estimator from
this “Dirac catastrophe.” Specifically, he showed that maximizing the likelihood function
subject to a monotonicity constraint on the estimator results in density estimates without
point masses.

A great deal of progress was made in subsequent decades by adding penalty terms to the
maximum likelihood objective function to restore the parsimony of the density estimator;
for example, see (Silverman, 1986). Parzen (1962) also showed that kernel density estima-
tors resulted in consistent density estimators and derived the rates of convergence. Unlike
Grenander’s (1956) approach, the performance of maximum penalized likelihood estimators
and kernel density estimators is highly dependent on the specification of penalty terms and
bandwidths, respectively, which can be difficult to choose.

Partly for this reason, recently there has been a renewed interest in ensuring parsimony of
the maximum likelihood density estimator through conditioning on the information provided
by the shape of the underlying density. In particular, significant progress has been made
on the maximum likelihood density estimator subject to the constraint that the logarithm
of the density is a concave function, which defines a log−concave density (Dümbgen and
Rufibach, 2009; Cule, Samworth, and Stewart, 2010; Kim and Samworth, 2016).

One early pioneer on the advantages of log−concavity for both statistical testing as well as
estimation was Karlin (1968). Suppose the distribution function F : R→ [0, 1] has a density
function denoted by f : R → R+. Some examples of log−concavity’s many implications
include that the density f(x − θ) has a monotonic likelihood ratio if and only if f(·) is
log−concave, products and convolutions between log−concave densities are log−concave,
and that the hazard function of the log−concave density f(x), defined by f(x)/(1− F (x)),

is increasing. Bagnoli and Bergstrom (2005) also provide a survey of economic models in
which log−concavity of a density is a sufficient condition for the existence or uniqueness of an
equilibrium. Chen and Samworth (2013) as well as Dümbgen, Samworth, and Schuhmacher
(2011) provide tests for a population density satisfying log−concavity, and Carroll, Delaigle,
and Hall (2011) provide a test for a population density satisfying a more general set of shape
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constraints.
A wide variety of the random variables in the economics literature, such as annual in-

come or changes in stock prices, are thought to exhibit sub-exponential tail behavior, so a
log−concavity constraint would not result in a consistent estimator in these cases. Koenker
and Mizera (2010) generalized the log−concave maximum likelihood estimator by maximiz-
ing Rényi entropy of order ρ ∈ R subject to the ρ−concavity constraint,

f (αx0 + (1− α)x1) ≥ (αf(x0)ρ + (1− α)f(x1)ρ)1/ρ ,

for all α ∈ [0, 1]. This estimator converges to the maximum likelihood estimator subject to
a log−concavity constraint in the limit as ρ→ 0.1 Decreasing ρ corresponds to a relaxation
of this shape constraint, so if f(x) satisfies the constraint for some ρ, then it also satisfies
the constraint for all ρ′ < ρ. Also, this constraint is equivalent to concavity when ρ is equal
to one, and the cases of log−concavity and quasi-concavity can be derived in the limit as
ρ → 0 and ρ → −∞ respectively. Koenker and Mizera (2010) place particular emphasis on
the case in which ρ = −1/2, partly because most standard densities are −1/2−concave. For
example, all Student tv densities with v ≥ 1 satisfy this constraint.

ρ−concavity constraints provide a considerable relaxation over log−concavity constraints,
while restricting the set of feasible densities sufficiently to ensure parsimony of the density
estimator. These constraints are also sufficient conditions for many results in economics,
including the uniqueness or existence of equilibria in a variety of models; see for examples,
(Ewerhart, 2013; Bagnoli and Bergstrom, 2005). However, in many cases the necessary and
sufficient conditions for these results are considerably weaker, so inference and estimation
based on these stronger conditions can provide misleading results. For example, inferring
whether a population density satisfies these weaker conditions based on tests for their more
restrictive counterparts is generally not possible. Things are less straightforward in the case
of estimation because shape constraints are generally the source of the density estimator’s
parsimony. However, since using a shape constraint that is not satisfied by the population
density would not result in a consistent estimator, it is prudent to err toward the weak-
est constraint that theory predicts a population density would satisfy, or when using the
estimate in a structural model, the weakest constraint that a model requires a population
density to satisfy.

For a concrete example in the economics literature, given a density of private valuations
of risk neutral agents, Myerson (1981) defined the virtual valuations function as x − (1 −
F (x))/f(x), and showed that the first price auction is revenue maximizing if this function is

1Maximum likelihood is equivalent to maximizing Shannon entropy, and Rényi entropy of order ρ con-
verges to Shannon entropy as ρ→ 0 .
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strictly increasing. Sufficient conditions for Myerson’s (1981) regularity condition, ordered
from strongest to weakest, are log−concavity, a monotonic hazard rate, and ρ−concavity for
ρ > −1/2 (Ewerhart, 2013). While the first two sufficient conditions are commonly cited in
mechanism design, they both imply exponential tail behavior. Since it seems plausible that
willingness to pay is influenced by ability to pay, allowing valuations to have sub-exponential
tail behavior may be a reasonable modeling choice, given that wealth and income are typically
modeled with sub-exponential tails. Luckily, Myerson’s (1981) regularity condition does not
exclude these densities. For example, while the log−normal density has sub-exponential
tails, it also satisfies this condition when σ2 < 2, which holds in the structural model provided
by Laffont, Ossard, and Vuong (1995).

This paper provides a framework for estimating and performing inference with shape
constrained densities using regularized optimal transport (Cuturi, 2013). This objective
function has the advantage of having an unconstrained global optimum that is a consistent
density estimator, which ameliorates the requirement that the shape constraint is the only
source of parsimony. At first we motivate the method using a ρ−concavity constraint, but
one of the advantages of the method is that the estimator is consistent when this constraint
is replaced by a wide variety of alternative shape constraints. We also provide a consistent
test for whether or not a population density satisfies a shape constraint based on comparing
the objective function at the unconstrained optimum to the constrained optimum.

After introducing density estimation with this more general class of shape constraints,
we use the proposed estimator to explore whether or not the California Department of
Transportation’s decision to use a reverse first price auction to award construction contracts
is cost minimizing. To do this, we use the method provided by Guerre, Perrigne, and
Vuong (2000) to calculate the firms’ marginal costs using data on their bids. We find that a
kernel density estimator of these costs does not satisfy Myerson’s (1981) regularity condition
everywhere; however, the proposed density estimate, subject to the constraint that Myerson’s
(1981) regularity condition is satisfied, appears to follow the data closely. Our test also fails
to reject that the population density satisfies Myerson’s (1981) regularity condition.

In addition to the flexibility offered by the proposed framework, there are three other
advantages of the proposed method. First, the notion of fidelity to the data that we opti-
mize is independent of the constraint, including the choice of ρ in the case of ρ−concavity
constraints. Note that the objective function used in Koenker and Mizera’s (2010) ap-
proach, Rényi entropy of order ρ, is dependent on this constraint parameter. Also, adding a
ρ−concavity constraint to the maximum likelihood estimator would not provide a convinc-
ing way to achieve this goal since this would not provide a convex optimization problem for
values of ρ < 0 and the estimator does not exist when ρ < −1 (Doss and Wellner, 2016).
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Second, the shape constraints of the estimator only binds in regions in which it would
not otherwise be satisfied. This is advantageous when using shape constraints that are not
sufficiently restrictive to ensure parsimony by themselves. Moreover, the existence of the
unconstrained minimizer ensures that the density estimator exists, regardless of the strength
of the shape constraint. As discussed in the preceding paragraph, this is not the case for
the maximum likelihood estimator. Although it is not our primary focus, we also provide an
option for relying on the shape constraint for parsimony.

Third, the proposed algorithm solves an optimization problem over a set of variables
that grows sub-linearly in the sample size, so the time complexity of the proposed algorithm
compares favorably to other shape constrained density estimators.

The next section outlines the aspects of optimal transport that are required to formulate
our estimator. Galichon (2016) provides a more comprehensive overview of the optimal trans-
port literature, including its many applications in economics. The third section defines the
estimator, provides the rate of convergence, and the asymptotic distribution of the estimator.
This section also provides a test for the null hypothesis that the population density satisfies
the shape constraint. The fourth section proves that the optimization problem defining the
estimator is convex and briefly outlines a simple approach for finding the estimator. A more
computationally efficient approach is provided in the third chapter, as it is outside of the
scope of this chapter. The sixth section generalizes the framework presented here to allow
for density estimation and inference subject to a much larger class of shape constraints, with
a focus on shape constraints that arise in the economics literature. Specifically, this section
provides sufficient conditions for each of the results in the paper to hold under an arbitrary
set of shape constraints. This generalization is used in the seventh section to provide evi-
dence that the firms bidding on the California Department of Transportation’s construction
contracts have marginal cost distributions that satisfy Myerson’s (1981) regularity condition.

A few notational conventions will be useful in the subsequent sections. For x ∈ Rm,

we will denote the vector with an ith element defined by exp(xi) as exp(x), and a similar
convention will be used for log(x) and xρ. Also, a diagonal matrix with a diagonal equal to
the vector x will be denoted by Dx, an m× 1 vector of ones by 1m, the identity matrix by
I, element-wise division of the two vectors x and y by x � y, element-wise multiplication
by x⊗ y, the Moore-Penrose pseudoinverse of the matrix A as A+, the convolution between
f : Rd → R1 and g : Rd → R1 by g(x) ∗ f(x), the derivative of f(x) with respect to x
by Oxf(x), and a Dirac delta function centered at z by δz(x). Also, sgn(x) will be used to
denote a function that is 1 when x ≥ 0 and −1 when x < 0. Since the proposed method
requires discretizing densities, say µ : A → R1 for A ⊂ Rd, we will denote the points in the
mesh as {ai}mi=1, where ai ∈ Rd. We will also continue to include parenthesis after functions,

5



as in µ(x) or µ(·), and exclude parenthesis when denoting µ ∈ Rm with elements µi = µ(ai).

1.2 Optimal Transport

Gaspard Monge formulated the theory of optimal transport in the 18th century in order to
derive the optimal method of moving a pile of sand to a nearby hole of the same volume.
Specifically, suppose that both the pile of sand and the hole are defined on A ⊂ Rd, and we
use the measuresM0 : A → R+ andM1 : A → R+ to define the volume of the pile and the
hole respectively. Monge sought to find a transportation plan, T : A → A, that minimizes
transportation costs while ensuring that the hole is completely filled.

Kantorovitch (1958) generalized this problem by describing the transportation plan by
the absolutely continuous measure ψ : A × A → R+. For example, given a1 ∈ A and
a2 ∈ A, we can view the Radon-Nikodym derivative of ψ(·), dψ(a1, a2), as the amount of
mass moved from a1 to a2 under the transportation plan, or coupling, ψ(·). Feasibility of
ψ(·) simply requires ψ(a,A) =M1(a) and ψ(A, a) =M0(a) for all a ∈ A.

When Mi(·) is absolutely continuous, there exists µi(a) such that Mi(A) =
∫
A
µi(a)da

for each A ⊂ A by the Radon-Nikodym theorem. When Mi(·) also satisfies Mi(A) =

1, then µi(a) is also a probability density function. Optimal transport can be described
without assuming M0(·) and M1(·) satisfy these conditions; however, since our goal is
density estimation, we will generally restrict our attention to these cases for the rest of the
paper. In addition we will define (or constrain) all density functions to be continuous, with
the exception of δz(·). We will use this notation to define Ψ(µ0(·), µ1(·)) as the set of feasible
couplings.

The most common cost function in optimal transport is simply squared Euclidean dis-
tance. In this case the cost of moving one unit of earth from a1 ∈ A to a2 ∈ A is proportional
to ‖a1 − a2‖2 . The resulting minimization problem is then given by

W0(µ0(·), µ1(·)) := min
ψ∈Ψ(µ0(·),µ1(·))

∫
A×A
‖a1 − a2‖2 dψ(a1, a2), (1.1)

which we will refer to as the squared Wasserstein distance (Mallows, 1972). W0(µ0(·), µ1(·))
has many desirable properties, one being that

√
W0(µ0(·), µ1(·)) satisfies all of the usual prop-

erties of a distance metric. W0(µ0(·), µ1(·)) also metrizes weak convergence and convergence
in the first two moments. In other words, given a sequence of densities, {µ0(·), µ1(·), ..., µn(·)},
we have limi→∞W0(µ0(·), µi(·)) = 0 if and only ifMi converges weakly toM0 and the first
two moments of µi converge to the first two moments of µ0.
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The Wasserstein distance between two distributions can be viewed as a measure of dis-
tance over the domain of the densities rather than in the direction of their range. For example,
the Fréchet mean of two Dirac delta functions, centered at a and b, in the spaces of densi-
ties equipped with an L2 norm is given by arg minν(x) ‖δa(x)− ν(x)‖2 + ‖δb(x)− ν(x)‖2 =

δa(x)/2 + δb(x)/2, while a similar notion of average in the spaces of densities equipped with
the Wasserstein distance is arg minν(x) W0(δa(x), ν(x)) + W0(δb(x), ν(x)) = δa/2+b/2(x). To
make this intuition more explicit, when A ⊂ R1, one can show W0(µ0(·), µ1(·)) can also
be expressed as

∫ 1

0
(Q0(τ) − Q1(τ))2dτ, where Q0(τ) and Q1(τ) are the quantile functions

corresponding to µ0(·) and µ1(·) respectively. Thus, (Q0(τ) − Q1(τ))2 represents a squared
distance between two points in A (Villani, 2003).

In practice augmenting the Wasserstein distance with a regularization term ameliorates
some numerical difficulties, which will be described below in more detail. The regularized
squared Wasserstein distance is a generalization of W0(µ0(·), µ1(·)), and is defined by

Wγ(µ0(·), µ1(·)) := min
ψ∈Ψ(µ0(·),µi(·))

∫
A×A
‖a1 − a2‖2 dψ(a1, a2)− γH(ψ(·)), (1.2)

where γ ≥ 0 and H(ψ(·)) := −
∫
A×A logψ(a1, a2)dψ(a1, a2) is the Shannon entropy of ψ(·)

(Cuturi, 2013; Cuturi and Doucet, 2014). In the shape constrained density estimation set-
ting, the addition of this entropy term is advantageous for several reasons. First, the objective
function is strictly convex when γ > 0, so the optimal coupling will always be unique. Sec-
ond, in practice A must be discretized before finding the unregularized Wasserstein distance,
and the computational cost of solving for the optimal coupling scales at least cubically in the
number of points in the mesh. Third, after discretizing, the minimizer of Wγ(µ0, µ1) with
respect to µ0 is often a more accurate representation of the minimizer of W0(µ0(·), µ1(·)),
when γ is set to a reasonably small value.2 Four, using Wγ(µ0(·), µ1(·)) allows us to avoid
assumptions in the next section regarding the existence of the second moments of µ0 and
µ1. Lastly, we can find the minimizer of (2) with a very computationally efficient algorithm
after discretizing, which we will describe next.

To introduce the discretized counterparts of dψ(·), µ1(·), and µ0(·), recall our uniform
mesh over A contains the vertices {ai}mi=1, and let µ0, µ1 define µ0(ai), µ1(ai) respectively.
Also, let Mm×m so that Mij := ‖ai − aj‖2 , and ψm×m so that ψi,j := dψ(ai, aj). After
discretizing, (2) can be written as

Wγ(µ0, µ1) := min
ψ

∑
i,j

ψijMij + γψij log(ψij) subject to: (1.3)

2Minimizing W0(µ0, µ1) with respect to µ0 generally results in a minimizing density with many large
discrete changes. For more detail, see Figures 3.1, 3.2, and the accompanying explanation in (Cuturi and
Peyré, 2016).
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m∑
j

ψij = µ0i ∀i ∈ {1, 2, ...,m} (1.4)

m∑
i

ψij = µ1j ∀i ∈ {1, 2, ...,m}. (1.5)

The corresponding Lagrangian is given by

L =

(∑
i,j

γψij log (ψij) + ψijMij

)
− λT0

(
m∑
j

ψ·j − µ0

)
− λT1

(
m∑
i

ψi· − µ1

)
, (1.6)

and the first order conditions imply

ψij = exp (λ0i/γ − 1/2) exp (−Mij/γ) exp (λ1j/γ − 1/2) .

In other words, there exists v, w ∈ Rm
+ such that the optimal coupling has elements ψij =

Kijwivj, where Kij := exp
(
−‖ai − aj‖2 /γ

)
, a symmetric m×m matrix. This can also be

written as,
ψ = DwKDv, (1.7)

so adding the entropy term to the objective function reduces the dimensionality of the
optimization problem from m2 to 2m. Sinkhorn (1967) shows that ψ is unique. The iterative
proportional fitting procedure (IPFP) is an efficient method of computing these vectors; see
Krupp (1979). This method iteratively redefines w so that DwKv = µ0, and subsequently
redefines v so that DvKw = µ1, as summarized in Algorithm 1. Note that after combining
these equalities we have DwK(µ1� (Kw)) = µ0, which will be used in subsequent sections.

Algorithm 1 The iterative proportional fitting procedure.
function IPFP(K,µ0, µ1)
w ← 1m
until convergence:
v ← µ1 � (Kw)
w ← µ0 � (Kv)

return w, v

In the rest of the paper we will make substantial use of the dual of (3)-(5). Cuturi and
Doucet (2014) show that the dual is given by the unconstrained optimization problem,

Wγ(µ0, µ1) = max
(x,y)∈R2m

xTµ0 + yTµ1 − γ
∑
i,j

exp ((xi + yj −Mij)/γ) . (1.8)
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Note that K = exp (−M/γ) , so the first order conditions of (8) can be written as,

µ0i/

(∑
j

exp (yj/γ)Kij

)
= exp (xi/γ) (1.9)

µ1j/

(∑
i

exp (xi/γ)Kij

)
= exp (yj/γ) . (1.10)

Note that after replacing exp (x/γ) with w and exp (y/γ) with v, these formulas are equivalent
to the updates of w and v given in Algorithm 1. Also, given x and y that satisfy (9)-(10),
consider the vectors x̃ := x−c and ỹ := y+c, where c ∈ R. Since µ0 and µ1 have the same sum,
the objective function of (8), evaluated at x̃ and ỹ must equal the objective function evaluated
at x and y. Since exp (ỹj/γ) = exp (yj/γ) exp (c/γ) and exp (x̃i/γ) = exp (xi/γ) exp (−c/γ) ,

x̃ and ỹ must also satisfy (9)-(10). In other words, while v and w are unique up to a
multiplicative constant on w and one over this constant on v, y and x are unique up to the
additive constant c.

A few comments regarding the effect of γ on the optimal coupling will also be useful
in subsequent sections. Higher values of γ correspond to placing a higher penalty on the
negative entropy of the coupling, so the optimal coupling becomes more dispersed as this
parameter is increased. Also, in the limit γ → 0, Wγ(µ0, µ1) converges to W0(µ0, µ1) at
the rate O(exp(−1/γ)) and ψ converges to the optimal unregularized coupling at this same
rate; see Benamou et al. (2015) and Cuturi (2013). In the next section will use Wγ(·) as an
objective function to define the proposed estimator and show how γ impacts this estimator
in more detail.

1.3 Shape-Constrained Density Estimation

The input of the density estimator proposed in this paper is a kernel density estimator, µ,
based on N i.i.d. datapoints, {zi}Ni=1, drawn from a uniformly continuous population density,
µ? : Rd → R1

+, with a bandwidth of σ ≥ 0. Our results also hold when γ and σ are redefined
to be functions of the form c1({zi}i)γ and c2({zi}i)σ, where cj({zi}i)

p→ cj for j ∈ {1, 2}
at any polynomial rate. In the interest of the brevity of notation, we will only write the
parameters in this way when their randomness would have a non-trivial impact on the result.
γ, σ andm will also be dependent on N, but we will suppress this input throughout the paper
and discuss our recommendations for defining them after Theorem 2.

With this notation in mind we can define the shape-constrained density estimator as,

min
f

Wγ(f, µ) subject to:

9



sgn(ρ)fρ ∈ K, (1.11)

where K is the cone of concave functions. Although K is a convex set, the set of ρ−concave
densities is generally not convex. To ameliorate this problem, we will use a similar formula-
tion as Koenker and Mizera (2010) and solve for g := fρ. Note that no generality is lost in
doing so, as there is a one to one correspondence between g and f.

For the clarity of the derivations in the next section, we will also define g to be a vector
of length m − 1 and refer to the element of the vector f, of length m, that corresponds to
this omitted value as fk. We will set fk so that the density sums to m. In other words, the
elements of the density f that do not correspond to this kth element, denoted by f−k, will
be set equal to g1/ρ and fk will be set equal to m−

∑
i g

1/ρ
i .

Unlike optimizing over g rather than f, this can be seen as a slight modification of our
initial optimization problem, since we will also exclude the shape constraints that depend
on the kth element of f. However, as discussed in the next section in more detail, one can
choose k to correspond to an element on the boundary of the mesh so that the estimator
satisfies the shape constraint everywhere on the interior of its domain.

In a slight abuse of notation, we will also denote the objective function as Wγ(g
1/ρ, µ).

In summary, we will define Wγ(g
1/ρ, µ) by,

max
(x,y)∈R2m

xT−kg
1/ρ + xk

(
m−

∑
i

g
1/ρ
i

)
+ yTµ− γ

∑
i,j

exp ((xi + yj −Mij)/γ) , (1.12)

and the final form of our optimization problem is,

min
g

Wγ(g
1/ρ, µ) subject to: (1.13)

gi = αi + βiai, sgn(ρ)
(
αi − αj + (βi − βj)Tai

)
≤ 0 ∀ i, j ∈ {2, ...,m− 1}, (1.14)

where αi ∈ R1, βi ∈ Rd, and d is the dimension of the support of µ and f. These inequal-
ity constraints are used by Afriat (1972) to estimate production functions with concavity
constraints. They tend to provide a gain in numerical accuracy relative to local concavity
constraints.

The following Lemma provides the limiting distribution of the estimator after removing
the shape constraints. This is achieved by showing that the resulting density can be viewed as
a kernel density estimator with a bandwidth of

√
σ2 + γ/2 away from the edges of the mesh

10



over A. To avoid these boundary value effects, we recommend enlarging the domain of µ and
f̂ to include regions within approximately 3

√
σ2 + γ/2 of the datapoints. Alternatively, one

could replace the matrixK with the direct application of a Gaussian filter. This approach has
the added benefit of reducing the computational complexity of Algorithm 1 to O(m logm),

so this is our recommended approach when d > 2; see Solomon et al. (2015) for more details
on this method.

Lemma 1: Suppose µ is a kernel density estimate, generated with a Gaussian kernel and
a bandwidth σ and µ?(·) is uniformly continuous. Also, suppose σ, γ and m are chosen so
that

√
σ2 + γ/2

p→ 0, N
√
σ2 + γ/2

p→∞, and mini 6=j ‖ai − ai‖ /
√
γ → 0 as N →∞. Then

there exists c ∈ R1 so that the limiting density of func := arg minf Wγ(f, µ) is given by,3√
N(σ2 + γ/2)d/2

(
func,i − µ?i + c(σ2 + γ/2)d

) d→ N
(

0, µ?i / (2
√
π)

d
)

Proof: To find func, consider the optimization problem,

min
ψ

∑
i,j

ψijMij + γψij log(ψij) subject to: (1.15)

m∑
i

ψij = µj ∀j ∈ {1, 2, ..., n} (1.16)

The corresponding Lagrangian is

L =
(∑

i,j γψij log(ψij) + ψijMij

)
+ λT0 (

∑
i ψi· − µ) ,

and the first order conditions imply that there exists v ∈ Rm such that
ψ = KDv. (1.17)

Note that convexity of negative entropy implies that the optimal coupling will correspond
to a minimizer. After combining this equality with the constraints, we have

m∑
i

ψij = vj

m∑
i

Kij = µj, (1.18)

which implies

vj = µj/ (
∑m

i Kij) .

3When µ?(·) is differentiable at ai, c = 4µ?i (ai)/2, where 4µ?i (ai) denotes the Laplacian,∑d
j=1Oxj ,xj

µ?(x) at ai. However, c can be defined without assuming µ?(·) is differentiable; Karunamuni
and Mehra (1991) provide more details on this approach.
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Let κ := K1. Now we can find func by finding the other marginal of ψ,

func := K (µ� κ) .

Let φη : Rd → R1 be a Gaussian density with variance ηId and mean 0d. Suppose ν : Rd → R1

is a continuous function. Then,

Kν(a) =
∑m

i=1 exp(−‖ai − aj‖ /γ)ν(ai)

≈ m
√
π

γ

∑m
i=1 φγ/2 (ai − aj) ν(ai)

by the definition ofK, soK can be viewed as a linear operator that discretizes the convolution
ν(·) ∗φ(·)

√
π/γ. Since the distance between adjacent points decreases at a rate that is faster

than
√
γ/2, and the convex hull of the data is a strict subset of the convex hull of {ai}i, the

error of this approximation converges to zero on the convex hull of the data. Thus, as N
diverges we have κi →

√
π/(mγ) for all i in the convex hull of the data.

Since µ is a kernel density estimator, it can be expressed as µ = (
∑

i δzi(·) ∗ φσ2/N) , (a)

which implies that func converges to
(∑

i δzi(·) ∗ φσ2 ∗ φγ/2/N
)

(a). The convolution of two
Gaussian densities is φσ2 ∗ φγ/2 = φσ2+γ/2, so func = (

∑
i δ(zi)) ∗ φσ2+γ/2(y)/N, which defines

a kernel density estimator with a bandwidth of
√
σ2 + γ/2, and Parzen (1962) provides the

limiting density of the kernel density estimator when
√
σ2 + γ/2 → 0 and N

√
σ2 + γ/2 →

∞.

�

The following theorem provides the limiting density of the estimator with the primary
additional assumption that (µ?(x))ρ is strictly concave. Afterward, we will move onto results
that relax this assumption.

Theorem 2: Suppose the assumptions from Lemma 1 hold. If µ? is in the interior of
the feasible set, N

√
c2({zi}i)σ2 + c1({zi}i)γ/2/ log(N) → ∞, and for j ∈ {1, 2}, cj({zi}i)

converges in probability to a constant, then there exists c ∈ R1 so that,√
N(σ2 + γ/2)d/2

(
f̂i − µ?i + c(σ2 + γ/2)d

)
d→ N

(
0, µ?i / (2

√
π)

d
)
.

Proof: Since Wγ(·) is differentiable, we can apply the envelope theorem to the dual problem
(8) to show that OfWγ(f, µ) = x. This implies that the f̃ ∈ Rm is a critical point of
f 7→ Wγ(f, µ) if and only if it has a corresponding dual variable in (8) of x = 0, so func is
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the unique minimizer of Wγ(·) by the proof of Lemma 1 and the definition w := exp(x/γ).4

This implies f̂ = func when func is feasible. Einmahl and Mason (2005) show that func
a.s.→ µ?

under the additional assumptions of the theorem when using data dependent bandwidths,
as in the statement of the theorem. The result follows from the fact that µ? is in the interior
of the feasible set.

�

Remark 1: Algorithm 1 can be slow to converge when γ is chosen to be too small, but our
assumption that γ → 0 as N →∞ is not problematic when the assumptions of the theorem
hold. To see this note that func can be written as K(µ � (K1)). Evaluating Algorithm 1
at input densities µ and func would result in the algorithm first initializing w as 1m and
then define v to be µ � (K1). The w−update would redefine w to be func �K(µ � (K1)),

but since this is also equal to 1, the algorithm has already converged. For input densities f
and µ, it is also generally the case that Algorithm 1 tends to converge at a faster rate for
densities that are closer to func.

�

Remark 2: Our more general convergence result (Theorem 4) provides the same rate of
convergence as Theorem 2 without requiring that µ? is an interior point of the feasible set,
so we can compare this rate with the corresponding rate of convergence of shape constrained
maximum likelihood estimators. Seregin and Wellner (2010) show that the pointwise mini-
max absolute error loss of the log−concave constrained maximum likelihood estimators at
x ∈ A is N−2/(d+4) when µ?(x) is twice differentiable, x is in the interior of the domain of
µ?(·), and the Hessian has full rank. Theorem 2 implies that our estimator also obtains these
bounds when

√
σ2 + γ/2 is chosen so that it converges to zero at the optimal rate, in the

sense of minimizing mean squared error, of Op(N
−1/(d+4)).

�

In practice,
√
σ2 + γ/2 has a more noticeable impact on the resulting density estimator

than the individual values of σ and γ, so we recommend fixing γ/σ2 to be a constant and
focusing on the choice of

√
σ2 + γ/2. Since increasing γ/σ2 tends to result in an increase

in the rate of convergence and numerical stability of Algorithm 1, our recommendation is
γ/σ2 = 8, which was used in all of the applications and examples given below.

4Uniqueness of func can also be shown using strict convexity of Wγ(f, µ) in f, which will be shown in
Theorem 6.
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From a numerical standpoint, it is possible to set
√
σ2 + γ/2 so that the smoothing

provided by γ and σ is negligible and parsimony is almost entirely ensured by the shape
constraints. Since the stability of Algorithm 1 is the only limiting factor on how small
we can make

√
σ2 + γ/2, we can use this fact to estimate a lower bound on the value√

σ2 + γ/2. Specifically, we can estimate the lowest possible value of
√
σ2 + γ/2 that still

results in convergence of Algorithm 1 to within a given tolerance in a fixed number of
iterations, say 100, which can be achieved using a root finding algorithm. This requires
an approximation of the density estimate, and which is described in the third chapter in
more detail. When running the main optimization algorithm described in third chapter, we
recommend increasing γ after this root is found by approximately one fourth and increasing
the number of iterations used in Algorithm 1 by a factor of approximately ten to ensure the
accuracy of the Hessian.

In our tests this approach resulted in density estimates that were similar to estimates
using the method described by Koenker and Mizera (2010), in the sense that the shape
constraint binds almost everywhere. However, note that it is possible that the condition
N
√
σ2 + γ/2/ log(N)→∞ would not hold in this case.
The mean squared error of func is minimized when

√
σ2 + γ/2 is O(N−1/(d+4)). Any of the

standard techniques for setting the bandwidth of kernel density estimators are reasonable
methods of setting

√
σ2 + γ/2, including cross validation or a rule-of-thumb bandwidth

estimator; for examples of rule-of-thumb bandwidth estimators see (Silverman, 1986; Scott,
1992). Since the shape constraint also helps to ensure the parsimony of the density estimate,
these rules should generally be regarded as upper bounds on

√
σ2 + γ/2. In practice, using

Scott’s (1992) rule-of-thumb multiplied by 2/3 works well. After dividing each dimension of
the dataset, {zi,j}i for j ∈ {1, 2, ..., d}, by min(IQR({zi,j}i)/1.349, σ̂({zi,j}i)), combining this
with γ/σ2 = 8, results in σ ≈ N−1/(d+4)/3 and γ ≈ N−2/(d+4)4/5.

The choice of m is likely less critical than that of
√
σ2 + γ/2. The effect of m on the

estimator can be viewed as analogous to the effect of the size of a Gaussian filter on its
output. In practice, these filters are often constructed by discretizing a Gaussian density
over a mesh with a resolution equal to the standard deviation. Using this as a lower bound
in our setting yields, m

√
γ/2/d ≥ 1. The gain in accuracy from increasing m beyond the

point m
√
γ/2/d = 1 generally diminishes fairly quickly when m is set to larger values, so

we recommend choosing m so that m =
⌈
Nβd/

√
γ/2
⌉
, where d·e is the ceiling function, for

any β > 0. In the interest of specificity, we recommend using m =
⌈
N1/5d/

√
γ/2
⌉
.

If the set of constraints that bind asymptotically is known, it is straightforward to find
the asymptotic distribution of f̂ when µ? is not ρ−concave; however, this is rarely the case
in practice. For this reason, finding confidence intervals for estimators subject to shape con-
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straints is an active area of research in nonparametric econometrics. The difficulties in these
cases are due to the estimators, when viewed as functions of the data, not being sufficiently
smooth (either differentiable or Hadamard differentiable) at points in which an inequality
constraint goes from slack to active, and these notions of smoothness are requirements of
many of the commonly used methods for deriving limiting distributions (Andrews, 2000).

The following theorem establishes the limiting distribution of the estimator conditional
on the set of constraints that bind asymptotically. Note that the set of active constraints
converges when

√
σ2 + γ/2 converges to zero at its optimal rate. Thus, the limiting distri-

bution part of the proof might be useful with a rather large sample size. However, since the
set of constraints that binds in a finite sample may not be equal to the set of constraints
that bind asymptotically, in many cases the primary value of this result is that it provides
the limiting value of the estimator without assuming that (µ?)ρ is strictly concave.

There are several possible methods to avoid conditioning on the set of active constraints,
which is an area of ongoing research. One interesting possibility would be to adopt a similar
method as Horowitz and Lee (2017) to the present setting. Their technique involves explicitly
defining the set of active constraints as those constraints that would bind otherwise or
that would “nearly bind.” Asymptotically correct coverage follows from consistency of this
conservative estimate of the active set.

Theorem 3: Suppose the assumptions from Lemma 1 hold. In addition, suppose σN →∞.
Then, conditional on the set of constraints that are active asymptotically, say Ω, there exists
G, as defined in (23-25), and c ∈ Rm such that√

N(σ2 + γ/2)d/2
(
f̂ − µ̃+Dc(σ

2 + γ/2)d
)

d→ N
(
0, GTDµ?/(2

√
π)dG

)
,

where µ̃ is the Wasserstein projection of µ? onto the set of feasible densities. Specifically, if
g̃ is the minimizer of

min
g

Wγ(g
1/ρ, µ?) subject to:

sgn(ρ)g ∈ K,

then µ̃−k := g̃1/ρ and µ̃k = m−
∑

i g̃
1/ρ
i in the case of a ρ−concavity constraint.

Proof: We only consider the case in which d = 1 and k = m for the sake of clarity, but
generalizing the proof to higher dimensions is straightforward. Since d = 1, we will assume
all sets containing the numerical labels of vertices in the mesh are ordered sequentially. For
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example, Ωi will be viewed as the ith largest vertex label in which the constraint binds. Let
Ω̇ := {i | i /∈ Ω ∧ i± 1 ∈ Ω}, the boundary of the complement of Ω.

Since
√
σ2 + γ/2→ 0, we have σ → 0. Since this is the case, and since σN →∞ and µ?

is continuous, µ converges uniformly to µ? (Parzen, 1962). We can view f̂ as a continuous
function of µ, so the continuous mapping theorem implies f̂ converges to µ̃.

Let the matrix A|Ω|×(|Ω|+|Ω̇|) be defined so that AgΩ∪Ω̇ is the second difference of gΩ∪Ω̇, so
the binding constraints can be denoted by AgΩ∪Ω̇ ≤ 0.5 Since we assumed that Ω is known, ĝ,
the vector of Lagrange multipliers, λ, and x are defined by the following system of equations,

(xΩ∪Ω̇ − xk)⊗ ĝ
1/ρ−1

Ω∪Ω̇
/ρ = −ATλ (1.19)

(x−Ω∩−Ω̇ − xk)⊗ ĝ
1/ρ−1

−Ω∩−Ω̇
/ρ = 0 (1.20)

AĝΩ = 0 (1.21)

[
(
ĝ1/ρ

)T
m−

∑
i ĝ

1/ρ
i ]T = exp(x/γ)⊗ (K (µ� (K exp(x/γ)))) , (1.22)

where the final equality results from combining the first order conditions of the optimization
problem defining Wγ(g

1/ρ, µ), which are given by (9) and (10).
Theorem 5 will establish that Wγ(g

1/ρ, µ) is strictly convex in g. Since this is the case,
the solution of this system is unique. The implicit function theorem, applied to (19)-(22),
implies that we can view ĝ, and thus also f̂ , as a differentiable function of µ. After simplifying
this system, we will find this limiting density using the delta method.

We will begin by deriving Oµx using (22). Recall w := exp(x/γ), and let h1(x, µ) be
defined as,

h1(x, µ) := f̂ −DwK (µ� (Kw)) .

(22) can be written as h1(x, µ) = 0. Recall the following equalities from the previous section:
ψ = DwKDv, f = DwKv, and µ = DvKw. These imply

Oµh1(x, µ) = −DwKD1�(Kw)

= −DwKDv�µ = −ψD1�µ,

5In the interest of the simplicity of the exposition, we are defining A using local concavity constraints
rather than Afriat’s (1972) formulation of concavity constraints. The nonzero elements of each row of A
are given by (Ai,j−1, Ai,j , Ai,j+1) = sgn(ρ)(1,−2, 1). Note that j > 1, and, since the sets Ω and Ω ∪ Ω̇ are
ordered by the vertex labels, this matrix is in row echelon form by construction. Thus, A has full rank, so
AAT is nonsingular.
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and

Owh1(x, µ) = DwKDµ�(Kw)2K −DK(µ�(Kw))

= DwKDvD1�µDvK −Df̂�w

=
(
ψD1�µψ

T −Df̂

)
D1�w.

The implicit function theorem implies,

Oµw = Dw

(
ψD1�µψ

T −Df̂

)+

ψD1�µ.

Since x = γ log(w), we have,

Oµx = γ
(
ψD1�µψ

T −Df̂

)+

ψD1�µ.

(21) implies that each element in ĝΩ can be expressed as a mean of its neighbors, so we
can express all of the elements of ĝΩ as a weighted mean of ĝΩ̇. In other words, there exists
C such that ĝΩ∪Ω̇ = CĝΩ̇. (19) implies that, given x and gΩ̇, λ is given by,

λ = −
(
AAT

)−1
ADxΩ∪Ω̇−xk(CĝΩ̇)1/ρ−1/ρ.

We will use the additional |Θ| equations in (19) to define f̂Ω̇. After replacing each instance of
ĝΩ̇ with f̂ρ

Ω̇
and using this definition of λ, we can write (19) as h2(x, f̂Ω̇) = 0, where h2(x, f̂Ω̇)

is defined as

(xΩ̇ − xk)⊗ f̂
1−ρ
Ω̇

+ Ã
(

(xΩ∪Ω̇ − xk)⊗ (Cf̂ρ
Ω̇

)1/ρ−1
)
,

and Ã := AT·,Ω̇
(
AAT

)−1
A. This implies

Of̂Ω̇
h2(·) = (1− ρ)

(
D(xΩ̇−xk)f̂

−ρ
Ω̇

+ ÃDxΩ∪Ω̇−xkD(Cf̂ρ
Ω̇

)1/ρ−2CDf̂ρ−1

Ω̇

)
,

and

OxΩ∪Ω̇−xkh2(·) = B + ÃD(Cf̂ρ
Ω̇

)1/ρ−1 ,

where B|Ω̇|×|Ω∪Ω̇| is defined so that Bi,j is equal to f̂ 1−ρ
Ω̇

when i, j satisfies Ω̇i = {Ω ∪ Ω̇}j
and zero otherwise. The implicit function theorem implies

OxΩ∪Ω̇−xk f̂Ω̇ = −
(
D(xΩ̇−xk)f̂

−ρ
Ω̇

+ ÃD(xΩ∪Ω̇−xk)⊗(Cf̂ρ
Ω̇

)1/ρ−2CDf̂ρ−1

Ω̇

)−1

·
(
B + ÃD(Cf̂ρ

Ω̇
)1/ρ−1

)
/(1− ρ),

so
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GΩ̇,· := Oµf̂Ω̇ = OxΩ∪Ω̇−xk f̂Ω̇POµx =

−
(
D(xΩ̇−xk)f̂

−ρ
Ω̇

+ ÃD(xΩ∪Ω̇−xk)⊗(Cf̂ρ
Ω̇

)1/ρ−2CDf̂ρ−1

Ω̇

)−1

·
(
B + ÃD(Cf̂ρ

Ω̇
)1/ρ−1

)
P
(
ψD1�µψ

T −Df̂

)+

ψD1�µγ/(1− ρ), (1.23)

where P|Ω∪Ω̇|×m := Ox(xΩ∪Ω̇ − xk) is defined so that Pi,j is equal to 1 when i, j satisfies

{Ω ∪ Ω̇}i = j, −1 when j = m, and zero otherwise.
Note that (20) implies xi = xk for all i ∈ {j | j /∈ Ω ∩ j /∈ Ω̇}. The proof of Theorem 2

shows that this condition defines func,i, so we have func,i = f̂i for all such i. This implies,

G−Ω∩−Ω̇,· := Oµf̂−Ω∩−Ω̇ = K−Ω∩−Ω̇,·. (1.24)

Lastly, writing the equations defining f̂Ω in terms of f̂Ω̇ yields f̂Ω = (Cf̂ρ
Ω̇

)1/ρ, so we have,

GΩ,· := Oµf̂Ω = D(Cf̂ρ
Ω̇

)1/ρ−1CDf̂ρ−1

Ω̇

GΩ̇,·. (1.25)

�

There are also a few options for testing if a population density satisfies a shape constraint.
Hypothetically, one could consistently test the null hypothesis that a population density is
ρ−concave using any consistent shape constrained density estimator. This can be done
by estimating the population distribution subject to the shape constraint and then using
one of the classic tests for whether or not the empirical distribution of the data is equal
to this estimate; see for example (Smirnov, 1948; Anderson and Darling, 1952). In these
cases, choosing a test with a statistic that is closely related to the fidelity criterion used for
estimation allows for a more straightforward interpretation of the result. For example, if the
test statistic is equal to the fidelity criterion that the estimator optimizes, we would reject
the null if and only if we would also reject the null for every density that satisfies the shape
constraint.

The following theorem provides the distribution of Wγ(func, µ) and a consistent test for
the null hypothesis that µ?(x) satisfies the shape constraint based on this distribution. The
method also has the straightforward interpretation from the preceding paragraph, so, if
we denote the set of ρ−concave densities by Kρ, the null is rejected minf∈KρWγ(f, µ) −
Wγ(func, µ) is statistically significant. Since Wγ(f, µ) is differentiable in f, this can be
achieved without conditioning on the set of active constraints.

Theorem 4: Suppose the assumptions from Lemma 1 hold and that σN → ∞. Let T be
defined as N(σ2 + γ/2)d/2 (Wγ(µ

?, µ)−Wγ(func, µ)) , ψ as the optimal coupling between µ to
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func, ψ
? as the optimal coupling between µ? and itself, B? as γ(Dµ? − ψ?D1�µ?ψ

?T )+/2, and
B as γ(Dfunc − ψD1�µψ

T )+/2. Then, T d→ ZTB?Z, where the iid elements of Z ∈ Rm are
distributed Zi

√
N(σ2 + γ/2)d/2 ∼ N

(
4µ?i /2, µ?i / (2

√
π)

d
)
.

Also, the hypothesis that µ? satisfies the shape constraint can be consistently tested at a
significance level of α by rejecting the null when N(σ2 + γ/2)d/2

(
Wγ(f̂ , µ)− Wγ(func, µ)) ≥

cα, where cα satisfies P (XTBX ≥ cα) = α and the iid elements of X ∈ Rm are distributed
Xi

√
N(σ2 + γ/2)d/2 ∼ N

(
0, µi/ (2

√
π)

d
)
.

Proof: The gradient and Hessian of Wγ(f, µ) with respect to f are OfWγ(f, µ) = xµ,f and
Of,fWγ(f, µ) = Ofxµ,f = γ(Df −ψµ,fD1�µψ

T
µ,f )

+, which are derived in the proof of the next
theorem. Thus, the second order Taylor series expansion about µ? = func is given by,

Wγ(µ
?, µ) = Wγ(func, µ) + xTµ,func(µ

? − func)

+(func − µ?)TB(func − µ?) +O(‖func(µ)− µ?‖3).

Since func := arg minfWγ(f, µ) and OfWγ(f, µ) = x, we have x = 0. Given the general
discretized densities µ0, µ1 ∈ Rm, the next theorem will also shows that the matrix Dµ0 −
ψD1�µ1ψ

T has one eigenvalue that is zero and m − 1 eigenvalues that are strictly positive.
Note that the pseudo inverse is a continuous function when its domain is restricted to the set
of matrices with the same rank (Stewart, 1969). Since µ and func converge in probability to
µ?, the Slutsky theorem implies B p→ B?. Lemma 1 implies that N(σ2 +γ/2)d/2 ‖func − µ?‖3

converges to zero in probability at a rate of Op

(
N−1/2(σ2 + γ/2)−d/4

)
. Combining these

results with the limiting distribution of func given in Lemma 1 implies that the Taylor series
expansion given above can be written as,

T := N(σ2 + γ/2)d/2 (Wγ(µ, µ
?)−Wγ(func, µ))

d→ ZTB?Z.

Since µ is a consistent estimator for µ?, we also have X d→ Z, so we also have T d→ XTB?X.

To show the test is consistent, suppose µ?(x) is not ρ−concave. Recall thatWγ(f̂ , µ) con-
verges to the metric W0(f̂(x), µ(x)) asymptotically (Benamou et al, 2015) and that Wasser-
stein distance metrizes weak convergence of distributions (and convergence in the first two
moments). Continuity of the functions f̂(x), µ(x) and µ?(x) implies that the distributions
corresponding to these densities converge weakly if and only if the densities themselves
converge to one another in probability. Since f̂ is in the feasible set and µ? is not, f̂(x)

cannot converge to µ?(x) in probability, so W0(µ?, f̂) does not converge to zero. Also,
asymptotically we have W0(f̂ , µ) − W0(µ?, µ) > W0(µ?, f̂) by the triangle inequality, so
N(σ2 + γ/2)d/2

(
Wγ(f̂ , µ)−Wγ(func, µ)

)
diverges under the alternative hypothesis.

�
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1.4 The Optimization Method

In this section we will briefly outline a trust region sequential quadratic programming algo-
rithm to find the global minimum of (13) and (14), while the third chapter describes this
method in more detail. To do this, we will require the gradient and the Hessian ofWγ(µ, g

1/ρ).

The following Theorem provides these values and shows that the optimization problem is
convex for cases in which ρ 6= 0. The derivations for the log−concave case, are given in
the final chapter, along with definitions and properties of the derivatives in a more general
context than ρ−concavity. For notational convenience, the Hessian given below corresponds
to the case in which the index k is set equal to m; although this is not a requirement of the
theorem.

Theorem 5: The gradient of the Wγ(µ, g
1/ρ) is

r := OgWγ(µ, g
1/ρ) = Dg1/ρ−1/ρ(x−k − xk), (1.26)

and the Hessian is

H := O2
gWγ(µ, g

1/ρ) = ABAT + C, (1.27)

where A :=
[
Dg1/ρ−1/ρ −g1/ρ−1/ρ

]
, B := γ(Dg1/ρ − ψD1�µψ

T )+, and C := 1−ρ
ρ2 Dg1/ρ−2

Dx−k−xk . In addition, Wγ(f, µ) is strictly convex in f when k is chosen to be arg mini xi and
γ > 0, and the optimization problem given in (13)-(14) is convex.

Proof: Since Wγ(µ, g
1/ρ) is differentiable, the envelope theorem implies that the gradient

of the objective function in (12) is equal to the gradient of the function given in (13), so
OgWγ(µ, g

1/ρ) = Dg1/ρ−1/ρ(x−k − xk).
The derivative of (26) yields the sum of two matrices. Specifically,

H = O2
gWγ(µ, f(g))

= Dg1/ρ−1/ρOg(x−k(g)− xk(g)) +
(
Ogg

1/ρ−1/ρ
)
Dx−k−xk . (1.28)

We will begin by deriving the first term, which will require several intermediate derivatives.
First, since, f = (g1/ρ,m− 1 · g1/ρ), we have
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Ogf(g) =

[
Dg1/ρ−1/ρ

−g1/ρ−1/ρ

]
.

Second, we will view w as a function of f in order to find Ofw(f). (9) and (10) can be
combined to yield the equality f −DwK (µ� (Kw)) = 0, and implicit differentiation of this
equality implies,

Ofw(f) = (Df�w − ψD1�µψ
TD1�w)+.

Third, the definition w := exp (x/γ) implies x = γ log(w), so

Owx(w) = γD1�w.

Lastly, let x̃(x) := x−k−xk, so Oxx̃(x) =
[
I −1

]
m−1×1

. After combining all four deriva-
tives, we have

Dg1/ρ−1/ρOgx̃(x(w(f(g)))) = Dg1/ρ−1/ρOxx̃(x)Owx(w)Ofw(f)Ogf(g)

= γDg1/ρ−1/ρ

[
I −1

]
D1�w(Df�w − ψD1�µψ

TD1�w)+

[
Dg1/ρ−1/ρ

−g1/ρ−1/ρ

]

= γ
[
Dg1/ρ−1/ρ −g1/ρ−1/ρ

]
(Df − ψD1�µψ

T )+

[
Dg1/ρ−1/ρ

−
(
g1/ρ−1

)T
/ρ

]

= ABAT .

Since Ogg1/ρ−1/ρ = (1− ρ)/ρ2Dg1/ρ−2 , the second matrix in (28) is given by C.
Convexity requires that this Hessian is positive semidefinite. If k is chosen as the index

corresponding to the minimum of x, then x−k−xk ≥ 0. Since this is the case, C is a diagonal
matrix with nonnegative diagonal elements, so C is positive semidefinite.

Next we will establish that ABAT is positive definite in several steps. First, note that
ABAT is symmetric if B is symmetric. Also, since Df and ψD1�µψ

T are symmetric B+

is also symmetric. Since the Moore-Penrose pseudo inverse preserves symmetry, B is also
symmetric. We will proceed by establishing a few intermediary results on the components
of ABAT .

Since D1�µ is positive semidefinite, ψD1�µψ
T is as well. Since ψ is a coupling of the

densities µ and f, we have

D1�fψD1�µψ
T1

= D1�fψ1 = 1.
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In other words, 1 is an eigenvector of D1�fψD1�µψ
T with a corresponding eigenvalue of 1.

The Perron-Frobenius theorem states that an m×m matrix with all positive elements and
columns that sum to one has a unique eigenvalue that is equal to one and m − 1 eigen-
values that are strictly less than one. Note that each eigenvalue, say λ, and corresponding
eigenvector, say p, of D1�fψD1�µψ

TD1�f satisfies,(
D1�fψD1�µψ

T − λI
)
p = 0,

=⇒
(
I −D1�fψD1�µψ

T − λ̃I
)
p = 0

so, p is an eigenvector of I − D1�fψD1�µψ
TD1�f , with an eigenvalue corresponding to

λ̃ := 1− λ. This implies that I −D1�fψD1�µψ
T is a positive semidefinite matrix with rank

m − 1. Since multiplication by a positive definite matrix and applying the pseudoinverse
preserve both the rank and the signs of the eigenvalues, B = γ

(
Df

(
I −D1�fψD1�µψ

T
))+

is also a positive semidefinite matrix with rank m− 1.

Observation 7.1.8 in Horn and Johnson (1990) implies that the nullspace of ABAT is the
same as the nullspace of BAT . Since the eigenvector of B that corresponds to the eigenvalue
of zero is 1, ABAT is positive definite if there does not exist v ∈ Rm−1 such that ATv =

1m. This system of equations is equivalent to g1/ρ−1
i vi = ρ for all i ∈ {1, ...,m − 1} and∑

i g
1/ρ−1
i vi = −ρ, which does not have a solution, so ABAT is positive definite.

This, along with the fact that the constraints in (14) are equivalent to constraining
sgn(ρ)g to be in the set of concave functions, which is a convex cone, implies that the
optimization problem is convex.

�

Remark 3: Choosing k to be arg mini xi is a sufficient, but not necessary, condition to
guarantee convexity. Choosing k to correspond to the element on the boundary of the mesh
over A, with the lowest corresponding value of wi, ensures that the density estimate satisfies
the shape constraints everywhere on the interior of its domain and rarely results in the
objective function being nonconvex along the convergence path. Note that the third chapter
outlines a method to formulate the estimator using g ∈ Rm rather than g ∈ Rm−1, along
with an alternative proof of this result.

�

Having already derived the gradient and Hessian of Wγ(µ, g
1/ρ), it is straightforward to

create a trust region algorithm. The algorithm takes an initial density estimate, f (0), as
input and in iteration i the algorithm solves
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∆← arg mind
{
dTHd/2 + dT r |

(
d+ g

(i−1)
−k

)
sgn(ρ) ∈ K, ‖d‖ ≤ c

}
.

If the value of the objective function evaluated at g(i−1)
−k + ∆ results in an improvement over

its value at g(i−1)
−k , then g(i)

−k is defined to be g(i−1)
−k + ∆. If the improvement was significant,

then the radius of the trust region, c, is increased, and otherwise it is decreased and the value
of g(i)

−k is defined to be g(i−1)
−k . Note that third chapter provides more detail on this, as well

as methods for finding products with H and its pseudoinverse, both with a time complexity
of O(m log(m)).

Figures 1 and 2 illustrate two examples of the output of the optimization procedure fully
described chapter 3. Figure 1 provides density estimates of the rotational velocity of stars
that are constrained to be −2−concave and −1/2−concave, respectively. Figure 2 provides
a plot of a two dimensional density; to illustrate the tail behavior of the density more clearly,
the logarithm of the density is shown. This estimator uses a dataset containing the height
and left middle finger length of 3,000 British criminals that was analyzed by Macdonell
(1902) and Student (1908).

(a) (b)

Figure 1: The red density in each plot is a kernel density estimator of the rotational velocity
of stars from from Hoffleit and Warren (1991). The blue density is the density estimate. ρ
was set equal to −0.5 in (a) and −2 in (b). γ was set using using the first method described
above, so the constraints are binding almost everywhere.

The data used to generate both figures are also used by Koenker and Mizera (2010) to
compare log−concave density estimates with −1/2−concave density estimates. In the case
of the dataset for the rotational velocity of stars, they show that the former provides a
monotonic density in the region in which the speed of rotation is strictly positive, while the
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latter density has a peak near the mode of the kernel density estimator shown in Figure 1.
This peak is also present in both of the shape-constrained densities shown in Figure 1.

For the dataset used in Figure 2, Koenker and Mizera (2010) show that the logarithm of
the maximum likelihood density estimator subject to a log−concavity constraint is below
−24 near the observation at the very top of Figure 2, so observations this far from the
rest of the data would be fairly unlikely to occur if the density was in fact log−concave.
The logarithm of the −1/2−concave density given below is approximately −7.2 near this
observation.

Figure 2: The data points (shown in red) consists of the height and finger length of 3,000
criminals from Macdonell (1902). The points on the convex hull of the data are illustrated
with blue asterisks. The contour plot depicts the logarithm of the −1/2−concave density
estimate to illustrate the tail behavior of the density.

The next section provides results on a generalization of the optimization problem given
in (13)-(14). One of these results provides sufficient conditions for convexity of this more
general optimization problem.

1.5 More General Shape-Constraints

Although log−concavity, and ρ−concavity more generally, are the most commonly studied
shape constraints, the results provided in the previous sections are also applicable to a large
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class of new shape constraints. Specifically, this section considers solutions to the general
optimization problem given by,

min
g

Wγ(µ, α(g)) (1.29)

subject to: ∩i βi(g) ≤ 0, (1.30)

where αi : Rm−1 → R+ and βi : Rm−1 → R. Analogous to the estimator described in the
preceding sections, we will denote the minimizer of (29)-(30) as g̃ and the generalized density
estimator as f̃ := f(g), where f(g) := [α(g)T ,m−1Tα(g)]T . The following theorem provides
sufficient conditions for the results provided in Theorems 2, 4, and 5 to hold in this more
general setting. The statements of these theorems were purposefully ambiguous in regards
to the constraint, so we simply provide additional requirements on the functions α(·) and
β(·) for these generalizations. We also provide sufficient conditions for Theorem 6, but this
requires restating the result in its entirety using the new notation. Lastly, point (4) of the
theorem provides a new result for strict convexity of Wγ(µ, α(g)) in the neighborhood of its
global minimum, without requiring the assumption that α(·) is convex or concave.

Theorem 6: Let i(x) be defined as arg mini ‖x− ai‖ , Θ as the set of proper and uniformly
continuous density functions, ΩN as {g | ∩iβi(g) ≤ 0 ∧ α(g) ∈ Rm ∧

∑
i αi(g) ≤ m}, the set

Λ so that f(x) ∈ Λ if and only if there exists a sequence {g(N)}∞N such that g(N) ∈ ΩN for
all N sufficiently large and f(x) = limN→∞[α(g(N))T ,m− 1Tα(g(N))]i(x).

If µ?(x) ∈ Θ, both of the sets Θ∩Λ and ΩN are nonempty, the function α(·) is invertible,
then the following additional conditions are sufficient for the applicability of Theorems 2, 4,
5, and 6 to f̃ .

(1) If the codomain of the function g 7→ [α(g)T ,m−1Tα(g)] contains func then Theorems
2 and 5 hold for f̃ .

(2) If each of the functions βi(g), as well as α(g), are differentiable in the neighborhood
of g̃ asymptotically, g̃ converges to a point on the interior of the domains of these functions,
and Ogβi(g) |g=g̃ 6= 0 for each i and Ogα(g) |g=g̃ 6= 0, then Theorem 4 holds for f̃ .

(3) Suppose {g | βi(g) ≤ 0} is convex for all i, and αj(g) is convex (respectively, concave)
for all j. If k := arg mini xi (k := arg maxi xi), then (29)-(30) is a convex optimization
problem. Also, the gradient and Hessian of Wγ(µ, α(g)) exist almost everywhere, and at
these points they are given by

OgWγ(µ, α(g)) = (x−k − xk)Ogα(g),

O2
gWγ(µ, α(g)) = ABAT + C,
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where A :=
[
Ogα(g) −Ogα(g)1

]
, B := γ(Dα(g) − ψD1�µψ

T )+, and C :=
∑

j(xj −
xk)O2

gαj(g).

(4) Let d : Rm−1 × Rm−1 → R1
+ denote an arbitrary distance measure. If α(g) ∈ C2

and Ogα(g) has full rank, then there exists δ > 0 such that Wγ(µ, α(g)) is convex in g when
d([α(g)T ,m− 1Tα(g)], func,−k) ≤ δ.

Proof: (1): The proof of theorems 2 and 5 do not use the ρ−concavity constraint, so they still
hold as long as there exists gunc such that func = f(gunc). Since func is the global minimum
of f 7→ Wγ(f, µ), f̃ will be equal to func whenever gunc is feasible.

(2): The proof given for Theorem 4 uses the first order delta method, which requires the
conditions given in the theorem. These conditions are also sufficient for the application of
the continuous mapping theorem, which was used to show convergence in probability of the
estimator.

(3): Since each αj(g) is convex, Aleksandrov’s theorem implies that Ogαj(g) and O2
gαj(g)

exist almost everywhere. We will begin by deriving the gradient and Hessian at these points.
Let ω(x, y, g) be defined as

xT−kα(g−k) + xk
(
m− 1Tm−1α(g−k)

)
+ yTµ− γ

∑
i,j exp ((xi + yj −Mij)/γ) ,

so that we can write Wγ(µ, α(g)) as

maxx,y ω(x, y, g).

Since ω(x, y; g) is differentiable in all of its arguments, the envelope theorem implies

OgWγ(µ, α(g)) = Ogω(x, y, α(g)) = (x−k − xk)Ogα(g).

By the same logic used in the proof of Theorem 4, we can write the Hessian as,

O2
gWγ(µ, α(g)) = (Ogf(g)) (Ofx(w(f))) (Ogf(g))T +

∑
l 6=k(xl − xk)O2

gαl(g)

= ABAT + C.

ABAT is positive definite by the same argument used in Theorem 6, which is also ex-
panded on further in the proof of statement (2). When each αj(g) is convex and O2

gαj(g)

exists, then O2
gαj(g) is a positive semidefinite matrix. In this case, k := arg mini xi, so each

element of (x−k − xk1) is nonnegative. This implies each term in the sum defining C is a
positive semidefinite matrix, so C is positive semidefinite. Also, when each αj(g) is concave
and O2

gαj(g) exists, then O2
gαj(g) is negative semidefinite. Choosing k := arg maxi xi implies
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(xj − xk)O2
gαj(g) is a positive semidefinite matrix, so C is also positive semidefinite in this

case.
Since {g | βi(g) ≤ 0} is convex for all i, the intersection of these sets is also convex. This,

combined with the strict convexity ofWγ(µ, α(g)) in g, implies convexity of the optimization
problem given in (29)-(30).

(4): The argument given in Remark 1 implies that each of the elements of x are the
same when f(g) = func. When this occurs, we have x−k − xk = 0, so C = 0m−1×m−1 when
f(g) = func.

The argument in the second to last paragraph of Theorem 6 implies that ABAT is positive
definite when Ogα(g) has full rank and there does not exist v ∈ Rm−1 such that ATv = 1m.

This system of equations requires (Ogα(g)) v = 1m−1 and −1Tm−1Ogα(g)v = 1. However, if v
satisfies (Ogα(g)) v = 1m−1, then −1Tm−1Ogα(g)v = 1−m, so there is not a solution to this
system of equations. This, combined with the fact that Ogα(g) has full rank, implies ABAT

is positive definite.
Since α(g) ∈ C2, the eigenvalues of the O2

gWγ(µ, α(g)) are continuous in g. Since we have
shown that these eigenvalues are strictly positive when f(g) = func, continuity implies that
there exists δ > 0 such that all eigenvalues are nonnegative when d(f(g), func) ≤ δ.

�

Remark 4: Some of the assumptions given above were made to simplify the exposition rather
than necessity. For example, we can replace assumptions regarding differentiability and rank
for all g with similar assumptions in the neighborhood of g̃. The assumption regarding the
existence of the inverse of α(·) is worth mentioning in particular. Cases in which either
α(·) or α−1(·) cannot be expressed in a closed form appear to be fairly common, but closed
form solutions are not a requirement of the theorem since they can be replaced with their
numerical counterparts. The application provided in the next section is one example of this
case.

�

Mechanism design appears to be a particularly fruitful source for applications of this
generalized shape constrained density estimator. For example, consider a private values auc-
tion model in which bidders have valuations that are drawn from the density f(x). Myerson
(1981) defines the virtual valuations function as Jf (x) := x−(1−F (x))/f(x), and shows that
if Jf (x) is monotone increasing, then an auction that awards the item to the highest bidder
is optimal in the sense of maximizing expected revenue. It is common in mechanism design
to make the stronger assumption that the hazard function, defined by f(x)/(1 − F (x)), is
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increasing or the even stronger assumption that f(x) is log−concave. McAfee and McMil-
lan (1987) show that monotonicity of x− (1− F (x))/f(x) is equivalent to convexity of the
function g(x) = 1/(1 − F (x)), which is used in the the next section to formulate a density
estimate subject to the constraint that f(x) satisfies Myerson’s (1981) regularity condition.6

In addition, Myerson and Satterthwaite (1983) show that bilateral bargaining between
a buyer and a seller will only result in trade when the virtual valuation of the buyer and
the virtual cost of the seller, defined by x+ F (x)/f(x), are both increasing functions. Note
that we can define H(x) := 1 − F (x) and h(x) := H ′(x) = −f(x) to show that this last
condition is equivalent to monotonicity of x− (1−H(x))/h(x). A reformulation of McAfee
and McMillan’s (1987) condition for monotonicity of Jf (x) shows that this is equivalent to
convexity of g(x) := 1/(1 −H(x)). This allows for the formulation of this shape constraint
in an analogous manner as the method used to formulate the shape constraint in the next
section.

It would also be interesting to explore constraining a density to have an increasing hazard
function. Wellner and Laha (2017) show that this is equivalent to constraining g(x) =

− log(1−F (x)) to be convex. In all three of the examples given above, guaranteeing that C
is positive definite requires the density estimate to satisfy a set of inequalities that do not
appear to have an obvious interpretation. Regardless, statement (2) in Theorem 5 implies
that Wγ(µ, α(g)) is still convex as long as f(g) is sufficiently close to func. Initializing the
density near this unconstrained minimizer and then checking for convexity in each iteration
often results in local convexity of Wγ(µ, α(g)) along the path of convergence.

Since the eigenvalues of the positive definite matrix ABAT are increasing in γ,
√
γ/2 + σ2

can also be increased to ensure that Wγ(µ, α(g)) is convex over a larger set. This has the
added benefit of increasing the dispersion of func, which results in func moving closer to the
feasible set in the case of most shape constraints, including all the examples discussed so
far. In some cases ensuring convexity by increasing

√
γ/2 + σ2 may result in the density

being too disperse. If this occurs, it would be best to compare the resulting density estimate
with an estimate subject to a stronger constraint, that allows for the formulation of a convex
optimization problem, and check which density estimate fits the data more closely. For
example, Ewerhart (2013) shows that a sufficient condition for a density to satisfy Myerson’s
(1981) regularity condition is ρ−concavity for ρ > −1/2, and a log−concavity constraint
can be used to ensure that the hazard function is monotonic.

Many other examples of constraints that are commonly imposed on densities in economics
are given by Ewerhart (2013). Even though the examples cited in this paper all constrain

6This example also demonstrates that α(·) and β(·) do not need to be unique, since we could constrain the
discretized counterparts of 1/(1−F (x)) to be convex, Ox1/(1−F (x)) to be monotonic, or Ox,x1/(1−F (x))
to be positive.
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g(x) to be concave or convex, this is by no means a requirement of Theorem 7. For example,
one could define a density estimate of the form given by (29)-(30) to estimate densities
subject to any of the examples of shape constraints that are given by Ewerhart (2013).

1.6 Myerson’s (1981) Regularity Condition

The California Department of Transportation (Caltrans) uses first price auctions to allocate
construction contracts. In this section we use data on the bids submitted to Caltrans in
1999 and 2000 to explore whether or not this choice of auction format minimizes the costs to
the state of California. As discussed in the previous section, if f(x) is the density of private
valuations for the bidders, with a distribution function denoted by F (x), and if the bidders
are risk neutral, Myerson (1981) shows that auctions that award the item to the person
with the highest bid are optimal when the virtual valuations of the bidders is monotonically
increasing.

To examine whether this condition is plausible, we need to estimate the valuations (or,
in this case, marginal costs) of the construction firms. Guerre, Perrigne, and Vuong (2000)
used the fact that the best response function of bidders in a first price sealed bid auction is
an increasing function of the bidders’s valuations to show that the valuation of bidder i can
be estimated by

bi +
F̂b(bi)

(l − 1)f̂b(bi)
, (1.31)

where l is the numbers of bidders participating in the auction, bi is i’s bid, f̂b(·) is a consistent
estimate of the density of bids, and F̂b(·) is its corresponding distribution function. To control
for the size of each project, we normalize each bid by Caltrans’s engineers’s estimates of the
cost of each project before estimating f̂b(·) and F̂b(·) for each auction size.

Bajari, Houghton and Tadelis (2006) use the same dataset to estimate the costs of each
firm. We follow a similar estimation strategy but make some modifications because our focus
is on the costs to the state of California. Specifically, we did not subtract transportation
costs from the cost estimates or treat bids from small firms differently than larger firms.
Each bid consists of a unit cost bid on each item that the contract requires, and the total
bid is equal to the dot product of the number of items required and the unit bid of each
item. If small modifications are made to the contract after it is awarded, the final payment
to the firm is equal to the dot product of the modified quantities and the unit costs in the
original bid. Bajari, Houghton and Tadelis (2006) found evidence that firms are able to
make accurate forecasts of these final quantities, so we follow their recommendation and
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replace the first term in (26) with the final amount that is paid to the firm (normalized
by the Caltran’s engineers’ estimate of the project cost). We also exclude all auctions in
which these modifications resulted in a change in the payment received by the firm by more
than 3%. After excluding these auctions we were left with 1,393 bids. Lastly, Hickman and
Hubbard (2015) showed that the accuracy of the valuations estimates can be improved by
applying a boundary correction to f̂b(·), which we also employed in our estimation procedure.

After we estimated the valuations for each firm, we estimated func by setting
√
γ/2 + σ2

using Scott’s (1992) rule of thumb; however, the resulting virtual valuations function was
not monotonic. This could be an innocuous idiosyncrasy of the data or it could be evidence
that Caltran’s choice of auction format is suboptimal.

To investigate which possibility is more plausible, we find the proposed density estimate
subject to Myerson’s (1981) regularity condition. To define α(·) we solved for F (x) in
the equation introduced in the previous section, g(x) = 1/(1 − F (x)). This derivative is
f(x) = mg′(x)/g(x)2, and after discretizing, we defined αj(g) as (gj−gj+1)/g2

j . The convexity
of the objective function was maintained along the entire path of convergence, without
requiring that we increase

√
γ/2 + σ2 above the recommendation given in the third section.

The input density and the estimate are shown in Figure 3.
We also performed the test described in Theorem 5. We failed to reject the null hypothesis

that the objective function, evaluated at f̂ , was equal to the objective function evaluated at
its unconstrained counterpart, func, with a p−value of 0.93. This is similar to the result of the
Kolmogorov-Smirnov (1948) test and the Anderson-Darling (1952) test for the null hypothesis
that the sample was drawn from the distribution function of f̂ ; these tests also failed to reject
the null with p−values of 0.98 and 0.94, respectively. In this case the constraints are inactive
at all but 24 points in the right tail in a mesh of 300 points.7

Since the density already appears parsimonious, there is little motivation to decrease√
γ/2 + σ2 further; however, in the interest of comparing these three tests further, we also

estimated the density using Scott’s (1992) rule of thumb multiplied by 1/2 rather than 2/3.
In this case the p−value of our test decreased to 0.32, while the p−values of other two
tests both increased to 0.99. This divergence in p−values underlines the difference between
these two approaches. Specifically, as we decrease the smoothing, the distribution function
converges to the empirical distribution function over the vast majority of the domain, so tests
based on comparisons between a distribution and its empirical counterpart are less likely to
reject. In contrast, our statistic measures the discrepancy between the global unconstrained
minimum of f 7→ Wγ(µ, f) and the set of feasible densities. The test is most reliable when

7Myerson’s (1981) regularity condition can also be expressed as f(x)2 + f ′(x)(1 − F (x)) ≥ 0, so it is
always satisfied when the density is increasing. In this case, func decreases rapidly to the right of the mode,
as shown in Figure 3, so it is not in the set of feasible densities.

30



func is a reasonable estimate of µ?, so we do not recommend setting
√
γ/2 + σ2 to a value

that under-smooths func in this way.

(a) (b)

Figure 3: The input density and the output density, subject to Myerson’s (1981) regularity
condition, are shown in black and blue, respectively. (a) shows the estimate when

√
γ/2 + σ2

is set using Scott’s (1992) rule of thumb multiplied by 2/3, while in (b) a factor of 1/2 is
used instead. The absolute value of the valuations can be viewed as the cost per dollar of
the Caltrans’s engineer’s estimates.

1.7 Conclusion

This paper proposes a density estimator that is defined as the density that minimizes a regu-
larized Wasserstein distance from the input kernel density estimator subject to ρ−concavity
constraints. This framework provides the advantages of convexity and consistency, and it
allows for a generalization that is capable of estimating densities subject to a large class of
alternative shape constraints. In addition, it allows for a test of the impact of the shape
constraints on the fidelity criterion.

The framework presented here can also be extended to allow γ and σ to take different
values at each column of the matrix K, which would be appealing in two situations. When
one would like f ? to be as close as possible to µ, γ and σ can be decreased below what would
have otherwise been possible in regions where the shape-constrained density estimator is
closer to µ, without interfering with convergence of the algorithm described in chapter 3.
Secondly, this would allow for the development of methods that set

√
γ/2 + σ2 using an
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adaptive approach that is similar to the one described by Sheather and Jones (1991) for
kernel density estimators.

Another promising area for future research that has not already been mentioned would
be to extend this framework to allow for the estimation of a regression and the density of
residuals simultaneously. Dümbgen, Samworth, and Schuhmacher (2011) showed that this
does not result in a convex optimization problem in the maximum likelihood setting, so
verifying convexity of the objective function in this case is an active area of research. Note
that extending the framework presented here to estimating the mode of a data generating
process conditional on covariates, or a modal regression, is straightforward. For example,
this could be done by imposing a ρ−concavity constraint on the conditional density of the
dependent variable. Using a relatively low value of ρ, say −1 or −2, could be viewed as
similar to a quasi-concavity constraint.8 Convexity of the optimization problem in this case
follows from Theorem 7.

8Note that quasi-concavity is equivalent to uni-modality if and only if d = 1.
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Chapter 2

A Nonparametric Modal Regression

Abstract

We propose a nonparametric estimator of the mode of a dependent variable con-
ditional on covariates, or a modal regression. Methods from graph theory are used to
provide a consistency result and a computationally efficient algorithm. We then apply
the regression to a dataset from the Office of Undergraduate Admissions at the Univer-
sity of Illinois at Urbana-Champaign (UIUC) that consists of UIUC GPA, high school
GPA, and the ACT scores for all UIUC undergraduate students from 2000 to 2010.
There are three primary advantages of the proposed estimator. First, given a dataset
consisting of n observations, the proposed algorithm has a worst-case time complexity
of O(n2). We also provide a generalization of this algorithm that provides an approx-
imation of the regression at a strictly faster rate, which depends on the desired level
of accuracy of the approximation. This approximation converges to the proposed esti-
mator with probability one as n diverges, and, since it simply adds a constraint on the
distance between subsequent points in the paths, it is itself a reasonable estimate of the
mode. Second, the accuracy of the method compares favorably to the classic methods
when the modal regression and the value of the joint density along the regression are
both nonlinear. Third, when the conditional mode can be expressed as a function of the
covariates, the estimator does not require the specification of smoothing parameters.

2.1 Introduction

There are three classic estimators of the univariate mode that have been proposed in the
statistics literature. For example, Parzen (1962) showed that the modes of kernel density
estimators provide consistent estimates of the modes. In a subsequent paper, Chernoff (1964)
derived a modal estimator based on the midpoint of an interval of a fixed width containing the
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most observations, and later Venter (1967) proposed estimating the mode with the midpoint
of the smallest possible interval containing k data points.

The first two of these univariate estimators have been generalized to higher dimensional
contexts, resulting in either parametric or nonparametric regressions that converge to the
mode of the dependent variable conditional on the covariates. Like their univariate counter-
parts, these classic modal regressions require the choice of bandwidth parameters and are
solutions to nonconvex optimization problems.

There are also three primary advantages to both of these approaches. First, the modal
regression augments information provided by the regression to the mean and all of the
quantiles, and there are cases in which the slope coefficient of a modal regression has an
opposite sign as a regression to the mean, as well as all of the quantiles (Baldauf and Silva,
2012; Kemp and Silva, 2012).

Second, the conditional mode is a very simple notion of central tendency when the depen-
dent variable is typically equal to a default value conditional on the covariates. For example,
Cardoso and Portugal (2005) use a modal regression to describe the typical wage in a market
with collective bargaining. More generally, whenever the decisions of agents can be modeled
with a zero-one loss function, possibly due to either a high cost of deviating or a cost of
reevaluating this default choice, a modal regression may more aptly describe this behavior
than a regression to the mean.

Third, the inherently local nature of the mode makes it one of the more robust notions
of central tendency. For example, modal estimators are robust to outliers moving further
away from the mode, switching from one side of the mode to the other, or being removed
from the dataset entirely. Moreover, with the exception of the estimators described by Lee
(1989; 1993), all of the classic modal regressions have a breakdown point that converges to
one asymptotically.

Lee (1989; 1993) introduced modal regressions into the economics literature with a para-
metric regression that can be viewed as a multivariate generalization of Chernoff’s (1964)
modal estimator. Subsequently, parametric estimators were proposed that relax Lee’s (1989;
1993) assumption that the distribution of the error terms have a density that are either sym-
metric or homoscedastic; see for example, (Kemp and Silva, 2012; Ho, Damien, and Walker,
2017). Relative to other methods of estimating the conditional mode, one of the primary
advantages of these approaches is statistical efficiency. In particular, the estimator proposed
by Lee (1993) is

√
n−consistent.

Meanwhile, progress in the statistics literature has followed a different path. Scott (1992)
formulated a multivariate nonparametric generalization of Parzen’s (1962) modal estimator.
These approaches are fully nonparametric, often even avoiding the assumption that the
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conditional modes can be described by functions; see for example, (Chen et al., 2016; Yao, et
al., 2012; Einbeck and Tutz, 2006). This generality comes at a cost. First, since estimation
relies on various algorithms that can all be formulated as gradient ascent, with a time
complexity of O(n2) in each iteration, the computational requirements of accurate estimates
can be high in large datasets (Chen, 2018). Also, the specification of bandwidths is much
less straightforward in this setting than in the kernel density estimation setting (Zhou and
Huang, 2018; Chen, 2018).1

This paper proposes an alternative formulation of modal nonparametric regressions that
are defined by combining several paths through a geometric graph with vertex locations
given by the data. It is similar in spirit to the univariate modal estimator derived by
Venter (1967), in the sense that these paths minimize the distance between consecutive
datapoints. Aggregating several of these paths provides three primary advantages to the
method. First, this approach allows us to leverage the large computational literature on
shortest paths to provide a convergence result and an efficient estimation method. Given
a sample of n observations, the proposed algorithm has a worst-case time complexity of
O(n2), and, particularly in large samples, its computational efficiency compares favorably to
the other nonparametric approaches. Also, a slight generalization of the algorithm provides
an approximation of the regression with a worst-case time complexity of O(n1+2β), where
β ∈ (0, 1/2]. This approximation is equal to the proposed regression when β = 1/2 or, with
probability approaching one, as n diverges.

Second, like methods based on kernel density estimators, we only assume that the condi-
tional mode of the dependent variable is a manifold rather than a function. This allows the
estimator to reveal traits of the data-generating process that would otherwise be difficult to
ascertain, including regions of the covariates that contain multiple modes. An example of a
modal manifold for which the dependent variable cannot be expressed as a function of the
independent variable is shown in Figure 4.

Third, while the estimator allows for the specification of a smoothing parameter to in-
crease the statistical efficiency of the individual paths, this is not a requirement. Our recom-
mended approach is to forego the specification of this parameter when the modal manifold
can be expressed as a function of the covariates. In these cases, the parsimony of the esti-
mator stems from combining several, likely under-smoothed, paths. Moreover, the method
also does not require any other choice parameters including bandwidth parameters or tuning
parameters for optimization heuristics.

After introducing notation in Section 2, Section 3 introduces random geometric graphs.
Next, Section 4 defines the paths that form the proposed estimator and provides a conver-

1This is described in more detail in Section 6.
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Figure 4: The blue curve shows an example of the proposed estimator of the conditional
mode, the red curve is the true conditional mode, and the green curves are the three paths
through the data that define the estimator.

gence result. The estimator is defined as a Frechét mean of these paths, which is discussed,
along with other computational aspects of the estimator, in Section 5. Section 6 provides
simulations to compare the performance of the estimator to methods based on Parzen’s
(1962) approach. The Section 7 applies the estimator to data from the Office of Undergrad-
uate Admissions at the University of Illinois at Urbana-Champaign, and the final section
concludes.

2.2 Notation

The input of the proposed estimator is a dataset composed of n i.i.d. observations, drawn
from a distribution with a continuously differentiable joint density function f : X×Y → R+,

where X ⊂ Rd−1 is the set of independent variables and Y ⊂ R1 is the set of dependent
variables. We will denote the density of y conditional x as f(y | x), and the dataset by
{(xi, yi)}ni=1. When there is little risk of confusion, we will refer to the set X × Y as Z and
the elements (xi, yi) ∈ X×Y as zi.We will also assume that the local modes of f(y | x) form
a manifold and parameterize this manifold as ((x?(t), y?(t)) =) z?(t) : [0, 1] → Z. In other
words, (x̃, ỹ) ∈ {z?(t) | t ∈ [0, 1]} if and only if ỹ is a local maximum of f(y | x̃), which,
given our assumption that f(x, y) is differentiable, is equivalent to,

∂f(y|x)
∂y

∣∣∣
(x,y)=(x̃,ỹ)

= 0 and ∂2f(y|x)
∂2y

∣∣∣
(x,y)=(x̃,ỹ)

< 0.
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As mentioned in the introduction, the proposed estimator is defined by paths through the
datapoints. The fifth section provides a way to avoid specifying the endpoints of these paths,
but to simplify the exposition, we will assume these endpoints are fixed in the following
two sections. Specifically, suppose these endpoints are defined as the datapoint that is
closest to the estimate of the univariate mode of {yi | |xi − x?(0)| ≤ εn} (respectively,
{yi | |xi − x?(1)| ≤ εn}), where εn → 0 and nεn → ∞. We will denote these estimates as zi
(zi).

Some additional definitions will also be useful. The floor of x ∈ R will be denoted by
bxc , the Dirac delta function centered at z by δz(·), the Euclidean distance between zi and
zj by ‖zi − zj‖ , the ball in Rd centered at z with radius r by Br(z), and an n dimensional
vector with each element equal to the constant c will be denoted by cn. In addition, |·| will
be used to denote either the absolute value or the L0−“norm” when there is little risk of
confusion. The following section provides a brief introduction to geometric graphs.

2.3 Geometric Graphs

A graph consists of vertices and the links between these vertices, or edges. Also, a complete
graph is a graph that contains an edge between every pair of vertices. One can also generalize
this definition of graph to add attributes to either the edges or the vertices. For example, a
weighted graph also assigns a weight, generally a scalar, to each edge in the graph.

Similarly, geometric graphs assign a location to each vertex in the graph. For example,
one can construct a K−nearest neighbors graph by assigning a location to each vertex,
and then specifying that vertex i is adjacent to vertex j if and only if either point has a
location that is among the closest K points of the other’s location. The limiting behavior of
geometric graphs with random variables defining the location of vertices was first studied by
Beardwood, Halton, and Hammersley (1959), and subsequently, a large literature has grown
around this topic.

We will define the geometric graph G as a graph with vertices given by V := {1, 2, ..., n}.
The location of the ith vertex will be defined by zi. Paths through the graph will be rep-
resented as partial permutation of V, and we will use Ω to denote the set of all partial
permutations of V such that for every ω ∈ Ω, ω(1) = i and ω(|ω|) = i. Howard and Newman
(1997, 2001) define the power weighted path length as

L(z, ω̃) :=
|ω̃|−1∑
i=1

∥∥zω̃(i) − zω̃(i+1)

∥∥ρ ,
where ρ > 1, and study the limiting behavior of the minimum power weighted path, defined
as,
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ω := arg min
ω̃∈Ω

L(z, ω̃). (2.1)

Note that if we set ρ equal to one the solution to this optimization problem would simply be
ω = {i, i}, so we will focus on more interesting values of this parameter. Increasing ρ above
this level can be viewed as placing a higher penalty on having large jumps between consec-
utive datapoints, or equivalently, as placing a lower penalty on having a longer Euclidean
length.

We will make use of the following implication of a result provided by Hwang, Damelin,
and Hero (2016) in the next section. The result provides the limiting value of the datapoints
in {zω(i)}i. The graph of this path is given by {z | ∃ i ∈ ω and α ∈ [0, 1] s.t. z = αzω(i) +

(1 − α)zω(i+1)}, and it will be convenient to refer to this path by the function (x̂(t), ŷ(t)) :

[0, 1]→ Rd, or simply ẑ(t).

Lemma 1 (Hwang, Damelin, and Hero, 2016): Suppose {zi}ni=1 is a dataset composed
of i.i.d. observations of a random variable in Z with a continuous density function given by
f : Z → R, and f(z) > 0 for all z ∈ Z. Then the minimum power weighted path through the
complete graph G from zi ∈ Z to zi ∈ Z, where zi 6= zi converges in probability to

ẑ(t) := arg min
z(·)∈Γ

∫ 1

0
f(z(t))(1−ρ)/d ‖Oz(t)‖ dt,

where Γ is the set of all piecewise differentiable curves z : [0, 1]→ Z such that z(0) = zi and
z(1) = zi.

Proof: See Theorem 1 in Hwang, Damelin, and Hero (2016).

�

Remark 5: Hwang, Damelin and Hero’s (2016) result is considerably stronger than the
theorem provided. This requires the additional assumptions that infz f(z) > 0 and Z is
compact. These are required because their result concerns the optimal paths between every
pair of points in Z, say w, v ∈ Z, through a graph that is defined with vertices with locations
{zi} ∪ u ∪ v. To see why this is not necessary in our setting, let ε ∈ (0,mint f(z?(t))) ,

Z̃(ε) := {z | f(z) ≥ ε}, and Γ̃ be the set of all piecewise differentiable curves z : [0, 1] → Z̃

such that z(0) = z?(0) and z(1) = z?(1). Note that this set is nonempty since z?(·) ∈ Γ̃.2

Also, using two results from the calculus of variations, along with the fact that f(·) is a
2Since zi and zi are consistent and f(·) is differentiable, zi, zi ∈ Z̃(ε) with probability approaching one,

so the probability that Γ is nonempty also approaches one for any such ε. We use z?(0) and z?(1) to avoid
complications regarding the event that f(zi), f(zi) = 0, but the logic in the remark also applies to zi and zi,
with probability approaching one.

38



differentiable and proper density function, one can show the existence and differentiability
of the minimizer,

z(ε)(t) := arg min
z(·)∈Γ̃

∫ 1

0
f(z(t))(1−ρ)/d ‖Oz(t)‖ dt;

see for example, Theorems 2 and 4 in chapter 8 of (Evans, 2010). Note that if limε→0+

f(z(ε)(t)) = 0, we would have limε→0+

∫ 1

0
f(z(ε)(t))(1−ρ)/d

∥∥Oz(ε)(t)
∥∥ dt = ∞ since z(ε)(t) is

differentiable and ρ > 1. Thus, there exists ε > 0 such that ẑ(t) is in the interior of Z̃(ε).

Suppose ε > 0 is fixed at such a value, and note that Z̃(ε) satisfies the two additional
assumptions of Hwang, Damelin and Hero’s (2016) theorem. Since the minimizer is in the
interior of Z̃(ε) for every t ∈ [0, 1], we have ẑ(·) = z(ε)(·).

�

Since this lemma is of central importance for our main result, we will briefly summarize
the intuition of the proof when Z = [0, 1]2. To do this we will begin by considering a uniform
density on [0, 1]2.

Suppose we approximate the number of points within a circle of radius r > 0, con-
tained within [0, 1]2, by πr2n. After setting this equal to k ∈ N++ and solving for r, we
have that the approximate distance between a given point and its kth nearest neighbor is√
k/(nπ) ∈ O(n−1/2). Thus, if the optimal path only passes from each point to one of the

point’s k nearest neighbors, the total number of points in the path would be approximately
‖zi − zi‖ /

√
k/(nπ) = cn1/2. Since moving a distance of O(n−1/2) increases the objective

function by O(n−ρ/2), we can approximate the power weighted path length by multiplying
the number of edges (≈ cn1/2) by the path length (≈ n−ρ/2), which is cn(1−ρ)/2 in this case.

Now let’s extend these results to the general density function f(z), where z ∈ Z ⊆ R2

and Z is bounded. Suppose we partition Z ⊆ R2 into m2 squares, denoted by {Qi}m
2

i=1, with
centers denoted by {qi}m

2

i=1. We will approximate the density function f(z) by f(qi) when
z ∈ Qi, and after rescaling the datapoints in Qi to span the unit square, we can use the
results from the uniform density case to approximate the increase in the objective function
from passing through Qi.

Since the number of data points in Qi is approximately m−2f(qi)n, our analysis on
the uniform density on [0, 1]2 implies that passing through Qi contributes approximately
c (m−2f(qi)n)

(1−ρ)/2
m−ρ to the power weighted distance. The m−ρ term is due to rescaling

and the fact that L(·) is homogeneous of degree ρ in {zi}i.
Now we can approximate the objective function of a path between the endpoints through

O(m) of the {Qi}i partitions. We will denote the indices of the partitions that this path
passes through by ψ. After simplifying and summing over all ψ, the approximate power
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weighted distance is given by n(1−ρ)/2
∑|ψ|

i=1 cif(qψi)
(1−ρ)/2/m. After taking the limit as m

and n diverge to infinity, we can see that the minimizer of this function converges to the
minimizer of

∫ 1

0
f(x(t), y(t))(1−ρ)/2

√
x′(t)2 + y′(t)2dt, which is the objective function of the

optimization problem given in Lemma 1 when d = 2.

The estimator discussed in the next section can be viewed as a minimum power weighted
path through the lifted graph of G, which we will denote by G (Cowlagi and Tsiotras, 2009).
Before we construct G, we will add two datapoints, denoted by z0 and zn+1, to the dataset,
which will be defined to be equal to zi and zi, respectively.

The vertices in G will be denoted by V := {(i, j)}ni,j=1,j 6=i ∪ {(0, i), (i, n + 1)} so that
each of the n(n− 1) vertices in {(i, j)}ni,j=1,j 6=i corresponds to an edge in G. The vertices in
{(0, i), (i, n+1)} will be viewed as the endpoints of the path. We will also add edges between
the vertices (i, j) and (k, l) if and only if j = k and i 6= l. The location of vertex (i, j) will be
defined as zi,j := (xi, xj, cij), where ci,j := yi− yj. The next section uses this graph to define
the estimator, and provides two results related to its limiting behavior.

2.4 The Nonparametric Modal Regression

In the context of our lifted graph, G, we have

L(z, ω̃) =
|ω̃|−1∑
i=2

∥∥zω̃(i−1),ω̃(i) − zω̃(i),ω̃(i+1)

∥∥ρ .
The indices of the datapoints that define the estimator can be found by solving

ω := arg min
ω̃∈Ω

|ω̃|−1∑
i=2

∥∥zω̃(i−1),ω̃(i) − zω̃(i),ω̃(i+1)

∥∥ρ , (2.2)

where Ω is the set of partial permutations of V such that for all ω̃ ∈ Ω, ω̃(1) = (0, i) and
ω̃(|ω̃|) = (i, n+ 1). Note that when there is little risk of confusion, Ω and ω will also be used
to denote the set of feasible paths in the unlifted graph G and the optimal path through G,
respectively. In practice the proposed estimator appears to perform well when ρ = 2, so we
will use this value throughout the rest of the paper. After substituting this value for ρ and
recalling zi,j := (xi, xj, yi − yj), we can show that (2) can also be written as,

ω = arg min
ω̃∈Ω

|ω̃|−1∑
i=2

2
∥∥xω̃(i) − xω̃(i+1)

∥∥2
+
(
yω̃(i−1) − 2yω̃(i) + yω̃(i+1)

)2
. (2.3)

The first term in the objective function penalizes the distance between consecutive values of
the covariates along the path ω ∈ Ω, and the last term places a penalty on paths that are
less parsimonious.
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Next we will provide a lemma that will be useful in the proof of our main convergence
result. The result shows that asymptotically the distance between consecutive datapoints in
{zω(i)}i, with locations in G, converges to zero with probability approaching one. Hwang,
Damelin and Hero (2016) and Howard and Newman (1997) provide lemmas that show that
the distance between consecutive points along the optimal path, which is analogous to the
locations {(xω(i), xω(i+1), cω(i),ω(i+1))}i of the graph G in the context of this paper, goes to
zero. In our setting, the result below can be viewed as stronger, since it implies their result
and shows that the limiting value of each element of the set {cω(i)}i is zero.

Lemma 2: Suppose a dataset is composed of n i.i.d. observations of a random variable with
a density function given by f(z). For any a > 0 and γ ∈ (0, 1), there exists b > 0 such that
P
(∥∥zω(i) − zω(i+1)

∥∥ > an(γ−1)/d
)
< exp(−bnγ) for every i ∈ {1, 2, ..., |ω|} asymptotically.

Proof: We will assume throughout the proof that the Lebesgue measure zero event that three
or more datapoints are collinear does not occur, which is sufficient to guarantee L(zω) > 0.

Step 1: First we will show that P
(∥∥zω(i) − zω(i+1)

∥∥ > an(α−1)/d
)
decays exponentially for

some non-empty subset of the datapoints. To do this we will compare the path, say ω, with
an alternative, say ω̌, that includes all the points in ω, as well as additional points that will
be added between every consecutive pair of points, other than the first and last pairs. In
other words, if we denote the index of the point that we add between ω(i) and ω(i + 1) as
ω̌(i+ 1/2), we can write ω̌ as

{ω(1), ω(2), ω̌(3/2), ω(3), ..., ω(|ω| − 2), ω̌(|ω| − 3/2), ω(|ω| − 1), ω(|ω|)}.

We will also require that zω̌(i+1/2) ∈ Θi := Bα

(
(zω(i) + zω(i+1))/2

)
, where α > 0.

Let h(zω, zω̌) := L(zω) − L(zω̌). Note that when h(zω, zω̌) ≥ 0, the path ω̌ is shorter, in
a power weighted sense, than the path ω. Let g(zω, α) :=arg min{zω̌(i+1/2)∈ Θi}h(·). We can
find the limit of g(·) as α→ 0 by simply evaluating h(·) at zω̌(i+1/2) = (zω(i) + zω(i+1))/2 for
all i ∈ {2, ..., |ω| − 2}. This limit is given by,

3/2(y3 − y2)2 + (y1 − (y2 + y3)/2)2 − (y3 − y1)2 + 3/4
(∑k−2

i=3 (yi+1 − 2yi + yi−1)2
)

+(∑k−2
i=2 (xi − xi+1)2

)
+ ((yk−2 + yk−1)/2− yk)2 + 3/2(yk−1 − yk−2)2 − (yk − yk−2)2,

where k = |ω| . Since zω(1) = zω(2) and zω(k) = zω(k−1) by construction, g(zω, 0) can be written
as,

3/4
(

(yω(3) − yω(2))
2 + (yω(k−1) − yω(k−2))

2 +
∑k−2

i=3 (yω(i+1) − 2yω(i) + yω(i−1))
2
)

+
∑k−2

i=2 (xω(i) − xω(i+1))
2 > 0.
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Since g(zω, α) is continuous in α, by the intermediate value theorem we can increase α above
zero such that g(·) > 0 still holds. Suppose α is fixed at such a value.

Our definition of Θi implies that there exists β > 0 such that the volume of Θi ∩ Z
is at least β

∥∥zω(i) − zω(i+1)

∥∥d . Suppose that
∥∥zω(i) − zω(i+1)

∥∥ > an(γ−1)/d for every i ∈
{1, 2, ..., |ω| − 1}. This implies that the volume of Θi is bounded below by adβn(γ−1). Let
fi := minz∈Θi f(z). For k ∈ {1, 2, ..., n} this implies

P (zk /∈ Θi) < 1− adfiβnγ/n,

so

P (zk /∈ Θi ∀k ∈ {1, 2, ..., n}) < (1− adfiβnγ/n)n−2.

Since the number of points in the path is bounded above by n,

P (
∥∥zω(i) − zω(i+1)

∥∥ > an(γ−1)/d ∀ i ∈ {2, ..., |ω| − 2})

< n(1− adfmβnγ/n)n−2

where fm = mini fi. This converges to exp(−bnγ), where b := adfmβ. This establishes the
desired property holds for at least one pair of consecutive points in {2, ..., |ω| − 2}.

Step 2: Now let Γ be defined so that ω(i) ∈ Γ if and only if zω(i) − zω(i+1) satisfies
P (
∥∥zω(i) − zω(i+1)

∥∥ > an(γ−1)/d) < exp(−bnγ) asymptotically. Also, redefine ω̌ so that ω̌ is a
subpath of ω, ω̌(i) /∈ Γ for all i ∈ {2, ..., |ω̌|−1}, and ω̌(1), ω̌(|ω̌|−1) ∈ Γ. Sufficient conditions
to guarantee that the first and last three terms of g(zω, 0) are positive, are

∣∣yω̌(1) − yω̌(2)

∣∣ <
3/4

∣∣yω̌(3) − yω̌(2)

∣∣ and ∣∣yω̌(k) − yω̌(k−1)

∣∣ < 3/4
∣∣yω̌(k−1) − yω̌(k−2)

∣∣ . Suppose that the sample
size is sufficiently large so that this property holds and also that |Γ| < |ω| − 2. The same
argument that was used above can be applied again using our new definition of ω̌ to show
that there exists b > 0 such that the probability of this event converges to exp(−bnγ).

Note that in the case in which only four points are in ω̌, h(·) is defined as,

(yω̌(1) − 2yω̌(2) + yω̌(3))
2 + (yω̌(2) − 2yω̌(3) + yω̌(4))

2 +
∥∥xω̌(2) − xω̌(3)

∥∥2−

(yω̌(1) − 2yω̌(2) + yω̌(3/2))
2 − (yω̌(2) − 2yω̌(3/2) + yω̌(3))

2 − (yω̌(3/2) − 2yω̌(3) + yω̌(4))
2

−
∥∥xω̌(2) − xω̌(3/2)

∥∥2 −
∥∥xω̌(3/2) − xω̌(3)

∥∥2
.

Our definition of Θ2 implies that this region is an ellipse. A sufficient condition to guarantee
that

(
zω̌(2) + zω̌(3)

)
/2 is in this ellipse, as well as for the ellipse to be non-imaginary, is to

have
∣∣yω̌(1) − yω̌(2)

∣∣ and ∣∣yω̌(3) − yω̌(4)

∣∣ be larger than
∣∣yω̌(2) − yω̌(1)

∣∣ , so the argument above
applies to this case as well since ω(2) /∈ Γ.
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Remark 6: Note that the set Θi in the proof can sometimes be empty. For example, this
would be the case for all Θi if all of the datapoints were approximately uniformly placed
along a line with sufficiently high slope. Also, if xi = 0 and yi = i for all i ∈ {1, ..., n}, we
would have L(z, ω) = 0. Since no points would be added to the path in this case, the elements
in the set {cω(i),ω(i+1)}i would not converge to zero. Thus, if cω(1),ω(2) and cω(|ω|−1),ω(|ω|) were
not equal to zero by construction, the argument above would not be able to rule out the case
in which cω(i),ω(i+1) → c 6= 0.

�

There are two assumptions in Lemma 1 that prevent us from applying it to the lifted
graph G. First, since ci,j is dependent on cj,k, the location of the vertices in the lifted graph
G are not iid. Second, since the vertex (i, j) and the vertex (k, l) are only connected if j = k,

G is not a complete graph. Regardless, many of the arguments that are used in the proof
of Lemma 1 can also be generalized to the graph G, and we believe that it is possible to
fully generalize their proof to the present setting, which is an area of active research. The
next theorem shows that the path defined by (3) converges to the mode of f(y | x) if this
conjecture is true.

Theorem 3: Suppose f(z) is a proper density and f(z) is a differentiable function. In
addition, suppose that Lemma 1 holds on the lifted graph, G. If zi and zi are consistent
estimators of z?(0) and z?(1), then ẑ(t)

p−→ z?(t).

Proof: We will denote its limiting value of (x̂(t), ŷ(t)) by (x(t), y(t)), and the limiting value
of (x̂1(t), x̂2(t), ĉ(t)) by (x1(t), x2(t), c(t)). Lemma 1 implies,

(x̂1(t), x̂2(t), ĉ(t))
a.s.−→

arg min
(x1(t),x2(t),c(t))∈Γ

∫ 1

0

√
x′1(t)2 + x′2(t)2 + c′(t)2

g(x1(t), x2(t), c(t))1/d
dt, (2.4)

where g(xi, xj, ci,j) denote the density of the random variable (xi, xj, ci,j) and Γ is the set of
all differentiable curves such that z(0) = zi and z(1) = zi. After finding the Euler-Lagrange
equations and reparameterizing (x1(t), x2(t), c(t)) to be a function of arc length, denoted by
s, so that x′1(s)2 + x′2(s)2 + c′(s)2 = 1, we have,

dg(x1(s), x2(s), c(s))x′′1(s) + ∂g(x1(s),x2(s),c(s))
∂x1(s)

= x′1(s)
(
∂g(x1(s),x2(s),c(s))

∂s

)
dg(x1(s), x2(s), c(s))x′′2(s) + ∂g(x1(s),x2(s),c(s))

∂x2(s)
= x′2(s)

(
∂g(x1(s),x2(s),c(s))

∂s

)
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dg(x1(s), x2(s), c(s))c′′(s) + ∂g(x1(s),x2(s),c(s))
∂c(s)

= c′(s)
(
∂g(x1(s),x2(s),c(s))

∂s

)
.

After a change of variables to find the functional form of g(·), we have g(xi, xj, cij) :=∫∞
−∞ f(xi, y)f(xj, y + cij)∂y. We can ensure that the Euler-Lagrange equations characterize
the minimizer of (4), and uniqueness of this minimizer, using Jacobi’s condition (Evans,
2010). This condition is given by,

Ow′(t),w′(t)

(√
x′1(t)2+x′2(t)2+c′(t)2

g(x1(t),x2(t),c(t))1/d

)
> 0,

for w′(t) ∈ {x′1(t), x′2(t), c′(t)}, which is always positive by our assumption that f(z) > 0.

By Lemma 2, ĉ(s) → 0, and c(s) = 0 implies c′(s) and c′′(s) are also zero. These
properties imply that the third Euler-Lagrange equation can be written as

∂g(x1(s), x2(s), c(s))

∂c(s)
= 0. (2.5)

After substituting in the definition of g(·), we have,

∂
∫∞
−∞ f(x1(s),y(s))f(x2(s),y(s)+c(s))∂y

∂c(s)
= 0.

Dividing both sides of this equality by
∫∞
−∞ f(x1(s), y(s))∂x1(s), using the fact that x1(s) =

x2(s) and c(s) = 0 by Lemma 2, and Leibniz’s rule implies,

E
(
∂f(x(s),y(s))

∂y(s)
| x(s)

)
= 0.

Since, for a given value of s, (x̂(s), ŷ(s)) converges, this expected value uniquely characterizes
the limiting value of ŷ(s).

�

In principal, it would be possible to derive conservative estimates of intervals containing
the curve z?(·) with probability approaching one using several available bounds on {zω(i)}i.
For example, Theorem 1 and Lemma 4 from Hwang, Damelin, and Hero (2016) provides an
upper bound on L(z, ω) as well as an upper bound on |ω| respectively. These bounds, along
with zω(1) and zω(|ω|), may rule out some more extreme paths asymptotically. However, this
approach does not appear to be promising because these bounds alone are not tight enough
for the resulting intervals to converge; instead they are Op(1) as n diverges. There appear
to be more convincing possibilities as well, and this is also an active area of research.

The literature on modal regressions places a large emphasis on prediction sets, and provid-
ing theoretical guarantees in this case is more straightforward; see for example (Chen et al.,
2016; Zhou and Huang, 2018). To define this concept let E1−α = {ε ≥ 0 | P (inft ‖ŷ(t)−Z‖ >
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ε) < α} and ε1−α := infε∈E1−α ε. Then, the unconditional 1 − α prediction set is defined as,
A1−α := {z ∈ Z | ‖ŷ(t)−Z‖ ≤ ε}. Consistency of the coverage of this set follows from Kiefer
and Wolfowitz’s (1956) result that the empirical density of the errors is consistent. Prediction
sets are particularly appealing in the context of nonparametric modal regressions because
they can provide a large decrease in the volume of A1−α when y?(·) cannot be expressed as
a function of x.

It is also possible to define a more general class of paths through G using by replacing
our definition of the paths, given in (3), with,

arg min
ω∈Ω

∑
i

∥∥xω(i) − xω(i+1)

∥∥2
+ γκ({zω(i)}i, ω, i),

where κ(·) ≥ 0 is a function that captures some notion of curvature and γ > 0 is a choice
parameter.3 One important advantage of defining κ(·) to be (cω(i−1),ω(i)− cω(i),ω(i+1))

2 is that
cω(i),ω(i+1) converges to zero. Not only does this play an important role in Theorem 3, but
in practice, using definitions of κ(·) that do not have this property appear to increase the
error of the estimator substantially. One alternative definition of κ(·) that does have this
property is

∥∥zω(i−1) − 2zω(i) + zω(i+1)

∥∥2
. This generally provides a slight gain in accuracy

when estimating modal manifolds that cannot be represented by functions and a slight loss
in accuracy otherwise.4

Multiplying (cω(i−1),ω(i)− cω(i),ω(i+1))
2 by a choice parameter that is greater than one does

appear to provide a more parsimonious regression and a lower variance, but our preferred
approach of lowering the variance is to estimate the conditional mode several times and
then combining these paths to define the final estimator. The only exception to this recom-
mendation is when the regression cannot be represented as a function of the covariates. In
these cases, the distance between subsequent points is slower to converge to zero in regions
in which the population modal manifold is parallel to the vertical axis, so there appears to
be a larger gain in accuracy from specifying this choice parameter. This is shown in one of
our simulations in the sixth section. The next section provides more detail on methods for
solving (3) efficiently, and describes how to combine these paths to define the final estimator.

3Note that if there exists a function g : Z × Z → R, so that κ(·) := (g(zi, zj) − g(zk, zl))
2, generalizing

Lemma 1 to the context of this paper would be straightforward; however, the resulting notion of curvature
would be unconventional, since it would require the curvature of the path i→ j → k → l be the same as the
path k → l→ i→ j.

4Note that all triangles with side lengths a, b, c > 0 satisfy the property a2+b2 ≥ c2/2, with equality only
in the case of the degenerate isosceles triangle that satisfies a = b = 2c. Since (p− 2q + r)2, for p, q, r ∈ R1,
can be written as 2(p − q)2 + 2(q − r)2 − (p − r)2, this definition of κ(·) has the intuitive interpretation of
placing a larger penalty on consecutive triplets of {zω(i)}i that do not approximately form this degenerate
isosceles triangle.
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2.5 Computation

Dijkstra’s (1959) Algorithm

There is a large literature in computer science on calculating solutions to the shortest path
problem efficiently, and Dijkstra’s (1959) algorithm is an example of a particularly simple
and efficient approach. This is most easily described by considering the computation of the
shortest path length in an undirected graph from the source vertex, say 1, to every other
vertex when the cost of moving from i to j is given by wij. Note that if all elements of
{wij}i=1,j>i are unique, this is also equivalent to finding all of the optimal paths. To see this,
suppose our path distances are stored in the vector s, so that sj is the distance from j to
1. Now, starting at j, we can find the preceding point in the path by observing that k must
satisfy sj − sk = wjk. This is the case because whenever the shortest path from 1 to j passes
through k, then the section of this path from k to j is the optimal path from k to j. This
intuition is analogous to Bellman’s principle of optimality, and is also the basis of Dijkstra’s
(1959) approach.

Given a graph with n vertices, the algorithm is initialized by defining v to be {1, 2, ..., n}
and defining the n × 1 vector s so that s1 = 0 and s−1 = ∞. At the beginning of each
iteration we define k := arg mini∈v si, and remove k from v. The value of sk will not be
changed in any of the subsequent iterations. With k defined, we can consider each of the
elements j ∈ v, and see whether or not passing through k before going onto j is less than
our current estimate of the path length from 1 to j. If passing through k in this way would
decrease the path length, then we redefine sj to be sk + wk,j. In other words, for each j ∈ v
we redefine sj to be min(sj, sk + wk,j). Then the algorithm moves onto the next iteration
until v = ∅. Algorithm 2 provides more details on this method.

Note that the worst-case computational cost of Dijkstra’s algorithm isO(|E|+|V | log(|V |))
Using a complete graph to model G, would imply that G would have O(n4) edges. Thus, the
time complexity of this algorithm would be O(n4). However, Lemma 2 implies that we can
ignore links between datapoints that are sufficiently far from one another.

Equivalently, we can define G to be a kn−nearest neighbors graph, where kn :=
⌊
nβ
⌋
for

β ∈ (0, 1]. In practice setting β to approximately 1/2 rarely has any impact on the resulting
paths when the dataset contains at least a few hundred points. This also results in G having
O(nkn) = O(n3/2) vertices and O(nk2

n) = O(n2) edges, so the worst-case time complexity
of Dijkstra’s algorithm is O (n2) . Since the time complexity of constructing a kn−nearest
neighbors graph is equal to the time complexity of finding the distance between each pair of
points, which is O(n2), lowering β will not improve the time complexity of the estimator.

However, in large sample sizes lowering β does have a non-negligible impact on the wall
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time of the estimator, and using lower values, say β = 2/5, generally produces paths that
are similar or identical to the paths when β = 1 as long as n ≥ 250 points, and, in light
of Lemma 2, the same can be said for lower values as n increases beyond this point. When
these lower values have a small impact on the estimator, it is often not obvious that this is
detrimental to the estimator’s accuracy; however, an increase in the error is apparent when
β is set to a value that is too low.

Lastly, all of the remaining steps required to compute the estimator have a time com-
plexity that scales at a rate of O(n log(n)) or less in the sample size. Since the regression
does not require that G be defined using the exact kn−nearest neighbors graph, or even that
each vertex have exactly kn adjacent vertices, one could also approximate this step. One
approach would be to sort each dimension, and adding edges between i and j if and only
if they are near one another in each dimension. While this may seem nonstandard initially,
this would provide more neighbors to vertices in regions with a higher mass. For a more
standard approach that also appears promising, as well as a survey of related algorithms,
see Andoni and Indyk (2006). Lastly, note that the algorithm is computationally efficient
without using this generalization, so it is probably only worthwhile to do this in very large
datasets. Section 5.3 provides more detail on the computation time of the algorithm and
comparisons to other methods.

Algorithm 2 Dijkstra’s (1959) Algorithm
function Dijkstra’s Algorithm(i, i, w)
t, s←∞n # Initialize the distance vector, s, and t. Note ti will contain the
# vertex preceding i in the shortest path
si ← 0
v ← {1, 2, ..., n} # Initialize v
while i ∈ v:
k ← arg min

i∈v
si

v ← v/k
for i ∈ v: # Consider all unvisited vertices

temp←sk + wi,k
if temp < si: # If including k in the path to i shortens the path,
si ← temp # update the path length and update ti.
ti ← k

ω? ← {i}, u← n+ 1
while tω(1) 6= i: # Retrace the path given in t from i, to i:
ω ← {tω(1), ω}

return ω
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Endpoints

When d = 2, finding values of x that the modal manifold passes through is generally easily
achieved by plotting the datapoints. When this manifold cannot be described by a function
of x, bounds on y may also need to be specified in the same way. After this has been done,
the endpoints zi and zi can be specified, as described in the Notation section. This approach
appears to be slightly more accurate than other approaches in the two dimensional case.

In higher dimensions, this approach may be more difficult to implement, and this difficulty
is compounded by the fact that more endpoints are required when d > 2. In this case, it
is best if the conditional mode can be expressed as a function of x, so we will suppose this
is the case.5 Next we will describe an automated process of defining these endpoints to be
datapoints near the boundary of the X domain that are also close to the conditional mode.

To identify points near the boundary of X, we can use a technique called convex hull
peeling (Small, 1990; Rousseeuw, Ruts, and Tukey, 1999). This involves estimating the
convex hull of {xi}i, removing the points on the convex hull, and repeating until a sufficient
number of points around the boundary are found. Let Γ denote this set of points.

Next we find the set of m points in Γ that are as far from one another as possible. Specif-
ically, we would like to find the set Θ ⊂ Γ, where |Θ| = m, that solves arg maxΘ mini,j∈Θ

‖zi − zj‖ . This is analogous to a covering problem, so it is likely not possible to solve in poly-
nomial time. However, for our purposes, an approximate solution will suffice. To achieve
this, choose an arbitrary point in Γ to initialize Θ and then add the point to Θ that is the
solution to arg maxj∈Γ mini∈Θ ‖zi − zj‖ . This process is then continued until |Θ| = m. Now
we can calculate a kernel density estimate of {zi}i, and then, for each i in Θ, we can find its
kn nearest neighbors and define an endpoint to be the neighbor with the maximum density
estimate. Our current implementation chooses kn = 2

⌊
n1/3

⌋
.

In both the d = 2 and d > 2 cases, there are also two other options available when setting
the endpoints. One alternative would be to define all of the kn nearest neighbors of i ∈ Θ

as a single endpoint. In this case, for each i ∈ Θ we add a vertex to our graph, say n + i,

that is adjacent to each of the kn nearest neighbors of i and define the distance from these
neighbors to n+ i as zero. This is analogous to adding the endpoints to the variables being
optimized over in (3). Second, one can also use Parzen’s (1962) modal estimator to estimate
the global mode of {zi}i and require that all paths start at this point. This appears to work
well when the global mode is near the center of the domain, X.

The method’s speed and accuracy is fairly robust to these choices. Most of these methods
5It is also possible to maintain the manifold perspective of the conditional mode by embedding the mani-

fold in a lower dimensional space before estimating the endpoints. The algorithms described by Tenenbaum,
De Silva, and Langford (2000) and Belkin and Niyogi (2002) can be used to estimate these embeddings.
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can also be combined with one another in reasonable way. For example, in d = 2, we can set
the endpoints to be the kn nearest neighbors of i ∈ Θ while using an estimate of the global
mode as the starting point.

Combining the Paths

In higher dimensions, we recommend increasing the the number of endpoints as well as the
number of times paths are estimated between each endpoint. To ensure each of these paths
are distinct, the edges in the lifted graph G along ω should be removed before recomputing
ω. In the unlifted graph G, this translates to requiring that the paths between iterations do
not contain the same three consecutive points. When one has reason to believe that z?(t) can
be formulated as a function of x and d = 2, these estimates can simply be averaged using an
arithmetic mean at each value of x. To estimate modal manifolds without assuming f(y | x)

is unimodal at each x ∈ X, we recommend using a regularized Wasserstein barycenter. More
detail can be found on the third paper.

When d > 2, a better approach would be to estimate the regression over a mesh X̃ ⊂ X.

To do this, in a given iteration, let Φ be the collection of the datapoints that are in at least
one path. After calculating the Delaney triangulation of {xi}i∈Φ, the barycentric coordinates
of each of the points in X̃ are found. At each point in the mesh, we then calculate a weighted
mean of {yi}i∈Φ, with weights given by the barycentric coordinates. After this is repeated
over all of the iterations, we define the final regression as the average of the estimates from
each iteration.

In terms of actual computation time, when there are approximately 1,000 observations,
it generally takes approximately two seconds to find the paths. Combining the paths using
an arithmetic mean takes a negligible amount of time; however, defining the final regression
using the Wasserstein barycenter adds approximately 35 seconds to the computation time
(regardless of the sample size). When using an arithmetic mean, the computation time of
our approach compares favorably to the three publicly available implementations of estima-
tors based on Parzen’s (1962) approach that we have tested when n ≥ 1, 000 even when a
reasonable bandwidth choice was already known (Einbeck and Tutz, 2006; Zhou and Huang,
2018; Chen et al., 2016). When using a Wasserstein barycenter to combine the paths, the
required sample size to reach parity with the fastest of these approaches is approximately
2,000.

Figure 5 provides an example of averaging the paths using a Wasserstein barycenter
when d = 2, and Figure 6 provides an example using the arithmetic mean when d = 3. The
next section describes the data generating process used to generate Figure 5, and provides
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Figure 5: The true conditional mode is given by the red curve, the three paths defining
the modal regression by the green curves, and the final estimate of the conditional mode is
shown in blue.

simulations of this data generating process. Both the independent variables in Figure 6, say
x and y, are uniformly distributed between -2 and 2, and the dependent variable is defined
as zi = x2

i − y2
y + εi, where εi ∼ N(0, 1/2). We will conclude this section with a brief outline

of our proposed algorithm, which is given below.

Algorithm 3 A brief summary of the proposed algorithm
1) Define G using a

⌊
nβ
⌋
−nearest neighbors graph.

2) Find the endpoints of the paths, say {νi}i.
3) Define G as the lifted graph of G with edge weights between vertices (i, j) and (j, k) equal
to ‖zi,j − zj,k‖2 .
4) Perform the following iterations.

for i ∈ {1, 2, ..m}:
for j, k ∈ ν and k 6= j:
i← νj × {1, ..., n}; i← νk × {1, ..., n}
ωi,j,k ←Dijkstra’s Algorithm(i, i,G)

end
G ←Remove Edges(ωi,·,·,G)
ži(t)←Interpolate(z, ωi,·,·,G)

end

5) Use the regularized Wasserstein barycenter or an average to combine {ži(t)}mi=1.
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Figure 6: An estimate of the conditional mode in three dimensions using an average to
combine the information contained in each path.

2.6 Simulations

Lemma 1 implies that the shortest power weighted path through the unlifted graph G results
in a path that balances a tradeoff between paths with lower arc length and paths that pass
through regions in which f(x, y) is large asymptotically. Paths that maintain only one
of these two objectives would converge to either a straight line or the path that follows
the gradient of f(x, y), respectively.6 Our first set of simulations was designed to test the
performance of the estimator when the distance between the path that follows the gradient
of f(x, y) is far from the path that follows the mode of f(y | x). Since our endpoints are
equal to z?(0) asymptotically, these two paths are exactly identical if z?(t) follows a straight
line or if f(x?(t), y?(t)) is a constant for all t ∈ [0, 1].

When xi ∼ U(0, 1) and yi ∼ Beta(α(xi), β(xi)), where α(xi) := c1 − (c1 − c2)Φ(xi),

β(xi) := c2 + (c1 − c2)Φ(xi), c1, c2 > 1, and Φ(·) is a normal density function with mean
1/2 and variance σ2, the conditional mode can be made to be fairly far from the path of
steepest ascent in the region near 1/2 − σ as well as 1/2 + σ. This is due to the change in
the slope of the path z?(t) coinciding with a change in f(x?(t), y?(t)). For our simulation we
chose c1 = 20, c2 = 2.5, and σ = 0.15. The regression in Figure 5 is an example of this data
generating process with 2,000 datapoints.

The endpoints were found using Parzen’s (1962) univariate modal estimator using the
6There are estimators of this later path, which is called the skeleton of the density. They are closely

related to the kernel density ridge estimator, and in two dimensions, the two estimators are nearly identical
(Chen et al., 2015).
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lowest and highest 2
⌊
n1/3

⌋
datapoints and a bandwidth equal to one half of Scott’s (1992)

rule of thumb. Afterward three paths were calculated and the Wasserstein barycenter was
used to aggregate these three curves into a single estimate. These choices are maintained
throughout this section, with one exception that we describe below. The addition of the
smoothing parameter described in the Section 4 also appears to result in a gain in accuracy,
so choosing this parameter with cross validation is advantageous when one is willing to pay
the price of additional computational costs.

To compare the estimators to those based on Parzen’s (1962) approach, we first needed to
find a reasonable method to select the bandwidth. This is generally more difficult than setting
bandwidth parameter of kernel density estimators for two reasons. First, in the case of kernel
density estimators, reasonable results can often be found by normalizing each dimension of
the data by the standard deviation and then setting a single bandwidth parameter. However,
in the context of modal regressions, one can obtain a substantial gain in accuracy by setting
the bandwidth parameter of the dependent variable independently of the parameter used for
the covariates (Zhou and Huang, 2018). Second, in the modal regression setting, the optimal
rate of convergence of these parameters is slower than the corresponding rate in the context
of kernel density estimators (Chen et al., 2016). Chen (2018) provides a survey of available
bandwidth selection approaches.

To choose this method, we estimated a lower bound on the accuracy of all approaches
that use a single bandwidth. Specifically, we found the minimum of the mean integrated
squared error (MISE) of all bandwidths, uniformly spaced in an interval, and compared these
minimum MISE values to the MISE of estimates using the method described by Zhou and
Huang (2018). We found that the method proposed by Zhou and Huang (2018) produced a
MISE that was 15% above this minimum value at a sample size of 7,000 and 19% below this
value at a sample size of 250. At least in this case, the method of Zhou and Huang (2018)
appears to provide at least comparable accuracy to the methods that normalize the data by
their standard deviation; see for example, (Chen et al., 2016).7

Additionally, we tested methods using conditional density estimation, such as the method
proposed by Einbeck and Tutz (2006), but we choose to use Zhou and Huang’s (2018) ap-
proach because it also compared favorably to these alternatives for this data generating pro-
cess. Zhou and Huang (2018) also provide evidence through simulations of their approach’s
favorable accuracy over a range of sample sizes and data generating processes. Table 1 con-
sists of the average MISE over 500 simulations for sample sizes of 250, 500, 1000, 2000, and

7Chen (2018) recommend the approach of Zhou and Huang (2018) over the method proposed by Chen
et al. (2016), partly due to increased statistical efficiency. Regardless, we also tested both approaches for
this data generating process, and Zhou and Huang’s (2018) method does appear to be more accurate in this
case.
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DGP #1: MISE (×1,000,000)
Sample Size

Method 250 500 1000 2000 7000
Path Reg. 1158 771 555 419 229
KDE Reg. 1060 779 596 458 280

Table 1: The mean integrated squared error for the first data generating process described
in the text.

DGP #2: MISE (×1,000,000)
Sample Size

Method 250 500 1000 2000 7000
Path Reg. 1595 1154 815 607 326
KDE Reg. 1134 683 413 279 147

Table 2: The mean integrated squared error for the second data generating process described
in the text.

7000 from the data generating process described above. The estimator based on Parzen’s
(1962) approach is abbreviated KDE Reg. and our proposed method is abbreviated Path
Reg.

The table shows that the proposed regression compares favorably to modal regressions
based on kernel density estimators for this data generating process in sample sizes larger than
250. Although it was not our intention when choosing this data generating process, this may
be caused by the fact that the local bias of the kernel density estimator is proportional to
the second derivative of the population density. Since z?(t) and f(z?(t)) are nonlinear in the
same region in this data generating process, this bias may reduce the accuracy of estimators
based on a kernel density estimator. Even though Os,sz?(s) and t 7→ f(z?(t)) are not constant
in this data generating process, it is worth noting that their values are also not extreme. In
particular, the ratio maxt f(z?(t))/mint f(z?(t)) is approximately equal to two, which is
likely less extreme than applications in which the density of the covariates have tails.

Next we will explore a distribution in which f(z?(t)) is constant. Our next set of simu-
lations defined the distribution of xi as U(−1, 1) and yi as x2

i + εi, where εi ∼ N(0, 1/10).

The average MISEs are provided in the following table. We can see that in this case, the
proposed estimator performance falls relative to the accuracy of the estimate based on the
kernel density estimator.

In our last set of simulations, x and y are distributed as ti sin(ti) + εi and ti cos(ti) + ηi,

where ti is a uniform discretization of [π, 4π] and ηi, εi are iid N(0, 1/10) random vari-
ables. Note that Figure 4 is similar to this distribution except we defined ti to be a
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DGP #3: L2 (×10,000)
Sample Size

Method 250 500 1000 2000 7000
Path Reg. 1862754 3588 2989 2707 2817
KDE Reg. 12438 4919 2441 1451 829

Table 3: The mean integrated squared error for the third data generating process described
in the text.

uniform discretization from [π, 3π] in that case, for clarity of the individual paths. Since
this is not a function, the MISE would not be a good choice. Instead, we define g(t) :=

minu ‖(u sin(u), u cos(u))− ẑ(t)‖ , and integrate over t,
∫ 4π

0
g(t)2dt. The results of the simu-

lation are given in the table below.
There are two less than satisfying aspects of this set of simulations. First, there is a rather

large error at a sample size of 250. This is caused by the regression occasionally skipping
from (2, 0) all the way to (4, 0). Luckily, this appears to become more rare in larger sample
size. Second, the error also appears to be fairly high in the largest two sample sizes, and
the error actually increases when moving to a sample size of 7,000. Our working hypothesis
is that this is due to a combination of using a mesh of only 150 vertices, which may be
too course for manifolds this circuitous, and a slower rate of consistency when z?(·) cannot
be expressed as a function of x when no smoothing parameter is used. We also ran this
simulation again with sample sizes of 2,000 and 7,000, using a smoothing parameter of 10,
and found the error metric was reduced to 2,273 and 1,754 respectively.8

2.7 UIUC Undergraduate Admissions

We will use the preceding methods to estimate the mode of the University of Illinois at
Urbana-Champaign (UIUC) undergraduate students’ cumulative GPA at the time of gradu-
ation conditional on their high school GPA and their ACT scores. The dataset was provided
by the UIUC Office of Undergraduate Admissions, and after cleaning the dataset it consists
of 21,650 undergraduate students who graduated from UIUC between 2000 and 2010. The
dataset also includes the high school GPA and their ACT scores for non-graduates but not
their UIUC GPA.

We will use the dataset to estimate the most typical value of UIUC GPA, conditional
on ACT score and high school GPA. Specifically, if we define y as UIUC GPA, x1, x2 as
high school GPA and ACT score respectively, and the joint density of these variables as

8We experimented with a few different values before choosing 10, but this value can likely be improved.

54



HS GPA

A
C

T

3.2 3.4 3.6 3.8 4.0 4.2 4.4

22
24

26
28

30
32

34

Figure 7: An estimate of the mode of undergraduate UIUC GPA conditional on ACT score
and high school GPA.

f(x1, x2, y), we will estimate, m(x1, x2) := arg maxyf(y | x1, x2). We define the starting
point of the paths as the global mode of the data. To specify the endpoints we find eight
points near the boundary of the covariates. For each of these endpoints, we estimate the
shortest path from the global mode to any of the 120 nearest neighbors of these endpoints.
This process was repeated over eight iterations, and the final estimator took approximately
one and a half minutes to calculate when β was set equal to 1/3. The contour plot of the
resulting estimate is shown in Figure 7.

One interesting feature of the regression is that the estimate of the typical UIUC GPA
appears to level off somewhat above a high school GPA of 4.0 and an ACT score of 26. This
is likely due to the fact that many of the students with 4.0 GPAs at high schools that do not
offer Advanced Placement or honors courses, which are typically graded on a 5.0 GPA scale,
had the requisite abilities to go beyond this bound if these opportunities were available to
them.

This estimate also appears to show that high school GPA has a larger influence on these
typical values of UIUC GPA than ACT scores. Note that Rothstein (2004) and Geiser
and Santelices (2007) show that a similar observation can be made using methods based on
means at other large universities. To go beyond a describing the academic performance of
past UIUC undergraduate students and discuss the counterfactual of the effects of a change in
the university’s admissions strategy, there are a few sample selection issues worth discussing.
For example, we do not observe those that choose not to apply, that are not admitted,
and those that choose not to enroll; however, admission decisions would not influence the
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OLS Estimates: Graduation
Model:

A B
ACT 0.0013 0.0014
(s.e.) 0.0007 0.0007

HS GPA 0.1248 0.0909
(s.e.) 0.0071 0.0070

Table 4: Impact of ACT scores and high school GPA on cumulative UIUC GPA.

likelihood of attendance of non-applicants or non-enrollees. We will also frame the discussion
around changes to the university’s admissions strategies on the margin to avoid the sample
not being representative after the new strategy is implemented. This of course assumes that
there will not be a discrete change in the applicants’ choices from this small change. The
last group for which UIUC GPA, at the time of graduation, is not observable is the students
that do not graduate, which will be a part of our discussion of the university’s admissions
strategy.

If increases in high school GPA is more strongly associated with increases in the typical
UIUC GPA than ACT scores, it may be evidence that UIUC could adopt an alternative
admissions strategy to increase the typical UIUC GPA by placing more weight on high school
GPA. Alternatively, it is possible that it is difficult to find covariates that are correlated
with the likelihood to graduate, and if all the students did graduate, Figure 7 would look
differently. This seems unlikely for two reasons. First, these students only make up 15%
of our sample, so they would have to be fairly tightly grouped on a manifold, that has a
relatively smaller difference between the slope with respect to ACT and high school GPA,
to make the shortest paths switch to this alternative.9

Second, it appears that it is straightforward to find covariates associated with the like-
lihood to graduate. The table below includes OLS estimates and standard errors for two
simple models in which the dependent variable is a binary variable that is equal to one if
the student graduated and zero otherwise. Model A only includes an intercept, high school
GPA, and ACT score, and Model B adds controls for race and gender. The p-values for
the coefficient on ACT score for these models were 0.069 and 0.054, respectively, while the
corresponding values for high school GPA were on the order of 2 · 10−16 in both models.

There are also a variety of alternative explanations as well. Including the more likely ex-
9An obvious sufficient condition for the modal manifolds of αf(x, y) + (1 − α)g(x, y), where α ∈ (0, 1),

to be equal to the modal manifolds of f(x, y) is for α = 0. We can derive a sufficient condition for equality
of the slopes of the modal manifolds being equal using the definition of the modal manifolds from Second 2.
Implicit differentiation implies this condition is Oy,yg(x, y) = 0 and Ox,yg(x, y) = 0.
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OLS Estimates: UIUC GPA
Model:

A B
ACT 0.015 0.016
(s.e.) 0.001 0.001

HS GPA 0.346 0.299
(s.e.) 0.009 0.008

Table 5: Impact of ACT scores and high school GPA on cumulative UIUC GPA.

planation that the university is optimizing over variables other than probability of graduation
and the most typical UIUC GPA. It could be that ACT scores are more strong associated
with these other variables. More alternatives include that the university already places the
optimal weight on ACT scores for each student, or that the difference in slopes in Figure 7
was not statistically significant.

In the interest of completeness, we also ran the same simple OLS regressions on UIUC
GPA. It appears that ACT score does appear to influence UIUC cumulative GPA for grad-
uating students; though the OLS coefficient is far smaller than the coefficient corresponding
to high school GPA. The estimates for this model is given below. The nonparametric modal
regression happens to describe a similar qualitative relationship to the OLS estimate in this
case. Specifically, that ACT scores are weakly associated with future UIUC GPA but to a
much smaller degree than high school GPA.

2.8 Conclusion

While most of the work on nonparametric modal regressions have used Parzen’s (1962)
univariate modal estimator as a starting point; see for example, (Scott, 1992; Einbeck and
Tutz, 2006; Chen et al., 2016), in this paper we show that shortest paths through random
geometric graphs also provide a promising starting point for nonparametric modal estimators.
The advantage, as well as the disadvantage, of most modal estimators is that they are
influenced by a decreasing proportion of the data. This allows them to have a breakdown
point that converges to zero; however, it also results in an increasing proportion of the data
having little, if any, influence on the estimator. Thus, they are particularly advantageous in
large sample sizes; one of the central advantages of the proposed method is computational
efficiency when the sample size is large.

Though there are some required choices, such as how to choose the endpoints, the number
of endpoints, the number of paths to calculate from each endpoint, and how to combine
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the paths into a final estimator, we believe these choices are more amenable to being set
independently of the data generating process than bandwidth parameters when estimating
a modal function. Even if this is not the case, each of these choices only has a small number
of reasonable values, and generally there are several combinations of these choices that yield
a similar estimate. Another central advantage of the proposed method is robustness to
nonlinearities in z?(t) and f(z?(t)) occurring in the same region. Ongoing areas of research
include showing that Lemma 1 is applicable to G, exploring the estimation of modal manifolds
further, and deriving asymptotic confidence intervals for the estimator.
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Chapter 3

Minimizing the Regularized Wasserstein
Metric

Abstract

After Cuturi (2013) provided a method to approximate the Wasserstein metric in
nearly linear time with the entropy regularized Wasserstein metric, there have been
many novel applications that minimize this objective function; see also, (Altschuler
et al., 2017). This is often achieved with a first order optimization method. In this
paper, we provide a method to evaluate products with the Hessian as well as a method
for evaluating products with its inverse. We show the time complexity and memory
requirements of both methods are O(m log(m)) when the input densities are supported
in Rd. Thus, Newton steps can be evaluated with the same nearly linear time complexity
that is required to evaluate the regularized Wasserstein metric. After providing these
methods, we discuss their use in existing optimization implementations. In the linear
constraint case, we show that matrix decompositions can be avoided, and, in certain
cases, that these optimization problems can be solved with second order methods in
O(m log(m)) time. To test the method in the nonlinear constraint case, we apply the
methods proposed here to the computation of shape constrained density estimators.

3.1 Introduction

One could measure the discrepancy between the distributions F : A → R1
+ and G : B → R1

+,

where A,B ⊂ Rd, in a variety of ways, including the Hellinger distance, Kullback-Leibler
divergence, and the p−Wasserstein metric, which is given by,

infϕ Eϕ(‖x− y‖pp)1/p subject to:
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for all A ⊂ A and B ⊂ B, ϕ(B, A) = F (A) and ϕ(B,A) = G(B).

Measures in the last class have a few attractive properties, including that they satisfy the
triangle inequality; see for example, (Villani, 2003). They are also natural measures of
discrepancy when the support of the input densities do not overlap. For example, measuring
the discrepancy between two Dirac delta functions, centered at z1, z2 ∈ Rd, with any of the
other measures of discrepancy listed above, will only result in one of two values: zero when
z1 = z2 and infinity otherwise. In contrast, the p−Wasserstein metric is equal to ‖z1 − z2‖p .

When the densities are supported on Rd, or a Riemannian manifold, and are uniformly
continuous, these measures of discrepancy are approximated after discretizing. In the generic
case, evaluating the p−Wasserstein metric requires a higher computational cost compared to
its counterparts, having a time complexity of O(m3) when the mesh consists of m points. In
addition, attempting to minimize the p−Wasserstein metric over one of the input densities
subject to a set of constraints often requires m to be prohibitively large to avoid oscillations
in the minimizing density, particularly when d ≥ 2; see for example, (Carlier et al., 2015;
Cuturi and Peyré, 2016).

Cuturi (2013) proposed an approximation of the 2−Wasserstein metric, known as the
regularized Wasserstein distance, and Altschuler et al. (2017) showed that this approxi-
mation has a time complexity that is proportional to approximating a convolution with a
normal density, which can be evaluated in O(m log(m)) time using a fast Fourier trans-
form. Afterward, Solomon et al. (2015) generalized this approach to Riemannian manifolds.
These new computational approaches paved the way to novel computational methods that
rely on minimizing the regularized Wasserstein distance in statistics (Bernton et al., 2019),
machine learning (Cuturi and Doucet, 2014; Cuturi, 2013), object interpolation (Solomon
et al., 2015), and partial differential equations (Cuturi and Peyré, 2016); for a textbook
treatment, see also, (Peyré and Cuturi, 2019).

When minimizing the Wasserstein metric, it is desirable for the optimization algorithm
to have a few properties in particular. Since the regularized Wasserstein distance and its
derivatives are only defined when the mass of both of the input densities are equal, algorithms
that minimize this function must satisfy this mass normalization constraint in each iteration.
Also, since these optimization problems are often high dimensional, it is advantageous for
the algorithm to have a time complexity that is no worse than that of finding the regularized
Wasserstein distance.

There are two commonly used algorithms that achieve these goals. First, after showing
the gradient of the regularized Wasserstein metric is only unique up to an additive constant,
Cuturi and Doucet (2014) proposed defining this additive constant to ensure mass normal-
ization and using gradient descent. Second, Benamou et al. (2015) provided an algorithm
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using alternating Bregman projections. This is a particularly efficient method when the
Bregman projections (the constrained minimum of the Kullback-Leibler divergence) have a
closed form solution. In these cases, the method has the advantage of not requiring the reg-
ularized Wasserstein metric to be computed before each iteration. Peyré and Cuturi (2019)
provide more detail on these algorithms, extensions, and alternative approaches.

While some methods use L-BFGS or automatic differentiation, fully second order ap-
proaches are not the norm. This is the case, in part, because the Hessian is dense, generally
poorly scaled, and only unique up to a choice of generalized inverse. These difficulties
are compounded by the fact that, for most applications of interest, the input densities are
multi-dimensional, so m is prohibitively large to efficiently evaluate any choice of generalized
inverse used to define this Hessian, since the time complexity and memory requirements of
these methods scale at a rate of O(m3).

Rather than focusing on calculating the Hessian itself, in this paper we provide methods
to evaluate products with the Hessian and its generalized inverse. Our requirement that the
mass normalization constraint holds in every iteration restores uniqueness of both of these
functions. We show that evaluating products with the generalized inverse of the Hessian
simply requires two convolutions, as well as elementwise operations on vectors in Rm, so this
operation is particularly efficient. Then we provide a simple preconditioner for this matrix
and show that the number of iterations required by the preconditioned conjugate gradient
method, to evaluate a product with the Hessian, is bounded by a constant as m diverges.
Thus, the time complexity and memory requirements of the methods are both O(m log(m)).

Afterward, we describe how these methods can be used in standard second order opti-
mization algorithms to minimize the regularized Wasserstein metric subject to constraints.
The linear constraint case is particularly computationally efficient because solving the dual
problem has the effect of substituting products with the Hessian for (less computationally
expensive) products with the generalized inverse of the Hessian, as well as avoiding matrix
factorizations. This provides a few circumstances in which the memory requirements and
time complexity of second order methods scale at a rate of O(m log(m)).

There are also options to increase the efficiency of second order methods in the nonlin-
ear constraint case, which we discuss in the context of a primal-dual interior point method.
Next, we provide numerical experiments in which shape constrained density estimators are
defined by minimizing the regularized Wasserstein metric subject to a set of nonlinear con-
straints. The dominant cost when solving these optimization problems were convolutions,
and, even in this non-linear constraint case, the ratio of convolutions required to evaluate
Hessian products to those required to find the objective function ranged from 0.97 to 1.71,
and this metric of performance appears to scale well as m increases and as the regulariza-
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tion parameter decreases. Given the advantages of second order methods in terms of the
typical total number of iterations required, and the attainable level of accuracy resulting
from local quadratic convergence, this appears to be a promising approach for minimizing
the regularized Wasserstein metric.

Since the regularized Wasserstein metric is calculated using an iterative procedure, that is
often terminated prior to its iterates fully converging, one may be concerned whether Newton
steps are less accurate than gradient based steps. For this reason, we also do not assume that
this iterative process has converged. Instead, we define the Hessian so that it is consistent
with the gradient, in the sense that it is the Jacobian of the gradient, regardless of the number
of iterations used. This may be advantageous to those who wish to trade the accuracy of the
approximation to the unregularized Wasserstein metric for lower computational costs offered
by methods that often converge within a few dozen iterations.

The next section introduces notation and key concepts, while the third section provides
results on the Hessian and gradient. Other results that may be of independent interest
are also provided in the third section, including recommendations for applying the methods
here to the regularized Wasserstein barycenter. The fourth section discusses our proposed
approaches to evaluate products with the Hessian and its generalized inverse. After a trans-
formation of variables to ensure these matrices are well scaled, they can be passed directly to
many existing optimization implementations that support the conjugate gradient method,
such as those provided by LANCELOT or KNITRO (Conn et al., 1988; Byrd et al., 2006). How-
ever, there are a few ways to increase computational efficiency further in both the linear as
well as the nonlinear constraint cases, which are also discussed in the fourth section. The
fifth section provides the numerical experiments, and the sixth concludes.

3.2 Preliminaries

Suppose µi : A → R1
++, where A ⊂ Rd or is a d−dimensional Riemannian manifold. We will

denote the points contained in a mesh over A by {ai}mi=1. While most of our discussion will
be focused on triangular and uniform meshes, other options are also provided by Crane et
al. (2013).

Let 1 denote an m × 1 vector of ones. We will define the vectors µ1,µ2 ∈ Rm so that
µ1i = µ1(ai) and µ2i = µ2(ai) for i ∈ {1, ...,m}. We will suppose throughout that all
densities, say µ ∈ Rm, have been multiplied by the area weights associated with the mesh
so that

∫
A µ(x)dx = 1>µ = 1.

Also, for A ∈ Rm×m, we will denote the matrix with (i, j)th element given by exp(Aij) as
exp(A) and a similar convention will be used for log(A). Also, a diagonal matrix with a main
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diagonal given by the vector x will be denoted by Dx, element-wise division of the vectors x
and y by x� y, and element-wise multiplication by x⊗ y.

The p−Wasserstein Metric

Optimal transport began with the work of Gaspard Monge in the 18th century when he posed
the problem of finding the optimal method of moving a pile of sand to a nearby hole, each
of the same volume. Specifically, suppose the amount of mass in the pile over B ⊂ {ai}i, as
well as the amount of mass required to fill in the hole over B ⊂ {ai}i, is given by

∑
i∈B µ1i

and
∑

i∈B µ2i respectively. Also, suppose the cost of moving one unit of sand from ai to aj
is equal to Mij ∈ R+

1 .

To solve this problem in its general form, Kantorovich (1958) introduced the concept of
a transportation plan, or coupling, which in our discrete case is defined as ϕ ∈ Rm×m

+ , where
ϕij is the amount of mass transported from ai to aj. Feasibility of this transportation plan
requires that µ1 is the density of the sand before it is relocated, so any feasible ϕ must
satisfy ϕ1 = µ1. Also, after the mass is relocated, it must have a density given by µ2, so
ϕ>1 = µ2. Note that this also implies that any element in the set of feasible couplings can
be viewed as a discretized density with support given by A×A. In summary, Kantorovich
(1958) defined the optimal coupling as the solution to the optimization problem,

min
ϕ

∑
i,j=1

Mijϕij such that:

ϕ1 = µ1, ϕ
>1 = µ2.

Despite the initial specificity of the motivation for optimal transport, there are a wide
variety of questions that can be answered with reformulations of this concept. For example,
the p−Wasserstein metric can be defined as,

W0,p(µ1,µ2) := min
ϕ

(∑
i,j=1

d(ai,aj)
pϕij

)1/p

such that:

ϕ1 = µ1, ϕ
>1 = µ2,

where d(ai,aj) is the distance between ai and aj over A, which is ‖ai − aj‖pp when A ⊂ Rd.

The prototypical value of p used in applications is two, and since an approximation of
the 2−Wasserstein Metric is our primary focus, in the subsequent sections we will denote
M ∈ Rm×m as the matrix with elements given by Mij = d(ai,aj)

2.
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Regularized Wasserstein Distance

Cuturi (2013) proposed the following approximation of W0,2(µ1,µ2)2.

W2
γ(µ1,µ2) := min

ϕ

∑
i,j=1

ϕij (Mij + γ log(ϕij)− γ) such that: (3.1)

ϕ1 = µ1, ϕ
>1 = µ2 (3.2)

The addition of the negative entropy term, given by γϕij log(ϕij), penalizes couplings with
large changes in nearby values of ϕij, which has the effect of damping the oscillations in the
minimizer of W2

γ(µ1,µ2). The additional −γϕij term is less critical, as it will not influence
the optimal coupling. Its purpose is to provide a slight simplification in the dual problem.

To see how the addition of negative entropy also provides a large gain in computational
efficiency, we can define the corresponding Lagrangian,

L =
∑

i,j=1 ϕij (Mij + γ log(ϕij)− γ)− λ>1 (ϕ1− µ1)− λ>2
(
ϕ>1− µ2

)
.

The first order conditions imply that the optimal coupling is

ϕij = exp (λ1i/γ) exp (−Mij/γ) exp (λ2j/γ) .

In other words, there exists v,w ∈ Rm
+ such that the optimal coupling is given by ϕij =

Kijwivj, where Kij := exp (−d(ai,aj)
2/γ) . This can also be written as,

ϕ = DwKDv,

so adding the entropy term to the objective function reduces the dimensionality of the
optimization problem from m2 to 2m. Sinkhorn (1967) shows that ϕ is uniquely defined
by the constraints on its row and column sums. However, clearly ϕ can also be written
as DwcKDv/c, for any c ∈ R1

++, so w and v are unique up to c. Also, w and v can be
found efficiently using the iterative proportional fitting procedure (IPFP); see for example,
(Sinkhorn, 1967; Krupp, 1979). After initializing w to be 1, this method iteratively redefines
v so that DvKw = µ2, and subsequently redefines w so that DwKv = µ1, which is
summarized in Algorithm 4. Combining the constraints on the row and column sums of ϕ
shows that w must satisfy,

DwK (µ2 � (Kw)) = µ1, (3.3)

which will be helpful in the subsequent sections.
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Algorithm 4 The iterative proportional fitting procedure.
function IPFP(K,µ1,µ2)
w ← 1
until convergence:
v ← µ2 � (Kw)
w ← µ1 � (Kv)

return w,v

In the rest of the paper, we will make substantial use of the dual of (1)-(2), which Cuturi
and Doucet (2014) show is given by the unconstrained optimization problem,

W2
γ(µ1,µ2) := max

(x,y)∈R2m
x>µ1 + y>µ2 − γ

∑
i,j

exp
(
(xi + yj −Mij)/γ

)
. (3.4)

The first order conditions of (4) can be written as,

µ1 � (K exp (y/γ)) = exp (x/γ) , (3.5)

µ2 � (K exp (x/γ)) = exp (y/γ) , (3.6)

which are analogous to the updates of w and v given in Algorithm 4, with w = exp (x/γ)

and v = exp (y/γ) .

A few comments regarding the effect of γ on the optimal coupling will also be useful
in subsequent sections. Higher values of γ correspond to placing a higher penalty on the
negative entropy of the coupling, so the optimal coupling becomes more dispersed as this
parameter is increased. Also, in the limit as γ converges to zero, W2

γ(µ1,µ2) converges
to W0,2(µ1,µ2)2, and ϕ converges to the optimal unregularized coupling, both at a rate of
O(exp(−1/γ)); see Benamou et al. (2015) and Cuturi (2013).

Note that our description of Algorithm 4 requires matrix multiplications with K, so its
time complexity is O(m2). The next section shows how this can be improved.

Convolutional Wasserstein Distance

Reducing the time complexity of Algorithm 4 when A ⊂ Rd is straightforward, since (Kz)i

is proportional to
∑

j zj exp
(
−‖aj − ai‖2

2 /γ
)
, a convolution of z with a Gaussian density.

Since this can be carried out in O(m log(m)) time using a fast Fourier transform, Kz can
simply be replaced by this convolution operation.

Solomon et al. (2015) generalized this approach to the case of Riemannian manifolds.
The method can be described using the heat equation, which is given by
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4xft(x) = 1
2
· ∂ft(x)

∂t
and f0(x) = h(x),

where 4x is the Laplacian operator, f : R1
+ ×A → R1

+ is the density of heat at time t and
h(x) is the initial density of heat. The solution can be found using ft(x) =

∫
A φt(x, y)h(y)dy,

where φ : R1
+ × A × A → R1

+ is a heat kernel. For example, when A = Rd, φt(x, y) =

(2πt)−d/2 exp
(
−‖x− y‖2

2 /(2t)
)
.

Although φt(x, y) cannot be expressed in a closed form in the more general case in which
A 6= Rd, numerical solutions are still feasible. In the Riemannian manifold setting this
amounts to solving

(I + εL)f ε = f 0

=⇒ f ε = Φf 0,

where Φ := (I + εL)−1 is a discretized heat kernel and L is a discrete Laplacian matrix
associated with the mesh {ai}i. L can be defined as the normalized cotangent Laplacian
when a triangular mesh is used, which is described in more detail by Crane et al. (2013).

The link between W2
γ(µ1,µ2) and the heat kernel was provided by Varadhan (1967),

d(ai,aj)
2 = limt→0−2t log(φ(ai,aj, t)).

Thus, in the limit as γ go to zero (and temporarily setting aside discretization errors), K
converges to Φ, after renormalizing. With this in mind, Solomon et al. (2015) proposed
approximating products in Algorithm 4 of the form y := Kz by solutions of the linear
system, (I + γ/2L)y = z. There are two primary advantages of this approach. First, it does
not require the calculation of distances between every pair of elements in {ai}i. Second, a
sparse Cholesky factorization of the matrix I+γ/2L can be found in an efficient manner, and
each solve step after this is computed is computationally inexpensive. The lowest currently
known upper bound on this time complexity is O(m2), but it appears to be nearly linear in
practice (Schmitz and Ying, 2010; Crane et al., 2013).

Since Mij = −γ log(Kij), the objective function (1) can also be written as,

γ
(

1 +
∑

i,j=1 ϕij log(ϕij/Kij)
)
,

so when K is replaced by Φ ∈ Rm×m
++ in Algorithm 4, ϕ := DwΦDv is the minimizer of

min
ϕ

γ

(
1 +

∑
i,j=1

ϕij log(ϕij/Φij)

)
such that: (3.7)

ϕ1 = µ1, ϕ
>1 = µ2. (3.8)
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The next section provides a few properties of the function µ1 7→ W2
γ(µ1,µ2) that will be

useful when discussing optimization methods in our setting.

3.3 Properties of The Derivatives

The results in this section concern the gradient and Hessian of W2
γ(µ1,µ2) when the kernel

is given by H ∈ {K,Φ}. However, to allow for other possibilities, when H = Φ our only
assumptions will be that Φ is invertible and it consists of strictly positive and real elements.
In the cotangent Laplacian case, this can be achieved by ensuring the mesh is Delaunay
(Spielman, 2010).

As mentioned in the introduction, for higher dimensional applications, which generally
require m to be large, Algorithm 4 is often terminated after a fixed number of iterations
or when the error of the iterates satisfy a given tolerance level. Afterward, the common
approach is to use w and v to perform the assignments x← log(w)γ and y ← log(v)γ, and
then define the value of the objective function using (4). Specifically, this value is defined
as,

x>µ1 + y>µ2.

Note that the final term in (4), γ
∑

i,j exp
(
(xi + yj −Mij)/γ

)
, is generally omitted because

it is a constant in every iteration; specifically, γ
∑

i,j exp
(
(xi + yj −Mij)/γ

)
= γ

∑
ij ϕij =

γm.1

This can lead to inefficiencies in optimization methods because the commonly used gra-
dient does not correspond to this objective function. As will be clear below, this derivative
requires that w and v satisfy the first order conditions of (4), which are w ⊗ (Hv) = µ1

and v ⊗ (Hw) = µ2. Since each iteration of Algorithm 4 ends with the assignment w ←
µ1 � (Hv), the equality w ⊗ (Hv) = µ1 holds up to numerical precision, but the equality
v ⊗ (Hw) = µ2 generally does not. These inconsistencies can be resolved by leaving the
inputs of Algorithm 4 unchanged, defining µ̃2 := v⊗ (Hw), and then defining the objective
function as,

x>µ1 + y>µ̃2.

There are two primary advantages of this modification. First, W2
γ(µ1, µ̃2) converges to

W2
γ(µ1,µ2) as the number of iterations in Algorithm 4 diverges in a manner that is trans-

parent to users because µ̃2−µ2 is generally used to define the stopping criteria of Algorithm
1This property is also independent of the stopping criteria of Algorithm 4, since it only requires that ϕ

is a coupling between two arbitrary densities.
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4. Second, this ensures the gradient, Hessian and objective function are consistent with one
another. Note that we will not require any modifications of the gradient to bring about
this consistency, which ensures that these modifications will not impact the critical points
of optimization problems.

We will make a similar modification for the Hessian, which, in light of the gradient
remaining unchanged, is somewhat notational; it is simply the accurate Jacobian of the
normally used gradient. However, this accurate definition ensures that the Hessian is positive
semidefinite numerically, which is a requirement of the proposed method for calculating
products with the Hessian that will be described in the next section. For these reasons, we
will make a distinction between µ2 and µ̃2.

The next Lemma expresses the derivative of µ1 7→ W2
γ(µ1, µ̃2); a similar result is pro-

vided by Cuturi and Doucet (2014). The Lemma also provides the gradient of (µ1,µ2) 7→
W2

γ(µ1, µ̃2), which will be used below to derive the Hessian of µ1 7→ W2
γ(µ1, µ̃2).

Lemma 1: For c ∈ R1 and H ∈ {Φ, K}, the gradients of µ1 7→ W2
γ(µ1, µ̃2) and (µ1, µ̃2) 7→

W2
γ(µ1, µ̃2) are given by

Oµ1
W2

γ(µ1, µ̃2) = x+ c (3.9)

O(µ>1 ,µ̃
>
2 )>W2

γ(µ1, µ̃2) = (x> + c,y> − c)>. (3.10)

Proof: Since the objective function in the dual problem, given by (4), is differentiable, we
can apply the envelope theorem. This implies O(µ1,µ̃2)Wγ(µ1, µ̃2) = (x>,y>)>. (5) and (6)
imply x := γ log(w) and y := γ log(v). Since w and v yield the same coupling as c̃w and
v/c̃, where c̃ ∈ R1

++, (9) and (10) follow from the definition c := γ log(c̃).

�

The constant c in Lemma 1 is a result of one of the 2m constraints in (1) being redundant
because both densities also have the same sum. As mentioned previously, Cuturi and Doucet
(2014) minimize the regularized Wasserstein metric using gradient descent and define c as
−
∑

i xi/m to ensure the mass normalization constraint holds in each iteration. This results
in the gradient flows of µ1 7→ W2

γ(µ1, µ̃2) being contained to the domain ofW2
γ(µ1, µ̃2), the

unit simplex.
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The next theorem uses (10) to derive the Hessian of µ1 7→ W2
γ(µ1, µ̃2).

Theorem 2: For H ∈ {Φ, K}, let

B :=
(
Dµ1
− ϕD1�µ̃2

ϕ>
)
/γ.

The Hessian of µ1 7→ W2
γ(µ1, µ̃2) is given by

O2
µ1
Wγ(µ1, µ̃2) = B∼, (3.11)

where (·)∼ is a g-inverse.

Proof: We will find the Hessian by finding the Jacobian of O(µ>1 ,µ̃
>
2 )>Wγ(µ1, µ̃2) from Lemma

1. Recall that w := exp(x/γ), v := exp(y/γ), and the first order conditions of the dual,
given by (7) and (8), can be written as[

Dexp(x/γ)H exp(y/γ)

Dexp(y/γ)H exp(x/γ)

]
=

[
µ1

µ̃2

]
(3.12)

Thus,

O(x>,y>)>(µ>1 , µ̃
>
2 )> =

[
Dexp(x/γ)⊗(H exp(y/γ)) Dexp(x/γ)KDexp(y/γ)

Dexp(y/γ)HDexp(x/γ) Dexp(y/γ)⊗(K exp(x/γ))

]
/γ

=

[
Dµ1

ϕ

ϕ> Dµ̃2

]
/γ,

where the second equality follows from (12) and ϕ := Dexp(x/γ)HDexp(y/γ).

Thus, O(x>,y>)>(µ>1 , µ̃
>
2 )> is also singular because[

Dµ1
ϕ

ϕ> Dµ̃2

][
1

−1

]
=

[
µ1 − ϕ1
−ϕ>1 + µ̃2

]
=

[
0

0

]
.

By a result provided by Ouellette (1981), all g-inverses of O(x>,y>)>(µ>1 , µ̃
>
2 )> have an upper

left block that is given by

O2
µ1
Wγ(µ1, µ̃2) =

(
(Dµ1

− ϕD1�µ̃2
ϕ>)/γ

)∼
.

�
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The following theorem provides the first result on the Hessian, which we will use below
to discuss the non-uniqueness of the Hessian.

Theorem 3: For H ∈ {Φ, K}, B is positive semidefinite and has a null space that is spanned
by 1. When (·)∼ := (·)+, the Moore-Penrose pseudoinverse, O2

µ1
Wγ(µ1, µ̃2) is also positive

semidefinite and has a null space that is spanned by 1.

Proof: Since B is a real symmetric matrix, it admits an orthonormal eigenbasis. Also, note
that establishing the required properties of this eigenspace for B will imply that they also
hold for B+, since, for diagonalizable matrices, the pseudoinverse can be defined by inverting
each nonzero eigenvalue (Penrose, 1955).

Let A1 := D1�µ1
ϕD1�µ̃2

ϕ>, and note that A1 also admits an eigendecomposition by a
similarity transformation to a symmetric matrix. Feasibility of the optimal coupling implies,

D1�µ1
ϕD1�µ̃2

ϕ>1 = D1�µ1
ϕ1 = 1.

Since A11 = 1 and A1,ij > 0, the Perron-Frobenius theorem implies that A1 has one
eigenvalue that is 1, with a corresponding eigenvector of 1/

√
m, and m− 1 eigenvalues that

are strictly less than one. Let A2 := I −D1�µ1
ϕD1�µ̃2

ϕ>. If λ and v are an eigenvalue and
eigenvector of A1 respectively, then A2v = (1− λ)v, so A2 has one eigenvalue that is 0, with
a corresponding eigenvector of 1/

√
m, and m−1 eigenvalues that are strictly positive. Thus,

this property also holds for Dµ1
A2 = γB since each element of µ1 is strictly positive.

�

Remark 7: Note that there are more straightforward ways of establishing convexity of µ1 7→
Wγ(µ1, µ̃2). For example, this follows from positivity and weak diagonal dominance of B.
Alternatively, the objective function in (1) can be viewed as a linear function, plus a strictly
convex function, in ϕ, and µ1 is linear in ϕ. Also we can show that 1 is in the null space of
B by simply multiplying, or by noting that w is the root of F (w) = µ−DwH(µ̃2� (Hw)),

which is homogeneous of degree zero, so OwF (w) = γBD1�w. These approaches were not
used because we require µ1 7→ Wγ(µ1, µ̃2) to be strictly convex over the set {µ1 | 1>µ1 = 1}.

�

Although the Hessian is not unique, this is not problematic from an optimization stand-
point. To see why, we will consider the example of a Newton step d, which is defined by the
solution to the system B∼d = −x. Since the regularized Wasserstein metric is not defined
when µ1 and µ̃2 do not have equal mass, we also require the density to have the same mass
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in every iteration of the optimization methods; in other words, we need to ensure that the
constraint d>1 = 0 holds in each iteration.

This can be achieved by solving,

PB∼Pd = −Px,

where P = I − 11>/m, the projection matrix onto the set of mean zero vectors. This
is because Theorem 3 implies that all eigenvalues of PB∼P are the same as those of B∼,
other than the eigenvalue corresponding to the eigenvector of 1/

√
m. In other words, the

addition of these projection operations can be viewed as an implicit choice of a g-inverse and
c. The former is equivalent to the Moore-Penrose pseudoinverse because the pseudoinverse of
a diagonalizable matrix can be defined by taking the reciprocal of the non-zero eigenvalues
while leaving the eigenvalues that are zero unchanged, and clearly x ← Px ensures that
c is zero (Penrose, 1955).2 The theorem implies that this system can also be written as,
B+d = −x, as long as c = 0, or simply as d = −Bx, for any c ∈ R1. For this reason, it is
sometimes convenient to view the Hessian as B+.

Also, note that Theorem 3 implies that the alternative formulation for the Hessian,

B∼ = B̂−1,

where B̂ := B + 11>/(γm), is also a valid approach. We will continue introducing full
rank and normalized hessians as well as their generalized inverses throughout this section,
with the intention of providing more options when optimizing the regularized Wasserstein
metric. All of the full rank hessians, and their inverses, can be derived from their singular
counterparts by changing the unique eigenvalue that is zero to 1/γ. In other words, if z is
a norm one eigenvector corresponding to the eigenvalue of zero, by adding zz>/γ to these
matrices. Likewise, these full rank matrices can be multiplied by the projection matrix,
P = I − zz>, as above, to recover their singular counterparts. The methods described in
the next section, as well as optimization algorithms, will sometimes be more straightforward
to implement when nonsingular matrices are used, which will be discussed in more detail
below.

An immediate corollary of Theorem 2, is that B satisfies all of the required conditions
of a graph Laplacian, which is defined as a symmetric M-matrix with 1 in the null space
(Spielman, 2010).

2Note that this holds for any B∼ because the definition of a g-inverse, given by BB∼B = B, uniquely
defines the mapping z 7→ B∼z for z is in the range space of B.
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Corollary 4: For H ∈ {Φ, K}, let G denote the complete graph with vertices V := {1, ...,m}
and weight assigned to the edge connecting i, j ∈ V, where i 6= j, given by

(
ϕD1�µ̃2

ϕ>
)
ij
.

The Laplacian of G is γB.

Proof: B is positive semidefinite and has a null space spanned by 1 by Theorem 3. Since
γ, ϕD1�µ̃2

ϕ>, µ̃2 and µ1 are composed of strictly positive elements, we have Bii > 0 and
Bij ≤ 0 for all i, j ∈ {1, ...,m} and i 6= j, so B is also a (singular) M-matrix.

�

Many iterative methods for solving the linear system z = Ay, where A ∈ Rm×m is
nonsingular, have a rate of convergence that can be expressed in terms of the condition
number of A, which is defined as λ1(A)/λm(A), where λ1(A) ≥ λ2(A) ≥ ... ≥ λm(A) are the
eigenvalues of A (Saad, 2003). When solving z = By where B is a Laplacian matrix, or a
singular matrix more generally, we can express the rate of convergence of iterative methods
using the finite condition number of the normalized Laplacian, given by,

BN := D1�√µ1
BD1�√µ1

,

which is equal to κf (BN) := λ1(BN)/λk(BN), where k = minλi(BN)6=0 i = m − 1 (Spielman,
2010). Since BN

√
µ1 = 0, its full rank counterpart is given by B̂N := BN +

√
µ1

√
µ1
>/(γm).

The next theorem provides a bound on this condition number in the euclidean case, H = K.

We will discuss in the next section how this implies that using a transformation of variables
so that the Hessian is normalized, or using Dµ1

as a preconditioner, provides a significant
gain in computational efficiency.

Theorem 5: Suppose H = K, that γ is not dependent on m, and µ1i,µ2i > 0 for all i.
Then, there exists c ∈ R1, that is independent of m, such that limm→∞ κf (BN) ≤ c.

Proof: The proof of Theorem 2 defines A1 := D1�√µ1
ϕD1�µ̃2

ϕ>D1�√µ1
and shows that the

eigenvalue corresponding to the eigenvector of 1/
√
m is λ1(A1) = 1. Since K is a Gaussian

kernel matrix (and all elements of {ai}i are unique) it is positive definite, so λm(A1) ≥ 0.

To find a bound on λ2(A1), let A2 := D1�√µ1
ϕD

1�
√
µ̃2
, and note that A1 = A2A

>
2 . Also,

A2 = Dw�√µ1
KD

v�
√
µ̃2

= Dw�
√
wv̄KDv�

√
vw̄ = D√w�v̄KD

√
v�w̄,

which is clearly similar to a symmetric matrix, so it admits an orthonormal eigendecompo-
sition. A2 is also similar to D√wv�w̄v̄K, so we will use the bound,

λ2(A2) ≤ max(
√
w ⊗ v � (w̄ ⊗ v̄))λ2(K).
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The eigenvalues and eigenfunctions of the unnormalized Gaussian kernel function, (x, y)

7→ exp(−‖x− y‖2 /γ), can be expressed in a closed form (Williams and Rasmussen, 2006).
The limiting behavior of the kth eigenvalue is O(γd/2/(1 + γ +

√
γ(1 + γ))d(k+1/2)), as k

diverges or as γ converges to zero. In other words, given the sequence {γm}∞m=1 such that
γm > 0 and limm→∞ γm = 0, the kth eigenvalue converges to zero at a rate of O(γ

d/2
m ).

Using the asymptotic relationship between the eigenvalues of K and the eigenvalues of the
Gaussian kernel function, as described in more detail by Shawe-Taylor et al. (2006), we have
that λk(K) = O(mγd/2) for fixed k ∈ {1, ...,m}. To shed more light on the effect of both m
and γ on the condition number, we will use λ2(K) = O(mγd/2).

By construction, we have µ1i = O(1/m) and µ̃2i = O(1/m) for all i ∈ {1, ...,m}, which
are also independent of the limiting behavior of γ. Since µ1 = w ⊗ v̄ and µ̃2 = v ⊗ w̄, we
have

w ⊗ v̄ = O(1/m) and v ⊗ w̄ = O(1/m)

The effect of increasing m on the magnitude of the elements of w̄ and v̄ can be decomposed
into a three parts using the eigendecomposition of K/m, which we will denote UΛU>, where
Λ is a diagonal matrix with Λii = λi(K/m). First,m has a direct effect on w̄i becauseK is not
normalized bym. Second, changing the magnitude of ‖w‖ has a multiplicative impact on w̄i.

Third, the inner product of w/ ‖w‖ and U may change the influence that each eigenvalue Λii

has on w̄i. Combining these three effects, we have w̄ = O(m ‖w‖ ζw) and v̄ = O(m ‖v‖ ζv),
where ζw :=

∑
i λi(K/m)wiU

2
ij/ ‖w‖ and similarly for ζv. Note that ζw and ζv can be

viewed as weighted means of {λj(K/m)}j ∪ {0} with weights given by {wjU
2
ij/ ‖w‖}mj=1 ∪

{1 −
∑

jwjU
2
ij/ ‖w‖}. Since the elements of {λj(K/m)}j are only functions of γ, and not

m, ζw and ζv also only depend on γ.
Using these rates in our system of equations implies,

O(w) = O(1/
(
m
√
ζv
)
) and O(v) = O(1/(m

√
ζw)).

Since w̄ = O(ζw/
√
ζv), we have v̄ = O(ζv/

√
ζw), so we have,

O(max(
√
w ⊗ v � (w̄ ⊗ v̄)) = O(1/

(
m
√
ζvζw

)
).

Using the fact that O(mγd/2) is an upper bound on λ1(K), we have

λ2(A2) = λ2(D√
w⊗v�(w̄⊗v̄)

K) ≤ O(γd/2/
√
ζvζw).

Thus,

λ2(A1) = λ2(A2A
>
2 ) ≤ O(γd/ (ζvζw)).
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Since A1 is positive definite,

λ1(I − A1) ≤ 1,

and the upper bound on λ2(A1) corresponds to the lower bound,

λm−1(I − A1) ≥ O(1− γd/ (ζvζw)).

Thus, the finite condition number of BN , which is equal to that of I − A1, satisfies the
asymptotic bound,

κf (I − A1) := λ1(I − A1)/λm−1(I − A1) ≤ c = O(1/
(
1− γd/ (ζvζw)

)
).

�

Remark 8: An extension to the case in which H = Φ would also be useful. The underlying
property that the result requires is that λ1(H/m) does not converge to λ2(H/m) as m
diverges, and extending the argument to the case in which H = Φ is straightforward if one
is able to bound this eigenvalue gap for a given mesh. However, it is likely to be difficult to
ensure that this condition holds for a general mesh.

�

To test how large m must typically be for the bound on the finite condition number to
be evident, we also calculated κf (BN) for m ∈ {50, 100, 150, ..., 700} and γ ∈ {0.0025, 0.01,

0.0175, 0.025} for µ1 = Beta(8, 5) and µ2 = Beta(3, 9)/2 + Beta(9, 3)/2. The lowest value
of γ was chosen so that ‖ϕ1− µ1‖∞ was approximately 10−10 after 2, 000 iterations of the
IPFP method for each value of m. Figure 8 provides these input densities and the resulting
condition numbers. The maximum difference between the condition numbers over all values
of m (for fixed γ) was 7× 10−5.

Before moving on, it is worth noting that the results and methods provided here can also
be generalized in a straightforward way to the case of the regularized Wasserstein barycenter,
which, in the two input density case, is given by, arg minηξW2

γ(η,µ1) + (1 − ξ)W2
γ(η,µ2)

for ξ ∈ (0, 1). As stated in the introduction, the alternating Bregman projections method
provided by Benamou et al. (2015) is particularly efficient in this setting, and it is likely
difficult to improve on this approach with a second order method in early iterations. Instead,
our recommendation is to to start with this approach in order to initialize a second order
method. This has the advantage increasing the likelihood that the second order method
will exhibit a locally quadratic rate of convergence. The approach provided by Benamou et
al. (2015) also has the advantage of not requiring Algorithm 4 to be run in each iteration,
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Figure 8: On the left plot, the black, blue, red, and green curves provide the finite condition
number of BN when γ is equal to 0.0025, 0.01, 0.0175, and 0.025 respectively. The horizontal
axis corresponds to the values of m. The input densities are provided on the right.

as it is itself a generalization of Algorithm 4. Thus, it is also capable of providing the
couplings, ϕ1 = Dw1HDv1 and ϕ2 = Dw2HDv2 , from η1 := w1 ⊗ (Hv1) to µ1 and from
η2 := w2 ⊗ (Hv2) to µ2, respectively.

The first order conditions for the barycenter can be found using Theorem 1. In terms
of w1 and w2, these can be written as ξγ log(w1) + (1− ξ)γ log(w2) = 0. After combining
these equations with the definitions of vi and wi for i ∈ {1, 2}, we can show the barycenter
is defined, by the solution the system of equations η1 = η2, and,

v1 = µ1 � (Hw1), w1 = η1 � (Kv1),

w2 = η2 � (Kv2),v2 = µ2 � (Kw2), and w1
ξw2

1−ξ = 1.

While deriving the Newton step direction, the only equation that we will not require to hold
in each iteration is η1 = η2. Since, after leaving this equation out of the system, the rest of
the variables can be recovered from w2, we will view these other variables as functions of
w2. In this case, the system can be reduced to,

w2 ⊗ (H (µ2 � (Hw2)))−w2
(ξ−1)/ξ ⊗

(
H
(
µ2 � (Hw2

(ξ−1)/ξ)
))

= 0,

which can be solved using Newton’s method. As noted in Remark 7, Owi(ηi −DwiH(µi �
(Hwi))) = γBiD1�wi , where Bi := (Dηi − ϕiD1�µiϕ

>
i )/γ for i ∈ {1, 2}. If we denote the

residual of the system in the current iteration as b, this implies the search direction, p, can
be found by solving, [

γ (B1 + (1− ξ)/ξB2) D1�η1

]
(p⊗Hv1) = −b.
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Since a matrices eigenvalues are continuous functions of the elements, Theorem 5 implies
that there exists ε > 0 such that if ‖η1 − η2‖ < ε, then κf ( γB2 D1�η1) is O(1) as m
diverges. Thus, if ‖η1 − η2‖ < ε, we have κf (γ (B1 + (1− ξ)/ξB2) D1�η1) is also O(1) inm.
This implies that the techniques discussed in the next section are also capable of calculating
p̃ := −(γ (B1 + (1− ξ)/ξB2) D1�η1

)−1b with a provably nearly linear time complexity when
‖η1 − η2‖ < ε. Afterward, one can define the search direction as p ← p̃ � (Hv1) . This
method can be generalized to more than two input density, but the resulting system of
equations becomes coupled in this case.

The next section will use the results shown above to provide methods to evaluate products
with B̂ and B̂−1 efficiently.

3.4 Numerical Methods

In this section we will outline our proposed approaches for evaluating the matrix products
required for optimization. We will begin by describing our approach for products with
B̂, which can be carried out in a particularly efficient manner, as this only requires two
convolutions and element-wise operations of vectors in Rm. The method follows directly from
the definition of this matrix, and is summarized in Algorithm 5. We denote the convolution
with a Gaussian with variance γ/2, or, in the case of non-Euclidean meshes, the solution
of the prefactored linear system, by H ~ z to emphasize that matrix products are not a
requirement.

Algorithm 5 Evaluates a product with the (full rank) inverse Hessian.
B̂(p):
q ← (v2 � µ̃2)⊗ (H ~ (p⊗w))
r ← p−w ⊗ (H ~ q) + 1>p/m
return r/γ

One approach to solve systems of the form z = Ay, where A ∈ Rm×m is a symmetric
and positive definite matrix, is the conjugate gradient method; see for example (Saad, 2003;
Nocedal and Wright; 2006). The solution produced by this method can be viewed as a
linear combination of an A−orthogonal basis in the Krylov space, which, in our formulation,
can be defined as the span of {z, Az, A2z, ....}.3 When A is positive definite, the conjugate
gradient method will converge within m iterations, but when the spectrum of A is favorable,

3For the purpose of a concise exposition, we formulate the algorithm with the initialization y0 ← 0. If
this is not done, the iterates are in the Krylov space {r0, Ar0, A2r0, ....}, where r0 is the initial residual,
z −Ay0.
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this is a conservative upper bound. For example, if A has only r distinct eigenvalues, the
method converges within r iterations (Nocedal and Wright, 2006). More generally, the
method converges to z̃, such that ‖z − z̃‖A ≤ ε ‖z‖A , where ‖x‖A =

√
x>Ax, within

O(
√
κ(A) log(1/ε)) iterations (Saad, 2003). This result also extends to singular matrices, as

long as the system is consistent, and the bound in this case is O(
√
κf (A) log(1/ε)). Although,

in practice it is best to ensure the mean of rk is zero in each iteration by demeaning this
vector directly; Kaasschieter (1988) outlines this approach and alternative modifications for
stability of the conjugate gradient method in the singular case.

The conjugate gradient method is also used in optimization implementations to calculate
Newton steps. In this context, it is sometimes stopped early or initialized in different ways.
While this is not related to evaluating products with the inverse Hessian, we will refer back
to it in the next two sections. In this setting, A can be viewed as a Hessian and z can be
viewed as a negative gradient, and the conjugate gradient method produces iterates that are
monotonically decreasing in the second order Taylor series expansion,

q(yk) := yk
>Ayk/2− z>yk.

In this sense, the iterates improve on the initial value of y0. This allows for the method to
be warm started when an initial approximation of y is known, such as the last Newton step.
Steihaug (1983) also proposed a simple way to ensure the method produces steps that satisfy
trust region constraints, of the form ‖y‖ ≤ d; this is done by initializing y0 at 0, and, if
‖yk+1‖ > d, the method returns yk +αyk+1, where α satisfies, ‖yk + αyk+1‖ = d. Steihaug
(1983) showed that this initialization implies the iterates will satisfy ‖yk+1‖ ≥ ‖yk‖ , which,
combined with the fact that q(yk) is monotonically decreasing, implies that this strategy
provides the lowest possible value of q(yk) along the path of convergence.

The efficiency of the conjugate gradient method can also be improved with the use of a
preconditioner. Given a preconditioner for A, say Ã, and factoring this matrix as Ã = CC>,

this is analogous to solving the system,

C−1AC−1(Cy) = C−1z

in two steps. First, we solve C−1AC−1ỹ = C−1z using the conjugate gradient method and
then define the final solution as y = C−1ỹ. Note that the actual preconditioned conjugate
gradient method uses Ã rather than C explicitly; Algorithm 6 presents the method in the
context of evaluating B̂−1z. As discussed in the previous section, projections and rescalings
can be applied to the input and output of Algorithm 5 and 6 to evaluate products with their
normalized or singular counterparts.
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Algorithm 6 Evaluates products with the (full rank) Hessian.
B̂−1(z):
y0 ← 0; r0 ← −z
s0 ← r0 � µ1; p0 ← −s
k ← 0
While rk 6= 0:
αk ← rk

>yk/pk
>B̂(sk)

yk+1 ← yk + αkpk
rk+1 ← rk + αkB̂(sk)
sk+1 ← rk+1 � µ1

βk ← rk+1
>sk+1/rk

>sk
pk+1 ← βpk − sk+1

k ← k + 1
End
Return yk+1

When using the preconditioned conjugate gradient method, the total iteration count is

O(
√
κ(Ã−1A) log(1/ε)) (Saad, 2003). Since κ(D1�µ1

B̂) = κf (B̂N) and Theorem 5 implies
κf (B̂N) = O(1) as m diverges, an immediate implication is that products with the Hessian
can be found with a time complexity of O(log(1/ε)) times the time complexity of a con-
volution, or a suitable approximation, in the Euclidean case, which is summarized in the
following Theorem.

Theorem 6: Suppose the conditions of Theorem 5 hold, and let L denote the time com-
plexity of either a Gaussian convolution or an approximation of a Gaussian convolution
with λ1(H/m) − λ2(H/m) 9 0. Then, Algorithm 6 can be used to evaluate B̂−1z to an
accuracy of ‖z − z̃‖D1�µ1

≤ ε ‖z‖D1�µ1
in O(L log(1/ε)) time. This time complexity is

O(m log(m) log(1/ε)) if the convolution is approximated with a fast Fourier transform.

Proof: The preceding discussion, and Theorem 5, imply that the preconditioned conjugate
gradient method requires O(log(1/ε)) iterations as m diverges as long as the eigenvalue gap
is bounded as m diverges (Saad, 2003). The dominant cost of each iteration is evaluating
products with B̂. Each product is O(L), since it requires two convolutions, as well as element
wise algebraic operations on vectors of length m, so the total cost of evaluating B̂−1z is
O(L log(1/ε)).

�

Remark 9: To preserve generality, the eigenvalue gap property of the Gaussian kernel that
was used in Theorem 5 is stated as an assumption. Note that as long as approximations
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Hessian Product Times
γ = 0.0025

m 500 1,000 1,500 2,000
CG 0.012 0.047 0.124 0.205
LU 0.036 0.278 0.871 2.01
MPI 0.555 5.389 17.875 -

γ = 0.01
m 500 1,000 1,500 2,000
CG 0.007 0.028 0.067 0.106
LU 0.047 0.349 0.855 1.994
MPI 0.549 5.350 17.872 -

Table 6: Each figure is the average time, in seconds, over five evaluations of the Hessian
product. LU refers to the LU decomposition of B̂ and MPI to the Moore-Penrose pseudoin-
verse of B; the time required to form these matrices was not included in these figures. The
MPI decomposition for m = 2, 000 timed out after 30 seconds for both values of γ.

are mean preserving, λ1(H/m) = 1 by the Perron-Frobenius theorem, so this is primarily an
assumption on λ2(H/m).

Since our goal is in part optimization to a high level of accuracy, in this paper we use
a convolution with a Gaussian that is truncated to four standard deviations from its mean,
which has a time complexity of O(m2). There are also a variety of alternatives that provide
approximations of the convolution that are available with a time complexity of O(m log(m))

or even O(m) (Getreuer, 2013). While the fast Fourier transform is not always ideal when
γ is small relative to m, since it can become unstable or produce negative output, it does
converge to the desired result as m diverges for fixed γ.

�

The timings for the method proposed here, along with those for the Moore-Penrose
pseudoinverse of B and an LU decomposition of B̂, can be found in Table 6. The conjugate
gradient method was written in C++. In addition, references to timings throughout this
paper refer to timings on a MacBook Air, circa 2015. The input densities were the same as
those described in Figure 8, and the product of the Hessian with the negative gradient was
evaluated in each case. Since it is common to use fairly low values of γ, that still allow for
convergence of Algorithm 4, we only report the two lowest values here. The behavior shown
in Table 6 continued as γ increased; with times for the proposed approach ranging between
0.004 and 0.073 when γ was 0.025.
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Figure 9: Provides the absolute error values, defined as log10(‖Byk − z‖), in each iteration
of Algorithm 6 for the input densities from Figure 8 and γ = 0.01. The black and blue lines
correspond to the case in which m = 100 and m = 10, 000, respectively.

Algorithm 6 was terminated when ‖rk‖ ≤ ‖yk‖ 10−6.When γ = 0.0025 and γ = 0.01, the
algorithm required 14 and 8 iterations, respectively, for all values of m. To provide a better
idea of the error in each iteration, Figure 9 provides log10(‖Byk − z‖) with γ = 0.01 and
m equal to 100 and 10, 000, which shows the method converged to a high level of accuracy
around the eighth iteration in both cases. The reason this performance is possible is because
of the favorable spectrum of B̂N ; for example, when m = 500 and γ = 0.0025, B̂N has 477

eigenvalues that are within 10−4 of 1. For comparison, there are only 25 eigenvalues of B
that are within 10−4 of any other eigenvalue, and κf (B) is of the order 106.

As discussed in the introduction, Algorithms 5 and 6 can be used directly in a variety of
optimization software; however, some properties that are specific to the objective function
provide a few opportunities to increase the efficiency of these methods. This will be discussed
in the next two subsections, in the context of linear and nonlinear constraints respectively.

Linear Constraints: The Projected Newton Method

Since Newton’s method can be viewed as gradient descent on a basis that is dictated by
the Hessian, performing a projection onto the feasible set in a different basis (such as an
orthogonal projection) will generally not result in iterates that converge. Bertsekas (1982)
provided a simple solution to this problem by proposing the removal of the nondiagonal
elements in the rows and columns of the Hessian that correspond to the active set.

Many of the current approaches of projected Newton methods can still be viewed as
separating out the variables in the active set in an analogous way. Thus, these methods
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are particularly efficient when this orthogonal projection can be computed efficiently, so
they are often described in the context of optimization subject to bound constraints; see
for example, (Conn et al., 1988; Moré and Toraldo, 1991; Lin and Moré, 1999). In our
setting, the ability to take products with the inverse Hessian efficiently allows for a much
wider array of possibilities. Similar implementations to the one described here include TRON
and LANCELOT (Conn et al., 1988; Lin and Moré, 1999). The primary advantages of the
method in our setting is that they allow for the use of the conjugate gradient method to
avoid matrix factorizations. The iterates also often converge quickly, even when compared
to other second order active set approaches, because an arbitrary number of constraints can
be added or removed from the active set in each iteration.

We will consider solving the optimization problem given by,

minµW2
γ(µ,µ2) subject to:

Aµ ≥ b,

where A ∈ Rn×m is full row rank, with a sequentially quadratic programming (SQP) method,
but before continuing, it is worth discussing how the mass normalization constraint should
be imposed. Suppose B∼ = B̂−1; in this case the Karush-Kuhn-Tucker (KKT) system
corresponding to this optimization problem is,[

B̂−1 −A>

A 0

][
µ

λ

]
=

[
−x
b

]
.

This matrix is non-singular because B̂ is full rank, so in this case, c can be defined to be
mini xi so that mass normalization can be ensured using the inequality constraint 1>µ ≥ 1.

Or, it can also be ensured by simply adding an equality constraint to the formulation above.
However, considering the case in which B∼ = B+ sheds light on a potential problem that

may arise when the Hessian is not full rank in the null space of A. If this is not the case, so
that A1 = 0, then [

B+ −A>

A 0

][
1

0

]
=

[
0

0

]
,

Thus, the KKT system is singular, and if a solution exists, it is not unique. For this
reason, when the Hessian is defined as B+ we will assume A1 6= 0. If this holds, the mass
normalization constraint is automatically ensured because the Newton step takes the form,
B
(
A>λ− x

)
= p. Also, c can be set equal to zero in this case. We will focus on applying

the SQP method in the full rank case in the interest of generality.
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In each iteration, this method finds a primal search direction p := µ−µ(i), by solving a
quadratic program given by,

minp r
>p+ p>B̂−1p/2 subject to:

A(µ(i) + p) ≤ b.

Since the objective function is differentiable and strictly convex, this can be solved using its
dual, which is advantageous for a few reasons. First, this only requires bound constraints,
which allows for efficient algorithms like the projected Newton method. Second, we have
a closed form solution for B̂, which will allow for line searches to be carried out efficiently.
Third, if n < m, the dimension of the problem will be smaller. For these reasons, solving
the dual problem will be our primary focus.

If the current iterates estimate of the dual variables is denoted by λ(i), the dual problem
is,

mind q
(i)(d) := t>d+ d>Qd/2 subject to:

λ(i) + d ≥ 0,

where Q := AB̂A> and t := b + AB̂r. The solution of the dual is related to the solution
of the primal by the equality p? = −B̂−1(r + A>d?); for more detail, see (Bertsekas, 1997;
Nocedal and Wright, 2006). Though we will continue describing the projected gradient
method below, note that implementing this optimization algorithm is not actually necessary,
since it is already in a form that can be passed to an existing implementation that uses the
conjugate gradient method. If this is done, a change of variables in the initial primal objective
function can be used so that the Hessian of the dual is AB̂NA

>. The performance of the
implementation in this case is dependent on the condition number of this matrix, and, when
it has a bounded condition number, the same results on the number of iterations required
by the conjugate gradient method that were discussed in the previous section are applicable
in this case as well. Thus, if A is sufficiently sparse, so that products with AB̂NA

> can be
computed in O(m log(m)) time, and AB̂NA

> is well conditioned, this procedure has a time
complexity of O(m log(m)). This can also be achieved by using a suitable preconditioner for
AB̂NA

>. Although, this may require implementing this optimization algorithm, since we are
not aware of an implementation that supports user defined preconditioners.

Projected Newton methods solve the problem above using two stages in each iteration.
First, a projected gradient step is taken to estimate the active set, which is given by

d
(i+1)
G ← max(λ(i) − ωt, 0)− λ(i),
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where ω, is a step length parameter that can be defined using a line search to find a point
that satisfies the Armijo condition,

l := mink∈{0,...}{k | q(i)(d
(i+1)
G ) ≤ 10−3ωt}

and ω ← (1/2)l.

This step is also used to fix the active set, which is given by A ← {k | λ(i)
k + d

(i+1)
G = 0}.

The next stage of iteration is a Newton step on the free variables, Ac, which can be
computed using the conjugate gradient method to avoid factoring Q. Specifically, if we let
Z ∈ Rn×|Ac| := IAc,·, the columns of an m×m identity matrix with indices in Ac, the Newton
step is given by,

d
(i+1)
Ac ← Z>d

(i+1)
G − ω̃(Z>QZ)−1Z>

(
t+Qd

(i+1)
G

)
,

where ω̃ is chosen in a similar manner as ω.
In this stage, we also need to ensure that only a single index is either added to or removed

from the active, to avoid the problems discussed at the beginning of this section. This is
straightforward when using the conjugate gradient method, as it simply involves backtracking
to the point in which the constraint was added and then terminating the algorithm.

At this point the method moves onto the next iteration and repeats this process until the
iterates converge. A variety of details were omitted from this description in the interest of a
concise exposition, such as trust regions and repeating each of these two stages multiple times
before proceeding. In particular, Moré and Toraldo (1991) propose continuing the projected
gradient step multiple times, which is particularly advantageous in early iterations. A similar
strategy is also proposed for the Newton steps, along with effective stopping criteria for each
stage to ensure the algorithm switches between these methods efficiently.

Non-Linear Constraints: A Primal-Dual Interior Point Method

It is more difficult to avoid evaluating products with the inverse Hessian in the non-linear
constraint case, but there are opportunities in our setting to increase the efficiency when
using existing approaches. We will describe these modifications in the context of a primal-
dual interior point method, which is a simplified form of the approach implemented by Waltz
et al. (2006) in KNITRO; see also, (Nocedal and Wright, 2006). Note that a change of variables
can be used so that the Hessian of the transformed problem becomes B̂−1

N in order to use
KNITRO directly; although, in this case, the performance of the method requires that the
Hessian of the Lagrangian is well conditioned, which we will describe below in more detail.
We implemented the method described here for this reason; we are not aware of a non-linear
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optimization method that allows for user-defined preconditioners in a conjugate gradient
method.

We will consider the optimization problem,

minµW2
γ(µ,µ2) subject to:

c(µ) ≥ 0 and Aµ = b,

where A ∈ Rn1×m and c : Rm → Rn2 is a twice differentiable and concave function. The
same notes regarding mass normalization constraint also hold in this case; we will still focus
on the case in which the Hessian is B̂−1.

In the approach presented here, we gradually increase the iterations used in Algorithms
4 and 6. This has the direct advantage of saving convolutions for the later iterations where
higher accuracy is required. Also, the values of x resulting from Algorithm 4 have a lower
magnitude in earlier iterations, which generally results in smaller changes in µ and thus
increased stability when µ is far from its optimal value. This could also be done with the
use of a trust region, as in Waltz et al. (2006), likely with a gain in robustness, but we
attempt to achieve this goal while avoiding additional convolutions.

Primal-dual interior point methods have the advantage of not requiring the initial density
to be feasible. To do this, the slack variables, s ∈ Rn2

++, are introduced, so the optimization
problem becomes,

minµ,sW2
γ(µ,µ2)− t log(s) subject to:

c(µ) = s, Aµ = b, and s ≥ 0.

The Lagrangian corresponding to this optimization problem is,

L(µ, s,λ,η) :=W2
γ(µ,µ1)− t log(s)− λ>(c(µ)− s)− η> (Aµ− b) ,

and the search directions for the primal and dual variables can be defined using the corre-
sponding KKT system,


B̂−1 − C 0 A> Oc(µ)>

0 Dλ�s 0 −I
A 0 0 0

Oc(µ) −I 0 0



pµ

ps

−pη
−pλ

 = −


x− A>η − Oc(µ)>λ

λ− t1� s
Aµ− b
c(µ)− s

 , (3.13)

where C :=
∑

i λiO
2
µci(µ). The second block of equalities is a relaxation of the comple-

mentary slackness condition; it ensures that the iterates converge to a point that satisfies
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λisi = t. Thus, we ensure complementary slackness holds at the optimum by decreasing the
barrier parameter as the iterates converge. While feasibility of µ is not constrained to be
feasible in the initialization, we do require that si and λi satisfy si > 0 and λi > 0 for
i ∈ {1, 2, ..., n2}, which is maintained throughout all of the iterations.

After the direction of the step is found we can use this requirement as the first step
in our line search. Specifically, we define αλ := maxαλ{αλ | pλ + αλλ ≥ 0.005λ} and
αs := max{αs | ps+αss ≥ 0.005s}. Afterward, we follow the approach of Waltz et al. (2006)
and find α using a line search with an Armijo condition, in a similar manner as described
in the previous section. This step has the potential to be a significant computational cost
because Algorithm 4 must be reevaluated at each point in the line search. However, our
approach for limiting the iterations in Algorithms 4 and 6 in early iterations resulted in the
largest step possible being taken in all iterations of the numerical experiments presented in
the next section. After the line search is complete, the primal and dual variables are updated
with the assignments,

s← s+ ααsps

µ← µ+ ααspµ

η ← η + ααηpη

λ← λ+ ααλpλ.

Rather than approximately solving the optimization for fixed values of t, as described by
Waltz et al. (2006), we update t in every iteration until it reaches a suitable lower bound.
We use the expression that is implemented in LOQO by Vanderbei and Shanno (1999), which
is given by,

t← σs>λ/n2,

where

σ = 0.1 min(0.05(1− ξ)/ξ, 2)3, and ξ = mini siλi/
(
s>λ/n2

)
.

After t is updated, the algorithm moves onto the next iteration. Most of the remaining
aspects of the method closely follow the approach provided by Waltz et al. (2006). For
example, we use the same termination criteria, the relative error in the l∞ norm of the
KKT residuals, and the same merit function. We also follow the approach they provide for
resetting the slack variables. There are aspects of solving the system given in (13) that allow
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for a gain in efficiency, and, since this is a significant cost relative the remaining aspects of
the algorithm, we will end the section with a discussion of solving this system.

Since B̂ is dense, solving (13) directly would not be an efficient approach. The conjugate
gradient method also cannot be used directly because (13) is not positive definite. However,
this method could be used to solve (13) if we were to eliminate the constrained primal vari-
ables beforehand, since the Hessian is positive definite over the null-space of the constraints.
Also, this approach would be equivalent to first finding a feasible point and then constraining
any subsequent changes in the iterates to the nullspace of the constraints. Keller et al. (2000)
described a method known as constraint preconditioning, which can be viewed as applying
this strategy. Specifically, in cases in which the derivatives of the nonlinear constraints and
A are sparse, the steps described above can be achieved with solutions to the system given
by, 

D1�µ + C 0 A> Oc(µ)>

0 Dλ�s 0 −I
A 0 0 0

Oc(µ) −I 0 0


[
qµ,s

qη,λ

]
=

[
g

b

]
, (3.14)

If we let P(g, b) denote the linear operator defined by the solution to this system, P1(g, b)

as the first block of the solution, qµ,s, and P2(g, b) as the second block, qη,λ, then in each
iteration P1(r,0) corresponds to the projection of r onto the null space of the constraints
in our outline of the preconditioned conjugate gradient method above. The remaining mod-
ification of the classic conjugate gradient method is that the initial iterate must be feasible.
We can use the initialization y ← P1(g, b) for any g ∈ Rm+n2 when using a constraint pre-
conditioner. For more detail on constraint preconditioners, see also (Nocedal and Wright,
2006).

Though, the method does require a decomposition of the matrix in (14), this is at least
less costly than decomposing the dense matrix B̂, and there are also specialized methods for
constraint preconditioning KKT systems that can be used. Our implementation used the
MA57 solver from HAL (Duff, 2004); timing of this decomposition will be discussed further
in the next section. Also, an additional benefit of having P(g, b) is that it can also be used
after the algorithm terminates to define the dual variables, λ and η.

Note that the convergence behavior of the conjugate gradient method when using con-
straint preconditioners depends on how well the matrix in (14) preconditions the matrix in
(13). However, Keller et al. (2000) showed that the rate of convergence is only dependent
on the spectrum of,

(D1�µ − C)−1
(
B̂−1 − C

)
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because all of the other m + n2 + n1 eigenvalues in the system are equal to one after pre-
conditioning. This is a particularly attractive property because inside of this constraint
preconditioned conjugate gradient method, there is also an inner loop, the conjugate gradi-
ent method used to compute products with B̂−1, defined in Algorithm 6. For this reason,
we limit the number of iterations in the outer loop to 2 + i, where i is the iteration number
of the optimization algorithm. Even in the early iterations, this strategy produces search
directions that are rarely rejected in practice, which can also be explained by a bound on the
error of the kth iterate of the conjugate gradient method, yk, given by Luenberger (1973),

‖yk − y?‖A ≤
(
λn−k−λ1

λn−k+λ1

)2

‖y0 − y?‖A ,

where A is the inverse of the matrix in (14), multiplied by the matrix in (13), λi denotes the ith

largest eigenvalue of A, and y? is the Newton step. Since DµB̂−1 has most of its eigenvalues
near one, C is an ideal preconditioner for itself, and the remaining m + n2 + n1 of A are
one, it is not too surprising that a few iterations suffice to provide a significant improvement
over gradient descent. However, these iterations are still a significant proportion of the
computational cost of the method, which will be described in the next section in more
detail.

Using a similar notation as Algorithm 6, the outer conjugate gradient method is also
terminated when

∥∥sk>rk∥∥2
≤ ε(1+

∥∥s0>r0∥∥2
), where ε← max(10−4−i/10, 10−9) and i denotes

the iteration of the optimization method. Given the low value of the maximum iterations, this
tolerance level is sometimes only achieved around the 15th to 20th iteration. In contrast, the
inner conjugate gradient method, Algorithm 6, is terminated only when it reaches a tolerance
of ε/100. This high tolerance is meant to avoid the residuals in the outer conjugate gradient
method losing orthogonality. In addition, Algorithm 4 terminates when ‖µ2 − µ̃2‖∞ ≤ ε̃,

where ε̃← max(10−3−i/10, 10−7). These choices are meant to avoid convolutions in the early
iterations, while ensuring that the objective function, derivatives, and Newton steps are
sufficiently accurate by the twentieth iteration. Since the objective function is actually
dependent on the number of iterations used in Algorithm 4, we avoid changing the number
of iterations by only checking for convergence every thirty iterations.

In the next section we will discuss the computational performance of the method with an
application related to estimating the density function of a random variable. This application
will also be used to describe how the method described in this section can be used to solve
optimization problems of the form,

minµW2
γ(f(µ),µ2) subject to:

Aµ ≥ b,
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where f : Rm → Rm is convex and differentiable.

3.5 Numerical Experiments

This application constructs an estimator of the density function, µ? : Ω →∈ R1
++ with

Ω := [0, 1]2, using a dataset consisting of n iid observations, {(yi, zi)}ni=1, with yi, zi ∈ R1 for
all i, drawn from µ?(y, z). Specifically, we will describe a shape constrained density estimator.
In terms of the assumptions on the functional form of µ?(y, z), these estimators can be
viewed as a middle ground between fully nonparametric estimators and fully parametric
estimators. In cases in which the true population density satisfies the shape constraint,
these density estimators often compare favorably to their fully nonparametric counterparts;
see for example, (Cule et al., 2010; Koenker and Mizera, 2010).

To do this, we will define µ2(y, z) as kernel density estimator, with bandwidth σ ∈ R1
++,

and then find the density, µ(y, z), that minimizes the regularized Wasserstein metric from
µ2(y, z), such that for all z ∈ [0, 1], the function y 7→ log(µ(y | z)) is concave, where
µ(y | z) := µ(y, z)/

(∫
µ(y, z)dz

)
is the density estimate of y conditional on z. This is known

as log−concave shape constraint, and this particular form of the constraint could be used
to estimate the most typical value of y conditional on z, or the mode the conditional density
z 7→ µ?(y | z). For related work on estimates of the conditional mode, which is also known
as modal regressions; see for example, (Lee, 1989; Yao et al., 2012; Chen et al., 2016).

After discretizing on a uniform mesh in [0, 1] × [0, 1], and letting {µ2ij}
√
m

i,j=1 denote the
values of the kernel density estimator at these points, we can define the estimator by solving,

minµ∈Rm++
W2

γ(µ,µ2) subject to:

log(µi,j) ≥ (log(µi−1,j) + log(µi+1,j))/2 for i ∈ {2, 3, ...,
√
m− 1}, j ∈ {1, 2, ...,

√
m} and

1>µ = 1.

Unfortunately this is not a convex optimization problem. Before outlining how we trans-
form this problem into a convex optimization problem, we will describe a third option to
ensure mass normalization. Note that mass normalization, as well as the non-uniqueness
of both of the derivatives of W2

γ(µ,µ2), is simply a consequence of not accounting for
mass normalization in the optimization problem defining W2

γ(µ,µ2). For example, for fixed
(l, k) ∈ {(i, j)}

√
m

i,j=1, W2
γ(µ,µ2) can be written as,

max
(x,y)∈R2m

(∑
(i,j) 6=(l,k) x

>
ijµ1ij + xlk(1− µ1ij)

)
+
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∑
i,j yijµ2ij − γ exp

(
(xij + yij −Mij)/γ

)
,

which has the effect of defining µ1lk with the mass normalization constraint. In a slight abuse
of notation, we will let W2

γ(exp(ν),µ2), with ν ∈ Rm−1, denote the regularized Wasserstein
distance between µ and µ2, where µij is defined as exp(νij) for all (i, j) 6= (l, k) and µlk :=

1 −
∑

(i,j)6=(l,k) exp(νij). We will also choose (l, k) to be (l, k) = arg min(i,j) xij, for reasons
that we will describe below.

Eliminating the mass normalization constraint in this way is our recommended approach
when the density is defined as a non-linear function of the arguments being optimized. After
adding bound constraints to improve the robustness of the method, the final form of the
optimization problem is,

minνW2
γ(exp(ν),µ2) subject to:

For all i ∈ {2, 3, ...,
√
m− 1}, j ∈ {1, 2, ...,

√
m}, and (i, j) 6= k :

2νij ≥ νi−1,j + νi+1,j) and

νi,j ≥ log(5 · 10−6).

Note that if we express µ as µ = f(ν), then we can write the Hessian of W2
γ(f(ν),µ2)

in the general form,

(Oνf)> B̂−1
N (Oνf) +

∑
i xiO

2
νfi,

and thus, in the absence of closed form expression of the inverse of this matrix, we must
perform Algorithm 6 inside of another conjugate gradient method, as in the last section. In
our case the Hessian is given by

E>Dµ

(
B̂−1 +Dx�µ

)
DµE,

where, for k̃ defined as the index corresponding to the subscript (l, k), E is defined by binding
together the first k̃− 1 rows of an m− 1×m− 1 identity matrix, the row −1>m−1, and then
the last m − k̃ rows of an m − 1 ×m − 1 identity matrix. For clarity, if k = (2, 1), so that
k̃ = 2 if we vectorize columnwise, then E ∈ Rm×m−1 is given by,

E :=


1

−1 −1 −1 · · ·
1

. . .

 .
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Figure 10: The natural logarithm of the input density and the shape constrained density
estimator are shown on the left and right respectively for m = 1252 and γ = 0.01.

Note that the term E>Dx⊗µE of the Hessian can also be written as,

E>Dx⊗µE = Dexp(ν)⊗(x−(l,k)−xlk),

so choosing (l, k) to be (l, k) = arg min(i,j) xij ensures the optimization problem is convex.
A gain in robustness and generality can be achieved by considering the direction of the

Newton step in all m dimensions. Given that the definition of the gradient is Dµ⊗xE, this
step can be defined as pν̃ = Epν ∈ Rm. In other words, the Newton step in part accounts
for pν̃ lk using the overly local approximation, 1>mpν̃ = 0. The accuracy of this prediction can
be improved by using this equality directly, so that the update of µlk becomes,

µ+
lk ← µlk exp(−

∑
ij pν ij).

Afterward, µ can be renormalized to ensure mass normalization, which can be viewed as
averaging out the error used in this local approximation over all m dimensions. Note that an
alternative approach is to optimize over all m dimensions, with the addition of the constraint
1>mpν̃ = 0, which has the additional advantage of allowing for the shape constraint to be
imposed over all points in the mesh.

To provide an idea of the performance of the methods proposed here, we solved the
optimization problem given above with m ∈ {252, 752, 1252} and γ ∈ {0.01, 0.02} at a
tolerance of 10−6. We drew a random dataset of 100 points and used this same dataset in
each case. The {xi}i was drawn from a Beta(1/2, 1/2) distribution and then each yi ∈ {yi}i
was defined as yi = 1/2+sin(2xi)/3+εi, where ε ∼ N(0, 1/15). The bandwidth used to define
µ2 was set equal to

√
γ/2 in each case. Note that this results in the global unconstrained

minimum being equal to a kernel density estimator with bandwidth√γ. The resulting density
estimator when m = 1252 and γ = 0.01 is provided in Figure 10.

We also provide the number of convolutions and iterations at each combination of these
values of m and γ in Table 7. Note that the number of matrix factorizations required is equal
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to the number of iterations; although, this cost was actually less significant, in relative terms,
to the cost of convolutions. For example, for these values ofm, the solver MA57 required 0.006,

0.08, and 0.44 seconds to factor the constraint preconditioners with dimensions of the order
5m, which appears to scale at a similar rate as our implementation of Algorithm 4, and is
approximately 4.5 and 1.6 times faster on average with a tolerance of 10−6 when γ = 0.01

and γ = 0.02 respectively.
Given the simplicity of the optimization algorithm described here, it is likely possible to

decrease the number of iterations in a few cases. For example, note that the case in which
m = 252 and γ = 0.01 required significantly more iterations, and thus also convolutions,
than the rest of the cases. This is likely a result of inefficiencies in the simplified algorithm
implemented here, since the barrier parameter reached its lower bound after only nine itera-
tions in this case. For this reason, the primary value of the table is to provide an idea of the
relative costs of Algorithm 4, and of Algorithm 6 inside of constraint preconditioned conju-
gate gradient method. As mentioned above, it is worth noting that the results are dependent
on whether linear or non-linear constraints are implemented, as the linear constraint case
generally requires fewer evaluations of Algorithms 5 and 6.

One interesting feature in Table 4 is that the proportion of convolutions evaluated in
Algorithm 5 to the total convolutions evaluated is fairly stable over all values of m and γ.
Specifically, it ranges from 0.63 to 0.49, which correspond to the m = 252 and γ = 0.01 case
and the m = 125 and γ = 0.01 case respectively. This proportion also generally scales well
as m is increased or γ is decreased.

In each of the examples shown, when averaged over all iterations, the additional com-
putational costs arising from convolutions is no more than 1.71 times what it would be in
a method that did not require Algorithm 6. If this were the only additional cost, this sec-
ond order method would compare favorably to its first order counterparts, since far fewer
iterations are required. However, the method also requires a factorization of (14) in each
iteration. The computational cost of these operations are application dependent, but, at
least for these cases, in which the constraint matrix is highly sparse, these decompositions
add less than 16 seconds to the total time when using an ordinary laptop. Thus, even in the
context of nonlinear constraints, we expect the efficiency of this approach in similar cases
will compare favorably with first order methods. Of course, an additional advantage is local
quadratic convergence, which allows the regularized Wasserstein metric to be applicable in
settings that require a high degree of accuracy.
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Convolutions Evaluated
γ = 0.01

m 252 752 1252

N1 41, 460 29, 280 21, 540
N2 70, 846 (0.63) 35, 474 (0.55) 20, 960 (0.49)

Iterations 61 45 35
γ = 0.02

m : 252 752 1252

N1 6, 600 4, 080 5, 760
N2 10, 930 (0.62) 6, 386 (0.61) 9, 034 (0.61)

Iterations 31 23 27

Table 7: The number of convolutions evaluated in Algorithms 4 and 5 are given by N1 and
N2 respectively. The values in parenthesis corresponds to N2/(N1 + N2), the proportion of
the total convolutions that were required to evaluate products with B̂ and B̂−1. The number
of iterations is also equal to the number of matrix decompositions.

3.6 Discussion

This paper proposes methods for evaluating products with the Hessian and its inverse to
allow for the use of efficient second order optimization algorithms to minimize the regularized
Wasserstein metric. When A ⊂ Rd, we find bounds on the finite condition number of the
Hessian, and a direct implication is that the conjugate gradient method can be used to find
products with the Hessian in a bounded number of iterations. We also show the required
number of iterations is generally small in practice. Thus, this method, when combined with
replacing products with approximations of convolutions, allows for the evaluation of products
with the Hessian in O(m log(m)) time. We also provide a method to evaluate products
with the inverse or pseudoinverse of the Hessian that only requires two convolutions and
elementwise operations of a vectors in Rm.

Also, we discuss existing implementations of optimization algorithms that can use these
results when minimizing the regularized Wasserstein metric subject to either linear or nonlin-
ear constraints. These implementations can be used to find solutions in an efficient manner
and with a high level of accuracy. In the linear constraint case, solving the dual problem
provides a further gain in computational efficiency, since this has the effect of avoiding matrix
factorizations and substituting some products with the Hessian for products with the inverse
or pseudoinverse. In favorable circumstances, meaning when the constraint matrix, A, has a
number of nonzero elements that is O(m) and AA> has a condition number that is bounded
asymptotically, or a suitable preconditioner is available for ABA>, the time complexity of
the optimization problems in the linear constraint case is provably O(m log(m)).
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When implementing nonlinear constraints, it is generally more difficult to avoid matrix
factorizations and products with the Hessian; although, the efficiency can be improved fur-
ther with the use of preconditioner for the Hessian of the Lagrangian. After discussing these
topics, we provide numerical experiments. In the cases we consider the number of additional
convolutions required by the method scales well as γ goes to zero and as m diverges. We
hope that the approaches provided here will allow second order methods to be applicable
in the large scale problems that are commonly encountered in the regularized Wasserstein
metric setting.
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