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Abstract

This thesis consists of three projects.

The �rst project focuses on the distribution of zeros of linear combinations of derivatives of L-

functions. We consider a collection of such combinations and prove asymptotic formulas for the

supremum of the real parts of their zeros. Moreover, an investigation of an inverse-type question

related to the case of the Riemann zeta function is included.

In the second part of this thesis, we expand the class of Dirichlet series whose monotonicity

properties are known. In particular, we describe a large class of Dirichlet series that are not

logarithmically completely monotonic. Using similar techniques, an equivalent formulation of

the Riemann Hypothesis for the Ramanujan-tau L-function is provided.

The last project is related towalks to in�nity. Ourmain object is the subset P of the complex plane

that includes all the primes of all rings of integers of all imaginary quadratic �elds. One would

want to know if it is possible to walk to in�nity stepping only on points in P and such that the

sequence of lengths of steps used in the process is bounded. However, the problem is surprisingly

connected to some famous and notoriously di�cult unsolved problems. We study more general

walks on the set P , where the length of the steps is not forced to be bounded throughout the

walk.

ii



To my family, for all their love and support.

iii



Acknowledgments

Firstly, I would like to expressmy sincere gratitude to the SusanMorisato Scholarship for partially

funding my research.

There are many people that have earned my gratitude for their contribution to my time in grad-

uate school.

I cannot begin to express my thanks to my advisor Prof. Zaharescu for the continuous support

and guidance the past several years, and for making sure I never fell o� the broken chair in his

o�ce. He’s the funniest advisor and one of the smartest people I know. I could not have imagined

having a better advisor and mentor for my Ph.D studies.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof. Berndt, Prof.

Hildebrand, and Dr. Baluyot, for their insightful comments and encouragement during the prepa-

ration and review of my dissertation. My sincere thanks also goes to Prof. Diamond and Dr.

Robles for stimulating discussions.

Special thanks to my colleagues Albert Tamazyan and Sneha Chaubey whom I had great pleasure

of working with. Their precious support made this achievement possible.

I am deeply indebted to my teachers E. Chatzidakis and S. Solanakis, and Prof. Papadimitrakis

for their profound belief in my abilities. They played an important role in my decision to pursue

research mathematics as a career.

I am grateful to all my friends for keeping me sane during this time. In particular, I would like to

thank Itziar for the gallons of co�ee we consumed together, Thao for the hundreds of Wednesday

iv



bodyjam sessions we went to, Eleni for coming to the airport at 4 am to say goodbye and Nancy

for bringing ice-cream every time she visited.

The completion of my dissertation would not have been possible without my family’s support

and nurturing. I am deeply grateful to my mom, Minna Pirilä, for being my pillar of strength and

encouragement, my dad, Giannis Koutsakis, for (secretely) taking pride in me and making me

feel accomplished, my sister Eva for being my best friend and responding to my texts at 2 am,

and my brother George for making me laugh even when everything else is falling apart. I would

also like to thank Venu and Meera Menon for being my family away from home as well as my

nephew Sachin Venugopal who cheers me up every time we talk.

My acknowledgement would be incomplete without thanking the biggest source of my strength,

my husband Dileep Menon. Your love and support helped me persevere during times I wanted to

quit. You always point me in the right direction and show me the bigger picture. My journey in

mathematics may have started before I met you, but thanks to you it will never end. I am looking

forward to many more math discussions and even more arguments. I love you too.

v



Contents

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter 1 Linear combinations of ⇣ and its derivatives and vertical distribution
of their zeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Zero Free Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Preliminary results on the zeros of F(s) . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Proof of Theorem 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Chapter 2 Linear combinations of ⇣ and its derivatives and horizontal distribu-
tion of their zeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 �k and �

⇤

k
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Asymptotic formula for �⇤
k

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 Inverse-type problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Chapter 3 Linear combinations of L-functions and their derivatives . . . . . . . . 30
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Proof of Theorem 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Exponentially small tail . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 Existence of �⇤

k,G
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.3 �k,G and Re�⇤
k,G

are exponentially close . . . . . . . . . . . . . . . . . . . 35
3.3 Relevant numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 4 Monotonicity properties of L-functions . . . . . . . . . . . . . . . . . . 44
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Proof of Theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Examples of functions in class A . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Monotonicity of Ramanujan tau L-function . . . . . . . . . . . . . . . . . . . . . . 53

Chapter 5 Walks to in�nity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vi



5.2.1 Existence of a path to in�nity . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.2 Ideals with prime norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.3 A path that covers almost all elements of P . . . . . . . . . . . . . . . . . 64

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

vii



List of Abbreviations

RH Riemann Hypothesis.
CM Completely Monotonic.
LCM Logarithmically Completely Monotonic.

viii



List of Symbols

⇣(s) The Riemann zeta function.
�(s) The Gamma function.
�(n) The Euler totient function.
µ(n) The Mobius function.
sgn(x) The signum function.
(m,n) The greatest common divisor of m and n.
[m,n] The least common multiple of m and n.
dxe The smallest integer greater than or equal to x.
{x} The fractional part or x.

f (x) = O(g(x)) There exists a positive constant C such that |f (x)|  Cg(x) for rel-
evant values of x. The notation f (x) = O�(g(x)) indicates that the
implicit constants may depend on the parameter �.

f (x)⌧ g(x) Same as f (x) = O(g(x)). The notation f (x)⌧� g(x) is the same as
f (x) = O�(g(x)).

k~ck1 max{|c1|, . . . , |cn|}, where ~c = (c1, . . . , cn).
D(c,R) Disk centered at c with radius R.
h↵i The principal ideal generated by ↵.

ix



Chapter 1

Linear combinations of ⇣ and its
derivatives and vertical distribution of
their zeros
1.1 Introduction

The distribution of zeros of the Riemann zeta-function and that of its derivatives appear to be

closely related. One of the most well-known results around this observation was proved by

Speiser [Spe35] who showed that the Riemann Hypothesis (RH) is equivalent to ⇣
0(s) having

no zeros in 0 < Res < 1
2 . Assuming RH, Levinson and Montgomery [LM74a] established that for

k � 1, ⇣(k)(s) has at most a �nite number of complex zeros for Res < 1
2 , and it was proved by

Yildirim [Yıl00] that under RH, ⇣00(s) and ⇣
000(s) have no zeros in the strip 0  Res < 1

2 . Spira

[Spi65a], [Spi70] studied the zero-free regions of the derivatives of ⇣(s). In [Spi65a], he showed

that if k � 3, then ⇣
(k)(s) , 0 for Res � 7

4k +2. In [Spi70] Spira proved that there is a half-plane

free of complex zeros on the left as well, that is, there exists a number ↵k such that ⇣(k)(s) has

only real zeros for Res  ↵k . Verma and Kaur[VK82] revised Spira’s �rst result showing that if

k � 3 then ⇣
(k)(s) has no zeros for Res � (1.13588...)k + 2. There are also some new develop-

ments about the location of the zeros of the derivatives of ⇣(s) by Binder, Farr, Pauli, Saidak (see

[FP13] and [BPS10]).

Another direction of study is �nding asymptotic formulas for the number of zeros up to a certain

height T . Let N (T ) and Nk(T ) denote respectively, the number of zeros of ⇣(s) and ⇣
(k)(s) with

imaginary part between 0 and T . The �rst estimate of N (T ) goes back to Riemann. He stated in

1859 that

N (T ) =
T

2⇡
log

T

2⇡
�

T

2⇡
+O(logT ),
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which was proved by von-Mangoldt in 1905. Spira [Spi65a] made a strong conjecture about

Nk(T ). The formula he suggested is a relation between N (T ) and Nk(T ) without any error

terms:

N (T ) =Nk(T ) +
"
T log2
2⇡

#
± 1.

Berndt [Ber70] attacked this problem and obtained a relationship between N (T ) and Nk(T ) that

includes an error term:

N (T ) =Nk(T ) +
T log2
2⇡

+O(logT ).

In this chapter, we will study the distribution of zeros of a combination of the Riemann zeta-

function and its derivatives. We denote F(s) = c0⇣(s) + c1⇣
0(s) + · · ·+ ck⇣

(k)(s) with c0, c1, . . . , cn

real, c0 , 0 and ck , 0. Here s = � + it as usual and since we are interested in the zeros of this

function, we take c0 = 1 without loss of generality. We let NF(T ) be the number of zeros of the

function F such that 0 < t < T . The main result of this chapter is an asymptotic formula for

NF(T ), given by the following theorem.

Theorem 1.1. For any function F de�ned as above we have

NF(T ) =
T

2⇡
log

✓
T

2⇡

◆
�

T

2⇡
+OF(logT ).

1.2 Zero Free Regions

We examine the function F(s) = ⇣(s) + c1⇣
0(s) + · · · + ck⇣

(k)(s) with ck , 0. For � > 1, the m-th

derivative of the Riemann zeta-function is given by

⇣
(m)(s) = (�1)m

1X

n=2

logmn

ns
,
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hence for such � , F(s) can be written as

F(s) = 1+
1X

n=2

1� c1 logn+ c2 log
2
n+ · · ·+ (�1)kck log

k
n

ns
.

From the general theory of Dirichlet series it follows that F(s) has a right half plane free of zeros,

speci�cally there exists a number �F such that F(s) , 0 for � > �F . In the next proposition we

exhibit a rough value of such �F .

Proposition 1.2 (Right zero-free regions). Let c = max
j=0,...,k

|cj |, where c0 = 1. If � > �F = k + 2 +

log(c(k +1))
log2

, then F(s) , 0.

Proof. We rewrite F(s) as

F(s) = 1+
1� c1 log2+ · · ·+ (�1)kck log

k 2
2s

+
1X

n=3

1� c1 logn+ · · ·+ (�1)kck log
k
n

ns
. (1.1)

Since logj 2 < 1 for any j , and � > k +2+
log(c(k +1))

log2
, then

������
1� c1 log2+ · · ·+ (�1)kck log

k 2
2s

������ 
(k +1)c

2�
<

1
2k+2

. (1.2)

On the other hand, logj n > 1 for n � 3, so

�������

1X

n=3

1� c1 logn+ · · ·+ (�1)kck log
k
n

ns

�������


1X

n=3

(k +1)c logk n
n�

 (k +1)c
1X

n=3

n
k

n�
= (k +1)c

1X

n=3

1
n��k

 (k +1)c
Z
1

2

1
x��k

dx

= (k +1)c
1

(� � k � 1)2��k�1

(k +1)c
2��k�1

<
1
2
, (1.3)

where in the last step the inequality � > k +1+
log(2c(k +1))

log2
is used. Finally, taking (1.1), (1.2)
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and (1.3) together we see that

|F(s)| =

�������
1+

1� c1 log2+ · · ·+ ck(�1)k log
k 2

2s
+
1X

n=3

1� c1 logn+ · · ·+ (�1)kck log
k
n

ns

�������

� 1�

������
1� c1 log2+ · · ·+ (�1)kck log

k 2
2s

�������

�������

1X

n=3

1� c1 logn+ · · ·+ (�1)kck log
k
n

ns

�������

> 1�
1

2k+2
�
1
2
> 0,

which proves the proposition.

In the next proposition we show that there is a left half plane where the function F(s) has no

non-real zeros under the condition that ci ’s are real.

Proposition 1.3 (Left “zero-free" regions). If all the coe�cients ci in the de�nition of F(s) are

real, then there exists a number ↵F so that F(s) has only real zeros for � < ↵F , and has exactly one

real zero in each open interval of the form (�1 � 2n,1 � 2n) for each positive integer n satisfying

1� 2n  ↵F .

Remark. Note that the proposition does not provide any information about the sign of ↵F . It will

be assumed to be negative in what follows.

Proof. We start with the asymmetric functional equation for ⇣(s),

⇣(1� s) = 2(2⇡)�s cos
⇡s

2
�(s)⇣(s).

Di�erentiating this equality m times using Leibniz’s rule we �nd

(�1)m⇣(m)(1� s) = 2(2⇡)�s
mX

j=0

�(j)(s)Rjm(s), (1.4)

where

Rjm(s) = Pjm(s)cos
⇡s

2
+Qjm(s)sin

⇡s

2
, (1.5)
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Pjm(s) =
mX

n=0

ajmn⇣
(n)(s), Pmm(s) = ⇣(s), (1.6)

Qjm(s) =
kX

n=0

bjmn⇣
(n)(s), Qmm(s) = 0, (1.7)

for some constants ajmn and bjmn[Spi65a].

For each summand in the combination ⇣(1� s)+c1⇣0(1� s)+ · · ·+ck⇣(k)(1� s) we apply (1.4) and

collect the terms involving the same derivatives of � to arrive at the following representation for

F(1� s):

F(1� s) =
kX

m=0

cm⇣
(m)(1� s) =

kX

m=0

cm(�1)m2(2⇡)�s
mX

j=0

�(j)(s)Rjm(s)

= 2(2⇡)�s
2
6666664

k�1X

m=0

cm(�1)m
mX

j=0

�(j)(s)Rjm(s) + ck(�1)k
kX

j=0

�(j)(s)Rjm(s)

3
7777775

= 2(2⇡)�s
" k�1X

m=0

mX

j=0

cm(�1)m�(j)(s)Rjm(s)

+ck(�1)k
k�1X

j=0

�(j)(s)Rjk(s) + ck(�1)k�(k)(s)Rkk(s)
#

= 2(2⇡)�s
k�1X

j=0

2
6666664

k�1X

m=j

cm(�1)m�(j)(s)Rjm(s) + ck(�1)k�(j)(s)Rjk(s)

3
7777775

+2(2⇡)�sck(�1)k�(k)(s)⇣(s)cos
⇡s

2
.

Therefore,

F(1� s) = 2(2⇡)�s
kX

j=0

�(j)(s)R̃jk(s), (1.8)
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where

R̃jk(s) = ck(�1)kRjk(s) +
k�1X

m=j

cm(�1)mRjm(s), for j  k � 1, (1.9)

R̃kk(s) = ck(�1)k⇣(s)cos
⇡s

2
.

We next write

(�1)kF(1� s)(2⇡)s/2ck = f (s) + g(s), (1.10)

where

f (s) = ⇣(s)�(k)(s)cos
✓
⇡s

2

◆
,

g(s) =
(�1)k

ck

k�1X

j=0

�(j)(s)R̃jk(s).

Next, we apply Rouché’s theorem to the square with vertices 2n± i , 2n+2± i to deduce that the

function f (s) + g(s) has exactly the same number of zeros as f (s) inside that square. We need to

show that |f (s)| > |g(s)| on the boundary and the proof of that is almost identical to the one done

by Spira in [Spi70]. From [Spi65a] we have

�(j)(s) = �(s)

2
6666664log

j
s +

j�1X

n=0

Enj(s) log
n
s

3
7777775 , (1.11)

where each Enj(s) is O(1/s), so we can write

f (s) = ⇣(s)cos
⇡s

2
�(s) logk�1(s)

2
666664logs +

k�1X

n=0

Enk(s) log
n+1�k(s)

3
777775 ,

and by introducing R̃⇤
jm
(s) =

(�1)k

ck cos(⇡s/2)
R̃jm(s), we have

g(s) = ⇣(s)cos
⇡s

2
�(s) logk�1(s)

k�1X

j=0

R̃
⇤

jm
(s)

⇣(s)

2
6666664

1

logk�1�j s
+

j�1X

n=0

Enj(s)

logk�1�n(s)

3
7777775.
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After applying the triangle inequality we see that we will have |f (s)| > |g(s)| on the boundary

provided

|logs| >
k�1X

n=0

���Enk(s) log
n+1�k

s

���+

��������

k�1X

j=0

R̃
⇤

jk
(s)

⇣(s)

2
6666664

1

logk�1�j s
+

j�1X

n=0

Enj(s)

logk�1�n(s)

3
7777775

��������
. (1.12)

Using (1.9) we can write

R̃
⇤

jk
(s) =

Rjk(s)
cos(⇡s/2)

+
k�1X

m=j

cm

ck

(�1)m+k Rjm(s)
cos(⇡s/2)

=

Pjk(s) +Qjk(s) tan

⇡s

2

�
+

k�1X

m=j

cm

ck

(�1)m+k

Pjm(s) +Qjm(s) tan

⇡s

2

�

= P̃
⇤

jk
(s) + Q̃

⇤

jk
(s) tan

⇡s

2
,

where

P̃
⇤

jk
(s) = Pjk(s) +

k�1X

m=j

cm

ck

(�1)m+k
Pjm(s),

and

Q̃
⇤

jk
(s) =Qjk(s) +

k�1X

m=j

cm

ck

(�1)m+k
Qjm(s).

From (1.6) and (1.7) it follows that P̃⇤
jk
(s) and Q̃

⇤

jk
(s) are linear combinations of ⇣(s), ⇣0(s) ,. . . ,

⇣
(k)(s), so their absolute values are bounded for large � . The same holds for R̃⇤

jk
(s) since tan

⇡s

2

is also bounded on the sides of the square. Lastly,
1

⇣(s)
=
1X

n=1

µ(s)n�s is also bounded and we get

that the right side of (1.12) is bounded, whereas on the left side we have |logs| > log |s| which

is unbounded. Moreover, (1.11) implies that for � su�ciently large, �(j)(s) , 0, hence f (s) has a

single zero in the square due to cos(⇡s/2). Rouché’s theorem then implies that f (s) + g(s) (by

(1.10), also F(1 � s)) has exactly one zero inside the square. Since the coe�cients ci are all real,

then the zeros of F(s) occur in conjugate pairs, thus the unique zero must lie on the real axis and

the proof is complete.
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1.3 Preliminary results on the zeros of F(s)

In this section, we �rst obtain an in�nite product representation for the function F(s), which

will in turn lead to an expression for F 0(s)/F(s). In order to do this, we de�ne the function

G(s) = (s�1)k+1F(s)which is an entire function and, in fact, of order 1 [Dav00]. Therefore, there

are constants AF and BF , depending only on the function F, such that

G(s) = s
m
e
AF+sBF

Y

⇢

 
1�

s

⇢

!
e

s

⇢

for all s 2 C, where m � 0 is the order of s = 0 as a zero of G and the product is over all the

non-zero zeros of G. All the zeros of G are exactly the zeros of F and

F(s) =
s
m

(s � 1)k+1
e
AF+sBF

Y

⇢

 
1�

s

⇢

!
e

s

⇢ (1.13)

for s 2 C, s , 1.

From the theory of entire functions of order 1 we know that
P
⇢

|⇢|
�1�⌘

<1 for any ⌘ > 0, and in

particular
P
⇢

|⇢|
�2

<1.

Logarithmic di�erentiation of (1.13) yields

F
0(s)
F(s)

=
m

s
�
k +1
s � 1

+BF +
X

⇢

 
1

s � ⇢
+
1
⇢

!
, (1.14)

valid for s 2 C, s , 0, s , 1, s , ⇢.

On the other hand, the absolute convergence of the above sum allows us to rewrite this as

F
0(s)
F(s)

=
m

s
�
k +1
s � 1

+BF +
X

⇢ real

 
1

s � ⇢
+
1
⇢

!
+

X

�>0
⇢=�+i�

 
1

s � ⇢
+
1
⇢
+

1
s � ⇢

+
1
⇢

!
,

8



while the absolute convergence of each of the series

X

�>0
⇢=�+i�

 
1

s � ⇢
+

1
s � ⇢

!

and
X

�>0
⇢=�+i�

 
1
⇢
+
1
⇢

!

give us
F
0(s)
F(s)

=
m

s
�
k +1
s � 1

+eBF +
X

⇢ real

 
1

s � ⇢
+
1
⇢

!
+

X

�>0
⇢=�+i�

 
1

s � ⇢
+

1
s � ⇢

!
(1.15)

for s 2 C, s , 0, s , 1, s , ⇢, where

eBF = BF +
X

�>0
⇢=�+i�

 
1
⇢
+
1
⇢

!

is a constant independent of s.

Lemma 1.4. For s0 = �
⇤ + iT , where �⇤ � ↵F and T � 2, we have

X

⇢ real

�����
1

s0 � ⇢
+
1
⇢

����� = OF(logT ).

Proof. It is enough to prove the above estimate for the sum restricted over the zeros ⇢ < ↵F , since

for ↵F  ⇢  �F , each summand is bounded by

1
2
+

1
min

�
|⇢| : ↵F  ⇢  �F,F(⇢) = 0

 ,

and the number of such ⇢ is �nite.
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Now, write
X

⇢<↵F

�����
1

s0 � ⇢
+
1
⇢

����� =
X

⇢<↵F

|s0|

|⇢||s0 � ⇢|
=: S1 + S2,

where S1 and S2 are the sums restricted over the zeros ⇢ < �2T and �2T  ⇢ < ↵F , respectively.

The result follows immediately from the following estimates:

S1 =
X

⇢<�2T

|s0|

|⇢||s0 � ⇢|
⌧F

X

⇢<�2T

|s0|

|⇢|
2 ⌧F T

X

⇢<�2T

1
|⇢|

2 ⌧F T

X

n>2T

1
n2

= OF(1),

and

S2⌧F

X

�2T⇢<↵F

1
|⇢|
⌧F

X

�↵F
2 <nT

1
n
= OF(logT ).

Now combining (1.15) and Lemma 1.4 and using the fact that F 0/F is bounded at s0 = �
⇤+ iT , say

by C , we get

Re

8>>>>>><>>>>>>:

X

�>0
⇢=�+i�

 
1

s0 � ⇢
+

1
s0 � ⇢

!
9>>>>>>=>>>>>>;

= Re

8>>><>>>:
F
0(s0)
F(s0)

�
m

s0
+

k +1
s0 � 1

�eBF �

X

⇢ real

 
1

s0 � ⇢
+
1
⇢

!9>>>=>>>;

 C +
m+ k +1

T
+ |eBF |+

X

⇢ real

������

(
1

s0 � ⇢
+
1
⇢

)������

= OF(logT ).

Also,
X

�>0
⇢=�+i�

Re
(

1
s0 � ⇢

+
1

s0 � ⇢

)
�

X

|��T |1
⇢=�+i�

Re
(

1
s0 � ⇢

)
,

since

Re
(

1
s0 � ⇢

)
=
Re

�
s0 � ⇢

 

|s0 � ⇢|
2 �

�
⇤
� �F

|s0 � ⇢|
2 > 0,
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and then
X

|��T |1
⇢=�+i�

Re
(

1
s0 � ⇢

)
= OF(logT ). (1.16)

The following proposition is the �rst result on the number of zeros of F.

Proposition 1.5. Let T > 2. The number of zeros ⇢ = � + i� of F(s) with T � 1  �  T + 1 is

OF(logT ).

Proof. For ⇢ with |� �T |  1 and s0 = �
⇤ + iT , �⇤ > �F , we have

|s0 � ⇢| = |�⇤ + iT �Re⇢ � i� |

 |�
⇤
|+ |Re⇢|+ |T �� |

 |�
⇤
|+max {|↵F |, |�F |}+1,

and

Re
1

s0 � ⇢
=
Re

�
s0 � ⇢

 

|s0 � ⇢|
2 �

�
⇤
� �F

(|�⇤|+max {|↵F |, |�F |}+1)2
=: C1(F).

Hence,

X

|��T |1
⇢=�+i�

Re
(

1
s0 � ⇢

)
�

X

|��T |1
⇢=�+i�

C1(F) � C1(F) ·#
�
⇢ = � + i� : � 2 [T � 1,T +1]

 
,

and the result follows from (1.16).

Before the next section and the proof of the main theorem we will need one more lemma.

Lemma 1.6. If s = � + iT , then for large T (not coinciding with the ordinate of a zero) and ↵F 

�  �F +1,
F
0(s)
F(s)

=
X

|��T |1
⇢=�+i�

1
s � ⇢

+OF(logT ).
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Proof. By Lemma 1.4 and (1.14) applied at s and �F +1+ iT we get

F
0(s)
F(s)

= OF(logT ) +
X

�,0
⇢=�+i�

 
1

s � ⇢
�

1
�F +1+ iT � ⇢

!
.

For the terms with |� �T | � 1, we have

�����
1

s � ⇢
�

1
�F +1+ iT � ⇢

����� =
�F +1�����(s � ⇢)(�F +1+ iT � ⇢)

���

�F +1�↵F

|� �T |
2 ,

and the sum of these is OF(logT ). For if we write

X

|��T |
2
�1

1
|� �T |

2 =
1X

m=1

X

m|��T |
2
<m+1

1
|� �T |

2 ,

then we get

X

|��T |
2
�1

�F +1�↵F

|� �T |
2 ⌧F

1X

m=1

8>>><>>>:
1
m2

X

m|��T |
2
<m+1

1

9>>>=>>>;

⌧F

1X

m=1

⇢ 1
m2OF(log(T +m+1))

�
,

where Proposition 1.5 was used. The last sum above is OF(logT ).

As for the terms with |� � T |  1 we have |�F + 1 + iT � ⇢| � 1 and the number of these is

OF(logT ).

Now we are ready to proceed to the proof of Theorem 1.1 .
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1.4 Proof of Theorem 1.1

Recall that s = � + it with � and t both real and NF(T ) is the number of zeros of the function F

with 0 < t < T .

Proof. From Section 1.2 we know that F(s) has no zeros with � � �F > 1, and no non-real zeros

for �  ↵F . Choose "F > 0 so that F(s) has no non-real zeros for 0 < t  "F and suppose that T

does not coincide with the ordinate of a zero of F(s). Let R be the rectangle with vertices

↵F + i"F, �F +1+ i"F, �F +1+ iT , ↵F + iT .

�

t

iT

i"F

�F +1↵F

By the argument principle, the number of zeros of F inside the rectangle is given by

NF(T ) =
1

2⇡i

Z

R

F
0(s)
F(s)

ds

=
1
2⇡
{I1 + I2 + I3 + I4} ,

where I1, I2, I3 and I4 are respectively the imaginary parts of the integrals of F 0/F over the line

segments

L1 = {� + i"F, ↵F  �  �F +1} ,

L2 = {�F +1+ it, "F  t  T } ,

13



L3 = {�� +↵F + �F +1+ iT , ↵F  �  �F +1} , and

L4 = {↵F + i(�t + "F +T ), "F  t  T } .

Firstly, I1 = OF(1), since it is independent of T .

Secondly,

I2 = Im

8>>>><>>>>:

Z

L2

F
0(s)
F(s)

ds

9>>>>=>>>>;

= Im

8>>>><>>>>:

Z

L2

d

ds
[logF(s)] ds

9>>>>=>>>>;

= [argF(s)]�F+1+iT
�F+1+i"F

.

Note that for s = �F +1+ it

Re {1+ (F(s)� 1)} � 1� |Re {F(s)� 1}|

� 1� |F(s)� 1|

� 1�
1
2
�

1
2k+2

> 0,

where the last inequality uses (1.2) and (1.3). Hence, the argument of F(s) is less than ⇡, and so

I2 = OF(1).

Next, to estimate I3 we use Lemma 1.6. Thus,

I3 =
Z

L3

Im
�
F
0(s)/F(s)

 
ds
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=
Z

L3

0
BBBBBBBBBBBB@

X

|��T |1
⇢=�+i�

Im
(

1
s � ⇢

)
+O(logT )

1
CCCCCCCCCCCCA
ds

=
X

|��T |1
⇢=�+i�

Im

8>>>><>>>>:

Z

L3

1
s � ⇢

ds

9>>>>=>>>>;
+O(logT ),

and since 1
s�⇢

= d

ds
(log(s � ⇢)), by Proposition 1.5,

I3 =
X

|��T |1
⇢=�+i�

[arg(s � ⇢)]↵F+iT�⇢
�F+iT�⇢

+O(logT )



X

|��T |1
⇢=�+i�

⇡ +O(logT ) = OF(logT ).

Lastly, for estimating I4 we use (1.8) where s is replaced with 1� s, to get

F(s) =
1
⇡
(2⇡)s

kX

j=0

R̃jk(1� s)�(j)(1� s),

and rewrite this as

F(s) = (2⇡)s�(1� s)e�
i⇡s

2

8>>><>>>:

k�1X

j=0

R̃jk(1� s)

⇡e
�i⇡s

2

�(j)(1� s)
�(1� s)

+
R̃kk(1� s)

⇡e
�
i⇡s

2

�(k)(1� s)
�(1� s)

9>>>=>>>;
. (1.17)

Equation (1.11) gives

�(j)(1� s)
�(1� s)

= logj (1� s) +Oj

 
logj�1 (1� s)

1� s

!
.

Next, we write

F(s) = (2⇡)se�i
⇡s

2 �(1� s) {R1(s) +R2(s)}
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= (2⇡)se�i
⇡s

2 �(1� s)R1(s)
(
1+

R2(s)
R1(s)

)
,

where

R1(s) = logk(1� s)
R̃kk(1� s)

⇡e
�
i⇡s

2

= logk(1� s)
ck(�1)k⇣(1� s)sin(⇡s2 )

⇡e
�
i⇡s

2

and

R2(s) =
k�1X

j=0

R̃jk(1� s)

⇡e
�i⇡s

2

�(j)(1� s)
�(1� s)

+Ok

 
R̃kk(1� s)

e
�
i⇡s

2

logk�1 (1� s)
1� s

!
.

For all 1  j,m  k, by (1.5)

����Rjm(1� s)e
i⇡s

2

���� = e
�⇡T /2

����Pjm(1� s)sin
⇡s

2
+Qjm(1� s)cos

⇡s

2

����.

On the other hand,

����sin
⇡s

2

���� =

�������
e
i⇡s

2 � e
�
i⇡s

2

2i

�������
= e

⇡T /2

������
e
i⇡s
� 1
2

������  e
⇡T /2

,

and similarly we get
���cos ⇡s

2

���  e
⇡T /2. Now, since the line of integration is away from s = 1,

Pjm(1� s) and Qjm(1� s) are bounded for each �xed 1  j,m  k. Combining this with (1.9) we

�nally get that, as T !1,

e
i⇡s/2

R̃jk(1� s) = OF(1),

and consequently,

R2(s) = OF(log
k�1(1� s)).
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We assume that ↵F is su�ciently negative, so that

�����
R2(s)
R1(s)

����� < 1,

when s belongs to L4. Hence the change of the argument of 1+
R2(s)
R1(s)

is less than ⇡ as s travels

along L4. Moreover, ck(�1)k sin(⇡s2 )

⇡e
�
i⇡s

2
approaches a nonzero complex number as t increases, while

⇣(1� s) remains bounded and so the change of argument on L4 is also OF(1).

Finally, by (1.17)

[logF(s)]↵F+i"F
↵F+iT

=
"
log(2⇡)s �

1
2
i⇡s + log�(1� s) + logR1(s) + log

 
1+

R2(s)
R1(s)

!#↵F+i"F

↵F+iT

= �iT log2⇡ +OF(1)�
1
2
⇡T +OF(1)

+

�

✓
s �

1
2

◆
log(1� s)� (1� s) +OF(1)

�↵F+i"F

↵F+iT
+OF(log(log

k(T ))),

where in the last step we used Stirling’s formula for log�(1�s), and the logarithm in R1(s) gives

the error term. Now,

✓
↵F + iT �

1
2

◆
log(1�↵F � iT ) =

✓
↵F �

1
2
+ iT

◆
log

✓
�iT

✓
1�

1�↵F

iT

◆◆

=
✓
↵F + iT �

1
2

◆
log(�iT ) +OF(1) = iT logT +

⇡T

2
+OF(logT ),

and putting all the estimates together we reach

I4 = T (logT � log2⇡ � 1) +OF(logT ).
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Hence, the main contribution in the number of zeros comes from I4 and we have

NF(T ) =
1
2⇡

4X

j=1

Im Ij =
1
2⇡

T (logT � log2⇡ � 1) +OF(logT ).

This completes the proof of the theorem.
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Chapter 2

Linear combinations of ⇣ and its
derivatives and horizontal distribution of
their zeros
2.1 Introduction

In this chapter, we consider the number �k which is de�ned as the supremum of the real parts of

⇢ 2 Gk , where Gk is the set of all zeros of all combinations

F(s) = ⇣(s) + c1⇣
0(s) + · · ·+ ck⇣

(k)(s) (2.1)

satisfying |c1|, |c2|, . . . , |ck |  1. The next theoremprovides a sharp asymptotic formula for �k .

Theorem 2.1. With �k de�ned as above, we have, as k!1,

�k =
loglog15
log15

k +C +OF(⌘k). (2.2)

Here ⌘ is a �xed positive number less than 1 and C is an absolute constant.

We prove this result throughout Sections 2.2 and 2.3 and also provide the exact values of the

constants C and ⌘ .

In Section 2.4, we investigate an inverse-type problem. Given a real number � > 1, it is easy to

show that there exists a linear combination of the form (2.1) which vanishes at �. However, can

the degree of the largest derivative involved be small? In other words, if we de�ne k(�) to be

the minimum integer k for which there exist real constants c1, . . . , ck of absolute value at most 1,

with ck , 0, such that ⇣(�) + c1⇣
0(�) + · · ·+ ck⇣

(k)(�) = 0, how does k(�) relate to �?

This is the content of the following theorem.
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Theorem 2.2. 1. For all real � > 1, with the exception of a set E of �nite Lebesgue measure,

and with k(�) de�ned as above,

k(�) =
⇠
� �C

L

⇡
,

where

C = loglog15�log(log15�1)
log15 and L = loglog15

log15 .

2. For almost all integers j > 1,

k(j) =
⇠
j �C

L

⇡
, (⇤)

with C and L as in part (1).

For example, one can show that k(1,000,000) = 2,178,301,which means that any linear com-

bination, with coe�cients satisfying the usual restrictions, that vanishes at � = 1,000,000 will

involve a derivative of order at least 2,178,301.

Extensive numerical evidence, aswell as (2) of Theorem 2.2, lead to the following conjecture.

Conjecture 2.3. For all but �nitely many integers j , (⇤) holds.

2.2 �k and �
⇤

k

In Chapter 1, we studied functions of the form F(s) = ⇣(s) + c1⇣
0(s) · · · + ck⇣

(k)(s), where the

non-negative integer k, as well as the real coe�cients c1, c2, . . . , ck , were �xed. In the following

sections, we investigate a family of such functions. To that end, we associate each vector ~c =

(c1, c2, . . . , ck) in Rk with the function F~c(s) = ⇣(s) + c1⇣
0(s) + · · · + ck⇣

(k)(s) and de�ne Fk to be

the family of functions consisting of all F~c with ~c 2 Rk and k~ck1  1. Moreover, we de�ne Gk to

be the set of all complex numbers ⇢ for which there exists a function F~c 2 Fk such that F~c(⇢) =

0. Our main goal is to prove an asymptotic formula for the number �k := sup {Re% : % 2 Gk}.

However, it is di�cult to establish such an asymptotic directly from the de�nition of �k . For this

reason, we introduce the auxiliary number �⇤
k
, whose relation to �k will be clear by the end of

20



this section.

Lemma 2.4. Let F
⇤

k
(s) be the function in Fk that corresponds to the vector

~c = (1,�1, . . . , (�1)k�1), that is F⇤
k
(s) = ⇣(s) + ⇣

0(s)� ⇣00(s) + · · ·+ (�1)k�1⇣(k)(s). For k � 2, F⇤
k
(s)

has exactly one real zero �⇤
k
with 1 < �

⇤

k
<1, and in fact,

loglog15
log15

k < �
⇤

k
< k +2.

Remark. The alternating signs in the de�nition of F⇤
k
(s) start from the second term.

Proof. Using the Dirichlet series of ⇣ and its derivatives we write

F
⇤

k
(s) = 1+

1X

n=2

1� logn� log2n� · · ·� logk n
ns

(2.3)

for s with Res > 1.

For k � 2, F⇤
k
restricted to 1 < s <1 is increasing, so that if it has a zero in that range it must be

unique. The existence follows from the observation that lim
s!1+
s2R

F
⇤

k
(s) = �1 and lim

s!+1
s2R

F
⇤

k
(s) = 1.

Now, to obtain the more precise bounds for �⇤
k
as stated in the lemma we make use of the fact

that F⇤
k
(�⇤

k
) = 0, that is

1 =
1X

n=2

�1+ logn+ log2n+ · · ·+ logk n

n
�
⇤

k

. (2.4)

The lower bound follows easily, since by (2.3)

1 =
1X

n=2

�1+ logn+ log2n+ · · ·+ logk n

n
�
⇤

k

>
�1+ log15+ log2 15+ · · ·+ logk 15

15�
⇤

k

>
logk 15

15�
⇤

k

,

and so

�
⇤

k
>
loglog15
log15

k. (2.5)
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To get an upper bound, we use the inequalities 1 + x + x
2 + · · ·+ x

k
 (1 + x)k and 1 + logx  x

both valid for x � 1 and k � 1. If �⇤
k
� k  1 then �

⇤

k
 k + 1 and the claim holds. Otherwise,

�
⇤

k
� k > 1 and we have

1 =
1X

n=2

�1+ logn+ log2n+ · · ·+ logk n

n
�
⇤

k



1X

n=2

1+ logn+ log2n+ · · ·+ logk n

n
�
⇤

k



1X

n=2

(1 + logn)k

n
�
⇤

k



1X

n=2

n
k

n
�
⇤

k

= ⇣(�⇤
k
� k)� 1.

This shows that ⇣(�⇤
k
� k) > ⇡

2

6 = ⇣(2), which leads to �
⇤

k
< k +2 and the end of the proof.

Remark. In fact, we can get a better upper bound for �⇤
k
as follows. Since ⇣(�⇤

k
) > 2, then �

⇤

k
<

k+⇣
�1(2) (where ⇣�1 means the inverse of the zeta function on the real line), so that �⇤

k
< k+1.73.

Now, we show the relation between �k and �
⇤

k
.

Lemma 2.5. With �k and �⇤k as before,

�k � �
⇤

k
= O

✓ 1
2k/3

◆

as k!1.

Proof. We assume that �k , �
⇤

k
, otherwise there is nothing to prove. By de�nition of �k , for all

✏ > 0 there exists a functioneF 2 Fk and an element ⇢ ofGk so thateF(⇢) = 0 and �k�✏ < Re⇢  �k .

Suppose that ~c = (c̃1, . . . , c̃k) is the vector that corresponds to eF.

Then,

1 =
1X

n=2

�1+ c̃1 logn+ · · ·+ (�1)k+1c̃k log
k
n

n⇢


1X

n=2

1+ logn+ · · ·+ logk n
nRe⇢

,

since k~ck1  1. Let � = Re⇢ � �⇤
k
. Without loss of generality, we can assume that ✏ < �k � �

⇤

k
so
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that � > 0. The above inequalities together with (2.4) become

1X

n=2

�1+ logn+ log2n+ · · ·+ logk n

n
�
⇤

k

= 1 
1X

n=2

1+ logn+ · · ·+ logk n

n
�+�⇤

k

,

which gives
1X

n=2

logn+ log2n+ · · ·+ logk n

n
�
⇤

k

✓
1�

1
n�

◆


1X

n=2

1
n
�
⇤

k

✓
1+

1
n�

◆
.

The left hand side is greater than 1� 1
2� by (2.4), while the right hand side is less than

2
1X

n=2

1
n
�
⇤

k

 2

0
BBBBBBB@
1
2�
⇤

k

+

1Z

2

1
x
�
⇤

k

dx

1
CCCCCCCA
= 2

 
1
2�
⇤

k

+
21��

⇤

k

�
⇤

k
� 1

!


3
2�
⇤

k

,

where the last inequality holds if k is su�ciently large, by Lemma 2.4.

Hence,

1�
1
2�


3
2�
⇤

k

,

and we get the following inequality for �,

� 

� log
✓
1� 3

2�
⇤

k

◆

log2


1
2�
⇤

k

3
log2


1

2�
⇤

k
�3 .

Finally,

�k � �
⇤

k
= �k �Re⇢ +Re⇢ � �⇤

k
 ✏ + �  ✏ +

1
2�
⇤

k
�3

for any positive ✏, and since

�
⇤

k
�
loglog15
log15

k �
k

3
,

we have

�k � �
⇤

k
= O

✓ 1
2k/3

◆
.
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2.3 Asymptotic formula for �⇤
k

Recall that according to the de�nition of �⇤
k
,

1�
1X

n=2

�1+ logn+ log2n+ · · ·+ logk n

n
�
⇤

k

= 0. (2.6)

We de�ne

Hk(x) =
�1+ logx + · · ·+ logk x

x
�
⇤

k

=
logk+1 x�1
logx�1 � 2

x
�
⇤

k

, (2.7)

and (2.6) becomes
1X

n=2

Hk(n) = 1.

Lemma 2.6. As k!1 we have
X

n�2
n,15

Hk(n) = O(⌘k), (2.8)

where

⌘ = 2
loglog16
log16 �

loglog15
log15 = 0.99995258...

Proof. Using (2.7) we write

X

n�2
n,15

Hk(n) =
X

n�2
n,15

logk+1n�1
logn�1 � 2

n
�
⇤

k



X

n�2
n,15

logk+1n� 1

(logn� 1)n�
⇤

k



X

n�2
n,15

logk+1n

(logn� 1)n�
⇤

k

 2
X

n�2
n,15

logk n

n
�
⇤

k

= 2
X

n�2
n,15

1

n
�
⇤

k
�k

loglogn
logn

 2
X

n�2
n,15

1

n
k

⇣ loglog15
log15 �

loglog16
log16

⌘ ,

where in the last step we used the lower bound (2.5) for �⇤
k
and the fact that, for n , 15,

loglogn
logn


loglog16
log16

.
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This means that

X

n�2
n,15

Hk(n) 
2

2k
⇣ loglog15

log15 �
loglog16
log16

⌘ +2
Z
1

2

dx

x
k

⇣ loglog15
log15 �

loglog16
log16

⌘

=
2

2k
⇣ loglog15

log15 �
loglog16
log16

⌘ +
2

2k
⇣ loglog15

log15 �
loglog16
log16

⌘
�1 ⇣

k

⇣ loglog15
log15 �

loglog16
log16

⌘
� 1

⌘

⌧

✓
2

loglog16
log16 �

loglog15
log15

◆k
⌧ ⌘

k
,

and the lemma is proven.

Proposition 2.7. The following asymptotic formula for �⇤
k
holds:

�
⇤

k
=
loglog15
log15

k +C +O(⌘k),

where

C =
loglog15� log(log15� 1)

log15

is a constant and ⌘ is as in the previous lemma.

Proof. Recall that we have

1 =
1X

n=2

Hk(n) =Hk(15) +
X

n�2
n,15

Hk(n).

So (2.8) gives us Hk(15) = 1+O(⌘k), that is

logk+1 15�1
log15�1 � 2

15�
⇤

k

= 1+O(⌘k),

which implies
logk+1 15

15�
⇤

k (log15� 1)
= 1+O(⌘k).

25



Taking logarithm of both sides we get

�
⇤

k
log15+ log(log15� 1)� (k +1)loglog15 = O(⌘k),

which implies

�
⇤

k
=
loglog15
log15

k +
loglog15� log(log15� 1)

log15
+O(⌘k),

and the proposition is proven.

We �nally combine Proposition 2.7 and Lemma 2.5 to get the statement of Theorem 2.1.

2.4 Inverse-type problem

For t > 1, let

F
⇤

k
(t) = ⇣(t) + ⇣

0(t) + · · ·+ (�1)k�1⇣(k)(t),

and recall that �⇤
k
is its unique zero. Notice that F⇤

k
(t) is increasing as a function of t. Moreover,

the sequence {�⇤
k
}k2N is increasing and as k!1, we have

�
⇤

k
= �k +O(⌘k),

where �k = L · k +C , with the constants C and L as in the statement of Theorem 2.2 and

⌘ = 2
loglog16
log16 �

loglog15
log15 = 0.99995258...

Furthermore, we assume that for large enough k, say k � k0,

|�
⇤

k
��k | < 1000 · ⌘k

. (2.9)
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In order to proceed to the proof of Theorem 2.2, we �rst prove some preliminary results.

Proposition 2.8. For � > 1, we have k(�) m if and only if �  �
⇤
m.

Proof. First, assume that k(�) = l  m. By de�nition, there exist constants c1, . . . , cl of absolute

value at most 1, with cl , 0, such that

⇣(�) +
lX

i=1

ci⇣
(i)(�) = 0.

Therefore,

F
⇤

l
(�⇤

l
) = 0 = ⇣(�) +

lX

i=1

ci⇣
(i)(�) � ⇣(�) +

lX

i=1

(�1)i�1⇣(i)(�) = F
⇤

l
(�),

and since F⇤
l
is increasing, we get

�  �
⇤

l
 �
⇤
m.

To prove the converse direction, assume that �  �
⇤
m. More speci�cally, there exists an integer

l  m, such that �⇤
l�1  �  �

⇤

l
. Let g�(✓) := F

⇤

l�1(�) + ✓(�1)l�1⇣(l)(�). Notice that g�(✓) is a

continuous function of ✓ and that

g�(0) = F
⇤

l�1(�) � F
⇤

l�1(�
⇤

l�1) = 0,

g�(1) = F
⇤

l
(�)  F

⇤

l
(�⇤

l
) = 0,

so we must have g�(✓) = 0, for some ✓ 2 [0,1]. In other words, there exists a linear combination

whose higher derivative is at most of order l that vanishes at �. Hence, k(�)  l m.

The following is an immediate corollary to the above proposition that makes clear the fact that

k(�) is a step function.

Corollary 2.9. For � > 1, we have k(�) =m if and only if �⇤
m�1 < �  �

⇤
m.
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Let us now prove our main theorem.

Proof of Theorem 2.2. (1) The set E :=
⇢
t > 1 : k(t) ,

⇠
t�C

L

⇡�
is measurable, since it consists

of points for which two step functions attain di�erent values. We will prove that E has �nite

Lebesgue measure, by showing that

µ

0
BBBBBB@
[

k>k0

E \ (�⇤
k�1,�

⇤

k
]

1
CCCCCCA <1.

Let ↵k = min{�k,�⇤k} and �k = max{�k,�⇤k}. Given � 2 (�⇤
k�1,�

⇤

k
], for k > k0, exactly one of the

following is true:

Case 1: If � 2 (�k�1,↵k], then �k�1 < �  �k, which implies k �1 <
��C

L
 k. This gives k(�) = k =

⇠
��C

L

⇡
and so � does not belong to E.

Case 2: If � 2
⇣
�
⇤

k�1,�k�1
i
, then the interval is not empty, so �

⇤

k�1 < �  �k�1. Moreover, � > �k�2

and we get k � 2 <
��C

L
 k � 1. In this case, � 2 E, since k(�) = k =

⇠
��C

L

⇡
+1.

Case 3: This case is similar to the previous one with the only di�erence being that for � 2
⇣
↵k,�

⇤

k

i
,

we have k(�) = k =
⇠
� �C

L

⇡
� 1.

In conclusion,

[

k>k0

E \ (�⇤
k�1,�

⇤

k
] =

[

k>k0

⇣
�
⇤

k�1,�k�1
i
[

⇣
↵k,�

⇤

k

i
,

and therefore,

µ

0
BBBBBB@
[

k>k0

E \ (�⇤
k�1,�

⇤

k
]

1
CCCCCCA = µ

0
BBBBBB@
[

k>k0

⇣
�
⇤

k�1,�k�1
i
[

⇣
↵k,�

⇤

k

i
1
CCCCCCA

=
X

k>k0

(�k�1 � �
⇤

k�1 + �
⇤

k
�↵k)
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X

k>k0

(|�k�1 � �⇤k�1|+ |�
⇤

k
��k |)



X

k>k0

2000 · ⌘k�1 = O(1),

where the bound (2.9) is used in the last inequality.

(2)We �rst show that the number L = loglog15
log15 is irrational. Suppose to the contrary that loglog15

log15

is rational, which would imply that 15
loglog15
log15 is a non-zero algebraic number. By the Lindemann-

Weierstrass Theorem (see for example [Bak75, Thm 1.4]), it would follow that e15
loglog15
log15 = 15

is transcendental, which leaves us with a contradiction. Now, by a theorem of Weyl [KN74,

Thm 2.4], the sequence
⇢
k �C

L

�1

k=1
is uniformly distributed modulo 1. Consequently, almost all

positive integers k will fall outside the exceptional set E.

Observe that large enough integers in the exceptional set should be “exponentially close” to one

of the �
⇤

k
’s. Finding approximate values of these numbers is numerically expensive for large

k because of the high order derivatives of ⇣. Therefore to show that a certain integer is non-

exceptional we check it being outside the 1000⌘k-neighborhoods of the �k ’s. We numerically

calculated these neighborhoods for the �rst 1,000,000 values of k and it turns out that all in-

tegers larger than 100,000 fall outside these intervals. In fact, only one integer after 30,000,

namely k = 32,810 is in the mentioned neighborhood. Currently we do not know if this is an

exceptional number, because our bound (2.9) is not the best possible.
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Chapter 3

Linear combinations of L-functions and
their derivatives

3.1 Introduction

Theorem 2.1 can be extended to a larger class of Dirichlet series. Consider the complex linear

combinations

Fk,G(s) = G(s) + c1G
0(s) + · · ·+ ckG

(k)(s), |c1|, . . . , |ck |  1, (3.1)

whereG(s) =
1P
n=1

an n
�s is absolutely convergent forRes > 1, and for any �xed ✏ > 0, its Dirichlet

coe�cients satisfy a1 = 1 and an⌧✏ n
✏ for all integers n.

Stating the more general theorem requires the following de�nition.

De�nition 3.1. The relevant number to the Dirichlet series G(s) =
1P
n=1

an n
�s, denoted simply by

n
⇤, is de�ned to be the unique integer n with an , 0, that maximizes the quantity loglogn

logn . Moreover,

denote by n
# the integer n with an , 0, that maximizes the quantity loglogn

logn for n , n⇤.

Remark. Note that n=2 will never be relevant as loglog2
log2 < 0 and an , 0 for some n , 2.

The proof of the following result is similar in spirit to that of Theorem 2.1 and is provided in the

next section.

Theorem 3.2. De�ne

�k,G = sup{Re⇢ > 1 : Fk,G(⇢) = 0 for some Fk,G as in (3.1)}.
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Then, as k!1,

�k,G =
loglogn⇤

logn⇤
k +

log |an⇤ |+ loglogn⇤ � log(logn⇤ � 1)
logn⇤

+OG(⌘k

G
), (3.2)

where n⇤ is the relevant number to the Dirichlet seriesG(s) =
1P
n=1

an n
�s, and ⌘G is a positive number

less than 1 that depends only on G.

Referring to Table 3.1 in Section 3.3, one can immediately see that, in the case of the Riemann-

zeta function, n⇤ = 15 and the asymptotic formula (3.2) becomes in fact (2.2). However, there are

Dirichlet series whose �fteenth coe�cient is zero and then the asymptotic formula for �k,G looks

slightly di�erent.

In Section 3.3, we restrict our attention to those Dirichlet series associated to a Dirichlet character

�. Themultiplicative properties of Dirichlet characters prevent some integers from being relevant

at all.

The following theorem describes the set of all relevant numbers to Dirichlet L-functions.

Theorem 3.3. The set of relevant numbers to Dirichlet L-functions consists of all primes p � 11

and the composite integers 15, 16, 21, 25, 27 and 49.

The remainder of the section is devoted to computing the frequency of each relevant num-

ber.

3.2 Proof of Theorem 3.2

The proof of Theorem 3.2 is similar in spirit to that of Theorem 2.1.

First, we choose the coe�cients cj = (�1)j�1
an⇤

|an⇤ |
, for 1  j  k, and write

F
⇤

k,G
(s) = 1�

1X

n=2

Hn(s), (3.3)
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where

Hn(s) =Hn,k,G(s) :=
an

ns

 
�1+

an⇤

|an⇤ |

logk+1n� logn
logn� 1

!
.

Our goal is to show that the function F
⇤

k,G
(s) has a zero �

⇤

k,G
which is exponentially close to

the number �k,G and satis�es the desired asymptotic formula. To this end, we do the following

things:

1. Show that the sum of the terms in (3.3) that correspond to n , n⇤ is exponentially small.

2. Prove that a zero �
⇤

k,G
exists and that its real part satis�es the asymptotic (3.2).

3. Bound the di�erence between �k,G and Re�⇤
k,G

.

3.2.1 Exponentially small tail

Let

s
⇤ = k

loglogn⇤

logn⇤
+
log |an⇤ |+ loglogn⇤ � log(logn⇤ � 1)

logn⇤
.

For Res � s
⇤
�R, where R can be anything that satis�es R = O(1), as k!1,

1X

n=3
n,n⇤

|Hn(s)| =
1X

n=3
n,n⇤

������
an

ns

 
�1+

an⇤

|an⇤ |

logk+1n� logn
logn� 1

!������



1X

n=3
n,n⇤

|an|

nRes

 
1+

logk+1n� logn
logn� 1

!

⌧✏

1X

n=3
n,n⇤

n
✏

ns
⇤�R

logk n

=
1X

n=3
n,n⇤

1

n
s⇤�R�✏�k

loglogn
logn



1X

n=3
n,n⇤

1

n
k

✓
loglogn⇤
logn⇤ �

loglogn#

logn#

◆
+ log |an⇤ |

logn⇤ �R

32



where we used the fact that loglogn
logn 

loglogn#

logn# , for n , n
⇤ and made the choice ✏ = ✏(G) =

loglogn⇤�log(logn⇤�1)
logn⇤ .

For large enough k, we have

k

 
loglogn⇤

logn⇤
�
loglogn#

logn#

!
+
log |an⇤ |
logn⇤

�R >
1
2
k

 
loglogn⇤

logn⇤
�
loglogn#

logn#

!
> 2,

and so

1X

n=3
n,n⇤

|Hn(s)|⌧G

Z
1

2

1

x

1
2k

✓
loglogn⇤
logn⇤ �

loglogn#

logn#

◆ dx

=
1

1
2k

✓
loglogn⇤
logn⇤ �

loglogn#
logn#

◆
� 1
·

2

2
1
2k

✓
loglogn⇤
logn⇤ �

loglogn#

logn#

◆

 4

0
BBBBBB@

1

2
1
2

✓
loglogn⇤
logn⇤ �

loglogn#

logn#

◆

1
CCCCCCA

k

(3.4)

Similarly, for n = 2, and large k,

|H2(s)|  �G

0
BBBBB@

1

2
1
2
loglogn⇤
logn⇤

1
CCCCCA

k

, (3.5)

where the constant �G depends only on the function G.

In conclusion,

1X

n=2
n,n⇤

|Hn(s)|⌧G

0
BBBBBB@

1

2
1
2

✓
loglogn⇤
logn⇤ �

loglogn#

logn#

◆

1
CCCCCCA

k

,

for all s with Res � s
⇤
�R.
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3.2.2 Existence of �⇤
k,G

We apply Rouché’s theorem with the second holomorphic function being 1�Hn⇤(s). It is easy to

check that the equation Hn⇤(s) = 1 has a complex zero s0, with

|s0 � s
⇤
| 

9
2

 
1

logn⇤

!k
=: r.

The region we are working with is a disk centered at s⇤ with radius R that will be determined

later.

It follows from (3.4) and (3.5) that for |s � s⇤|  R,

����F⇤k,G(s)� (1�Hn⇤(s))
���� 

1X

n=2
n,n⇤

|Hn(s)|

⌧G

0
BBBBBB@

1

2
1
2

✓
loglogn⇤
logn⇤ �

loglogn#

logn#

◆

1
CCCCCCA

k

.

On the other hand, for s on the boundary of the disk D(s⇤,R),

|1�Hn⇤(s)| = |1�Hn⇤(s0 � s0 + s)| = |1�ns0�s |

= |1� e(s0�s) logn
⇤

| �
|s0 � s| logn⇤

2
�
(R� r) logn⇤

2
.

Therefore, it is enough to choose R so that

0
BBBBBB@

1

2
1
2

✓
loglogn⇤
logn⇤ �

loglogn#

logn#

◆

1
CCCCCCA

k

⌧G

(R� r) logn⇤

2
,

or just,

R = CG

0
BBBBBB@

1

2
1
2

✓
loglogn⇤
logn⇤ �

loglogn#

logn#

◆

1
CCCCCCA

k

.
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With this choice of R, we conclude that F⇤
k,G

(s) has a zero �
⇤

k,G
that satis�es

|�
⇤

k,G
� s
⇤
| = OG(⌘k

G
),

and in particular

Re�⇤
k,G

= k
loglogn⇤

logn⇤
+
log |an⇤ |+ loglogn⇤ � log(logn⇤ � 1)

logn⇤
+OG(⌘k

G
). (3.6)

3.2.3 �k,G and Re�⇤
k,G

are exponentially close

By de�nition of �k,G, for all ✏ > 0 there exists a function

eFk,G(s) =
1X

n=2

�1+ c̃1 logn+ · · ·+ (�1)k+1c̃k log
k
n

n⇢

and a ⇢ 2 C so that eFk,G(⇢) = 0 and �k,G � ✏ < Re⇢  �k,G. Suppose that ~c = (c̃1, . . . , c̃k) is the

vector that corresponds to eF. Moreover, let � = Re⇢ � �⇤
k,G

. Without loss of generality, we can

assume that ✏ < �k,G � �
⇤

k,G
so that � > 0. Then,

1 = 1�eFk,G(⇢) 
1X

n=2

|an|

nRe⇢

⇣
1+ logn+ · · ·+ logk n

⌘

=
|an⇤ |

(n⇤)Re⇢
⇣
1+ logn⇤ + · · ·+ logk n⇤

⌘
+OG(⌘k

G
)

=
|an⇤ |

(n⇤)Re⇢
logk+1n⇤ � 1
logn⇤ � 1

+OG(⌘k

G
)

 2
|an⇤ |

(n⇤)Re⇢
logk n⇤ +OG(⌘k

G
),
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since Re⇢ > �
⇤

k,G
= s
⇤ +OG(⌘k

G
).

On the other hand,

1 =
���Hn⇤(�⇤k,G)

���+OG(⌘k

G
) �

|an⇤ |

(n⇤)Re�
⇤

k,G

⇣
logn⇤ + · · ·+ logk n⇤ � 1

⌘
+OG(⌘k

G
)

�
|an⇤ |

(n⇤)Re�
⇤

k,G

logk n⇤ +OG(⌘k

G
).

We put together the above inequalities

|an⇤ |

(n⇤)Re�
⇤

k,G

logk n⇤ +OG(⌘k

G
)  1  2

|an⇤ |

(n⇤)Re⇢
logk n⇤ +OG(⌘k

G
),

and get
logk n⇤

(n⇤)�
⇤

k,G

✓
1�

2
n�

◆
 OG(⌘k

G
).

Now, since
(n⇤)�

⇤

k,G

logk n⇤
= (n⇤)�

⇤

k,G
�k

loglogn⇤
logn⇤ = (n⇤)OG(1) = OG(1),

we have
1
2�
� 1+OG(⌘k

G
),

and we get that � = OG(⌘k

G
).

3.3 Relevant numbers

In this section, we work with the Dirichlet L-function

L(s,�) =
1X

n=1

�(n)
ns

, Res > 1,

associated to a Dirichlet character � modulo q.
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For a vector ~c = (c1, c2, . . . , ck) 2 Ck with k~c k1 1, de�ne

F�(s) = L(s,�) + c1L
0(s,�) + · · ·+ ckL

(k)(s,�). (3.7)

For each �xed Dirichlet character �, denote by �k,� the supremum of real parts of all zeros of

all combinations as in (3.7). Theorem 3.2 gives the asymptotic formula for �k,� when k is large

enough, where the relevant number n⇤ is determined by the unique integer n with �(n) , 0,

which maximizes loglogn
logn . In other words, the relevant number is the �rst number n in Table 3.1

below, for which �(n) , 0.

n
loglogn
logn n

loglogn
logn n

loglogn
logn n

loglogn
logn

15 0.367877... 21 0.365687... 28 0.361213... 45 0.351161...

16 0.367808... 22 0.36509...
... · · · 46 0.350649...

14 0.367715... 11 0.364733... 32 0.358632...
... · · ·

17 0.367573... 23 0.364468... 9 0.358268... 65 0.342318...
13 0.367235... 24 0.363829... 33 0.358004... 7 0.342117...

18 0.367214... 25 0.363180...
... · · · 66 0.341942...

19 0.366765... 26 0.362526... 43 0.352212... 67 0.341571...

12 0.366306... 10 0.362216... 8 0.352065...
... · · ·

20 0.366251... 27 0.361869... 44 0.351682...

Table 3.1: List of values of loglogn
logn in decreasing order.

We begin by proving Theorem 3.3.

Proof of Theorem 3.3. First observe that the relevant number to an L-function depends only on the

modulus of the corresponding character. We separately check which multiples of small primes

can be relevant. One can immediately notice that the only even relevant number is 16. Indeed, if a

number 2m is relevant to some character �, then �(2m) , 0 implying �(2) , 0, hence �(16) , 0.

However, 16 appears earlier in Table 3.1 than any other even number, so 16must be the relevant

number to �. The existence of characters whose relevant number is 16 is clear when one takes a

character of modulus q with (q,2) = 1 and (q,15) , 1. Next, any odd multiple of 3 being relevant
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means �(3) , 0, hence �(27) , 0. Since any odd multiple of 3 other than 15 and 21 appear

in Table 3.1 later than 27, the only possible relevant numbers divisible by 3 are 15,21 and 27.

Again, all three can appear as relevant numbers if one chooses the modulus q appropriately: 15

is relevant to any character modulo q with (q,15) = 1; 21 is relevant to those characters modulo

q with (q,21) = 1 and m|q where m = 2,5,13,17,19; 27 is relevant to those with (q,3) = 1 and

m|q, where m = 2,5,7,11,13,17,19,23. The reader can similarly verify that the only relevant

numbers that are a multiple of 5 are 25 and 15, those that are a multiple of 7 are 21 and 49, and

all the primes p � 11.

To understand how often an integer n appears as a relevant number to some Dirichlet L-function

we introduce the following notation. First, write R(�) := R(q) for the relevant number corre-

sponding to the character � modulo q. Next, we de�ne

h(r,x) =

P
qx

P
� (mod q)
R(�)=n

1

P
qx

P
� (mod q)

1
=

P
qx

R(�)=n

�(q)

P
qx

�(q)
. (3.8)

and set h(n) := lim
x!1

h(n,x). The number h(n) represents the probability of n being relevant.

In the limit, as x!1, the denominator has the asymptotic formula (see for instance [HW54],

Theorem 330, p. 268)
X

qx

�(q) =
3
⇡2x

2 +O(x logx). (3.9)

The following two lemmas will provide us with an asymptotic formula for the numerator.

Lemma 3.4. For any �xed square-free integer D, and any x � 2,

X

qx

(q,D)=1

�(q) =
3
⇡2x

2
Y

p|D

p prime

p

p +1
+OD(x logx).
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Proof. Using the fact that �(q) = q
P
d |q

µ(d)
d

and changing the order of summation as necessary,

we �nd that

X

qx

(q,D)=1

�(q) =
X

qx

(q,D)=1

q

X

d |q

µ(d)
d

=
X

1dx

µ(d)
d

X

qx

d |q

(q,D)=1

q

=
X

1dx

µ(d)
d

X

qx

d |q

q

X

d̃ |D

d̃ |q

µ(d̃)

=
X

d̃ |D

µ(d̃)
X

1dx

µ(d)
d

X

qx

d |q, d̃ |q

q. (3.10)

Moreover, it is easy to see that

X

qx

d |q, d̃ |q

q =
x
2

2 · [d, d̃]
+O(x). (3.11)

Therefore, using (3.11) in (3.10), we have

X

qx

(q,D)=1

�(q) =
x
2

2

X

d̃ |D

µ(d̃)
X

1dx

µ(d)
d · [d, d̃]

+O

0
BBBBBBB@
x ·

X

d̃ |D

X

1dx

1
d

1
CCCCCCCA

=
x
2

2

X

d̃ |D

µ(d̃)
X

1dx

µ(d) · (d, d̃)
d2 · d̃

+OD (x logx)

=
x
2

2

X

d̃ |D

µ(d̃)
d̃

X

d�1

µ(d) · (d, d̃)
d2

+O

0
BBBBBBB@
x
2
·

X

d̃ |D

X

d�x

1
d2

1
CCCCCCCA
+OD (x logx)

= CD · x
2 +OD(x logx),
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where

CD =
1
2

X

d̃ |D

µ(d̃)
d̃

X

d�1

µ(d) · (d, d̃)
d2

=
1
2

X

d�1

µ(d)
d2

X

d̃ |D

µ(d̃) · (d, d̃)
d̃

.

Let

AD,d :=
X

d̃ |D

µ(d̃) · (d, d̃)
d̃

,

and suppose that the square-free integers D and d have the prime factorizations D = p1 · · ·pk ·

q1 · · ·ql and d = p1 · · ·pk ·r1 · · ·rt , where p1, . . . ,pk , q1, . . . , ql , r1, . . . , rt are all distinct primes. Then,

AD,d =
X

a|p1···pk
b|q1···ql

µ(ab) · (d,ab)
ab

=
X

a|p1···pk
b|q1···ql

µ(a)µ(b)
b

=
X

a|p1···pk

µ(a)
X

b|q1···ql

µ(b)
b

.

It is clear that AD,d = 0 when p1 · · ·pk > 1, or in other words, when (D,d) > 1. On the other

hand, if (D,d) = 1, then

AD,d =
X

b|q1···ql

µ(b)
b

=
�(q1 · · ·ql)
q1 · · ·ql

=
�(D)
D

,

and so

CD =
�(D)
2D

1
2

X

d�1

µ(d)
d2

=
�(D)
2D

Y

p-D
p prime

 
1�

1
p2

!

=
1

2⇣(2)
�(D)
D

Y

p|D

p prime

 
1�

1
p2

!�1
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=
3
⇡2

Y

p|D

p prime

 
1�

1
p

! 
1�

1
p2

!�1

=
3
⇡2

Y

p|D

p prime

p

p +1
.

The next lemma follows from the previous one by induction.

Lemma 3.5. For any square-free integers d and D, with (D,d) = 1, and any x � 2,

X

qx

(q,D)=1
d |q

�(q) =
3
⇡2x

2
Y

p|D

p prime

p

p +1

Y

r |d

r prime

1
q +1

+OD,d(x logx). (3.12)

Proof. We proceed by induction on the number of prime divisors of d . For d = 1 the formula

reduces to Lemma 3.4. Assume that the inductive hypothesis is true when d hasm prime divisors.

In that case,

X

qx

(q,D)=1
r1···rm+1|q

�(q) =
X

qx

(q,D)=1
r1···rm |q

�(q)�
X

qx

(q,D)=1
(q,rm+1)=1
r1···rm |q

�(q)

=
3
⇡2x

2
Y

p|D

p prime

p

p +1

mY

i=1

1
ri +1

�

�
3
⇡2x

2 rm+1
rm+1 + 1

Y

p|D

p prime

p

p +1

mY

i=1

1
ri +1

+OD,d(x logx)

=
3
⇡2x

2
Y

p|D

p prime

p

p +1

mY

i=1

1
ri +1

 
1�

rm+1
rm+1 + 1

!
+OD,d(x logx)

41



=
3
⇡2x

2
Y

p|D

p prime

p

p +1

m+1Y

i=1

1
ri +1

+OD,d(x logx),

and the proof is complete.

We now have all the necessary tools to prove the following theorem, which gives the frequency

for each relevant number.

Theorem 3.6. For all primes p � 53,

h(p) =
p

p +1

Y

r prime
r<p

1
r +1

.

The values of h(n) for the other relevant numbers n are given in Table 3.2 below.

Proof. Let dp be the product of all the primes less than p. One can easily check that for primes

p � 53, the condition R(�) = p is equivalent to (p,q) = 1 and dp |q, where q is the modulus of �.

By Lemma 3.5,

X

qx

R(�)=p

�(q) =
X

qx

dp |q

(p,q)=1

�(q) =
3
⇡2x

2 p

p +1

Y

r prime
r<p

1
r +1

+Op,dp
(x logx).

Taking the limit as x!1 in (3.8) we get the desired result for p � 53.

To �nd h(n) for the remaining relevant numbers, one should apply (3.12) with appropriateD and

d . For example, 15 is the relevant number to a character modulo q if and only if (q,15) = 1, so we

use (3.12) with D = 15. Taking the limit in (3.8) we get h(15) =
3

3+1
·

5
5+1

=
5
8
. Similarly, 13

is relevant to any character modulo q with (q,13) = 1, and (q,15) , 1, (q,2) , 1 and (q,17) , 1.
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In this case, D = 13 and d = 2 · 15 · 17 and the numerator of (3.8) becomes

X

qx

R(�)=13

�(q) =
X

qx

(q,13)=1,
2·15·17|q

�(q) =
X

qx

(q,13)=1
2·17|q

�(q)�
X

qx

(q,13·3·5)=1
2·17|q

�(q)

=
3
⇡2x

213
14
·
1
3
·
1
18
�

3
⇡2x

213
14
·
3
4
·
5
6
·
1
3
·
1
18

+O(x logx)

=
3
⇡2x

2
·

13
2016

+O(x logx),

and therefore h(13) =
13

2016
.

The veri�cation of the remainder of Table 3.2 is straightforward, and sowe skip the computations.

n h(n) n h(n) n h(n)
11 187

11612160 21 1
138240 37 37

3812504371200
13 13

2016 23 391
278691840 41 41

160125183590400
15 5

8 25 1
20901888 43 43

7045508077977600
16 1

4 27 1
278691840 47 47

338184387742924800
17 17

144 29 29
3135283200 49 1

386496443134771200
19 19

40320 31 31
100329062400

Table 3.2: List of values of h(n) for relevant n < 53.

Remark. It can be checked that the sum of values of h(n) from the table along with the sum of h(p)

for p � 53 is indeed 1.
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Chapter 4

Monotonicity properties of
L-functions

4.1 Introduction

A number of interesting results on the horizontal monotonicity of various Dirichlet series, for in-

stance, for the Riemann zeta function and related L-functions, have been known, some of which

can be attributed to Spira [Spi65b], Saidak and Zvengrowski [SZ03], Matiyasevich, Saidak and

Zvengrowski [MSZ14], Zhang [Zha14], and the references therein. Concerning horizontal mono-

tonicity along the real line, Alzer [AB02] proved the monotonicity properties of a function re-

lated to the Riemann zeta function given by
 
1�

1
⇣(s)

!1/(s�a)
.A �ner property than monotonicity

is that of being completely monotonic and logarithmically completely monotonic. A function

f : (0,1)! R is said to be completely monotonic (CM for short) if it has derivatives of all or-

ders and satis�es (�1)nf (n)(x) � 0 for all x > 0,n = 0,1,2, . . . . The notion of a logarithmically

completely monotonic function was �rst used by Attanassov and Tsoukrovski [AT88] in their

investigation of properties of completely monotonic functions. A function f : (0,1)! (0,1) is

logarithmically completely monotonic (LCM for short), if (log f (x))(k) exists for k � 1 and

(�1)k[log f (x)](k) � 0,

for all x > 0 and k � 1. Attanassov and Tsoukrovski also showed that the class of LCM functions

are contained in the class of CM functions. Considerable work has been done by various authors

in providing new classes of CM and LCM functions and proving properties of these functions, see

for example [QGC06], [Che07], [QG09], [CE15], and the references therein. Most of the classes
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of functions studied above involve Euler’s gamma function, digamma, polygamma or certain

combinations of gamma function. When it comes to other classes of functions, a good example

is the Riemann zeta function, whose LCM property follows by simply looking at the Dirichlet

series of its logarithmic derivative. For the Dirichlet L-functions, it was proved in [DRZ14] that

the Dirichlet L-functions associated to real primitive characters are not LCM. One is naturally

interested in examining LCM properties for other Dirichlet series not restricted to Dirichlet L-

functions or ⇣(s). The purpose here is to expand the class of Dirichlet series whose LCM property

is known. We describe a large class of Dirichlet series that are not LCM, including the Dirichlet

L-functions, the derivatives of the Riemann zeta function, and the Ramanujan-tau L-function

among others. This class is de�ned as follows:

LetA be the class of those real Dirichlet series G(s) =
1P
n=1

an/n
s, which satisfy the following four

properties:

1. G(s) has �nite abscissa of convergence �↵ .

2. G(�) > 0 for � > �↵ .

3. G(s) has a meromorphic continuation to the whole complex plane with �nitely many

poles �1,�2, . . . ,�m of orders µ1,µ2, . . . ,µm, respectively, and the function (s � �1)µ1 . . . (s �

�m)µmG(s) is entire of order 1.

4. If we de�ne E = {real zeros}[ {poles} and µ = max{Rez : z 2 E}, then G(s) has a complex

zero ⇢ with Re⇢ > µ.

We have the following theorem whose proof is the content of Section 4.2.

Theorem 4.1. For any real Dirichlet series G(s) =
1P
n=1

an/n
s in the class A, there exists a real �

such that G(s) is not logarithmically completely monotonic in any subinterval of [�,1).

Section 4.3 is devoted to examples of functions in A with two notable examples being ⇣
0(s) and

the L-function associated to the Ramanujan-tau function.

In the same spirit of studying signs of derivatives of logarithms of Dirichlet series, we are tempted
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to know, for a �xed k, the sign changes of the kth derivative of the logarithm of a Dirichlet series

at any two distinct points. In Section 4.4, we investigate this question for the Ramanujan-tau

L-function and the answer to which yields another formulation of the Riemann Hypothesis for

this L-function. The Ramanujan-tau function ⌧(n) is de�ned as the coe�cient of xn in the power

series expansion of the product x
1Y

n=1

(1� xn)24. That is,

1X

n=1

⌧(n)xn = x

1Y

n=1

(1� xn)24.

Mordell proved that ⌧ is a multiplicative function and that

⌧(pr+1) = ⌧(p)⌧(p)r � p11⌧(pr�1),

where p is a prime and r a positive integer. We consider the Dirichlet series associated to ⌧

L�(s) =
1X

n=1

⌧(n)
ns

,

which is absolutely convergent for � = Re(s) > 13/2, but we will instead work with the normal-

ized or shifted L-function given by

L(s) =
1X

n=1

⌧(n)
ns+11/2

,

for � > 1. L(s) is entire and satis�es a functional equation given by

(2⇡)�s�
✓
s +

11
2

◆
L(s) = (2⇡)s�1�

✓13
2
� s

◆
L(1� s),

fromwhich one �nds that the trivial zeros of L(s) are at the poles of �
⇣
s + 11

2

⌘
, i.e. the half integers

�m � 11/2, m � 0. All the non-trivial zeros lie in the critical strip 0 < � < 1 and the Riemann

Hypothesis for L(s) asserts that they lie on the critical line � = 1/2. For any k � 1, denote by
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F
(k)(s) the k-th derivative of log(L(s)). De�ne a function

G : [1/2,1)! B, (4.1)

where the set B consists of functions f : N! {�1,0,1} with the equivalence relation f ⇠ g , if

f (n) = g(n) for all n large enough. For every s 2 [1/2,1), G(s) 2 B where G(s) :N! {�1,0,1}

de�ned by G(s)(k) := sgn(F (k)(s)). Using this function, we have the following formulation of the

Riemann hypothesis for L(s).

Theorem 4.2. Let ⇢0 = 1
2 + i�0 be the non-trivial non-real zero of L(s) with the least imaginary

part �0. Then the Riemann Hypothesis is true for L(s) if and only if G is injective in the interval

(�
2
0

12 �
5
2 ,1).

4.2 Proof of Theorem 5.1

We begin this section by introducing some notation necessary to prove an auxiliary result. Unless

otherwise mentioned, here and in what follows s will denote a real variable. For s > µ, denote by

l(s), the distance between s and the set of zeros of G, that is,

l(s) := min{|s � ⇢| : G(⇢) = 0},

and also de�ne

� := inf{c > µ : s > c) |s �µ| > l(s)}.

Let ⇢0 = �0 + i�0 be a zero of G(s) such that �0 = min{Im⇢ : G(⇢) = 0, Re⇢ > µ}. For s >
1
2

✓
µ+ �0 +

�0
2

�0�µ

◆
, we have

(s �µ)2 > (s � �0)2 +�0
2
� (l(s))2 ,
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and therefore �  1
2

✓
µ+ �0 +

�0
2

�0�µ

◆
. Moreover, notice that for s > � the minimum l(s) must be

attained at a zero ⇢ of G to the right of the line Res = µ.

Lemma 4.3. Assume that the Dirichlet series G(s) =
1P
n=1

an/n
s, where the coe�cients an are real, is

in A. Then for any �xed t >max{�,�↵}, where � is as above and �↵ is the abscissa of convergence

of G(s), there exist an ✏ > 0, a unique zero ⇢1,t of G with Re(⇢1,t) > µ, and a zero ⇢2,t such that for

all s 2 (t, t + ✏), we have

|s � ⇢1,t | < |s � ⇢2,t |  |s � ⇢|,

for all zeros ⇢ , ⇢1,t ,⇢1,t .

Proof. Fix t >max{�,�↵}, and let ⇢1,t be the zero ofGwithmaximum real part among those zeros

for which the minimum l(t) is attained. Take any s
⇤
> t and denote by R(t, s⇤) the closed region

that lies inside the circle centered at s⇤ with radius |s⇤ �⇢1,t |, outside the circle centered at t with

radius l(t), and above the real line (see shaded region in Figure 4.1). The perpendicular bisector

of the line segment joining ⇢1,t and any other zero ⇢ in R(t, s⇤), crosses the x-axis between t and

s
⇤. The collection of all such points of intersection with the x-axis is a �nite set, and therefore

there exists a �1 > 0 for which the interval (t, t + �1) is free of such crossings. We claim that for

any s 2 (t, t + �1), the minimum distance from s to a zero of G is attained uniquely at ⇢1,t . On

the contrary, suppose that there is an s in the above-mentioned interval and a zero ⇢s of G such

that |s � ⇢s | < |s � ⇢1,t |. It follows that ⇢s is in R(t, s⇤) and that the perpendicular bisector of the

line segment joining ⇢s and ⇢1,t divides the plane into two half-planes leaving s and ⇢s on one

side, and t and ⇢1,t on the other. In other words, the perpendicular bisector crosses the real axis

between s and t, contradicting the fact that the interval (t, t + �1) doesn’t include such points.

Next, we consider ⇢2,t to be the zero of G with maximum real part among those zeros for which

the minimum l̃(t) := min{|t � ⇢| : G(⇢) = 0, ⇢ , ⇢1,t} is attained. Repeating the above argument

where we replace l(t) by l̃(t) and ⇢1,t by ⇢2,t , produces a �2 > 0 with the following property: for

any s 2 (t, t+�2), the minimum distance from s to a zero ofG other than ⇢1,t is attained uniquely

at ⇢2,t .

48



t s⇤

⇢1,t ⇢

Figure 4.1: Region R(t, s⇤) for typical t.

Taking ✏ =min{�1,�2} completes the proof.

ByHadamard’s theory of integral functions, the entire function of order one, g(s) = (s��1)µ1 · · · (s�

�m)µmG(s), can be written as

g(s) = s
l
e
(As+B)

Y

⇢

 
1�

s

⇢

!
e

s

⇢ , (4.2)

where A and B are constants, l � 0 is possibly the order of s = 0 as a zero and the product is over

the nonzero roots of G(s). Taking the logarithmic derivative of (4.2) gives

F
0(s) =

G
0(s)

G(s)
= A+

l

s
+

mX

i=1

�µi

s � �i

+
X

⇢

 
1

s � ⇢
+
1
⇢

!
. (4.3)

Di�erentiating the above expression an additional k � 1 times, yields the following representa-

tion

F
(k)(s) = (�1)k�1(k � 1)!

0
BBBB@
l

sk
�

mX

i=1

µi

(s � �i)k
+

X

⇢

1
(s � ⇢)k

1
CCCCA.

We now proceed to the proof of Theorem 5.1 where the above representation is used to prove
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in�nitely many sign changes of F(k)(s).

Proof of Theorem 5.1. Suppose I is a �xed subinterval of [�,1) and let t be an interior point of I .

If ✏, ⇢1,t and ⇢2,t are as in Lemma 4.3, then for any s 2 [a,b] ⇢ I \ (t, t + ✏), we have

F
(k)(s) = (�1)k�1(k � 1)!

0
BBBB@

1
(s � ⇢t1)k

+
1

(s � ⇢t1)k
+

l

sk
�

�

mX

i=1

µi

(s � �i)k
+

X

⇢

⇢,⇢t1,⇢
t

1

1
(s � ⇢)k

1
CCCCA.

If we let s � ⇢1,t = rse
i✓s , then the above becomes

F
(k)(s) =

(�1)k�1(k � 1)!
r
k
s

0
BBBB@2cos(k✓s) + l

✓
rs

s

◆k
�

�

mX

i=1

µi

 
rs

s � �i

!k
+

X

⇢

⇢,⇢1,t ,⇢1,t

 
rs

s � ⇢

!k 1CCCCA. (4.4)

It is not hard to see that

�������

mX

i=1

µi

 
rs

s � �i

!k �������


mX

i=1

|µi |

������
s � ⇢

t

1
s � �i

������

k



0
BBBBB@

mX

i=1

|µi |

1
CCCCCA ·L

k

and ������l
✓
rs

s

◆k ������ = l ·

������
s � ⇢

t

1
s

������

k

 l ·M
k
,

where L := sup
1im

sup
s2[a,b]

����
s�⇢1,t
s��i

���� < 1 andM := sup
s2[a,b]

��� s�⇢1,t
s

��� < 1. Note that when s = 0 is not a zero

of g(s), we have l = 0, and the last estimate becomes redundant.
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Moreover,

�����������

X

⇢

⇢,⇢1,t ,⇢1,t

 
rs

s � ⇢

!k
�����������



X

⇢

⇢,⇢1,t ,⇢1,t

�����
s � ⇢1,t

s � ⇢

�����
k

= |s � ⇢1,t |
2

X

⇢

⇢,⇢1,t ,⇢1,t

1
|s � ⇢|2

�����
s � ⇢1,t

s � ⇢

�����
k�2

 |d � ⇢1,t |
2
�����
s � ⇢1,t

s � ⇢2,t

�����
k�2 X

⇢

⇢,⇢1,t ,⇢1,t

1
|c � ⇢|2

 Ca,b,G ·K
k�2

,

where K := sup
s2[a,b]

����
s�⇢1,t
s�⇢2,t

���� < 1 and the constant Ca,b,G depends only on a, b and G.

The above estimates turn (4.4) into

F
(k)(s) =

(�1)k�1(k � 1)!
r
k
s

✓
2cos(k✓s) +Oa,b,G(⌘k)

◆
, (4.5)

with ⌘ = ⌘a,b,G := max{K,L,M} < 1.

For s 2 [a,b]we have that ✓s is between ✓a and ✓b, and since for all large enough k, |k✓b�k✓a| is

at least 2⇡, cos(k✓s) attains all the values in the interval [�1,1]. Also, for large k, the error term

in (4.5) is negligible. Therefore, for all large k, F(k)(s) changes sign in [a,b] implying that G(s) is

not LCM in these intervals.

4.3 Examples of functions in class A

Let s = � + it. Recall,

⇣
0(s) = �

X

n�2

logn
ns

; � > 1.

By analytic continuation, ⇣0(s) can be extended to the whole complex plane with an exception

of a pole of order two at s = 1. Moreover from [LM74b], for n � 2, there is exactly one trivial
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zero of ⇣0(s) in the interval (�2n,�2n + 2) and there are no other zeros for Re(s)  0. Some of

the non-trivial zeros of ⇣0(s) have been computed numerically, see Figure 1 in [DnFF+10], and

one �nds the existence of imaginary zeros of ⇣0(s)with real part strictly greater than 1. All these

properties together imply that ⇣0(s) is inA. This critical implication combined with Theorem 5.1

also presents us with an important and �rst example of an arithmetic function whose associated

Dirichlet series is CM, but not LCM.

The Dirichlet L-functions satisfy the �rst three conditions to belong toA. Moreover, it is proved

in [CS02] that there exist in�nitelymany (at least 20% in a suitable sense) of all primitive quadratic

Dirichlet characters whose Dirichlet L-functions do not vanish on the line segment [0,1]. And

since these have in�nitely many zeros on the critical line � = 1/2, it follows that these functions

also satisfy condition (4) of the de�nition of the class A.

In the context of more general L-functions, in practice, if a concrete L-function is given, one can

�rst checkwhether or not this L-function has any real zeros (or poles, if it is the case) in the critical

strip. If it does not, then the given L-function will satisfy condition (4), since all L-functions have

in�nitely many nontrivial zeros inside their critical strip. This is for example the case with the

L-function associated to the Ramanujan tau function. Conjecturally, all self-dual modular form

L-functions which do not vanish at the central point should similarly satisfy property (4). On

GRH, if an L-function has a zero at the central point, then it is not in A. But if it has no zero at

the central point, then it is (at least on GRH) in A. Recently, the notion of super-positivity has

been introduced into the theory of L-functions by Yun and Zhang [YZ17]. An automorphic self

dual L-function has the super-positivity property if all derivatives of the completed L-function at

the central point s = 1/2 are nonnegative and all derivatives at a real point s > 1/2 are positive.

Goldfeld and Huang [GH16], [GH18] have shown that at least 12% of L-functions associated to

Hecke basis cusp forms of weight 2 and large prime level q have the super-positivity property.

They also proved that at least 49% of such L-functions have no real zeros for Res > 0, except

possibly at s = 1/2. As a consequence of their results, for each of these more than 49% of such L-
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functions, whether condition (4) holds true or fails is completely determined by the value at s = 1

and by the Riemann Hypothesis being true or false for that particular L-function. To be precise,

if the L-function in question vanishes at s = 1/2 then the L-function satis�es (4) if and only if

RH fails for the given L-function; if the L-function does not vanish at s = 1/2, then condition (4)

is satis�ed regardless of whether or not RH holds for that L-function.

4.4 Monotonicity of Ramanujan tau L-function

In the case of the L-function associated to the Ramanujan tau function L(s), one can explicitly �nd

an interval in which L(s) is not logarithmically completely monotonic. Such an interval can be

obtained since the location of the zeros of L(s) is well-known ([Spi73]). Although we know that

L(s) is not LCM in certain intervals, it is not known if L(s) is CM or not and we pose this question

to the interested reader. The non-trivial zero with the smallest imaginary part lies on the critical

line � = 1
2 and has imaginary part �0 ⇡ 9.222. From the discussion at the beginning of Section

4.2, and since µ = �112 , we conclude that L(s) is not logarithmically completely monotonic in

(�⌧ ,1), where �⌧ =
�
2
0

12 �
5
2 .

We �rst state and prove a coloring lemma which will help us prove Theorem 5.2.

Lemma 4.4 (Coloring Lemma). Let ↵,�,� be real numbers such that 0 < ↵ <
1
4 , 0 < � <

1
4 ,

0 < � <min{↵2 ,
�

2 ,
1
4 �↵,

1
4 � �} 

1
12 . Color the real line with three colors such that for any x 2 R,

x is green if {x} 2 [0, 14 ��)\ (
3
4 +�,1), x is yellow if {x} 2 [14 ��,

1
4 +�)\ [34 ��,

3
4 +�], and �nally

x is red if {x} 2 (14 + �,
3
4 � �). If the sets

{k 2N : k↵ is green and k� is red} and {k 2N : k↵ is red and k� is green}

are �nite then ↵ = �.

Proof. This scheme of coloring yields the following relations between the colors of pairs of real
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numbers.

1. There are no integers m 2Z such that both m↵, (m+1)↵ are yellow.

2. If n 2Z is such that n↵ is green then at least one of (n+1)↵ or (n� 1)↵ is green.

3. If n 2Z is such that n↵ is red then at least one of (n+1)↵ or (n� 1)↵ is red.

4. If n 2Z is such that n↵ is yellow then either (n+1)↵ is red and (n�1)↵ is green or (n+1)↵

is green and (n� 1)↵ is red.

The above statements remain valid if we replace ↵ by �.

Let k⇤ be an integer that is strictly larger than any element of the two �nite sets provided in the

statement of the lemma. For any k � k
⇤, if k↵ is green then k� is either green or yellow, and if k↵

is red then k� is either red or yellow. Now, �x m0 > k
⇤, such that m0↵ is green. Since m0 > k

⇤,

the color of m0� is either green or yellow. If m0� is green, then set k0 := m0. If m0� is yellow,

then by statement (4) above, one of (m0 � 1)� and (m0 + 1)� is green and the other is red, and

for simplicity, let us assume that (m0 +1)� is green and (m0 �1)� is red. Meanwhile, since m0↵

is green, statement (2) implies that at least one of (m0 + 1)↵ or (m0 � 1)↵ is green. However,

m0 � 1 � k
⇤ and (m0 � 1)� is red, so (m0 � 1)↵ cannot be green. Therefore (m0 + 1)↵ is green,

and in this case, we set k0 :=m0 + 1.

By a similar argument, if (m0 �1)� is green, one can deduce that (m0 �1)↵ is also green and we

set k0 :=m0 � 1. In any case, k0 denotes an integer for which both k0↵ and k0� are green.

Denote by I0 the green interval that contains k0↵, and by J0 the green interval that contains

k0�. These intervals will each be of the form
⇣
r �

1
4 + �, r + 1

4 � �
⌘
for some r 2 Z. Next, de-

note the green intervals following I0 by I1, I2, . . . , Im, . . ., and the green intervals following J0 by

J1, J2, . . . , Jm, . . ..

Claim 4.5. For any integer j � 0, there exists an integer Kj � k0 such that Kj↵ 2 Ij and Kj� 2 Jj .

Proof of Claim. We prove this by induction on j . For j = 0, we take K0 = k0. Assume the state-
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ment holds for j = l , i.e. there exists an integer Kl � k0, such that Kl↵ 2 Il and Kl� 2 Jl . Let m1

be the smallest integer m for which (Kl +m)↵ 2 Il+1 and (Kl +m+ 1)↵ 2 Il+1. The existence of

such an integer follows from the observation that the interval Il+1 has length at least 2↵. On the

other hand, neither (Kl +m)�, nor (Kl +m + 1)� are red, because Kl +m > k0. Moreover, they

cannot both be yellow, since (Kl +m + 1)� � (Kl +m)� = � and 2� < � <
1
4 + � 

1
2 � 2�, and

the intervals colored with yellow have length 2� and are at distance at least 1
2 � 2� from each

other. We choose Kl+1 = Kl +m, if (Kl +m)� is green, otherwise we take Kl+1 = Kl +m+1. This

completes the proof of the claim.

Therefore, for any j � 0,

Kj↵ 2 Ij =
✓
rI + j �

1
4
+ �, rI + j +

1
4
+ �

◆
,

and

Kj� 2 Ij =
✓
rJ + j �

1
4
+ �, rJ + j +

1
4
+ �

◆
.

Hence, for j large enough, Kj↵ = j +O(1) and Kj� = j +O(1). This implies that Kj

j
= 1

↵
+O(1

j
),

and Kj

j
= 1

�
+O(1

j
). Taking j!1, yields ↵ = �.

Let us �rst prove the necessary implication in Theorem 5.2. Assume L(s) satis�es the Riemann

Hypothesis. We show that the function G from (4.1), is injective in the interval (c,1).

In order to show this, we show that for any c < s1 < s2, there are in�nitely many integers k such

that sgn
⇣
F

(k)(s1)
⌘
, sgn

⇣
F

(k)(s2)
⌘
. We now prove part (1) of Theorem 5.2.

Proof of Part (1) of Theorem 5.2. Under the Riemann hypothesis for L(s), for all s > �⌧ , the mini-

mum l(s) is attained at the non-trivial zero ⇢0 = 1
2 + i�0. Fix s1, s2 > �⌧ , with s2 > s1. Following

the proof of Theorem 5.1, for all s 2 [s1, s2], we have

F
(k)(s) =

(�1)k�1(k � 1)!
|s � ⇢0|

k

⇣
2cos(k✓s) +Os1,s2,L(⌘

k)
⌘
,
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with ⌘ = sup
s2[s1,s2]

����
s�⇢0
s�⇢1

���� < 1, where ⇢2 is the second zero of L(s) on the critical line.

If ✓s1 and ✓s2 are the arguments of s1 � ⇢0 and s2 � ⇢0 respectively, then 0 < ✓s2 < ✓s1 <
⇡

2 .

Let ↵ =
✓s1
2⇡ , � =

✓s2
2⇡ and 0 < � < �/2 = min{↵/2,�/2,1 � ↵/4,1 � �/4}. This choice of ↵, �

and � satis�es the requirements of the Coloring Lemma, except that ↵ , �. Therefore, there are

in�nitely many integers k such that k↵ =
k✓s1
2⇡ is green and k� =

k✓s2
2⇡ is red (or there are in�nitely

many integers k for which k↵ is red and k� is green, but one can similarly reach the same results).

This implies that in�nitely many
⇢
k✓s1
2⇡

�
lie in

⇣
0, 14 � �

⌘
[

⇣
3
4 + �,1

⌘
and in�nitely many

⇢
k✓s2
2⇡

�
lie

in the interval
⇣
1
4 + �,

3
4 � �

⌘
. Therefore, we get in�nitely many k 2N for which sgn(cos(k✓s1)) ,

sgn(cos(k✓s2)), and sgn(F (k)(s1)) = sgn(cos(k✓s1)) and sgn(F (k)(s2)) = sgn(cos(k✓s2)).

Next we prove part (2) of Theorem 5.2. We show that if the Riemann hypothesis for L(s) fails

then G is not injective in the interval [c,1).

Proof of Part (2) of Theorem 5.2. Assume for the moment that there is only one zero ⇢1 of L(s)

lying above y = �0 and to the right of the critical line. Denote by s0 and s1, the points of in-

tersection of the x-axis with the lines perpendicular to the line segment joining ⇢0 and ⇢1 that

pass through ⇢0 and ⇢1, respectively. Note that s1 > s0 > �⌧ and if we let s0 � ⇢0 = r0e
i✓ and

s1 � ⇢1 = r1e
i✓ , then l(s0) = r0 and l(s1) = r1. By Lemma 4.3, we can �nd an ✏ > 0, such that

for all s 2 (s0, s0 + ✏), the minimum distance l(s) is attained at ⇢0, and for all s 2 (s1, s1 + ✏), the

minimum distance l(s) is attained at ⇢1. Using the fact that the sequence {n
p
m}withm any �xed

positive integer greater than 1, is dense, one can �nd integers ↵ and �, such that

✓

2⇡
< ↵ + �

p
m <min

 
arg(s0 + ✏ � ⇢0)

2⇡
,
arg(s1 + ✏ � ⇢1)

2⇡

!
.

Therefore, there exist s0 2 (s0, s0 +✏) and s00 2 (s1, s1 +✏) for which s
0
�⇢0 = l(s0)ei2⇡(↵+�

p
m) and

s
00
� ⇢0 = l(s00)ei2⇡(↵+�

p
m). Following the proof of Theorem 5.1, we have

F
(k)(s0) = (�1)k�1(k � 1)!

0
BBBB@

2

l(s0)k
cos(2⇡k(↵ + �

p
m)) + S(s0)

1
CCCCA ,
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and

F
(k)(s00) = (�1)k�1(k � 1)!

0
BBBB@

2

l(s00)k
cos(2⇡k(↵ + �

p
m)) + S(s00)

1
CCCCA ,

where |S(s0)|, |S(s00)| < C̃ · ⌘̃
k , with the constants C̃ and ⌘̃ depending only on s

0
, s
00 and L.

Using arguments similar to those in [DRZ14], one can show that there exists a positive constant

C↵,� , such that for k large enough and any integer r , |4k(↵ + �
p
m) + r | >

C↵,�

k
. Now for l such

that either |4k(↵ + �
p
m) + 1+ 4l | < 1 or |4k(↵ + �

p
m)� 1+4l | < 1, we can write,

|cos(2⇡k(a+ b
p
m))| = |sin(2⇡k(a+ b

p
m)) +⇡/2)|

= |sin(
⇡

2
(4k(a+ b

p
m)± 1+4l))|

� |4k(a+ b
p
m)± 1+4l |

>
C↵,�

k
> C̃ · ⌘̃

k
,

for all large k. This implies that for distinct points s0 and s00,F (k)(s00) and F (k)(s00) have the same

sign for all large enough k and so G is not injective on [�⌧ ,1).

Recall that so far we worked with the assumption that ⇢1 is the only zero to the right of the

critical line. If there are more such zeros, we choose ⇢1 to be the one with the smallest imaginary

part among the zeros with the property that the line joining ⇢0 and ⇢1 has slope smaller than or

equal to that of the line joining ⇢0 and any other ⇢ to the right of the critical line.
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Chapter 5

Walks to in�nity

5.1 Introduction

In hiswell known book on unsolved problems in number theory ([Guy04]), RichardGuymentions

the following problem: is it possible to walk to in�nity stepping only on Gaussian primes and

taking steps of bounded length? The problem proved to be exceedingly di�cult, and very little

is known at present. Taking the di�culty of this problem into account, it may be worth studying

the following related question, which in theory should be easier. Suppose that besides Gaussian

primes we collect in a subset P of the complex plane all the primes of all rings of integers of all

imaginary quadratic �elds. Then ask a similar question to the one above: is it possible to walk to

in�nity stepping only on points in P by taking steps of bounded lentgh?

This problem has both an algebraic �avor and an analytic �avor. In connection with the algebraic

aspect, one knows that there are only nine imaginary quadratic number �elds with class number

1. For all the other imaginary quadratic number �elds the corresponding ring of integers is not

factorial. One has unique factorization in prime ideals, not in prime elements of the ring of

integers. Therefore, by choosing a prime in such a ring, we mean choosing a prime ideal. But

then such an ideal will not correspond to a point in the complex plane, unless the ideal is a

principal ideal. In that case, the ideal will be generated by an element in the ring of integers, and

that element will then be an acceptable element of P . Thus, in order to create a walk stepping

only on points from P , one needs at each step to �nd a suitable imaginary quadratic number

�eld, and in its ring of integers �nd a suitable prime ideal which is principal, and generated by
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an element that lies in a prescribed neighborhood where one intends to step in.

In connection with the analytic aspect, the problem is surprisingly connected to some famous and

notoriously di�cult unsolved problems. The connection is as follows. On one hand, the norm

of a prime ideal in a quadratic number �eld is either a prime number or the square of a prime

number. The squares of primes form a sequence that is much more sparse than the sequence

of primes. Therefore, if one is to succeed to construct a walk on P with the desired properties,

one would very likely need to use the sequence of primes rather than squares of primes. On

the other hand, the norm of a prime ideal which in addition is principal can also be obtained

by computing the norm of its generator. Since this generator belongs to an imaginary quadratic

number �eld, its norm also equals the square of the distance from this generator to the origin. In

conclusion, each element of P lies on a circle around the origin at distance a prime number or the

square root of a prime number. Now, if there are large gaps between two consecutive such circles,

then of course there is no way to jump from points in P which belong to one of these circles to

points in P which belong to the second circle. Thus, if the sequence of gaps between consecutive

circles is unbounded, then the above problem will have a negative answer. This, however is not

what one expects. In fact, a well known conjecture in number theory states that between any

two consecutive squares of integer numbers there exists at least one prime number. This is not

known in general, not even assuming the powerful Riemann Hypothesis. If we do assume this

conjecture about squares and primes, then, taking square roots, we deduce that between any two

consecutive positive integer numbers there exists at least one square root of a prime. In other

words, at least one of the above circles of radius square root of a prime passes between those two

consecutive integers. In this scenario the distance between any two consecutive circles is less

than 2. This means that one can jump from one circle to the next by using steps of length less

than 2, but it does not mean that one can use a step of length less than 2 to jump from a point

on the �rst circle which belongs to P to a point on the second circle which also belongs to P .

Here we remark that there are only �nitely many points in P which belong to a given circle. This

follows from the fact that for each imaginary quadratic number �eld, an integral basis involves
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square root of the discriminant, and if the discriminant is large enough the ring of integers will

not produce any new points in P on the given circle.

One direction would be to study the distribution of those points from P which belong to the same

circle, the goal being to estimate the size of the arcs which join such points along the given circle,

and see if the arcs are small enough to allow jumping from one point in P to the next point in P

along the circle. A second part of this project would be to study more general walks on the same

set P as above, where the length of the steps is not forced to be bounded throughout the walk.

In this more general context, a natural choice would be to consider walks where the length of

the steps is allowed to increase logarithmically as a function of the distance to the origin. The

choice of a logarithmic increase is reasonable for at least two di�erent reasons. One reason is that

in such scenario the problem cannot be solved by only using walks along the real axis, in other

words by only using walks on prime numbers, in view of the occasional larger than logarithmic

gaps between consecutive primes. Therefore, for walks using steps of logarithmic size, walks on

rational primes are not su�cient and one needs to make use of intrinsic properties of primes in

rings of algebraic integers of imaginary quadratic number �elds. A second reason for choosing

steps of logarithmic size is that in this context one does not need to assume the conjecture on

the existence of prime numbers between consecutive squares. Instead, in order to control the

distance between consecutive circles of radii square root of primes one may assume the Riemann

Hypothesis, a hypothesis which is frequently assumed by researchers in analytic number theory.

Under the same hypothesis, an additional part of the project would be to establish whether there

exist walks as above which also have the property that the trajectory passes through almost all

the points in the given set P .
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5.2 Main results

5.2.1 Existence of a path to in�nity

Let C denote the collection of all imaginary quadratic number �elds, that is

C =
n
Q[
p

�d] : d > 0 and d squarefree
o
, and letOK represent the ring of integers of the imaginary

quadratic number �eld K . De�ne the set of “stepping stones” as P = {↵ : ↵ 2 OK for some K 2

C and h↵i is prime}. Note that if ↵ = a+ b

p

�d 2 P , then |↵| must be a prime or the square root

of a prime, and that a and b will be integers of half-integers, depending on d .

In the following theorems, condition 1 says that the zn’s form a walk in our set P of primes

in quadratic imaginary number �elds, condition 2 means that these are “walks to in�nity”, and

conditions 3 and 3’ show that there are such walks for which the length |zn+1� zn| of the steps is

not too large in terms of |zn|.

Theorem 5.1. There exists a sequence (zn)n2N of complex numbers satisfying the following prop-

erties:

1. zn 2 P for all n 2N,

2. |zn|!1 as n!1, and

3. |zn+1 � zn| < |zn|1/20 for all n large enough.

Proof. Let zn =
p
�pn, where pn is the n-th prime number in Z. For each �xed n, the ideal hzni

is prime in the ring of integers of Q[
p
�pn ]. We use the unconditional upper bound on the n-th

prime gap obtained in [BHP01] and valid for large n, to get

pn+1 < pn + p
21/40
n < (

p
pn)2 + 2

p
pnp

1/40
n < (

p
pn + p

1/40
n )2.

The third property follows immediately since for such n

|zn+1 � zn| =
p
pn+1 �

p
pn < p

1/40
n = |zn|1/20.
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The next theoremprovides a pathwith steps of logarithmic size, but is conditional on the Riemann

Hypothesis.

Theorem 5.2. Assume the Riemann Hypothesis. Then there exists a sequence (zn)n2N of complex

numbers satisfying the following properties:

1. zn 2 P for all n 2N,

2. |zn|!1 as n!1, and

3’. |zn+1 � zn| < 22
25 log |zn| for all n large enough.

Proof. Using the same sequence of zn as in Theorem 5.1, and a conditional upper bound on the

gaps between primes [CMS], we get

pn+1 < pn +
22
25
p
pn logpn < (

p
pn +

11
25

logpn)2,

and so,

|zn+1 � zn| <
p
pn+1 �

p
pn <

11
25

logpn =
22
25

log |zn|.

Remark. If one walks along the real axis, that is, if one walks on prime numbers, one can simply

take zn = pn, the n-th prime number. But then using known bounds on gaps between consecutive

primes pn+1 � pn = O((pn)0.525) due to Baker, Harman and Pintz ([BHP01]), one obtains a much

worse result than in the statement of Theorem 5.1.

5.2.2 Ideals with prime norm

Theorem 5.1 provides a way to move from one circle with radius the square root of a prime p

to the circle with radius the square root of the next prime with steps of size that do not exceed
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p
1/40

. We now focus on elements in P that lie on a single such circle.

For a �xed prime p and any integer 0  a <
p
p, one can always �nd b and squarefree d > 0, such

that p � a2 = b
2
d or |a+ b

p

�d |
2 = p. In that case, the ideal generated by ↵ in Q[

p

�d] is prime

and therefore ↵ 2 P .

Let ↵ = a+ b

p

�d and ↵
0 = a+1+ b

0
p

�d 0 be two elements of P such that |↵| = |↵0 | = pp.

The square of the gap between ↵ and ↵
0 is given by

|↵ �↵
0
|
2 = 1+

⇣
b

p

d � b
0
p

d 0
⌘2

= 1+
✓q

p � a2 �

q
p � (a+1)2

◆2
=

since p = a
2+b2d = (a+1)2+(b0)2d 0 which gives b

p

d =
p
p � a2 and b0

p

d 0 =
p
p � (a+1)2.

The following inequality

2a+1

2
p
p � a2



q
p � a2 �

q
p � (a+1)2 =

2a+1
p
p � a2 +

p
p � (a+1)2


2a+1
p
p � a2

leads to

1+
(2a+1)2

4(p � a2)
 |↵ �↵

0
|
2
 1+

(2a+1)2

(p � a2)
.

If a  (1� ✏)
p
p, then a

2
 (1� ✏)2p, so p � a

2
� (1� (1� ✏)2)p = (2✏ � ✏2)p.

This gives the bound

|↵ �↵
0
|
2
 1+

(2a+1)2

(p � a2)
 1+

9a2

(2✏ � ✏2)p
 1+

9(1� ✏)2

2✏ � ✏2
= 1+

9
2

✓ 1
2✏ � ✏2

� 1
◆
.

Choosing ✏ = p
�1/40 gives

|↵ �↵
0
|
2
⌧ p

1/40
.
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This means that on the circle with radius pp, all elements z = a+ b

p

�d that belong to P can be

accessed with a step of size p1/40, except possibly those with (1� p�1/40)
p
p  a 

p
p.

5.2.3 A path that covers almost all elements of P

Let Px = P \D(0;x), where D(0;x) is the disk centered at the origin with radius x, and let Ex(s)

denote the set of those elements in Px that cannot be accessed using steps of size s.

We will show that we can cover almost all elements of P with walks of step size |z|1/20, in the

sense that

lim
x!1

Ex

⇣
|z|

1/20
⌘

Px

= 0.

For each prime p  x, the set Px contains all z = a + b

p

�d , with a,b 2 Z and 0  a  p that lie

on a circle of radius a prime or the square root of a prime, and so

|Px| �

X

px

p prime

p +
X

px
2

p prime

p
p

�

X

x/2px
p prime

p +
X

x
2
/4px2
p prime

p
p

�
x

2
(⇡(x)�⇡(x/2)) +

x

2

⇣
⇡(x2)�⇡(x2/4)

⌘
�

x
3

logx
. (5.1)

For an upper bound on the number of elements of Ex, we count all the elements with integer

x-coordinate that lie on a circle of radius a prime number, as well as those points discussed in the

previous subsection, and we have
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|Ex|  2 ·
X

px

p prime

(2p +1) + 4 ·
X

px
2

p prime

p
1
2�

1
40

⌧ x ·⇡(x) + x
1� 1

20 ·⇡(x2)

⌧
x
3� 1

20

logx
. (5.2)

When we combine (5.1) and (5.2) we get that

lim
x!1

Ex

⇣
|z|

1/20
⌘

Px

= 0.
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