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ABSTRACT 

As phosphorus removal and recovery has become the new standard of wastewater treatment new 

technologies have quickly been implemented to meet the task. The Ostara Pearl is a crystallizer 

technology well known in the field of struvite precipitation for plants equipped with enhanced 

biological phosphorus removal (EBPR). By feeding anaerobically digested EBPR sludge to the 

Pearl and dosing Mg, struvite precipitation is induced for high rates of P removal. However, one 

downfall of crystallizers is the generation of poorly characterized fine particulate matter during 

normal operation, which leave the reactor and disrupt EBPR efficacy. The main objective of this 

work was to characterize the dissolution of field grown struvite from an Ostara Pearl reactor. 

Dissolution rate constants between 0.94 and 2.61 mm/min were found for field grown struvite 

using the shrinking object model – a surface area dependent empirical kinetics-based dissolution 

model.  Enhanced solubility of some field recovered struvite relative to reference struvite was also 

observed in short-term experiments leading to a need a deeper characterization of those samples. 

Long-term dissolution experiments, used to characterize the dissolution of any co-precipitants, 

found little Ca, Fe, and K content in field grown struvite. XRD and FTIR were used to identify 

any physical and chemical differences in field grown struvite samples which exhibited increased 

solubility compared to a reference struvite sample. Dittmarite (MgNH4PO4*H2O) and another 

unknown crystalline solid were found to potentially lead to enhanced solubility. The importance 

of characterizing plant specific struvite was noted when instances of enhanced solubility were seen 

in samples which exhibit distinct FTIR bands when comparing surface to internal spectra. 
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CHAPTER 1: INTRODUCTION 

Managing phosphorus (P) within the Food-Energy-Water (FEW) network is essential for securing 

P fertilizers necessary for meeting projected food demands and preventing excess P leaching into 

waterways from agricultural runoff [1], [2] and municipal water resource recovery facilities 

(WRRF) effluent [3]. While sources of phosphate rock in the world are projected to grow and 

should easily meet the projected 45 Mt P 2020/2021 global fertilizer demand in the near term [4], 

uncertainties in future supply continue to exist due to 75% of the world’s current P reserves being 

held by Morocco alone [5]. The emergence of eutrophication events related to excess nutrient 

runoff are well documented both in the U.S. [6]–[8] and around the world [9], [10]. In freshwater 

cases, P plays a key role in controlling eutrophication by promoting quick cycles of plant growth 

and decay [11] which favors the growth of simple organisms such as algae and phytoplankton over 

higher order macro-organisms [12]. The eventual decay of eutrophication induced algal blooms 

results in hypoxic conditions that disrupt established natural ecosystems.  

     

To combat eutrophication, P recovery in the U.S. has been driven by state and national level 

regulation through the Clean Water Act (CWA) enforced by the U.S. EPA or authorized state 

bodies. The CWA requires all point source polluters that discharge into “a water of the U.S.” to 

carry a National Pollutant Discharge Elimination System (NPDES) permit. This has led to an 

increased focus on the effluent of WRRFs across the country as clear point source polluters. Of 

the 4,420 “major” (1 ≥ MGD) water treatment plants in the U.S. in 2016, only 24% have any 

numeric P effluent limits through their NPDES permits [13]. However, by 2021, 26 states and 5 

U.S. territories are expected to implement quantitative total N and total P water quality standards 

that are used to facilitate the NPDES permitting process [14].     
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Enhanced biological phosphorus removal (EBPR) has become the preeminent method of 

biological P removal used to meet the P effluent limits set in NPDES permits. EBPR processes 

rely on uptake of P by phosphorus-accumulating organisms (PAO) to reduce effluent P 

concentrations down to ~0.1-0.2 mg/L [15]. EBPR processes are composed of a two-stage 

anaerobic/aerobic chain followed by a clarifier during typical operation. In the anaerobic stage, P 

rich influent is mixed with activated sludge. In this stage, PAOs present in the activated sludge 

convert short chained carboxylic acids to polyhydroxyalkanoates while simultaneously 

hydrolyzing poly-P for energy [16]. Hydrolysis of poly-P results in the release of orthophosphate, 

further enriching the nutrient content of the wastewater. Following this stage, aerobic conditions 

allow for the growth of the PAOs and simultaneous uptake of orthophosphate to replenish poly-P 

hydrolyzed in the previous stage [16]. In the subsequent clarification stage, a P lean effluent is 

ready for additional treatments or discharge. The solids recovered are sent to the anaerobic stage 

to continue the EBPR cycle or are treated with anaerobic digestion, sludge thickening, or 

dewatering. In these cases, anaerobic conditions are possible leading to poly-P hydrolysis and 

conversion to orthophosphate by PAOs. Secondly, anaerobic digestion can lead to the production 

of ammonium as an end product of organic N (protein, urea) hydrolysis [17]. Once digestion has 

occurred and significant P and NH4
+ are present in solution, precipitation of calcium phosphates 

and magnesium ammonium phosphates is possible even without addition of Ca and Mg [18].  

 

To control the precipitation process and use it as a secondary method of P recovery, various 

precipitation reactors have been utilized as a sidestream process [19]–[21] treating supernatant 

resulting from EBPR sludge digestion and centrifugation. In recent history a large focus of P 
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recovery at the WRRF has been on struvite (MgNH4PO4*6H2O). Struvite crystallization has the 

potential to both reduce P recycling to mainline treatment and produce a P-rich fertilizer with the 

potential to reduce runoff. With the introduction of the Pearl rector in 2005, Ostara has become a 

leader in the P precipitation field with 22 installations worldwide since 2005 [22]. These reactors 

operate by dosing anaerobic digester supernatant rich with ammonium and orthophosphate from 

EBPR systems with magnesium in a pH-controlled environment to induce precipitation. The 

reactor is fed as an up-flow system and acts as a moving bed reactor. The catalyst particles in this 

reactor are large struvite “seeds”  (4.5 mm - 350 μm ) which provide thermodynamically favorable 

growth and nucleation sites for further struvite precipitation. As the seeds flow upwards through 

the reactor, the cross-sectional area of the rector increases in stages leading to three separate 

sedimentation zones. As particles increase in size due to crystal growth, they reside lower in the 

reactor where eventually they are collected at the bottom as Crystal Green [23] – a predominantly 

struvite based fertilizer.             

 

One challenge faced by the widespread introduction of struvite recovery technologies such as the 

Ostara Pearl is the loss and dissolution of P rich fines in mainline treatment after washout from 

crystallizer reactors [24]. Historically, the dissolution of struvite has been largely ignored because 

of its low solubility (pKsp = 13.26) [25] and a predominate focus on formation for recovery. 

However, recent reports of low crystallization yield and disruption of EBPR  have elucidated the 

importance of monitoring fines production and loss [24], [26]. While P removal is typically 

satisfactory (~80%),  yield as crystal green in Ostara Pearl reactors can sometimes drop to as low 

as 20% of the total influent P [24]. Models used for struvite crystallization, described in this work 

later, do not account for the generation of fines. Without this critical element of the well-
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documented phenomena, accurate optimization of these reactors is not possible when the impact 

of fines loss and dissolution is not considered.    

 

A recent sensitivity analysis of an EBPR plant-wide model showed dissolution rate was a dominant 

factor in determining plant effluent P, especially in cases of low solids retention in the 

crystallization reactor [27]. However, this study did not account for particle size or surface area to 

determine dissolution rate. Instead, it relied on a simplified version of the general precipitation 

framework developed by Mbamba et al. [28] that only considers the degree of supersaturation in 

solution and total crystal mass in the system.  

 

A lack of agreement exists in the literature on the base assumptions necessary to correctly model 

dissolution. Since the introduction of a strictly thermodynamics based model [29] for precipitation, 

many studies have built upon this framework for use in plantwide modelling [28], [30]–[32]. 

However, these studies simply assume precipitation and dissolution occur through the same 

mechanisms yielding no difference in dissolution/precipitation rate constants at equal super/under-

saturations often disregarding particle size and surface area. For large particles that will easily 

settle in clarifiers, dissolution will not likely lead to significant changes in the concentration of 

inorganic P. However, for fines washed out from a crystallizer in the colloidal range (< 1 µm), the 

surface area to volume ratio is much higher and can lead to quick dissolution. One dissolution 

model which shows the link between dissolution and surface area is the Shrinking Object (SO) 

model [33]. The SO model was derived using classical chemical kinetics assumptions that focus 

on observations rather than assumed mechanisms. In this study, the SO model is used rather than 
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a thermodynamics-based approach to determine the dissolution rate of field grown struvite to 

account for deviations from pure struvite dissolution.         

 

Despite the availability of this model and other commonly accepted dissolution models, limited 

data is available on the dissolution rate constant, k, of struvite. Understanding struvite dissolution 

kinetics will allow kinetics-based plantwide models to more accurately predict the impact of fines 

loss on overall plant performance. The purpose then of this study is to fully characterize the 

dissolution rate of field recovered struvite for future modelling and WRRF design. In this 

investigation, there are three main objectives: 1) Determine the dissolution rate of field grown 

struvite, pure struvite, and pure hydroxyapatite at WWRF relevant temperatures; 2) Confirm the 

influence of particle size on dissolution rate predicted by the SO model by fitting time-series 

dissolution data to the linearized shrinking object model, and 3) Elucidate differences between 

dissolution behavior of various solids (field grown vs pure reference) tested. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Why Recover Phosphorus? 

In the U.S. and Europe, P recovery is increasingly becoming a requirement at the WRRF [34], 

[35]. In a traditional wastewater treatment plant design with activated sludge up to 30% P removal 

occurs naturally as biomass grows and is wasted as sludge [35]. This however is not likely to even 

reach the most lenient European standard of 2 mg/L for typical wastewater streams which can be 

as dilute as 10 mg P/L [36]–[39] or if treating industrial and agricultural waste concentrations in 

the hundreds of mg/L P are common [40], [41]. Two common methods exist for the removal of P 

from wastewater: 1) biological P removal [36] and 2) chemical P removal [42]. Biological P 

removal relies on the uptake of P as part of the regular metabolic activity of biomass. The P rich 

sludge formed can then be wasted or treated further. Chemical P removal is based on either iron 

or alum dosing. Both types of chemical P removal proceed through forming a metal-phosphate 

precipitant and then incorporate into larger metal hydroxide flocs. A chemical sludge is formed 

that can be separated and wasted. In most cases a combination of both is used to reach effluent P 

< 0.5 mg P/L [43]–[46].         

 

2.2 New P removal and Recovery Strategies 

As limits on WRRF effluent P concentration become more stringent (2 mg/L or below) [34], new 

technologies are emerging to enhance or replace the common P removal already in place with new 

goals of recovery rather than removal.   

 

  



7 

 

2.2.1 Ostara Pearl 

The Ostara Pearl reactor is a continuous struvite crystallizer operated as an upflow moving bed 

reactor. The Pearl is specifically designed to remove P as a solid from highly concentrated (in 

terms of P and N) anaerobic digester centrate resulting from the digestion of EBPR sludge. By 

dosing the influent with magnesium and base (NaOH), struvite is supersaturated and precipitation 

is induced. The Pearl is initially seeded with struvite seed particles with diameters ~1 mm to allow 

for crystal growth and limiting primary nucleation. The reactor is shaped in a three-tier fashion 

with increasing cross-sectional area along the height of the reactor. This three-tier design allows 

for three flow regimes to develop and allows for collection of the largest particles at the bottom, 

suspension of growing particles in the middle section, and ideally retention of fines at the top [47], 

[48]. The resulting struvite product is marketed as a slow-release fertilizer named Crystal Green 

[23]. 

      

The first Pearl went into operation in 2009 at the Durham Advanced Wastewater Treatment Plant 

in Tigard, Oregon [48]. This reactor boasted 75% P recovery as struvite that was then sold as 

fertilizer, reduced alum costs related to previous chemical P removal, and reduced alum sludge 

handling. However, upsets do occur and the generation of fines in Pearl reactors has been reported. 

At the Nansemond Wastewater Treatment Plant between 10% and 85% TP removal was reported 

over the course of 9 months with low TP removal attributed to fines loss during what was 

considered the startup phase [47]. Another case of high removal (70-80% PO4-P) was shown at 

the F. Wayne Hill Water Resource Center, but fines loss was initially reported leading to lower 

fertilizer production than expected for the amount of P removed [49]. As recently as 2015, the 

Madison Metropolitan Sewerage District reported ~30% TP removal during normal operation but 
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saw an upset after operational modifications and dosing of ferric chloride in a thickening unit. 

During the upset feed and effluent TP were nearly identical (~ 0% TP removal) with a low fraction 

of soluble P indicating a huge loss of fine particles [50].         

 

Efforts to reduce the fines loss seen at the Madison plant were recently demonstrated and focused 

on reducing the size of the seed particles used and reducing the size of harvested product [24]. By 

reducing the size of the seeds, more surface area per mass loading is present. Yields were increased 

from ~30% to ~70% TP removal. While promising, for plants as large as Madison (42 MGD), 

~30% TP recycling is not ideal as it likely will lead to an increased need for VFA dosing and an 

increase in sludge production. To fully elucidate the implications fines may have on the future of 

crystallizers like the Ostara Pearl and the impact they have on overall plant performance, a 

thorough understanding of the thermodynamic driving force behind crystallization and its 

associated physical phenomenon is necessary.       

 

2.2.2 WASSTRIP  

The Waste Activated Sludge Stripping To Remove Internal Phosphorus (WASSTRIP) process was 

developed at by Clean Water Services to reduce the likelihood of nuisance struvite precipitation 

in anaerobic digesters fed with EBPR sludge [48] and to increase P mass diversion to struvite 

crystallizers. In pilot studies, WASSTRIP operated as a VFA dosing tank for EBPR sludge that 

would jump start the release of ortho P by PAOs [51]. Since no digestion occurs in WASSTRIP 

the resulting centrate is low in ammonia and does not cause precipitation of struvite. This 

supernatant can then be directly sent to a struvite crystallizer to remove as crystal green rather than 

as part of the anaerobic digester sludge. Plantwide modelling studies have been recently reported 
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for integration of WASSTRIP at plants with the Ostara Pearl to understand the downstream 

benefits of the technology and optimization [52], [53]. A 2016 study found a pre-thickening 

procedure led to increased VFA production and ultimately more P release. Similar to the Ostara 

Pearl, a limited understanding of the technology at hand, hurried along by the need to remove P 

more efficiently has led to a need for modeling to fully grasp the plantwide benefits of the 

technology.    

 

 2.2.3 AirPrex 

Another competing struvite precipitation technology is AirPrex by CNP [54]. Unlike the 

technologies discussed earlier, AirPrex increases solution pH by stripping CO2 from digestate with 

air rather than adding base. Magnesium is dosed to promote struvite formation. This reactor is 

designed to operate between a digester and a sludge treatment technology (dewatering, thickening, 

etc.) such that the resulting struvite and organics rich slurry requires washing with a sand washer 

to be of product quality [55]. At the Metro Wastewater Reclamation District in Denver, Colorado, 

pilot studies [56] of an AirPrex reactor showed a reduction in dewatering polymer by up to 20% 

and up to 10% less solids hauling as a benefit of the technology. Similar to other crystallizer 

technologies discussed conversion of orthophosphate was high with up to 90% conversion, but the 

production of fines and entrapment of crystals within the biosolids lead to only 20% P recovery. 

The pilot study suggested the remaining balance of converted P remained in the biosolids but 

increases in reactor effluent TP indicate the production of fines that were not well characterized. 

The inclusion of a high organics loading in the streams fed to AirPrex increases the complexity of 

crystallization as favorable nucleation sites are ubiquitous. This technology again emphasizes the 

need to understand crystallization processes to fully optimize design.            
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2.3 Solubility: A Thermodynamics Perspective 

Precipitation reactors are driven by a difference in the energy state of free ions in solution and their 

respective counterparts as a solid. The simplest measure of how far or close a solution is to 

equilibrium is saturation. Saturation is a measure of the ionic content of a solution and is related 

to the commonly known term solubility. A derivation of saturation for a general dissolution 

reaction is given here. First, we define a general dissolution reaction, 

   

 𝑀𝑋 ↔  𝑀+ +  𝑋− (1) 

   

Solubility is defined by the free energy change observed during the dissolution of a solid at 

standard solution conditions and expressed as an equilibrium constant. This constant known as the 

solubility product, Ksp, follows the Arrhenius form shown in equation (2) with a unity prefactor.   

   

 𝐾𝑠𝑝 = exp (
−∆𝐺°

𝑅𝑇
) (2) 

   

In real systems, most solutions are not at equilibrium. Instead they are defined by the ionic activity 

product (IAP), a measure of how many ions are dissolved in solution. The IAP is mineral specific, 

such that separate IAP’s must be calculated for each mineral that may potentially form.    

   

 𝐼𝐴𝑃 = {𝑀+}{𝑋−} (3) 
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Determining whether a solution is in a state where precipitation is thermodynamically favorable 

relies on the difference between the magnitudes of the IAP and Ksp. Three cases are possible 1) 

undersaturation (IAP < Ksp), 2) equilibrium (IAP = Ksp), and 3) supersaturation (IAP > Ksp). A 

common definition used to compare the degree of saturation between different solutions or 

minerals is the saturation index (SI). 

   

 𝑆𝐼 = log (
𝐼𝐴𝑃

𝐾𝑠𝑝
)

1/𝑧

 (4) 

   

Here z indicates the number of component ions in the mineral in question. A solution is 

supersaturated when SI > 1, at equilibrium when SI = 0, and undersaturated when SI < 0. This 

definition is most useful to compare different minerals when z1 ≠ z2.       

 

Supersaturation of a solution is necessary but insufficient to determine if precipitation will occur 

within relevant time scales in a system. Crystal nucleation and growth kinetics both have 

dependence on SI (as Csat) detailed further in sections 2.7 and 2.99. Given the dependence on SI, 

P recovery technologies relying on precipitation must have foresight into the potential minerals to 

be recovered as well as their respective Ksp.   

 

2.4 Minerals Relevant to P Recovery 

P recovery through precipitation has long relied on a small set of minerals which can generally be 

categorized either as magnesium ammonium phosphates (MAP), calcium phosphates (CaP), or 

other phosphate containing minerals (MP). Various minerals may be oversaturated in a single 

waste stream, but typically will fit the profile of a MAP, CaP, or MP rich stream dependent on the 
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cations present. In most systems a salt with the preferred metal ion is added to ensure the correct 

product is recovered. Though CaP and MP have gained interest recently in P recovery literature, 

most research is on MAP recovery.  

 

Struvite (MgNH4PO4⋅6H2O), k-struvite (KMgPO4⋅6H2O) dittmarite (MgNH4PO4⋅8H2O), 

newberyite (Mg(PO3OH)⋅3H2O), and the trimagnesium phosphates bobierrite (Mg3(PO4)2⋅8H2O) 

and cattitte (Mg3(PO4)2⋅22H2O) have all been observed in solutions containing sufficient 

magnesium, ammonium, and phosphate ions [57], [58]. However, within the pH range of most 

waste streams (6-9), trimagnesium phosphates have never been noted to precipitate [59]. Similarly, 

precipitation of newberyite occurs below pH 6 and would not be relevant to P recovery [30]. 

Struvite which has been documented between neutral to high pH [58] and its potassium isomorph 

are the only relevant MAPs.  

 

Unlike MAP, which forms a succinct set of minerals at wastewater relevant conditions, calcium 

phosphates (CaP) include a larger family of potentially formed phases. These phases include 

amorphous calcium phosphate (ACP – Ca3(PO4)2), dicalcium phosphate dihydrate (DCPD – 

CaHPO4⋅2H2O), octacalcium phosphate (OCP - Ca8H2(PO4)6∙5H2O), and hydroxyapatite (HAP - 

Ca10(PO4)6(OH)2). In most wastewaters including those with substantial Mg2+, HAP is the most 

thermodynamically stable phase due to its low solubility. However, spontaneous growth of HAP 

without a precursor phase has not been shown outside of organic frameworks with pore sizes small 

enough to promote direct HAP growth [60]. This is due to the complex crystal structure of 

hydroxyapatite yielding large nucleation barriers and corresponding sluggish nucleation kinetics 
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compared to simpler phases such as ACP, the generally accepted master precursor phase to all 

other calcium phosphates including OCP, DCPD, and HAP [61].   

 

Though there is much disagreement on the true unit cell of ACP [62]–[64], what is clear is that 

prenucleation clusters (PNC), which are loosely ordered complexes of calcium and phosphate ions, 

go through some degree of transformation from free ions to the higher ordered aggregates known 

as ACP. ACP growth is distinct from other crystals mentioned here including struvite, in that 

classical nucleation theory does not accurately explain the growth mechanisms which have been 

observed. ACP formation is most accurately represented as an aggregation process where discrete 

ions form PNC’s which then go on to form larger polymer-like networks [63]. When densified 

further the phase is typically recognized as ACP. Though it is weakly characterized and even less 

understood from a perspective of formation mechanisms, ACP precipitation is a requirement of 

most systems where HAP is a desired end product. 

 

Finally, an emerging area of phosphorus recovery is by precipitation of aluminum and iron salts, 

which have long been known for their coagulative properties and cost effectiveness in the case of 

iron [65], [66]. Iron phosphates are also attractive from a reuse perspective as P is efficiently 

mobilized by natural processes in sediments and soils [42]. In WWTP, iron phosphates form either 

as iron phosphate minerals or adsorption complexes which involve adsorption of orthophosphates 

on iron oxides [67]–[69].   The phosphorus recovery relevant phases studied in literature are 

Fe3(PO4)2 and the iron oxides am-FeOOH and other hydrous ferric oxides for their P adsorbing 

properties [42], [67], [69], [70]. Though FePO4 has been studied, it was shown to not precipitate 

below pH 5 and therefore not  relevant to wastewater systems [69]. More complex and less soluble 
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iron phosphates have also been studied including Fe2.5P04(OH)4.5, Fe1.6H2P04(OH)3.8, and 

Fe3(P04)2.8H2O, though based on fitting experiments with real wastewaters [68], [70]. Because of 

the known adsorption of phosphorus on iron oxides, these studies cannot be used as definitive 

proof of an insoluble iron phosphate. However, they do point towards P adsorption as a significant 

removal mechanism.    

 

2.5 Solubility Product Ksp 

The solubility of potential P recovery phases varies widely, but at pH ranges relevant to wastewater 

treatment HAP is the dominant and most thermodynamically stable phase. Table 2 gives Ksp values 

for relevant solids phases at 25 °C.  

Table 1. Ksp of Relevant Phosphorus Containing Minerals 

Phase Formula 

pKsp 

(25 °C) 

M:Pα Reference 

Struvite MgNH4PO4⋅6H2O 13.26 1 [25] 

k-struvite KMgPO4⋅6H2O 12.2 2 [71] 

Dittmarite MgNH4PO4⋅6H2O 13.34 1 [72] 

DCPD CaHPO4∙2H2O 6.59 1 [61] 

OCP Ca8H2(PO4)6·5H2O 49.6β 1.33 [73] 

ACP Ca3(PO4)2
* 25.7 1.5 [61] 

HAP Ca10(PO4)2(OH)2 58.65β 1.67 [74] 

Iron Phosphate Fe3(PO4)2 36 1.5 [69] 

*Assumed formula, αMetal to Phosphorus ratio, βpKsp values for half unit cell 
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2.6 Modelling Crystal Growth, the Population Balance, and Crystallization Phenomena  

The use of crystallization has long been a part of human culture [75] and is now a staple unit op in 

industrial processes [76], [77]. Records exist of a Chinese print from 2700 B.C. which detailed 

controlled and intended crystallization through evaporation to create salt [75]. As crystallization 

technologies have progressed and become a corner stone of the pharmaceutical and biotechnology 

industry [78], there has been an expressed need to accurately model crystallization at scale.    

 

In modelling crystallization technologies, constructing a valid governing equation requires the 

incorporation of all the major phenomenon observed in the birth and death of a crystal. One of the 

most common types of continuous crystallization reactors is the mixed-suspension mixed-product-

removal (MSMPR) crystallizer [79]. In this type of crystallizer an influent with a known flow rate, 

solution chemistry, and count of crystals is fed continuously to a main reactor. In the MSMPR 

reactor, CSTR equivalent assumptions  are made with regards to perfect mixing and the resulting 

uniformity in particle size distribution between the crystals in the effluent and in the main tank. 

For simplification of the MSMPR case it is assumed breaking of crystal is negligible, but it is noted 

that attrition, the creating of nucleus sized particles from physical collisions, does occur. It is also 

assumed that crystals produced in the MSMPR will follow a regular crystal habit, therefore a single 

dimensional length characteristic, L, can be used to describe the size of the crystal and shape 

factors can be used to calculate other extensive properties such as mass or surface area. 

 

To generate a set of governing equations for the MSMPR reactor three major processes must be 

considered: 1) nucleation, 2) crystal growth/dissolution, and 3) aggregation. In all cases of 

crystallization, a thermodynamic driving force leads to supersaturation within the liquid phase. 
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This supersaturation drives nucleation leading to newly formed particles in the nanometer scale 

either homogenously in solution or heterogeneously on thermodynamically favorable nucleation 

sites on solid impurities suspended in solution. At the same time this supersaturation drives further 

crystal growth once nucleates are formed. Finally, if sufficient mixing occurs or if the difference 

in particle sizes allows for collision during sedimentation, it is possible that particles form larger 

aggregates.  

 

For reactor design and process engineering, it is of use to have a governing equation which relates 

all three processes to the particle size distribution of the crystals in the MSMPR as a function of 

time. This governing equation, known as the population balance equation (PBE), was developed 

for MSMPRs with the assumptions described above with size independent growth and constant 

reactor volume by [80]: 

   

 
𝜕𝑛

𝑑𝑡
+ 𝐺

𝜕𝑛

𝜕𝐿
+ (𝐷 − 𝐵) =  − ∑

𝑛𝑘𝑄𝑘

𝑉
𝑘

  (5) 

   

Here, n is the population density, G is growth rate, (D-B) is the difference between the death and 

birth rates of crystals, nk the population density in stream k, Qk the flow of stream k, and V the 

volume of the MSMPR reactor. The death and birth functions work to describe the sudden 

appearance or disappearance of a particle of a certain size class (i.e. breakage of a particle leading 

to death of that particle but birth of two smaller sized particles). The term on the right-hand side 

of the equation relates to crystals in the reactor inlet and outlets.  
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The PBE derived by [80] does not explicitly relate nucleation rates and aggregation with other 

terms in the equation, but other prior works have shown discrete systems where expressions for 

aggregation rates and nucleation rates can appropriately replace the (D-B) term [31], [81]. The 

PBE used in conjunction with a mass balance equation and assumptions on the thermodynamic 

driving forces has been previously used to model struvite precipitation reactors and estimate 

nucleation rate [31], [32], [82], growth rate [31], [32], [82], and aggregation rates [31], [32]. 

Though the crystallization reactors in struvite precipitation technologies today are more complex 

with various degrees of saturation and flow regimes throughout the length of the reactor, the 

physical processes which govern struvite crystallizers are the same.       

 

Other models also exist and are very common in the struvite precipitation modelling literature but 

miss the fundamental nature particle size plays in precipitation technologies and the importance of 

the particle size distribution when designing crystallizers. Due to the difficulties in accurately 

measuring particle size in real time and at the size range necessary to fully characterize 

crystallization (nano- to millimeter diameter), simplified models have been routinely employed.  

These types of models are described as kinetics-based [28], [30], [83]–[86] models and typically 

rely on measuring the disappearance of a solid phase constituent ion (i.e. Mg, P, N) and fitting to 

assumed rate equations to determine rate constants. Regardless of whether a kinetics-based model 

is used or the PBE is employed, it is necessary to assume expressions for nucleation rate, crystal 

growth rate, and aggregation rate for later fitting. These parameters all have a well-developed 

theoretical basis described further here.      
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2.7 Nucleation 

In systems like wastewater where coprecipitation of struvite, CaP, and other minerals is 

thermodynamically favorable, the kinetics of crystal nucleation is relevant in determining if 

crystals will form within the timescales in question. Though crystallization can occur 

homogenously or heterogeneously, the abundance of solid-liquid interfaces in wastewater 

treatment systems means most nucleation occurs heterogeneously. However, theory on 

homogenous nucleation can apply to heterogenous nucleation given that the surface is similar to 

the forming nuclei in terms of lattice structure [87].        

 

2.7.1 Classical Nucleation Theory 

Classical nucleation theory (CNT) is a based on the minimization of free energy of ions in solution 

by precipitation. The change in free energy of a spherical nucleus can be described as a two-

component system as shown in equation 6: a bulk term describing the homogenous formation of a 

solid from free ions and a surface term describing the newly formed surface during precipitation 

[88].      

   

 ∆𝐺𝑛 =  
−4𝜋𝑟^3

3𝑉𝑚
𝐾𝑇 ln(𝑆) + 4𝜋𝑟^2𝛾 (6) 

   

Here r is the radius of the forming nuclei, 𝑉𝑚the molecular volume, K the Boltzmann constant, T 

the temperature of the fluid, S the supersaturation ratio, and 𝛾 the net surface energy of the solid-

liquid interface. When first forming, the molecules on the surface of the nuclei are not bonded and 

have excess energy resulting in a larger surface energy term than the bulk term. As more molecules 

bond with the nuclei the radius of the particle increases eventually leading to a negative free energy 
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change. Physically, a larger fraction of the molecules are within the bulk than on the surface of the 

particle and the bulk term becomes larger than the surface energy term. 

This implies an energy barrier exists at a critical radius (r*) calculated by differentiating equation 

6 with respect to r. 

   

 𝑟∗ =  
2𝛾

𝐾𝑇𝑙𝑛(𝑆)
 (7) 

   

This can be used to calculate the magnitude of the energy barrier to nucleation shown in equation 

8.  

   

Figure 1. Free energy change of nucleation 
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 ∆𝐺𝑐𝑟𝑖𝑡 =  
16𝜋𝛾3𝑉𝑚

2

3𝐾2𝑇2 ln(𝑆)2
 (8) 

   

Nucleation rate, J, is then defined using the Arrhenius form, 

   

 𝐽 = 𝐴 exp (
−∆𝐺𝑐𝑟𝑖𝑡

𝐾𝑇
) = 𝐴 exp (

−16𝜋𝛾3𝑉𝑚
2

3𝐾3𝑇3 𝑙𝑛(𝑆)2
)  (9) 

   

Where A is an empirical prefactor. Under the assumption that classical nucleation theory holds for 

a system, maximization of nucleation rate would be achieved by decreasing the net surface energy 

term and increasing the supersaturation ratio. Practically, this means the materials used for seeding 

crystallization reactors play an important role in determining reactor kinetics. In the calcite system, 

template directed nucleation has experimentally shown rate dependence on 𝛾[89].      

 

The interfacial free energy is composed of three interfacial interactions [89], [90] shown in 

equation 10. 

   

 𝛾 =  𝛾𝐶𝐿 − ℎ(𝛾𝑆𝐿 − 𝛾𝐶𝑆) (10) 

   

Where 𝛾𝐶𝐿 denotes crystal-liquid interfacial free energy, 𝛾𝑆𝐿 the substrate-liquid interfacial free 

energy, and 𝛾𝐶𝑆 is the crystal-substrate interfacial free energy. The h parameter describes a nucleus 

shape factor related to interface surface area ratios. In the calcite system which follows CNT, the 

effect of varying surface chemistry, thereby changing 𝛾 through 𝛾𝐶𝑆, has shown good agreement 

with equation 9 and was correlated to the free energy of binding ∆𝐺𝑏  [90] shown in equation 11. 
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 ∆𝐺𝑏 = 𝑎(𝛾𝐶𝐿 − 𝛾𝑆𝐿) − 𝑎𝛾𝐶𝑆 (11) 

   

In equation 11, a is the contact area between the crystal and substrate. This study implies that for 

systems where CNT applies, estimations of nucleation rate can be made with limited molecular 

information (Vm), solution supersaturation (S), and interfacial free energies.  

 

Further research into the surface chemistry dependence of 𝛾 showed that differing charge density 

by varying the surface used (in a physical sense altering  𝛾𝑆𝐿) was the controlling factor on the 

barrier to nucleation followed by lesser dominance of 𝛾𝐶𝑆 which was related to slight differences 

in surface structure rather than surface chemistry [89].   

 

A majority of the studies on characterizing the crystallization of struvite have focused on 

estimating nucleation rate through induction time, tind, or particle counts. Induction time is simply 

defined as the inverse of nucleation rate. If induction time is linearized using a log transform this 

becomes, 

   

 log(𝑡𝑖𝑛𝑑) =  
𝐴

log (𝑆)
+ 𝐵 (12) 

   

Where 𝐴 =  
−16𝜋𝛾3𝑉𝑚

2

3𝐾3𝑇3  and 𝐵 = log (𝐴), the definition of B recalls the prefactor A from equation 9.         

 

2.7.2 Nonclassical Nucleation Theory 
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In contrast to CNT, nonclassical nucleation pathways do not directly form the final 

thermodynamically stable phase but form intermediate prenucleation clusters which can then 

aggregate to form the final phase or if larger than the critical radius, exhibit molecular growth. 

Secondly, these clusters form without the need for solution supersaturation, a prerequisite to nuclei 

formation under classical nucleation theory [91]. The formation of intermediate prenucleation 

clusters has been shown experimentally for calcium phosphate precipitation [63], [92] with the 

initial formation of amorphous calcium phosphate clusters in solution, followed by template 

directed densification of these clusters, and eventual transition to crystalline hydroxyapatite.  

 

One proposed nonclassical nucleation theory derived from computational studies is the two-step 

mechanism. Though originally used to study molecules with shortrange interactions such as 

proteins, density functional theory calculations showed that for atomic fluids which follow 

lennard-jones interactions, a general mechanism of the formation of a disordered phase followed 

by crystallization gives a pathway with local minima corresponding to a metastable intermediate 

phase with lower activation energies than what is expected from CNT [93]. In many cases, the two 

step mechanism arises through the solvents ability to promote or hinder intermolecular hydrogen 

bonding which can also lead to variance in the structure of the final solid [94], [95].  

 

2.8 Aggregation       

Aggregation processes are a result of electromagnetic interactions between small particles 

dispersed in solution. At the colloidal particle size scale (10-9 m to 10-6 m), gravitational forces and 

hydrodynamic effects are negligible until particles have aggregated to sizes which undergo 

observable sedimentation (< 10-6 m) [96]. Historically, DLVO theory has been the primary method 
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of understanding colloidal stability as it includes both repulsive and attractive forces through the 

combination of electrical double layer theory and the Van der Waals forces.     

 

2.8.1 Pair Potentials and Intermolecular Forces 

At the intermolecular scale, interactions between molecules can be simplified to pair potentials 

that depend on molecular properties such as hard sphere diameter, charge, dipole moment, and 

polarizability. Pair potentials can be generalized to the form shown in equation 13. 

   

 𝑤(𝑟) =  
−𝑐

𝑟𝑛
 (13) 

   

Where w(r) is the pair potential between two molecules at a distance r, c is a constant indicating 

the magnitude of the pair potential, and n indicates the scale over which the interaction is relevant. 

When n > 3, the interactions can be considered short range. In common use today are variations 

on the semi-empirical Mie potential which accounts for both attractive and repulsive interactions 

at various scales [97]. 

   

 𝑤(𝑟) =  
−𝐴

𝑟𝑛
+

𝐵

𝑟𝑚
 (14) 

   

 

Most notably the Lennard-Jones model has been used to determine pair potentials between noble 

gases and uncharged particles [98]. 
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 𝑤(𝑟) =  
−𝐴

𝑟6
+

𝐵

𝑟12
 (15) 

   

Pair potential is related to the force between the two particles as given in equation 16. 

   

 𝐹(𝑟) =  −
𝑑𝑤(𝑟)

𝑑𝑟
 (16) 

   

Given this relationship, general derivation schemes of pair potentials include first defining the 

force between the two particles followed by integration to reach w(r). Summation of the forces felt 

by all the molecules in a system gives rise to forces felt by surfaces as shown in the work of 

Hamaker [99]. Many types of interactions are possible with varying strength, but one the strongest 

interactions come from charge-charge interactions. These interactions become most relevant when 

considering the interface between a solid and a liquid due to charge separation. Another class of 

interactions falls under Van der Waals forces. These forces are related to dipole-dipole, dipole-

non-polar, and non-polar-non-polar interactions.       

 

2.8.2 Surface Charge in Aqueous Environments  

When in solution, surfaces undergo charge separation due to 1) differences in ion affinity, 2) 

surface ionization, 3) physical constraint of charge in a phase, and 4) isomorphous substitution  

[100], [101]. These effects contribute to the creation of a diffuse ion gradient surrounding a 

charged particle surface [101]. 
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In the case of low potential difference between the particle surface and the diffuse layer, large 

particle size compared to the diffuse layer thickness, and symmetrical electrolytes, a combination 

of the one-dimensional form of the Poisson equation (equation (17) and the Boltzmann distribution 

(equation 18) through charge density ρ relates potential to distance normal to the particle surface 

(equation 19).      

   

 
𝑑2𝛹

𝑑𝑥2
=  −

𝜌

𝜀𝜀0
 (17) 

 

   

 
𝑛𝑖

𝑛𝑖0
= exp (

−𝑧𝑖𝑒𝛹

𝑘𝑇
) (18) 

 

   

 𝛹 =  𝛹0exp (−𝜅𝑥) (19) 

   

In these equations, 𝛹 is potential, x is the distance from the particle surface, ε0 is the permittivity 

in vacuum, ε is the relative permittivity of the medium, ni is the concentration of ith-type ions, ni0 

is the concentration of ith-type ions at an infinite distance from the surface, zi is the valence of the 

ith-type ion, e is the charge of an electron, k is the Boltzmann constant, T is the temperature of the 

medium, 𝛹0 is the potential at the surface of the particle, and 𝜅 is the inverse of the double layer 

thickness.  
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For cases where low potentials are not a good assumption, Guoy-Chapman theory provides a result 

similar in form to that of equation 19 [101], [102]. Similar results shown in equation 20 have also 

been found for particles which do not meet the requirement of a large size relative to the diffuse 

layer thickness and are derived for spherical geometry [103]. 

   

 𝛹 =  𝛹0 (
𝑅𝑆

𝑟
) exp (−𝜅(𝑟 − 𝑅𝑠)) (20) 

   

Where Rs is the radius of the particle and r is the distance away from the center of the particle. 

 

2.8.3 Electrical Double Layer Repulsion 

Now that an expression for the potential normal to a charged surface has been derived, a 

corresponding force equation can be found using equation 21. It was shown that for two flat plates 

at a distance l the area normalized repulsion force is as follows [103], 

   

 𝐹(𝑙) ≅ 64𝑛0𝑘𝑇𝛾0
2 exp(−𝑙𝜅) (21) 

   

Where 𝛾0, an expression derived in Guoy-Chapman theory [101], is defined in terms of surface 

potential as, 

   

 𝛾0 =  
exp (

𝑧𝑒𝛹0

2𝑘𝑇
) − 1

exp (
𝑧𝑒𝛹0

2𝑘𝑇
) + 1

 (22) 
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Equation 22 shows that for any separation distance when 𝛾0 > 0, the force felt by the plates is 

positive and therefore repulsive.  

 

Due to custom, the interaction energy rather than force is plotted against separation distance and 

is given as, 

   

 𝑤(𝑙) =  
64𝑛0𝑘𝑇𝛾0

2

𝜅
exp(−𝑙𝜅) (23) 

   

In this work, this equation will be integrated with other attractive interaction energy terms later to 

determine overall interaction behaviors. However, this solution scheme is applicable to all 

geometries not just flat plate approximations. Generally, the Poisson-Boltzmann equation is solved 

for potential in terms of a characteristic length and then combined with other interaction energies 

to determine overall interaction behaviors.    

 

2.8.4 Van der Waals Attraction 

Though electrical double layer theory explains repulsions well, a limited understanding on the 

origins of attractive intermolecular forces was a long-standing hindrance in the field of colloidal 

stability [102]. One of the first successful attempts at explaining the attractive forces observed was 

through Van der Waals (VDW) Forces. The VDW forces arises from three separate intermolecular 

interactions namely dipole –dipole, dipole – non-polar, and non-polar – non-polar interactions. 

Differing from charge-charge interactions seen in electrical double layer repulsion, these 

interactions originate from existing permanent or induced dipoles, in the case of non-polar 

molecules, and depend on the molecules dipole moment (u), polarizability (α), first ionization 
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potentials (I). These interactions are also known as Keesom energy, Debye energy, and London 

dispersion energy respectively. The pair potentials for each of these terms is given in table 2. 

 

Table 2. Van der Waals interaction energies [99] 

 Interaction Type Interaction Energy w(r) 

Keesom energy Dipole – dipole 
−𝑢1

2𝑢2
2

3(4𝜋𝜀𝜀0)2𝑘𝑇
∗

1

𝑟6
 

Debye energy Dipole – non-polar 
−𝑢2𝛼

(4𝜋𝜀𝜀0)2
∗

1

𝑟6
 

London dispersion energy Non-polar — non-polar −
3

4

𝐼𝛼2

(4𝜋𝜀𝜀0)2
∗

1

𝑟6
 

 

The magnitude of each of the components to VDW forces is strongly dependent on the type of 

molecules interacting. London dispersion energies will always be present, but both Debye energy 

and Keesom energy depend on the existence of at least one permanent dipole in the system. Often, 

London dispersion energy is the largest interaction type, but this can fail when very strong dipole 

moments are observed such as in water [103].  

 

Hamaker generalized the VDW interaction expressions for surfaces rather than intermolecular 

interactions for a variety of geometries including flat plates and spheres and introduced the 

Hamaker constant, A [99]. This constant is defined as shown in equation 24. 

   

 𝐴 =  𝜋2𝐶𝜌2 (24) 
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Where C is the coefficients seen in each of the VDW interaction energy components. For a flat 

plate, Hamaker found the interaction energy to be defined as shown in equation 25. 

   

 𝑤(𝑙) =  
−𝐴

12𝜋𝑙2
 (25) 

   

This interaction energy is negative for all separation distances (l) and indicates an attractive force 

between the two plates. This equation can then be combined with equation 24 to provide an overall 

interaction energy used in DLVO theory.  

 

2.8.5 DLVO Theory  

Irreversible aggregation takes place when attractive Van der Waals forces are greater than 

repulsion originating from the electrical double layer. DLVO theory attempts to account for these 

two interactions by assuming an additive nature applies to the two interaction energies as shown 

in equation 26. 

   

 𝑤𝑡𝑜𝑡(𝑟) = 𝑤𝑉𝐷𝑊 + 𝑤𝐸𝐷𝑅 =
−𝐴

12𝜋𝑙2
+

64𝑛0𝑘𝑇𝛾0
2

𝜅
exp(−𝑙𝜅)  (26) 

   

Several cases can arise from this type of analysis, but most feature a primary minimum, a 

secondary minimum, and an energy barrier. The secondary minimum is a separation distance at 

which particles will aggregate but can be reversibly separated. If the particles collide with enough 

kinetic energy, the energy barrier to aggregation is overcome and the particles can enter the 
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primary minimum separation distance in a non-reversible process. Though inclusion of only VDW 

and electrical double layer repulsion indicates that as 𝑟 → 0 then 𝑤(𝑟) →  −∞, this does not 

correspond to a physically realizable attraction. Inclusion of other non-DLVO terms into the net 

interaction energy equation can give more realistic results indicating repulsion at very small 

separation distances. More information on those repulsive interactions are given in other texts 

[101], [103].   

 

2.8.6 Modelling Aggregation 

Although DLVO theory shows a clear physical motivation for the attraction and repulsion of small 

colloidal particles at short distances, it does not account for aggregation of particles dispersed in a 

medium at distances where DLVO forces would be negligible. In fact, DLVO forces only occur at 

such small scales, it is often assumed collisions between particles are independent of them [104]. 

Modelling of aggregation processes therefore relies on various transport rates to describe particle 

collisions.   

 

The Smoluchowski approach [104], [105] assumes particles are initially the same size and 

spherical, but after some time exhibit two particle class sizes i and j, with corresponding 

concentrations ni and nj. The rate of collision between these two particles is defined as, 

   

 𝐽𝑖𝑗 =  𝑘𝑖𝑗𝑛𝑖𝑛𝑗 (27) 

   

Where kij is a second order collision frequency constant whose form depends on the particle 

transport mechanism and particle sizes. Next, it is assumed that every collision between particles 
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results in particle of size class k such that k = i + j. Though the collision of two solid particles 

would not result in sphere, the coalescing drop assumption that class k particles are spherical is 

required for further derivations of kij [101].       

 

2.8.7 Collision Frequency Constant Dependence on Transport Mechanism 

Depending on the mechanism for particle transport, kij can vary substantially. There are three forms 

of transport considered: Perikinetic, Orthokinetic, and Differential Settling. Perikinetic 

aggregation refers to Brownian motion. Orthokinetic aggregation considers transport from shear 

originating from stirring or by a flow. Differential settling accounts for collisions which arise 

during the sedimentation process. Table 3 defines kij for each of these aggregation mechanisms.  

 

Table 3. Collision Frequency Definitions [104] 

Transport Mechanism kij 

Perikinetic 
2𝑘𝑇

3𝜇

(𝑎𝑖 + 𝑎𝑗)
2

𝑎𝑖𝑎𝑗
 

Orthokinetic 
4

3
𝐺(𝑎𝑖 + 𝑎𝑗)

3
 

Differential Settling (
2𝜋𝑔

9𝜇
) (𝜌𝑠 − 𝜌)(𝑎𝑖 + 𝑎𝑗)

3
(𝑎𝑖 − 𝑎𝑗) 

     

In table 3, k is the Boltzmann constant, T is the temperature (K), µ the viscosity of the liquid 

medium, ai the radius of class i particles, G is the shear rate, g is acceleration due to gravity, 𝜌𝑠 is 

the density of particles, and 𝜌 is the density of the medium. The size of the particles in question 
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has a strong influence on which of the mechanisms is most relevant to aggregation. Past work 

[104] provides an example of the prevailing mechanism as a function of size.   

 

2.8.8 General Dynamics Equation (Aggregation Specific Population Balance) 

The general dynamics equation (GDE) accounts for all particle collisions between size class i and 

k [104].  

   

 
𝑑𝑛𝑘

𝑑𝑡
=

1

2
∑ 𝛼𝑘𝑖𝑗

𝑖=𝑘−1

𝑖+𝑗 → 𝑘

𝑛𝑖𝑛𝑗 − 𝑛𝑘 ∑ 𝛼𝑘𝑖𝑘𝑛𝑖

∞

𝑘=1

 (28) 

   

For simplification of the GDE, it is assumed all collisions result in irreversible aggregation such 

that the collision rate is equal to the aggregation rate and therefore the collision efficiency (α) is 

unity. In practice, α is less than one due to colloidal and hydrodynamic interactions. Integrated 

forms of the GDE accounting for collision efficiencies equal to and below one are available in 

[104], but are reliant on transport specific assumptions. 

 

2.9 Crystal Growth and Dissolution 

Though the PBE is written in terms of crystal growth, the equations used to describe that growth 

are discussed together with dissolution as historically no difference exists in their model 

expressions. P recovery has been the driving force for the advancement of struvite precipitation 

technologies. In the pursuit of implementing these systems quickly little discussion has been given 

to the implications of reactor failure or upset resulting in the generation of fine particles. In a 

system like the Ostara Pearl where solids recovery is partially dependent on sedimentation, the 
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potential for fines escaping from the reactor is high considering the size of freshly nucleated 

particles. Given the reports of fines in Pearl systems discussed earlier, the dissolution kinetics of 

struvite are clearly relevant to the success of P precipitation systems in the future. Without knowing 

the dissolution kinetics of struvite, it is impossible to make meaningful engineering decisions 

regarding implementation or the necessity of fines reduction strategies.  

 

Understanding the dissolution kinetics of sparingly soluble salts is a common research topic in 

environmental engineering where many natural materials are considered sparingly soluble. 

However, as [106] notes, a disagreement in the correct approach to modelling dissolution is present 

in the field. This disagreement stems from the basis upon which you derive the governing equations 

for dissolution. Since the introduction of transition state theory [29] the commonly accepted notion 

was that dissolution directly mirrored precipitation, but with the reverse reaction. This led to 

introduction of equations of the form [85], [106], 

   

 
𝑑𝐶

𝑑𝑡
= 𝑘

𝐴

𝑉
(𝐾𝑠𝑝 − ∏ 𝐶𝑧) (29) 

   

Where C is the concentration of a constituent ion, z is the stoichiometric coefficient of C, k is the 

dissolution rate constant, A the surface area of the solute,  and V is the volume of the solvent. 

Studies on the dissolution of calcite, quartz, and dolomite have often taken this form or one similar 

in respect to the order of the equation (order ≠ 1) [107]–[110].  

 

Other attempts have been made at relating dissolution rate to the physical pitting phenomena 

observed in dissolution studies with AFM [106], [111], [112]. These works aim to explain the 
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“long tails” observed by [113]. Similar to how some slightly saturated solutions do not form 

precipitate because of the statistical nature of nucleation, it has been observed that for non-ideal 

solutes undersaturated solutions do not always induce dissolution [111], [113]. Introduction of a 

new term “critical radius” by [111] explains slowing of dissolution not captured by transition state 

theory. While evidence is given by [111] that critical radii are of particular importance to 

dissolution of fine particles, this concept is outside of the scope of this work.     

      

Following the strict empirical kinetics basis argued by [106] the derivation of the dissolution rate 

equation, known as the shrinking object (SO) model, is first order with respect to a single species 

in the mineral of interest, 

   

 
𝑑𝐶

𝑑𝑡
= 𝑘

𝐴

𝑉
(𝐶𝑠𝑎𝑡 − 𝐶) (30) 

   

Here C and Csat are the concentrations of dissolved magnesium, ammonium, or ortho-phosphate 

in solution and at equilibrium, respectively. While the purpose of this work is not to argue which 

equation is most correct the SO model lends itself to empirical work more readily than the equation 

derived from transition state theory and therefore will be used here. Secondly, for the fines which 

are of concern in the Ostara Pearl, a model which can account for particle size changes is likely 

necessary. Given that so little mass is present in the fines generated, most particles will likely 

shrink to some degree or completely dissolve. The SO model is aptly named for its purpose – the 

model was developed for cases in which the size of the solute changes during dissolution [114]. 

While the assumption of spherical geometry is used in this work, derivations of the SO model for 
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other geometries exist [115], [116]. By integrating equation 30 a linearized expression is created 

under the assumption of constant A and V,      

   

 − ln (1 −
𝐶

𝐶𝑠𝑎𝑡
) = 𝑘

𝐴

𝑉
𝑡 (31) 

   

This expression can then easily be used to determine the dissolution rate constant from empirical 

concentration time-series data. Some work has shown a need for another parameter related to shear 

be included in dissolution rate equations [107]. For sparingly soluble salts the dissolution is 

assumed to be surface controlled and will have minimal difference attributed to high shear [117]. 

Though it has become commonplace to consider crystal growth and dissolution equal and opposite 

processes for simplicity in modelling, this work strives to provide a model parameter (dissolution 

rate constant) that is an intrinsic property of struvite. Rather than lumping rate constants with an 

extrinsic property such as total solute mass or surface area, this work provides a basis upon which 

future researchers can accurately base their modeling on regardless of the morphology of the 

source material in question. This work also strives to open a discussion on whether the PBE 

necessarily requires a secondary dissolution term which does not abide by the assumptions taken 

by the current crystal growth expression.     

 

2.10 Understanding of Struvite Crystallization is Limited 

Struvite crystallization is a technique that has been proven to efficiently convert soluble P to a 

solid recoverable form. Brought on by regulatory pressure, the implementation of struvite 

crystallizer reactors at full scale has been quick and with little regard for the possible 

implications of reactor upsets or even normal operation that can produce large fractions of fines. 
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Modelling of struvite crystallizers likewise has ignored dissolution due to the difficulty in 

predicting particle size distributions in real-time while accounting for all the different processes 

involved in crystallization.  

Studies which focus on individual parts of the PBE are required to further our understanding of 

the crystallization of struvite. This study works to fill the posed lacuna in the dissolution kinetics 

of fines generated in struvite crystallizers. In combination with plant-wide modelling, an 

understanding of the value of struvite crystallizer technologies is furthered and helps inform 

future WRRFs of the benefits of the technology.  
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CHAPTER 3: MATERIALS AND METHODS 

To determine the dissolution rate constant of field grown struvite short-term dissolution tests were 

performed and fit using the shrinking object model. Particles of different sizes but from the same 

source were used to determine the influence of size on dissolution in the short-term studies as well. 

Long-term dissolution studies at multiple temperatures were used to determine the concentration 

of P at saturation. Ion chromatography (IC) and inductively coupled plasma optical emission 

spectroscopy (ICP-OES) were used to experimentally determine solution chemistry. Morphology 

and chemical heterogeneity of the solids was determined using a scanning electron microscope 

(SEM) equipped with energy dispersive x-ray spectroscopy (EDS). To elucidate physical and 

chemical differences in dissolution behavior observed between particles, x-ray diffraction (XRD) 

and fourier transform infrared spectroscopy (FTIR) were used on liquid and solid samples.       

 

3.1 Field Grown Struvite Samples and Preparation 

Multiple sources of field grown struvite seeds were tested in this study. Following the convention 

of struvite seeds produced in Ostara Pearl® reactors, particles of a diameter, D, are named 

according to equation 32. 

   

 𝑆𝐺𝑁 𝑋 =  𝐷 (𝑚𝑚) ∗ 100 (32) 

   

Future references to the various samples will be in the form Source SGN D. When necessary an 

identifier A/B will be added when referencing a single run from a set of duplicate experiments.    
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The first set of samples tested was from the Clean Water Services (CWS) Durham facility in 

Tigard, Oregon. These samples were generated in an Ostara Pearl reactor with struvite particle 

diameters ranging from 4.5 mm (SGN 450) down to a mix sized dust that passed a 350 µm sieve 

(dust).    

 

The second set of samples were from an Ostara Pearl reactor at the Stickney Water Reclamation 

Plant in the Metropolitan Water Reclamation District of Greater Chicago in Chicago, Illinois. The 

struvite particle diameters ranging from 3.0 mm (SGN 300) down to a mixed size dust that passed 

a 350 µm sieve (dust).  

 

The final set of samples was from an AirPrex pilot reactor at the Metro Wastewater Reclamation 

District (MWRD) in Denver Colorado, which generated particles with a 125 µm diameter. Sand 

was present in these samples as part of the AirPrex process.           

 

All seeds were degassed at 40 °C and ambient pressure for two weeks to remove volatile organics 

without decomposing struvite. 

 

3.2 Reference Solids 

Reference struvite (98%; Alfa Aesar) and hydroxyapatite (For analysis; Acros Organics) were used 

as control samples to determine equilibrium behavior of pure solids. Attempts were made to sieve 

these reference solids to determine particle size for future kinetics studies, but the hygroscopic 

nature of the samples resulted in clumping during sieve analysis.       
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3.3 Buffer Solution Preparation 

The following method was used to prepare 10 L of 500 mM tris(hydroxymethyl)aminomethane 

(tris) buffer at pH 7.5. First, 605.7 g of tris was partially dissolved in 9.5 L of DI water. Next, 350 

mL of concentrated hydrochloric acid (HCl 37% w/w) was added to adjust pH down to a target of 

7.5 ± 0.02 arbitrarily fixing the ionic strength of the solution to 0.45 M. A silver free double 

junction electrode (Orion ROSS Ultra Refillable pH/ATC Triode Combination Electrode) was 

used to check pH to eliminate the possibility of Ag-tris precipitate forming in the frit. The solution 

was allowed to cool overnight to limit any differences in buffering capacity of tris at higher 

temperatures caused by acid dilution. An additional 150 mL of DI water was added to reach 10 L. 

The solution was then allowed to equilibrate for at least 1 week before use.        

 

3.4 Dissolution Experiments 

3.4.1 Short Term Dissolution 

Short-term dissolution tests were conducted to determine the dissolution rate constant of the 

various solids tested through fitting the increasing concentration of PO4
3- to the shrinking object 

model. The solids described in 3.1 were tested in duplicates in a short-term batch dissolution 

experiment following the same protocol for each solid tested. A 500 mL three-neck flask (figure 

2) was first triple rinsed in DI water, followed by a HCl acid rinse, and finally a tris buffer rinse. 

Then, the flask was filled with 450 mL of 500 mM tris buffer (prepared as described in 3.3). A 

sampling needle and a calcium ion selective electrode (Sension+ 9660 Calcium ISE) were inserted 

into separate outer flask necks and sealed with air-tight silicone stoppers. The solution was then 

sparged with N2 and mixed with a magnetic stir bar for 10 minutes to remove any dissolved CO2. 

The pH of the solution was checked at the beginning and end of experiments to ensure a pH of 7.5 



40 

 

± 0.02 was maintained. An initial 2 mL sample was collected before solids addition to account for 

any residual P in the vessel from previous experiments. Residual P was minimal in all cases and 

did not affect the results of these experiments.  

 

Each experiment began with the addition of struvite particles to the reaction vessel. Solids 

were added to the dissolution vessel at a 10 g/L loading to ensure that total particle surface area is 

nearly constant over the course of the experiment satisfying the constant surface area condition of 

equation 31. The vessel was then completely closed to the atmosphere by plugging the central neck 

with a thermometer in a rubber stopper and mixed with a magnetic stir bar at a rate of 300 RPM. 

A 2 mL sample was collected at 10 minute intervals for 60 minutes starting at t = 0 min. Over the 

course of the experiment, only 16 mL are removed ensuring V is nearly constant (ΔV < 4%) 

therefore satisfying the constant V assumption of one condition of equation 31.  Each sample was 

filtered with a 0.22 μm filter and analyzed for inorganic phosphate using IC. Near real-time (5 sec 

Ca
2+

 
pH 

Sampling 

Figure 2. Short-term dissolution apparatus. The pH probe is only inserted at the 

beginning and at the end of short-term dissolution experiments and is sealed otherwise. 
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intervals) free calcium (Ca2+) concentrations were monitored using the previously described 

calcium ion selective electrode (Sension+ 9660 Calcium ISE).  

 

3.4.2 Long Term Dissolution 

The equilibrium behavior of the solids of interest was studied using a long-term dissolution 

experiment at various temperatures. The resulting supernatant solution of the long-term dissolution 

experiments was analyzed for Mg, Ca, Fe, K, P with IC and ICP. The presence of these ions at 

equilibrium was used to determine the driving force for dissolution of struvite and other potential 

co-precipitants in the field grown seeds. Using the same buffer as described in 3.3, 10 g of solids 

were placed in a 50 mL centrifuge tube and filled to the 45 mL mark in duplicates. Samples were 

held at three different temperatures: 4, 21.5, and 37 °C for at least 4 weeks. Each tube was manually 

shaken weekly to limit any diffusional resistance to dissolution. After the last manual mixing at 4 

weeks, the samples sat undisturbed for 24 hours to allow particle sedimentation, after which a 750 

µL liquid sample was drawn for IC analysis. For CWS SGN 35-450, long-term dissolution 

experiments were performed between 4.4 °C and 29.5 °C. For CWS dust, all Stickney samples, 

and MWRD 12.5 long-term dissolution was performed only at 21.5 °C. Note that these 

experiments will have a slight difference in equilibrium to the short-term experiments because of 

dissolved CO2 present in the long-term samples. Though it would be possible to approximate 

degassed conditions using solution chemistry software, assumptions on the concentration of 

cations in solution would be necessary. To circumvent this, ICP was used to characterize Ca, Mg, 

Fe, K, and P in solution. These elements were chosen to account for any calcium phosphates, 

struvite and K isomorphs, and iron phosphates.  Visual MINTEQ 3.1 was used to simulate the 

solution chemistry at equilibrium in the dissolution reactor. This step was necessary to estimate 
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Csat. In these simulations, it was assumed the equilibrium behavior of the field recovered seeds 

would mirror pure struvite. Due to the use of Tris buffer, an entry was added to the Visual 

MINTEQ 3.1 component library to model the following reaction (equation (33). The equilibrium 

constant of this reaction was 8.074 [6]. 

   

 𝑇𝑟𝑖𝑠 +  𝐻3𝑂+ ↔ 𝐻𝑇𝑟𝑖𝑠+ +  𝐻2𝑂 (33) 

   

3.5 Analytical Techniques 

 3.5.1 Calcium Ion Selective Electrode 

In the short-term dissolution experiments, a calcium ISE (Sension+ 9660C Calcium Combination 

Ion Selective Electrode) was used to determine the concentration of free calcium (Ca2+) in solution. 

Data points were collected in 5 second intervals for the full experiment duration. A calibration 

curve was generated using 0.05, 0.1, 0.5, 1, 5, and 10 mM CaCl2 dissolved in the buffer described 

in 3.3 (figure 3). Results not shown for this data set as measured calcium concentrations were low 

in agreement with ICP data.    
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3.5.2 Ion Chromatography 

The concentration of inorganic phosphate in liquid samples drawn from short- and long-term 

dissolution experiments was quantified using IC (Dionex ICS-2100) with a Dionex IonPac AS18 

column. Samples were diluted 1:1 with DI water and held in a 2 mL IC vial. A calibration curve 

was generated using a Dionex Combined Five Anion Standard for IC at 5 dilutions (figure 4). This 

standard contained 25 mg/L F-, 30 mg/L Cl-, 100 mg/L NO3
-, 150 mg/L PO4

3-, and 150 mg/L SO4
2-.  

Figure 3. Calibration curve for Ca probe. 
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The standard was diluted at the following rates: no dilution, 1/2, 1/10, 1/20, 1/100. This 

corresponds to orthophosphate concentrations of 150, 75, 15, 7.5, and 1.5 mg/L PO4
3-.      

 

3.5.3 Powder X-ray Diffraction  

XRD analysis was used to identify crystalline compounds found in the solids tested. All solids 

were crushed manually in a mortar and pestle to produce fine particles necessary for powder XRD. 

The diffractometer (Siemens/Bruker D-5000) used was set to scan 1°/min from 10-50° 2θ and did 

not rotate the sample during analysis. This diffractometer used Cu Kα radiation.         

 

3.5.4 Scanning Electron Microscopy and Electron Dispersive Spectroscopy 

An SEM (Hitachi S-4700) was used to determine seed surface and cross section morphology. No 

conductive coating was needed to image the field grown struvite seeds once the previously 

Figure 4. Calibration curve for P measured with IC. 
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described degassing procedure was performed. Without the degassing procedure, significant 

charging and degassing within the SEM occurred. Cross sections of field grown struvite seeds 

were created by simply cleaving seeds with a razor. EDS was used to determine the chemical 

homogeneity of both the seed surface and cross section. No quantitative analysis was done, but 

qualitative observations were made on the distribution of Mg, Ca, K, and Fe. Acquired SEM 

images are not shown in this work as no features of interest were seen.        

   

3.5.5 Fourier Transform Infrared Spectroscopy 

FTIR (Perkin Elmer Frontier) was used to determine the moieties present that may alter the 

dissolution rate of the field grown struvite. The analysis was run from 400-4000 cm-1 with 8 

accumulations per wavenumber.  The surface of the field grown struvite was analyzed by direct 

contact with the detector cell while a powdered sample gave information on the chemistry within 

the seed. Liquid samples from the long-term dissolution studies were analyzed using FTIR to 

determine the identity of water-soluble organics that dissolved with struvite.  

 

3.5.6 Inductively Coupled Plasma Optical Emission Spectroscopy  

ICP analysis (PerkinElmer Optima 8300) on CWS, Stickney, and MWRD long-term dissolution 

samples was conducted by the Microanalysis Laboratory at the University of Illinois at Urbana-

Champaign. Analytes considered in the analysis were Mg, Ca, K, Fe, and P.     
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Determining the Dissolution Rate of Field Grown Struvite 

4.1.1 Short-term Dissolution Experiments 

The time-series P concentration data obtained through the short-term dissolution experiments 

provides quantitative insight into the dissolution behavior of the field recovered struvite (figure 5). 

For both CWS and Stickney, the fastest dissolution and resulting increase in P was seen in dust 

samples with the exception of CWS SGN 35 which was faster. The slowest to dissolve was SGN 

450 and SGN 300 for CWS and Stickney respectively. Based on the SO model (equation 30), the 

faster dissolution of small particles observed was expected as the total solute surface area increases 

at the same mass loading. What was not expected was the substantial increase in the final P 

concentrations measured for CWS SGN 35 as compared to other struvite from CWS, the reference 

struvite, and equilibrium model estimates for Csat (figure 5 A). Experimentally, the reference 

struvite reached 6.14 mM P after 60 min (data not shown) compared to the 5.84 mM theoretical P 

calculated by VMinteq. A small increase in final P was measured for both Stickney dust and 

MWRD 12.5 as compared to other samples from Stickney and the reference struvite. Though this 

does seem to indicate compositional differences between the seeds with higher solubility as 

compared to the rest, this data set only represents the first 60 minutes of dissolution and may not 

accurately reflect equilibrium behavior. Other species such as organic ligands or metal cations may 

be present artificially increasing the solubility of struvite. Alternatively, other P containing solids 

may be dissolving in conjunction with struvite. The differences seen between dust samples at CWS 

and Stickney indicate that the source of the solids (and resulting source specific composition) may 

be a larger factor than size when considering equilibrium chemistry.   
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Figure 5. P release during short-term dissolution experiments for A) CWS and B) 

Stickney and MWRD field recovered struvite. 
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The P concentration time-series data from figure 5 was fit to the linearized shrinking object model 

(equation 31), as shown in figure 6. The slope of the fit lines in figure 6 are the dissolution rate 

constant of the field grown struvite recovered at CWS and Stickney. By fitting the entire data 

series, a dissolution rate constant of 1.14 mm/min was found. A weak correlation was found 

between particle size and the rate constants derived from individual data series shown in figure 11. 

This correlation is potentially related to hydrodynamic differences experienced by the different 

Figure 6. Data from figure 5 fit to the linearized shrinking object model. The slope of 

the fits shown are the dissolution rate constants (mm/min). A fit is given for the entire 

data set (Avg k), slowest k (Stickney SGN 90 A), and fastest k (CWS SGN 300 B).  
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sized particles in the reactor in contrast to that experienced by [117]. Though a shear rate was not 

calculated for this system, upon visual inspection during the short-term dissolution experiments 

mixing lead to a more homogenous mixture as particle size decreased. To reconcile the spread of 

k values seen in figure 11 with a need for a single value for modeling purposes, a minimum and 

maximum dissolution rate constant was given for the fastest and slowest dissolving solids 

observed, k = 0.94 mm/min from Stickney SGN 90 A and k = 2.61 mm/min from CWS SGN 300 

B. As the objective of this work was only partially to elucidate an exact value for the dissolution 

rate constant of field grown struvite, a range of dissolution rate constant values is more useful in 

providing a basis for uncertainty analysis in future plantwide studies.       

In figure 6, CWS SGN 35, both CWS and Stickney Dust, and MWRD 12.5 are not included. These 

were excluded from the series because an accurate surface area calculation was not possible (Dust) 

and measured concentrations of P exceeded the Csat  of the remaining samples for a majority of the 

test period (CWS SGN 35, Stickney Dust, and MWRD 12.5). By adjusting the Csat used in equation 

31 to 8.9 mm P and 7.1 mM P, a dissolution rate constant of 0.55 mm/min and 0.21 mm/min was 

found for CWS SGN 35 and MWRD 12.5 respectively (figure 7). The adjusted values for Csat were 

based on the apparent Csat seen in figure 5. Attempts at estimating surface area of the dust particles 

through sieve analysis were not successful due to the hydrophilic nature of the fine solids leading 

to clumping. Because of this only a less rigorous analysis which lumped together the dissolution 

rate constant with surface area was possible for CWS and Stickney Dust shown in figure 12. 

Though this type of analysis is not ideal because it produces a lumped dissolution rate constant 

that is specific to the solid in question and difficult to compare to other studies, it is reminiscent of 

precipitation studies where little concern is given to the surface area of the solids in the 

crystallization reactor.       
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4.1.2 Long-term Dissolution Experiments 

Though the original intent of this study was to use the P concentrations measured in the long-term 

experiments as Csat in the calculation used in figure 6, a comparison and mismatch between the 

concentrations of P measured in long-term dissolution experiments in both IC and ICP with the 

concentrations of P measured in short-term experiments showed this was not possible (Tables 4 

and 5). At the point of collection of samples for IC and ICP a distinct acidic odor was present 

potentially signifying biological activity and P removal through growth. Regardless of any 

biological activity, the odor could indicate a high concentration of organics leached from the 

struvite seeds resulting in a different solution chemistry than what was tested in short-term 

dissolution experiments. Though the concentration of P determined by ICP did not match short-

term experiments (Table 5) the results are still useful in comparing relative abundance of struvite 

constituent ions to other impurity ions (Ca, K, Fe). Near parity was seen in all samples in terms of 
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Mg:P mirroring the stoichiometry of struvite. Less than 0.03 mM Fe, 0.2 mM Ca, and 0.06 mM K 

was seen in all cases.  

 

4.1.3 Overall Dissolution Rate Estimates for Plantwide Process Modeling   

Using the dissolution rate constants derived from figure 6, an estimate for expected overall 

dissolution rate at a WRRF as a function of struvite diameter is possible. Figure 8 assumes the 

chemistry of the dissolving solids is similar to pure struvite such that Csat = 6.14 mM P, the solids 

were returned to the headworks of the WRRF where the solution concentration is low that (Csat-C) 

= Csat, mixing rates in the headworks are similar enough to these experiments such that the range 

of k’s used is valid, a mass loading of 10 mg/L, and total volume of 850 m3. Figure 8 shows particle 

size is of great importance when estimating the dissolution rate of field grown struvite lost from a 

crystallizer. Negligible dissolution is expected at the given conditions for particles with diameters 

of 100 μm regardless of the dissolution rate assumed. However, for particles less than 10 μm, 

dissolution rapidly increases past 0.1 mM P/min and for 1 μm particles between 0.2-0.55 mM 

P/min is estimated. As the particles returned to the headworks become smaller, more uncertainty 

is present in the dissolution rate due to uncertainty in the dissolution rate constant. Though these 

estimates alone cannot determine the impact of fines dissolution on plantwide performance, the 

particle size distributions reported [21], [31], [82], [118] and modelled [31], [82] thus far in 
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crystallizer reactors seems to indicate fines generated are well within the higher dissolution rate 

regimes shown here by size.     

4.2 Elucidating the Physical and Chemical Differences of Field Grown Struvite 

Differences in the crystallographic nature of the solids which were more soluble than expected in 

the short-term dissolution experiments were observed in XRD spectra shown in figure 9. In CWS 

SGN 35 three extraneous peaks were detected at 10.2°, 18.8°, and 24.5° and identified as dittmarite 

(MgNH4PO4*H2O). In Stickney dust dittmarite peaks were found at 10.2° and 18.8°. MWRD 12.5 

was more complex with a dittmarite peak at 27.6°, a quartz peak at 26.7°, and an unidentified but 

strong peak at 47.38°. The quartz impurities in MWRD 12.5 are expected due to the sand used as 

0.001 0.01 0.1 1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

d
C

/d
t 
(m

M
 P

/m
in

)

D (mm)

Figure 8. Estimated dissolution rates for field grown struvite at a WRRF. Total 

volume is 850 m3 at a mass loading of 10 mg P/L. 

1E-4 0.001 0.01 0.1 1 10

0.0

0.1

0.2

0.3

0.4

0.5

0.6  Low k = 0.94 mm/min

 Avg k = 1.14 mm/min

 High k = 2.61 mm/min

d
C

/d
t 
(m

M
 P

/m
in

)

D (mm)



53 

 

a seed material in the precipitation of the sample. All other samples were nearly identical to the 

struvite reference solid with some slight peak shifting attributed to strain within the crystals (figure 

13 A and B). No significant peak matches were made with reference hydroxyapatite in any of the 

field grown samples. 

 

Differences were also observed in the FTIR spectra of the solids studied as shown in figure 14. In 

this analysis the objective is not to find specific compounds which may be present in the samples 
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through fingerprint analysis. Rather, we strive to show common group frequencies shared within 

the samples and contrast that with the reference struvite sample to understand what types of 

molecules may alter dissolution behavior from pure struvite either through molecules adsorbed on 

the surface of the field recovered struvite or in solution acting as a dissolution inhibitor. Liquid 

samples drawn from the long-term dissolution experiments provide solution chemistry 

information, crushed samples give general chemistry of the solid, and “solid” samples give surface 

character. As a baseline for comparison, the liquid reference struvite sample was relatively 

uneventful with only a weak and broad absorbance at ~3200 cm-1. This could correspond to a 

primary amide or amine though both have absorbance bands near 3400-3300 cm-1 are not seen in 

the liquid fraction spectra [119]. As a reference sample, the pure struvite is expected to contain 

only inorganic PO4
3- (very strong at 1030 cm-1 and medium at 570 cm-1) and NH4

+ (strong at 1410 

cm-1) FTIR bands [119], [120]. In fact, the reference does contain inorganic IR bands at 1430 cm-

1 and 560 cm-1. However, medium strength broad peaks also appear at 2330 cm-1, 2870 cm-1
, 3220 

cm-1, and very weakly at 3500 cm-1 strengthening the indication of a primary amine (doublet 3380 

and 3300, strong peak 3000-2700 cm-1) seen in the liquid fraction or of a secondary amine (broad 

strong peak 2700-3000 cm-1, medium-weak peak at 1620-1560 cm-1) [119].      

For the CWS SGN 450 – 90 no noticeable difference compared to the struvite standard is seen in 

the FTIR spectra of liquid and solids samples. CWS Dust liquid seems to lack some of the broad 

3400 cm-1 band, but the liquid and solid is otherwise identical to the reference struvite. The liquid 

sample of CWS SGN 35 seems to more closely mirror the solid reference struvite spectra with the 

exception of peaks in the fingerprint region 1650-1450 cm-1 and an absence of peaks below 960 

cm-1. Crushed CWS SGN 35 was nearly identical to the reference struvite spectra. The surface 

sample of CWS SGN 35 was very distinct from the reference struvite spectra with a weak peak at 
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3420 cm-1
, a doublet at 2900 cm-1 and 2750 cm-1, and a distinct fingerprint region (figure 10). This 

could describe again describe a primary amine by fulfilling 3500-3300 cm-1, 3400-3200 cm-1, 

1630-1590 cm-1, 900-600 cm-1 [119]. 

Stickney SGN 300 – 90 is characterized by a lack of bands in the liquid spectra and similar 

inactivity in the solid spectra until ~1500 cm-1 where weak peaks appear where the strong reference 

solid peaks are present. Stickney dust is similar in the solid and liquid, but the crushed sample is 

distinct (figure 10). The crushed sample only exhibits a weak peak at 1000 cm-1 and 570 cm-1. Any 

definitive conclusions are hard to draw from this sample in terms of what the fingerprint region 

indicates, but an absence of upper bands present in the reference struvite is clear.  

The MWRD 12.5 sample matches the reference struvite spectra in all three cases.                
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Figure 10. Differences in FTIR spectra from a reference struvite sample in two solids shown to be more 

soluble than expected in short-term dissolution experiments.  
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CHAPTER 5: CONCLUSIONS AND FUTURE WORKS  

5.1 Conclusions and Engineering Implications 

Due to the increased implementation of struvite crystallization systems across the U.S. and in 

Europe, and the now known presence and washout of fines, a better understanding of the kinetics 

of dissolution for struvite is necessary for accurate modelling of plantwide processes. The findings 

of this study will allow for kinetics-based dissolution using the shrinking object model without the 

need to rely on lumped dissolution rate parameters. This work provides a dissolution rate constant 

which is an intrinsic property of the struvite studied here. The differences observed even in short-

term dissolution experiments indicate that models based on a strict definition of Ksp are in some 

cases accurate as in SGN 90 – SGN 450, others such as that of SGN 35 may severely underestimate 

the dissolution of struvite. A return to empirical models such as the shrinking object model may 

be necessary to accurately model dissolution of field grown solids. A very weak correlation 

between the dissolution rate parameter and particle size was shown, but additional work is needed 

to confirm the influence of shear on the dissolution rate of field grown struvite. Though a deeper 

understanding of equilibrium chemistry of these samples was not possible through long-term 

dissolution studies, relative abundance of other common impurity ions found through ICP showed 

Ca, K, Fe were all in very low concentrations and not likely the source of enhanced solubility.    

 

Only in samples which exhibited enhanced solubility did a difference appear in the XRD or FTIR 

spectra compared to reference struvite. Using XRD a dehydrated magnesium ammonium 

phosphate mineral, dittmarite, was detected in all three higher solubility solids. The presence of 

this solid was not expected as the Ostara Pearl is designed to operate at WRRF temperatures and 

not those known to produce the monohydrate [121]. Quartz in MWRD 12.5 was expected as sand 
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is used as seed material in its precipitation. An unidentified peak at 46° 2θ may play a part in 

MWRD 12.5’s enhanced solubility. The FTIR spectra of both CWS SGN 35 and Stickney dust 

pointed to an importance on characterizing both the surface and internal chemistry of field grown 

struvite. In the case of CWS SGN 35 it seemed that a surface coating different to the inorganic 

groups seen in the reference struvite was present. Both functional group bands and the fingerprint 

region were distinct on the surface from the reference struvite. This type of spectra was not 

replicated in crushed samples likely indicating a surface effect. For Stickney dust, it appeared as 

although the surface matched the reference struvite, the crushed sample and therefore the internal 

chemistry of the dust was not consistent with pure struvite. Limited conclusions can be stated from 

this result other than a lack of nitrogenous functional groups seemed to be present in the core of 

Stickney dust potentially enhancing dissolution once the surface of these particles has dissolved.       

 

5.2 Future Works 

Future works will focus on the integration of these results into plant-wide modelling to 

simulate the impact of fines dissolution in other parts of the treatment train based on particle size 

and saturation concentrations of phosphate. By providing a range of dissolution rate constant 

values measured empirically, a baseline degree of uncertainty can be accounted for in plantwide 

modelling giving the model more relevance to plants which have not yet fully characterized the 

fines generated in their crystallizer in terms of Csat or their dissolution rate constant. More work in 

highly mixed systems is needed to ensure the weak correlation found between particle size and 

dissolution rate constant is negligible, and therefore surface controlled in low mix systems like 

primary clarifiers where fines will be recycled in the WRRF.  
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As the introduction of crystallizer technologies becomes more prevalent throughout the 

world, accounting for dissolution of fines could become a necessary part of accurate modelling 

especially for systems where upsets occur that result in a larger volume of fines [50]. By 

overloading the headworks with fines, P is essentially dosed in a form that could potentially bypass 

sedimentation and result in an under-designed EBPR system. This can lead to missing regulatory 

limits or a need to increase VFA dosing in EBPR to match the additional P removal demand. Both 

cases could be economically damaging to the WRRF, but as of yet have not been tested with a 

plantwide costing model. This work in combination with plantwide costing models will inform 

industry on the net-benefits of crystallizer technologies during optimal and sub-optimal P recovery 

and determine whether fines capture is necessary or an unwarranted preventative measure.  
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APPENDIX A: SUPPLEMENTARY FIGURES AND TABLES 

 

  

Figure 11. A weak correlation with size was found in the individual dissolution 

rate constants determined from the linearized SO model fit shown in figure 6.  
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Figure 12. Time-series dissolution data fit to the linearized shrinking 

object model with a lumped dissolution rate constant (kA (mm^3/min)). 
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Table 4. Equilibrium P from IC  

  Temperature (°C)  

  4.4 21.5 29.5 

Source Size 

Average 

(mM P) 

SD 

(mM P) 

Average 

(mM P) 

SD 

(mM P) 

Average 

(mM P) 

SD 

(mM P) 

CWS 450 2.90 0.08 5.21 0.10 6.88 0.33 

 300 2.72 0.04 5.43 0.03 8.00 0.02 

 150 2.63 0.01 5.52 0.02 8.10 0.06 

 90 2.64 0.01 5.38 0.01 8.41 0.07 

 35 3.79 0.00 6.87 0.07 7.96 0.11 

 Dust -- -- 4.41 0.12 -- -- 

Stickney 300 -- -- 1.97 0.05 -- -- 

 150 -- -- 1.90 0.11 -- -- 

 90 -- -- 2.44 0.12 -- -- 

 Dust -- -- 6.27 0.13 -- -- 

MWRD 12.5 -- -- 2.44 0.07 -- -- 
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Table 5.  Equilibrium Solution Chemistry from ICP 

  P Mg Fe Ca K 

Source Size 

Average  

(mM P) 

SD  

(mM P) 

Average  

(mM Mg) 

SD  

(mM Mg) 

Average  

(mM Fe) 

SD  

(mM Fe) 

Average  

(mM Ca) 

SD  

(mM Ca) 

Average  

(mM K) 

SD  

(mM K) 

CWS 450 6.684 0.407 6.328 0.574 0.008 0.001 0.091 0.012 0.027 0.002 

 300 6.964 0.256 6.642 0.123 0.025 0.001 0.099 0.000 0.023 0.001 

 150 6.650 0.101 6.639 0.141 0.015 0.001 0.078 0.005 0.020 0.001 

 90 7.183 0.170 6.738 0.176 0.020 0.000 0.088 0.002 0.020 0.001 

 35 7.585 0.231 6.767 0.071 0.004 0.000 0.118 0.012 0.063 0.005 

 Dust 4.267 0.608 3.901 0.340 0.002 0.000 0.064 0.009 0.028 0.005 

Stickney 300 1.832 0.159 1.636 0.088 0.000 0.000 0.093 0.014 0.026 0.003 

 150 2.101 0.025 1.766 0.002 0.001 0.000 0.107 0.001 0.029 0.001 

 90 2.828 0.045 2.430 0.023 0.002 0.000 0.115 0.004 0.033 0.001 

 Dust 2.517 0.018 2.285 0.086 0.007 0.000 0.099 0.008 0.047 0.004 

MWRD 12.5 7.603 0.285 6.767 0.096 0.006 0.000 0.201 0.012 0.054 0.007 
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Figure 13. XRD spectra of all solids tested from A) CWS 
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Figure 14. FTIR spectra of CWS A) SGN 450 – F) Dust, Stickney G) 300 – J) Dust, K) MWRD 12.5, and L) reference 

struvite. 


