
c© 2019 Xinrui Zhu

MLMODELSCOPE WEBSITE DEVELOPMENT WITH REACT

BY

XINRUI ZHU

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2019

Urbana, Illinois

Adviser:

Professor Wen-Mei Hwu

ABSTRACT

With the rapid growth of the MLModelScope project, there is an urgent need

for a user interface to show users the available resources, functionalities, and

facilitate their experiments. The project was designed to develop a website

with React for MLModelScope which entailed providing an interactive user

interface to easily demonstrate its functionalities. Also, other users can use

our platform to run some experiments without setting up the whole system.

In this thesis, we will first give an introduction to MLModelScope and

React and also the goal of this project. Then a discussion follows to describe

the whole design and development process and the problems we faced in each

stage. Next, we dive into the details of the technologies we used and how

we dealt with some technical challenges. Finally, we presented our opinions

about this project, thoughts for developing in React and plans for further

development.

ii

To my parents, for their love and support.

iii

ACKNOWLEDGMENTS

I would first like to thank my thesis advisor Prof. Wen-Mei Hwu of the

Electrical and Computer Engineering Department at the University of Illinois

at Urbana Champaign. He consistently allowed this thesis to be my own

work, but steered me in the right direction whenever he thought I needed

guidance.

I would also like to thank the MLModelScope research group members

who were involved in this research project: Jinjun Xiong, Abdul Dakkak and

Cheng Li. Without their advice and help, the project could not have been

successful.

Finally, I must express my very profound gratitude to my parents and

to my boyfriend for providing me with financial support and continuous

encouragement throughout my years in the master’s degree program and

through the process of researching and writing this thesis. This accomplish-

ment would not have been possible without them. Thank you.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 MLModelScope . 1
1.2 React . 3
1.3 Objective . 4

CHAPTER 2 DESIGN AND DEVELOPMENT WORKFLOW . . . 5
2.1 Wireframe Design . 5
2.2 Visual Design . 6
2.3 Development . 6

CHAPTER 3 TECHNICAL DETAILS 8
3.1 Layout . 8
3.2 UI Components . 10
3.3 Visualization . 15
3.4 REST API . 21
3.5 State Management . 22
3.6 Routing . 23
3.7 Error Handling . 24
3.8 Performance Optimization . 27

CHAPTER 4 CONCLUSIONS . 30
4.1 Accomplishment . 30
4.2 Lesson Learned . 30
4.3 Future Improvement . 31

REFERENCES . 32

v

CHAPTER 1

INTRODUCTION

1.1 MLModelScope

MLModelScope [1] is a platform which can facilitate the experimentation

and evaluation of machine learning models. MLModelScope lowers the cost

and effort for performing model evaluation and profiling, making it easier for

others to reproduce, evaluate, and analyze accuracy, efficiency or performance

claims of models and systems. It allows users to understanding the model

performance (within real-world AI workflows) and its interaction with all

levels of the hardware/software stack. The profiling levels of MLModelScope

are shown in Figure 1.1.

Figure 1.1: MLModelScope Profiling Levels

1

Figure 1.2: Website Overview in the Landing Page (see
www.mlmodelscope.org for more details)

We provide both a command line interface (CLI) to give users more control

of the tools and a website user interface (Web UI) to allow users to easily

evaluate and profile models without familiarity with the underlying frame-

works or profiling tools. Compared to CLI, Web UI is a more convenient and

straightforward way to use the tool. So, Web UI is one of the most impor-

tant components of this project which is an easily accessible start point that

makes our tool available to most users. Figure 1.2 demonstrates part of the

website landing page which gives an overview of the project.

2

1.2 React

React [2] is a declarative, efficient, and flexible JavaScript library for building

user interfaces. It was developed by Facebook in 2011 and given open-source

status in 2013 under the BSD3 license. It is currently one of the most popu-

lar front-end development libraries. Figure 1.3 shows that the Google search

trend of React has surpassed Angular which was viewed as the number one

front-end web development framework in recent years and keeps increasing.

Since its first release, React’s Github repository has generated 132,000 stars

from developers and has amassed a community of almost 1300 active con-

tributors, regularly pushing updates to enrich the library.

Figure 1.3: Google Search Trends of Three Popular UI Development Tools
in the Past 5 Years in the United States

Next is a more detailed discussion about why we choose to use React.

1.2.1 Reusable Components

React enables the creation of module-like pieces of code called “components”.

These code snippets reflect a particular part of the user-interface, which can

be repeated across several web pages. This is what we meant by reusability,

which is an efficient and valuable time-saving strategy for development. The

declarative nature of React also makes designing Web UI seamless by reliev-

ing product developers from detailed description of how to perform functions

3

so they could focus on more important functions and business logic.

1.2.2 Fast Learning Curve

React is actually not a framework; unlike Angular or Vue.js, it is a library

that is consistently used in association with other JavaScript libraries. Hence,

there is a shorter learning curve involved in understanding React compared

to other comprehensive libraries.

1.2.3 Virtual DOM

Virtual DOM [3] (short for document object model [4]) is the core reason why

React enables the creation of fast, scalable web apps. Through the memory

reconciliation algorithm, React constructs a representation of the page in a

virtual memory, where it performs the necessary updates before rendering

the final web page into the browser.

1.3 Objective

The objective of this project is to build a website for MLModelScope. The

goal is to clearly describe MLModelScope and show what features we are

supporting, allow users to run machine learning experiments and explore the

results and performances across frameworks, models, and systems and also

provide clear and interactive visualizations of those experiment results.

4

CHAPTER 2

DESIGN AND DEVELOPMENT
WORKFLOW

This chapter discusses our workflow while designing and developing the

MLModelScope website which contains three parts: wireframe design, vi-

sual design and development. While our main focus was the development of

the site, we cooporated with the IBM design team during the design process

to nail down the high-level design from a developer’s point of view. This

chapter starts with an understanding about the design, which is followed

by a focus on the actual development. It further elaborates on the main

challenges in each step and how we handled them.

2.1 Wireframe Design

In this step, we focused on the functionalities, user needs and the user jour-

ney. The design was done in close collaboration with the IBM design team

and we were meeting with them weekly and discussed these details.

During the design review, we provided background information on machine

learning so that the design would be intuitive to the users. For example, how

would a user want to set up the experiment, what data might interest a user,

what to visualize and how to provide a clearer result.

Also, we considered some technical details and assessed the feasibility of

the design. Some functionality might not be available at that time but we

have planned to add it, and our goal is to make the design more compatible

and easily extended. In some other situations, the functionality might need

a lot of effort. We will judge the necessity of an alternative by determining

if we have a better replacement or if we can eliminate it.

5

2.2 Visual Design

In this part, we addressed issues related to the appearance of the website.

Examples include what colors, what font and size for different text, the layout

and also how to display different kinds of data.

In Figure 2.1, we put the same page’s wireframe design and the visual

design side by side to clearly show the difference that the wireframe focus is

more on the content of each page and the visual design focus is on making

the page more attractive.

Figure 2.1: Wireframe Design and Visual Design

2.3 Development

The technical details in the development progress will be covered in Chapter

3. The focus of this section is to discuss what else is needed to address the

development besides simply converting the visual design images into code

and adding interactive logic.

First, we want to use existing UI design libraries to save time on styling

those UI components. Therefore, we assessed a few such libraries and finally

decided to use Ant Design which includes all the components we want to use

and has a style similar to our visual design.

Further, as we extended the functionality, updating was needed for some

of the initial design. So, it is essential to write extensible and easily main-

tainable code.

With the increasing use of different mobile devices like smart phones and

6

tablets to surf the web, it is important to guarantee our website is adap-

tive to different devices. Another important problem we encountered was

making our website mobile compatible. We resolved that issue by using the

responsive web design which means the layout changes based on the size and

capabilities of the device. For example, on a phone users would see content

shown in a single column view; a tablet might show the same content in two

columns. The detailed layout changes will be discussed in Chapter 3.

7

CHAPTER 3

TECHNICAL DETAILS

3.1 Layout

3.1.1 Page Layout

Figure 3.1: Web Layouts

The layout of each page is the first issue to clarify during development.

We are mainly using two kinds of layout in the website which are shown in

Figure 3.1. The layout on the right was used only in the experiment pages

where the sider shows the experiment setups. All the other pages used the

layout on the left.

3.1.2 Mobile Friendly Design

Mobile device compatibility is a very important part of this project. Our

website is passing the mobile friendly test [5] of Google. Figure 3.2 shows

the results.

Currently, there are two popular design patterns for building a mobile

friendly website: responsive web design [6] and adaptive web design [7].

With the responsive web design, the layout of the page grows or shrinks

based on the resolution of the screen. Adaptive web design is more like

8

Figure 3.2: Google Mobile Friendly Test Result

having two completely different websites, one designed to fit on the user’s

phone and the other designed to fit on a desktop. So, with an adaptive web

design, the website can be more optimized for mobile devices, while the look

on desktop and mobile devices will be more consistent with a responsive web

design.

We finally selected the responsive web design since our website is not very

complicated and the Ant Design [8] library can be easily used to implement

a responsive web design with its grid system. The grid system was defined

based on rows and columns. Each row is divided into 24 aliquots and each

column has an argument value of 1-24 to represent its range spans. If the

total span of columns in a row is over 24, then the overflowing columns as

a whole will start a new line arrangement. This is useful as we develop the

cards in the experiment page which is shown in Figure 3.3.

The general idea of transforming the page layout is to change the horizon-

tal layout to a vertical one. Fortunately, the column also allows specification

of the span based on window size. For example, Figure 3.3 shows the com-

9

parison of an experiment page shown on a desktop (left) and on a mobile

device (right). We are displaying three cards (span = 8) in a normal window

and displaying only one card (span = 24) in a small window, which improves

the website appearance in mobile devices.

Figure 3.3: Different PC and Phone Layouts

3.2 UI Components

The whole journey of building a website with React is like playing Lego

where small pieces (components) are used and put together to build the

whole website. Building extensible and reusable components is the key to

improve the reusability, maintainability and scalability of our code. Before

presenting how to design and implement those components, we discuss JSX

which is a special syntax that is recommended by React to build components.

3.2.1 JSX

The syntax of JSX is very similar to regular HTML except that some of

the tags are React components instead of HTML tags. This syntax is not

required to create React applications and it can be easily converted to regular

JavaScript code as shown in the Figure 3.4 example. But, we chose to use it

since it helps to keep the code clean and gives a visual aid about what the

website looks like.

10

Figure 3.4: JSX (left) to JavaScript (right)

3.2.2 Component Style UI Development

Previously, most UI development was done by separating logic with markup.

Each page usually has an HTML template to describe how the website looks

and a JavaScript file to define how to handle different events.

But with component style, the markup and handling functions are put

together in components. Components are in fact special JavaScript functions.

They take arbitrary inputs (props) and return React elements which describe

how things will appear on the screen.

Figure 3.5: Function Component vs. Class Component

There are two ways to define a component: as a function or a class. As

shown in Figure 3.5, the function Welcome and the class Welcome are actu-

ally equivalent. Function components are simply functions that take props

as input and return React elements. However, they cannot handle some com-

plicated functionalities since unlike class components, they do not support

11

state management. We will talk about the details of state management in

Section 3.5.

In our project, we prefer to define components using a class component

even when the component is really simple for consistency. In the class, a

render function which will return the React elements is essential. And han-

dler functions like the “handleClick” function in Figure 3.6 can be added to

handle the events which is very similar to handling events on DOM elements.

Note that the reason we are manually binding “this” to the “handleClick”

function is because in JavaScript class methods are not bound by default.

Figure 3.6: Class Component with Event Handling

3.2.3 Components Development Pattern

In this section, we talk about how to implement UI components. The devel-

opment process and basic patterns are covered.

Build Components Top-Down

We tend to start from a big picture and work toward small components

during development. In our case, we first draw boxes for the header, content

and footer which are shared by all the pages and then fill in contents to those

boxes using the same strategy.

12

An obvious benefit of this method is that it follows the data flow direc-

tion in React components. The data flow in React is unidirectional which is

depicted in the Figure 3.6 example. That means components can only take

data from their parent component. For example, the props object in Wel-

come comes from its parent component and Welcome component passes the

“handleClick” function to its child component button. Therefore, building

from the parent component to the child components can help developers to

clearly know what data is accessible in the child components.

Extract Components

When following the top-down developing style, we usually encountered the

problem of growing components since we kept adding things to existing com-

ponents. There is no strict rules about how to split components but a good

reference is the single responsibility principle [9], that is, a component should

ideally only do one thing. Further, similar components might be used in

many different places and we definitely want to generalize those components

to avoid duplicate code.

We follow three general guidelines for minimizing component growth and

maximizing component reuse in our development. First, an obvious approach

is to take advantage of common opportunities, such as the header, sider and

footer. Those areas are normally independent and can be easily extracted.

Secondly, reusable components such as buttons and cards should also be

extracted and generalized. This not only avoids duplicate code, but also

contributes to the consistency of the whole website. In this case, components

normally should be customizable based on props.

Finally, conditional rendering is very useful for customizable parts men-

tioned before, but will also result in low readability. So, when the conditional

rendering parts expand, we might want to extract them to separate compo-

nents and pass all the necessary data into those components.

Static to Dynamic

As we mentioned before, web pages normally include two parts: the markup

and the interactive handling functions. It is much easier to start with a

static version using some mock data and then add interactivity. Because

13

updating interactive logic can sometimes be complicated, we always verify

the static page with other members in our team before moving forward to

avoid significant changes.

3.2.4 Components Organizing

Recall that we discussed when to split the components in the Section 3.2.3.

After extracting the component, we need to determine where to put this

component.

In order to make the source code directory structure clear and easy to

maintain, we organized the components based on the lowest common ancestor

rule. Each directory contains an index file which describes the component and

all the child components (which can be a single file or a directory depending

on whether it has a child) it is using. If a child component is used by other

components, it will be lifted up to the lowest common ancestor directory of

all the components that are using it. Figure 3.7 shows part of the directory

structure of our project.

Figure 3.7: Components Directory Structure

A problem with this method is that when a component gets lifted, all

the import paths might need to be updated. Considering the scope that a

component will be used in advance and put the component to the correct

place directly can reduce the problem. Besides, most editors today have the

functionality to automatically update import paths.

14

3.3 Visualization

Visualization is a very important and challenging part of the website. We are

using different tools for visualizing the dataset inference results and single

image inference result. (We currently only support images as input and plan

to add more modalities later.)

3.3.1 Dataset Inference

For dataset inference, we are using BizCharts [10] to create tables and charts

for users to compare the performance of different models and frameworks.

The data is collected from inference experiments and are being stored in

JSON files. When the user clicks predict, the web will fetch corresponding

data, processing them to specific format and generate the charts. Right now,

we only display accuracy, latency and layer duration information which are

shown in Figure 3.8, but we plan to add more charts in the future. Layer

duration for different models and frameworks are shown in different charts

because models have different implementation on different frameworks and

therefore has totally different neural net layers. Also, we only showed one

example of a layer duration chart in Figure 3.8 since there are too many to

show in one figure.

3.3.2 Image Inference

The goal for visualizing the image inference result is to give users an intuitive

understanding of the result. The methods are different based on the task.

Most of them include manipulating images which are done by react-konva

[11]: a JavaScript library for drawing complex canvas graphics using React.

Classification

Image classification is a process which takes in an image and outputs an array

of probabilities of classifying the input image as each class. We are pulling

out the top 10 possible classes and display the class name and probabilities

in a table. The response data structure is shown in Figure 3.9 on the left

side and on the right side is the sample result table.

15

Figure 3.8: Dataset Inference Result

Figure 3.9: Image Classification Sample Result

16

Object Detection

The object detection task takes an input image and outputs a list of bounding

boxes which are rectangular areas around detected objects, the class of each

object and the possibility that the object belongs to that specific class as

shown in Figure 3.10.

Figure 3.10: Object Detection Response Data Sample

Each bounding box is represented by two points: the upper-left point

(xmin, ymin) and the lower-right point (xmax, ymax). We need to convert

these four numbers into the coordinates of upper-left point (x, y), the width

and height of the bounding box according to the following equations:

x = xmin ∗ imageWidth

y = ymin ∗ imageHeight

width = (xmax− xmin) ∗ imageWidth

height = (ymax− ymin) ∗ imageHeight

Then, we can pass those values into React-Konva Rect component to generate

the bounding box and layer it over the original image. When the user moves

the mouse over a bounding box, its label and probability will show up. But

sometimes, the label is not clear on the image, so we introduced a table

which can clearly display the label and probability. The corresponding row

will be highlighted when the user puts the mouse over a bounding box and

vice versa. We also added a slider to adjust the probability filter so that the

17

user can filter out the data that is not of interest. An example of the result

is shown in Figure 3.11.

Figure 3.11: Object Detection Result

Semantic Segmentation

Figure 3.12: Semantic Segmentation Sample Response and Result Image

Semantic segmentation task takes an input image to generate an int mask

which includes the label of each pixel in the image where 0 indicates that

pixel does not belong to any class.

In the front end, we need to generate a mask image from the int mask first.

This can be easily done by replacing each integer by its corresponding RGB

color (for example, 0 will be changed to [255, 255, 255]). At the same time,

we need to convert the 1-D int mask into a 2-D image with the specified

width and height as shown in the left part of Figure 3.12. The result, in this

18

example, will be a 513*309 2-D array where each element is an RGB color.

We can easily change the array into an image with some JavaScript libraries.

Most of the time, the mask image will not have the same size as the original

image. Therefore, we will need to resize the mask image to be the same size

as the input image and finally overlap the mask image above the original

image to create the resulting image shown in Figure 3.12.

Instance Segmentation

Instance segmentation is very similar to object detection. The only difference

is that each bounding box also comes with a float mask which represents the

possibility of each pixel in the bounding box to be classified as its class. A

sample response is shown in Figure 3.13.

Figure 3.13: Instance Segmentation Response Sample

We used the same method to draw the bounding boxes as we used for

object detection. Then, we need to generate a mask image from the float

mask. This step is very similar to what we did for semantic segmentation int

masks. However, this time we assign each instance a random color. (Different

instances with the same label will have a different color.) When converting

the floats to RGB colors, we are using 0.5 as the threshold to filter out the

object and the background. If the number is larger or equal to 0.5, we use

the assigned color, otherwise we use white. Finally, we just need to resize

19

the mask image to be same as the bounding box and overlap it above the

bounding box. The sample output is shown in Figure 3.14.

Figure 3.14: Instance Segmentation Result

Image Enhancement

The goal of the image enhancement process is to improve the quality and

the information content of the original image. Thus, the output is also an

image which is in JPEG format and is encoded with Base64 (jpeg data in

Figure 3.15) and we then need to display the new image so that the user can

compare it with the original image.

Figure 3.15: Image Enhancement Response Sample

20

3.4 REST API

We discussed how we display the data in the previous section, and now we

discuss how we obtain those data. We are using REST API [12] to interact

with the server side and get the data we need. Three major sets of requests

used in the website are discussed in the following sections.

3.4.1 Manifest

During the experiment setup steps, we use manifest requests to get the in-

formation about all available frameworks, models and machines. Those are

GET requests and the result can be filtered out by specifying some argu-

ments but we are requesting the whole list and do the filtering in the UI part

to avoid duplicate requests.

3.4.2 Predict

This is the core functionality of our website. The whole predict process is a

set of three requests: open, url/images/dataset (depends on the input) and

close. If the user selects multiple frameworks and models, each combination

of framework and model will need a set of predict calls. For example, if a

user selects two frameworks and two models, four sets of requests are needed.

The open request will tell the server what framework and model to use and

the server will open a predictor and respond with the predictor ID. Then, the

UI part will pass the predictor ID and experiment data to the server to run

the experiment and get the experiment result in the format we mentioned

before in the visualization part. Finally, a close request will be sent which

tells the server that it is time to close the predictor.

3.4.3 Authentication

The authentication system contains four requests: login, logout, signup and

userinfo. Currently, username and password are transferred through basic

authentication [13] which is a simple authentication scheme built into the

HTTP protocol. The login and signup requests are send with the Authoriza-

tion header that contains a base64-encoded string username:password.

21

Figure 3.16: Predict Requests Flow

3.5 State Management

State management refers to the management of the state of one or more

user interface control mechanisms such as text fields, OK buttons, radio

buttons, etc. in a graphical user interface. In this user interface programming

technique, the state of one UI control depends on the state of other UI

controls. For example, a state managed UI control such as a button will be

in the enabled state when input fields have valid input values and the button

will be in the disabled state when the input fields are empty or have invalid

values.

Redux is one of the most popular state management libraries for React.

But we choose to use Context API which was introduced with React 16.3

because it is built into React and therefore needs no extra third-party de-

pendencies. It is also relatively more straightforward to use.

In our website, we are mainly maintaining two contexts: experiment con-

text and user context. Context normally contains both the state data and

the update functions. Direct data manipulation is not allowed for consistency

and security. The life cycle and functionality of these two contexts will be

explained in the following sections.

3.5.1 User Context

The user context stores information related to the user. It will be created

once the user opens our website and will be destroyed when the user closes it.

This context was added recently when we decided to support authentication.

22

Right now it only contains the username and we will keep adding user-related

data to it in the future.

3.5.2 Experiment Context

The experiment context stores information related to experiment setup and

results. It will be created when a user goes to the experiment page and will

be destroyed when the user goes to other pages. The data it stores are listed

in Table 3.1.

Table 3.1: Experiment Context Content

Property Description Type Default
modelManifests all models manifest object null
frameworkManifests all frameworks manifest object null
machineManifests all machines manifest object null
currentPage current experiment page string task
batchSize batch size int 1
traceLevel trace level to show string framework
useGPU whether to use a GPU boolean false
isPredicting if an experiment is running boolean false
task selected task object null
imageUrls input image urls object []
dataset selected dataset object null
models selected models object []
frameworks selected frameworks object []
machines selected machines object []
result inference result object null

3.6 Routing

In a web application, routing is also a very important part. It is the process

of using URLs to drive the user interface (UI). From the users’ point of view,

there are three main functions of URLs:

1. Users can bookmark a specific page and easily come back later.

2. Users can share the link to others and they should be looking at the

same page.

23

3. Users can use web browser’s back/forward functions.

Table 3.2: MLModelScope Routing List

Route Page Description
/ Landing Page

/playground Experiment Page
/news News Page
/about About Us Page
/login User Login Page

/signup User Signup Page
/logout User Logout Page

/my User Information Page

Table 3.2 listed all the routes we are having right now. Generally, it is

straightforward and the only one we want to discuss is /playground. Actually,

there are multiple sub-pages for experiment setup steps and the result. But

currently, we are using the same URL since it does not make sense for a

user to visit the result page directly. In the future, we have plans to store

experiment results and allow users to share the results page with others and

will use pattern matching to display the result of different experiments.

3.7 Error Handling

3.7.1 Error Boundary

React rendering is a tree style progress, the render function in a component

will call the render functions of its child components. JavaScript errors in-

side components used to corrupt React’s internal state and cause it to emit

cryptic errors on next renders and the errors we see are always caused by a

previous error which makes the error information useless and hard to debug

the application.

However, an error in part of the component should not cause the corruption

of the whole website. In order to solve such problems, we used error boundary

which is a new concept deployed with React 16. Error boundaries are React

components that catch JavaScript errors anywhere in their child component

24

tree, log those errors, and display a fallback UI instead of the component

tree that crashed.

Further, the usage of error boundary is straightforward. Defining a new

lifecycle function (“componentDidCatch”) in component will make it an er-

ror boundary where render function will render the fallback UI. Then it can

be used as regular components as shown in Figure 3.17. If an error occurs

in Component1, Component1 and Component2 will be replaced by the fall-

back UI in ErrorBoundary1. However, if an error occurs in Component2,

Component1 will still be displayed and Component2 will be replaced by the

fallback UI in ErrorBoundary2. Figure 3.18 is an example where one of the

experiments failed, but the result page will not crush.

Figure 3.17: Error Boundary Usage

Figure 3.18: Error Boundary Example on MLModelScope

Another problem we need to solve is what to display in fallback UI and

determine when we should add an error boundary. In our case, we choose

25

to display the trace information for debug purpose. The granularity of error

boundaries really depends on the pages and contents. Simply speaking, we

wrap strongly related components in the same Error Boundary. For example,

when we have both images and tables in the result page, we will wrap them

in the same error boundary since if one of them crushes the other one does

not make any sense. However, if the user-run experiment on different models

and one of the models goes wrong, we will still display the results for other

models since they are independent.

3.7.2 Handling Null Properties

In JavaScript, we usually need to deal with deeply nested structures. Espe-

cially in our project, the responses are deeply nested JSON format. Some-

times, part of the properties will be empty which is a normal behavior and

we do not want the application to crush because of that. Normally, we will

need do a serial of check of null (an example was given in the upper part of

Figure 3.19) to avoid crushing but this method will sacrifice the readability

of code. So, we choose to use idx: Library for accessing arbitrarily nested,

possibly nullable properties on a JavaScript object. If an intermediate prop-

erty is either null or undefined when accessing a nested structure, the null or

undefined is instead returned rather than throwing an error. The two code

snippets in Figure 3.19 are equivalent and demonstrate how idx simplifies

and cleans up the code.

Figure 3.19: Example for Code Simplification Using Idx

26

3.8 Performance Optimization

Performance problems usually will not be noticed at the very beginning of

development. But as the content on our website increasing and the function-

ality getting more complicated, performance issues will show up and become

more serious. In this section, we will first introduce a great tool to evalu-

ate the website performance and then discuss some techniques we used to

optimize the performance of our website.

3.8.1 Chrome DevTools Performance Recording

The performance tab in Chrome DevTools [14] is a very helpful tool to assist

in identifying what tasks are taking too much time. We just need to click

start recording, perform the actions we want to profile (no more than 20

seconds) and then click stop. It will record the time each action took and

display a tree style breakdown of the time consumed by different small tasks

in the action as shown in Figure 3.20. Please note that the timing numbers

are just relative and components will normally render faster in production.

Figure 3.20: Performance Evaluation without Using Window Rendering

27

3.8.2 Window Rendering

This example in Figure 3.20 was taken on the model select page. It shows that

the model cards rendering process takes more than 500ms because we have

hundreds of models to render at the same time. We only enabled TensorFlow

when we did this experiment and the condition would be much worse if we

enable all frameworks. Also, we can feel obvious delay when selecting models

since it will re-render those cards.

There is a technique designed to solve such rendering problems of a long

list known as windowing. Since we only have limited space on the screen and

therefore only part of the content can fit into the window, this technique only

renders a small subset of all rows at any given time, and can dramatically

reduce the time it takes to re-render the components as well as the number

of DOM nodes created.

We used the react-virtualized [15] library to implement this. Basically, we

create a box with the library and define a function to render the contents

inside the box. This library will help to only render the components that are

visble. The time dropped more than 50% as shown in Figure 3.21.

28

Figure 3.21: Performance Evaluation Using Window Rendering

29

CHAPTER 4

CONCLUSIONS

4.1 Accomplishment

In conclusion, the MLModelScope website is very successful. At this mo-

ment, it allows users to compare the pre-run experiment performance on

public datasets as well as live experiment results on input images of dif-

ferent frameworks and models. We support hundreds of neural net models

for five common computer vision experiments: classification, object detec-

tion, semantic segmentation, instance segmentation and image enhancement

on almost all popular frameworks like Caffe, Caffe2, TensorFlow, Pytorch,

etc. We have also implemented an authentication system which is not very

useful right now, but provides the potential to support more user-specific

functionality in the future.

4.2 Lesson Learned

The experience of developing a website in React is very different from tra-

ditional development frameworks because of its reusable, composable and

stateful components. The biggest challenge is how to create those compo-

nents. There are hundreds of ways to break down an application, but we want

to make it readable and extensible. Small components will make the code

easy to maintain and well-designed interfaces will simplify the composition

of components.

As PC hardware improvements continue, the browser becomes much more

powerful and can support more fancy functionalities. But the performance

optimization is still really important. Sometimes, only a small change will

smooth the surfing experience. To guarantee a great performance, a stan-

30

dardized coding pattern is critical. We are not doing well at this point

initially and usually have to overwrite previous code which wastes a lot of

time. But right now, we do have a well-documented development guide to

help future developers write efficient and extensible code.

Starting from the easiest part is also a helpful technique for new developers.

We were totally new to React when we stated to work on this project. At

the very beginning, we just composed some components, fill in some text and

create a static webpage, there was no need to consider state management,

error handling, HTTP requests at that point. As the project grew, we found

some specific techniques are needed and we just learned and applied them

to the project. Trying to come up with the whole architecture is hard for

new developers and might scare them. Working on easy things first and

continuously expanding the knowledge base will help start a project.

4.3 Future Improvement

There are several potential improvements we can make in the future. First,

we plan to support more data types such as text and videos in the future.

We prepared some interface for those new data types and also generalized

the components to be able to handle different data types in the future. But

different tasks will need different visualization methods which will be a big

challenge in the future.

In addition, we plan to support user-specific functionalities like uploading

their own model and datasets, re-visiting previous experiment results and

sharing the results with others. To achieve this, we will need to expand our

database to store related data and implement corresponding API to allow

the UI to query such information. On the UI part, we need to design and

develop such pages for users to easily view and update those data types.

Besides, the current error handling on our website is generally naive. We

plan to handle more special cases in the future and make our website more

robust to provide users with a better experience.

31

REFERENCES

[1] A. Dakkak, C. Li, A. Srivastava, J. Xiong, and W.-M. Hwu, “MLMod-
elScope: Evaluate and Measure ML Models within AI Pipelines,” 2018.

[2] “The React website,” 2019. [Online]. Available: https://reactjs.org/

[3] “What is Virtual DOM,” 2019. [Online]. Available:
https://reactjs.org/docs/faq-internals.html

[4] “The Document Object Model (DOM) website,” 2005. [Online].
Available: https://www.w3.org/DOM/

[5] “The Google Mobile Friendly Test website,” 2019. [Online]. Available:
https://search.google.com/test/mobile-friendly

[6] A. E. S. Tafreshi, K. Marbach, and M. C. Norrie, “Proximity-based
adaptation of web content on public displays,” International Confer-
ence on Web Engineering (ICWE): Web Engineering Lecture Notes in
Computer Science, vol. 10360, pp. 282–301, June 2017.

[7] A. Gustafson, Adaptive Web Design: Crafting Rich Experiences with
Progressive Enhancement. New Riders, 2015.

[8] “The Ant Design website,” 2019. [Online]. Available:
https://ant.design/

[9] R. C. Martin, J. M. Rabaey, A. P. Chandrakasan, and B. Nikolic, Ag-
ile Software Development: Principles, Patterns, and Practices. The
University of California: Pearson Education, 2003.

[10] “The BizCharts website,” 2019. [Online]. Available:
https://bizcharts.net/index

[11] “The React-Konva website,” 2019. [Online]. Available:
https://github.com/konvajs/react-konva

[12] “The REST API website,” 2019. [Online]. Available:
https://restfulapi.net/

32

[13] “The Basic Access Authentication Wiki website,” 2019. [Online].
Available: https://en.wikipedia.org/wiki/Basic access authentication

[14] “Evaluate Performance with Google Chrome DevTools,” 2019.
[Online]. Available: https://developers.google.com/web/tools/chrome-
devtools/evaluate-performance/

[15] “The React Virtualized Library website,” 2019. [Online]. Available:
https://bvaughn.github.io/react-virtualized

33

