
c© 2019 Dae Hee Kim

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/238434484?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

THANOS: HIGH-PERFORMANCE CPU-GPU BASED BALANCED GRAPH
PARTITIONING USING CROSS-DECOMPOSITION

BY

DAE HEE KIM

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2019

Urbana, Illinois

Adviser:

Professor Deming Chen

ABSTRACT

As graphs become larger and more complex, it is becoming nearly impossible to

process them without graph partitioning. Graph partitioning creates many sub-

graphs which can be processed in parallel thus delivering high-speed computation

results. However, graph partitioning is a difficult task. In this work, we introduce

Thanos, a fast graph partitioning tool which uses the cross-decomposition algorithm

that iteratively partitions a graph. It also produces balanced loads of partitions.

The algorithm is well suited for parallel GPU programming which leads to fast and

high-quality graph partitioning solutions. Experimental results show that we have

achieved a 30x speedup and 35% better edge cut reduction compared to the CPU

version of METIS on average.

ii

To my family, for their love and support.

iii

ACKNOWLEDGMENTS

I give the most gratitude to my advisor, Professor Deming Chen, from the Uni-

versity of Illinois at Urbana-Champaign, for his guidance, inspiration, kindness and

trust. I appreciate him for inviting me to join his research group and for the faith he

bestowed on me in all aspects of the research process. I also thank Professor Rakesh

Nagi and my colleagues, Zaid Qureshi and Vikram Sharma Mailthody, for their help

on this work.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 BACKGROUND . 3
2.1 Cross-Decomposition . 3
2.2 Graph Representation . 5

CHAPTER 3 IMPLEMENTATION . 6
3.1 Optimization and Basic Implementation 6
3.2 Load Balancing . 9

CHAPTER 4 RESULTS . 11
4.1 Runtime . 11
4.2 Partition Quality . 13

CHAPTER 5 CONCLUSION . 17

REFERENCES . 18

v

CHAPTER 1

INTRODUCTION

As data gathered through Internet-of-Things are becoming larger or the number

of transistors on a circuit continues to grow higher, the graph that represents the

complex data connections for these, namely social network, logic gate netlist, or cell

placement graph, is also increasing in complexity and size. Naively processing such

enormous graphs on a CPU is practically impossible as it will either take too long

to finish or run out of memory due to the shear size of the data. Oftentimes, it is

much better to process such a graph with multiple or many sub-graphs. When a

graph is partitioned, we want to put as many connections as possible inside of each

partition and minimize the connections among partitions, in other words, minimizing

edge cuts. In this thesis, we focus on minimizing edge cuts as well as the partition-

ing time. We also maintain perfect load balancing for each partition. Partitioning a

graph into equal sizes while minimizing the edges among different partitions is an im-

portant task, finding various useful applications including scalable logic synthesis and

physical design. Meanwhile, partitioning also helps graph processing itself through

parallel computing. Parallelizing many applications involves the problem of assigning

data or processes evenly to processors, while minimizing the communication among

the processors [1, 2]. The partitioning problem is known to be NP-complete [3, 4].

Since graphs are getting complex in various way, it is difficult to establish a standard

approximation algorithm in general [5] and heuristic algorithms are typically used.

In this work, we introduce Thanos, a fast graph partitioning tool that uses the

cross-decomposition algorithm [6]. The algorithm was not designed for the graph

partitioning problem, but for a job scheduling problem in the industrial engineer-

ing field. However, we realized that the characteristics of the algorithm can help

1

solve the graph partitioning problem. The algorithm is also well suited for parallel

GPU programming which leads to fast and high-quality graph partitioning solutions.

Compared to CPU which has only a few cores, GPU generally has thousands of cores

that can execute computations in parallel. Many well-known libraries such as Ten-

sorflow [7], are developed targeting GPUs. The CUDA platform [8] that runs on

any NVIDIA GPUs has made GPU programming easy to use. In our work, we are

able to achieve 30x speed up and 35% better edge cut reduction among partitions

compared to the CPU version of the famous graph partitioner METIS [9]. The main

contributions of this work are as follows.

• Optimized cross-decomposition algorithm to fit into large-scale graph parti-

tioning problem

• Implemented and optimized the algorithm on GPU

• Provide perfect load balance with high-quality graph partition

We organize the thesis as follows. Chapter 2 discusses all the background knowl-

edge required for this work including the cross-decomposition algorithm. Chapter

3 explains how optimization for the algorithm is accomplished and how it is imple-

mented on a GPU. Chapter 4 shows the result and analysis of this work. Chapter 5

concludes the thesis.

2

CHAPTER 2

BACKGROUND

2.1 Cross-Decomposition

In this section, we will cover the algorithm of cross-decomposition proposed in

[6, 10]. The main idea of cross-decomposition on graph partitioning is to compute

each vertex’s cost for each different partition and assign it to the partition based on

the cost in such a way that meets two conditions [11]:

(1) Partitions contain as many non-zero values (connections) as possible.

(2) One finds as many zero values (no connection) as possible outside the partitions.

Given a graph with total number of vertices, N , we first build an adjacency ma-

trix A whose size is N ∗ N and all the elements belong to [0,1], A = [ai,j] with

i = 0, ..., N − 1; j = 0, ..., N − 1 and 0 ≤ ai,j ≤ 1. Next, we need to build two types

of partitions, row partition, P v
X and, column partition, P v

Y where v denotes the total

number of partitions. Each vertex is assigned to one of the partitions between 0 to

v−1 for both types of row and column partition using uniform random distribution.

This initial random assignment is denoted as P v
X(0). Then from the initial partition,

we repeat the following two phases until there is no change from the previous parti-

tion [11]:

(1) Build a new partition on Y : P v
Y (K) using P v

X(K − 1).

(2) Build a new partition on X : P v
X(K) using P v

Y (K).

Figure 2.1 visualizes this process. Only the row partition is shown as the column

partition uses exactly the same process.

3

Figure 2.1: Row Partition

For phase 1, we are basically implementing the following equation. For j =

0, ..., N − 1 and r = 0, ..., v − 1 do the following equation:

y(j, r) = βj · (h ·
∑

i∈Xr(k−1)

αi · aλi,j

+ (1− h) ·
∑

i/∈Xr(k−1)

αi · (1− ai,j)1/λ) (2.1)

Then search r∗ such that

y(j, r∗) = max
0≤r≤v−1

(y(j, r))

and assign j to the class Yr∗(k). The values for αi, βj, h and λ are adjusted by

the user. Here, αi and βj assign weights to connected vertices and not connected

vertices respectively. If h increases, the connected vertices inside the same partition

become more important than those outside of partition. On the other hand, if λ

decreases, the small values which are outside the partition as well as the large values

inside the partitions make a larger contribution in the equation. After phase 1, we

perform phase 2. Phase 2 is not shown as it is exactly the same as phase 1 but with

a different partition, P v
Y (K), and αi, βj switched.

It was proved in [10] that either P v
X(k), P v

Y (k) yields a greater value than P v
X(k −

1), P v
Y (k − 1), or both yield the same value. Since it can lead to a local optima,

4

we use it with several initial P v
X and we keep the best obtained solution. This

proof verifies that the cross-decomposition algorithm converges [11]. In our work, we

repeat this process three times since all the graph data sets we ran empirically show

convergence within three iterations. Summarizing the algorithm in simple words, we

are assigning each vertex to the best partition based on number of connections it has

in different partitions. Therefore, we selected this algorithm for graph partitioning

as it can cluster the vertices that are close together into the same partition based

on the equation. The algorithm has O(N2) complexity which will be optimized in

Chapter 3.

2.2 Graph Representation

In this work, we used real-world graph data sets that are given from Graph Chal-

lenge [12]. All the graphs are given as an edge list where each line of the list shows

the source and destination of the edge. If the graph is large and sparse, it would be

very memory inefficient or even impossible to store as an adjacency matrix. There-

fore, after reading this edge list, we decided to use the Coordinate (COO) format

and one more array, row pointer, which is found in the Compressed Row Storage

(CSR) format. COO format will require a total number of edge spaces and the row

pointer will require a total number of vertex spaces.

5

CHAPTER 3

IMPLEMENTATION

3.1 Optimization and Basic Implementation

As mentioned in Section 2.2, we store a graph using the COO format and a row

pointer. As shown in Figure 3.1, each thread uses its thread ID as the index for

the row pointer. Then, based on the content of the row pointer, threads can access

the start point of their neighbor list that is stored in the COO format. Each thread

can get its number of neighbors by subtracting the content of its row pointer from

content of its row pointer plus one since the row pointer contains the prefix sum of

neighbors of all the vertices. Next, when a thread is checking its neighbors, it uses

its neighbors’ number as the index to access partition array.

Equation (2.1), consists of two parts. The first part is where h is multiplied and

the second part is where (1 − h) is multiplied. In words, the first part basically

checks all the neighbors of j which are in partition r. The second part checks all the

non-neighbors of j which are NOT in partition r.

The first part can be calculated quickly as we can just traverse the neighbor list

which can be N in the worst case, but in practice, it is relatively small. However,

the second part cannot be done quickly as we have to traverse all the non-neighbors

and check whether they are in partition r or not.

Analyzing the problem, we realized that the cross-decomposition algorithm which

is designed for any general decomposing problems, is used specifically for graphs, and

more specifically for unweighted graphs. An unweighted graph has a value of 1 for

every connection in an adjacency matrix. Taking advantage of this fact, we found a

6

Figure 3.1: Work of Each Kernel

novel way to mathematically calculate the second part of the equation, rather than

traversing the entire adjacency matrix to see if there is connection or not. If it was

a weighted graph, we need to check the weight value for every connection that exists

outside of current partition which will require traversing entire non-neighbors.

To explain the calculation, we use Figure 3.2 which shows a graph with 29 vertices.

Each circle is a vertex. Now assume we are working on vertex 0 (white circle) and

red circles indicate vertex 0’s neighbor and also in the current partition that we are

checking, P0. Then the green circles indicate the neighbors that are outside of current

partition. If vertex 0 starts to check for partition 1, then the red circles in partition 0

will be changed to green and the two green circles in partition 1 will be changed to red.

First, we count how many circles are in each partition. That is the cardinality array

in Algorithm 2. Second, we count the number of red circles in the current partition

which is the first part of the equation. That is the ‘connected and in curpart’ variable

in Algorithm 2. Next, we can now simply calculate the second part of the equation by

performing the total number of vertices, N , minus the current partition’s cardinality

minus ‘connected and in cur part’ plus the number of neighbors of the current vertex,

‘Degree’. This calculation will immediately give the non-neighbors of j which are

NOT in partition r.

7

Figure 3.2: Partition Example

This approach now has the runtime complexity of O(ND) where D is the degree,

number of neighbors, for each vertex. The degree can be N in the worst case leading

to O(N2), but it will less likely happen in a large real graph. Let us have a graph

with N number of vertices and K many partitions.

Algorithms 1 and 2 are given to show implementation steps. We first initialize

all the data structures we need as shown in Algorithm 1 where ‘rP,cP’ stands for

row partition and column partition respectively. Since phase 2 is basically the same

operation with different partitions and α, β values, only phase 1 will be shown. Then

we launch a number of vertices many of threads to perform a computation for the

Algorithm 1: Pseudo Code for Initialization

Generate COO representation of graph(RowInd, ColInd, RowPtr);
Build Partition arrays, rP and cP, with size of N. rP[N] & cP[N];
Initialize rP & cP with uniformly distributed random number < partition
size(K);

Generate cardinality arrays with size K, rC[K], cC[K];
Count the number of vertices in k partition from partition arrays and assign
the count to r, cC[K];

8

cross-decomposition. Therefore, each thread is responsible for one vertex. Figure

3.1 shows how each thread is taking its portion, the neighbors, from the COO rep-

resentation of the graph. We can see that since we have a number of vertices many

workers to compute in parallel, each thread’s ID is matched with each vertex’s ID.

This enables us to use thread ID as the index to access COO arrays. Algorithm

2 shows the pseudo code for each kernel which performs the calculation explained

above.

3.2 Load Balancing

Note that compared to how original cross-decomposition works, it no longer simply

updates the partition based on maximum cost. Instead, we set a capacity for each

partition, and if one partition is already full, it goes to other partition based on

cost. By setting the capacity for each partition, we can prevent one partition from

getting very large causing load imbalance among partitions. Since the index of cost

array is used as the partition number, we need the sorted index too. To achieve

this, we create an index array and sort it along with the cost array. This operation

is basically the same as the ‘arg sort’ operation in Python. If the first partition is

full, it checks the next partition based on the order of index array. Note that this

process is done atomically. Unless it does not perform an atomic operation, we will

still see load imbalance among partitions due to race condition. A race condition

happens when all threads are trying to read and write to the same memory. To

force threads to read/write in order, we use an atomic operation. However, even if

we perform atomic operations, we can see the output will be non-deterministic. If

each partition has a capacity of 100 and 150 threads trying to get into the partition,

it depends on which reads the memory first and updates. Since our work is not

finding exactly the right partition that each vertex belongs to but rather finding the

relatively best partition based on the number of partitions, we decided to use this

first-come first-served strategy to achieve speed up.

9

Algorithm 2: GPU Kernel Code

cur vertex = thread ID;
create array with size K to count the number of vertices that is connected to
current vertex and in current partition, connected and in curpart[K];

degree = RowPtr[cur vertex+1] - RowPtr[cur vertex];
for j in neighbor of current vertex do

current neighbor = current neighbor that is connected to current vertex
for cur part in all the partition do

if rP[cur neighbor]==cur part then
increment connected and in curpart[cur part]

end

end

end
Create a cost array with size K, cost[K];
for i in all the partition do

cost[i] = β ∗ (h ∗ (α ∗ (connected and in curpart[i])λ)) + α((1− h) ∗ (N −
rC[i] +Degree− β ∗ (connectd and in curpart[i])1/λ)))

end
Create index array, idx = {0,1,2,...,K};
Sort the cost array based on maximum value along with idx array(arg sort);
Assign new partition atomically until one partition has size of N/K;
If the partition with the max cost is already full, check the next one in idx
array;

10

CHAPTER 4

RESULTS

The purpose of our work is to partition a large graph into balanced sub-graphs

quickly. To see the performance of Thanos, we ran real-world graphs provided in the

graph challenge competition [12].

4.1 Runtime

First, we measured both the CPU and GPU runtimes and compared with the CPU

runtime of METIS [9] since it is consistently updated, maintained and used for graph

partitioning as a state-of-the-art graph partitioning tool. For this measurement, we

used P100 from NVIDIA for GPU, and Intel Quad Core for CPU. In Table 4.1, ‘N’

and ‘M’ denote the number of total vertices and edges in the graph respectively.

The times are measured in seconds. Partition size of 4 is used for this measurement.

We can see for some of the small graphs, Thanos is actually slower than METIS.

However, for larger graphs, Thanos is much faster. Thanos achieves 163x faster

runtime than METIS at the best for a large graph, ‘roadNet-CA’. This is due to

two factors. First, the graph has a huge number of vertices that can be processed

in parallel utilizing the power of GPU. Second, as discussed earlier, each kernel has

to run a loop that has bound of number of neighbors of the vertex, O(Degree). For

Thanos, if few vertices have a huge number of edges compared to the rest, the other

threads will be idling when the few threads are processing the vertices that have a

large number of neighbors. To reduce the runtime, we assigned the vertex that has a

maximum outgoing degree to the CPU. However, for ‘roadNet-CA’, all vertices have

11

T
ab

le
4.

1:
R

u
n
ti

m
e

C
om

p
ar

is
on

w
it

h
M

E
T

IS

G
ra

p
h

N
am

e
[1

2]
N

M
T

h
an

os
(C

P
U

)
T

h
an

os
(G

P
U

)
M

E
T

IS
(C

P
U

)
S

p
ee

d
U

p
(C

P
U

)
S

p
ee

d
U

p
(G

P
U

)

as
20

00
01

02
6,

47
4

12
,5

72
0.

00
9

0.
03

5
0.

02
2.

22
x

0.
57

x
ca

-C
on

d
M

at
23

,1
33

93
,4

39
0.

04
0.

00
67

0.
03

8
0.

95
x

5.
67

x
or

eg
on

1
01

03
31

10
,6

70
22

,0
02

0.
01

2
0.

02
9

0.
02

1.
66

x
0.

68
x

p
2p

-G
n
u

te
ll

a0
4

10
,8

76
39

,9
94

0.
01

9
0.

00
31

0.
04

2.
1x

12
.9

x
as

-c
ai

d
a2

00
71

10
5

26
,4

75
53

,3
81

0.
03

1
0.

05
0.

05
1.

6x
1x

fa
ce

b
o
ok

co
m

b
in

ed
4,

03
9

88
,2

34
0.

02
6

0.
00

21
0.

00
4

0.
15

x
1.

9x
em

ai
l-

E
n

ro
n

36
,6

92
18

3,
83

1
0.

07
1

0.
03

1
0.

07
7

1.
08

x
2.

48
x

lo
c-

b
ri

gh
tk

it
e

ed
ge

s
58

,2
28

21
4,

07
8

0.
09

0.
02

1
0.

12
1.

3x
5.

71
x

ci
t-

H
ep

P
h

34
,5

46
42

0,
87

7
0.

14
0.

02
0.

06
7

0.
47

x
3.

35
x

ci
t-

P
at

en
t

3,
77

4,
76

8
16

,5
18

,9
47

8.
2

0.
2

25
.6

3.
12

x
12

8x
so

c-
E

p
in

io
n

s1
75

,8
79

40
5,

74
0

0.
15

0.
05

7
0.

07
0.

46
x

1.
22

x
so

c-
S

la
sh

d
ot

08
11

77
,3

60
46

9,
18

0
0.

17
0.

05
1

0.
36

2.
11

x
7.

05
x

so
c-

S
la

sh
d

ot
09

02
82

,1
68

50
4,

23
0

0.
19

0.
04

9
0.

4
2.

1x
8.

16
x

am
az

on
03

02
26

2,
11

1
89

9,
79

2
0.

4
0.

01
6

0.
36

0.
9x

22
.5

x
am

az
on

03
12

40
0,

72
7

2,
34

9,
86

9
0.

9
0.

07
1

0.
67

0.
7x

9.
43

x
am

az
on

05
05

41
0,

23
6

2,
43

9,
43

7
0.

93
0.

07
6

0.
81

0.
87

x
10

.6
5x

am
az

on
06

01
40

3,
39

4
2,

44
3,

40
8

0.
95

0.
07

1
0.

67
0.

7x
9.

43
x

ro
ad

N
et

-P
A

1,
08

8,
09

2
1,

54
1,

89
8

1.
1

0.
01

5
2.

4
2.

1x
16

0x
ro

ad
N

et
-T

X
1,

37
9,

91
7

1,
92

1,
66

0
1.

12
0.

02
2

3.
11

2.
77

x
14

1.
36

x
ro

ad
N

et
-C

A
1,

96
5,

20
6

2,
76

6,
60

7
1.

6
0.

03
4.

9
3x

16
3.

33
x

fl
ic

ke
rE

d
ge

s
10

5,
93

8
2,

31
6,

94
8

0.
42

0.
1

0.
5

1.
19

x
5x

gr
ap

h
50

0-
sc

al
e1

8-
ef

16
17

4,
14

7
7,

60
0,

69
6

0.
7

0.
49

3.
72

5.
3x

7.
59

x
gr

ap
h

50
0-

sc
al

e1
9-

ef
16

33
5,

31
8

15
,4

59
,3

50
1.

4
0.

76
7.

9
5.

6x
10

.3
9x

gr
ap

h
50

0-
sc

al
e2

0-
ef

16
64

5,
82

0
31

,3
61

,7
22

2.
6

1.
2

18
.5

7.
1x

15
.4

1x
gr

ap
h

50
0-

sc
al

e2
1-

ef
16

1,
24

3,
07

2
63

,4
63

,3
00

5.
2

2
48

.4
9.

3x
24

.2
x

S
p

ee
d

U
p

in
A

ve
ra

ge
14

x
30

x

12

almost the same number of neighbors, between 1 to 12 enabling all threads to finish

their jobs very quickly and in the same time. On average, Thanos using GPU is 30x

faster than METIS.

4.2 Partition Quality

Since those real graphs are very large, we cannot visualize easily with graph visual

tools to see the partition quality. Table 4.2 shows the result of comparing the edge cut

reduction results among partitions with Thanos and METIS [9]. To compare, we used

random partitions as the baseline since partitioning a graph randomly is the fastest

method although quality might be poor. In the table, ‘P0’ denotes the total number

of edges inside partition 0. ‘P0↔P1’ denotes the total number of edges that are

connecting partition 0 and 1. ‘#External Edges’ denotes the total number of edges

that exist among partitions. Finally ‘Reduction %’ shows the edge cut reduction

percentage compared to the solution done by random partitioning. The ideal result

should be maximized internal edges for each partition and minimized outgoing edges

among partitions. From data set ‘roadNet-CA’, for Thanos, we can see the number

of edges that are leaving one partition to another are dramatically reduced and the

number of internal edges for each partition are dramatically increased compared to

the random partition. For Thanos, 99% of edges that were originally connecting

partitions are now put inside of partition making each partition more dense while

METIS is achieving only 44% reduction from the random partition. We achieved

the best reduction result for this data set. Unfortunately, Thanos is not effective on

some data sets. On data set ‘soc-Slashdot0902’, both Thanos and METIS were not

able to achieve any benefit from just partitioning a graph randomly resulting in edge

reduction of 0%.

To see how original graphs look, we sampled with every 500 vertices and visualized

the adjacency matrix since visualizing the entire graph is not possible. Figure 4.1

shows the upper triangular of adjacency matrix for the ‘roadNet-CA’ graph and

‘soc-Slashdot0902’. From this visualization, we can see that vertices are not densely

13

T
ab

le
4.

2:
E

d
ge

C
u
t

R
ed

u
ct

io
n

A
m

on
g

P
ar

ti
ti

on
s

w
it

h
P

ar
ti

ti
on

S
iz

e
of

4

G
ra

p
h

s
P

0
P

1
P

2
P

3
P

0↔
P

1
P

0↔
P

2
P

0↔
P

3
P

1↔
P

2
P

1↔
P

3
P

2↔
P

3
#

E
x
te

rn
al

E
d

ge
s

R
ed

u
ct

io
n

%

ro
ad

N
et

-C
A

R
an

d
om

17
2,

39
0

17
2,

86
7

17
2,

43
0

17
2,

52
3

34
6,

20
9

34
6,

15
7

34
6,

81
5

34
5,

93
6

34
5,

62
1

34
5,

65
9

2,
07

6,
39

7
N

/A
T

h
an

os
68

0,
50

2
69

9,
69

0
68

4,
63

6
67

2,
94

5
6,

75
8

1,
28

1
2,

02
8

1,
56

9
5,

51
7

11
,6

81
28

,8
34

99
M

E
T

IS
39

9,
95

4
39

2,
91

0
40

8,
18

3
40

1,
10

5
21

0,
99

0
17

5,
64

4
17

7,
90

3
20

8,
74

3
21

6,
03

8
17

5,
13

7
1,

16
4,

45
5

44

F
li

ck
er

E
d

ge
s

R
an

d
om

14
4,

18
9

14
4,

47
5

13
8,

34
4

15
2,

53
7

28
8,

92
5

28
2,

39
5

29
6,

62
8

28
2,

98
1

29
6,

89
6

28
9,

57
8

1,
73

7,
40

3
N

/A
T

h
an

os
16

6,
46

2
57

,5
46

64
,2

64
1,

62
3,

50
7

58
,5

74
59

,2
14

18
1,

48
2

57
,0

03
25

,1
26

25
,1

26
40

5,
16

9
77

M
E

T
IS

13
2,

56
3

13
5,

75
2

13
4,

29
1

21
0,

27
1

26
9,

31
9

26
7,

06
7

29
6,

36
7

27
0,

73
1

30
0,

82
3

29
9,

76
4

1,
70

4,
07

1
2

ci
t-

P
at

en
t

R
an

d
om

1,
03

2,
12

7
1,

03
4,

99
0

1,
03

6,
00

9
1,

02
8,

35
5

2,
06

3,
05

9
2,

06
9,

31
6

2,
06

1,
66

3
2,

06
7,

03
6

2,
06

1,
34

1
2,

06
5,

05
1

12
,3

87
,4

66
N

/A
T

h
an

os
76

4,
07

8
2,

02
1,

04
7

4,
61

0,
78

8
3,

06
2,

97
2

40
1,

71
0

53
0,

58
7

66
2,

33
8

1,
01

8,
73

8
1,

37
5,

60
5

2,
07

1,
08

4
6,

06
0,

06
2

51
M

E
T

IS
1,

37
5,

13
9

95
8,

05
4

1,
22

6,
62

8
66

3,
72

5
2,

24
8,

09
0

2,
57

4,
29

9
1,

88
7,

62
5

2,
16

7,
47

9
1,

59
9,

99
6

1,
81

7,
91

2
12

,2
95

,4
01

1

gr
ap

h
50

0
sc

al
e1

9-
ef

16

R
an

d
om

46
8,

60
6

48
5,

21
9

48
1,

32
9

49
8,

03
3

95
3,

22
5

95
0,

90
9

96
4,

87
4

96
6,

01
6

98
2,

06
8

97
9,

39
6

5,
79

6,
48

8
N

/A
T

h
an

os
6,

23
4

1,
18

6,
37

9
36

5,
01

6
94

3,
31

2
14

3,
64

9
59

,8
22

90
,2

87
1,

43
9,

32
2

2,
26

4,
77

5
1,

23
0,

87
9

5,
22

8,
73

4
10

M
E

T
IS

53
0,

75
3

52
8,

15
1

43
7,

94
2

43
8,

25
0

1,
05

9,
95

9
96

6,
27

1
96

6,
35

2
96

3,
40

1
96

3,
18

4
87

5,
41

2
5,

79
4,

57
9

0

so
c-

S
la

sh
d

ot
09

02
R

an
d

om
29

,7
04

32
,6

41
32

,0
39

31
,3

29
62

,4
34

62
,2

15
60

,8
08

64
,8

55
64

,2
28

63
,9

77
37

8,
51

7
N

/A
T

h
an

os
8,

60
3

24
,4

22
34

,3
65

57
,3

73
10

,9
46

14
,3

50
44

,7
17

47
,0

37
10

8,
51

6
15

3,
90

1
37

9,
46

7
0

M
E

T
IS

32
,2

46
29

,9
79

36
,5

35
27

,4
83

61
,7

87
68

,7
03

59
,6

20
66

,8
53

57
,9

19
63

,1
05

37
7,

98
7

0

14

(a) roadNet-CA (b) soc-Slashdot0902

Figure 4.1: Upper Triangular Adjacency Matrix [13]

connected for the road net. Each vertex is connected to few vertices only. Also,

most importantly, the connections are close to each other. This is why we see little

triangles in black color and big triangles in shady color in the figure. The cross-

decomposition algorithm seems to perform the best with graphs that are already

nicely clustered.

In contrast to the road net, ‘soc-Slashdot0902’ is a very dense graph. Each vertex

is connected to many other vertices especially toward the right edge. Also, there is a

big triangle formed which is hard to partition. As these cases show, the performance

of the algorithm depends on the characteristics of the graph.

For the rest of the graphs, we used a chart, Figure 4.2, to show the percentage

comparison for better readability. On average, Thanos was able to achieve 43% edge

cut reduction while METIS was achieving 8%. Thanos is also doing well with a very

large network graph. For data set, ‘friendster’ [12], which has 120 million vertices,

we were able to achieve 30% edge cut reduction in only 80 seconds. Figure 4.3 shows

the average edge cut reduction of all the data set based on a different number of

partitions with both Thanos and METIS. We have tested with partition sizes of 4,

8, 12, 16. Thanos always produces around 40% edge cut reduction while METIS

always produces around 8%. Based on the result, Thanos performs well on balanced

graph partitioning in general.

15

Figure 4.2: Edge Cut Reduction with Different Data Set with Partition Size 4

Figure 4.3: Average Edge Cut Reduction Based on Different Partition, 4, 8, 12, 16

16

CHAPTER 5

CONCLUSION

In this work, we introduced a fast graph partitioing tool Thanos that uses the

cross-decomposition algorithm. We have demonstrated that the cross-decomposition

algorithm fits well with the large-scale graph partitioning problem. Not only is the

partition fast but the quality of the partition is high. In the best case, Thanos

achieved 99% edge cut reduction compared to the random partition. Also, the sizes

of all partitions are balanced. Partitioning a graph into equal sizes while minimizing

the edges among different partition is very important in parallel computing. With

the result of our thesis, we can work on multiple sub-graphs in parallel knowing that

each partition is a dense cluster. Our work will be open sourced [14].

17

REFERENCES

[1] K. Andreev and H. Racke, “Balanced graph partitioning,” Theory of
Computing Systems, vol. 39, no. 6, pp. 929–939, Nov 2006. [Online]. Available:
https://doi.org/10.1007/s00224-006-1350-7

[2] R. Krauthgamer, J. S. Naor, and R. Schwartz, Partitioning
Graphs into Balanced Components, pp. 942–949. [Online]. Available:
https://epubs.siam.org/doi/abs/10.1137/1.9781611973068.102

[3] L. Hyafil and R. Rivest, “Graph partitioning and constructing optimal decision
trees are polynomial complete problems,” IRIA-Laboratorie de Recherche en
Informatique et Automatique, Tech. Rep. 33, 1973.

[4] M. R. Garey, D. S. Johnson, and L. Stockmeyer, “Some simplified np-complete
problems,” in Proceedings of the Sixth Annual ACM Symposium on Theory
of Computing, ser. STOC ’74. New York, NY, USA: ACM, 1974. [Online].
Available: http://doi.acm.org/10.1145/800119.803884 pp. 47–63.

[5] T. N. Bui and C. Jones, “Finding good approximate vertex and edge partitions
is np-hard,” Inf. Process. Lett., vol. 42, no. 3, pp. 153–159, May 1992. [Online].
Available: http://dx.doi.org/10.1016/0020-0190(92)90140-Q

[6] H. Garcia and J. M. Proth, “Group technology in production man-
agement: The short horizon planning level,” Applied Stochastic Models
and Data Analysis, vol. 1, no. 1, pp. 25–34, 1985. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/asm.3150010105

[7] M. Abadi et al., “TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015, software available from tensorflow.org. [Online]. Available:
http://tensorflow.org/

18

[8] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with CUDA,” Queue, vol. 6, no. 2, pp. 40–53, Mar. 2008.
[Online]. Available: http://doi.acm.org/10.1145/1365490.1365500

[9] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for
partitioning irregular graphs,” SIAM J. Sci. Comput., vol. 20, no. 1, pp. 359–392,
Dec. 1998. [Online]. Available: http://dx.doi.org/10.1137/S1064827595287997

[10] H. Hillion and J.-M. Proth, “A top-down hierarchical clas-
sification method,” Applied Stochastic Models and Data Analy-
sis, vol. 3, no. 4, pp. 247–255, 1987. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/asm.3150030406

[11] M.-C. Portmann and J.-M. Proth, A Cross-Decomposition Method for Layout
Systems and Scheduling Problem, 01 1989, pp. 323–327.

[12] S. Samsi et al., “Static graph challenge: Subgraph isomorphism,” in IEEE
HPEC, 2017.

[13] “Graph challenge data set stats,” https://graphchallenge-
datasets.netlify.com//, 2019.

[14] D. H. Kim, Thanos, 2019, https://github.com/dannyk0104/Thanos.

19

