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Abstract

Engineers have pushed the boundaries of audio compression and designed

numerous lossy audio compression codecs, such as ACC, WNA, and others,

that have surpassed the longstanding MP3 coding format. However most

of the methods are laboriously engineered using psychoacoustic modeling,

and some of them are proprietary and only see limited use. This thesis, in-

spired by recent major breakthroughs in lossy image compression via machine

learning methods, explores the possibilities of a neural network trained for

lossy audio compression. Currently there are few if any audio compression

methods that utilize machine learning.

This thesis presents a brief introduction to lossy transform compression

and compares it to similar machine learning concepts, then systematically

presents a convolutional autoencoder network with a stochastic binary acti-

vation for a sparse representation of the code space to achieve compression.

A similar network is employed for encoding the residual of the main network.

Our network achieves average compression rates of roughly 5 to 2 and intro-

duces few if any audible artifacts, presenting a promising opening to audio

compression using machine learning.
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Chapter 1

Introduction

In the late 1980s, storage and processing of digital media became common,

but the storage limit and data transfer speeds had yet to catch up, thus

spurring the demand for data compression to facilitate faster transfer and

more efficient storage. The demand led to the iconic codecs such as JPEG

and MP3, both of which are undoubtedly still the most popular forms of

image and audio compression today. These codecs not only helped us ap-

preciate the economy of lossy compression but also made us recognize the

power of transform coding. But these codecs are laboriously engineered,

and the development process is expensive and time-consuming. Many of the

compression codecs do not see advances or much use.

One big advantage of lossy data compression via machine learning over the

traditional methods is the adaptability of a neural network. For example,

one can train a neural network suited to only classical music which may

outperform other compression schemes but not necessarily work well with

rock music. The neural network learns underlying particulars depending on

the data it was trained on. Neural networks are also relatively cheap and

easy to develop compared to traditional methods.

While neural networks provide a novel way to perform transform coding,

many parallels can be drawn between the traditional transform coding meth-
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ods and the machine learning concepts. This chapter will discuss lossy audio

compression and the use of transform coding. By surveying recent related

work in the field, this chapter will connect the concepts of traditional trans-

form coding to machine learning.

1.1 Problem Statement

1.1.1 Lossy Compression

We denote the process of lossy compression by a non-invertible function:

ŷ = Compress(x)

The compressed data ŷ contains less information than the original data x;

therefore, ŷ has a smaller data size and can be stored or transmitted effi-

ciently. The Decompress function attempts to reconstruct x:

x̂ = Decompress(ŷ)

Rate-distortion theory address the trade-off between the two key elements

of lossy data compression: rate and distortion. The goal is to send the least

possible amount of data while maintaining a low distortion that is suited to

a particular use.

Rate is the measure of how much data is left after compression. Without

delving too much into information theory, we will naively express it as a ratio
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of the size of the original data to that of the compressed in a percentage:

R =
size(ŷ)

size(x)
× 100%

Size is usually expressed as the number of bits needed to store/transmit the

data. Smaller rate means the compressed data is smaller than the original.

• If R < 1, size(ŷ) < size(x), the data is compressed and takes up less

storage.

• If R > 1, size(ŷ) > size(x), there is more data than before and it

takes up more storage. When this happens, the compression function

is usually a generative model and has its uses which will be discussed

in Section 1.3.

• Unlike lossless compression which is bound by information entropy,

lossy compression has no theoretical bound on the size(ŷ). By throwing

away enough information, it is possible to attain R� 1.

Distortion is the measure the difference between the decompressed and the

original data. For now we will denote distortion as

D = d(x, x̂)

There are various methods of measuring distortion. Often in the “audiophile”

world, listeners loosely use the term “audio fidelity” to imply the measure

of distortion. “Fidelity” encompasses noise, total harmonic distortion, fre-

quency response of the system, and other characteristics; these measurements

can all reflect human-perceived differences between systems in audio listen-

ing. In the case of audio compression, the ideal D is an all-encompassing
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psychoacoustical measure that perfectly simulates an individual’s auditory

system.

A trade-off between rate and distortion exists for lossy compression prob-

lems. Typically data compressed at a low rate retains less information and

the distortion is higher. The goal of designing a good audio compression

technique is to throw away most data in a way that is least perceptible to

the listener. See Figure 1.1 for an example rate-distortion trade-off plot. For

Figure 1.1: The trade-off between rate and distortion.

some measure D(x, x̂), D = 0 when there is no distortion and increases to

D = 1 for high distortion. The blue line is the theoretical best compression

rate achievable limited by information entropy. All non-ideal compression

schemes reside above the blue line.
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1.1.2 Transform Coding

Transform coding is essential to the efficiency of MP3 and JPEG encod-

ing. An invertible and linear transform/mapping T , usually one akin to the

Fourier transform, maps the raw data to the transform domain in which

the compression function operates. For example, the following is a transform

that maps data x(t) from the t domain to the τ domain using a basis function

b(t, τ):

F (x(τ)) =

∫
f(x(t))b(t, τ) · dt

The transform is reversible for a perfect reconstruction:

f(x(t)) =

∫
F (x(t))bi(t, τ) · dτ

For the case of discrete data, we can have a similar transform from the n

domain to the k domain:

F (x[k]) =
∞∑

n=−∞

f(x[n])b[n, k]

f(x[n]) =
∞∑

k=−∞

F (x[k])b[n, k]

There are countless different mappings; an exemplary transform domain will

have the following two characteristics:

• Energy compaction due to de-correlation: the basis functions are decor-

related; correlated x[n] gets decorrelated in the transform domain, and

energy of X[k] is concentrated in only a few k’s. Therefore most of the

data resides in the least possible space in the transform domain and

more data can be thrown away during compression.
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• Ease of data analysis in the transform domain: this enables targeted

discarding of information according to the application.

For example, MP3 uses discrete cosine transform type VI (DCT-IV). The

DCT has a high energy compaction, close to that of the Karhunen–Loève

transform (KLT). Most of energy is concentrated in low frequencies. Engi-

neers have a good understanding of audio in the frequency domain and can

easily analyze the data using psychoacoustic models that represent human

sensitivity to parts of audio data. The DCT allows the MP3 to target data

that humans cannot hear during compression.

Figure 1.2 is a diagram for the flow of a typical transform compression. Note

that with a neural network implementation of the transform coding, we are

not restricted to linear transformations.

Figure 1.2: Transform coding.

1.2 Audio Compression and Quantization

Before we discuss the compression of audio, we need to understand how

uncompressed audio is stored and how the size of audio data is calculated.
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1.2.1 Digital Audio storage

Sound is produced by vibrations and travels through air via pressure waves;

the pressure waves vibrate our ear drums once they reach our ears. To record

audio, microphones capture the change of amplitude of the vibrations over

time. This produces an analog waveform x(t). The range of x(t) is usually

[−1, 1] representing the maximum amplitude of the vibration available to the

microphone. To reproduce the sound, speakers are driven to vibrate with

an amplitude according to x(t). To store audio digitally, x(t) is digitized

by an analog-to-digital converter (ADC). The typical ADC uses pulse code

modulation (PCM) to encode x(t) into x[n].

PCM has two properties: sample rate and bit depth. The 16 bit PCM, com-

monly used for audio CDs, samples at 44100 Hz with a bit depth of 16 bits.

Every 1/44100 seconds, the ADC registers the amplitude of x(t) with an ac-

curacy of 16 bits, producing one sample of x[n] that can be stored digitally.

Figure 1.3 is an example of the PCM encoding process. The limit of human

hearing is approximately 20 kHz. According to Nyquist sampling frequency,

as long as the ADC samples x(t) at more than twice 20 kHz, we can per-

fectly recover all the audible parts of x(t) without losing audible information.

However, we cannot represent real numbers with infinite precision using only

16 bits, so there is an error introduced by the ADC called quantization error.

We will discuss this error in detail in Section 1.2.2.

It is natural to measure time series digital data such as audio using bit

rate, the number of bits needed every second to store the audio data. The

standard rate of uncompressed “original” studio recordings stored in CDs
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Figure 1.3: 16 bit PCM.

sampled using 16 bit PCM is 1,411,200 bits per second or 1,411 kilobits per

second (kbps): two channels corresponding to the left and right, each having

a sampling rate of 44,100 Hz, and each sample having a bit-depth of 16.

2(ch)× 1

44100
samples/sec× 16bit = 1411200(bits/sec)

The actual bit rate for different encoding methods varies. MP3 has several

different bit rates depending on the compression scheme used, ranging from

high quality 320 kbps, to low quality 64 kbps, to the typical 160 kbps used

in the most popular streaming services.
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1.2.2 Quantization

As shown in the PCM encoding process, quantization is the irreversible pro-

cess of mapping multiple values to one singular value. Figure 1.4 is an ex-

ample of the quantization function that performs decimal rounding.

Figure 1.4: Quantization function.

Quantization is often used in lossy compression to throw away information.

The distortion it produces is called quantization noise. Using Figure 1.3 as

an example from the previous section, at time t = nT , corresponding to

sample n, the error e[n] caused by the quantization process is:

e[n] = x(t)− x[n]

What we effectively hear is the original sound mixed with quantization error

x[n] = x(t)− e[n], producing noise outside the original frequencies of x(t) as

seen in Figure 1.5.
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(a) Quantization noise e[n] = x[n]− y[n]. (b) The magnitude spectrum of e[n]

Figure 1.5: The quantization noise and its magnitude spectrum.

1.2.3 Comparing Traditional Transform Coding and Machine
Learning

In this section we will use MP3 as an example of the traditional transform

coding method and link it to machine learning concepts. Figure 1.6 gives an

overview of the encoding process of MP3.

Figure 1.6: MP3 encoding process.

1. The raw PCM audio data is cut into frames for a lapped transform.

This is the usual method of processing audio data; see Section 2.1.2 for

detailed discussion of lapped transform.
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2. Perform fast Fourier transform (FFT) on each frame for frequency do-

main psychoacoustic modeling. The psychoacoustic model will be used

in the MDCT and quantization steps.

3. A two-stage filter bank is applied to the raw PCM audio frame: the 32

band Pseudo Quadrature Mirror filterbank (PQMF) is cascaded with

a MDCT filterbank. Based on psychoacoustics, the MDCT uses 18

subbands for steady-state tones for better frequency resolution, or 6

subbands for transients for better time resolution. The outputs of the

hybrid filter banks are sorted into scale factor bands which will be

quantized.

4. Each of the scale factor bands has its own adjustable gain. Bands that

are more “important” are scaled by higher gain, and vice versa. The

“importance” of a scale factor band is determined by the psychoacous-

tic model of the masking tones. Masking tones make the quantization

noise in some scale factor bands harder for humans to hear, and these

bands use fewer bits for quantization at a cost of increased impercep-

tible quantization error. Ex: After quantizing the number 1000 with a

uniform quantizer with bin size of 256 (8 bits), floor(1000/256) = 3,

the quantized value has a quantization error of 1000−256∗3
1000

= 0.232.

If the number 1000 is multiplied by a gain of 2 before quantization,

floor(2 ∗ 1000/256) = 7, the quantized value will have a smaller quan-

tization error: 2000−256∗7
2000

= 0.104.

5. The quantized scale factor bands are further compressed using Huffman

coding. The bit allocation loop contains an inner loop and outer loop,

and they control the number of bits used for Huffman coding and the

gains of the scale factor bands. The inner loop adjusts a global gain
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until the Huffman coding produces a small enough bit rate set by the

user. The outer loop adjusts the scale factor of each scale factor band.

The inner loop is nested in the outer loop to adjust the rate accord-

ing to the new scale factors. The bit allocation loop is run until the

quantization noise is below the masking threshold in each scale factor

band.

There are some similarities between the methods used in MP3 encoding and

frequent notions in machine learning that are important in designing a neural

network implementation of lossy audio compression.

• MP3 uses transform coding to compress and encode data in transform

space, using filter banks and discrete cosine transforms. The concept

of latent space representation of data is commonly used in encoding

and decoding neural networks.

• DCT filter banks are similar to applying different kernels for a convo-

lutional neural network.

• Discrete cosine transforms have high energy compaction close to that

of Karhunen–Loève transform (KTL). The KTL is also known as the

principle component analysis (PCA) and happens to be the solution of

an autoencoder with linear activations.

• The inner and outer loops of the bit control loop in the MP3 encoder

adjust the trade-off between rate and distortion. We can model that

trade-off as a loss function for the neural network

L = R + λD
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1.3 Survey of Related work

1.3.1 Image Compression via Neural Network

End-to-end optimized image compression was once state-of-the-art image

compression in the machine learning world, reporting consistently better

performance than JPEG2000 image compression at similar bit rates. Most

notably, it gets rid of blocking artifacts of JPEG2000. Balle et al.[1] present

a great overview of nonlinear transform coding which heavily influenced this

thesis, and they also link generative neural nets to nonlinear transform cod-

ing. In a generative model, the learned latent space representation is a prob-

ability distribution that models the data. This latent space has a high rate

and explains fluctuations and variations of the data very well. Thus samples

in the data space can be generated by sampling the latent space. On the

other hand, the latent space for data compression needs to model the data at

as low a rate as possible while explaining most of the perceptible fluctuations

and variations.

Other than [1], there are several similar works on image compression [2]–[6].

The recurrent elements in these works are:

• a nonlinear transform on the image to bring the image into a latent

space

• a bottle-neck to reduce the dimension of the latent space during trans-

form

• a quantization in the latent space

• an estimate of the gradient of the quantization process during the gra-
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dient descent

• an inverse transform on the compressed data to bring the image back

to the data space

This thesis employs similar elements and overall data flow.

One particular paper, Toderici et al. [6], has some novel elements. Namely,

the authors employ a binarization in code space and they encode the residual

error of the first network to reduce quantization error.

1.3.2 Audio Compression via Neural Network

Kankanahalli [7] is one of the few works, if not the only one, on audio com-

pression using a neural network. Kankanahalli uses an end-to-end deep neu-

ral network based encoder for speech compression. The network uses mel-

frequency cepstral coefficients (MFCC) for a perceptual loss to combat the

degradation of high-frequency content. For the quantization, the network

adpots a scalar version of the quantization introduced by Agustsson et al.

[8]. Kankanahalli reports PESQ measures on par with AMR-WB at various

bit-rates and slightly lower preferences during a subjective test.

Kuleshov et al.[9], while they do not use an audio compression neural net,

employ a convolutional autoencoder (CAE) as a generative model for upsam-

pling audio. They report better results than DNN and spline upsampling.

As described previously, generative models are closely related to compres-

sive models, thus Kuleshov’s work shows promise for CAE as a nonlinear

transform for audio.
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Venkataramani and Smaragdis [10] use an end-to-end network for supervised

single-channel speech separation. The innovation of their work is an adap-

tive front end implemented by a convolutional neural network (CNN). The

adaptive front end is in line with our vision for training transforms based on

the input audio. However, the adaptive front end only works well for short

strides, which increases the size of the latent space drastically.
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Chapter 2

System Overview and Techniques

This chapter first presents a high-level overview and the data path of our

compression system using Figure 2.1. The system is set up like a traditional

transform coding process but with additional layers of nonlinear transfor-

mations realized by a neural network, and a binarizer acting as a quantizer.

Then this chapter will review the technical background for all the components

used in the network.

Figure 2.1: System overview. Data after quantization is denoted with hat.

Compression

1. The input raw audio data is framed and windowed to produce audio

frames x.

2. An analysis transform is applied Fx = T (x), to take x into the trans-

form domain. The transform decorrelates x, and compacts the energy.
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3. Several layers of convolutional autoencoders (CAE) with nonlinear ac-

tivations are applied to map Fx to the latent spaces and produce y.

Some quantization noise is introduced during this process.

4. A stochastic binary activation (SBA) is applied to y for a binary rep-

resentation of the latent space. This is the quantization process that

produces binary bits ŷ.

5. ŷ is grouped into bytes z and encoded by Huffman encoding for further

lossless compression.

6. The output is the compressed data stream out of the whole compression

system.

Decompression

1. Decompression process begins with recovering ŷ from decoding the

Huffman codes.

2. ŷ is then passed into the decoder part of the CAE to recover the trans-

form domain representation Fx̂.

3. The synthesis transform is applied x̂ = T−1(Fx̂) to recover data domain

signal.

4. Reconstructed audio frames x̂ are overlap added to recreate the decom-

pressed audio data for playback.

To reduce the quantization noise, the same compression system is applied,

every frame, to the residual noise e = x− x̂ as well. The compressed and en-

coded residual noise is transmitted along with the compressed audio. During
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decompression, the decompressed error is added back to the decompressed

audio each frame to produce the final output frame: x̂+ ê.

The following sections will summarize the background knowledge of all the

techniques used for each step of the system. The detailed design and imple-

mentation will be designated to Chapter 4.

2.1 Discrete Cosine Transform (DCT)

There are different types of DCTs based on different boundary conditions

as derived by Strang [11]. The first DCT discovered in 1974 by Ahmed et

al. [12] was a type-II DCT. They established that the DCT has low trans-

form domain variance close to that of the optimal Karhunen–Loève transform

(KLT); this means most of the energy of the variance of the transform do-

main is in the first few coefficients. This characteristic is sometimes called

high-energy compaction and is ideal for transform coding because most of the

coefficients can be aggressively compressed or even discarded while maintain-

ing low distortion.

There are key characteristics when comparing the DCT with the KLT and

the discrete Fourier transform (DFT):

• Although the KLT has the best energy compaction, the transform varies

by input. The covariance matrix and eigenvectors need to be calculated

on a sample-by-sample basis for any new data. DCT on the other hand

is a fixed transform with an explicit transform kernel with no data

dependence.

• The DFT is a complex transform; the phase information of audio is
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encoded by the phase of the complex number. The DCT is a real

transform and encodes the phase information. Thus the DFT needs

twice as much storage for the real and imaginary parts and is harder to

compress. It would also require a compression network that can deal

with complex numbers.

• The DFT assumes periodicity of the signal, thereby introducing dis-

continuities during truncation and producing artifacts in the frequency

domain. The DCT assumes both periodicity and even symmetry.

2.1.1 DCT-IV

DCT is a representation of a finite N point sequence x[n] as a linear combi-

nation of cosine functions of different frequencies. We used type-IV DCT for

our system, and it is calculated by:

X[k] =
N−1∑
n=0

x[n] cos

[
π

N

(
n+

1

2

)(
k +

1

2

)]
k = 0, . . . , N − 1

We denote the basis of the transform as:

b[n, k] = cos

[
π

N

(
n+

1

2

)(
k +

1

2

)]
k = 0, . . . , N − 1

As with all linear transforms, the DCT can be rewritten as a matrix multi-

plication: X = Wx, where:

W (i, j) =
2√
N

cos
π

N
(i+

1

2
)(j +

1

2
) i, j = 0, . . . , N − 1

W (i, j) is ith row, jth column of the W matrix.
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A key property of the DCT-IV matrix is that, with the added normalizing

term
√

2
N

, the W matrix is both orthonormal and symmetric. Therefore, the

inverse of the W matrix is just itself:

W−1 = W T = W

The DCT-IV and its inverse can now be calculated using matrix multiplica-

tion and easily implemented as a linear layer of the neural network:

X = Wx

x = W−1X = W TWx

2.1.2 Overlap Add Method

Typically, audio cannot be processed in one go. With a sampling rate of

44100 Hz, there would be 441000 samples to process just for 10 seconds of

audio. Thus audio processing usually involves block transform, where audio

data x[n] is divided into blocks of length L, and processing is done on each

block separately. The mth block is:

xm[n] =


x[n+mL], n = 0, 1, ..., L− 1

0, else

Therefore

x[n] =
∑
m

xm[n−mL]
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Any linear transforms or filtering we apply to the whole of x[n] now can be

instead applied to each block:

X[k] =
N−1∑
n=0

x[n]b[n, k]

=
N−1∑
n=0

∑
m

xm[n−mL]b[n, k]

=
∑
m

(
N−1∑
n=0

xm[n−mL]b[n, k])

=
∑
m

(Xm[k −mL]) k = 0, . . . , N − 1

x[n] ∗ h[n] =
∑
m

(xm[n−mL] ∗ h[n])

However, the discontinuities at the block boundaries introduce artifacts dur-

ing reconstruction when the blocks are pieced back together. Many artifacts

are introduced by the DCT since the DCT assumes periodicity and sym-

metry. A method known as the overlap add method (OLA) builds on the

blocked transform and changes it into a lapped transform to reduce these

artifacts.

During OLA, an overlap is introduced between blocks, and the next block

starts at H(H < L) samples after the start of the previous block. H is called

hop size. Each block xm[n] is also multiplied with a window to reduce the

discontinuity at edge:

xm[n] = x[n]w[n−mH]
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where the window is 0 outside the block:

w[n] = 0, n < −L
2
, n ≥ L

2

Finally, take the transform of each new overlapped block to complete the

lapped transform. To recover the original signal, take the inverse transform

of each block and overlap add them together.

To ensure the overlap add reconstructed data is the same the as original,

the window has to satisfy constant overlap add (COLA). The conditions for

COLA can be derived:

∞∑
m=−∞

Xm[k] =
∞∑

m=−∞

N−1∑
n=0

x[n]w[n−mH]b[n, k]

=
N−1∑
n=0

x[n]b[n, k]
∞∑

m=−∞

w(n−mH)

= X[k]
∞∑

m=−∞

w(n−mH)

Therefore as long as the window satisfies

∞∑
m=−∞

w(n−mH) = 1

the OLA will be a COLA and the x[n] can be recovered. A detailed discussion

of different window types and their COLA conditions is presented by Heinzel

et al.[13]. We tested the most common Hamming window and Hanning

window in Chapter 3.

Overall, a higher overlap gives more faithful reconstruction due to the more
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redundant information, but higher overlap also increases data size in the

transform domain. For x[n] of length N and lapped transformed using hop

size H and frame size L, the ratio of the size of the lapped transformed data

to the original data is:
N
H
× L
N

=
L

H

Therefore a hop size of L/4 would increase the data size by 4.

2.2 Convolutional Autoencoder (CAE)

2.2.1 Autoencoder (AE)

Depending on the literature, an autoencoder (AE) is grouped into the sub-

branch of either unsupervised or “self-supervised” learning. A typical AE is

set up like Figure 2.2, where each line represents a linear function with an

activation: σ(Wx + b). The goal of an AE is to learn a lossy encoder and

decoder pair which are nonlinear transforms that map data from X (data

space) to L (latent space) and back:

E : X → L

D : L → X

The encoder and decoder must minimize the reconstruction error for any

given X ∈ X :

E,D = arg min
E,D

‖X − (D ◦ E)X‖2

The latent space L is where the data after the last hidden layer of the en-

coder and the input of the decoder resides; we do not know what the latent
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Figure 2.2: Typical autoencoder.

space is without analyzing the weights. Typically, by limiting the number of

nodes in the last hidden layer, a bottleneck is imposed, constraining the size

of the latent space, and therefore forcing the network to learn a compressed

representation of the input data. Think of it as a nonlinear principal compo-

nent analysis. The challenge of AE is making the network learn meaningful

representations rather than just a random unknown representation.

Recall the AE minimizes ‖X − (D ◦E)X‖2. We can create a synthetic input

x′ ∈ X and minimize instead ‖X − (D ◦ E)X ′‖2; or we can make a custom

loss function l(x, x̂). For example:

• Adding random noise at the input x′ = x + n creates a denoising AE
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where the latent space is resilient to the random perturbations.

• Withholding parts of the input data, by methods such as downsam-

pling, x′ = Downsample(x), creates an upsampling AE.

• Optimizing the network using a loss function L = l(x, x̂), where l mea-

sures the color difference of an image, creates an AE focused on making

sure the outputs have the same color instead of shape.

In the case of audio compression, the target is just the original audio data;

the loss function is the interesting part that requires deliberation.

2.2.2 Convolutional Neural Network (CNN)

The AlexNet[14] ushered in the era of convolutional neural networks (CNN).

The CNNs are able to capture spatial dependencies of an image through

layers of feature extraction via “convolutions” with different filters. We will

focus on 1D CNNs with a stride of one to maintain the size. The output

y
(l)
q [n] of the convolution at layer l at channel q with stride one is:

y(l)q [n] = σ(
∑
p

U−1∑
u=0

K(l)
p,q[u]y(l−1)p [n− u] + b(l)q )

U samples around y
(l−1)
p [n] from all the input channels p at layer l − 1 are

weight summed using the trainable kernel K
(l)
p,q. This process captures in-

formation spatially and is repeated for all output channels q, producing q

different y
(l)
q [n]’s at the output layer l.

For an input layer with length Lin, the length of the output layer is Lout =

Lin + 2 × padding − kernel size + 1. By having an odd kernel size and a

zero padding size of (kernel size − 1)/2, we are able to keep the output size
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the same as the input. With a bigger stride, the CNN will be downsizing

the data substantially; however, we discovered that much of the frequency

information is lost with downsizing.

Since we preserved the size of the data, the CNNs can be reversed by either

a regular convolution or transposed convolution with the same stride and

padding.

2.2.3 Convolutional Autoencoder (CAE)

Convolutional autoencoders are autoencoders that use convolutional layers

instead of linear layers for analysis transforms and transposed convolutional

layers (or normal convolutional layers) for synthesis transforms. A CAE is

able to better capture spatial information compared to an AE because of

the convolutional layers; the encoder only extracts features important for

reconstructing the input.

The ways to impose a bottleneck for CAE at each layer are:

• Downsampling the output of the convolution at each encoder layer and

upsampling at the decoder layers.

• Decreasing the number of output channels at each encoder layer and

increasing at the decoder layers.

• Penalizing and zeroing out activations. CAEs using this method are

known as sparse autoencoders.

The network in our CAE does not impose a bottleneck, we only take ad-

vantage of the nonlinearity of the CAE to map the audio from transform
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domain to a latent space better suited for quantization by the stochastic

binary activation (SBA).

2.3 Quantization and Compression

2.3.1 Stochastic Binary Activation

A stochastic binary activation (SBA) outputs 1 with probability p and 0

otherwise. We will rely on SBA as our main method of compression because

of two major advantages:

• The SBA have an extreme rate of lossy data compression; inputs of

16 bit/32 bit floating numbers will become a 1 bit binary number.

Although SBA introduces a lot of quantization noise (see Section 3 for

an example of quantization noise produced by SBA), there are methods

to reduce it.

• The gradient of a quantization function such as the one in Figure 1.4

is 0 almost everywhere, and would need an estimated gradient based

on quantization setup to be used for gradient descent. By putting an

activation with a range of [0, 1] in front of the SBA, all data use the

same quantization. We do not have to design specific quantization

schemes and their gradient estimates for different frequency bins or

sub-spaces of the latent space. The CAE will take care of finding a

subspace best suited for the SBA.

R2RT [15] is a blog-post comparing different types of gradient estimations

for sigmoid/softmax activations with a randomizer; the author calls them

Binary Stochastic Neurons. He found that a slope-annealed straight-through
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estimation proposed by Gulcehre et al. [16] gave th best results. We will

use the slope-annealed straight-through method to estimate the gradient of

a scaled hard tanh and a Bernoulli sampler.

Figure 2.3: Hard tanh function.

The hard tanh function (Figure 2.3) is computationally cheaper to calculate

than the tanh, but has issues of gradient saturation:

HardTanh(x) = max(−1,min(1, x))

∂HardTanh(x)

∂x
=


1, −1 ≤ x ≤ 1

0, else

Our SBA is implemented by scaling the hard tanh to have the output range

of [0, 1], and then Bernoulli sampling the output.

SBA(x) = Bernoulli(
HardTanh(x) + 1

2
) = Bernoulli(max(0,min(1,

x+ 1

2
)))
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where the Bernoulli sampler produces 1s or 0s depending on the input:

Bernoulli(p) =


1, p percent of the time

0, (1− p) percent of the time

The slope-annealed straight-through gradient estimation consists of two steps.

First, proposed by Bengio et al. [17], the gradient of the SBA is estimated

by

∂HardTanh(x)

∂x
= 1

Then, the slope of the hard tanh is annealed to increase such that it gradually

matches the step function, the deterministic binarization.

2.3.2 Dithering

As we discussed in Section 1.2.2, quantization noise is potentially cyclical,

producing noisy artifacts in particular frequencies in audio compression that

are very obtrusive to human hearing. Adding random white noise before

quantization reduces these audible artifacts and diffuses the quantization

error into different frequency bins. This process is called dithering and it

minimizes average error.

For example, if we are quantizing the number x = 2.2 with a floor function

b(2.2)c = 2, then the quantization error is: e = 2.2−2
2

= 0.1. If we add a

uniform noise U = [0, 1] to x before quantization:

• 80% of the time, we are adding u < 0.8, b(2.2 + u)c = 2.

• 20% of the time, we are adding u > 0.8, b(2.2 + u)c = 3.
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• Overall, the expected value is E[b(2.2 + u)c] = 0.8× 2 + 0.2× 3 = 2.2.

So with enough samples, the expected error is E[e] = 0.

Dithering the input to the stochastic binary activation (SBA) reduces the

quantization noise.

2.3.3 Huffman Coding

A coding system maps a set of symbols to binary bit strings so that they

can be transmitted digitally. Huffman coding is a variable length prefix

code. Prefix code is a coding system where no whole code word is a prefix of

any other code word, which eliminates any ambiguity when separating the

stream of code into code words; therefore, a prefix code is uniquely decodable.

Huffman coding exploits the fact that some symbols occur more often than

others, assigns fewer bits to these symbols, and thus uses fewer bits overall

in data transmission.

In our case, the output bits of the SBA are grouped into 8-bit bytes; each

byte is now a symbol. Since the bits are sparse, the most common byte

symbol is x00 (x representing hex-decimal). Instead of using the same length

of 8 bits for every symbol, the Huffman coding will use only 1 bit to represent

x00. We will then proceed to find all the probabilities of all byte symbols

and design a byte symbol to code mapping for all the 8-bit symbols. Given

that the probability of each symbol i occurring is pi, the expected length of

the Huffman code is:

E[L] =
∑
i

pili

where li is the number of bits symbol i is coded with.
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In our network, since the binary bits are not saved to save computation

time, an empirical probability distribution is calculated for each frame for a

Huffman coding, and the overall code length is estimated by averaging across

multiple frames.

2.3.4 Residual Compression

Inspired by the differential pulse-code modulation (DPCM) which encodes

the difference between samples (prediction error) to improve encoding, the

same compression network is applied to the reconstruction error of the first

network. We call it the residual compression network. It has greatly reduced

the noise of the SBA at the cost of roughly doubling the compression rate.

The residual from the first network is much smaller in magnitude, thus using

a new network to capture the error is ideal.

2.4 Loss Functions

The loss function of a convolutional autoencoder (CAE) controls how the

CAE optimizes and what the latent space represents. Recall that lossy audio

compression is a trade-off between rate R and distortion D; therefore the

loss function L must force the CAE to learn a latent space with a low rate

while maintaining a low distortion:

L = D + λR

where λ is a weighting parameter to adjust the trade-off. The next question

to ask is what are good measures for distortion and rate?
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Depending on the distortion measure D, the CAE will learn a latent space

focused on modelling D, and will lead to the quantization process discarding

information based on D. We will divide distortion into 2 parts: structural

and perceptual. Structural distortion is a measure of the difference in overall

shape of the audio waveform, spectrograms, etc. Perceptual distortion is a

measure of the perceived difference in the audio as heard by humans.

The rate measureR should closely represent the actual amount of information

in the latent space that will be discarded by the quantization process so that

the correct amount quantization is applied to maintain a proper compression

rate.

We will use mean squared error (MSE) loss for structural distortion, highpass

filter loss and mel-frequency cepstral coefficient (MFCC) loss for perceptual

distortion, and sparsity loss for rate measure. The effects of these loss func-

tions are demoed in Chapter 3.

2.4.1 Sparsity Loss

Since the binary bits of the output of the stochastic binary activation (SBA)

are grouped into bytes for Huffman encoding, by enforcing sparsity of the

binary bits, we generate more 0’s which roughly estimates to a more con-

centrated byte symbol distribution; i.e., a high sparsity after SBA will corre-

spond to more x00 bytes. With a more concentrated distribution of symbols,

a better Huffman encoding rate can be achieved. The sparsity loss is a L1

norm:

lsparse =
∑
|z[n]|

32



where z[n] is the binary outputs of the SBA.

The disadvantage of using the L1 loss for sparsity is the lack of control over

the actual compression rate; it measures the actual amount of information

the SBA discards but not the rate of the Huffman encoding. Furthermore,

the weighting of the loss must controlled; too great of a weight will unduly

degrade audio quality or even zero out the outputs of the SBA.

2.4.2 Mean Squared Error (MSE) Loss

To maintain the general structure of the audio after compression and decom-

pression, we will use the mean squared error (MSE) loss of the original audio

and the reconstructed audio:

lMSE = E[(x− x̂)2]

2.4.3 Highpass Filter (HPF) Loss

Due to the nature of some genres of audio, they lack information in high fre-

quencies. The small magnitudes of the DCT of the high frequencies are hard

to quantize, and this introduces a lot of quantization noise. This problem is

similar to the lack of high spatial frequency information in 2D CAEs trained

on images. A mitigation was proposed by Ichimura [18], called the spatial

frequency loss. He applies a Laplacian filterbank on the images and uses the

MSE of the features in the subbands as a loss function.

In order to boost the high frequencies of the audio for our CAE, we will apply

a highpass filter h to the original and reconstructed audio, and the MSE of
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the two is added to the overall loss as a loss called the highpass filter (HPF)

loss:

lHPF = MSE(h(x), h(x̂))

2.4.4 Mel-frequency Cepstral Coefficients (MFCC) Loss

We will use mel-frequency cepstral coefficients (MFCC) to model the per-

ceptual loss of the compressed audio along with HPF loss. We will use the

frame-wise MSE of the MFCC of the compressed vs. original audio.

lMFCC = MSE(MFCC(x),MFCC(x̂))

To calculate the MFCCs:

1. The audio is segmented into frames and a window is applied.

2. The square of the Fourier transform of each frame is calculated. This

is the power spectrum: |F{x}|2.

3. The power spectrum is mapped onto the mel scale using triangular

filter banks.

4. The energy in each filter is summed to get a coefficient for each mel-

frequency bin.

5. The bins are highly correlated. To reduce the number of bins needed,

a DCT of the log of the bins is taken to decorrelate them. See Section

2.1 for details of decorrelation.

6. Keep a few of the coefficients after the DCT.

The mel scale used in MFCC puts more emphasis on lower frequencies to

match human audio perception. MFCC models the envelope of the time

34



power spectrum which is representative of the vocal tract; thus MFCC has

been very popular and successful in feature extraction for speech. Much

progress has been made in understanding the use of MFCC for music features.

Logan [19] discovered that it is successful for classifying music vs. speech,

and DCT is still comparable to KTL in decorrelating the spectra. Li et al.

[20] report that music genre classification accuracy using MFCC as feature

extraction is comparable to that using FFTs.

2.5 Normalization

The output of the DCT, also the input of the CAE, may have various different

magnitudes. Passing data with different magnitudes through the CAE to

be convolved with the same filters of a particular magnitude contributes to

noise and potential reconstruction errors during inverse DCT. We have taken

various precautions to avoid this issue and to reduce the quantization noise.

A combination of normalizing the DCT output and batch normalization in

the CAE is used after some experimenting. See Chapter 3 for our experiment

results on normalization schemes.

2.5.1 Normalization of Transform Domain

Each frame of the output of the DCT is divided by its norm, which is then

cast into a 16-bit float and also multiplied back at the end of the decoder of

the CAE. The norm of each frame will also be added to the calculation of

the compression rate as it is needed during decompression.

We also experimented with subtracting the mean of each frame, but it brings

no visible/audible improvement as seen in Chapter 3.
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2.5.2 Batch Normalization

Originally introduced by Ioffe and Szegedy [21] as a method to speed up

training, batch normalization whitens each mini-batch x(b) using its mean

and variance:

x̂(b) =
x(b) − E[x(b)]√

Var(x̂(b))

We take advantage of mini-batch whitening to normalize the first few input

layers of the CAE. During inference, a running mean and variance are used

instead for the batch norm to apply the same transform.

2.5.3 Weight Normalization

Salimans and Kingma [22] invented weight normalization to reparameterize

the weight vector in order to speed up training:

w =
g

||v||
v

This reparameterization decouples the Euclidean norm of the weight vector

||w|| = g from the direction vector v such that the step sizes are much more

controlled during gradient descent:

∇gL =
∇wL

||v||
v ∇v =

g

||v||
∇wL−

g∇gL

||v||2
v

We attempted to use weight normalization to control the norm of the weights

along with l2 regularization. However, as we found out the main cause of

artifacts is the un-normalized DCT coefficients, we left it in to speed up

training.

36



Chapter 3

Experiments

This chapter provides side-by-side comparisons of the spectrograms of the

audio compressed with different methods and techniques we experimented

with when designing the network, and these experiments dictate how the

final network is designed in Chapter 4. This chapter does not report any

detailed results of the actual performance of the network; the reports are

delegated to Chapter 5.

3.1 Constant Overlap-add (COLA)

We will experiment with different setups for COLA and find one best suited

for our task of audio compression.

3.1.1 Frame Size and Psychoacoustics

We tested our network using various frame sizes and report the results of

the comparison of frame size 2048 vs. frame size 512 in Figure 3.1. The

noise distribution in the spectrogram of the figure is a manifestation of the

classic time-frequency trade-off of based on the entropic uncertainty principle.

The uncertainty principle states that a function cannot be both time limited

and band limited. In a lapped Fourier transform, a wide window yields good

frequency resolution but poor time resolution; a narrower window yields good

time resolution but poor frequency resolution.
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(a) Frame size 2048. (b) Frame size 512.

Figure 3.1: Comparison of frame sizes.

Let us closely examine the distribution of the quantization noise of our neural

network. The spectrogram of the smaller frame size has better onsets of notes

because there is less noise diffusion across time frames. The spectrogram of

the bigger frame size has better steady state tones because there is less noise

diffusion across frequency bins.

Our decision to use the bigger frame is based on the two auditory masking

phenomena of psychoacoustics well studied by Egan and Hake [23]: frequency

masking and temporal masking.

• If two tones of different frequencies f0 and f1 that are close to each

other are played at the same time, the louder tone f0 will have a mask-

ing effect that will cover the softer tone f1, rendering the softer tone

inaudible. The shape of the mask varies based on the loudness and

frequency of the tone; usually it spans the range of only a few hertz

before and after f0.

• If two tones of same frequencies f0 are played one after another at t0

and t1 in close succession, the louder tone at t0 will have a masking

effect that will cover the softer tone at t1, rendering the softer tone

38



inaudible. The shape of the mask varies, usually occurring 20 ms in

front of t0 and 100 ms after t0.

With the masking effect in mind, we examine the spectrograms of the frame

size 512 and 2048:

• The frequency difference between DCT bins with frame size of 512 is

44100/2/512 = 43 Hz, and no frequency masking will occur between

the bins at such a large difference. We can see the quantization noise

smeared across 43 Hz in the spectrogram.

• The time difference between frames of size 512 and hop size of 256 is

256/44100×1000 = 5.8 ms, well within the range of 20 ms for temporal

masking to occur.

• The frequency difference between DCT bins with frame size of 2048

is 44100/2/2048 = 10.8 Hz, and some frequency masking will occur

between the bins depending on the frequency center.

• The time difference between frames of size 2048 and hop size of 1024

is 1024/44100 × 1000 = 23.2 ms, still within the range of 20 ms for

temporal masking to occur.

In conclusion, the quantization noise is much less audible in the 2048 frame

size implementation due to both temporal and frequency masking while the

512 frame size implementation will only have effective temporal masking.

3.1.2 Hops and Windows

We have established in Section 2.1.2 that during OLA, the ratio of the size

of the lapped transformed data to the original data is L
H

, where H is the hop
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size and L is the frame size. Therefore, in order to prevent encoding extra

data, the hop size must be kept as large as possible (overlap as small as

possible). A detailed comparison of different windows applied during OLA

is provided by Heinzel et al. [13]; we will focus on the two concepts they

introduced: “amplitude flatness” and “correlation of frame”.

• During OLA, each point of the data is assigned a weight created by

multiplying the window before being added back together. We want

the weight to be the same for all data points at all samples to achieve

COLA. With COLA, we will have a perfectly flat amplitude. “Ampli-

tude flatness” is the measure of how close we are to COLA.

• Because there is much overlap of the frames, each frame is correlated

after applying the windows. The greater the overlap, the more redun-

dant data there is in each frame and the more correlated each frame

is.

Based on the plots of percent overlap vs. correlation of frames and amplitude

flatness provided by Heinzel et al., the best two windows with least needed

overlap to achieve amplitude flatness of one and least correlation between

frames are the Hamming and Hanning windows. The Hamming window of

length N is:

w(n) = 0.54− 0.46 cos

(
2πn

N − 1

)
0 ≤ n ≤ N − 1

And the Hanning of length N is:

w(n) = 0.5− 0.5 cos

(
2πn

N − 1

)
0 ≤ n ≤ N − 1

Notice the Hamming window does not attenuate all the way to 0 at edges;
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this makes the Hamming window prone to artifacts during reconstruction

using OLA as demonstrated in Figure 3.2. We compare the results of overlap

adding 4 frames using frame size of 2048 and hop size of 1025, which is only

one off from the COLA condition for both windows. Notice the artifacts

created by frame discontinuities in the Hamming window reconstruction.

(a) Hamming vs Hanning window. (b) Hamming vs Hanning window after
OLA.

Figure 3.2: Comparison of Hamming and Hanning window.

Since the frames of audio are processed separately in our neural network,

there will be discontinuities between frames even if we satisfy the COLA

condition. These discontinuities will be amplified by the Hamming window

and attenuated by the Hanning window. Results of experimenting with dif-

ferent windows, shown in Figure 3.3, support our hypothesis. Notice the

long vertical lines in the highest frequencies of the spectrogram from using

Hamming window; these lines are the artifacts created from discontinuities

and can be heard distinctively as a loud “pop”.
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(a) Hanning window. (b) Hamming window.

Figure 3.3: Comparison of audio compression using Hanning and Hamming
window.

3.2 Convolutional Autoencoder (CAE) and Stochastic

Binary Activation (SBA)

We found that we can get a good reconstruction using our CAE by having

a latent space with only four channels, but as we implemented the SBA, the

quality degraded and lots of noise was introduced despite tuning the network

for less compression.

Three types of artifacts can be seen in Figure 3.4, and they all correspond to

distinctly audible noises. The vertical bars are edge discontinuities of frames,

heard as a “pop”. The grid-shaped noise is due to incorrect scaling of the

input to the inverse DCT, and can be heard as a sustained “bzzt” sound.

The huge amount of musical noise and white noise is introduced when the

quantizer is not fine enough to properly quantize small values.

Most of the high-frequency information is lost during quantization due to

the dynamic range difference between the lower and higher frequencies. To

make SBA work for audio compression, we tested a few different techniques.
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(a) Original audio. (b) CAE without SBA.

(c) CAE with SBA. (d) CAE with SBA at higher rate.

Figure 3.4: Comparison of the CAE and SBA.

3.2.1 Noise Reduction

This section will report the noise removal abilities of the following methods:

1. Encoding the residual

2. Dithering the input to SBA

3. Batch normalization

4. Normalizing the DCT before the CAE

First and foremost, encoding the residual greatly improves audio quality at

the cost of a much lower compression rate as seen in Figure 3.5. Much more

of the higher frequency information with small magnitude values is being

reconstructed rather than thrown away because the residual audio would
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(a) With SBA. (b) With SBA and residual encoding.

Figure 3.5: Experimenting with effects of encoding the residual.

have a much more uniform dynamic range in all the frequencies. Encoding

the residual also leads to a bigger data size than the original because the

quantization is finer and discards much less data. However, the three types

of distinct noises are still in the residual encoding network. To remove these

types of noise, we experimented with improving our compression network so

that both the main and residual encoding network perform much better.

The results of our experimentation for the dithering, batch normalization,

and normalizing DCT are shown in Figure 3.6. Figure 3.6a is the reference

with all the methods applied. Neither of the methods adds a lot of size to the

compressed data, so the rate has almost no difference. The three methods all

remove most of the quantization noise in the sparse high frequencies. And

the parts with low energy are falsely boosted if no batch normalization is

applied.

Last, we attempted to subtract the mean of the DCT before feeding it into the

CAE. However there were no perceptible improvements as shown in Figure

3.7
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(a) Our Setup. (b) Without DCT normalization.

(c) Without batch normalization. (d) Without dithering

Figure 3.6: Without various noise removal.

(a) With subtracting mean of DCT. (b) Without subtracting mean of DCT.

Figure 3.7: Comparison of subtracting the mean of DCT.

3.3 Loss Functions

Recall from Section 4.3 that our loss includes: mean squared error (MSE)

loss for structural distortion, highpass filter loss and mel-frequency cepstral
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coefficient (MFCC) loss for perceptual distortion, and sparsity loss for rate

measure. In this section we will experiment with the effects of the different

loss functions. Figure 3.8 is the spectrogram of the decompressed audio when

all the losses are implemented and will serve as a baseline for comparing the

effects of not using each loss.

(a) Original. (b) Our setup.

Figure 3.8: Comparison of original to our setup.

We first experiment with different sparsity losses in Figure 3.9. Although

sparsity loss controls the final compression rate of our network, we experi-

enced the disadvantage of the sparsity loss. We can see in Figure 3.9b that

if we went overboard with the weight on the sparsity loss, we will have too

many 0’s in the subspace for low magnitude components and will introduce

noise for the inverse DCT.

We now experiment with dropping one of the perceptual losses in Figure

3.10. We can see that highpass filter loss is the most important loss in

boosting high-frequency audio quality at the cost of a higher compression

rate. Because the high frequencies have lower dynamic range than the low

frequencies, the quantization will become finer and will throw away less data
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(a) No sparsity enforcement. (b) High sparsity loss weight.

Figure 3.9: Comparison of normalizing.

in the high frequencies.

(a) No HPF loss. (b) No MFCC loss.

Figure 3.10: Without using perceptual loss.
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Chapter 4

System Design and Implementation

This chapter presents the detailed design and implementation of the network

by following the overall data flow as seen in Figure 4.1: from the compression

network on the top half to the decompression network on the bottom half.

Figure 4.1: System overview.

4.1 Compression

Our whole neural network is a frame-wise process where each audio frame

is used as a single data point. We found that block-wise implementation is

harder to normalize. When a block of audio contains many frames that have

high dynamic range, the mean, variance, and norm do not statistically model

all the frames in that block very well.
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4.1.1 Preparing Raw Audio for Frame-wise Processing

The first stage of overlap add is to break the raw audio x[n] into overlapping

frames and apply the window function. The windowing for the mth block

starts at mH, where H is the hop size:

xm[n] = x[n]w[n−mH]

In Chapter 3, we established that 2048 frame size is better than a shorter

frame size so as not to smear the quantization noise across frequencies and

still take advantage of psychoacoustic temporal maskings. And a hop size

of H/2 is the biggest available while maintaining COLA. We also found that

Hanning window outperforms Hamming window for our compression network

as it better attenuates the discontinuities between frames caused by different

processing. The Hanning window function of length N = 2048 is:

w[n] = 0.5− 0.5 cos(
2πn

N − 1
) 0 ≤ n ≤ N − 1

Therefore each xm[n] block has the size (1, 2048).

4.1.2 Analysis Transform T (x)

After the audio data x[n] have been sliced into overlapping blocks of xm[n]

and the window function has been applied, the frames are ready for the DCT

analysis transform T (x). As established in Section 2.1.1, the N point DCT

of the frame is calculated by:

Xm[k] =
N−1∑
n=0

x[n]w[n−mH]b[n, k]
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And this process can be replaced by a matrix multiplication:

Xm[k] = Wx

where

W (i, j) =
2√
N

cos
π

N
(i+

1

2
)(j +

1

2
) i, j = 0, . . . , N − 1

We thus implement the DCT as a simple linear layer in the neural network.

Before feeding the result of the DCT into the CAE, we make sure the output

is of unit norm:

Xm[k] =
Xm[k]

‖Xm[k]‖

The normalizing coefficient ‖Xm[k]‖ is cast to 16 bit float and passed into

the compressed data stream to be used later for inverting the normalization

during decompression.

4.1.3 Convolutional Autoencoder (CAE)

Before the first three CAE layers, we apply batch normalization to the input.

For a mini-batch x(b) at batch b:

x̂(b) =
x(b) − E[x(b)]√

Var(x̂(b))

During inference the running mean and variance is used instead.

The CAE consists of 4 1D convolutional layers, each layer having a filter size

of 3, stride size of 1 and zero padding size of 1. Each CAE layer is calculated

50



using:

y(l)q [n] = σ(
∑
p

U−1∑
u=0

K(l)
p,q[u]y(l−1)p [n− u] + b(l)q )

For the first three layers the nonlinear activation σ(x) is a leaky rectified

linear unit (leakly ReLU):

σ(x) = LeakyReLU(x) =


x, x ≥ 0

0.01× x, x < 0

For the fourth layer, the activation is a tanh: σ(x) = tanh(x).

The length of the output of the 1D convolutional layer with stride size 1 at

each channel is:

Lout = Lin + 2× padding size− kernel size + 1

By padding the input with (kernel size− 1)/2 = (3− 1)/2 = 1 zeros, we are

able to maintain the same length for the output as the input. The size of the

output at each layer is listed in Table 4.1.

Table 4.1: Encoder data sizes.
Layer Filter Size

in - N batch x 1 x 2048
y(0) 3 N batch x 128 x 2048
y(1) 3 N batch x 128 x 2048
y(2) 3 N batch x 64 x 2048
y(3) 3 N batch x 4 x 2048

Note our CAE encoder does not perform dimension reduction. In the end we

have four output channels and the data size is expanded by 4 times. We rely

on our SBA for actual data compression, and having a bigger latent space
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gives more leeway to learn a good representation for the SBA.

4.1.4 Stochastic Binary Activation (SBA)

Before quantizing our latent space of the CAE with SBA, we first dither

each channel and each batch with uniform noise with a magnitude 0.99 of

the mean of the batch and channel.

yb[c, n] = yb[c, n] + 0.99× µ

where µ = mean(yb[c, n]). And then the SBA is calculated by:

ŷ = SBA(y)

= Bernoulli(
HardTanh(y) + 1

2
)

= Bernoulli(max(0,min(1,
y + 1

2
)))

where the Bernoulli sampler produces 1s or 0s depending on the input:

Bernoulli(p) =


1, p percent of the time

0, (1− p) percent of the time

During training, the slope of the hard tanh is annealed to gradually increase

according to the epoch the training process is on:

x = (1.005(epoch−1))× x

During inference, no annealing occurs, and the epoch is set to one.
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The gradient of the SBA is estimated with straight-through gradient estima-

tion:

∂HardTanh(x)

∂x
= 1

ym, the output of the SBA at frame m, is 2048 binary bits. We group the

bits into bytes and encode them using Huffman encoding.

4.1.5 Huffman Encoding

Each byte from a frame is represented as a symbol for the Huffman encoding.

Since we do not have access to all of the frames during training, an empirical

probability distribution is calculated for each frame and is to be used for

Huffman encoding on the frames separately. We use the average number of

bits used across all frames as an estimate of the true compression rate of

using Huffman encoding on all frames.

4.2 Decompression

First the Huffman code is decoded into 2048 binary bits. These binary bits

ŷ are fed into the inverse CAE.

4.2.1 Inverse CAE

The inverse CAE is implemented by 4 layers of transpose convolution with

kernel size 3, stride size 1 and padding size 1 to maintain the same data

length in each of the channels. The first 3 layers of the CAE have a leaky

ReLU activation. The last layer has no activation as we do not want to

suppress the range of the input into the inverse DCT. The size of the data

at each layer is listed in Table 4.2.
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Table 4.2: Decoder data sizes.
Layer Filter Size

in - N batch x 4 x 2048
ŷ(0) 3 N batch x 64 x 2048
ŷ(1) 3 N batch x 128 x 2048
ŷ(2) 3 N batch x 128 x 2048
ŷ(3) 3 N batch x 1 x 2048

The norm from the compression process must be multiplied back to the

output of the CAE ŷm[k] to prepare it for inverse DCT.

X̂m[k] = ‖Xm[k]‖ · ŷm[k]

4.2.2 Synthesis Transform (T−1(ŷ))

Since the W matrix for the DCT is symmetric and orthonormal, the inverse

DCT can be simply calculated by a simple linear layer of matrix multiplica-

tion:

xm[n] = WXm[k]

4.2.3 Residual Training

At this stage, a frame of the original audio has been compressed and decom-

pressed, and the residual (error) of the reconstruction for this frame can be

calculated:

em[n] = xm[n]− x̂m[n]

The error em[n] of this frame is now passed into the same compression and de-

compression network for both training and inference; the reconstructed error

for the frame êm[n] is added with x̂m[n] to reduce the noise from compressing

xm[n].
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4.2.4 Overlap Add Reconstruction

The final step of decompression is overlap adding all the blocks of decom-

pressed audio:

x[n] =
∞∑

m=−∞

(x̂m[n] + êm[n])δ[n−mH]

The extra samples resulting from the OLA at the tail end are discarded.

4.3 Loss Functions

The loss functions of our neural network are:

lsparse =
∑
|y[n]|

lMSE = E[(x− x̂)2]

lHPF = MSE(h(x), h(x̂))

lMFCC = MSE(MFCC(x),MFCC(x̂))

Our highpass filter h is a simple FIR designed using the window method with

a cutoff of at 0.4fs and a transition bandwidth of 0.8fs.

The MFCC calculates 40 coefficients. The overall loss function for the main

network is:

lmain = lMSE + λ0lsparse + λ1lHPF + λ2lMFCC

The overall loss function for the residual network is:

lresidual = lMSE + λ0lsparse + λ1lHPF
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We trained the network for two setups: a lower compression, high-data-rate

network for sparser audio and a high compression, low-data-rate network for

denser audio. The λ weightings used for the loss functions are listed in Table

4.3.

Table 4.3: Decoder data sizes.
- Sparsity HPF MFCC

High-rate main 0.001 20 0.00002
Low-rate main 0.08 15 0.00001

High-rate residual 0.001 10 -
Low-rate residual 0.0025 0.05 -

4.4 Data and Training

We use various genres of music to focus on different characteristics for training

and testing our network:

• Orchestral for high dynamic range and low energy in high-frequency

bins (sparse).

• Instrumental and jazz for smaller arrangements.

• Pop and rock for low dynamic range, high amount of information in all

frequency bins (dense).

• A capella and new age for vocal.

• Dub step and electronic for interestingly shaped spectrograms.

All of our data is re-sampled to 44100 Hz with a bit-depth of 16 bits, thus

conforming to the standard CD quality audio. The two channels of all the

audio data are added together into a mono track. For training, we randomly
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select frames of 2048 samples (46.4 ms) from all of the audio files as a training

set. We use the Adam optimization [24] for gradient descent. For testing, we

randomly selected 5 different 10 second excerpts from all of the audio files

and performed compression and decompression on them.

The original data is 10 seconds audio with sampling rate of 44100 Hz and a

bit depth of 16 bits. The data rate is: 44100 Hz× 10 s× 16 bits = 7056000

bits/s. The size of the compressed data depends on the Huffman encoding.

However, since different Huffman encoding schemes are used for different

frames of the audio compression network, we will calculate an estimate: for

each frame with P symbols, suppose the length of each encoded symbol is

li, and each symbol occurs pi times. The number of bits used by Huffman

encoding in this frame is pi · li bits. The sum of the number of bits across all

frames is the estimate. The rate of compression is calculated as the ratio of

the size of the original data to that of the compressed.

However, some kinds of music such as orchestral, instrumental, etc., are

“sparser” than others, there is not as much information in all the frequency

bins compared to that of pop, rock, etc. We have no direct control over the

actual bit rate of the compressed data; we can only adjust the loss functions

for it to have more or less compression. The actual rate changes when com-

pressing “sparse” versus “dense” audio. Therefore we trained our network

with two different setups, a high-data-rate low compression network and a

low-data-rate high compression network.
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4.4.1 Training Parameters

The number of data points used, the batch size, and the learning rate are

different for the high-data-rate network and low-data-rate network. They are

listed in Table 4.4.

Table 4.4: Decoder data sizes.
- Samples Learning Rate Epochs Batch

High-rate main 2000 5× 10−4 70 20
Low-rate main 1000 5× 10−4 70 20

High-rate residual 2000 1× 10−4 70 20
Low-rate residual 1000 1× 10−4 70 20

For testing, we select 5 random 10 s excerpts from every audio file in our test

suite and pass them through the compression and decompression.

4.4.2 Worst Case Compression Rate

Supposing the original 16 bit PCM audio data has N samples, the size of

that data is 16N bits. We established in Section 2.1.2 that OLA increases

data size by the ratio of the frame size to the hop size; therefore the data

size is increased by 2 in our setup. The latent space of the CAE has four

channels, and each channel maintains the same size as the input, thus the

data size is further increased by 4. During the SBA, the data is binarized and

the size of the data is reduced to N · 2 · 8 · 16/16 = 8N bits. Since we encode

the residual using the same setup, the size of the residual encoding is also

8N bits. Therefore the SBA output has a total of 16N bits, the same size

as original audio data. In the worst case scenario, if the Huffman encoding

does not decrease data size at all, we will have a compression ratio of 1 to 1.
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Chapter 5

Results

This chapter reports the results of our audio compression network and ex-

amines the noise and artifacts introduced by the network. The spectrograms

will use a frame size of 2048 (bins) and a hop size of 2048/4. We use the same

frame size as our network setup so that we can preserve the exact location of

the quantization noise in the spectrograms and not smear it across frequency

bins. We will report two fidelity measures: frame-wise signal-to-noise ratio

(SNR) and frame-wise MSE. The frame-wise SNR at frame m is calculated

by:

SNR = 10 log10(
Psignal

Pnoise

)

= 10 log10(
1
N

∑N−1
n=0 |xm[n]|2

1
N

∑N−1
n=0 |xm[n]− x̂m[n]|2

)

As we have trained a high-rate network and a low-rate one, we report results

for both of these networks. We also present a side-by-side comparison of the

results of our network against the fixed rate 320 kbps MP3 compression.

5.1 High-Rate Network versus Low-Rate Network

As we have discussed in Section 4.4, the same network will not perform uni-

formly across all audio genres as seen in Figure 5.1.
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(a) Audio with little high-frequency
content.

(b) After compression, quantization
noise is focused in high frequencies.

(c) Audio with lots of high-frequency
content.

(d) Much less quantization noise after
compression.

Figure 5.1: “Sparse” and “dense” audio before and after compression.

Some instrumentation, singing, etc., lack high-frequency content and have

low energy in the high-frequency bands. For a low-data-rate network, the

high-frequency information may get dropped out. However for denser audio

with lots of high-frequency information, the same network will not quantize

the higher frequencies as much and will have a much higher data rate.

5.2 Artifacts and Quantization Noise

A close-up of the quantization noise in our network can be seen in Figure 5.2.
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(a) Compressed audio. (b) Original audio.

Figure 5.2: Close-up image of the quantization noise.

Unfortunately, despite various normalization methods, quantization noise for

extremely low energy values cannot be ignored; it is especially visible for

recordings with a noise floor and the noise is amplified by our network as

seen in Figure 5.3.

(a) Noise floor as in the original record-
ing.

(b) The quantization error boosted the
noise.

Figure 5.3: Noise floor issue.

At times, artifacts in extreme high-frequency ranges are introduced by the

network if the parameters of the loss functions are not set properly, as we

have seen in Chapter 3.
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5.3 Reports

Figure 5.4 and Figure 5.5 are typical epoch loss plots of our network. As

we are using only small data sets, it only takes roughly 150 seconds to train

the low-rate network and 300 seconds to train the high-rate network on a

GTX1080 GPU. The training time for the low-data-rate network is roughly

half the time of the high-data-rate one since we are using half the amount

of data. Moving the data onto GPU is much more time-consuming than the

training.

(a) Main compression low-rate. (b) Residual compression high rate.

Figure 5.4: Epoch vs. loss plot of low data rate.

(a) Main compression of high rate. (b) Residual compression.

Figure 5.5: Epoch vs. loss plot of high rate.
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5.3.1 Results of Low- and High-Data-Rate Networks

Figure 5.6 shows the spectrogram of a “sparse” audio compressed using a

low-rate network. Figure 5.7 shows the corresponding MSE and SNR plots.

(a) Original “sparse” audio. (b) Compressed “sparse” audio.

Figure 5.6: Spectrogram of compressed “sparse” audio using a low-rate net-
work.

(a) Frame-wise MSE. (b) Frame-wise SNR.

Figure 5.7: “Sparse” audio compressed using low-rate network.

Figure 5.8 shows the spectrogram of a “sparse” audio compressed using a

high-rate network. Figure 5.9 shows the corresponding MSE and SNR plots.
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(a) Original “sparse” audio. (b) Compressed “sparse” audio.

Figure 5.8: Spectrogram of compressed “sparse” audio using a high-rate
network.

(a) Frame-wise MSE. (b) Frame-wise SNR.

Figure 5.9: “Sparse” audio compressed using high-rate network.

Figure 5.10 shows the spectrogram of a “dense” audio compressed using a

low-rate network. Figure 5.11 shows the corresponding MSE and SNR plots.
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(a) Original “sparse” audio. (b) Compressed “sparse” audio.

Figure 5.10: Spectrogram of compressed “sparse” audio using a low-rate
network.

(a) Frame-wise MSE. (b) Frame-wise SNR.

Figure 5.11: “Sparse” audio compressed using high-rate network.

Figure 5.12 shows the spectrogram of a “dense” audio compressed using a

high-rate network. Figure 5.13 shows the corresponding MSE and SNR plots.
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(a) Original “dense” audio. (b) Compressed “dense” audio.

Figure 5.12: Spectrogram of compressed “dense” audio using a high-rate
network.

(a) Frame-wise MSE. (b) Frame-wise SNR.

Figure 5.13: “Dense” audio compressed using high-rate network.

5.3.2 Discussion

We can see a slight boost of around 2 dB in the frame-wise SNR when using

a higher data rate network and an overall increase in the frame-wise MSE.

However, only “sparse” audio have a perceptible increase in quality. The

“dense” audio data have a lot of psychoacoustic masking throughout the

frequency bins; so it is not worth compressing “dense” audio using a high-

data-rate network.
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5.4 Compared against MP3

We encoded a 16 bit PCM .wav file using 320 kbps MP3 compression; we can

see in Figure 5.14 that the MP3 compression cuts off all information beyond

20 kHz as it is the limit of human hearing. MP3 also creates a minor offset

in time which causes alignment issues. The frame-wise SNR and MSE are

calculated by manually adjusting the off-set of the MP3 compressed audio.

(a) Original “sparse” audio. (b) Compressed “sparse” audio.

Figure 5.14: Spectrogram of audio compressed using MP3.

(a) Frame-wise MSE. (b) Frame-wise SNR.

Figure 5.15: “Sparse” audio compressed using 320 kbps MP3 compression.

Even though MP3 exhibits a slightly lower SNR in Figure 5.15, the quanti-

zation noise is much more evenly distributed and is barely perceptible. Our

network is no match yet for the MP3 encoder.
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Chapter 6

Conclusion and Future Work

We proposed a convolutional autoencoder network for audio compression.

We are able to learn a nonlinear representation of the DCT, and used a

stochastic binary activation (SBA) to binarize the latent space as a method

of quantization. The neural network is trained in an end-to-end framework

for ease of optimizing the rate-distortion trade-off. We are able to reduce the

quantization noise of the SBA and provide good audio reconstruction with

acceptable SNR. The network demonstrates the powerful capabilities of a

nonlinear transform in finding a subspace that allows data to be binarized.

This is a good starting point for audio compression using neural networks.

Yet we are far from the carefully engineered audio codecs like MP3 and AAC.

One major constraint is the limit of DCT transform without psychoacoustics

to take advantage of the different maskings in the frequency bands. In our

network, the less prominent information of the DCT is thrown away, but

that is not necessarily the less audible information. One possible improve-

ment is to use nonlinear frequency bins such as the mel scale which have

finer frequency resolution at frequencies where our human hearing is more

sensitive. With such a scaling, the frequency masking will better mask out

the quantization noise in these bins.

The disadvantage of using the end-to-end frame work is that it puts much of
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the burden of learning a useful transform on designing a proper loss function.

In conclusion, some of the future steps to take are:

• Design a different network for training the residual. The residual is

very different from the original audio data and it should be compressed

differently.

• Use different networks to compress different lengths of frames based on

the energy distribution of the audio in different subbands. A bandpass

filter loss could be used instead of the highpass filter loss.

• Test different entropy encoding methods better suited to the problem

of encoding sparse binary bits.

• Incorporate the model output variables (MOVs) of the perceptual eval-

uation of audio quality (PEAQ) as loss function. PEAQ is designed to

measure the perceived audio quality using psychoacoustics.

• Step out of the confines of frame-wise processing and autoencoders.

Our current network does not capture temporal information; the audio

frames in the past and future are not utilized during training.
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