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Abstract

Supertree problems are important in phylogeny estimation. Supertree construction takes
in a set of input trees on subsets of species and aims to find a supertree containing all species
subjective to some combinatorial or statistical criterion. As such, it can be used to combine
trees estimated by different research projects, or to construct species trees from gene trees
that may not contain all species, or to serve a part in divide-and-conquer pipelines that
improve the scalability of large scale phylogeny estimation. Yet the most promising supertree
methods, such as the popular Robinson-Foulds Supertree (RFS) methods, not only cannot
guarantee an optimal solution but also are computationally intensive by themselves, as they
are heuristics for NP-hard optimization problems.

We present the first polynomial time algorithm to exactly solve the RFS problem on two
binary input trees, and prove that finding the Robinson-Foulds Supertree of three input trees
is NP-hard. We present GreedyRFS, a greedy heuristic for the Robinson-Foulds Supertree
problem that operates by using our exact algorithm for RFS on pairs of trees, until all the
trees are merged into a single supertree. Our experiments show that GreedyRFS has better
accuracy than FastRFS, the leading heuristic for RFS, when the number of input trees is
small, which is the natural case for use within divide-and-conquer pipelines.
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List of Notations

Standard Notation

A a profile, i.e., a set of unrooted source trees {T1, T2, . . . , TN}

N the number of source trees in a profile

[k] the set of integers from 1 to k, i.e., {1, 2, . . . , k}

Ti a source tree in a profile for any i ∈ [N ]

TS the set of trees with leaf set S

T B
S the set of binary trees with leaf set S

V (T ) the vertex set of a tree T

E(T ) the edge set of a tree T

L(T ) the leaf set of a tree T

NT (v) the set of neighbors of a vertex v in a tree T

πe the bipartition of L(T ) induced by deleting an edge e from a tree T

C(T ) the set of all bipartitions induced by edges in a tree T , i.e., {πe | e ∈ E(T )}

[A|B] a bipartition of the set A ∪B

π|R the bipartition π = [A|B] restricted to R ⊆ A∪B, which becomes [A∩R|B∩R]

T |R the subtree of a tree T induced on leaf set R ⊆ L(T ), with degree-two vertices
suppressed

Notation for RFS and SFS

RF(T, T ′) the Robinson-Foulds (RF) distance between trees T and T ′ (not necessarily
having the same leaf set), calculated by |C(T |X)\C(T ′|X)|+|C(T ′|X)\C(T |X)|,
where X is the shared leaf set
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SF(T, T ′) the split support of trees T and T ′ (not necessarily having the same leaf set),
calculated by |C(T |X) ∩ C(T ′|X)|, where X is the shared leaf set

RF(T,A) the RFS score of tree T with respect to a profile A = {Ti | i ∈ [N ]}, calculated
by

∑
i∈[N ] RF(T, Ti)

SF(T,A) the split support score of tree T with respect to a profile A = {Ti | i ∈ [N ]},
calculated by

∑
i∈[N ] SF(T, Ti)

Notation for Exact-RFS-2

T1, T2 two binary source trees

S1, S2 the leaf sets of T1, T2

X the shared leaf set of T1 and T2, i.e., S1 ∩ S2

S the union of leaf sets of T1 and T2, i.e., S1 ∪ S2

Π the set of all bipartitions of X such that both sides of the bipartition are
non-empty, i.e., 2X\{[∅|X]}

C(T1, T2, X) the set of bipartitions of X in the backbone trees of T1 and T2, i.e., C(T1|X)∪
C(T2|X)

P (e) the path in Ti from which the backbone edge e ∈ Ti|X is obtained by suppress-
ing degree-two vertices

w(e) the weight of the backbone edge e ∈ E(Ti|X) defined as w(e) = |P (e)|

ei(π) the edge in Ti that induces the bipartition π ∈ C(T1, T2, X)

w∗(π) the weight of the bipartition π ∈ Π, calculated by the sum of the weights of
the edges in Ti|X that induce π, i.e., w∗(π) =

∑
i∈[2]w(ei(π))

Ti − Ti|X the subgraph of Ti obtained by deleting all vertices and edges of the subgraph
of Ti induced on X

Extra(Ti) the set of extra subtrees of Ti defined by {t | t is a component in Ti − Ti|X}

r(t) the root of the extra subtree t, which is the unique vertex in V (t) that is
adjacent to a vertex in a backbone tree
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T R(e) the set of extra subtrees attached to e ∈ Ti|X , i.e., the set of extra subtrees
whose roots are adjacent to the internal vertices of P (e)

T R∗(π) the set of extra subtrees that are attached to the edges in Ti|X that induce π,
i.e., T R∗(π) =

∪
i∈[2] T R(ei(π))

BP i(Q) the set of bipartitions in C(Ti|X) with one side being a strict subset of Q, i.e.,
BP i(Q) = {[A|B] ∈ C(Ti|X) | A ⊊ Q or B ⊊ Q}

BP(Q) the set of bipartitions in C(T1, T2, X) with one side being a strict subset of Q,
i.e., BP(Q) = BP1(Q) ∪ BP2(Q)

T RS i(Q) the set of extra subtrees attached to the edges in Ti|X that induce bipartitions
in BP i(Q), i.e., T RS i(Q) =

∪
π∈BPi(Q) T R(ei(π))

T RS(Q) the set of extra subtrees attached to the edges in T1|X and T2|X that in-
duce bipartitions in BP(Q), i.e.,

∪
π∈BP(Q) T R

∗(π), which is equivalent to
T RS(Q) = T RS1(Q) ∪ T RS2(Q)

C the set of bipartitions from input trees, i.e., C(T1) ∪ C(T2)

ΠX the set of bipartitions from input trees that are induced by the edges on the
paths connecting vertices of X, i.e., ΠX = {[A|B] ∈ C | A∩X ̸= ∅ and B∩X ̸=
∅}

ΠY the set of bipartitions from input trees that are induced by the edges in an
extra subtree or connecting an extra subtree to a backbone tree, i.e., ΠY =

{[A|B] ∈ C | A ∩X = ∅ or B ∩X = ∅}
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Chapter 1: Introduction

Motivation. Phylogenetic trees are graphical models of evolutionary relationships. Be-
sides the immediate value of informing us about how the known species evolved on earth,
phylogenies can be used in many ways. For example, phylogenies are helpful in identifying
new species, have applications to clinical medicine [1], can be used to identify patterns of
evolution of morphological and chemical characteristics [2], and serve to develop ecological
and biogeographical conservation strategies [3, 4].

With increasingly fast and cheap sequencing technologies, there has been an explosion of
large-scale genomic datasets, with now many hundreds of thousands of sequences available
for many species, leading to the construction of very large species trees, and suggesting the
possibility of estimating the Tree of Life. However, phylogeny estimation is computationally
and statistically challenging on large datasets. Thus, a divide-and-conquer framework has
become increasingly important to large-scale phylogeny estimation. The first step of the
framework is to decompose the set of all species (and their associated sequence data) into
overlapping subsets so that a phylogenetic tree can be estimated on each subset individually
and potentially in parallel. Then a supertree method is used to combine the small trees on
subsets of species into a supertree containing all species.

However, current leading supertree methods do not scale well to the large datasets they
are designed for in the divide-and-conquer pipeline as most supertree methods use heuristics
for NP-hard optimization problems [5–9]. Divide-and-conquer pipelines can be provably sta-
tistically consistent under stochastic models of evolution, provided that optimal supertrees
are computed. However, current methods use local search heuristics for NP-hard optimiza-
tion problems and so are not guaranteed to find optimal solutions. Thus, the resulting
divide-and-conquer pipeline are not statistically consistent. In this context, to design a
supertree method that has both good accuracy when used in a divide-and-conquer frame-
work and guaranteed optimality for the statistical consistency of the pipeline can be of both
theoretical and empirical interests.

Supertree problems are also interesting outside divide-and-conquer pipelines. For ex-
ample, supertree methods can be used to compute species trees from a set of gene trees
on overlapping subsets of species. Among the established supertree problems, we focus on
the Robinson-Foulds Supertree (RFS) problem, which was first proposed in [10, 11]. RFS
is a natural supertree problem as it tries to minimize the topological difference between
the supertree and the input trees. RFS can also be seen as a heuristic for the Maximum
Likelihood Supertree problem [12, 13], and hence has desirable properties. Unfortunately,
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RFS is shown to be NP-hard when the number of input trees is not bounded [14] and any
previous method either provides a heuristic [10, 11, 15, 16] or solves a constrained version of
the problem [17]. It was not known before what the complexity of RFS is when the number
of input trees is restricted to be a small constant, like two or three. This is the area in which
we make progress.

Contributions. In this thesis, we prove that RFS can be solved exactly in polynomial
time when given only two binary input trees and that RFS is NP-hard for three or more
input trees. We show that the Split Fit Supertree problem (SFS), introduced in [18], has the
same set of optimal solutions as RFS when the output is required to be binary (by default)
but their optimal solutions are different when the output does not need to be binary.

Finally, we present GreedyRFS, a simple greedy heuristic for RFS that operates by
applying our exact algorithm for two trees repeatedly until all the trees are merged together.
Despite its simplicity, we show (using an experimental performance study on simulated
datasets) that GreedyRFS provides improved accuracy over the leading RFS method when
the number of input trees is small, which is the natural case for use within divide-and-conquer
pipelines.

Structure of thesis. First we give some background information and related work of this
thesis in Chapter 2. Chapter 2 also presents essential terminologies and formally define the
RFS and SFS problems we study in this thesis. Our main theoretical results, including
the polynomial time exact algorithm for RFS with two binary input trees and its proof of
correctness, are mostly presented in Chapter 3 with some proofs appear in the appendices
for the sake of better exposition. Chapter 3 also contains other theoretical results such as
hardness results on RFS and SFS. Chapter 4 gives a brief description of the experiments we
performed and their evaluation results. We talk about directions of future work and conclude
the thesis in Chapter 5. The appendices contain some additional theorems, lemmas, and
proofs needed for the theoretical results and additional details and results on the experiments.
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Chapter 2: Background and Related Work

In this chapter, we give some background information for this thesis, including the divide-
and-conquer pipeline used in large phylogeny estimation (see Section 2.1) and major su-
pertree problems and their methods (see Section 2.2). We also talk about related work on
the Robinson-Foulds Supertree problem and the Split Fit Supertree problem (see Section
2.3). In the end, we formalize the terminologies, the notation, and the problem statements
in Section 2.4.

2.1 DIVIDE-AND-CONQUER PIPELINE

With the computational and statistical challenges of phylogeny estimation on large
datasets, a divide-and-conquer framework that improves scalability and accuracy of tree
estimation methods has become increasingly important. The divide-and-conquer framework
takes a set of sequences or gene trees as input and estimates a gene tree or a species tree in
three steps. It first decomposes the set of all species into (usually overlapping but sometimes
disjoint) subsets of species. This step uses an estimated starting tree to make the decom-
position balanced. Then a tree is estimated on each subset of species by a tree estimation
method (called the base method) that is either computationally intensive or inaccurate on
large datasets. The estimation of trees on the subsets of species can also be recursive, i.e.,
the divide-and-conquer framework is recursively applied to each subset. In the last step, the
small trees on the subsets of species are merged into a large tree containing all species, ei-
ther using a supertree method for overlapping subsets or using other information for disjoint
subsets.

Methods that use this divide-and-conquer framework with overlapping subset decompo-
sition, such that each subset of species has a small enough evolutionary diameter, are called
disk-covering-methods (DCMs) [19–22]. Some DCMs have good statistical guarantees such
as statistical consistency or even absolute fast convergence [19, 21]. Most DCMs developed
so far are also shown to have good empirical performances. One such example is DACTAL,
which improves the accuracy and scalability of tree estimation from unaligned sequences [22]
and improves the accuracy of species tree estimation methods when used in the species tree
estimation setting [23]. Another example is DCM-NJ [19], which improves the accuracy of
Neighbor-Joining [24], a classical distance-based method that has large discrepancy of accu-
racy between large-diameter and small-diameter datasets. However, the last step of DCMs,
which is the supertree construction, can be computationally intensive by itself and most
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current supertree methods do not scale well to the large datasets they are designed for in
the divide-and-conquer pipeline. (We will talk more about supertree methods in the next
section.)

Divide-and-conquer framework can also be used with disjoint leaf set decomposition, thus
avoiding the computationally intensive step of supertree construction. Some recent methods
that adopted this approach include NJMerge [25], TreeMerge [26], and Constrained-INC [27].

2.2 SUPERTREE PROBLEMS AND METHODS

A supertree construction problem takes in a set of trees on overlapping leaf sets and tries
to find a supertree on the union of the leaf sets optimizing some combinatorial or statistical
criterion. Supertree methods originated from the need to combine trees already estimated
in different research projects into a larger tree. Supertree methods can also be used in the
context of species tree estimation if the input trees are genes trees on subsets of species. But
most importantly, supertree construction plays a crucial role in divide-and-conquer pipelines
that aim at improving the scalability and accuracy of classical phylogeny estimation methods
on large datasets.

However, most current supertree methods either have unsatisfying accuracy or are too
computationally intensive to scale to the large datasets they are designed for in the divide-
and-conquer pipeline as they are heuristics for NP-hard optimization problems (e.g., Matrix
Representation with Parsimony [5, 6], Matrix Representation with Likelihood [7], Mincut
Supertree [8, 9], Quartets MaxCut [28], and Bad Clade Deletion [29]). Since most accurate
supertree methods do not solve their corresponding optimization problems optimally, the
resulting divide-and-conquer pipelines also do not have good statistical guarantees.

We briefly introduce a few popular supertree problem and their methods. Matrix Repre-
sentation with Parsimony (MRP) [5,6] is the current most popular supertree method and it
has good accuracy. It creates a matrix representation for each input tree where each column
corresponds to an internal edge and each row corresponds to a leaf. It then concatenates
the matrices together to form a MRP matrix, in which each row of the matrix is seen as
a label for the corresponding leaf. It then finds a supertree such that when the internal
vertices of the supertree are labelled optimally, the total Hamming distance on the edges
of the supertree is minimized (i.e., the parsimony of the supertree is maximized) among all
possible supertrees. The MRP problem is NP-hard [30] and heuristics are used to find local
optima. However, the search space of the problem grows exponentially with respect to the
number of leaves, and thus heuristics can be enormously computationally intensive on large
datasets. Another limitation of MRP is that it takes enormous space to explicitly store the
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MRP matrix. Nonetheless, MRP is among the most accurate supertree methods and by far
the most widely used.

Another method that uses the same matrix representation of the input is Matrix Rep-
resentation with Likelihood (MRL) [7], which seeks a maximum likelihood supertree with
respect to the concatenated input matrix by using RAxML [31], an accurate but computa-
tionally intensive maximum likelihood tree estimation method. The MRL method is proved
to have an accuracy comparable to or better than that of MRP [7].

Other than using the matrix representation, we can also find a supertree that minimizes
its topological difference to the input trees directly. The Robinson-Foulds Supertree problem
does exactly that. A closely related and almost complementary problem is the Split Fit
Supertree problem which maximizes the topological similarity between the supertree and
the input trees. We will talk more about related work on these two problems in the next
section.

There are numerous other supertree methods, including quartets-based methods [28,32–
35] and distance-based methods [36–38] . Quartets-based supertree methods usually need to
compute all quartet trees of all input trees and thus have a running time of Ω(n4) where n is
the number of leaves appearing in any input tree. This running time makes quartets-based
supertree methods infeasible to use on large datasets despite their good accuracy [35, 39].
Distance-based methods either find an additive matrix, defining the supertree, that has the
minimum total distance to the additive matrices defining the input trees [36] or construct
a single (not necessarily additive) matrix capturing the distance relationships between all
pairs of species and then find an additive matrix as close to it as possible [38]. Since finding
the closest additive matrix to a given matrix in terms of most of the natural distance metrics
is NP-hard (e.g., L1, L2-norm [40], and L∞-norm [41]), distance-based supertree methods
use heuristics to find local optima and thus are either not as accurate as MRP or accurate
but unscalable.

2.3 RELATED WORK

The Robinson-Foulds Supertree (RFS) problem is an extensively studied supertree prob-
lem [10,11,15–17]. Taking a set of trees on overlapping leaf sets as input, it finds a supertree
that minimizes the sum of the Robinson-Foulds (RF) distances between the supertree and
each of the input trees (we define the problem formally in the next section). Intuitively, the
RF distance of two trees measures the topological differences between them and thus it is
natural to minimize the total RF distance between the supertree and the input trees.

Unfortunately, the RFS problem with unbounded number of input trees is NP-hard,
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as shown in [14]. Therefore, existing RFS methods usually use heuristics (e.g., Robinson-
Foulds Supertrees [10] and URF [11], MulRF [16,42], and PluMiST [15]). These heuristics are
mostly based on hill-climbing in tree search space defined by rearrangement operations such
as nearest-neighbor interchange and subtree pruning and regrafting. On the other hand,
a recently developed method, FastRFS [17], solves a constrained version of RFS exactly.
When the supertree is only allowed to have bipartitions (which we define in the next section)
from the input trees, the constrained version of RFS becomes polynomial-time solvable and
FastRFS solves it exactly. FastRFS has been shown to have the best accuracy on large
datasets among current RFS methods [17].

The closely related Split Fit Supertree (SFS) problem was introduced in [18], and is
based on optimizing the similarity of topologies between the supertree and the input trees.
However, no method for SFS is provided in a software form.

2.4 TERMINOLOGY AND PROBLEM STATEMENTS

Throughout this thesis we will make the following assumptions. A phylogenetic tree t

is an unrooted tree (but not necessarily binary, so that internal vertices may have degree
greater than 3) with leaves that are labelled by distinct elements of a set S of species. For
any positive integer N , let [N ] denote {1, 2, . . . , N}. We will let A = {T1, T2, . . . , TN} denote
the input to a supertree problem, where each Ti for i ∈ [N ] is an unrooted phylogenetic tree
on leaf set L(Ti) = Si ⊆ S (where L(t) denotes the leaf set of t) and the output is a tree
T where L(T ) is the set of all species that appear as a leaf in at least one tree in A, which
by default we will assume is all of S. We use the standard supertree terminology, and refer
to the trees in A as “source trees” and the set A as a “profile”. Let TS denote the set of all
phylogenetic trees such that L(T ) = S and T B

S denote the binary trees in TS.

Robinson-Foulds Supertree. The Robinson-Foulds Supertree (RFS) of a set A of
source trees is a supertree that minimizes the total Robinson-Foulds (RF) distance [43] to
the source trees, which we now define. Each edge e in a tree T defines the bipartition
πe := [A|B] of the leaf set, where A and B are the sets of leaves produced by deleting e (but
not its endpoints) from T . Thus, each tree is defined by the set C(T ) := {πe | e ∈ E(T )}.

The Robinson-Foulds distance between two trees T, T ′ on the same leaf set is the number
of bipartitions that are unique to one of the two trees; i.e., RF(T, T ′) := |C(T )△C(T ′)| =
|C(T )\C(T ′)|+ |C(T ′)\C(T )|. We extend the definition of RF distance to allow for trees to
have different leaf sets as follows: RF (T, T ′), where T and T ′ can have different leaf sets, is
RF (T |X , T ′|X), where X is the shared leaf set and t|X denotes the homeomorphic subtree
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of t induced by X (i.e., restricting t to just the vertices and edges on paths between leaves
in X and then suppressing vertices of degree two). Note that if t is binary, then so is t|X for
any subset X of leaves.

A Robinson-Foulds Supertree [10] of a profile A, denoted RFS(A), is a binary tree T ∗

such that
T ∗ = argmin

T∈T B
S

∑
i∈[N ]

RF(T, Ti). (2.1)

We let RF(T,A) :=
∑

i∈[N ] RF(T, Ti) denote the RFS score of T with respect to profile A.
Thus, the Robinson-Foulds Supertree (RFS) problem takes as input the set A and
seeks a Robinson-Foulds Supertree.

Split Fit Supertree. For two trees T , T ′ with the same leaf set, the split support is the
number of shared bipartitions, i.e., SF(T, T ′) := |C(T ) ∩ C(T ′)|. As with the RF distance,
we can extend the definition of split support to trees T and T ′ that have different leaf sets
by replacing the trees T and T ′ with T |X and T ′|X , respectively, and then computing the
split support.

The Split Fit supertree for a profile A of source trees, denoted SFS(A), is a binary tree
T ∗ such that

T ∗ = argmax
T∈T B

S

∑
i∈[N ]

SF(T, Ti). (2.2)

We denote the split support score of T with respect to A as SF(T,A) :=
∑

i∈[N ] SF(T, Ti).
Thus, the Split Fit Supertree (SFS) problem takes as input the profile A and seeks a
Split Fit supertree.

Variants of RFS and SFS. We consider variants of the two supertree problems in terms
of the number of source trees, source tree types and output tree types:

• The relaxed versions of the problems, where we do not require the output to be binary,
are named Relax-RFS and Relax-SFS.

• We append “-N” to the name to indicate that we assume there are N source trees. If
no number is specified then the number of source trees is unconstrained.

• We append “-B” to the name to indicate that the source trees are required to be
binary; hence, we indicate that the source trees are allowed to be non-binary by not
appending -B.

For example, the RFS problem with two binary input trees is RFS-2-B and the relaxed SFS
problem with three (not necessarily binary) input trees is Relax-SFS-3.
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Other notation. For any tree T , we let V (T ) and E(T ) denote the vertices and edges
of T , respectively. For any v ∈ V (T ), we let NT (v) denote the set of neighbors of v in T .
A bipartition [A|B] is non-trivial if |A|, |B| ≥ 2. A tree T ′ is a refinement of T if T can be
obtained from T ′ by contracting a set of edges. Equivalently, T ′ is a refinement of T if and
only if C(T ) ⊆ C(T ′). A tree is fully resolved or binary if every non-leaf vertex has degree 3

(we will use fully resolved and binary interchangeably). Equivalently, a tree T with n leaves
is fully resolved if and only if C(T ) contains 2n− 3 bipartitions, exactly n− 3 of which are
non-trivial. Two bipartitions π1 and π2 of the same leaf set are said to be compatible if and
only if there exists a tree T such that π1, π2 ∈ C(T ). A bipartition π = [A|B] restricted to
a subset R ⊆ A∪B is π|R = [A∩R|B ∩R]. For a graph G and a set F of vertices or edges,
we use G+F and G−F to represent the graph obtained from adding or deleting the set of
vertices or edges to and from G, respectively.
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Chapter 3: Theoretical Results

In this chapter, we present our theoretical results. Our main result (Theorem 3.1) estab-
lishes that computing the Robinson-Foulds (RF) and Split Fit (SF) supertrees of two binary
source trees can be done in polynomial time. We present a polynomial time algorithm to
solve RFS on two binary source trees in Section 3.1 and give the proof of correctness in
Section 3.2. We also provide additional results on RFS and SFS including hardness results
in Section 3.3. The next two results establish that RFS and SFS have the same set of optimal
trees and that computing an Split Fit supertree (and thus a Robinson-Foulds supertree) for
two binary trees is solvable in polynomial time.

Lemma 3.1. Given an profile A of source trees, a tree T ∈ T B
S is an optimal solution for

RFS(A) if and only if it is an optimal solution for SFS(A).

Theorem 3.1. Let A = {T1, T2} with L(Ti) = Si (i = 1, 2) and X := S1∩S2. RFS-2-B(A)
and SFS-2-B(A) can be solved in O(n2|X|) time, where n := max{|S1|, |S2|}.

We first provide the proof of Lemma 3.1 before moving on to the algorithm and the proof
of correctness for Theorem 3.1. Let N ≥ 2 be any integer. Let A = {T1, T2, . . . , TN} and
S1, S2, . . . , SN be defined as from problem statement of RFS. Let T ∈ T B

S be any binary
tree of leaf set S. Then T |Si

is also binary and thus |C(T |Si
)| = 2|Si| − 3. For any i ∈ [N ],

we have

RF(T, Ti) + 2SF(T, Ti) (3.1)
=|C(T |Si

)\C(Ti)|+ |C(Ti)\C(T |Si
)|+ 2|C(T |Si

) ∩ C(Ti)| (3.2)
=|C(T |Si

)\C(Ti) ∪ (C(T |Si
) ∩ C(Ti))|+ |C(Ti)\C(T |Si

) ∪ (C(T |Si
) ∩ C(Ti))| (3.3)

=|C(T |Si
)|+ |C(Ti)| (3.4)

=2|Si| − 3 + |C(Ti)|. (3.5)

Taking the sum of the equations over all i ∈ [N ], we have

RF(T,A) + 2SF(T,A) =
∑
i∈[N ]

(RF(T |Si
, Ti) + 2SF(T |Si

, Ti)) =
∑
i∈[N ]

(2|Si| − 3 + |C(Ti)|),

(3.6)

which is a constant for any fixed A. Therefore, for any binary tree T and any profile A
of source trees, the sum of T ’s RFS score and twice T ’s split support score is the same,
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independent of T . This implies that minimizing the RF score is the same as maximizing
the split support score. Although this argument depends on the output tree being binary,
it does not depend on the input trees being binary. Hence, we conclude that RFS and SFS
have the same set of optimal supertrees.

3.1 EXACT-RFS-2: POLYNOMIAL TIME ALGORITHM FOR RFS-2-B

We present Exact-RFS-2, the algorithm for SFS-2-B, which (by Lemma 3.1) is also
an algorithm for RFS-2-B. Exact-RFS-2 is described in detail as Algorithm 3.1 and is
illustrated in Figure 3.1 to 3.3. Furthermore, Exact-RFS-2 is the basis for GreedyRFS, a
greedy heuristic we develop and evaluate in Chapter 4.

The input to Exact-RFS-2 is a pair of binary trees T1 and T2 and we define X = S1∩S2

to be their shared leaf set. At a high level, Exact-RFS-2 constructs a tree Tinit that has
a central vertex that is adjacent to every leaf in X and to the root of every “rooted extra
subtree” (which we define below) such that Tinit contains all taxa in S = S1 ∪ S2. It then
modifies Tinit by repeatedly refining it to add specific desired bipartitions, so as to produce
an optimal Split Fit (and also optimal Robinson-Foulds) supertree. The bipartitions that are
added are defined by a maximum independent set in a bipartite “weighted incompatibility
graph” we compute.

3.1.1 Additional Notation

To explain the algorithmic ideas, we need additional notation. Let Π = 2X\{[∅|X]}
denote the set of all possible bipartitions of X such that both sides of the bipartition are
non-empty. Let C(T1, T2, X) denote C(T1|X) ∪ C(T2|X), and let Triv and NonTriv denote
the sets of trivial and non-trivial bipartitions in C(T1, T2, X), respectively. We will refer to
Ti|X , i = 1, 2 as backbone trees. In the rest of the paper, we use i ∈ [2] to index input
trees.

Weights of edges of the backbone trees and weights of bipartitions of X. For any
backbone edge e ∈ E(Ti|X), let the path of e, denoted P (e), be the path in the input tree
Ti from which e is obtained by suppressing degree-two vertices. We define the weight of a
backbone edge with the function w : E(T1|X) ∪ E(T2|X) → N≥0 such that w(e) := |P (e)|
for any e ∈ E(Ti|X). Thus, w(e) is the number of edges on the path in Ti from which e is
obtained by suppressing degree two vertices. For π ∈ C(Ti|X), we define ei(π) to be the edge
that induces π in Ti|X . We define the weight of a bipartition of X using the function
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w∗ : Π→ N≥0 as follows:

w∗(π) =



0 if π ∈ Π\C(T1, T2, X),

w(e1(π)) if π ∈ C(T1|X) \ C(T2|X),

w(e2(π)) if π ∈ C(T2|X) \ C(T1|X),∑
i∈[2]w(ei(π)) else.

(3.7)

For any set F of bipartitions, we extend the definition so that w∗(F ) =
∑

π∈F w∗(π).

Extra subtrees for edges and bipartitions of the backbone trees. The next concept
we introduce is the set of extra subtrees, which are rooted subtrees of T1 and T2, formed
by deleting X and all the edges and vertices on the paths between vertices in X (i.e., we
delete Ti|X from Ti). Each component in Ti − Ti|X is called an extra subtree of Ti, and
note that the extra subtree t is naturally seen as rooted at the unique vertex r(t) that is
adjacent to a vertex in Ti|X . Thus,

Extra(Ti) := {t | t is a component in Ti − Ti|X}. (3.8)

We say that an extra subtree t is attached to an edge e ∈ E(Ti|X) if the root of t

is adjacent to an internal vertex of P (e), and we let T R(e) denote the set of such extra
subtrees attached to edge e. That is,

T R(e) := {t | ∃v ∈ P (e) s.t. r(t) is adjacent to v}. (3.9)

Similarly, if π ∈ C(T1, T2, X), we let T R∗(π) refer to the set of extra subtrees that attach
to backbone edges e1(π) and e2(π) that induce π in T1|X and T2|X , i.e.,

T R∗(π) :=
∪
i∈[2]

T R(ei(π)). (3.10)

Bipartitions and extra subtrees for subsets of X. For any Q ⊆ X, we let BP i(Q)

denote the set of bipartitions in C(Ti|X) that have one side being a strict subset of Q, and
we let T RS i(Q) denote the set of extra subtrees associated with these bipartitions. In other
words,

BP i(Q) := {[A|B] ∈ C(Ti|X) | A ⊊ Q or B ⊊ Q}, (3.11)

T RS i(Q) :=
∪

π∈BPi(Q)

T R(ei(π)). (3.12)
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(a) T1

v1
v2 v3 v4l1

l2
l3 l4 l5

l6

l7

a1a2

a3a4a5

a6

e

(b) T2

l1

l2
l3l4

l5
l6

l7

b1

b2

b3

b4

b5 b6

e′

Figure 3.1: T1 and T2 depicted in (a) and (b) have an overlapping leaf set X = {l1, l2, . . . , l7}.
Each of a1, . . . , a6 and b1, . . . , b6 can represent a multi-leaf extra subtree. Then, Extra(T1) =
{a1, . . . , a6} and Extra(T2) = {b1, . . . , b6}. Let π = [l1, l2 | l3, l4, l5, l6, l7]. Then e1(π) = e
and e2(π) = e′. P (e) is the path from v1 to v4, so w(e) = 3. Similarly, w(e′) = 2 and
thus w∗(π) = 5. T R(e) = {a1, a2} and T R(e′) = {b2}, so T R∗(π) = {a1, a2, b2}. Let
A = {l1, l2, l3}, B = {l4, l5, l6, l7}. Ignoring the trivial bipartitions, we have BP1(A) =
BP2(A) = BP(A) = {π}. Let π567 = [l1, l2, l3, l4 | l5, l6, l7], π67 = [l1, l2, l3, l4, l5 | l6, l7],
and π57 = [l1, l2, l3, l4, l6 | l5, l7]. Then BP1(B) = {π567, π67} and BP2(B) = {π567, π57}.
Thus, BP(B) = {π567, π67, π57}. We have T RS1(A) = {a1, a2} and T RS2(A) = {b2}, so
T RS(A) = {a1, a2, b2}. We also have T RS1(B) = ∅, so T RS2(B) = T RS(B) = {b4, b5, b6}.

(a) T1|X

e1 e2 e3 e4

l1

l2 l6

l7

l3 l4 l5

(b) T2|X

e5 e6 e7 e8

l1

l2
l4 l3 l6

l5

l7

(c) incompatibility graph

vπ1

vπ2

vπ3

vπ4

vπ5

vπ6

vπ7

vπ8

Figure 3.2: We show (a) T1|X , (b) T2|X , and (c) their incompatibility graph (without isolated
vertices that represent trivial bipartitions), based on the trees T1 and T2 in Figure 3.1. Each
πi is the bipartition induced by ei, and the weights for vπ1 , . . . , vπ8 are 3, 4, 1, 1, 2, 2, 2, 3, in
that order. We note that π1 and π5 are the same bipartition, but vπ1 and vπ5 have different
weights as π1 and π5 are induced by different edges; similarly for π3 and π7. The maximum
weight independent set in this graph has all the isolated vertices (vπ1 , vπ3 , vπ5 , vπ7) and also
vπ2 and vπ8 , achieving a total weight of 15.

Intuitively, BP i(Q) denotes the set of bipartitions in C(Ti|X) that are compatible with
the bipartition [Q|X\Q] and are “on the side of Q”. By Corollary A.1 (see Appendix A.1),
for any π = [A|B] ∈ C(Ti|X), BP i(A)∪BP i(B) is the set of bipartitions in C(Ti|X) that are
compatible with π. Similarly, the intuition behind T RS i(Q) is that it represents the set of
extra subtrees of Ti that are “on the side of Q”, i.e., the set of extra subtrees of Ti attached
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to the edges of the subgraph of Ti defined by the bipartitions in BP i(Q). Finally, let

BP(Q) = BP1(Q) ∪ BP2(Q), (3.13)
T RS(Q) = T RS1(Q) ∪ T RS2(Q). (3.14)

We give an example for these terms in Figure 3.1.

Weighted incompatibility graph. The incompatibility graph of a set of trees, each on the
same set of leaves, has one vertex for each bipartition in any tree (and note that bipartitions
can appear more than once) and one edge between each pair of bipartitions if they are in-
compatible (see [44]). We compute a weighted incompatibility graph for the pair of trees
T1|X and T2|X , in which the weight of the vertex corresponding to bipartition π appearing
in tree Ti|X is w(ei(π)), as defined previously. Formally, the weighted incompatibility graph
for T1|X and T2|X is a graph G = (V1∪V2, E), such that Vi = {vπ | π ∈ C(Ti|X)} for i = 1, 2,
and E = {(vπ, vπ′) | π is incompatible with π′}. For each vπ ∈ Vi, weight(vπ) = w(ei(π)).
Thus, if a bipartition is common to the two trees, it produces two vertices in the weighted
incompatibility graph, and each vertex has its own weight (see Figure 3.2). We note that
the incompatibility graph of k trees is k-partite, since the set of bipartitions for any given
tree is by definition compatible.

Two kinds of bipartitions from input trees. We split the set of bipartitions C =

C(T1) ∪ C(T2) into two sets:

ΠX = {[A|B] ∈ C | A ∩X ̸= ∅ and B ∩X ̸= ∅}, (3.15)
ΠY = {[A|B] ∈ C | A ∩X = ∅ or B ∩X = ∅}. (3.16)

We notice that ΠX is the set of bipartitions of S1 or S2 that are induced by edges on the
paths between vertices of X, and ΠY are all the other input tree bipartitions (i.e., ΠY is the
set of bipartitions of S1 or S2 induced by edges inside extra subtrees or connecting extra
subtrees to the backbone trees).

Omitting the parameters T1 and T2 for brevity, we define pX(·) and pY (·) on any tree
T ∈ TS by:

pX(T ) =
∑
i∈[2]

|C(T |Si
) ∩ C(Ti) ∩ ΠX |, (3.17)

pY (T ) =
∑
i∈[2]

|C(T |Si
) ∩ C(Ti) ∩ ΠY |. (3.18)
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Observation 3.1. Note that pX(T ) and pY (T ) decompose the split support score of T into
the score contributed by bipartitions in ΠX and the score contributed by bipartitions in ΠY ;
thus, the split support score of T with respect to T1, T2 is pX(T ) + pY (T ).

As we will show, the two scores can be maximized sequentially without interference and
we can use this observation to refine Tinit so that it achieves the optimal total score.

3.1.2 Overview of Exact-RFS-2.

Exact-RFS-2 (Algorithm 3.1) builds a tree T ∈ T B
S that maximizes its split support score

in four phases. In the pre-processing phase (lines 1 – 5), it computes the weight function w

and the mappings T R, T R∗,BP , and T RS for use in latter parts of the algorithm. In the
initial construction phase (line 6), it constructs a supertree Tinit, which maximizes the pY (·)
score. In the refinement phase (lines 7 – 13), it refines Tinit so that it attains the maximum
pX(·) score. In the last phase (line 14), it arbitrarily refines the supertree to make it binary.

The refinement phase of Algorithm 3.1 has several parts, and begins with the construction

Algorithm 3.1 Exact-RFS-2: Computing a Robinson-Foulds supertree of two trees
Input: two binary trees T1, T2 with leaf sets S1 and S2 where S1 ∩ S2 = X ̸= ∅
Output: a binary supertree T on leaf set S = S1 ∪ S2 that maximizes the split support
score

1: compute C(T1|X) and C(T2|X)
2: for each π = [A|B] ∈ C(T1, T2, X) do
3: for i ∈ [2] do
4: compute T R(ei(π)), w(ei(π)), BP i(A), BP i(B), T RS i(A), T RS i(B)

5: compute T R∗(π), BP(A), BP(B), T RS(A), and T RS(B)

6: construct T as a star tree with leaf set X and center vertex v̂ and with the root of each
t ∈ Extra(T1) ∪ Extra(T2) connected to v̂ by an edge ▷ let Tinit = T

7: construct the weighted incompatibility graph G of T1|X and T2|X
8: compute the maximum weight independent set I∗ in G and let I = {π | vπ ∈ I∗}
9: for each π = [{a}|B] ∈ Triv do

10: detach all extra subtrees in T R∗(π) from v̂ and attach them onto (v̂, a) such that the
subtrees from T R(e1(π)) and subtrees from T R(e2(π)) are side by side and the ordering
of the attachments of T R(ei(π)) match the ordering of the attachments on ei(π) exactly

▷ let T̃ = T after for loop
11: H(v̂) = NonTriv, set sv(π) = v̂ for all π ∈ NonTriv
12: for each π ∈ NonTriv ∩ I do
13: T ← Refine(T, π,H, sv) ▷ let T ∗ = T after for loop
14: arbitrarily refine T to make it a binary tree
15: return T

14



of the weighted incompatibility graph G of T1|X and T2|X (line 7, see Figure 3.2). It then finds
a maximum weight independent set of G that defines a set I ⊆ C(T1, T2, X) of compatible
bipartitions of X (line 8). Finally, it uses these bipartitions of X in I to refine Tinit to achieve
the optimal pX(·) score (line 9 – 13). Algorithm 3.1 handles the trivial and non-trivial
bipartitions in I differently. For any bipartition π ∈ Triv ∩ I (note that Triv ∩ I = Triv),
we know π ∈ C(Tinit|X). Thus, the algorithm attaches all extra subtrees in T R∗(π) onto
the edge that induces π in Tinit|X (line 9 – 10), so as to add the desired bipartitions, which
become π when restricted to X, to the supertree. For any π ∈ NonTriv ∩ I, Algorithm 3.1
invokes Algorithm 3.2 on the supertree and π (line 12 – 13). We note that the order in
which the bipartitions in I are handled does not matter. See Figure 3.3 for an example of
Exact-RFS-2 given two input source trees.

Algorithm 3.2 Refine
Input: a tree T on leaf set S, a bipartition π = [A|B] ∈ NonTriv, two mappings H and sv
Output: a refinement T ′ of T such that C(T ′|Si

) = C(T |Si
) ∪ {π′ ∈ C(Ti) | π′|X = π} for

both i = 1, 2

1: v ← sv(π)
2: T ′ ← T + va + vb + (va, vb)
3: compute NA := {u ∈ NT (v) | ∃a ∈ A s.t. u can reach a in T − v} and NB := {u ∈

NT (v) | ∃b ∈ B s.t. u can reach b in T − v}.
4: for each u ∈ NA ∪NB do
5: if u ∈ NA then connect u to va
6: else connect u to vb
7: detach all extra subtrees in T R∗(π) from v and attach them onto (va, vb) such that

the subtrees from T R(e1(π)) and subtrees from T R(e2(π)) are side by side and the
ordering of the attachments of T R(ei(π)) match the ordering of their attachments on
ei(π) exactly

8: for each t ∈ T RS(A) do
9: if t is attached to v, detach it and attach to va

10: for each t ∈ T RS(B) do
11: if t is attached to v, detach it and attach to vb

12: for each remaining extra subtree attached to v do
13: detach it from v and attach it to either va or vb
14: H(va)← ∅, H(vb)← ∅
15: for each π′ ∈ H(v) do
16: if π′ ∈ BP(A) then
17: sv(π′) = va, H(va)← H(va) ∪ {π′}
18: else if π′ ∈ BP(B) then
19: sv(π′) = vb, H(vb)← H(vb) ∪ {π′}
20: return T ′ = T ′ − v
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Algorithm 3.2 refines the given supertree T on leaf set S with a bipartition of X from
C(T1, T2, X). Given a bipartition π = [A|B] of X, Algorithm 3.2 produces a refinement T ′

of T such that T ′|Si contains, in addition to all bipartitions in C(T |Si
), all bipartitions of

Ti that become π when restricted to X. That is, the refinement T ′ satisfy that C(T ′|Si
) =

C(T |Si
) ∪ {π′ ∈ C(Ti) | π′|X = π} for both i = 1, 2.

To do this, we first find the unique vertex v such that no component of T − v has leaves
from both A and B. We create two new vertices va and vb with an edge between them. We
divide the neighbor set of v into three sets: NA is the set of neighbors that split v from
leaves in A, NB is the set of neighbors that split v from leaves in B, and Nother contains
the remaining neighbors. Then, we make all the vertices in NA adjacent to va and all the
vertices in NB adjacent to vb.

We note that Nother = ∅ if X = S and thus there are no extra subtrees. In the case where
X ̸= S, Nother contains the roots of the extra subtrees adjacent to v and we handle them in
the following four different cases in order to make T ′ include the desired bipartitions:

• those vertices that root extra subtrees in T R∗(π) are moved onto the edge (va, vb) (by
subdividing the edge to create new vertices, and then making these vertices adjacent
to the new vertices) in an order that induces all the desired bipartitions

• those vertices that root extra subtrees in T RS(A) are made adjacent to va

• those that root extra subtrees in T RS(B) are made adjacent to vb

• the remaining vertices can be made adjacent to either va or vb, and the choice does
not impact the split support score

Note that to perform these modifications, we assume that the weight function w and the
mappings T R, T R∗,BP , and T RS computed in the pre-processing stage of Algorithm 3.1
are accessible to Algorithm 3.2. Algorithms 3.1 and 3.2 also use two data structures H and
sv, which can also be thought of as functions or mappings. For a given vertex v ∈ V (T ),
H(v) ⊆ C(T1, T2, X) is the set of bipartitions of X that can be added to T |X by a refinement
at v. Given π ∈ C(T1, T2, X), sv(π) = v means that there exists a refinement T ′ of T at v,
so that C(T ′|X) = C(T |X) ∪ {π}.

3.2 PROOF OF CORRECTNESS FOR EXACT-RFS-2

In this section, we prove Theorem 3.1, i.e., Exact-RFS-2 solves RFS and SFS correctly.
We first present a lemma that upperbounds the pY (·) score for any T ∈ TS and show that
the tree Tinit we build in line 6 of Exact-RFS-2 (Algorithm 3.1) maximizes the pY (·) score.
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(a) Tinit: star with leaf set X and all extra
subtrees attached to center
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(e) After adding π1 = π5 = [12|34567]
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(f) After adding π3 = π7 = [1234|567]

l1

l2
l3 l4

l5
l6

l7

a1a2 b2 a3a4a5 b3 b4

b5 b6

b1 a6

Figure 3.3: Algorithm 3.1 working on T1 and T2 from Figure 3.1 as source trees. X =
{l1, l2, . . . , l7} are the shared leaves and the notation of π1, . . . , π8 is from Figure 3.2. In (a)
to (f), the pX(·) score of the trees are 14, 16, 20, 23, 27, 29, in that order. We explain how the
algorithm obtain the tree in (c) from T̃ by adding π2 = [123|4567] to the backbone of T̃ . Let
A = {l1, l2, l3} and B = {l4, l5, l6, l7}. The center vertex c of T̃ is split into two vertices va, vb
with an edge between them. Then all neighbors of c between c and A are made adjacent to
va while the neighbors between c and B are made adjacent to vb. All neighbors of c which
are roots of extra subtrees are moved around such that all extra subtrees in T R∗(π2) are
attached onto (va, vb); all extra subtrees in T RS(A) = {a1, a2, b2} are attached to va and
all extra subtrees in T RS(B) = {b4, b5, b6} are attached to vb. We note that in this step,
b3 can attach to either va or vb because it is not in T RS(A) or T RS(B). However, when
obtaining the tree in (d) from the tree in (c), b3 can only attach to the left side because for
A′ = {l1, l2, l3, l4, l6}, [l1, l2, l4|l3, l5, l6, l7] ∈ BP(A′) and thus b3 ∈ T RS(A′).
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Lemma 3.2. For any tree T ∈ TS, pY (T ) ≤ |ΠY |. In particular, let Tinit be the tree defined
in line 6 of Algorithm 3.1. Then, pY (Tinit) = |ΠY |.

Since T1 and T2 have different leaf sets, C(T1) and C(T2) are disjoint. Since ΠY ⊆
C(T1) ∪ C(T2), C(T1) ∩ ΠY and C(T2) ∩ ΠY form a disjoint decomposition of ΠY . By
definition of pY (·), for any tree T of leaf set S,

pY (T ) =
∑
i∈[2]

|C(T |Si
) ∩ C(Ti) ∩ ΠY | ≤

∑
i∈[2]

|C(Ti) ∩ ΠY | = |ΠY |. (3.19)

Fix any π = [A|B] ∈ ΠY . Suppose π ∈ C(Ti) and is induced by e ∈ E(Ti) for some i ∈ [2].
By definition of ΠY , either A ∩ X = ∅ or B ∩ X = ∅. By Lemma A.1, e /∈ P (e′) for any
backbone edge e′ ∈ E(Ti|X). Therefore, either e is an internal edge in an extra subtree in
Extra(Ti), or e connects one extra subtree in Extra(Ti) to the backbone tree. In either case,
the construction of Tinit ensures that e is also present in Tinit|Si

and thus π ∈ C(Tinit|Si
).

Therefore, each bipartition π ∈ ΠY contributes 1 to |C(Tinit|Si
)∩C(Ti)∩ΠY | for exactly one

index i ∈ [2] and thus it contributes 1 to pY (Tinit). Hence, pY (Tinit) = |ΠY |.
The next lemma shows that for any π ∈ Π (not necessarily in C(T1, T2, X)), w∗(π)

represents the maximum potential increase in pX(·) as a result of adding the bipartition π

to T |X . The proof of Lemma 3.3 follows the idea that for any bipartition π of X, there are
at most w∗(π) edges in either T1 or T2 whose induced bipartitions become π when restricted
to X. Therefore, by only adding π to T |X , at most w∗(π) bipartitions in ΠX get included
in C(T ′|S1) or C(T ′|S2) so that the pX(·) score is increased by at most w∗(π).

Lemma 3.3. Let π = [A|B] ∈ Π. Let T ∈ TS such that π /∈ C(T |X) but π is compatible
with C(T |X). Let T ′ be a refinement of T such that for all π′ ∈ C(T ′|Si

)\C(T |Si
) for some

i ∈ [2], π′|X = π. Then, pX(T ′)− pX(T ) ≤ w∗(π).

By definition of pX(·),

pX(T
′)− pX(T ) =

∑
i∈[2]

|C(T ′|Si
) ∩ C(Ti) ∩ ΠX | −

∑
i∈[2]

|C(T |Si
) ∩ C(Ti) ∩ ΠX | (3.20)

=
∑
i∈[2]

|(C(T ′|Si
)\C(T |Si

)) ∩ C(Ti) ∩ ΠX |. (3.21)

Therefore, we only need to prove that∑
i∈[2]

|(C(T ′|Si
)\C(T |Si

)) ∩ C(Ti) ∩ ΠX | ≤ w∗(π). (3.22)

18



We perform a case analysis, as follows: Case (1): π /∈ C(T1, T2, X), Case (2): π ∈
C(T1|X)∆C(T2|X), and Case (3): π ∈ C(T1|X) ∩ C(T2|X).

Case 1): Let π /∈ C(T1, T2, X). We recall that w∗(π) = 0. Assume for contradiction
that there exists a bipartition π′ ∈ (C(T ′|Si

)\C(T |Si
)) ∩ C(Ti) ∩ ΠX for some i ∈ [2]. Since

π /∈ C(T1, T2, X) and π′|X = π, by Corollary A.2, π′ /∈ C(Ti) for any i ∈ [2]. This contradicts
the fact that π′ ∈ C(Ti) for some i ∈ [2]. Therefore, the assumption that there exists such
a bipartition π′ is wrong and

∑
i∈[2] |(C(T ′|Si

)\C(T |Si
)) ∩ C(Ti) ∩ ΠX | = 0 ≤ w∗(π).

Case 2): Let π ∈ C(T1|X)∆C(T2|X). We can assume without loss of generality that
π ∈ C(T1|X)\ C(T2|X) since the other possibility is symmetrical. Then, we have w∗(π) =

w(e1(π)). Let π′ ∈ (C(T ′|Si
)\C(T |Si

))∩C(Ti)∩ΠX for some i ∈ [2]. Then we have π′|X = π

by assumption of the lemma. Since π /∈ C(T2|X), by Corollary A.2, we have π′ /∈ C(T2) and
thus π′ ∈ C(T1). By Lemma A.1, the edge which induces π′ in T1 is an edge on P (e1(π)).
Since there are w(e1(π)) edges on P (e1(π)), there are at most w(e1(π)) distinct bipartitions
π′, proving the claim.

Case 3): Let π ∈ C(T1|X) ∩ C(T2|X). Then we have w∗(π) = w(e1(π)) + w(e2(π)).
Fix any π′ ∈ (C(T ′|Si

)\C(T |Si
)) ∩ C(Ti) ∩ ΠX for any i ∈ [2]. Since π′ ∈ C(Ti) and

π′|X = π ∈ C(Ti|X), by Lemma A.1, the edge e′ that induces π′ is an edge on P (ei(π)).
Since there are w(ei(π)) edges on P (ei(π)), there are at most w(ei(π)) distinct bipartitions
π′ in (C(T ′|Si

)\C(T |Si
)) ∩ C(Ti) ∩ ΠX . Therefore, for any i ∈ [2],

|(C(T ′|Si
)\C(T |Si

)) ∩ C(Ti) ∩ ΠX | ≤ w(ei(π)). (3.23)

Taking sum of the inequalities over i ∈ [2], we have∑
i∈[2]

|(C(T ′|Si
)\C(T |Si

)) ∩ C(Ti) ∩ ΠX | ≤ w(e1(π)) + w(e2(π)) = w∗(π). (3.24)

Lemma 3.4 extends the results of Lemma 3.3 to a set of compatible bipartitions. Natu-
rally, the proof of Lemma 3.4 uses Lemma 3.3 repeatedly by adding the compatible bipar-
titions to the tree in an arbitrary order.

Lemma 3.4. For any compatible set F ⊆ Π, let T ∈ TS such that C(T |X) = F . Then
pX(T ) ≤ w∗(F ) =

∑
π∈F w∗(π).

Fix an arbitrary ordering of bipartitions in F and let them be π1, π2, . . . , πk, where
k = |F |. Let Fj = {π1, . . . , πj} for any j ∈ {0, 1, . . . , k}. In particular, F0 = ∅ and Fk = F .
Let T j be obtained by contracting all edges in P (e) for any e ∈ E(T |X) such that πe /∈ Fj.
Then, C(T j|X) = Fj. For each j ∈ [k], C(T j|X)\C(T j−1|X) = {πj}. Fix j ∈ [k] and fix any
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π′ ∈ C(T j|Si
)\C(T j−1|Si

) for some i ∈ [2]. By Lemma A.1, we have π′|X ∈ C(T j|X). We also
know π′|X /∈ C(T j−1|X) as otherwise π′ ∈ C(T j|Si

) by construction, which is a contradiction.
Then π′|X ∈ C(T j|X)\C(T j−1|X) = {πj}. Therefore, for any j ∈ [k], T j is a refinement of
T j−1 such that for any π′ ∈ C(T j|Si

)\C(T j−1|Si
) for some i ∈ [2], π′|X = πj. Hence we can

apply Lemma 3.3 and we have pX(T
j)− pX(T

j−1) ≤ w∗(πj). Therefore, by telescoping sum,

pX(T )− pX(T
0) =

k∑
j=1

pX(T
j)− pX(T

j−1) ≤
k∑

j=1

w∗(πj). (3.25)

Since C(T 0|X) = ∅, by Corollary A.2, C(T 0|Si
) ∩ΠX = ∅ for both i ∈ [2]. Then, C(T 0|Si

) ∩
C(Ti) ∩ΠX = ∅ for both i ∈ [2], which implies pX(T

0) = 0. Thus, pX(T ) ≤
∑

π∈F w∗(π), as
desired.

Claim 3.1. Let G be the weighted incompatibility graph on T1|X and T2|X and let I∗ be
a maximum weight independent set of G. Let I be the set of bipartitions associated with
vertices in I∗, i.e., I = {π | vπ ∈ I∗}. Let F be any compatible subset of C(T1, T2, X). Then
w∗(I) ≥ w∗(F ).

We extend the weight function of vertices in G and let weight(U) denote the total weight
of any set U of vertices of G. For any compatible subset of bipartitions F ⊆ C(T1, T2, X),
let V (F ) be the set of vertices of G associated with the bipartitions in F . We first claim
that w∗(F ) = weight(V (F )). For each π ∈ C(T1|X) ∩ C(T2|X), there are two vertices
associated with it in G with a total weight of w(e1(π)) + w(e2(π)), which is exactly w∗(π).
For each π ∈ C(Ti|X)\C(Tj|X) for i, j ∈ [2] and i ̸= j, weight(vπ) = w(ei(π)) = w∗(π).
Since C(T1, T2, X) = (C(T1|X) ∩ C(T2|X) ∪ (C(T1|X)∆C(T2|X)), we have shown that the
w∗(π) = weight(V ({π})) for any π ∈ C(T1, T2, X). Then taking the sum over all π ∈ F , we
have w∗(F ) = weight(V (F )).

Since bipartitions in C(T1|X)∩C(T2|X) are compatible with bipartitions in C(T1, T2, X),
each bipartition in C(T1|X)∩C(T2|X) becomes two isolated vertices in the weighted incom-
patibility graph, all of which must be included in the maximum weight independent set I∗.
Therefore, V (I) = I∗ and thus weight(I∗) = w∗(I).

Fix any compatible subset F of C(T1, T2, X). Let F ′ = F\(C(T1|X) ∩ C(T2|X)) and let
F ′′ = V (F ′ ∪ (C(T1|X) ∩ C(T2|X))). Then we have

w∗(F ) =w∗(F ′) + w∗(F ∩ C(T1|X) ∩ C(T2|X)) (3.26)
≤w∗(F ′) + w∗(C(T1|X) ∩ C(T2|X)) (3.27)
=w∗(F ′ ∪ (C(T1|X) ∩ C(T2|X))) (3.28)
=weight(F ′′). (3.29)
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Since F is compatible, F ′ ∪ (C(T1|X) ∩ C(T2|X)) is also compatible, and thus F ′′ is an
independent set in G. Therefore, weight(F ′′) ≤ weight(I∗), since I∗ is a maximum weight
independent set in G. We conclude that w∗(F ) ≤ weight(F ′′) ≤ weight(I∗) = w∗(I).

We have the following claim about pX(Tinit), which is needed for the proof of Claim 3.3.

Claim 3.2. Let Tinit be the tree defined in Algorithm 3.1. Then, pX(Tinit) = 2|X|.

For each v ∈ X, consider the bipartition πv = [{v} | S\{v}] of Tinit induced by the edge
that connects the leaf v to the center v̂. It is easy to see that πv|Si

= [{v} | Si\{v}] ∈ C(Ti)

for any i ∈ [2] as πv|Si
is a trivial bipartition of Si. By construction, we also have πv|Si

∈
C(Tinit|Si

). We also know πv|Si
∈ ΠX as both sides of πv have non-empty intersections with

X. Thus, πv|Si
∈ C(Tinit|Si

)∩C(Ti)∩ΠX for any i ∈ [2]. So for each v ∈ X, πv|S1 and πv|S2

each contributes 1 to pX(Tinit). Therefore, pX(Tinit) ≥ 2|X|.
Fix any bipartition π = [A|B] induced by any other edge e ∈ E(Tinit|Si

) for any i ∈ [2].
By construction of Tinit, e must be an edge in an extra subtree or connecting an extra subtree
to the center v̂, i.e., one component in T − e does contain any leaf of X. Therefore, either
A ⊆ S\X or B ⊆ S\X, which implies π|Si

/∈ ΠX for any i ∈ [2]. Hence, there is no
other bipartition of Tinit such that when restrict to Si contributes to pX(Tinit). Therefore,
pX(Tinit) = 2|X|.

The following claim states that the algorithm adds the trivial bipartitions of X (which
are all in I) to T |X in such a way that pX(T ) reaches the full potential of adding those trivial
bipartitions. The proof naturally follows from the way we attach extra subtrees to the edges
inducing trivial bipartitions (Line 8 of Algorithm 3.1).

Claim 3.3. Let T̃ be the tree constructed after line 11 of Algorithm 3.1, then pX(T̃ ) =∑
π∈Triv w

∗(π).

Let π = [{a}|B] be a trivial bipartition of X. We know both e1(π) and e2(π) exist, and
we abbreviate them with e1 and e2. We number the extra subtrees in T R(e1) as t1, t2, . . . , tp,
where p = w(e1)−1, such that t1 is the closest to a in T1. Similarly, we number extra subtrees
in T R(e2) as t′1, t

′
2, . . . , t

′
q, where q = w(e2) − 1, such that t′1 is the closest to a in T2. For

each k ∈ [w(e1)], we define

Ak :=
k−1∪
i=1

L(ti) ∪ {a}, πk := [Ak|S1\Ak], (3.30)
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and for each k ∈ [w(e2)], we define

A′
k :=

k−1∪
i=1

L(t′i) ∪ {a}, π′
k := [A′

k|S2\A′
k]. (3.31)

It follows by definition that πk for any k ∈ [w(e1)] is the bipartition induced by the kth
edge on P (e1) in T1, where the edges are numbered starting from the side of a. This implies
πk ∈ C(T1) for any k ∈ [w(e1)]. Similarly, π′

k ∈ C(T2) for any k ∈ [w(e2)]. In particular, we
notice that π1 = [{a}|S1\{a}] and π′

1 = [{a}|S2\{a}]. Clearly, all these bipartitions (πk and
π′
k for any k) are in ΠX because both sides have none empty intersection with X.

Recall that Algorithm 3.1 moves all extra subtrees in T R∗(π) onto the edge (v̂, a) and
orders them in a way to add our desired bipartitions. In particular, the extra subtrees are
ordered such that subtrees from T R(e1) and subtrees from T R(e2) are side by side and the
attachments of T R(ei) match their attachment on ei exactly (i.e., t1 or t′1, respectively, is
closest to a). It is easy to see that as a result of such ordering of the extra subtrees, we
have πk ∈ C(T |S1) for any k ∈ [w(e1)] and π′

k ∈ C(T |S2) for any k ∈ [w(e2)], where T is the
tree obtained after adding π to the backbone through line 8 of Algorithm 3.1. Therefore,
the algorithm increases |C(T |S1)∩C(T1|X)∩ΠX | by w(e1)− 1, because πk /∈ C(T |S1) before
the step for all k ∈ [w(e1)] except k = 1 (since π1 = [{a}|S1\{a}] ∈ C(T |S1)). Similarly, the
algorithm increases |C(T |S2) ∩ C(T2|X) ∩ ΠX | by w(e2) − 1. Overall pX(T ) is increased by
w(e1)+w(e2)− 2 = w∗(π)− 2 by running one execution of line 8 in Algorithm 3.1 on T and
π.

It is easy to see that line 8 of Algorithm 3.1 never destroys bipartitions of S1 or S2 already
in T , so we have

pX(T̃ ) = pX(Tinit) +
∑

π∈Triv
(w∗(π)− 2) (3.32)

= 2|X|+
∑

π∈Triv
(w∗(π)− 2) (by Claim 3.2) (3.33)

=
∑

π∈Triv
w∗(π). (since |Triv| = |X|) (3.34)

The following lemma (Lemma 3.5) shows that Algorithm 3.2 adds any non-trivial bipar-
tition π ∈ I of X to T |X in a way that realizes the maximum potential increase of pX(T ) of
adding π. The proof mainly relies on three invariants of Algorithm 3.1 and 3.2, which we
describe intuitively here and prove in Lemma A.3 in Appendix A.2. One invariant is that
the auxiliary data structures H and sv ensure that we can correctly find the vertex to split
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to add any bipartition to T |X . Second is that the extra subtrees of any bipartition π to be
added (i.e., T R∗(π)) are attached to the splitting vertex v = sv(π) so that we can move
them from v onto the new edge (va, vb), which will induce π in T ′|X . Third is that we always
make sure that for any bipartition π = [A|B] ∈ C(T |X), the extra subtrees in T RS(A) or
T RS(B) are attached to the right side of the tree (see Figure 3.3). With these invariants,
for any bipartition π to be added, Algorithm 3.2 is able to split the vertex correctly and
move extra subtrees around in a way such that each bipartition in T1 or T2 that is induced
by an edge in P (e1(π)) or P (e2(π)) is present in T |S1 or T |S2 after the refinement. Since
there are exactly w∗(π) such bipartitions, they increase pX(·) by w∗(π).

Lemma 3.5. Let T be a supertree computed within Algorithm 3.1 at line 14 immediately
before a refinement step. Let π = [A|B] ∈ NonTriv∩ I. Let T ′ be a refinement of T obtained
from running Algorithm 3.2 with supertree T , bipartition π, and the auxiliary data structures
H and sv. Then, pX(T ′)− pX(T ) = w∗(π).

Since I corresponds to an independent set in the incompatibility graph G, all bipartitions
in I are compatible. Since C(T |X) ⊆ Triv ∪ (NonTriv ∩ I) = I, π ∈ NonTriv ∩ I must be
compatible with C(T |X), then there is a vertex to split to add π to C(T |X). By invariant
1 of Lemma A.3, v = sv(π) is the vertex to split to add π to T |X and thus Algorithm 3.2
correctly splits v into va and vb and connects them to appropriate neighbors such that in
T ′|X , (va, vb) induces π.

We abbreviate e1(π) and e2(π) by e1 and e2. We number the extra subtrees attached to
e1 as t1, t2, . . . , tp, where p = w(e1)− 1 and t1 is the closest to A in T1. Similarly, we number
the extra subtrees attached to e2 as t′1, t

′
2, . . . , t

′
q, where q = w(e2) − 1 and t′1 is the closest

to A in T2.
For any set T of trees, let L(T ) denote the union of the leaf set of trees in T . We note

that if ei exists, Extra(Ti) = T RS i(A) ∪ T RS i(B) ∪ T R(ei). Thus, A ∪ L(T RS i(A)) ∪
L(T R(ei)) ∪ L(T RS i(B)) ∪B = Si for i ∈ [2].

For each k ∈ [w(e1)], we define

Ak :=
k−1∪
i=1

L(ti) ∪ L(T RS1(A)) ∪ A, πk := [Ak|S1\Ak], (3.35)

and for each k ∈ [w(e2)], we define

A′
k :=

k−1∪
i=1

L(t′i) ∪ L(T RS2(A)) ∪ A, π′
k := [A′

k|S2\A′
k]. (3.36)
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We know that for each k ∈ [w(e1)],

S1\Ak =

p∪
i=k

L(ti) ∪ L(T RS1(B)) ∪B. (3.37)

Thus, for any k ∈ [w(e1)], πk is the bipartition induced by the kth edge on P (e1) in T1,
where the edges are numbered from the side of A. Therefore, πk ∈ C(T1) for any k ∈ [w(e1)].
Similarly, π′

k ∈ C(T2) for any k ∈ [w(e2)].
Since for any k ∈ [w(e1)], Ak ∩X = A ̸= ∅ and (S1\Ak)∩X = B ̸= ∅, we have πk|X = π

and πk ∈ ΠX . Similarly, for each k ∈ [w(e2)], π′
k ∈ ΠX and π′

k|X = π. We also know that
since π /∈ C(T |X), by Corollary A.2, πk /∈ C(T |S1) for any k ∈ [w(e1)] and π′

k /∈ C(T |S2) for
any k ∈ [w(e2)]. We claim that πk ∈ C(T ′|S1) for all k ∈ [w(e1)] and π′

k ∈ C(T ′|S2) for all
k ∈ [w(e2)]. Then assuming the claim is true, we have |C(T ′|S1)∩C(T1)∩ΠX | − |C(T |S1)∩
C(T1) ∩ ΠX | = w(e1) and |C(T ′|S2) ∩ C(T2) ∩ ΠX | − |C(T |S2) ∩ C(T2) ∩ ΠX | = w(e2), and
thus pX(T

′)− pX(T ) = w(e1) + w(e2) = w∗(π).
Now we only need to prove the claim. Fix k ∈ [w(e1)], we will show that πk ∈ C(T ′|S1).

The claim of π′
k ∈ C(T ′|S2) for any k ∈ [w(e2)] follows by symmetry. By invariant 2 of

Lemma A.3, we know that all extra subtrees of T R(e1) were attached to v at the beginning
of Algorithm 3.2 and thus the algorithm attaches them all onto (va, vb) in the order of
t1, t2, . . . , tp, such that t1 is closest to A. Let the attaching vertex of ti onto (va, vb) be ui for
any i ∈ [w(e1)]. Then we note P ((va, vb)) is the path from va to u1, u2, . . . , up and then to
vb. For any t ∈ T RS1(A), by invariant 3 of Lemma A.3, t attached to C(A), the component
containing A in T ′|X − (va, vb). Therefore, if we delete any edge of P ((va, vb)) from T ′, t is
in the same component as A. Similarly, for any t ∈ T RS1(B), t is in the same component
as B if we delete any edge of P ((va, vb)) from T . In particular, consider T ′|S1 − (uk−1, uk).
The component containing uk−1 and A contains all of T RS1(A) and {ti | i ∈ [k − 1]}, thus
the leaves of that component is

A ∪ L(T RS1(A)) ∪
k−1∪
i=1

L(ti) = Ak. (3.38)

Therefore, the edge (uk−1, uk) induces the bipartition [Ak|S1\Ak] in T ′|S1 . Hence, πk ∈
C(T ′|S1) as desired.

Next, we restate our main theorem and present the proof using the lemmas and claims
we have shown.

Theorem 3.1. Let A = {T1, T2} with L(Ti) = Si (i = 1, 2) and X := S1∩S2. RFS-2-B(A)
and SFS-2-B(A) can be solved in O(n2|X|) time, where n := max{|S1|, |S2|}.
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First we claim that pX(T
∗) ≥ pX(T ) for any tree T ∈ TS, where T ∗ is defined as from

line 14 of Algorithm 3.1. Fix arbitrary T ∈ TS and let F = C(T |X). Then by Lemma 3.4,

pX(T ) ≤
∑
π∈F

w∗(π) =
∑

F∩C(T1,T2,X)

w∗(π). (3.39)

The equality follows from that w∗(π) = 0 for any π /∈ C(T1, T2, X). Since F ∩ C(T1, T2, X)

is a compatible subset of C(T1, T2, X), we have w∗(F ∩C(T1, T2, X)) ≤ w∗(I) by Claim 3.1.
Since Triv ⊆ C(T1|X) ∩ C(T2|X) ⊆ I, we have

I = (NonTriv ∩ I) ∪ (Triv ∩ I) = (NonTriv ∩ I) ∪ Triv. (3.40)

Therefore, by Claim 3.3 and Lemma 3.5, we have

pX(T
∗) = pX(T̃ ) +

∑
π∈NonTriv∩I

w∗(π) =
∑

π∈Triv
w∗(π) +

∑
π∈NonTriv∩I

w∗(π) =
∑
π∈I

w∗(π) = w∗(I).

(3.41)

Therefore, pX(T ∗) = w∗(I) ≥ pX(T ).
From Lemma 3.2 and the fact that a refinement of a tree never decreases pX(·) and pY (·),

we also know that pY (T
∗) ≥ pY (Tinit) ≥ pY (T ) for any tree T ∈ TS. By Observation 3.1, for

any T ∈ TS, we have SF(T,A) = pX(T )+ pY (T ). Therefore, T ∗ achieves the maximum split
support score with respect to A among all trees in TS. Thus, T ∗ is a solution to Relax–
SFS-2- �(Corollary 3.1). If T ∗ is not binary, Algorithm 3.1 arbitrarily resolves any polytomy
in T ∗ until it is a binary tree. Because a refinement of a tree does not decreases its split
support score, Algorithm 3.1 returns a tree that achieves the maximum split support score
among all binary trees of leaf set S. See Appendix A.2 for the running time analysis.

Corollary 3.1. Let A = {T1, T2} with Si the leaf set of Ti (i = 1, 2) and X := S1 ∩ S2.
Relax–SFS-2-c�an be solved in O(n2|X|) time, where n := max{|S1|, |S2|}.

3.3 OTHER RESULTS

We present additional results on the relationship between Relax–RFS and Relax–SFS
and the hardness of RFS, SFS, and Relax–RFS.

Lemma 3.6. There exist instances of Relax–RFS and Relax–SFS in which an optimal
solution to Relax–RFS is not an optimal solution to Relax–SFS, and vice-versa.
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Let N ≥ 5 be any integer. Let πi = [1, 2, . . . , i+1 | i+2, . . . , N ] for any i ∈ [N − 3]. Let
A = {T1, T2, . . . , Tn−3} be a profile, where for all i ∈ [N − 3], the leaf set of Ti is [N ] and Ti

contains a single internal edge defining πi. Let Π[N ] denote the set of trivial bipartitions of
[N ]. Let T be the star tree with leaf set [N ] (i.e., T has no internal edges). We note that
C(T ) = Π[N ]). Let Π′ = {πi | i ∈ [N − 3]} (i.e., Π′ contains all the nontrivial bipartitions
from the trees in A). Let T ′ be the caterpillar tree on leaf set [N ] (i.e., T ′ is formed by
taking a path of length N − 2 with vertices v2, v3, . . . , vN−1 in that order, and making leaf
1 adjacent to v2, leaf i adjacent to vi, and leaf N adjacent to vN−1). We note that T ′ the
unique tree such that C(T ′) = Π[N ] ∪ Π′ and thus a compatibility supertree for A.

We will show that (1) T is an optimal solution for Relax–RFS(A), but not an optimal
solution for Relax–SFS(A), and (2) that T ′ is an optimal solution for Relax–SFS(A),
but not an optimal solution for Relax–RFS(A).

(1) We first show that T is not an optimal solution for Relax–SFS(A). Since T ‘ is a
compatibility supertree of trees in A, it achieves the maximum split support score possible.
In particular, C(T ′) ∩ C(Ti) = Π[N ] ∪ {πi} and thus SF(T ′, Ti) = N + 1 for all i ∈ [N − 3].
Overall, the split support score of T ′ is

SF(T ′,A) =
∑

i∈[N−3]

SF(T ′, Ti) = (N − 3)(N + 1). (3.42)

Since C(T ) ∩ C(Ti) = Π[N ], we have

SF(T,A) =
∑

i∈[N−3]

SF(T, Ti) = (N − 3)N < (N − 3)(N + 1) (3.43)

for any N ≥ 5. Therefore, T is not an optimal solution for Relax–SFS(A).
Since |C(T )\C(Ti)|+ |C(Ti)\C(T )| = 1 for all i ∈ [N − 3], the RFS score of T is

RF(T,A) =
∑

i∈[N−3]

RF(T, Ti) = N − 3. (3.44)

Now consider any tree t ̸= T with leaf set [N ], and suppose t contains p bipartitions in
Π′ and q bipartitions in 2[N ]\(Π′ ∪ Π[N ]) where p, q ∈ N. Since t ̸= T , at least one of p and
q is nonzero. Therefore,

RF(t,A) =
∑

i∈[N−3]

RF(t, Ti) (3.45)

=
∑

i∈[N−3]

|C(t)\C(Ti)|+ |C(Ti)\C(t)| (3.46)
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=q(N − 3) + (p− 1)p+ p(N − 3− p) + (N − 3− p) (3.47)
=(N − 3) + q(N − 3) + p(N − 5). (3.48)

Since N ≥ 5 and both p and q are non-negative with at least one of them nonzero, we
know the RFS score of t is strictly greater than that of T . Therefore, T is an optimal solution
to Relax–RFS(A).

For (2), the analysis above already shows that T ′ has the largest possible split support
score. Hence, T ′ is an optimal solution to the relaxed Split Fit Supertree problem. However,
the RFS score for the star tree T is N −3 and the RFS score for T ′ is (N −4)(N −3), which
is strictly larger than N − 3 for N > 5; hence, T ′ is not an optimal solution for the relaxed
RF supertree problem.

We show that the Split Fit Supertree problem and the Asymmetric Median Supertree
(AMS) problem, which was introduced in [45] and which we will present below, have the
same set of optimal solutions and thus the hardness of one implies hardness of another.

The Asymmetric Median Supertree problem takes a profile A = {T1, T2, . . . , TN} with
leaf sets Si for Ti and finds a binary tree T ∗ on leaf set S :=

∪
i∈[N ] Si such that

T ∗ = argmin
T∈TS

∑
i∈[N ]

|C(Ti) \ C(T |Si
)|. (3.49)

In other words, the asymmetric median supertree T ∗ minimizes the total number of bipar-
titions that are in the source trees and not in the supertree (equivalently, it minimizes the
total number of false negatives).

Lemma 3.7. Given a profile A = {T1, T2, . . . , TN} of source trees with leaf sets Si for Ti and
S :=

∪
i∈[N ] Si, a tree T ∈ TS is a Split Fit Supertree for A if and only if it is an Asymmetric

Median Supertree for A.

Let FN(T,A) =
∑

i∈[N ] |C(Ti)\C(T |Si
)| be the total number of false negatives of T with

respect to A, and we refer to this as the false negative score of T . Then,

SF(T,A) + FN(T,A) =
∑
i∈[N ]

|C(Ti) ∩ C(T |Si
)|+ |C(Ti)\C(T |Si

)| (3.50)

=
∑
i∈[N ]

|C(Ti)|. (3.51)

Since the sum of the split support score of T and the false negative score of T is the same,
regardless of T , minimizing the false negative score is the same as maximizing the split
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support score. Hence any tree T is an Asymmetric Median supertree if and only if it is a
Split Fit supertree, for all profiles A.

Corollary 3.2. RFS-3, SFS-3, and Relax–SFS-3 are all NP-hard.

By Lemma 3.7 and Lemma 3.1, we know that for any profile A, the Robinson-Foulds,
Split Fit, and Asymmetric Median supertrees all have the same set of optimal solutions. We
also note that the Asymmetric Median Tree problem was shown to be NP-hard for three
trees [44], which is the same as the Asymmetric Median Supertree problem when all three
trees have the same set of species. Therefore, SFS-3 and RFS-3 are both NP-hard. Since
refining a tree never decreases its split support score, SFS-3 trivially reduces to Relax–
SFS-3, and thus Relax–SFS-3 is also NP-hard.
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Chapter 4: Experiments and Results

We propose GreedyRFS, a simple heuristic that takes as input a profile A of source trees
and then merges pairs of them (using Exact-2-RFS) until the trees are merged into a single
supertree. The choice of which pair to merge follows the technique used in SuperFine [46] for
computing the Strict Consensus Merger, which selects the pair that maximizes the number
of shared taxa between the two trees (other techniques could be used, potentially with better
accuracy [47]). Note that GreedyRFS is identical to Exact-2-RFS when the profile has only
two trees. We compare GreedyRFS to FastRFS [17], the leading RFS heuristic, with respect
to RFS criterion scores.

We used two different types of simulated datasets: the first based on a traditional su-
pertree paradigm called “SMIDgen”, using online datasets from prior published studies [46],
and the second based on a divide-and-conquer approach applied to multi-locus species tree
estimation with newly generated datasets.

4.1 EXPERIMENT 1: EVALUATION ON SUPERTREE DATASETS

We use a subset of the datasets that were used originally in [46] and then in later
studies [7, 48], including the study for FastRFS [17]. See [49] for the full description of the
simulation protocol.

These are multi-locus simulated supertree datasets with a total of 500 species and varying
numbers of source trees. Each source tree is computed using maximum likelihood heuristics,
with several clade-based source trees and a single scaffold source tree (i.e., species sampled
randomly from across the tree). We selected the hardest of these 500-leaf conditions, where
the scaffold tree has only 20% of the leaves. Because all the source trees miss some leaves,
the number of leaves per supertree dataset varied. The source trees were then given to
FastRFS and GreedyRFS to combine into a supertree.

We use the first 10 replicates out of a total of 30 replicates. Note that since replicate
number 8 requires combining two trees with less than 2 shared taxa, supertree construction
does not make sense on this replicate. After eliminating this replicate, we end up with 9

replicates in total. To make inputs with k source trees, for k ∈ {2, 4, 6, 8, 10, 12, 14}, we take
the first k source trees in each replicate. Since the first tree is always the scaffold tree, all
of our replicates contain the scaffold tree.

We explored the impact of changing the number of source trees. The result for two source
trees is predicted by theory (i.e., GreedyRFS is optimal for this case), but even when the
number of source trees was greater than two, GreedyRFS dominated FastRFS in terms of
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Figure 4.1: Experiment 1. The percentage of datasets (y-axis) that each method (FastRFS
and GreedRFS) ties with or is strictly better than the other in terms of RFS criterion score is
shown for varying numbers of source trees (x-axis), based on nine replicate supertree 500-leaf
datasets (from [46]) with 20% scaffold trees.

criterion score provided that the number of source trees was not too large (Figure 4.1).

4.2 EXPERIMENT 2: EVALUATION ON MULTI-LOCUS DATASETS WITH ILS

The second collection of simulated datasets were generated for this study to evaluate
GreedyRFS and FastRFS within a divide-and-conquer pipeline for multi-locus species tree
estimation where gene trees can differ from each other due to incomplete lineage sorting
(ILS), as described in [50].

We used SimPhy [51] to generate species trees and gene trees with 501 species under the
multi-species coalescent model, producing a set of true gene trees that differ from the true
species tree by on average 68% of their branches due to ILS [50]. The number of genes varied
from 25 to 1000 with ten replicate datasets per number of genes. (We vary the number of
true gene trees by selecting the first 100 and 25 true gene trees from the datasets with 1000

true gene trees.)
For each replicate dataset, we used the model species tree and a technique similar to

DACTAL [22] to divide the species set into two overlapping subsets, each containing slightly
more than half the species. ASTRAL [52–54] is a leading method for species tree estimation
in the presence of ILS for large numbers of species, and so we used ASTRAL v5.6.3 (i.e.,
ASTRAL-III) to construct subset trees on the model gene trees, restricted to the relevant
subset of species. Finally, the two ASTRAL subset trees were merged together using Exact-
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Figure 4.2: Experiment 2. The RFS criterion scores (y-axis) are shown for FastRFS
and GreedyRFS within divide-and-conquer strategies for multi-locus species tree estimation,
where gene trees can differ from the species tree due to ILS. Each dataset had 501 species
and varying numbers of gene trees (x-axis). Species trees were estimated on two overlapping
subsets of species using ASTRAL and then combined using the specified supertree method.
Box plots show data from ten replicates, and no outliers are excluded from the box plot.

RFS-2 and FastRFS.
In general, the average criterion scores for GreedyRFS were better than FastRFS, and

GreedyRFS was clearly more accurate than FastRFS for 1000 genes.
This improvement for larger numbers of genes is relevant to practice, as phylogenomic

datasets typically contain hundreds to tens of thousands of genes (e.g., the Avian phyloge-
nomic dataset had fewer than 50 species but more than 14,000 loci [55]).
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Chapter 5: Future Work and Conclusion

Future work. Due to the limited time for this project, we restricted our attention to
the RFS and SFS problem with binary source trees. However, we strongly believe that the
polynomial time results also apply to the two problems with general source trees that are
not necessarily binary. Thus we give the following conjecture.

Conjecture 5.1. RFS-2 and SFS-2 can be solved in polynomial time.

We also do not know what is the complexity of Relax–RFS-2 due to the fact that
Relax–RFS and Relax–SFS have different optimal solutions and we leave this as an
open problem.

Conclusion. Supertree construction is immensely valuable in the context of phylogeny
estimation as it not only serves to combine phylogenetic trees estimated by different research
groups but also plays a crucial role in divide-and-conquer pipelines, which have become more
and more important in large-scale phylogeny estimation. In particular, the Robinson-Foulds
Supertree problem is well-established and has desirable proprieties.

This thesis mainly presents Exact-RFS-2, a polynomial time algorithm to solve the
Robinson-Foulds Supertree problem (and also the Split Fit Supertree problem) with two
binary source trees. We also proved that the Robinson-Foulds and Split Fit Supertree
problems are NP-hard when there are at least three source trees. We offer a greedy heuristic,
GreedyRFS, that takes unlimited number of sources trees as input and applies Exact-RFS-
2 repeatedly until all trees are merged into one supertree. Our experimental study showed
that GreedyRFS dominates the leading RFS heuristic, FastRFS, when the number of source
trees are small.

Thus, our study advances the theoretical understanding of several important supertree
problems and also provides a new method that should improve scalability of phylogeny
estimation methods.
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Appendix A: Appendix for Theoretical Results

A.1 GENERAL THEOREMS AND LEMMAS ON TREES AND BIPARTITIONS

The following theorem and corollary gives alternative characterizations of compatibility
between two bipartitions.

Theorem A.1. [56] A pair of bipartitions [A|B] and [A′|B′] of the same set is compatible
if and only if at least one of the four pairwise intersections A ∩ A′, A ∩ B′, B ∩ A′, B ∩ B′

is empty.

Corollary A.1. A pair of bipartitions [A|B] and [A′|B′] on the same leaf set is compatible
if and only if one side of [A|B] is a subset of one side of [A′|B′].

We now provide a lemma and corollary that formalize the relationship between two dis-
tinct, yet closely related entities: bipartitions from a tree on leaf set R ⊆ S and bipartitions
restricted to R from a tree on leaf set S.

Lemma A.1. Let T ∈ TS and let π = [A|B] ∈ C(T ) be a bipartition induced by e ∈ E(T ).
Let R ⊆ S.

1. If R ∩ A = ∅ or R ∩B = ∅, then e /∈ P (e′) for any e′ ∈ E(T |R).

2. If R ∩ A ̸= ∅ and R ∩ B ̸= ∅, then for any π′ ∈ C(T |R) induced by e′ ∈ E(T |R),
π|R = π′ if and only if e ∈ P (e′).

Let TR be the minimal subtree of T that spans R. It follows that the leaf set of TR is R

and T |R is obtained from TR by suppressing all degree-two nodes.
(Proof of 1) We first claim that if R ∩ A = ∅ or R ∩ B = ∅, then e /∈ E(TR). Assume

by way of contradiction that e ∈ E(TR). There are then two non-empty components in
TR − e. Since e induces [A|B] in T , the two components in TR − e have leaf set R ∩ A and
R ∩ B, which contradicts the fact that one intersection is empty. Therefore, e /∈ E(TR).
Furthermore, every edge e′ ∈ E(T |R) comes from a path in TR. Since e /∈ E(TR), then
e /∈ P (e′) for any e′ ∈ E(T |R).

(Proof of 2) If R∩A ̸= ∅ and R∩B ̸= ∅, then e is required to connect R∩A with R∩B
in T (since e connects A with B). Thus, e is in any subtree of T spanning R; in particular,
e ∈ E(TR). Fix any π′ ∈ C(T |R) induced by e′ ∈ E(T |R). Note that the bipartition induced
by P (e′) in TR equals the bipartition induced by e′ in T |R, i.e., π′. For one direction of the
proof, suppose e ∈ P (e′). Because internal nodes of P (e′) in TR do not connect to any leaves,

33



(a) T : before adding [abedfhl|cgijk]
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(b) T ′: after adding [abedfhl|cgijk]

v1 v2 va vb v4

b

e
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a d h l c i j

g

k

Figure A.1: Splitting a vertex in a tree T to add a compatible bipartition [A|B] =
[abedfhl|cgijk]. The vertex v3 satisfies the requirement that no component in T − v3 has
leaves from both A and B. Let NA (NB) denote the neighbors of v3 that are in a component
containing a leaf in A (B) in T − v3. Then NA = {v2, h, l} and NB = {c, i, j, v4}. We split
v3 into va and vb. We then make NA the neighbors of va, and NB the neighbors of vb. Then
(va, vv) induces [abedfhl|cgijk] in T ′.

the bipartition induced by the path P (e′) in TR equals the bipartition induced by any of its
edges (in particular, e). Since e induces [A|B] in T , it induces [R ∩ A|R ∩ B] in TR. Then
π′ = [R ∩ A|R ∩ B] = π|R. On the other hand, if π|R = π′, then π′ induces [R ∩ A|R ∩ B]

in T |R. It follows that P (e′) also induces [R ∩ A|R ∩B] in TR. Suppose e ∈ P (e∗) for some
edge e∗ ∈ E(T |R) such that e∗ ̸= e′. Then, by the previous argument, πe∗ = [R ∩ A|R ∩ B],
which contradicts the fact that e∗ and e′ are different edges. Therefore, e ∈ P (e′).

The next corollary follows easily from Lemma A.1.

Corollary A.2. Let T be a tree with leaf set S and let π = [A|B] ∈ C(T ) be a bipartition
induced by e ∈ E(T ). Let R ⊆ S such that R ∩ A ̸= ∅ and R ∩B ̸= ∅. Then π|R ∈ C(T |R).

In the following lemma, we characterize the vertex that we can split to add a compatible
bipartition into a tree. An example can be seen in Figure A.1.

Lemma A.2. Let T be a tree with leaf set S. Let π = [A|B] be a bipartition of S such
that π /∈ C(T ), but π is compatible with C(T ). Then there exists a unique vertex v ∈ V (T )

such that no component of T − v has leaves from both A and B. Furthermore, we can split
the neighbors of v, NT (v), into two sets NA and NB, where NA contains neighbors whose
corresponding components contain a leaf in A and NB contains neighbors whose corresponding
components contain a leaf from B. By replacing v with two vertices va and vb, making va

adjacent to all the vertices in NA and vb adjacent to all the vertices in NB, and then adding
an edge between va and vb, we create a tree T ′ such that C(T ′) = C(T ) ∪ {π}.

By definition of compatibility, there exists a tree T ′ such that C(T ′) = C(T ) ∪ {π}.
Let e = (va, vb) be the edge that induces π in T ′ such that the component containing va
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in T ′ − (va, vb) has leaf set A and the component containing vb in T ′ − (va, vb) has leaf set
B. Since π /∈ C(T ), when we contract (va, vb), then T ′ becomes T . Let v be the vertex of
T corresponding to the vertex of T ′ created from contracting (va, vb). Let Na, Nb be the
neighbors of va and vb in T ′−(va, vb), respectively. Let NA, NB be vertices in T corresponding
to Na and Nb. We note that NA ∪NB = NT (v). Since in T ′ − (va, vb), no vertex in Na can
reach any vertex of B, the same is true in T ′− va− vb. Since va is in the component of A in
T ′ − (va, vb), so are all vertices of Na. Then each vertex in Na must be able to reach some
vertex of A in T ′ − va − vb by either being a leaf in A or in the same component of some
leaf in A. Similarly, in T ′ − va − vb, no vertex of Nb can reach any vertex of A, but every
vertex of Nb can reach some vertex of B. By construction, T ′− va− vb is identical to T − v,
and thus NA (and NB respectively) is a set of neighbors of v that can reach some vertex of
A (B) but no vertex of B (A). Therefore, v is the vertex desired.

To obtain T ′ from T , we can replace v by two new vertices va, vb with an edge between
them. We also connect all vertices in NA to va and all vertices in NB to vb. Then it is easy
to see that (va, vb) induces π in T ′.

A.2 LEMMAS AND PROOFS FOR CHAPTER 3

Lemma A.3 proves that the auxiliary data structures of Algorithm 3.1 and 3.2 are main-
taining the desired information and that the algorithm can split the vertex and perform the
detaching and reattaching of the extra subtrees correctly. These invariants are important
to the proof of Lemma 3.5.

Lemma A.3. At any stage of the Algorithm 3.1 after line 12, we have the following invariants
of T and the auxiliary data structures H and sv:

1. For any bipartition π ∈ NonTriv, sv(π) is the vertex to split to add π to C(T |X). For
any internal vertex v, the set of bipartitions H(v) ⊆ NonTriv is the set of bipartitions
which can be added to C(T |X) by splitting v.

2. For any π = [A|B] ∈ H(v), for all t ∈ T R∗(π), the root of t is a neighbor of v.

3. For any π = [A|B] ∈ C(T |X) induced by edge e, let C(A), C(B) be the components
containing the leaves of A and B in T |X − e. Then,

(a) all t ∈ T RS(A) are attached to an edge or a vertex in C(A)

(b) all t ∈ T RS(B) are attached to an edge or a vertex in C(B).
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We prove the invariants by induction on the number of refinement steps k performed on
T . When k = 0, we have T = T̃ and T |X is a star with leaf set X and center vertex v̂.
Thus all bipartitions in NonTriv are compatible with C(T |X). For any π ∈ NonTriv, v̂ is
the vertex to refine in T |X to add π to C(T |X). Therefore, it is correct that sv(π) = v̂ for
every π ∈ NonTriv and H(v̂) = NonTriv. The roots of all extra subtrees in T R∗(π) for any
π ∈ NonTriv are all neighbors of v̂, so invariant 2 also holds. For any π ∈ C(T |X) = Triv,
let π = [{a}|B]. It is easy to see that since a is a leaf, T RS i({a}) = ∅ and T RS i(B) =

Extra(Ti)\T R(ei(π)) for both i ∈ [2]. Then T RS({a}) = ∅ and T RS(B) = (Extra(T1) ∪
Extra(T2))\T R∗(π). Therefore, invariant 3(a) trivially holds as T RS({a}) = ∅. Since
C({a}) is the vertex a and C(B) is the rest of the star of T |X , all t ∈ T RS(B) are attached
to an edge or a vertex in C(B), then invariant 3(b) holds. This proves invariant 3 and thus
concludes our proof for the base case.

Assume that all invariants hold after any k′ < k steps of refinement. Let π = [A|B] be
the bipartition to add in the kth refinement step. We will show that after the kth refinement
step, i.e., one execution of Algorithm 3.2, the invariants still hold for the resulting tree T ′.
Since v = sv(π) at the beginning of Algorithm 3.2, π can be added to C(T |X) by splitting v.
By Lemma A.2, there exists a division of neighbors of v in T |X into NA ∪NB such that NA

(or NB respectively) consists of neighbors of v which can reach vertices of A (or B) but not
B (or A) in T |X − v. Then, the algorithm correctly finds NA and NB and connects NA to
va and NB to vb so the new edge (va, vb) induces the bipartition π = [A|B] in T |X . For any
vertex u other than v and any bipartition π′ ∈ H(u), the invariants 1 and 2 still hold after
Algorithm 3.2 as we do not change H(u), sv(π′), or the extra subtrees attached to u. For
any bipartition π′ =∈ H(v) such that π′ ̸= π, if π′ is not compatible with π, then it cannot
be added to C(T ′|X) since π is added, so the algorithm correctly discards π′ and does not
add it to H(va) or H(vb). If π′ is compatible with π, we will show that the invariants 1 and
2 still hold for π′.

Fix any π′ = [A′|B′] ∈ H(v) s.t. π′ ̸= π. By Corollary A.1, one of A′ and B′ is a
subset of one side of [A|B]. Assume without loss of generality that A′ ⊆ A (other cases are
symmetric). Then we have B ⊆ B′. In this case, Algorithm 3.2 adds π′ to H(va) and set
sv(π) = va. We will show that this step preserves the invariants. Since π′ ∈ H(v), before
adding π we can split v to add π′ to C(T |X). Then there exists a division of neighbors of
v in T |X into NA′ and NB′ such that NA′ (or NB′ , respectively) consists of neighbors of v
which can reach vertices of A′ (or B′) in T |X − v. It is easy to see that NA′ ⊆ NA and
NB ⊆ NB′ . Since NA ∪ NB = NA′ ∪ NB′ = NT |X (v), we have NA\NA′ = NB′\NB. Since
all vertices in NB are connected to vb in T ′ while vertices in NB′\NB are connected to va,
NB′\NB∪{vb} is the set of all neighbors of va which can reach leaves of B′ in T ′|X−va. Then

36



NT ′|X (va) = NA∪{vb} = NA′ ∪ (NA\NA′ ∪{vb}) = NA′ ∪ (NB′\NB ∪vb) implies that NA′ and
NB′\NB ∪{vb} gives an division of neighbors of va such that NA′ are the neighbors that can
reach leaves of A′ in T ′|X − va and NB′\NB ∪ {vb} are the neighbors that can reach leaves
of B′ in T ′|X − va. Such a division proves that va is the correct vertex to refine in T ′|X to
add π′ to C(T ′|X) after the kth refinement. Therefore, invariant 1 holds with respect to π′.
Since π′ ∈ H(v) before adding π, we also have for all t ∈ T R∗(π′), the root of t is a neighbor
of v before adding π. Since A′ ⊆ A, π′ ∈ BP (A) and thus T R∗(π) ⊆ T RS(A). Then,
Algorithm 3.2 correctly attaches roots of all trees in T R∗(π′) to va. Therefore invariant 2

holds for π′.
We have shown that invariants 1 and 2 hold for the tree T ′ with the auxiliary data

structures H and sv. Next, we show that invariant 3 holds. Since π is the only bipartition in
C(T ′|X) that is not in C(T |X), we only need to show two things: i) for any π′ ∈ C(T |X), the
invariant 3 still holds, ii) invariant 3 holds for π. We first show i). Fix π′ = [A′|B′] ∈ C(T |X).
Since π is compatible with π′, by Corollary A.1, one of A′ and B′ is a subset of one of A and
B. We assume without loss of generality that A′ ⊆ A. Therefore, B ⊆ B′. Let C(A′), C(B′)

be the components containing the leaves of A′ and B′ in T |X − e′, where e′ induces π′. Since
C(A′) is unchanged after the refinement, invariant 3(a) is trivially true. Since B ⊆ B′, C(B)

is a subgraph of C(B′) and v ∈ C(B′). During the refinement, v is split into va and vb, both
of which are still part of C(B′). Since all t ∈ T RS(B) are attached to an edge or a vertex in
C(B′) before refinement and any extra subtree attached to v before is now on either va, or
vb, or (va, vb), they are all still attached to an edge or a vertex in C(B′). Thus, the invariant
3 holds with respect to π′.

For ii), we show invariant 3(a) holds for π and 3(b) follows the same argument. For
any extra subtree in t ∈ T RS(A), if it was attached to v before refinement, then it is now
attached to va, which is in C(A). If it was not attached to v before refinement, then let
NB be as defined from Algorithm 3.2. For any bipartition π′ = [A′|B′] induced by (v, u)

where u ∈ NB. We know that (v, u) ∈ C(B) and thus either A′ ⊆ B or B′ ⊆ B. Assume
without loss of generality that B′ ⊆ B. Then we have BP(B′) ∪ {π′} ⊆ BP(B) and thus
T RS(B′) ∪ T R∗(π′) ⊆ T RS(B). We note that T RS(A) and T RS(B) are disjoint. Since
t ∈ T RS(A), we know t /∈ T RS(B), then t /∈ T RS(B′) ∪ T RS∗(π′). Let C(A′), C(B′) be
the components containing the leaves of A′ and B′ in T |X − (v, u). Then C(A′) contains
v and C(B′) contains u. Since t /∈ T R∗(π′), it cannot be attached to (v, u). Also by the
invariant 3 with respect to π′, t is not attached any vertex or edge in C(B′). Since this
is true for every neighbor of v in NB, t /∈ C(B) as C(B) consists of only edges connecting
v to a neighbor u ∈ NB and the component containing u. Since t was not attached to v

before the refinement, t is not attached to (va, vb) or C(B) after the refinement, then t must
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be attached to some edge or vertex in C(A). This proves invariant 3(a) for π and thus the
inductive proof.

We give the running time analysis for Algorithm 3.1 to complete the proof of Theorem
3.1. First we analyze the running time of Algorithm 3.2, i.e., one refinement step. Dividing
the neighbors of v and connecting them to va and vb appropriately in line 3 – 6 take O(|X|2)
time. We can do a depth-first-search in T |X − v from every neighbor u of v and check in
O(|X|) time if any newly discovered vertex is in A or B and connect u to va or vb accordingly.
Moving extra subtrees in T R∗(π) in line 7 takes O(n) time as Ti has at most n leafs and
thus there are O(n) extra subtrees in total, so |T R∗(π)| is O(n). Line 8 – 13 take O(n) time
as the mappings are pre-calculated and there are again O(n) extra subtrees to be moved.
Updating the data structures in line 15 – 21 takes O(|X|2) time as there are at most O(|X|)
bipartitions in H(v) and each of the containment conditions is checkable in O(|X|) time by
checking whether one side of π′ is a subset of one side of π (assuming that labels of leaves in
both sides of the bipartitions are stored as pre-processed sorted lists instead of sets). The
rest of the algorithm takes constant time. Overall, Algorithm 3.2 runs in O(n+ |X|2) time.

Next we analyze the running time for Algorithm 3.1, i.e., Exact-RFS-2. Computing
C(T1|X) and C(T2|X) in line 1 takes O(n2 + n|X|2) time as we need to compute πe|X for
all e ∈ E(T1) ∪ E(T2) and then take the union. There are O(n) edges in E(T1) ∪ E(T2).
Computing πe|X for each edge takes O(n) time by running DFS on Ti − e to obtain πe and
then taking intersection of both sides of πe with X, separately. Together it takes O(n2)

time. Taking union of the bipartitions takes O(n|X|2) time as there are O(n) bipartitions to
add and whenever we add a new bipartition, it needs to be compared to the O(|X|) distinct
existing ones in the set. Since all bipartitions have size O(|X|), the comparison can be done
in O(|X|) time (if each of them is represented by two sorted lists instead of two sets). In
this step, we can always maintain a set of edges in Ti for each bipartition π ∈ C(T1, T2, X)

such that πe|X = π.
Line 2 – 5 compute the mappings and values we need in latter part of the algorithm.

We analyze the running time for each π = [A|B] ∈ C(T1, T2, X) first. We can compute the
path P (ei(π)) by assembling the set of edges associated with π in Ti from the last step into
a path. This takes O(n2) time by counting the times any vertex appear as an end vertex
in the set of edges. The two vertices appearing once are the end vertices of the path while
those appearing twice are internal vertices of the path. Then w(ei(π)) = |P (ei(π))| can be
found in constant time. Then we can find T R(ei(π)) by DFS in Ti − v for every internal
node v of P (ei(π)), starting the search from the unique neighbor u of v such that u does not
appear in the path. This takes O(n) time. We compute BP i(A) and BP i(B) by iterating
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over O(|X|) bipartitions in C(Ti|X) and check if one side of any bipartition is a subset of
A or B in O(|X|) time, this takes O(|X|2) time together. Next, we compute T RS i(A) (or
T RS i(B)) by taking unions of extra subtrees in T R(ei(π)) for any π ∈ BP i(A) (or BP i(B))
in O(n) time. Extra subtrees are unique identified by their roots and T R(ei(π)) is disjoint
from the set of extra subtrees associated with other edges, so taking union of at most O(n)

extra subtrees takes O(n) time. Therefore, all the mappings and values can be computed in
O(n2) time for each bipartition and thus it takes O(n2|X|) time overall. With all the extra
subtrees calculated for each partition, we can compute Extra(Ti) in O(n2) time.

Constructing Tinit in line 6 takes O(n) time. Line 7 constructs an incompatibility graph
with O(|X|) vertices and O(|X|2) edges in O(|X|3) time as compatibility of any pair of
bipartitions of size O(|X|) can be checked in O(|X|) time. For line 8, we can reduce Maximum
Weight Independent Set to Minimum Cut problem in a directed graph with a dummy source
and sink. Then the Minimum Cut problem can be solved by a standard Maximum Flow
Algorithm. Since the best Maximum Flow algorithm runs in O(|V ||E|) time and the graph
has O(|X|) vertices and O(|X|2) edges, this line runs in O(|X|3) time. Line 9 – 10 essentially
runs line 7 of Algorithm 3.2 O(|X|) times using a total of O(n|X|) time. Line 11 initiates
the data structure H and sv in O(|X|) time. Line 12 – 13 runs Algorithm 3.2 O(|X|) times
with a total of O(n|X|+ |X|3) time. To perform line 14, we first find the set of high degree
vertices (with degree greater than 3) in O(n) time. Then we repeatedly refine at any high
degree vertex v by splitting it into two new vertices and distributing the neighbors of v and
adding the two new vertices back to the set if needed, until there is no high degree vertex
left. Since the number of internal edges of the tree increase by 1 for every refinement and
there are at most n− 3 internal edges, we know this step takes O(n2) time as each arbitrary
refinement (along with updating the set of high degree vertices) can be done in O(n) time.

Since |X| ≤ n, |X|3 ≤ n|X|2 ≤ n2|X|, and thus, the overall running time of Algorithm
3.1 is dominated by the running time of line 2 – 5, which is O(n2|X|).

A.3 MAXIMUM WEIGHT INDEPENDENT SET IN BIPARTITE GRAPHS

Given an undirected bipartite graph G, with vertices V = A ∪ B, edges E, and vertex
weights w : V → N, the Maximum Weighted Independent Set problem tries to find a inde-
pendent set I ⊆ V that maximizes w(I), where w(S) =

∑
v∈S w(v) for any S ⊆ V . It is well

known (in folklore) that maximum weight independent set can be solved in polynomial time
through reduction to the maximum flow problem. We reproduce a proof for completeness.

We first turn the graph into a directed flow network G′ = (V ∪ {s, t}, E ′) where s, t are
the newly added source and sink, respectively. To obtain E ′, we direct all edges in E from
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A to B, add an edge from s to each vertex u ∈ A and add an edge from each vertex v ∈ B

to t. We set the capacities c : E ′ → N such that c(e) =∞ if e ∈ E, c(e) = w(u) if e = (s, u)

and c(e) = w(v) if e = (v, t). We claim that any s, t-cut (S, T ) in G′ has a finite capacity k

if and only if (S ∩ A) ∪ (T ∩B) is an independent set of weight w(V )− k in G.
We first observe that ((S∩A)∪(T∩B))∪((S∩B)∪(T∩A)) = (S∪T )∩(A∪B) = A∪B = V .
Suppose (S ∩ A) ∪ (T ∩ B) is an independent set of weight w(V ) − k in G. Since

((S ∩ A) ∪ (T ∩ B)) ∪ ((S ∩ B) ∪ (T ∩ A)) = V , the weight of (S ∩ B) ∪ (T ∩ A) is
w(V )− (w(V )−k) = k. Since (S ∩A)∪ (T ∩B) is an independent set, there is no edge from
S ∩ A to T ∩ B. There is also no edge from S ∩ B to T ∩ A since edges in E are directed
from A to B. Thus, the cut (S, T ) consists of only edges from s to T ∩ A and from S ∩ B

to t. Together the capacities of those edges equal the weight of the set (S ∩ B) ∪ (T ∩ A),
which is k.

For the other direction of the proof, suppose (S, T ) is an s, t-cut of finite capacity k.
Since the cut has finite capacity, it does not contain any edge derived from E. In particular,
there is no edge from S∩A to T ∩B in G′, which implies there is no edge between S∩A and
T ∩B in G. Since there is also no edge among S ∩A and T ∩B in G, (S ∩A)∪ (T ∩B) is an
independent set. Since the edges in (S, T ) solely consist of edges from s to T ∩ A and from
S∩B to t, the sum of their capacities is k. Therefore, the weight of the set (S∩B)∪ (T ∩A)
is k and the weight of (S ∩ A) ∪ (T ∩B) is w(V )− k.

Since w(V ) is a fixed constant, we conclude that any s, t-cut (S, T ) is a minimum cut in
G′ if and only if (S ∩ A) ∪ (T ∩ B) is an maximum weight independent set in G. By the
standard Max-flow Min-cut theorem, a minimum s, t-cut in a directed graph is equivalent
to the maximum s, t-flow. Thus, we can solve the Maximum Weighted Independent Set
problem on bipartite graphs using a maximum flow algorithm in polynomial time.
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Appendix B: Appendix for Experimental Study

Datasets. We provide additional detailed procedure of how the datasets for Experiment
2 are generated:

1. Identify the centroid edge (a, b) of the true species tree (i.e., the edge that, upon
deletion, creates 2 subtrees Ta and Tb with leaf sets A and B of roughly equal size)

2. Let X be the set of 25 closest (in term of path distance on the weighted tree) leaves
in Ta to a and in Tb to b

3. Let A′ = A ∪X and B′ = B ∪X

4. Restrict all 1000 true gene trees to leaf set A′ and use ASTRAL-III [54,57] to compute
a tree A1 on the restricted true gene trees

5. Restrict all 1000 true gene trees to leaf set B′ and use ASTRAL-III to compute a tree
B1 on the restricted true gene trees

6. Apply supertree methods FastRFS and GreedyRFS to input pair A1 and B1, and
compare to the true species tree

Additional results. In Figure B.1, we present an additional perspective on the compari-
son of FastRFS and GreedyRFS for Experiment 1, showing the difference in RFS criterion
score for the two methods, so that negative scores means that GreedyRFS produces a tree
with a better (lower) RFS criterion score, positive scores means that FastRFS has a better
score, and a score of zero means the two methods produce trees with the same score. Note
that, as predicted by theory, GreedyRFS is never worse than FastRFS when there are only
two source trees. The ability to match or improve on FastRFS with respect to criterion score
holds also for four source trees, and then is increasingly lost as the number of source trees
increases. For the largest number of source trees, FastRFS regularly dominates GreedyRFS,
but there are still some inputs where GreedyRFS produces better RFS criterion scores.

Our scripts and commands. Our scripts and other utilities (developed by authors of
this paper) are available at http://github.com/yuxilin51/GreedyRFS.

• GreedyRFS on a set of source trees

GreedyRFS.py -t <source_trees> -o <output_tree>

41



Figure B.1: Experiment 1. The difference in the RFS criterion score (y-axis) between
FastRFS and GreedyRFS for the 500-taxon SMIDgen datasets, normalized by the number
of source trees; a positive score indicates that FastRFS is better than GreedyRFS, a negative
score indicates that GreedyRFS is better than FastRFS, and a score of zero indicates they
are tied for criterion score. On average, GreedyRFS produces better RFS criterion scores
than FastRFS given at most 4 source trees, they are tied for 6 source trees, and then FastRFS
produces better RFS criterion scores.

Note that when the input has two source trees, then GreedyRFS is identical to Exact-
2-RFS.

• RFS criterion score
To compute the RFS criterion score for a supertree T with respect to a profile A, we
add the RF distances between T and every tree t ∈ A, as follows:

compare_trees.py <tree1> <tree2>

• Centroid decomposition (1 round)

split_tree.py -t <input_tree> -o <output_directory>

• Find overlapping leaf set X

find_x.py -t <input_tree> -o <output_directory>

• Restricting tree to a leaf set (Newick Utilities v1.6.0)

nw_prune -v <input_tree> $(cat <label_of_leaves>) /
> <output_tree>
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External software commands. We used the following commands in the specified ver-
sions of external softwares.

• FastRFS v1.0

FastRFS -i <source_trees> -o <output_prefix>

• SimPhy v1.0.2

simphy -rs 10 -rl F:1000 -rg 1 -st F:500000 /
-si F:1 -sl F:500 -sb F:0.0000001 /
-sp F:200000 -hs LN:1.5,1 -hl LN:1.2,1 /
-hg LN:1.4,1 -su E:10000000 -so F:1/
-od 1 -v 3 -cs 293745 /
-o <output_directory>

• ASTRAL v5.6.3

java -jar <path_to_astral_jar> -i <input_gene_trees> /
-o <output_est_species_tree>
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