
c© 2019 by Amirhossein Taghvaei. All rights reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/238434243?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


DESIGN AND ANALYSIS OF PARTICLE-BASED ALGORITHMS FOR
NONLINEAR FILTERING AND SAMPLING

BY

AMIRHOSSEIN TAGHVAEI

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Mechanical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2019

Urbana, Illinois

Doctoral Committee:

Associate Professor Prashant G. Mehta, Chair and Director of Research
Professor Bruce Hajek
Professor Richard S. Laugesen
Associate Professor Maxim Raginsky



Abstract

This thesis is concerned with the design and analysis of particle-based algorithms for two problems: (i) the

nonlinear filtering problem; (ii) and the problem of sampling from a target distribution. The contributions

for these two problems appear in Part I and Part II of the thesis.

For the nonlinear filtering problem, the focus is on the feedback particle filter (FPF) algorithm. In the

FPF algorithm, the empirical distribution of the particles is used to approximate the posterior distribution

of the nonlinear filter. The particle update is implemented using a feedback control law that is designed

such that the distribution of the particles, in the mean-field limit (N = ∞), is exactly equal to the posterior

distribution. In Part I of this thesis, three separate problems related to the FPF methodology and algorithm

are addressed.

The first problem, addressed in Chapter 2 of the thesis, is concerned with gain function approximation

in the FPF algorithm. The exact gain function is the solution of a Poisson equation involving a probability-

weighted Laplacian. The numerical problem is to approximate this solution using only particles sampled

from the probability distribution. A diffusion map-based algorithm is presented for this problem. The

algorithm is based on a reformulation of the Poisson equation as a fixed-point equation that involves the dif-

fusion semigroup corresponding to the weighted Laplacian. The fixed-point problem is approximated with

a finite-dimensional problem in two steps: In the first step, the semigroup is approximated with a Markov

operator referred to as diffusion map. In the second step, the diffusion map is approximated empirically,

using particles, as a Markov matrix. A procedure for carrying out error analysis of the approximation is

introduced and certain asymptotic estimates for bias and variance error are derived. Some comparative nu-

merical experiments are performed for a problem with non-Gaussian distribution. The algorithm is applied

and illustrated for a numerical filtering example.

As part of the error analysis, some new results about the diffusion map approximation are obtained.

These include (i) new error estimates between the diffusion map and the exact semigroup, based on the

Feynman-Kac representation of the semigroup; (ii) a spectral gap for the diffusion map, based on the Foster-

Lyapunov function method from the theory of stability of Markov processes; (ii) and error estimates for the

empirical approximation of the diffusion map.

The second problem, addressed in Chapter 3 of the thesis, is motivated by the so-called uniqueness

issue of FPF control law. The control law in FPF is designed such that the distribution of the particles, in the

mean-field limit, is exactly equal to the posterior distribution. However, it has been noted in the literature

that the FPF control law is not unique. The objective of this research is to describe a systematic approach
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to obtain a unique control law for FPF. In Chapter 3, the optimality criteria from optimal transportation

theory is used to identify a unique control law for FPF, in the linear Gaussian setting. Two approaches

are outlined. The first approach is based on a time-stepping optimization procedure. We consider a time

discretization of the problem, construct a discrete-time stochastic process by composition of sequence of

optimal transport maps between the posterior distributions of two consecutive time instants, and then take

the limit as the time step-size goes to zero. We obtain explicit formula for the resulting control law in the

linear Gaussian setting. The control law is deterministic and requires the covariance matrix of the resulting

stochastic process to be invertible. We present an alternative approach, which allows for singular covariance

matrices. The resulting control law has additional stochastic terms, which vanish when the covariance

matrix is non-singular. The second construction is important for finite-N implementation of the algorithm,

where the empirical covariance matrix might be singular.

The third problem, addressed in Chapter 4, is concerned with the convergence and the error analysis

for FPF algorithm. It is known that in the mean-field limit, the distribution of the particles is equal to

the posterior distribution. However little is known about the convergence of the finite-N algorithm to the

mean-field limit. We consider the linear Gaussian setting, and study two types of FPF algorithm: The

deterministic linear FPF and the stochastic linear FPF. The important question in the linear Gaussian setting

is about convergence of the empirical mean and covariance of the particles to the exact mean and covariance

given by the Kalman filter. We derive equations for the evolution of empirical mean and covariance for

the finite-N system for both algorithms. Remarkably, for the deterministic linear FPF, the equations for the

mean and variance are identical to the Kalman filter. This allows strong conclusions on convergence and

error properties under the assumption that the linear system is controllable and observable. It is shown that

the error converges to zero even with finite number of particles. For the stochastic linear FPF, the equations

for the empirical mean and covariance involve additional stochastic terms. Error estimates are obtained for

the empirical mean and covariance under the stronger assumption that the linear system is stable and fully

observable. We also presents propagation of chaos error analysis for both algorithms.

The Part II of the thesis is concerned with the sampling problem, where the objective is to sample from

a unnormalized target probability distribution. The problem is formulated as an optimization problem on

the space of probability distributions, where the objective is to minimize the relative entropy with respect

to the target distribution. The gradient flow with respect to the Riemannian metric induced by the Wasser-

stein distance, is known to lead to Markov Chain Monte-Carlo (MCMC) algorithms based on the Langevin

equation. The main contribution is to present a methodology and numerical algorithms for constructing

accelerated gradient flows on the space of probability distributions. In particular, the recent variational

formulation of accelerated methods in [Wibisono et al., 2016] is extended from vector valued variables to

probability distributions. The variational problem is modeled as a mean-field optimal control problem. The

maximum principle of optimal control theory is used to derive Hamilton’s equations for the optimal gradient

flow. A quantitative estimate on the asymptotic convergence rate is provided based on a Lyapunov func-

tion construction, when the objective functional is displacement convex. Two numerical approximations are

presented to implement the Hamilton’s equations as a system of N interacting particles. The algorithm is

numerically illustrated and compared with the MCMC and Hamiltonian MCMC algorithms.
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Chapter 1

Introduction

The Part I of this thesis concerns a class of particle-based algorithms to approximate the solution of the

nonlinear filtering problem. Although, in this thesis, we consider the filtering problem in continuous-time

setting, we briefly discuss the filtering problem in discrete-time setting below. The purpose is to describe the

relevant particle-based algorithms, and to motivate the questions we seek to answer in this thesis by making

analogy to their discrete-time counterparts.

For the filtering problem in discrete-time setting, the main task that a particle-based algorithm performs

is to convert a sample of N particles {X i
k}N

i=1 from the filter distribution πk at time tk to a sample of N

particles {X i
k+1}N

i=1 from the filter distribution πk+1 at time tk+1, without having access to the explicit form

of the distributions. The filtering distributions satisfy the recursion πk+1(x) = γπk(x)lk(x) where lk(x) is

the known likelihood function, and γ is the normalization constant. The normalization constant is assumed

to be unknown, and it is difficult to compute it in practice. In general, the recursion formula also involves

the effect due to system dynamics, which is ignored here, as it is not challenging to numerically implement

it, and it is not necessary for the purpose of this discussion. The particle-based algorithms are designed to

carry out this task, in an online fashion, whenever they receive a new measurement.

The task of converting samples from the filter distribution πk to πk+1 can be viewed as the problem of

finding a coupling γ(·, ·) between the distributions πk and πk+1 [Moral, 2004, Cheng and Reich, 2013]. A

coupling can be expressed according to γ(x,x′) = Tk(x|x′)πk(x′) where Tk(·|·) is the transition kernel. The

transition kernel satisfies the identities πk+1(x) =
∫

Tk(x|x′)πk(x′)dx and
∫

Tk(x|x′)dx = 1. Once the coupling

is at hand, new samples are simply generated using the transition kernel, i.e. X i
k+1 ∼ Tk(·|X i

k). Given this

viewpoint, the particle-based algorithms simulate the following stochastic update law for the system of

particles:

X i
k+1 ∼ Tk(·|X i

k) (1.1)

There are infinitely many ways to couple two distributions. The simplest one is an independent coupling

where Tk(x|x′) = πk+1(x). However, the explicit form πk+1 is unknown. Sequential importance resampling

(SIR) particle filters [Gordon et al., 1993, Doucet, 2009] numerically implement the independent coupling as

follows: First, a weighted distribution of the particles is formed according to ∑
N
i=1 wiδX i

k
where the weights

wi =
lk(X i

k)

∑
N
j=1 lk(X

j
k )

and δx is the Dirac distribution located at x. The weighted distribution forms an approxi-

mation of the true filter distribution πk+1. This step is called importance sampling. Then, N particles are

independently sampled from the weighted distribution, i.e X i
k+1 ∼ ∑

N
i=1 wiδX i

k
, by sampling from a multino-

mial distribution with parameter vector (N,{wi}N
i=1). This step is called resampling.
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The transition kernel in an independent coupling is completely stochastic. This has motivated applica-

tion of other forms of couplings that are more deterministic and are optimal with respect certain optimality

criteria [Del Moral, 2004, Bain and Crisan, 2009]. An important example is to use optimal transportation

theory to find an optimal coupling [Reich, 2011, Cheng and Reich, 2013, El Moselhy and Marzouk, 2012,

Kim et al., 2013]. In the optimal transportation-based approach, one searches for deterministic transition

kernels of the form Tk(x|x′) = δx=∇Φ(x′) where the function Φ should be chosen such that Tk(·|·) satisfies

the consistency condition πk+1(x) =
∫

Tk(x|x′)πk(x′)dx′ . The resulting equation that Φ should satisfy is the

Monge-Ampère pde [Evans, 1997, Villani, 2003]. A numerical approximation of this approach, based on

the empirical distribution of particles, led to the development of ensemble transform particle filters [Cheng

and Reich, 2013]. Another related approach is based on the coupling obtained from the Schrödinger bridge

problem between πk and πk+1 [Reich, 2018].

Based on the coupling of distributions viewpoint, there are three relevant and important questions that

one would like to answer for any particle-based algorithm. The first question is about numerical approxi-

mation of the coupling. An exact coupling is impossible to compute, because the filter distributions πk and

πk+1 are not known. Only N independent samples from πk and the likelihood function lk(·) is available.

So one can only hope for approximation of an exact coupling, with an approximation error that converges

to zero as the number of samples increase. The second question is about the optimality measures that one

should consider to obtain a coupling, among all the couplings that satisfy the consistency condition. And the

third problem is about error analysis of the algorithm. The objective of the error analysis is to obtain bounds

on the error, that is introduced because of the approximate coupling, and to study how the error propagates

with time.

In this thesis, we consider the filtering problem in the continuous-time setting. In contrast to discrete-

time setting, the filter distribution πt continuously evolves with time, as a continuous stream of measure-

ments arrives. The objective of particle-based algorithms, in the continuous-time setting, is to continuously

update N particles {X i
t }N

i=1, such that they are distributed according to πt . The feedback particle filter

(FPF) algorithm [Yang et al., 2013, 2016] carries out this task, by updating the particles according to the

(Stratonovich) stochastic differential equation:

dX i
t = Kt(X i

t )◦ (dZt −
h(X i

t )+ ĥt

2
dt) (1.2)

where the vector-field Kt(·) is referred to as gain function, Zt is the observation process, h(·) is the observa-

tion function, and ĥt is the expectation of h with respect to the filter distribution (detailed description of the

terms appear in Sec. 1.2). The gain function is assumed to be of gradient form Kt(x) = ∇φ(x), where the

function φ is the solution to a probability-weighted Poisson equation 1
ρt

∇ · (ρt∇φ) = r.h.s, where ρt is the

probability density function of particles in the mean-field limit N = ∞. In numerical implementation, the

density ρt is not known, and the gain function should be approximated in terms of N particles.

A fascinating fact about FPF algorithm is that under certain approximation of the gain function, known

as constant gain approximation, the FPF algorithm is similar to a classical algorithm called ensemble

Kalman filter (EnKF) [Evensen, 1994, Reich, 2011, Yang et al., 2016]. EnKF is a popular choice in
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high-dimensional application in geophysical sciences, because of its scalability with the problem dimen-

sion [Evensen, 1994, Reich, 2011]. However, EnKF does not provide a consistent approximation of the

filter distribution for nonlinear systems and non-Gaussian distributions. FPF provides the generalization of

EnKF for nonlinear problems, essentially by construction a better approximation of the gain function.

In this thesis, we seek to answer three important questions regarding the FPF algorithm, that are anal-

ogous to the three questions discussed above in discrete-time setting. The first question is about numerical

approximations of the solution of the Poisson equation, when the probability density is not known, and only

finite number of samples are given. This question is analogous to the question of finding a coupling based

on finite number of samples in (1.1). Specially, the form of the Poisson equation is suggestive of the fact

that it is analogous to the Monge-Ampére pde. The second question is about understanding the optimality

properties of the FPF control law, and its relation to the optimal transport couplings discussed above. And

the third question is about the error analysis of the FPF algorithm with finite number of particles. In particu-

lar, how does the error, introduced from numerical approximation of the Poisson equation, propagates with

time.

A summary of contributions of Part I of this thesis is presented in Sec. 1.3, after introducing the filtering

problem in Sec. 1.1, and the FPF algorithm in Sec. 1.2. The part II of the thesis, is presented in a self-

contained manner in Chapter 5.

1.1 Stochastic filtering problem

Nonlinear filtering is a principled approach to extract useful information about the state of a dynamical

system from noisy sensor measurements. It has wide range of engineering applications. For example, the

problem of finding the state of the robot—its position, velocity, and orientation—based on the available

data from sensors—camera, accelerator, and gyroscope—can be solved with a filtering approach [Monte-

merlo et al., 2002]. Other applications of the filtering include target tracking [Bar-Shalom et al., 2004],

weather prediction [Chen and Majda, 2018], meteorological sciences [Reich and Cotter, 2015], GPS posi-

tioning [Gustafsson et al., 2002], and computer vision [Isard and Blake, 1998].

A mathematical formulation of the filtering problem consists of two stochastic processes: (i) A hidden

Markov process that is used to model the state of a dynamical system; (ii) The observation process that

is used to model the sensor information available from the dynamical system. The filtering problem is to

compute the probability distribution of the hidden state, given the history of observations.

In this thesis, we consider the filtering problem in the setting of continuous-time dynamics and continuous-

time observation. In this setting, the state and the observation process are denoted as {Xt ; t ≥ 0} and

{Zt ; t ≥ 0} respectively. These processes are modelled by the following Itô stochastic differential equations

(sde):

State process: dXt = a(Xt)dt +σB(Xt)dBt , X0 ∼ πinit (1.3a)

Observation process: dZt = h(Xt)dt +dWt , (1.3b)
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where Xt ∈ Rd is the (hidden) state at time t, Zt ∈ Rp is the observation process at time t, and Bt , Wt are

mutually independent standard Wiener processes taking values in Rq and Rp, respectively. The mappings

a(·) : Rd → Rd , h(·) : Rd → Rp, and σB(·) : Rd → Rd×q are known continuously differentiable functions,

and πinit is the prior probability distribution.

The objective in the filtering problem is to compute the conditional distribution of the state Xt , given the

history of observations (filtration) Zt := σ(Zs : 0≤ s≤ t). Let

πt(·) := P(Xt ∈ ·|Zt)

denote the conditional probability distribution, also referred is posterior distribution. πt is an optimal filter,

in the sense that, for any integrable function f , πt( f ) :=
∫

f dπt provides the the best mean-squared error

estimate of f (Xt), among all Zt-measurable random variables.

The evolution of the posterior distribution πt is given by the Kushner-Stratonovich equation [Xiong,

2008, Ch. 5]. In the special and important linear Gaussian setting, the equation admits a finite-dimensional

closed-form solution given by the Kalman-Bucy filter. This solution is described next.

1.1.1 Linear Gaussian setting and Kalman-Bucy filter

The filtering problem (1.3a)-(1.3b) is linear Gaussian if a(·), and h(·) are linear functions, σB(·) is a constant

function, and πinit is a Gaussian distribution. Under these assumptions, sdes (1.3a)-(1.3b) take the following

form

dXt = AXt +σBdBt , X0 ∼N (minit,Σinit) (1.4a)

dZt = HXtdt +dWt (1.4b)

where A,H,σB are matrices of appropriate dimensions.

In the linear-Gaussian setting, (Xt ,Zt) is a Gaussian process. Therefore, the conditional distribution of

Xt is Gaussian, denoted as N (mt ,Σt), where mt and Σt are conditional mean and covariance, respectively.

Their evolution is described by the Kalman-Bucy filter [Kalman and Bucy, 1961]:

dmt = Amt +Kt(dZt −Hmtdt), m0 = minit (1.5a)
d
dt

Σt = Ricc(Σt), Σ0 = Σinit (1.5b)

where Kt := ΣtH> is referred to as Kalman gain, and the Riccati function

Ricc(Σ) := AΣ+ΣA>+ΣB−ΣH>HΣ (1.6)

with ΣB := σBσ>B .

The Kalman filter is one of the most widely used algorithm in engineering. Although the filter describes

the posterior only in linear Gaussian settings, it is often used as an approximate algorithm even in more
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general settings, e.g., by defining the matrices A and H according to the Jacobians of the mappings a and h.

The resulting algorithm is referred to as the extended Kalman filter (EKF).

Application of the Kalman filter and its extensions is limited because of the following two reasons:

1. Nonlinearities in the dynamics and in the observation models lead to a non-Gaussian multi-modal

posterior probability distributions. For such cases, Kalman and extended Kalman filters are known to

perform poorly [Gordon et al., 2004, Budhiraja et al., 2007].

2. Kalman filter becomes computationally expensive when the state-space dimension d is large. The

reason is that the computational cost scales as O(d2), as it needs to store and propagate the d× d

covariance matrix.

This has motivated development of the Monte-Carlo methods to approximate the filter, in nonlinear and

high-dimensional setting. One such approach is the particle filter briefly reviewed next.

1.1.2 Importance sampling-based particle filter

Importance sampling-based particle filter is an example of a sequential Monte-Carlo algorithm to approxi-

mate the filter [Gordon et al., 1993, Doucet, 2009]. It is comprised of N particles denoted as {X1
t , . . . ,X

N
t },

where X i
t ∈ Rd denotes the state of the i-th particle at time t, and N importance weights {wi

t}N
i=1, where

wi
t ≥ 0 is the weight corresponding to i-th particle. For the nonlinear filtering problem (1.3a)-(1.3b), the

evolution of the particles and the weights is given by:

dX i
t = a(X i

t )dt +dBi
t , X i

0 ∼ πinit

dMi
t = Mi

t h(X
i
t )dZt , Mi

0 = 1

wi
t =

Mi
t

∑
N
j=1 M j

t

where Mi
t ∈ R are referred to as the unnormalized importance weights. Particle filters approximate the

posterior distribution via the weighted empirical distribution of particles

πt( f )≈
N

∑
i=1

wi
t f (X i

t ) (1.7)

Thus, the particle filters implement the effect of conditioning (due the observations) by assigning impor-

tance weights. The issue with this approach is that, after a few time steps, there are only a few particles with

significant weights, while most particle have nearly zero weights. This issue is referred to as the particle

degeneracy [Ristic et al., 2004, Doucet, 2009]. To mitigate this issue, a resampling procedure is performed,

where N independent particles are resampled from the weighted empirical distribution X̃ i
t ∼ ∑

N
j=1 wiδX i

t
.

Theoretically, it is shown that the empirical approximation (1.7) becomes exact in the limit as N→ ∞ with

error rate O(N−1/2) [Del Moral and Guionnet, 2001, Cappé et al., 2009]. However, both empirically and the-

oretically, it was discovered that particle filters perform poorly in high dimensional problems. To maintain
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the same amount of error, a particle filter is known to require a number of particles that scales exponentially

with the dimension. This issue is referred to as the curse of dimensionality [Bengtsson et al., 2008, Beskos

et al., 2014, Rebeschini and Van Handel, 2015].

In the next section, we describe a class of controlled interacting particle-based algorithms that do not

involve importance sampling.

1.2 Feedback particle filter algorithm

Feedback particle filter (FPF) is a class of control interacting particle-based algorithms that are designed to

approximate the solution to the nonlinear filtering prorblem [Yang et al., 2013, 2016]. Its construction is

based on the following two steps:

Step 1: Construct a stochastic process, denoted by X̄t ∈ Rd , whose distribution is equal to πt , the poste-

rior distribution of Xt ;

Step 2: Simulate N stochastic processes, denoted by {X i
t }N

i=1, to empirically approximate the distribu-

tion of X̄t .

πt( f )
Step 1
= E[ f (X̄t)|Zt ]︸ ︷︷ ︸

exactness condition

Step 2
≈ 1

N

N

∑
i=1

f (X i
t )

The process X̄t is referred to as mean-field process and the N processes {X i
t }N

i=1 are referred to as

particles. We first present the mean-field process of FPF, and then discuss the particle-based simulation.

The mean-field process, for the filtering problem (1.3a)-(1.3b), evolves according to the sde given by

FPF: dX̄t = a(X̄t)dt +dB̄t︸ ︷︷ ︸
propagation

+Kt(X̄t)◦ (dZt −
h(X̄t)+ ĥt

2
dt)︸ ︷︷ ︸

feedback control law

, X̄0 ∼ πinit (1.8)

where B̄t is a standard Wiener processes independent of X̄0 and ĥt := E[h(X̄t)|Zt ]. The ◦ indicates that the

sde is expressed in its Stratonovich form. The gain function Kt(x) := ∇φt(x) where φt is the solution of the

Poisson equation:

Poisson equation: − 1
ρt(x)

∇ · (ρt(x)∇φt(x)) =−(h(x)− ĥt) ∀ x ∈ Rd (1.9)

where ∇ and ∇· denote the gradient and the divergence operators, respectively, and ρt denotes the density

of the distribution of X̄t .

It is known that the mean-field process is exact, i.e the conditional probability distribution of X̄t is equal

to the posterior distribution of the nonlinear filtering problem [Yang et al., 2016].

The particles {X i
t }N

i=1 evolve according to:

dX i
t = a(X i

t )dt +dBi
t +K

(N)
t (X i

t )◦ (dZt −
h(X i

t )+ ĥ(N)
t

2
dt), X i

0
i.i.d∼ πinit (1.10)

7



for i = 1, . . .N, where {Bi
t}N

i=1 are mutually independent Wiener processes, ĥ(N)
t := 1

N ∑
N
i=1 h(X i

t ), and K
(N)
t

is the output of an algorithm that is used to approximates the solution to the Poisson equation (1.9):

Gain function approximation: K
(N)
t := Algorithm({X i

t }N
i=1;h) (1.11)

The notation is suggestive of the fact that algorithm is adapted to the ensemble {X i
t }N

i=1 and the function h;

the density ρt(x) is not known in an explicit manner. Development and analysis of numerical algorithms for

gain function approximation is one of the main topics of this thesis.

The salient feature of the FPF, compared to the conventional particle filters, is that it replaces the im-

portance sampling and resampling step with a feedback control law. Because of this difference, FPF does

not suffer from the particle degeneracy issue. Also in various numerical evaluations and comparisons, it has

been observed that FPF exhibits smaller simulation variance [Berntorp, 2015, Tilton et al., 2013, Yang et al.,

2013, Stano et al., 2014] and better scaling properties with the problem dimension compared to particle fil-

ters [Surace et al., 2017, Yang et al., 2016].

In the special linear Gaussian setting, the FPF algorithm simplifies to a particular form of the Ensemble

Kalman filter (EnKF) algorithm. This is described next.

1.2.1 Ensemble Kalman filter as special case of FPF

Consider the linear Gaussian setting, where h(x) = Hx and X̄t has a Gaussian distribution with mean m̄t and

variance Σ̄t . Then the solution of the Poisson equation (1.9) is known in an explicit form [Yang et al., 2016,

Sec. D]. The resulting gain function is constant and equal to the Kalman gain:

Kt(x)≡ Σ̄tH> ∀ x ∈ Rd (1.12)

Therefore, the mean-field process (1.8) for the linear Gaussian problem is given by:

dX̄t = AX̄tdt +dB̄t + Σ̄tH>(dZt −
HX̄t +Hm̄t

2
dt), X̄0 ∼ πinit (1.13)

Given the explicit form of the gain function (1.12), the empirical approximation of the gain is simply

K
(N)
t = Σ

(N)
t H> where Σ

(N)
t is the empirical covariance of the particles. Therefore, the evolution of the

particles becomes:

dX i
t = AX i

t dt +dBi
t +K

(N)
t (dZt −

HX i
t +Hm(N)

t

2
dt), X i

0
i.i.d∼ πinit (1.14)

for i = 1. . . . ,N, where m(N)
t is the empirical mean of the particles. The empirical quantities are computed

as follows:

m(N)
t :=

1
N

N

∑
j=1

X i
t , Σ

(N)
t :=

1
N−1

N

∑
j=1

(X i
t −m(N)

t )(X i
t −m(N)

t )>
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The linear Gaussian FPF (1.14) is identical to the square-root form of the ensemble Kalman filter [Berge-

mann and Reich, 2012, Eq. 3.3].

Ensemble Kalman filter (EnKF) was first introduced in [Evensen, 1994, Whitaker and Hamill, 2002],

in discrete time setting, and later developed in Reich [2011], in continuous-time setting. It is extensively

applied in geophysical sciences as an alternative to extended Kalman filter. In these applications, the state

dimension is typically very high. The main advantage of the EnKF, compared to the EKF, is that the

computational cost of the EnKF scales as O(Nd) whereas the computational cost of the EKF scales as

O(d2).

1.3 Contributions of this thesis and outline

Part I of the thesis, is concerned with the analysis of the FPF algorithm. The contribution are divided into

the following three topics:

1.3.1 Gain function approximation

The mathematical problem is to numerically approximate the solution of the Poisson’s equation (1.9) intro-

duced in Sec. 1.2 and also repeated below:

−∆ρφ = h− ĥ (1.15)

where the weighted Laplacian ∆ρφ(x) := 1
ρ(x)∇ ·(ρ(x)∇φ(x)); ρ(x) is assumed to be an everywhere positive

probability density on Rd ; h(x) is a real-valued function defined on Rd and ĥ :=
∫

h(x)ρ(x)dx. The function

φ is referred to as the solution. Its gradient is referred to as the gain function and denoted as K(x) := ∇φ(x).

The numerical approximation problem is as follows: Given N samples {X i}N
i=1, drawn i.i.d. from ρ ,

approximate the gains K(X i) = ∇φ(X i). The density ρ is not known in an explicit form.

We make the following assumptions:

(i) The probability density ρ is of the form ρ(x)= e−V (x) where the function V (x)= 1
2(x−m)>Σ−1(x−

m)+w(x) for some m ∈ Rd , Σ� 0, and w ∈C∞
b (Rd);

(ii) The function h(·) is differentiable such that
∫
(|h(x)|4+‖∇h(x)‖4

2)ρ(x)dx<∞, where ‖·‖2 denotes

the Euclidean norm.

In Chapter 2, we developed a novel diffusion map-based algorithm is designed for the numerical gain

function approximation problem. Derivation of the algorithm involves the following steps:

Step 1: The Poisson equation (1.9) is formulated as a fixed-point equation

φ = Ptφ +
∫ t

0
Ps(h− ĥ)ds (1.16)
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for some t > 0 where Pt = et∆ρ is the diffusion semigroup associated with the weighted Laplacian

∆ρ . We show in Prop. 2.2 that the solution of the fixed-point equation (1.16) is also a solution of

the Poisson equation (1.15), and vice versa.

Step 2: The diffusion map approximation, introduced in [Coifman and Lafon, 2006], is used to approx-

imate the semigroup Pt . The diffusion map is a Markov operator defined as follows:

Tt f (x) :=

∫
gt(x,y)

f (y)ρ(y)√
(gt∗ρ)(y)

dy∫
gt(x,y)

ρ(y)√
(gt∗ρ)(y)

dy
(1.17)

where gt(x,y) = exp(− |x−y|2
4t ) is the Gaussian kernel, and gt ∗ ρ is the convolution of Gaussian

kernel with the probability distribution ρ . The fixed point problem (1.16) is approximated in

terms of Tt according to

φε = T n
ε φε +

n

∑
k=1

εT k
ε (h− ĥε) (1.18)

where ε = t
n , n is a suitably chosen arge number, and ĥε =

∫
hρεdx, where ρε is the invariant

density for the Markov operator Tε . The invariant density is a probability density function such

that
∫

Tε f (x)ρε(x)dx =
∫

f (x)ρε(x)dx for all bounded functions f .

Step 3: The Markov operator Tt is approximated empirically, in terms of particles, according to

T (N)
t f (x) =

∑
N
i=1 gt(x,X i) f (X i)√

1
N ∑

N
j=1 gt(X i,X j)

∑
N
i=1 gt(x,X i) 1√

1
N ∑

N
j=1 gt(X i,X j)

(1.19)

Using T (N)
t , the fixed point problem (1.18) is approximated according to

φ
(N)
ε = (T (N)

ε )n
φ
(N)
ε +

n

∑
i=1

ε(T (N)
ε )k(h− ĥ(N)

ε ) (1.20)

where ĥ(N)
ε =

∫
hρ

(N)
ε dx, and ρ

(N)
ε is the invariant density for the Markov operator T (N)

ε . We show

in Prop. 2.5 that the fixed-point equation (1.20) is finite dimensional, and present a numerical

procedure, in Table 2.1, to solve it.

We carry out an analysis of the proposed algorithm. We describe the results below:

(i) We study the approximation of the diffusion semigroup Pt with the Markov operator Tt . Existing

results depend on Taylor series expansions of the definition (1.17) around t = 0, that hold when

the underlying space is bounded, and the second derivative of the function f is bounded. We

present a new approximation results that holds in unbounded setting, under weaker conditions on
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f . We show in Prop. 2.3 that for all functions f such that f ,∇ f ∈ L4(ρ):

‖T n
t
n

f −Pt f‖L2(ρ) ≤ c
√

t
n
(‖ f‖L4(ρ)+‖∇ f‖L4(ρ))

where c is a constant independent of f , t, and n. Here ‖ f‖Lp(ρ) = (
∫

f pρdx)
1
p denotes the Lp-norm

with respect to density ρ . The analysis is based on a Feynman-Kac representation of the diffusion

semigroup which, to the best of our knowledge, has not been exploited before for analysis of

diffusion map approximation.

(ii) We study the contraction property of the Markov operator T n
t
n

. The contraction property is im-

portant to ensure existence of the solution to the approximated fixed-point problem (1.18), and

obtain non-asymptotic error bounds for φε → φ . We use the stochastic Lyapunov function method

from stability theory of Markov chains to show in Prop. 2.6 that the Markov operator T n
t
n

admits a

spectral gap of the following form

‖T n
t
n
‖2 ≤ 1−λ , ∀n≥ n0

for some positive constant λ ∈ (0,1), and a number n0 ∈N. Here ‖ ·‖2 denotes the operator norm

with respect to L2(ρ) norm. Consequently, in Thm. 2.1, we obtain an error bound between the

solution to the exact fixed point problem (1.16) and the approximated problem (1.18):

‖φε −φ‖L2(ρ) ≤ O(ε)

(iii) Finally, we study the empirical approximation of the integral operator Tt . We show in Prop. 2.4

that for any function f and δ ∈ (0,1),

‖T (N)
t f −Tt f‖2

L2(ρ) = O(
log(N

δ
)

Ntd )

with probability larger than 1− δ . We show, in Thm. 2.2, the asymptotic convergence of the

solution φ
(N)
ε → φε almost surely, over any compact subset of Rd .

1.3.2 Optimal transport linear FPF

The objective is to develop a systematic procedure to construct a mean-field process (1.8) such that its

distribution is equal to the posterior distribution, i.e

X̄t ∼ πt , ∀t ≥ 0, (1.21)

This is motivated by the so-called uniqueness issue in particle-based algorithms: In particular, for the

linear Gaussian filtering problem, the mean-field process described for the square-root of the EnKF algo-

rithm (1.13) is not the only mean-field process that satisfies the exactness condition (1.21). In fact, one can
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construct a family of sdes, where the marginal X̄t ∼ πt . The construction is described in Chapter 3.

The uniqueness issue can be explained using concepts from the optimal transportation theory. The

exactness condition (1.21) is a constraint on the marginal distribution of X̄t at each time t ≥ 0. The constraint

does not specify the joint distribution at two time instants. There are infinitely many ways to couple two

marginal distribution. As a result, there are infinitely many stochastic process that satisfy the exactness

condition. Optimal transportation theory provides a way to uniquely couple two distributions [Villani, 2003].

We use this idea to identify a unique mean-field process X̄t , for the linear Gaussian filtering problem. The

resulting filter is referred to as the optimal transport linear FPF.

We present two approaches to construct the optimal transport linear FPF. The first approach is based on

a time-stepping optimization procedure, which appears in Sec. 3.3. The resulting mean-field process is:

dX̄t =AX̄tdt +
1
2

ΣBΣ̄
−1
t (X̄t − m̄t)dt− 1

2
K̄t(dZt −

HX̄t +Hm̄t

2
dt)+ (extra term) (1.22)

where the extra terms is deterministic and does not effect the marginal distribution. It serves to make the

dynamics symmetric, in the sense that is made clear in Sec. 3.3, and optimal in the optimal transportation

sense. Note that the stochastic term σBdB̄t in (1.13) is replaced with the deterministic term 1
2 ΣBΣ̄

−1
t (X̄t −

m̄t)dt. This makes the evolution of X̄t completely deterministic.

The optimal transport linear FPF, obtained from the time-stepping procedure, requires the covariance

matrix Σ̄t to be invertible. We present an alternative approach, which allows for singular covariance matrices.

The second approach is presented in Sec. 3.4. The resulting mean-field process is

dX̄t =AX̄tdt +
1
2
(σB + et)u>t (X̄t − m̄t)dt + etdB̄t −

1
2

K̄t(dZt −
HX̄t +Hm̄t

2
dt)+ (extra terms) (1.23)

where ut = Proj(σB;Range(Σ̄t)) is the projection of σB into the range of the matrix Σ̄t , et = σB− Σ̄tut is the

error in projection, and the extra terms serve the same purpose as in (1.22). In the case where Σ̄t is invertible,

the optimal transport sde (1.23) simplifies to (1.22). The development of the sde for the singular covariance

matrix case is important for the finite-N implementation, when N < d and the empirical covariance matrix

is necessarily singular.

1.3.3 Error analysis of the linear FPF

The objective of this research is to analyze the finite-N system FPF algorithm (1.14), in the linear Gaussian

setting. We consider two class of linear FPF algorithms, deterministic linear FPF and stochastic linear FPF.

The deterministic linear FPF algorithm is the finite-N particle approximation of (1.22). We assume that

the linear system (1.4a)-(1.4b) is controllable and observable, and the number of particles N > d. We obtain

the following results:

1. We show in Sec. 4.3 that the evolution of the empirical mean m(N)
t and the empirical covariance Σ

(N)
t

is exactly equal to the Kalman-Bucy filter.

2. We show in Prop. 4.1 that the empirical mean and empirical covariance converges almost surely to
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the exact mean and covariance: for any finite N > d, ∃λ0 > 0 such that:

lim
t→∞

eλ t‖m(N)
t −mt‖2 = 0 a.s, lim

t→∞
e2λ t‖Σ(N)

t −Σt‖F = 0 a.s

for all λ ∈ (0,λ0), where ‖ · ‖2 denotes the Euclidean norm, and ‖ · ‖F denotes the Frobenius norm.

3. We also obtain non-asymptotic mean-squared error estimates in Prop. 4.1 such that for any t > 0:

E[‖m(N)
t −mt‖2

2]≤ (const.)e−2λ t Tr(Σ0)+‖Σ0‖2
F

N

E[‖Σ(N)
t −Σt‖2

F ]≤ (const.)e−4λ t ‖Σ0‖2
F

N

for all λ ∈ (0,λ0) where the constant depends on spectral properties of the system and does not scale

with the dimension d. tr(·) denotes the trace operation.

4. Finally, we carry out a propagation of chaos error analysis to conclude the convergence of the em-

pirical distribution to the mean-field distribution in Prop. 4.3: In particular, we show that for any

Lipschitz function f :

E

∣∣∣∣∣ 1
N

N

∑
i=1

f (X i
t )−E[ f (X̄t)|Zt ]

∣∣∣∣∣
2
≤ (const)

N
(1.24)

The stochastic linear FPF algorithm is the finite-N particle approximation of (1.14). We make strong

assumptions that the system is stable and fully observable. We show the following results:

1. We show in Sec. 4.3 that the evolution of the empirical mean and the empirical covariance is similar

to the Kalman-Bucy filter, with additional stochastic terms that scale as O(N− 1
2 ).

2. We obtain non-asymptotic mean-squared error estimates in Prop. 4.2 such that for any t > 0 and

N ∈ N:

E[‖Σ(N)
t −Σt‖2

F ]≤
(const)

N
,

E[‖m(N)
t −mt‖2]≤

(const)√
N

where the constants are uniformly bounded in time.

3. Also, we carry out propagation of chaos error analysis and obtain a result in Prop. 4.4 similar to (1.24).

1.3.4 Outline of the Part I of the thesis

The contributions for the gain function approximation problem is presented in Chapter 2. The optimal

transport formulation of FPF is presented in Chapter 3. The error analysis of the linear FPF algorithms is

presented in Chapter 4.
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Chapter 2

Gain function approximation∗

2.1 Introduction

This chapter is concerned with the numerical solutions of the Poisson equation (1.9) that arises in the FPF

algorithm. Given an everywhere positive probability density function ρ and a real-valued function h, the

(weighted) Poisson equation is given by

−∆ρφ = h− ĥ (2.1)

where the weighted Laplacian ∆ρφ(x) := 1
ρ(x)∇ · (ρ(x)∇φ(x)); and ĥ :=

∫
h(x)ρ(x)dx. The function φ , if

one exists, is referred to as the solution. In the context of the filtering problem, the probability density ρ

represents the density of the posterior distribution of the filter and the function h represents the observation

model (see Sec. 1.2). The gradient of the solution to the Poisson equation is the gain function used in the

FPF algorithm and denoted as K(x) := ∇φ(x).

The numerical approximation problem is as follows: Given N samples {X1, . . . ,X i, . . . ,XN}, drawn

i.i.d. from ρ , approximate the gains {K1, . . . ,Ki, . . . ,KN}, where Ki := K(X i) = ∇φ(X i). The density ρ is

not known in an explicit form.

Development and error analysis of gain function approximation algorithms is the subject of this chapter.

Before describing the general case, it is useful to review the linear Gaussian case where the solution to the

Poisson equation is explicitly known.

Linear Gaussian setting: Suppose h(x) = Hx and ρ is a Gaussian density with mean m and variance Σ.

Then the solution of the Poisson equation is known in an explicit form [Yang et al., 2016, Sec. D]. The

solution is φ(x) = K>(x−m), where

K≡ ΣH> ∀ x ∈ Rd (2.2)

equal to the Kalman gain. Therefore, the gain function is constant, equal to the Kalman gain. Given the

explicit form of the gain function (2.2), the empirical approximation of the gain is simply K
(N)
t = Σ(N)H>

where Σ(N) is the empirical covariance of the particles.

One extension of the Kalman gain is the so called constant gain approximation formula whereby the

gain Kt is approximated by its expected value (which represents the best least-squared approximation of the

gain by a constant). Remarkably, the expected value admits a closed-form expression which is then readily

∗The preliminary results concerning the contributions of this chapter appears in [Taghvaei and Mehta, 2016b, Taghvaei et al.,
2017].
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approximated empirically using the particles (see Remark 2.2):

Const. gain approx: E[K(X)] =
∫
Rd
(h(x)− ĥ) x ρ(x)dx≈ 1

N

N

∑
i=1

(h(X i
t )− ĥ(N)) X i

t (2.3)

The constant gain approximation formula has been used in nonlinear extensions of the EnKF algorithm [de Wiljes

et al., 2016]. The connection to the Poisson equation provides a justification for this formula. The formula is

attractive because it provides a consistent (as the number of particles N→ ∞) approximation of the Kalman

gain in the linear Gaussian setting.

Design and analysis of the gain function approximation algorithm in the general case is a challenging

problem because of two reasons: (i) Apart from the Gaussian case, there are no known closed-form solutions

of (2.1); (ii) The density ρ(x) is not explicitly known. One only has samples {X i}N
i=1 i.i.d drawn from ρ .

The assumption is justified because in the limit of large N, the particles are approximately i.i.d (by the

propagation of chaos); cf., [Sznitman, 1991].

2.1.1 Related work

Apart from its direct relevance to numerical approximation of the FPF, there are three topics of current

research interest that are relevant to the subject of this chapter: (i) ensemble Kalman filter; (ii) particle flow

algorithms for nonlinear filtering; and (iii) optimal transport. Specifically, the algorithms for gain function

approximation described in this paper are also directly applicable to these other topics. These relationships

are briefly discussed next:

Ensemble Kalman filter: The EnKF algorithm was first developed in the discrete-time setting [Evensen,

1994]. In the continuous-time setting, two formulations of the EnKF have been developed: EnKF with

perturbed observation, and the more recent square root EnKF [Bergemann and Reich, 2012, Reich and

Cotter, 2015]. As has already been noted in Sec. 1.2, the square root EnKF is in fact identical to the FPF

algorithm in the linear Gaussian setting [Bergemann and Reich, 2012, Taghvaei et al., 2018].

The EnKF algorithm provides a consistent approximation in the linear Gaussian setting. Compared

to the Kalman filter, the main utility of EnKF is that it does not require propagation of the covariance

matrix. This reduces the computational complexity from O(d2) for the Kalman filter to O(Nd). This is

clearly advantageous in high dimensional problems when N << d. This property has made EnKF popular

in applications such as weather prediction in high dimensional settings [Kalnay, 2002, Oliver et al., 2008].

The disadvantage of the EnKF algorithm, of course, is that it does not provide a consistent approximation

for nonlinear problems.

FPF represents a the generalization of the EnKF to the nonlinear non-Gaussian setting [Taghvaei et al.,

2018]: With the constant gain approximation, the algorithms are identical. Given this parallel, the problem

of improving the EnKF algorithm in more general nonlinear non-Gaussian settings is directly related to

the problem of better approximating the gain function in the FPF. In an application software based on

EnKF, it is a relatively simple matter to replace the constant gain formula for the gain by more sophisticated

approximations described in this paper. Certain empirical evaluations on the performance of FPF in high-
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dimensional settings are reported in [Surace et al., 2017, Stano et al., 2014, Stano, 2013, Berntorp, 2015].

Error analysis and stability of EnKF is an active area of research; see [Le Gland et al., 2009, Kwiatkowski

and Mandel, 2015, Del Moral and Tugaut, 2016] for linear models and [de Wiljes et al., 2016, Del Moral

et al., 2017, Kelly et al., 2014] for nonlinear models. The error analysis for the gain function approximation

in this chapter is a step towards error analysis of the FPF along these lines.

Particle flow algorithms: The following first-order (and hence an under determined) form of the Poisson

equation appears in most types of particle flow algorithms:

∇ · (pt(x)K(x)) = (rhs)

where the righthand-side (rhs) is given and K(x) defines a vector field that must be obtained to implement

the particle flow. The pde appears in the first interacting particle representation of the continuous-time

filtering in [Crisan and Xiong, 2007, 2010] and the discrete-time filtering in [Daum et al., 2010]. Stochastic

extensions of these have also recently appeared in [Daum et al., 2017] where approximate solutions are

also described based on Gaussian assumption on the density. The algorithm described here represent an

approximation of a particular gradient form solution of the first-order pde.

Optimal transport: The mean-field sde (1.8) represents a transport that maps the prior distribution at time

0 to the posterior distribution at an (arbitrary) future time t > 0. Synthesis of optimal transport maps for

implementing the Bayes formula appears in [Reich, 2011, Cheng and Reich, 2013, El Moselhy and Marzouk,

2012, Taghvaei and Mehta, 2016a, Heng et al., 2015, Chen et al., 2016, Kim et al., 2013, Ma and Coleman,

2011]. The relationship with the Poisson equation is through the ensemble transform filter which relies on

a linear programming construction to approximate the optimal transport map [Cheng and Reich, 2013]. As

discussed in [Taghvaei et al., 2018, Sec. 5.5], the solution of the Poisson equation yields an infinitesimal

optimal transport map from the “prior” pt(x) to an un-normalized “posterior” pt(x)exp(−th(x)). Another

closely related approach is optimal transportation is through the Gibbs flow [Heng et al., 2015].

Directly related to the FPF, the Galerkin method for the numerical solution of the Poisson equation

appeared in original papers [Yang et al., 2013, 2016]. The Galerkin algorithm represents the ‘direct” pde

approach to construct a numerical approximation. The constant gain approximation is a particular example

of a Galerkin solution. In general, the main problem with the Galerkin approximation is that it requires a

selection of basis functions. This becomes intractable in high dimensions. To mitigate this issue, a proper

orthogonal decomposition (POD)-based procedure to select basis functions is introduced in [Berntorp and

Grover, 2016] and a continuation scheme for approximation appears in [Matsuura et al., 2016]. Certain

probabilistic approaches based on dynamic programming appear in [Radhakrishnan et al., 2014].

The diffusion map-based algorithm proposed and analyzed here is inspired by the spectral clustering lit-

erature [Belkin, 2003, Von Luxburg, 2007]. The particular form of the kernel proposed here was introduced

in [Coifman and Lafon, 2006]. Convergence analysis for this operator appears in [Hein et al., 2005, Singer,

2006, Coifman and Lafon, 2006, Giné et al., 2006, Hein et al., 2007, Von Luxburg et al., 2008, Belkin and

Niyogi, 2007].
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2.2 Mathematical preliminaries

Notation: For vectors x,y ∈ Rd , the dot product is denoted as x · y and the Euclidean norm is denoted

as ‖x‖2 :=
√

x · x. Lp(ρ) is used to denote the space of measurable functions f : Rd → R such that∫
| f (x)|pρ(x)dx < ∞. The Lp(ρ) norm of f ∈ Lp(ρ) is denoted by ‖ f‖Lp(ρ) := (

∫
| f (x)|pρ(x)dx)

1
p . The

inner product on L2(ρ) is defined by
〈

f ,g
〉

L2 :=
∫

f (x)g(x)ρ(x)dx. The space H1(ρ) is the space func-

tions f ∈ L2(ρ) whose derivative (defined in the weak sense) is in L2(ρ). For a differentiable function f ,

‖∇ f‖Lp(ρ) := (
∫
‖∇ f (x)‖pρ(x)dx)

1
p . For an integrable function f , f̂ :=

∫
f (x)ρ(x)dx denotes the mean.

L2
0(ρ) := { f ∈ L2(ρ) | f̂ = 0} and H1

0 (ρ) := { f ∈ H1(ρ) | f̂ = 0} denote the co-dimension 1 subspace of

functions whose mean is zero. L∞ denotes the space of bounded functions on Rd with associated norm

denoted as ‖ · ‖L∞ . The space of smooth and bounded functions on Rd is denoted as C∞
b (Rd). The Borel

σ -algebra on Rd is denoted by B(Rd). The variance of the random variable X is denoted as Var(X). The

indicator function, for a measurable set A ∈ B(Rd), is denoted as 1[A](·) such that 1[A](x) = 1 if x ∈ A and

1[A](x) = 0 if x 6∈ A

Assumptions: The following assumptions are made throughout the paper:

(i) Assumption A1: The probability density ρ is of the form ρ(x) = e−V (x) where the function

V (x) = 1
2(x−m)>Σ−1(x−m)+w(x) for some m ∈ Rd , Σ� 0, and w ∈C∞

b (Rd);

(ii) Assumption A2: The function h(·) is differentiable and h,∇h ∈ L4(ρ).

Remark 2.1. Assumption A1 implies that the distribution ρ is Gaussian with a bounded perturbation. It is

commonly used in the theory of functional inequalities to obtain log-Sobolev and Poincaré inequalities with

constants that does not depend on dimension Villani [2003]. In this paper, it is used to prove approximation

result (see Prop. 2.3) and spectral gap (see Prop. 2.6) for the diffusion map. The assumption is restrictive,

as it is not satisfied for a mixture of Gaussians. Proving the results in this paper with a weaker assumption

such as ρ = ρg ∗w, the convolution of a Gaussian density ρg and a density w with a compact support, is the

subject of continuing work.

2.2.1 Spectral gap and weak formulation

Under Assumption (A1), the weighted Laplacian ∆ρ has a discrete spectrum with an ordered sequence of

eigenvalues 0 = λ0 < λ1 ≤ λ2 ≤ . . . and associated eigenfunctions {en} that form a complete orthonormal

basis of L2(ρ) [Bakry et al., 2013, Cor. 4.10.9]. The trivial eigenfunction e0(x) = 1, and for f ∈ L2
0(ρ), the

spectral representation yields:

−∆ρ f =
∞

∑
m=1

λm〈em, f 〉em (2.4)

The positivity of the smallest non-trivial eigenvalue (λ1 > 0) is referred to as the Poincaré inequality (or

the spectral gap condition) [Bakry et al., 2008]. The inequality is equivalently expressed as∫
Rd
( f − f̂ )2

ρdx≤ 1
λ1

∫
Rd
‖∇ f‖2

2 ρdx ∀ f ∈ H1(ρ)

17



where f̂ =
∫

f ρdx.

The Poincaré inequality is important to show that the Poisson equation is well-posed and a unique

solution exists. The solution to the Poisson equation is defined using the weak formulation.

A function φ ∈ H1
0 (ρ) is said to be a weak solution of (2.1) if∫
∇φ(x) ·∇ψ(x)ρ(x)dx =

∫
(h(x)− ĥ)ψ(x)ρ(x)dx ∀ ψ ∈ H1(ρ) (2.5)

Equation (2.5) is referred to as the weak-form of the Poisson’s equation. The weak-form is expressed

succinctly as 〈∇φ ,∇ψ〉= 〈h− ĥ,ψ〉where 〈·, ·〉 is the inner-product in L2(ρ). The existence and uniqueness

of the solution to the weak-form of the Poisson equation is stated in the following Proposition.

Proposition 2.1. [Laugesen et al., 2015, Thm. 2.2.] Suppose ρ satisfies Assumption (A1) and h satisfies

Assumption (A2). Then there exists a unique function φ ∈ H1
0 (ρ) that satisfies the weak-form of the Poisson

equation (2.5). The solution satisfies the bound:∫
‖∇φ(x)‖2

2 ρ(x)dx≤ 1
λ1

∫
(h(x)− ĥ)2

ρ(x)dx

Remark 2.2 (Constant gain approximation). The weak formulation has led to the Galerkin algorithm pre-

sented in the original FPF papers [Yang et al., 2016]. A special case of the Galerkin solution is the constant

gain approximation formula (2.3). The formula is obtained from the weak formulation (2.5). Choose the

test functions to be coordinate functions: ψm(x) = xm for m = 1,2, . . . ,d. Then,

∫
∂φ

∂xm
(x)ρ(x)dx =

∫
(h(x)− ĥ)xmρ(x)dx, for m = 1, . . . ,d

concluding the formula (2.3).

2.2.2 Semigroup formulation

Let {Pt}t≥0 be the semigroup associated with the weighted Laplacian ∆ρ . The semigroup allows for a prob-

abilistic interpretation which is described next. Consider the following reversible Markov process {St}t≥0

evolving in Rd :

dSt =−∇V (St)dt +
√

2dBt

where V (x) :=− log(ρ(x)) and {Bt}t≥0 is a standard Weiner process in Rd . Then

Pt f (x) = E[ f (St)|S0 = x]

It is straightforward to verify that Pt : L2(ρ)→ L2(ρ) is symmetric, i.e., 〈Pt f ,g〉= 〈 f ,Ptg〉 for all f ,g∈ L2(ρ)

and ρ(x) = e−V (x) is its invariant density. The semigroup also admits a kernel representation:

Pt f (x) =
∞

∑
m=1

e−tλm〈em, f 〉em(x) =
∫
Rd

k̄t(x,y) f (y)ρ(y)dy
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where k̄t(x,y) := ∑
∞
m=0 e−tλmem(x)em(y).

The spectral gap implies that ‖Pt‖L2
0(ρ)

= e−tλ1 < 1. Hence, Pt is a strict contraction on L2
0(ρ). For the

special case of Gaussian density ρ = N (m,Σ), the eigenfunctions are given by the Hermite polynomials.

This leads to an explicit formula for the kernel k̄t(x,y) in the Gaussian case, as described in Appendix. 2.6.1.

Consider the heat equation

∂u
∂ t

= ∆ρu+(h− ĥ), u(0,x) = f (x)

Its solution is given in terms of the semigroup as follows:

u(t,x) = Pt f (x)+
∫ t

0
Pt−s(h− ĥ)(x)ds

Letting f (x) = φ(x) where φ solves the Poisson equation (2.1) yields the following fixed-point equation for

t = ε:

(exact fixed-point equation) φ = Pεφ +
∫

ε

0
Ps(h− ĥ)ds (2.6)

Equation (2.6) is referred to as the semigroup form of the Poisson equation (2.1).

The following Proposition shows that the weak form (2.5) and the semigroup form (2.6) are equivalent.

The proof appears in the Appendix. 2.6.2.

Proposition 2.2. Suppose ρ satisfies Assumption (A1) and h satisfies Assumption (A2). Then the unique

solution φ ∈ H1
0 (ρ) to the weak form (2.5) is also the unique solution to the fixed-point equation (2.6).

The semigroup formulation has led to the diffusion map-based algorithm which is the main focus of this

chapter.

2.3 Diffusion map-based Algorithm

The diffusion map-based algorithm is based on a numerical approximation of the fixed-point equation (2.6).

The main technique is to approximate the semigroup Pε in the following three steps:

1. Diffusion map approximation: A family of Markov operators {Tε}ε>0 are defined as follows:

Tε f (x) :=
1

nε(x)

∫
Rd

kε(x,y) f (y)ρ(y)dy (2.7)

where nε(x) :=
∫

kε(x,y)ρ(y)dy is the normalization factor,

kε(x,y) :=
gε(x,y)√∫

gε(x,z)ρ(z)dz
√∫

gε(y,z)ρ(z)dz
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and gε(x,y) := exp(− |x−y|2
4ε

) is the Gaussian kernel in R. For small positive values of ε , the Markov

operator Tε is referred to as the diffusion map approximation of the exact semigroup Pε [Coifman and

Lafon, 2006, Hein et al., 2005]. The precise statement of this approximation is contained in Prop. 2.3.

For the special case of Gaussian density, an explicit formula for the diffusion map appears in the Ap-

pendix. 2.6.1.

2. Empirical approximation: The operator Tε is approximated empirically by {T (N)
ε }ε>0,N∈N defined

as follows:

T (N)
ε f (x) :=

1

n(N)
ε (x)

N

∑
j=1

k(N)
ε (x,X j) f (X j) (2.8)

where n(N)
ε (x) := ∑

N
i=1 kε(x,X i) is the normalization factor and

k(N)
ε (x,y) :=

gε(x,y)√
∑

N
j=1 gε(x,X j)

√
∑

N
j=1 gε(y,X j)

Recall that X i i.i.d∼ ρ for i= 1, . . . ,N. So, by law of large numbers (LLN), T (N)
ε f represents an empirical

approximation of the diffusion map Tε . The precise statement of the empirical approximation is

contained in Prop. 2.4.

3. Approximation as Markov matrix: An N×N Markov matrix T is defined with (i, j)-th element

given by

Ti j =
1

n(N)
ε (X i)

K(N)
ε (X i,X j) (2.9)

Finite-dimensional fixed-point equation: Using the three steps above, the original infinite-dimensional

fixed-point equation (2.6) is approximated as a finite dimensional fixed-point equation

Φ = TΦ+ ε(h−π(h)) (2.10)

where h := (h(X1), . . . ,h(XN)) is a N× 1 column vector, and π(h) = ∑
N
i=1 πih(X i) where the probability

vector πi =
n(N)

ε (X i)

∑
N
j=1 n(N)

ε (X j)
is the unique stationary distribution of the Markov matrix T. The solution Φ is used

to define an approximation to the solution of the Poisson equation as follows:

φ
(N)
ε (x) :=

1

n(N)
ε (x)

N

∑
j=1

k(N)
ε (x,X j)Φ j + ε(h(x)−π(h)) (2.11)

The approximation for the gain function is as follows:

K
(N)
ε (x) = ∇

[
1

n(N)
ε (x)

N

∑
j=1

k(N)
ε (x,X j)(Φ j + εh j)

]
(2.12)

Upon evaluating the gradient in closed-form, the following linear formula results for the gain function
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evaluated at particle locations:

Ki := K
(N)
ε (X i) =

N

∑
j=1

si jX j (2.13)

where

si j :=
1

2ε
Ti j(r j−

N

∑
k=1

Tikrk), r j := Φ j + εh j (2.14)

The details of the calculation leading to the linear formula appear in the Appendix. 2.6.3.

Remark 2.3 (Numerical procedure). The fixed-point problem (2.10) is proposed to be solved in an iterative

manner. The vector Φ is initialized at Φ0 = (0, . . . ,0) ∈ RN and it is updated according to

Φn+1 = TΦn + ε(h−π(h)).

for n = 0,1, . . . ,L. The procedure is guaranteed to converge as L→ ∞, with a geometric convergence rate,

because T is a strict contraction on L2
0(π) (see Prop. 2.5-(ii)). In a filtering application, the procedure is

initialized with the vector value Φ that is obtained from the previous filter iteration. The proposed iterative

procedure, to solve the fixed-point equation (2.10), is proffered to other numerical procedures because (i)

it is numerically more efficient than solving a system of N linear equations; (ii) and it allows to use the

solution obtained from the last filter iteration, as the initial value for the current filter iteration. The overall

algorithm is tabulated in Algorithm 2.1.

Algorithm 2.1 diffusion map based algorithm for gain function approximation

Input: {X i}N
i=1, {h(X i)}N

i=1, Φprev, ε , L
Output: {Ki}N

i=1

1: Calculate gi j := exp(−|X i−X j|2/4ε) for i, j = 1 to N

2: Calculate ki j := gi j√
∑l gil
√

∑l g jl
for i, j = 1 to N

3: Calculate di = ∑ j ki j for i = 1 to N

4: Calculate Ti j := ki j
di

for i, j = 1 to N
5: Calculate πi =

di
∑ j d j

for i = 1 to N

6: Calculate ĥ = ∑
N
i=1 π jh(X i)

7: Initialize Φ = Φprev

8: for t = 1 to L do
9: Φi = ∑

N
j=1 Ti jΦ j + ε(h− ĥ) for i = 1 to N

10: end for
11: Calculate ri = Φi + εhi for i = 1 to N
12: Calculate si j =

1
2ε

Ti j(r j−∑
N
k=1 Tikrk) for i, j = 1 to N

13: Calculate Ki = ∑ j si jX j for i = 1 to N

Remark 2.4. The computational complexity of the diffusion map based algorithm is O(N2) because of the

need to assemble the N×N matrix T. The computational complexity may be reduced using the sparsity
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structure of the matrix T and sub-sampling techniques. Compared to the Galerkin algorithm with compu-

tational complexity of O(Nd3), the diffusion-map algorithm is advantageous in high-dimensional problems

where d >> N.

2.3.1 Approximation results

The notation Gε( f )(x) :=
∫

gε(x,y) f (y)dy is used to denote the heat semigroup with a Gaussian kernel

gε(x,y), and

Uε :=
1
2

log(
Gε(ρ)

ρ2 ), U :=−1
2

log(ρ) (2.15a)

Wε :=
1
ε

log(eUε Gε(e−Uε )), W := |∇U |2−∆U (2.15b)

The proof of the following proposition appears in Appendix. 2.6.5.

Proposition 2.3. Consider the family of Markov operators {Tε}ε>0 defined according to (2.7). Let n ∈ N,

t ∈ (0, t0) with t0 < ∞, and ε = t
n . Then,

(i) The semigroup Pt and the operator T n
ε admit the following representations:

Pt f (x) = eU(x)E[e−
∫ t

0 W (Bx
2s)dse−U(Bx

2t) f (Bx
2t)] (2.16)

T n
ε f (x) = eUε (x)E[e−ε ∑

n−1
k=0 Wε (Bx

2kε
)e−Uε (Bx

2nε
) f (Bx

2nε)] (2.17)

for all x ∈ Rd where Bx
t is the Brownian motion with initial condition Bx

0 = x.

(ii) In the asymptotic limit as ε → 0:

Uε(x) =U(x)+2εW (x)+ ε∆V (x)+ ε
2r(1)ε (x) (2.18a)

Wε(x) =W (x)+ εr(2)ε (x) (2.18b)

where |r(1)ε (x)|, |r(2)ε (x)|= O(|x|2) and |∇r(1)ε (x)|= O(|x|) as |x| → ∞.

(iii) For all functions f such that f ,∇ f ∈ L4(ρ):

‖(T n
t
n
−Pt) f‖L2(ρ) ≤ (const.)

√
t

n
(‖ f‖L4(ρ)+‖∇ f‖L4(ρ)) (2.19)

where the constant only depends on t0 and ρ .

The proof of the following proposition appears in Appendix. 2.6.8.

Proposition 2.4. Consider the diffusion map kernel {Tε}ε>0, and its empirical approximation {T (N)
ε }ε>0,N∈N.

Then for any bounded continuous function f ∈Cb(Rd):
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(i) (Almost sure convergence) For all x ∈ Rd

lim
N→∞

T (N)
ε f (x) = Tε f (x) a.s

(ii) (Convergence rate) For any δ ∈ (0,1), in the asymptotic limit as N→ ∞,

∫
|T (N)

ε f (x)−Tε f (x)|2ρ(x)dx = O(
log(N

δ
)

Nεd )

with probability higher than 1−δ .

Remark 2.5 (Related work). The key idea in the proof of the Prop. 2.3 is the Feynman-Kac representation

of the semigroup (2.16). To the best of our knowledge, this representation has not been used before in

the analysis of the diffusion map approximation. Most of the existing results concerning the convergence

of the diffusion map are based on a Taylor series expansion that would lead to a convergence of the form

limε→0
f (x)−Tε f (x)

ε
=∆ρ f (x) for each x∈Rd [Hein et al., 2005, Coifman and Lafon, 2006, Giné et al., 2006].

Convergence results of the form limn→∞ ‖T n
t
n

f −Pt f‖2 = 0 appear in [Coifman and Lafon, 2006, Ting et al.,

2011], based on functional analytic arguments. The Taylor series type arguments typically require the

distribution to be supported on a compact manifold which is not assumed here.

2.4 Convergence and error analysis

The analysis of the diffusion map algorithm involves the consideration of the following four fixed point

problems:

(exact) φ = Pεφ +
∫

ε

0
Ps(h− ĥ)ds (2.20)

(diffusion map approx.) φε = Tεφε + ε(h− ĥε) (2.21)

(empirical approx.) φ
(N)
ε = T (N)

ε φ
(N)
ε + ε(h−π(h)) (2.22)

(finite-dim.) Φ = TΦ+ ε(h−π(h)) (2.23)

where ĥε :=
∫

h(x)ρε(x)dx and ρε(x) := nε (x)ρ(x)∫
nε (x)ρ(x)dx is the density of the invariant probability distribution

associated with the Markov operator Tε .

In practice, the finite-dimensional problem (2.23) is solved. The existence and uniqueness of the solution

for this problem is the subject of the following proposition whose proof appears in Appendix. 2.6.4.

Proposition 2.5. Consider the finite-dimensional fixed point equation (2.23).

Then almost surely

(i) T is a reversible Markov matrix with a unique stationary distribution

πi :=
n(N)

ε (X i)

∑
N
j=1 n(N)

ε (X j)
(2.24)
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for i = 1, . . . ,N.

(ii) T is a strict contraction on L2
0(π) = {v∈RN ;∑πivi = 0}. Hence the fixed point equation (2.23)

has a unique solution Φ ∈ L2
0(π).

(iii) The (empirical approx.) fixed point equation (2.22) has a unique solution given by (see (2.11))

φ
(N)
ε (x) =

1

n(N)
ε (x)

N

∑
j=1

k(N)
ε (x,X j)Φ j + ε(h(x)−π(h))

Based on the results in Prop. 2.2 and Prop. 2.5, the exact solution φ and the numerical solution φ
(N)
ε are

both well-defined. The remaining task is to show the convergence of φ
(N)
ε → φ as N → ∞ and ε → 0. We

break the convergence analysis into two parts, bias and variance:

φ
(N)
ε

N↑∞−→
(variance)

φε

ε↓0−→
(bias)

φ

Before describing the general result, it is useful to first introduce an example that helps illustrate the

bias-variance trade-off in this problem.

2.4.1 Example - the scalar case

In the scalar case (where d = 1), the Poisson equation is:

− 1
ρ(x)

d
dx

(ρ(x)
dφ

dx
(x)) = h(x)− ĥ

Integrating twice yields the solution explicitly

Kexact(x) =
dφ

dx
(x) =− 1

ρ(x)

∫ x

−∞

ρ(z)(h(z)− ĥ)dz (2.25)

For the choice of ρ as the sum of two Gaussians N (−1,σ2) and N (+1,σ2) with σ2 = 0.2 and h(x) =

x, the solution obtained using (2.25) is depicted in Fig. 2.1 (a). Also depicted is the approximate solution

obtained using the diffusion map algorithm with N = 200. As ε→∞ the approximate gain converges to the

constant gain approximation. As ε becomes smaller, the approximation becomes more accurate. However,

for very small values of ε the approximation is poor due to the variance error.

The bias-variance trade-off while varying the the parameter ε is depicted in Fig. 2.1 (b). The L2 error is

computed as a Monte-Carlo average:

error =
1
M

M

∑
m=1

1
N

N

∑
i=1
|K(m)(X i)−Kexact(X i)|2 (2.26)

Fig. 2.1 (b) depicts the error obtained from averaging over M = 1000 simulations as a function of the

parameter ε . It is observed that for a fixed number of particles N, there is an optimal value of ε that
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Figure 2.1: Simulation results for the diffusion-map algorithm for the scalar bimodal example: (a) Approximate gain
function for different choices of ε compared to the exact gain function (solid line). The shaded area in the
background is the bimodal probability density function ρ . The dashed line is the constant gain approximation
solution; (b) Gain function approximation error of the diffusion-map algorithm as a function of the parameter ε . All
the results are with N = 200 particles.

minimizes the error.

The vector counterpart of this example appears in Sec. 2.5.1.

2.4.2 Bias

The analysis of bias has two parts:

1. To show that the (diffusion map) fixed-point equation (2.21) admits a unique solution φε for all posi-

tive choices of ε;

2. To show that φε → φ as ε ↓ 0.

For n ∈ N, iterate the fixed-point equation (2.21) n times to obtain:

φε = T n
ε φε +

n−1

∑
k=0

εT k
ε (h− ĥε) (2.27)

We let ε = t
n for some t > 0 and study the solution of this fixed-point equation as n→∞. Note that the solu-

tion to the iterated fixed-point equation (2.27) is identical to the solution to the fixed-point equation (2.21).

The fixed-point equation (2.27) is the (discrete) Poisson equation that appears in the theory of Markov

chain simulation [Glynn and Meyn, 1996, Meyn and Tweedie, 2009] and stochastic control [Meyn, 2008,

Ch. 9]. Theory presented in these references illustrates how bounds on the solution are obtained under a

Foster-Lyapunov drift condition. A similar strategy is adopted here.

In the following proposition, an existence-uniqueness result is described for the fixed-point equation (2.27).

The technical step in the proof involves a Foster-Lyapunov condition known as DV(3) [Kontoyiannis et al.,

2005]. The proof appears in Appendix. 2.6.6.
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Proposition 2.6. Consider the family of Markov operators {Tε}ε>0 defined in (2.7). Let n ∈ N, t ∈ (0, t0),

and ε = t
n , with t0 < ∞. Then there exists positive constants a, b, R, δ , a probability measure ν , and a

number n0 ∈ N such that for all n > n0:

log(e−Uε T n
ε eUε )≤−atUε +bt (2.28a)

T n
ε 1[A](x)≥ δν(A) ∀|x| ≤ R, ∀A ∈B(Rd) (2.28b)

Consequently,

(i) The chain with transition kernel T n
ε is geometrically ergodic with invariant density

ρε(x) :=
nε(x)ρ(x)∫
nε(x)ρ(x)dx

(2.29)

(ii) T n
ε is reversible with respect to the density ρε It admits a spectral gap as a linear operator

T n
ε : L2

0(ρε)→ L2
0(ρε) that is uniform with respect to ε . The spectral gap is denoted as λ .

(iii) There exists a solution to (2.27) with the bound

‖φε‖L2(ρε ) ≤
t‖h‖L2(ρε )

λ

The proof of the following main result appears in Appendix. 2.6.7.

Theorem 2.1. Suppose the assumptions (A1)-(A2) hold for the density ρ and the function h, and φ denotes

the exact solution of (2.20). Consider the approximation of this problem defined by the (diffusion map)

fixed-point equation (2.21). For the approximate problem:

1. Existence-Uniqueness: For each fixed ε > 0, there exists a unique solution φε .

2. Convergence: In the asymptotic limit as ε → 0

‖φε −φ‖L2(ρε ) = O(ε) (2.30)

2.4.3 Variance

The analysis of the variance concerns the (empirical) fixed-point equation (2.22) whose solution is denoted

as φ
(N)
ε . The parameter ε is assumed to be positive and fixed and N is assumed to be finite but large.

The existence-uniqueness of φ
(N)
ε has already been shown as part of Prop. 2.5. The convergence has

only been shown only for the case where the density has a compact support.

Assumption A3: The distribution ρ has compact support given by Ω⊂ Rd .

Theorem 2.2. Suppose the assumptions (A2)-(A3) hold for the density ρ and the function h, and φε de-

notes the solution of the (kernel) fixed-point equation (2.21) for a fixed positive parameter ε . Consider the
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approximation of this problem defined by the (empirical) fixed-point equation (2.22). For the approximate

problem:

1. Existence-Uniqueness: For each finite N, there exists (almost surely) a unique solution φ
(N)
ε .

2. Convergence: The approximate solution φ
(N)
ε converges to the kernel solution φε

lim
N→∞
‖φ (N)

ε −φε‖∞ = 0, a.s (2.31)

Remark 2.6. (related work) The proof of the convergence φ
(N)
ε → φε is based on similar results in the

numerical analysis of integral equations on a grid [Anselone, 1971, Atkinson, 1976, Baker, 1977]. A related

approach is used in [Von Luxburg et al., 2008] to show the consistency of spectral clustering.

2.4.4 Relationship to the constant gain approximation

Although the convergence and error analysis pertains to the ε ↓ 0 limit, an important property of the diffusion

map approximation is that the numerical procedure yields a unique solution for arbitrary values of ε (see

Prop. 2.5). In fact, more can be said: one recovers the constant gain approximation formula in the ε → ∞

limit.

Before stating the result, it is useful to recall the three formulae for the gain:

(i) Exact formula: K = ∇φ is defined using the exact solution φ ;

(ii) Kernel formula: Kε is defined using the solution φε to the (diffusion-map) approximation fixed-

point equation:

Kε(x) := ∇x

[
1

nε(x)

∫
kε(x,y)(φε(y)+ εh(y))ρε(y)dy

]
(2.32)

(iii) Empirical formula: K(N)
ε is the empirical version of the kernel formula. It was defined in (2.12)

using the solution Φ of the finite-dimensional fixed-point problem.

The proof of the following Proposition appears in the Appendix. 2.6.10.

Proposition 2.7. Consider the fixed-point problems (2.21) and (2.22) in the limit as ε → ∞.

(i) The kernel formula of the gain is given by

lim
ε→∞

Kε =
∫
(h(x)− ĥ)ρ(x)dx

(ii) For any finite N, the empirical formula of the gain is given by

lim
ε→∞

K
(N)
ε =

1
N

N

∑
i=1

(h(X i)− ĥ(N))X i a.s.
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This result serves to highlight the connection between the FPF and the EnKF: With the diffusion map

approximation of the gain, the FPF approaches EnKF in the limit of large ε . The parameter ε can then be

regarded as the tuning parameter to “improve” the gain. Of course, for any finite value of N, this can only

be done up to a point – where variance becomes dominant (see Fig. 2.1).

2.5 Numerics

2.5.1 Example - the vector case

A vector generalization of the scalar example in Sec. 2.4.1 is obtained by considering the following form of

the probability density function in d-dimensions:

ρ(x) = ρB(x1)
d

∏
n=2

ρG(xn), for x = (x1,x2, . . . ,xd) ∈ Rd

where ρB is the bimodal distribution 1
2N (−1,σ2)+ 1

2N (+1,σ2) introduced in Sec. 2.4.1 , and ρG is the

Gaussian distribution N (0,σ2). Also suppose the function h(x) = x1. The simple example is illustrative

of realistic application scenarios where the density has non-Gaussian features along certain (not necessarily

apriori known) low-dimensional subspace. The directions orthogonal to this subspace are modelled here as

Gaussian noise.

For this problem, the exact gain function is easily obtained as

Kexact(x) = (Kexact(x1),0, . . . ,0)

where the function Kexact(x1) is given by the formula (2.25) in Sec. 2.4.1. The exact solution is used to

compute error properties as dimension increases.

The diffusion map algorithm (Table 2.1) is simulated to approximate the gain function for this problem.

For each particle X i = (X i
1, . . . ,X

i
d), the first coordinate X i

1
i.i.d∼ 1

2N (−1,σ2)+ 1
2N (+1,σ2) and other the

coordinates X i
n

i.i.d∼ N (0,σ2) for n = 2, . . . ,d.

Fig. 2.2 depicts the Monte-Carlo error (2.26) computed from running M = 100 simulations. A summary

of these results is as follows:

1. Fig. 2.2-(a) depicts the M.C. error as a function of the parameters ε and d for a fixed number of

particles N = 1000. Also depicted is the error with the constant gain approximation. The constant

gain error serves here as baseline.

For large values of ε , the error asymptotes to the error for the constant-gain approximation. This is

because (see Prop. 2.7) the kernel gain approaches the constant gain as ε → ∞.

The other aspect to note is the bias-variance trade-off first illustrated in Fig. 2.1 for the scalar case. As

the dimension increases, the error due to the variance becomes dominant at relatively larger values of

ε .
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2. Fig. 2.2-(b) depicts the bias-variance trade-off as a function of number of particles N for the fixed

d = 1. It is not a surprise that the error gets better, for all choices of ε , as the number of particles

increase. However, the optimal value of ε – at which the error is the smallest – is relatively insensitive

to changes in N.

3. Fig. 2.2-(c) depicts the error as function of N for different values of ε . The dimension d = 1 is fixed.

The error goes down as O( 1
N ) and asymptotes to the O(ε) bias. The O( 1

N ) is a LLN type estimate and

O(ε) bias error is consistent with the conclusion of the Thm. 2.1.

4. Fig. 2.2-(d) depicts the run time comparison between the diffusion-map algorithm and the constant

gain algorithm. The scaling for the diffusion-map algorithm is O(N2) which is significantly more

expensive than the O(N) scaling of the constant gain approximation.

Remark 2.7 (Selection of ε). The numerical results, in 2.2, suggest that there is an optimal value of ε

that minimizes the error. However, in practice, computing the optimal value of ε for different problems is

difficult. Instead, in the literature involving kernel methods, it is proposed to set ε = 4med2

log(N) where med is the

median value of all pairwise distances {‖X i−X j‖}i6= j [Chaudhuri et al., 2017]. The justification is that,

with such a choice, the N×N matrix whose i, j-th entry is gε(X i,X j) is relatively away from the identity

matrix.

2.5.2 Filtering example

Consider the following filtering problem:

dXt = 0, X0 ∼ p0

dZt = h(Xt)dt +σwdWt

where Xt ∈ R, Zt ∈ R, σW > 0, and {Wt} is standard Brownian motion, independent of Xt . The prior

distribution p0 is Gaussian N (0,1) and the observation function h(x) = |x|. For the static filtering problem,

the posterior distribution is explicitly given by:

p?t (x) = (const.)p0(x)exp
(

1
σ2

w
(h(x)Zt −

1
2

h2(x)t)
)

For comparative purposes, the FPF algorithm with the diffusion-map gain approximation and the con-

stant gain approximation are implemented. With the latter approximation, the FPF is an EnKF algorithm.

The simulation parameters are as follows: The measurement noise σw = 0.1. The simulation is carried out

for T = 500 time-steps with step-size ∆t = 0.001. Both the algorithms use N = 200 particles with identical

initialization. For the diffusion-map approximation, the kernel bandwidth ε = 0.1.

The numerical results are depicted in Fig. 2.3. The distribution of the particles along with the exact

posterior distribution are depicted in Fig. 2.3-(a). It is observed that the FPF algorithm with the diffusion

29



const. gain

(a)

const. gain

(b)

O( )

(c)

O(N2)

O(N)

const. gain

diffusion-map

(d)

Figure 2.2: Simulation results for the diffusion-map algorithm for the vector bimodal example: (a) Gain function
approximation error as a function of ε for d ∈ {1,2,5,10}. (b) Error as a function of ε for N ∈ {100,200,500,1000}.
(c) Error as a function of N for ε ∈ {0.1,0.2,0.5,1.0}; (d) Comparison of the run-time

map approximation provides a more accurate approximation of the posterior distribution. In contrast, the

constant-gain approximation fails to reproduce the bimodal nature of the posterior distribution.

A quantitative estimate of the performance is provided in terms of a mean squared error (m.s.e.). in

estimating the conditional expectation of the function ψ(x) = x1[x≤0]. A Monte Carlo estimate of the m.s.e.

is depicted in Fig. 2.3-(b) with M = 100 runs. At time t, it is calculated according to

m.s.e.t =
1
M

M

∑
m=1

(
1
N

N

∑
i=1

ψ(Xm,i
t )−

∫
ψ(x)p?t (x)dx

)2

At time t = 0, the empirical distribution of the particles is an accurate approximation of the prior dis-

tribution, because the particles are sampled i.i.d. from the prior distribution. Therefore, the m.s.e at t = 0

is small. As time progress, the difference between the empirical distribution and the exact posterior be-

comes larger because the filter update is not exact. As the time-step ∆t is small, the main source of the

m.s.e. error is due to the error in the gain function approximation. Therefore, the diffusion map FPF with

its more accurate approximation of the gain yields better m.s.e., compared to the EnKF using the constant

gain approximation.
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(a) (b)

Figure 2.3: Simulation results for the FPF algorithm for the filtering example: (a) The distribution of the particles
obtained using the diffusion-map approximation and the constant gain approximation as compared to the exact
distribution (dashed line); (b) Plot of the mean squared error in estimating the conditional expectation of the function
ψ(x) = x1[x<0].
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2.6 Proof of the main results

2.6.1 Exact semigroup and and its diffusion map approximation for the Gaussian case

In this section, we provide explicit formulae for the exact semigroup Pt and its diffusion map approximation

Tε , for the special case when the density ρ is a Gaussian N (m,Σ). For the Gaussian case, the semigroup is

the Ornstein-Uhlenbeck semigroup [Bakry et al., 2013, Sec. 2.7.1] an its spectral representation is obtained

in terms of the Hermite polynomials. For notational ease, after an appropriate change of coordinates, we

assume m = 0 and Σ = diag(σ2
1 , . . . ,σ

2
d ) where σ2

1 ≥ σ2
2 ≥ . . .≥ σ2

d > 0 are ordered eigenvalues of Σ.

Definition 2.1. The Hermite polynomials are recursively defined as

}n+1(x) = x}n(x)−}′n(x), }0(x) = 1,

where the prime ′ denotes the derivative.

Proposition 2.8. Suppose the density ρ is Gaussian N (0,Σ) with the variance Σ = diag(σ2
1 , . . . ,σ

2
d ) and

σ2
1 ≥ σ2

2 ≥ . . .≥ σ2
d > 0. Then

(i) The exact semigroup Pt and the diffusion map Tε admit the following integral representations:

Pt f (x) =
∫
Rd

d

∏
j=1

1

(2πσ2
j (1− e−2tσ−2

j ))1/2
exp(−

|y j− e−tσ−2
j x j|2

2σ2
j (1− e−2tσ−2

j )
) f (y)dy (2.33)

Tε f (x) =
∫
Rd

d

∏
j=1

1
(4πε(1−δ j))1/2 exp(−

|y j− (1−δ j)x j|2

4ε(1−δ j)
) f (y)dy (2.34)

where δ j := ε
σ2

j +4ε

σ4
j +3σ2

j ε+4ε2 for j = 1, . . . ,d.

(ii) The operators Pt and Tε each have a unique invariant Gaussian density given by N (0,Σ) and

N (0,Σε), respectively, where Σε = diag(σ2
ε,1, . . . ,σ

2
ε,d) with σ2

ε, j =
2ε(1−δ j)
δ j(2−δ j)

for j = 1, . . . ,d.

(iii) The eigenvalues and the associated eigenfunctions are as follows:

Spectrum of the semigroup Pt : λn =
d

∏
j=1

e
−t

n j
σ2

j , en(x) =
d

∏
j=1

}n j(
x j

σ j
)

Spectrum of the diffusion map Tε : λn =
d

∏
j=1

(1−δ j)
n j , en(x) =

d

∏
j=1

}n j(
x j

σε, j
)

for n = (n1, . . . ,nd) ∈ Zd
+.

(iv) The operator norm ‖Pt‖L2(ρ) = e
− t

σ2
1 and ‖Tε‖L2(ρε ) = 1−δ1.

Proof. (i) The explicit formula (2.33) for the exact semigroup is given in [Bakry et al., 2013, Sec.

2.7]. The explicit formula (2.34) is obtained by evaluating the definition (2.7) for the Gaussian
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case. Consider first the simpler scalar case. Let ρG(x−m;σ2) denote the probability density

function for the Gaussian distribution N (m,σ2). Then by the convolution property∫
Rd

gε(x,y)ρG(y;0,σ2)dy = ρG(x;0,σ2 +2ε)

Hence

nε(x) =
1√

ρG(x;0,σ2 +2ε)

∫
gε(x,y)

ρG(y;0,σ2)√
ρG(y;0,σ2 +2ε)

dy

=
1√
4πε

√
2π(σ2 +2ε)√

2πσ2

1

e
− x2

4(σ2+2ε)

∫
e−

|y−x|2
4ε

e−
y2

2σ2

e
− y2

4(σ2+2ε)

dy

=
1√
4πε

√
(σ2 +2ε)√

σ2
e

x2

4(σ2+2ε)

∫
e−

|y− a
2ε

x|2

2a e
ax2

8ε2−
x2
4ε dy

=
1√
4πε

√
(σ2 +2ε)√

σ2
e

x2

4(σ2+2ε)
+ ax2

8ε2−
x2
4ε
√

2πa

where 1
a = 1

2ε
+ 1

σ2 − 1
2(σ2+2ε)

.

Now, using the definition (2.7),

Tε f (x) =
1

nε(x)

∫
gε(x,y)

ρG(y;0,σ2)√
ρG(x;0,σ2 +2ε)

√
ρG(y;0,σ2 +2ε)

f (y)dy

=
1

nε(x)
1√
4πε

√
(σ2 +2ε)√

σ2
e

x2

4(σ2+2ε)

∫
e−

|y− a
2ε

x|2

2a e
ax2

8ε2−
x2
4ε f (y)dy

=
1√
2πa

∫
e−

|y− a
2ε

x|2

2a f (y)dy

Writing a
2ε

= 1− δ where δ = ε
σ2+4ε

σ4+3εσ2+4ε2 gives the following succinct formula for the scalar

case:

Tε f (x) =
1√

4πε(1−δ )

∫
e−

|y−(1−δ )x|2
4ε(1−δ ) f (y)dy

The extension to the vector case is straightforward. By Assumption, the covariance matrix is

diagonal. Hence, one can write the Gaussian density as a product of Gaussian marginals. Also,

the Gaussian kernel gε(x,y) can be expressed as a product of Gaussian kernels for the coordinates.

Therefore, the kernel for the vector case is obtained as a product of kernels for the coordinates.

(ii) The invariant probability density and the spectrum are obtained by comparison of the for-

mula (2.34) for the approximate kernel to the formula (2.33) for the exact kernel. Indeed, define
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the parameters τ j and σε, j as follows:

1−δ j = e−τ jσ
−2
j,ε

2ε(1−δ j) = σ
2
ε, j(1− e−2τ jσ

−2
ε, j )

for j = 1, . . . ,d. Then one can express

Tε =
d

∏
j=1

eτ j∆q j

where ∆q j is the one-dimensional weighted Laplacian for the j−th coordinate x j, and q j is a

Gaussian N (0,σ2
ε, j). Hence, the formulae for the invariant probability density and the spectrum

follow from explicit results known for eτ j∆q j from [Bakry et al., 2013]:

λn =
d

∏
j=1

e
−t j

n j
σ2

ε, j =
d

∏
j=1

(1−δ j)
n j , en =

d

∏
j=1

}n j(
x j

σε, j
)

(iii) The operator norm ‖Tε‖L2
0(ρε )

is given by the maximum non-trivial eigenvalue of Tε which is

equal to 1−min j(δ j).

2.6.2 Proof of Prop. 2.2

Based on the use of the spectral representation (2.4), the weak solution of the Poisson equation is readily

seen to be

φ =
∞

∑
m=1

1
λm
〈em,h〉em (2.35)

This solution (2.35) also satisfies the fixed-point equation (2.6) because

Ptφ +
∫ t

0
Ps(h− ĥ)ds =

∞

∑
m=1

e−tλm〈em,φ〉em +
∫ t

0

∞

∑
m=1

e−sλm〈em,h〉emds

=
∞

∑
m=1

e−tλm

λm
〈em,h〉em +

∞

∑
m=1

1− e−tλm

λm
〈em,h〉em = φ

The uniqueness of the solution to the fixed-point equation (2.6) follows from the contraction mapping prin-

ciple because ‖Pt‖L2
0(ρ)

= e−tλ1 < 1.
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2.6.3 Derivation of the linear form of the gain (2.13)

By a direct calculation,

∇x
k(N)

ε (x,X j)

∑
N
l=1 k(N)

ε (x,X l)
=

X j−x
2ε

k(N)
ε (x,X j)

∑l k(N)
ε (x,X l)

− ∑
N
l=1

X l−x
2ε

k(N)
ε (x,X l)

∑l k(N)
ε (x,X l)

k(N)
ε (x,X j)

∑l k(N)
ε (x,X l)

which evaluated at x = X i yields

∇x

(
k(N)

ε (x,X i)

∑
N
j=1 kε(x,X j)

)∣∣∣∣∣
x=X i

=
1

2ε

(
X jTi j−

N

∑
l=1

X lTilTi j

)

Using the definitions (2.12) for K
(N)
ε , and (2.14) for r and s,

K
(N)
ε (X i) = ∇x

(
1

n(N)
ε (x)

N

∑
j=1

k(N)
ε (x,X j)(Φ j + εh j)

)∣∣∣∣∣
x=X i

= ∇x

(
∑

N
j=1 k(N)

ε (x,X j)r j

∑
N
j=1 k(N)

ε (x,X j)

)∣∣∣∣∣
x=X i

=
1

2ε

(
N

∑
j=1

X jTi j(r j−
N

∑
l=1

Tilrl)

)
=

N

∑
j=1

si jX j

2.6.4 Proof of Prop. 2.5

1. T is a Markov matrix because Ti j =
1

n(N)
ε (X i)

k(N)
ε (X i,X j)> 0 a.s. and

N

∑
j=1

Ti j =
1

n(N)
ε (X i)

N

∑
i=1

k(N)
ε (X i,X j) =

n(N)
ε (X i)

n(N)
ε (X i)

= 1

The stationary distribution is π because

N

∑
i=1

πiTi j =
N

∑
i=1

n(N)
ε (X i)

∑
N
k=1 n(N)

ε (Xk)

k(N)
ε (X i,X j)

n(N)
ε (X i)

=
∑

N
i=1 k(N)

ε (X i,X j)

∑
N
k=1 n(N)

ε (Xk)
=

n(N)
ε (X j)

∑
N
k=1 n(N)

ε (Xk)
= π j
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All entries of the Markov matrix are positive. Hence the Markov chain is irreducible and aperiodic.

Therefore, the stationary distribution is unique. It is reversible because

πiTi j =
n(N)

ε (X i)

∑
N
k=1 n(N)

ε (Xk)

k(N)
ε (X i,X j)

n(N)
ε (X i)

=
k(N)

ε (X j,X i)

∑
N
k=1 n(N)

ε (Xk)

=
n(N)

ε (X j)

∑
N
k=1 n(N)

ε (Xk)

k(N)
ε (X j,X i)

n(N)
ε (X j)

= π jT ji

2. Denote δ := mini j Ti j. Then δ > 0 a.s. Therefore, ‖T‖L2
0(π)
≤ 1− Nδ

2 < 1, and is thus a contraction

on L2
0(π) [Stroock, 2013, Ch. 5]). It follows, from the contraction mapping principle, that the fixed

point equation (2.10) has a unique solution.

3. Evaluating the definition (2.11) at x = X i concludes φ
(N)
ε (X i) = Φi because,

φ
(N)
ε (X i) =

1

n(N)
ε (X i)

n

∑
j=1

k(N)
ε (X i,X j)Φ j + ε(h(X i)−π(h))

=
N

∑
j=1

Ti jΦ j + ε(hi−π(h)) = Φi

Therefore φ
(N)
ε solves the fixed-point equation (2.22), because

T (N)
ε φ

(N)
ε (x) =

1

n(N)
ε (x)

n

∑
j=1

k(N)
ε (x,X j)φ

(N)
ε (X j)

=
1

n(N)
ε (x)

n

∑
j=1

k(N)
ε (x,X j)Φ j

(2.11)
= φ

(N)
ε (x)− ε(h(x)−π(h))

2.6.5 Proof of the Prop. 2.3

Proof. (i) Let U = −1
2 log(ρ) and W = |∇U |2−∆U as defined in (2.15a) (2.15b). To obtain the

representation (2.16) for the semigroup Pt , consider the unitary transformation [Bakry et al., 2013,

Sec. 1.15.7]:

e−U
∆ρ eU = ∆−W (2.36)

Therefore, for any function f ∈Cb(Rd),

e−U Pt eU( f ) = et(∆−W )( f ) = E[e−
∫ t

0 W (Bx
2s)ds f (Bx

2t)]
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where the stochastic representation (second equality) follows from the Feynman-Kac formula; Bx
t

is a Brownian motion initialized at x. Setting f (x) = e−U(x)g(x),

Ptg(x) = eU(x)et(∆−W )(e−U g)(x) = eU(x)E[e−
∫ t

0 W (Bx
2s)dse−U(Bx

2t)g(Bx
2t)]

which is the representation (2.16).

Next, the representation (2.17) is obtained. Using the definitions, (2.7) of Tε and (2.15a) (2.15b)

of Uε and Wε ,

Tε f (x) =
Gε( f e−Uε )(x)
Gε(e−Uε )(x)

= eUε (x)−εWε (x)Gε(e−Uε f )(x)

= eUε (x)−εWε (x)E[e−Uε (Bx
2ε
) f (Bx

2ε)]

where the final equality follows from using the stochastic representation of the heat semigroup

Gε . The representation (2.17) is obtained by iterating this formula n times.

(ii) Without loss of generality, upon a change of coordinates, assume m= 0 and Σ= diag(σ2
1 , . . . ,σ

2
d )

in Assumption A1. Using the definitions

Uε(x) =U(x)− 1
2

log(ρ(x))+
1
2

log(Gε(ρ)(x)) (2.37)

Now, log(ρ(x)) = log(ρg(x;Σ))+w(x). So, the main calculation is to approximate log(Gε(ρ)).

Using the definition

Gε(ρ)(x) =
∫
Rd

gε(x,y)ρg(y;Σ)e−w(y)dy

=
∫
Rd

e−∑
d
n=1

|xn−yn |2
4ε

(4πε)d/2

e
−∑

d
n=1

|yn |2

2σ2n
−w(y)

∏
d
n=1(2πσ2

n )
1/2

dy

=

− 1
2 ∑

d
n=1

|xn |2

2(σ2n +2ε)

∏
d
n=1(2π(σ2

n +2ε))1/2

∫
Rd

e−∑
d
n=1

|yn−(1−δn)xn |2
4ε(1−δn)

∏
d
n=1(4πε(1−δn))1/2

e−w(y)dy

= ρg(x;Σ+2εI)G(δ )
ε (e−w)((I−δ )x)

where δn =
2ε

σ2
n+2ε

, δ = diag(δ1, . . . ,δd) and G(δ )
ε is the semigroup associated with the pde ∂

∂ t G(δ )
t f =

G(δ )
t (tr((I−δ )∇2 f )).
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The Taylor expansion of G(δ )
ε (e−w), about ε = 0, is expressed as

G(δ )
ε (e−w)(x) = e−w(x)+ εTr((I−δ )∇2e−w)(x)

+
∫

ε

0

∫
τ

0
(

d

∑
m,n=1

(1−δm)
2(1−δn)

2G(δ )
s ∂

2
n ∂

2
me−w)(x)dsdτ︸ ︷︷ ︸

ε2rε (x)

where ∂ 2
m := ∂ 2

∂x2
n
.

Using the property that G(δ )
s ∂n f = ∂nG(δ ) f , ‖G(δ )

t ( f )‖L∞ ≤ ‖ f‖L∞ and the assumption (A1) that

w ∈C∞
b (Rd), we conclude that rε ∈C∞

b (Rd). Therefore,

log(Gερ(x)) = log(ρg(x;Σ+2εI))−

(w− log(1+ εtr((I−δ )ew
∇

2e−w)+ ε
2ewrε))|(I−δ )x︸ ︷︷ ︸

w(1)
ε (x)

The asymptotic expansion of w(1)
ε , as ε → 0, is obtained as

w(1)
ε (x) = w(x)−2εx>Σ

−1
∇w(x)− εew

∆e−w(x)+O(ε2)

where the remainder term has at most linear growth as |x| → ∞.

Substituting the asymptotic expression for log(Gερ(x)) in (2.37),

Uε(x) =U(x)− 1
2

log(ρg(x;Σ))+
1
2

w(x)+
1
2

log(ρg(x;Σ+2εI))− 1
2

w(1)
ε (x)

=U(x)+
ε

2
x>Σ

−1(Σ+2εI)−1x− ε

2
Tr(Σ−1)

+ εx>Σ
−1

∇w(x)+
ε

2
(‖∇w(x)‖−22−∆w(x))+O(ε2)

=U(x)+
ε

2
‖Σ−1x+∇w(x)‖2

2−
ε

2
(Tr(Σ1)+∆w(x))︸ ︷︷ ︸

2εW (x)+ ε

2 ∆V (x)

+O(ε2)

where the remainder O(ε2) error term has at most quadratic growth as ‖x‖2→ ∞. This concludes

the proof of approximation (2.18a).

Based on this above calculation, the following estimate for an upper bound of the function U is

obtained (it is used in the proof of Prop. 2.6):

Uε(x)≤
1
4

x>Σ
−1x+ ε(‖Σ−1x‖2

2 +‖∇w‖2
L∞ +‖∆V‖L∞)+ ε

2(C1‖x‖2
2 +C2)

≤ 1
8σ2

1
‖x‖2

2 +
σ2

1
8
(‖∇w‖2

L∞ +‖∆V‖L∞ +
C2σ2

1
8

) (2.38)
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where recall σ2
1 = λmin(Σ).

Next, the approximation (2.18b) is derived. Using the definition

εWε(x) =Uε(x)+ log(Gεe−Uε (x))

By repeating the steps, just used to approximate log(Gε(ρ)), it is shown

log(Gε(e−Uε )) = log(ρg(x;2Σ(I +δ )−1 +2εI))−w(2)
ε (x)

where

w(2)
ε (x) = w(x)− 1

2
w(1)

ε (x)− ε

2
x>Σ

−1
∇w(x)− ε(

1
4
‖∇w(x)‖2

2−
1
2

∆w(x))+O(ε2)

Therefore,

εWε(x) =− log(ρg(x;2Σ(I +δ )−1))+ log(ρg(x;2Σ(I +δ )−1 +2εI))

+w(x)− 1
2

w(1)
ε (x)−w(2)

ε (x)+O(ε2)

=
2ε

4
x>(I +δ )Σ−1(2Σ(I +δ )−1 +2εI)−1x− ε

2
Tr(Σ−1)

+ εx>Σ
−1

∇w(x)+
ε

2
(
1
4
‖∇w(x)‖2

2−
1
2

∆w(x))+O(ε2)

= ε (
1
4
‖Σ−1x+∇w(x)‖2

2−
1
2
(Tr(Σ−1)+∆w(x)))︸ ︷︷ ︸

W (x)

+O(ε2)

where the error term has at most quadratic growth as |x| → ∞. This concludes the proof of the

approximation (2.18b).

Based on this above calculation, the following estimate for a lower bound of the function Wε is

obtained (it is used in the proof of Prop. 2.6):

Wε(x) =
1
4
‖Σ−1x+∇w(x)‖2

2−
1
2
(Tr(Σ−1)+∆w(x))+ εr(2)ε (x)

≥ 1
8
‖Σ−1x‖2

2−
1
2
(‖∇w‖2

L∞ +Tr(Σ−1)+‖∆w‖L∞)− ε(C1‖x‖2
2 +C2)

≥ α‖x‖2
2−β (2.39)

where α = 1
16σ4

d
, β = 1

2(‖∇w‖2
L∞ +Tr(Σ−1)+‖∆w‖L∞ + C2

8σ2
1
) and ε ≤ 1

16C1σ4
d

(where recall σ2
d =

λmax(Σ)).

(iii) Let P̃t denote the semigroup for the weighted Laplacian ∆q with the density q(x) = e−2Uε (x).

We break the error into two parts:

‖T n
ε f −Pt f‖L2(ρ) ≤ ‖T n

ε f − P̃t f‖L2(ρ)+‖P̃t f −Pt f‖L2(ρ)
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The bounds for the two terms on the right-hand side are derived in the following two steps:

Step 1. Using the stochastic representation (2.16)-(2.17),

(T n
ε − P̃t) f (x) = eUε (x)E

[
e−Uε (Bx

2t) f (Bx
2t) ζt

]
where ζt := e−ε ∑

n−1
k=0 Wε (Bx

2kεn )− e−
∫ t

0 W (Bx
2s)ds. By the Cauchy-Schwartz inequality

|(T n
ε − P̃t) f (x)| ≤ eUε (x) E[| f (Bx

2t)|2e−2Uε (Bx
2t)]

1
2 E
[
|ζt |2

] 1
2

Next we obtain a bound for ζt . Upon using the inequality |e−x− e−y| ≤ e−min(x,y)|x− y|,

|ζt | ≤ e−C

∣∣∣∣∣n−1

∑
k=0

ε(Wε(Bx
2kε)−W (Bx

2kε))

∣∣∣∣∣+ e−C

∣∣∣∣∣
∫ t

0
W (Bx

2s)ds−
n−1

∑
k=0

εW (Bx
2kε)

∣∣∣∣∣ (2.40)

where C = t min(minx∈Rd W (x),minx∈Rd Wε(x)). Now, C is finite because, as |x| → ∞, W (x)→ ∞

(Assumption A1) and Wε(x)→ ∞ (by (2.18b)).

The expectation of the first term on the right-hand side of (2.40) is bounded as follows:

E

∣∣∣∣∣n−1

∑
k=0

ε(Wε(Bx
2kε)−W (Bx

2kε))

∣∣∣∣∣
2
 1

2

≤
n−1

∑
k=0

εE[|Wε(Bx
2kε)−W (Bx

2kε)|2]
1
2

≤
n−1

∑
k=0

ε
2E[(C1‖x+Bx

2kε‖2
2 +C2)

2]
1
2

≤
n−1

∑
k=0

ε
2(2C1‖x‖2

2 +2C1E[|Bx
2kε |4]

1
2 +C2)

≤ εt
[
2C1‖x‖2

2 +6C1t +C2
]

where the second inequality follows from the bound |Wε(x)−W (x)|= ε|r(2)ε (x)| ≤ ε(C1‖x‖2
2+C2)

for some constants C1,C2 (see (2.18b)).

The expectation of the second term in (2.40) is bounded as follows:

E

∣∣∣∣∣
∫ t

0
W (Bx

2s)ds−
n−1

∑
k=0

εW (Bx
2kε)

∣∣∣∣∣
2
 1

2

≤ ε(E

[∫ t

0
‖∇W (Bx

2s)‖2
2ds
] 1

2

+ t‖∆W‖L∞)

≤ ε(E

[∫ t

0
|C3‖x+Bs‖2 +C4|2ds

] 1
2

+ tC5)

≤ εt
1
2 (C3‖x‖2 +C3t +C4)+ εC5t

where the Taylor expansion of W (x) is used to obtain the first inequality, and for the second

inequality, Assumption (A1) is used to bound |∇W (x)| ≤ ‖Σ−1‖|x|+ ‖∇w‖L∞ = C3|x|+C4 and
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‖∆W‖L∞ ≤ ‖Σ−1‖+‖∆w‖L∞ =C5.

Putting together the two expectation bounds ,

|(T n
εn
− P̃t) f (x)| ≤ eUε (x)E[ f 2(Bx

2t)e
−2Uε (Bx

2t)]
1
2 Cεt

1
2 (‖x‖2

2 +1)

where C is a constant that only depends on t0. Upon taking the L2(ρ) norm

‖T n
ε −P̃t f‖2

L2(ρ)

≤Cε
2t
∫ ∫

f 2(y)ρg(x− y;2t)(‖x‖2
2 +1)2e2Uε (x)−2Uε (y)ρ(x)dydx

≤Cε
2t
∫ ∫

f 2(y)ρg(x− y;2t)(‖x‖4
2 +1)e2ε(2W (x)+ 1

2 ∆V (x)+εr(1)ε (x))
ρ(y)dydx

≤Cε
2t
∫

f 2(y)(‖y‖4
2 +12t2 +1)e8εW (y)+O(ε2)

ρ(y)dy

≤Cε
2t
[∫

(‖x‖4
2 +12t2 +1)2e8εW (x)+O(ε2)

ρ(x)dx
]1/2[∫

f 4(x)ρ(x)dx
]1/2

≤Cε
2t‖ f‖2

L4(ρ)

Step 2. Because Pt and P̃t are semigroups with generators ∆ρ and ∆q, respectively, we have the

identity: Pt f − P̃t f =
∫ t

0 Pt−s(∆ρ −∆q)P̃s f ds. Upon taking the L2(ρ) norm of both sides, using the

triangle inequality, because Pt is contraction on L2(ρ),

‖Pt f − P̃t f‖L2(ρ) ≤
∫ t

0
‖(∆ρ −∆q)P̃s f‖L2(ρ)ds

Now,

‖(∆ρ −∆q)P̃s f‖2
L2(ρ) = 4

∫
|(∇U(x)−∇Uε(x)) ·∇(P̃s f )(x)|2ρ(x)dx

≤ 4
[∫
‖∇U(x)−∇Uε(x)‖4

2
ρ(x)
q(x)

ρ(x)dx
]1/2[∫

|∇P̃s f (x)|4q(x)dx
]1/2

≤ 4ε
2
[∫
|C1‖x‖2 +C2|4e−2U(x)+2Uε (x)ρ(x)dx

]1/2

‖∇ f‖2
L4(q)

≤Cε
2‖∇ f‖2

L4(ρ)

where the identity ∆ρ f − ∆q f = 2∇U ·∇ f − 2∇Uε ·∇ f is used in the first step, the Cauchy-

Schwartz inequality in the second step, and the bounds ‖∇Uε(x)−∇U(x)‖2 ≤ ε(C1‖x‖2 +C2)

and ‖∇P̃s f‖L4(q) ≤ ‖∇ f‖L4(q) in the third step.

Combining the two sets of bounds in steps 1 and 2, one obtains (2.19).
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2.6.6 Proof of the Prop. 2.6

Proof. (i) The Lyapunov condition (2.28a), known as DV(3) of [Kontoyiannis et al., 2005], is the necessary

and sufficient condition for geometric ergodicity (and in fact the stronger Uε -uniform ergodicity) [Meyn and

Tweedie, 2009, Thm. 15.0.1]. The distribution ρε is invariant because ∀ f ∈Cb(Rd),

∫
Tε f (x)ρε(x)dx =

∫ ∫ 1
nε(x)

kε(x,y) f (y)ρ(y)dy
nε(x)ρ(x)∫
nε(z)ρ(z)dz

dx

=
1∫

nε(z)ρ(z)dz

∫ ∫
kε(x,y)ρ(x)dx f (y)ρ(y)dy

=
1∫

nε(z)ρ(z)dz

∫
f (y)nε(y)ρ(y)dy =

∫
f (x)ρε(x)dx

(ii) The invariant density ρε is reversible because ∀ f ,g ∈Cb(Rd)

∫
g(x)Tε f (x)ρε(x)dx =

∫ ∫
g(x)

kε(x,y)
nε(x)

f (y)ρ(y)
nε(x)ρ(x)∫
nε(z)ρ(z)dz

dydx

=
1∫

nε(z)ρ(z)dz

∫
Tεg(y)nε(y) f (y)ρ(y)dy

=
∫

f (y)Tεg(y)ρε(y)dy

The spectral gap follows from Lyapunov condition (2.28a) and the fact that the chain is reversible [Roberts

and Rosenthal, 1997, Thm 2.1]. The spectral gap is denoted as λ .

(iii) The solution φε satisfies the bound:

‖φ‖L2(ρε ) ≤
‖∑

n−1
k=0 εT k

ε (h− ĥε)‖L2(ρε )

1−‖T n
ε ‖L2

0(ρε )

≤
εn‖h‖L2(ρε )

1−‖T n
ε ‖L2

0(ρε )

≤
t‖h‖L2(ρε )

λ

It remains to verify the Lyapunov condition (2.28a): Using (2.17)

e−Uε T n
ε eUε (x) = E[e−ε ∑

n−1
k=0 Wε (Bx

2kε
)]≤ E[e−ε ∑

n−1
k=0(α‖B

x
2kεn‖

2
2−β )]

where the second inequality follows from using the lower bound Wε(x)≥ α|x|2−β derived in (2.39).

We now claim that

E[e−ε ∑
m−1
k=0 (α‖B

x
2kε
‖2

2−β )] = e−αm‖x‖2
2+βm (2.41)

for m = 1, . . . ,n where {αm}n
m=1 and {βm}n

m=1 are defined using the recursions:

αm+1 = αε +
αm

1+4εαm
, α1 = αε

βm+1 = βm +βε− 1
2

log(1+4εαm), β1 = βε
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Assuming for now that the claim is true

log(e−U T n
εn

eU(x))≤ log(E[e−ε ∑
n−1
k=0(α‖B

x
2kεn‖

2
2−β )]) =−αn‖x‖2

2 +βn

An upper-bound for βn and a lower-bound for αn are obtained as follows:

1. For the sequence {βm}n
m=1,

βm+1 ≤ βm +βε, ⇒ βn ≤ β1 +(n−1)βε = β t

2. For the sequence {αm}n
m=1,

αm+1 ≤ αm +αε, ⇒ αm ≤ α1 +(n−1)αε = αt

Therefore,

αm+1 ≥
αm

1+4εαt
+αε, α1 = αε

It then follows

αn ≥ αte−4αt2

Upon using the two bounds

log(e−Uε T n
εn

eUε (x))≤−αte−4αt2‖x‖2
2 +β t ≤−atUε(x)+bt

where the second inequality follows from using the upper bound Uε(x)≤ 1
8σ2

1
‖x‖2

2 +
σ2

1
8 C derived in (2.38).

The following estimates are obtained for constants

a = 8σ
2
1 αe−4αt2

0 , b = β +Cσ
4
1 αe−4αt0

It remains to prove the claim (2.41). The constants α1 and β1 for m = 1 are easily verified by direct

evaluation and for m > 1,

E[e−ε ∑
m
k=0(α‖Bx

2kε
‖2

2−β )] = E[e−εα‖x‖2
2+βεe−αm‖B2ε‖2

2+βm ]

= e−εα‖x‖2
2−

αm
1+4εαm

‖x‖2
2+εβ+βm− 1

2 log(1+4εαm)

The minorization inequality (2.28b) is obtained next. For |x| ≤ R:

T n
t
n

1[A](x) = eUε (x)E[e−ε ∑
n−1
k=0 Wε (Bx

2kε
)e−Uε (Bx

2t)1[Bx
2t∈A]]

≥ emin‖x‖2≤R Uε (x)

emax‖x‖2≤R+10(Uε (x)+tWε (x))
P([Bx

2t ∈ A]∩ [ sup
s∈[0,2t]

‖Bs‖2 ≤ 10])≥ δν(A)
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where

ν(A) = P({Bx
2t ∈ A}|{ sup

s∈[0,2t]
‖Bs‖2 ≤ 10})

δ =
emin|x|≤R,ε∈(0,1)Uε (x)

emax|x|≤R+10,ε∈(0,1)(Uε (x)+tWε (x))
(1−2e−

50
t0 )

because P( sup
s∈[0,2t]

‖Bs‖2 ≥ 10)≤ e−
100
2t ≤ e−

50
t0 .

2.6.7 Proof of the Thm. 2.1

Proof. (i) The existence of the solution is proved in Prop. 2.6.

(ii) We break the error into two parts:

‖φε −φ‖L2(ρε ) ≤ ‖φε − φ̃‖L2(ρε )+‖φ̃ −φ‖L2(ρε )

where φ̃ is the solution to the fixed point equation φ̃ = Pε φ̃ + ε(h− ĥ) with the exact semigroup

Pε . The bounds for the two terms on the right-hand side are derived in the following two steps:

Step 1. Iterating the formula φ̃ = Pε φ̃ + ε(h− ĥ) for n = b 1
ε
c times yields,

φ̃ = Pn
ε φ̃ +

n−1

∑
k=0

εPk
ε (h− ĥ)

and subtracting this from (2.27) gives

φε − φ̃ = T n
ε (φε − φ̃)+(T n

ε −Pn
ε )φ̃ +

n−1

∑
k=0

ε(T k
ε −Pk

ε )h+ t(ĥ− ĥε)

This forms a (discrete) Poisson equation whose solution exists and is bounded according to Prop. 2.6:

‖φε − φ̃‖L2(ρε ) ≤
nε

λ

(
‖(T n

ε −Pn
ε )φ̃‖L2(ρε )+‖

n−1

∑
k=0

ε(T k
ε −Pk

ε )h‖L2(ρε )+nε|ĥ− ĥε |

)

≤ Cnε

λ

(
‖(T n

ε −Pn
ε )φ̃‖L2(ρ)+‖

n−1

∑
k=0

ε(T k
ε −Pk

ε )h‖L2(ρ)+nε|ĥ− ĥε |

) (2.42)

where we used ‖·‖L2(ρε )≤C‖·‖L2(ρ) in the second step. This is true because ρε(x)= e−Uε (x)Gε(e−Uε )(x)=

ρ(x)e−3εW (x)−ε∆V (x)+O(ε2) ≤Cρ(x) using the formula (2.18a).
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It remains to bound the three terms inside the bracket in (2.42):

‖T n
ε φ̃ −Pnε φ̃‖L2(ρ) ≤Cε

√
nε(‖φ̃‖L4(ρ)+‖∇φ̃‖L4(ρ))

‖
n−1

∑
k=0

ε(T k
ε −Pk

ε )h‖L2(ρ) ≤Cε(nε)
√

nε(‖h‖L4(ρ)+‖∇h‖L4(ρ))

|ĥε − ĥ| ≤
∫
|h(x)|ρ(x)|e−3εW (x)−ε∆V (x)+O(ε2)−1|dx≤ εC‖h‖L2(ρ)

by using the error estimates Prop. 2.3-(iii). Therefore,

‖φε − φ̃‖L2(ρε ) ≤ εC(‖h‖L4(ρ)+‖∇h‖L4(ρ)+‖φ̃‖L4(ρ)+‖∇φ̃‖L4(ρ))

Step 2. Both φ and φ̃ are solutions with the exact semigroup Pε . Using the spectral representa-

tion (2.4),

φ =
∞

∑
m=1

1
λm
〈h,em〉em, φ̃ =

∞

∑
m=1

ε

1− e−ελm
〈h,em〉em

Therefore,

‖φ̃ −φ‖2
L2(ρ) = ε

2
∞

∑
m=1

(
1

1− e−ελm
− 1

ελm
)2|〈h,em〉|2 ≤ ε

2‖h‖2
L2(ρ)

and thus ‖φ̃ −φ‖L2(ρε ) ≤C‖φ̃ −φ‖L2(ρ) ≤ ε2C‖h‖2
L2(ρ)

.

Combining the estimates from steps 1 and 2,

‖φε −φ‖L2(ρε ) ≤ εC(‖h‖L4(ρ)+‖∇h‖L4(ρ)+‖φ̃‖L4(ρ)+‖∇φ̃‖L4(ρ))

2.6.8 Proof of the Prop. 2.4

Proof. Denote η j = (

√
(gε∗ρ)(X j)

1
N ∑

N
l=1 gε (X j,X l)

−1) and express:

T (N)
ε f (x) =

∫
kε(x,y) f (y)ρ(y)dy+ξ

(N)
1 +ζ

(N)
1

nε(x)+ξ
(N)
2 +ζ

(N)
2
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where

ξ
(N)
1 =

1
N

N

∑
j=1

kε(x,X j) f (X j)−E[kε(x,X j) f (X j)], ζ
(N)
1 =

1
N

N

∑
j=1

kε(x,X j) f (X j)η j

ξ
(N)
2 =

1
N

N

∑
j=1

kε(x,X j)−E[kε(x,X j)], ζ
(N)
2 =

1
N

N

∑
j=1

kε(x,X j)η j

(i) To prove the part-(i) of the Prop. 2.4, the strategy is to show that as N→ ∞ the stochastic terms

ξ
(N)
1 ,ξ

(N)
2 ,ζ

(N)
1 ,ζ

(N)
2 converge to zero almost surely. We do this in two steps below, ξ

(N)
1 ,ξ

(N)
2 in

step 1, and ζ
(N)
1 ,ζ

(N)
2 in step 2.

Step 1: Convergence of ξ
(N)
1 and ξ

(N)
1 follows from direct application of the strong law of large

numbers (SLLN). The SLLN applies because the summand for ξ
(N)
1 and ξ

(N)
2 are independent and

identically distributed (i.i.d) and moreover have finite variance:

Var(kε(x,X) f (X))≤ C
εd/2

‖ f‖2
L∞ρ(x)

(gε ∗ρ)2(x)
(2.43)

Var(kε(x,X))≤ C
εd/2

ρ(x)
(gε ∗ρ)2(x)

(2.44)

where we used g2
ε(x,y)≤Cε−d/2gε/2(x,y).

Step 2: In order to show the almost sure convergence of ζ
(N)
1 and ζ

(N)
1 to zero, we first show that

in the limit as N→ ∞,

|ηi| ≤C

√
log(N

δ
)

Nεd/2qε(X i)
, ∀i = 1, . . . ,N (2.45)

with probability larger than 1− δ for any arbitrary choice of δ ∈ (0,1). Assuming for now that

the claim is true, it then follows

ζ
(N)
1 ≤

√
C log(N

δ
)

Nεd/2

(
1
N

N

∑
j=1

kε(x,X j)
| f (X j)|√
gε ∗ρ(X j)

)
(2.46)

with probability larger than 1−δ . The term inside the bracket converges almost surely to its limit

E[kε(x,X) | f (X)|√
gε∗ρ(X)

], by SLLN, because

E

(
kε(x,X)

| f (X)|√
gε ∗ρ(X)

)
≤ C‖ f‖L∞ρ(x)

(gε ∗ρ)3/2(x)

The proof that ζ
(N)
1

a.s.−→ 0 is completed by an application of the Borel-Cantelli lemma. Indeed,

choose a sequence {δN}∞
N=1 given by δN = 1

N2 . Then ∑
∞
N=1 P(ζ

(N)
1 > εN) ≤ ∑

∞
N=1 δN < ∞ where

εN =
√

C log(N3)

Nεd/2 . Because εN → 0, then ζ
(N)
1

a.s→ 0. The proof of ζ
(N)
2

a.s→ 0 is identical.
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It remains to prove the claim (2.45). It follows from the Bernstein inequality. We have for any

a > 0:

P(ηi ≥ a) = P

(√
(gε ∗ρ)(X j)

1
N ∑

N
l=1 gε(X j,X l)

≥ 1+a

)

≤ P

(
(gε ∗ρ)(X j)

1
N ∑

N
l=1 gε(X j,X l)

≥ 1+a

)

= P

(
(gε ∗ρ)(X j)− 1

N ∑
N
l=1 gε(X j,X l)

(gε ∗ρ)(X j)
≥ a

1+a

)

The random variables gε(X i,X j) are i.i.d, bounded by (4πε)−
d
2 , and the variance

E
[
|gε(X i,X j)|2|X j]≤ 1

(8πε)d/2 (gε/2 ∗ρ)(X j)

Therefore by Bernstein inequality,

|ηi| ≤C

√
(gε/2 ∗ρ)(X j) log( 2

δ
)

N(8πε)d/2(gε ∗ρ)(X j)2

with probability higher than 1− δ . The result is obtained by union bound for i = 1, . . . ,N and

‖gε/2∗ρ
gε∗ρ ‖L∞ < ∞.

(ii) Collecting the estimates (2.43)-(2.44)-(2.46) and application of the Bernstein inequality yields:

|ξ (N)
1 | ≤

√
C‖ f‖2

∞ log( 1
δ
)ρ(x)

Nεd/2(gε ∗ρ)2(x)
, |ξ (N)

2 | ≤

√
C log( 1

δ
)ρ(x)

Nεd/2(gε ∗ρ)2(x)

|ζ (N)
1 | ≤

√
C‖ f‖2

∞ log(N
δ
)ρ2(x)

Nεd/2(gε ∗ρ)3(x)
, |ζ (N)

2 | ≤

√
C log(N

δ
)ρ2(x)

Nεd/2(gε ∗ρ)3(x)

with probability larger than 1−4δ . Therefore one obtains the bound:

|T (N)
ε f (x)−Tε f (x)| ≤

√
C log(N

δ
)ρ(x)

Nεd/2(gε ∗ρ)2(x)n2
ε(x)

with probability larger than 1−4δ . Upon squaring and integrating both sides with respect to ρ(x)

proves the rate:

‖T (N)
ε f −Tε f‖2 ≤

√
C log(N

δ
)

Nεd/2

(∫
ρ(x)

(gε ∗ρ)2(x)n2
ε(x)

ρ(x)dx
)1/2

≤

√
C log(N

δ
)

Nεd/2

(∫
e−2ε|∇V (x)|2+ 3

2 ε|∇V (x)|2dx
)1/2

≤

√
C log(N

δ
)

Nεd
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2.6.9 Proof of the Thm. 2.2

In the proof of Thm. 2.2, the function space of interest is C(Ω), the Banach space of continuous functions

on (a compact set) Ω ⊂ Rd equipped with the ‖ · ‖L∞ norm. The space C0(Ω) := { f ∈C(Ω) |
∫

f ρε = 0}.
Consider Tε and T (N)

ε as linear operators from C(Ω) to C(Ω).

Part-(i) has already been proved as part of the Prop. 2.5. The proof of part (ii) relies on the verification

of the following three conditions:

(i) The family of operators {T (N)
ε }∞

N=1 is collectively compact, as linear operators on C(Ω).

(ii) For any function f ∈C(Ω),

lim
N→∞
‖T (N)

ε f −Tε f‖L∞ = 0, a.s. (2.47)

(iii) The operator (I−Tε)
−1 is a bounded operator on C0(Ω).

Once these three conditions have been verified, the convergence result (2.31) follows from a standard

result in the approximation theory of the numerical solutions of integral equations [Hutson et al., 2005, Thm.

7.6.6].

The proof of the three conditions is as follows:

(i) The collective compactness holds if the set S = {T (N)
ε f ; ∀ f ∈ C(Ω),‖ f‖L∞ ≤ 1,N ∈ N} is rel-

atively compact. Relative compactness follows from an application of the Arzela-Ascoli theo-

rem. In order to apply Arzela-Ascoli theorem, we need to show that S is uniformly bounded and

equicontinuous. The two conditions hold because

(unif. boundedness) |T (N)
ε f (x)| ≤ ‖ f‖L∞

∑
N
i=1 k(N)

ε (x,X i)

∑
N
i=1 k(N)

ε (x,X i)
≤ 1

(equicontinuous) |T (N)
ε f (x)−T (N)

ε f (x′)| ≤ L
ε
|x− x′|e

L
2ε
|x−x′| (2.48)

for all x,x′ ∈Ω and f such that ‖ f‖L∞ ≤ 1. The detailed calculation to obtain the second inequality

appears at the end of the proof.

(ii) Fix a function f ∈C(Ω). From Prop. 2.4-(i), we know that T (N)
ε f (x) converges to Tε f (x) almost

surely pointwise for all x ∈ Ω. Because Ω is compact and {T (N)
ε f} is equicontinuous, pointwise

convergence implies uniform convergence (2.47).

(iii) From parts (i) and (ii) above, it can be concluded that Tε is a compact operator. Therefore, using

the Fredholm alternative theorem, in order to show (I−Tε)
−1 is bounded, it is enough to show

that I−Tε is injective. The injectivity property is shown by contradiction. Suppose there exists a

function f ∈C0(Ω) such that f −Tε f = 0. Let x0 ∈Ω be a point that achieves the maximum of the
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function f . Such a point exists because f is continuous and Ω is compact. Evaluating f −Tε f = 0

at x = x0 yields

0 = f (x0)−Tε f (x0) =
1

nε(x)

∫
kε(x0,y)( f (x0)− f (y))dy

Because kε(x0,y) > 0 and f (y) ≤ f (x0), this implies f (y) = f (x0) for all y ∈ Ω. Therefore, the

function f is a constant. But the only constant function in C0(Ω) is zero. Hence I−Tε is injective

and its inverse (I−Tε)
−1 is bounded.

It remains to prove the equicontinuity inequality (2.48) which is done next:

|T (N)
ε f (x)−T (N)

ε f (x′)| ≤ |∑
N
i=1 k(N)

ε (x,X i) f (X i)

∑
N
i=1 k(N)

ε (x,X i)
− ∑

N
i=1 k(N)

ε (x′,X i) f (X i)

∑
N
i=1 k(N)

ε (x′,X i)
|

≤ 2‖ f‖L∞

∑
N
i=1 k(N)

ε (x,X i)|1− kε (x′,X i)
kε (x,X i)

|

∑
N
i=1 kε(x,X i)

≤ 2 max
i=1,...,N

|1− kε(x′,X i)

kε(x,X i)
| ≤ L

ε
‖x− x′‖2e

L
2ε
‖x−x′‖2

where the last inequality is obtained as follows

|1− kε(x′,X i)

kε(x,X i)
|= |1− gε(x′,X i)

gε(x,X i)
|= |1− e−

(x′−x)·(x′+x−2Xi)
4ε | ≤ L

2ε
‖x− x′‖2e

L
2ε
‖x−x′‖2

where L = maxx,y∈Ω ‖x− y‖2 is the diameter of Ω.

2.6.10 Proof of Prop. 2.7

1. Consider first the finite-N case. In the asymptotic limit as ε → ∞, we have (2πε)d/2gε(x,y) = 1+

O( 1
ε
). Therefore,

k(N)
ε (x,y) =

gε(x,y)√
1
N ∑

N
j=1 gε(x,X j)

√
1
N ∑

N
j=1 gε(y,X j)

= 1+O(
1
ε
)

n(N)
ε (x) =

1
N

N

∑
i=1

k(N)
ε (x,X i) = 1+O(

1
ε
)

and

T (N)
ε f (x) =

1
N ∑

N
j=1 kε(x,X j) f (X j)

n(N)
ε (x)

=
1
N

N

∑
j=1

f (X j)+O(
1
ε
)

It is also easy to see, e.g., by using a Neumann series solution, that in the asymptotic limit as ε → ∞,
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the solution of the fixed-point equation (2.23) is given by

Φ = ε(h− 1
N

N

∑
l=1

hl)+O(1)

Therefore,

r = Φ+ εh = 2εh− ε(
1
N

N

∑
l=1

hl)+O(1)

si j =
1

2ε
Ti j(r j−

N

∑
k=1

Tikrk) =
1
N
(h j−

1
N

N

∑
l=1

hl)+O(
1
ε
)

and using the gain approximation formula (2.13),

Ki =
N

∑
j=1

si jX j =
1
N

N

∑
j=1

(h j−
1
N

N

∑
l=1

hl)X j +O(
1
ε
)

2. The calculations for the kernel formula are entirely analogous. In the asymptotic limit as ε → ∞,

Tε f (x) =
∫

f (x)ρ(x)dx+O(
1
ε
)

φε(x) = ε(h(x)− ĥ)+O(1)

and, using θ(x) = x to denote the coordinate function and · to denote function multiplication, the gain

approximation formula (2.32) evaluates to

Kε(x) =
1

2ε

[
Tε(θ ·φε + ε(h− ĥ))−Tε(θ)Tε(φε + ε(h− ĥ))

]
=

1
2

Tε(θ ·
φε

ε
+h− ĥ)− 1

2
Tε(θ)Tε(

φε

ε
+h− ĥ)+O(

1
ε
)

= Tε(θ ·h− ĥ)−Tε(θ)Tε(h− ĥ)+O(
1
ε
)

=
∫

x(h(x)− ĥ)ρ(x)dx+O(
1
ε
)
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Chapter 3

Optimal Transport FPF∗

3.1 Introduction

Consider the filtering problem (1.3a)-(1.3b) introduced in Sec. 1.1, and the FPF algorithm introduced in

Sec. 1.2. This chapter is concerned with the design of the mean-field process (1.8) in the FPF algorithm.

Consider a general representation for the mean-field process {X̄t}t≥0 in terms of a sde:

dX̄t = ut(X̄t)dt +Kt(X̄t)dZt + vt(X̄t)dB̄t , X̄0 ∼ πinit (3.1)

where {Zt} is the observation process, {B̄t} is standard Brownian motion, and ut(·), Kt(·), and vt(·) are the

control terms. The control terms should be measurable with respect to the filtration Zt := σ({Zs; s∈ [0, t]}).
The control problem is to choose ut(·), Kt(·), and vt(·) such that X̄t is distributed according to posterior

distribution πt , i.e.,

X̄t ∼ πt ∀t ≥ 0 (3.2)

where πt denotes the conditional probability distribution of Xt . When the condition (3.2) is true, the filter is

said to be exact.

There are infinitely many choices of control law that all lead to exact filters. This is not surprising: The

condition (3.2) specifies only the marginal distribution of the stochastic process {X̄}t≥0 at each times t ≥ 0.

This is not enough to uniquely identify a stochastic process, e.g the joint distributions at two time instants

is not known. The non-uniqueness issue can be also understood through the lens of optimal transportation

theory: interpret the sde (3.1) as transporting the initial distribution π0 at time t = 0 (prior) to the conditional

distribution πt at time t (posterior). Clearly, there are infinitely many maps that transport one distribution

into another.

The mean-field process in the FPF algorithm (1.8), is a specific choice so that the filter is exact for

the general nonlinear non-Gaussian problem. In the special linear Gaussian case, there are two established

forms of mean-field process that are exact. The first one is the mean-field limit of the EnKF with perturbed

observation [Reich, 2011, Del Moral and Tugaut, 2016]. The second one is the square-root form of EnKF

introduced in Sec. 1.2.1.

The goal of this chapter thus is to highlight and address the issue of uniqueness in design of mean-field

process. Although the issue is relevant more generally, the focus of this chapter is on the linear Gaussian

∗The preliminary results concerning the contributions of this chapter appears in [Taghvaei and Mehta, 2016a].
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problem.

Notation: The space of positive symmetric definite matrices of size d×d is denoted by Sd
++. N (m,Σ) is a

Gaussian probability distribution with mean m and covariance Σ ∈ Sd
++. For a vector m, ‖m‖2 denotes the

Euclidean norm. For a square matrix Σ, ‖Σ‖F denotes the Frobenius norm, ‖Σ‖2 is the spectral norm, Σ> is

the matrix-transpose, Tr(Σ) is the matrix-trace, and Ker(Σ) denotes the null-space.

3.1.1 Related work

The technical approach based on optimal transportation has its roots in the optimal transportation the-

ory [Evans, 1997, Villani, 2003]. These methods have been widely applied for uncertainty propagation.

This includes synthesis of optimal transport maps for implementing the Bayes rules as a special case [Re-

ich, 2011, Cheng and Reich, 2013, El Moselhy and Marzouk, 2012, Heng et al., 2015]. Also, related to the

optimal transportation, is the Schrödinger bridge problem which is proposed for implementing the Bayes

rule [Reich, 2018].

3.2 The Non-uniqueness Issue

Consider the linear Gaussian filtering problem:

dXt = AXtdt +σBdBt X0 ∼N (minit,Σinit) (3.3a)

dZt = HXtdt +dWt (3.3b)

where Xt ∈ Rd is the state at time t, Zt ∈ Rm is the observation process, Bt ,Wt are mutually independent

Wiener processes taking values in Rq and Rp, respectively, and A, H, σB are matrices of appropriate dimen-

sion. Without loss of generality, it is assumed that the covariance matrices of Bt and Wt are identity matrices.

The initial condition X0 is assumed to have a Gaussian distribution N (minit,Σinit) with Σinit � 0. The filter-

ing problem is to compute the posterior distribution πt(·) := P(Xt ∈ ·|Zt), where Zt = σ(Zs; 0≤ s≤ t).

The following is assumed throughout the remainder of this chapter:

Assumption (A1): The system (A,H) is detectable and (A,σB) is stabilizable.

In this linear Gaussian case, the posterior distribution πt is Gaussian N (mt ,Σt), whose mean mt and

variance Σt evolve according to the Kalman-Bucy filter [Kalman and Bucy, 1961]:

dmt = Amtdt +Kt(dZt −Hmtdt), m0 = minit (3.4a)
d
dt

Σt = Ricc(Σt) := AΣt +ΣtA>+ΣB−ΣH>HΣt , Σ0 = Σinit (3.4b)

where Kt := ΣtH> is the Kalman gain and ΣB := σBσ>B .

The linear FPF [Yang et al., 2016] (and also the square-root form of the EnKF [Reich, 2011]) is described

52



by the Mckean-Vlasov sde:

dX̄t = AX̄tdt +σBdB̄t + K̄t
(
dZt −

HX̄t +Hm̄t

2
dt
)
, (3.5)

where K̄t := Σ̄tH> is the Kalman gain, B̄t is a standard Wiener process, m̄t := E[X̄t |Zt ], Σ̄t := E[(X̄t −
m̄t)(X̄t− m̄t)

>|Zt ] are the mean-field terms, and X̄0 ∼N (minit,Σinit). According to the following Theorem,

the mean-field process X̄t is exact, i.e the distribution of X̄t is equal to the posterior distribution. The proof

appears in the Appendix 3.5.1.

Theorem 3.1. (Exactness of linear FPF) Consider the linear Gaussian filtering problem (3.3a)-(3.3b) and

the linear FPF (3.5). If X̄0 ∼ πinit, then

X̄t ∼ πt , ∀t ≥ 0 (3.6)

The proof of exactness involves showing that the conditional mean and covariance of X̄t evolve ac-

cording to the Kalman filter equations for mean and covariance. Formally, upon taking the mean of the

sde (3.5), the evolution of the conditional mean m̄t is easily seen to be the same as the Kalman filter equa-

tion (3.4a). For the covariance, define the error process ξt = X̄t − m̄t . Then, the equation for ξt is obtained

by subtracting (3.5) from (3.4a). This gives,

dξt = (A− 1
2

Σ̄tHT H)ξt +dB̄t

The equation for the variance of ξt is now given by the Lyapunov equation,

d
dt

Σ̄t = (A− 1
2

Σ̄tHT H)Σ̄t + Σ̄t(A−
1
2

Σ̄tHT H)>+ΣB = Ricc(Σ̄t)

which is identical to (3.4b). The arguments of the exactness proof suggests a general procedure to construct

an exact X̄t process. In particular, express X̄t as a sum of two terms:

X̄t = m̄t +ξt

Let m̄t evolve according to the Kalman filter equation (3.4a). The evolution of ξt is defined by the sde

dξt = Gtξtdt +σtdB̄t

where Gt and σt are solutions to the matrix equation

Gt Σ̄t + Σ̄tGT
t +σtσ

>
t = Ricc(Σ̄t) (3.7)

By construction, the equation for the variance is given by the Riccati equation (3.4b). In general, there are

infinitely many solutions for (3.7). Below, we describe three solutions that lead to three established form of

EnKF and linear FPF:
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(i) EnKF with perturbed observation:

Gt = A− Σ̄tH>H, σt =
[
Σ̄tH> σB

]
(ii) Stochastic linear FPF:

Gt = A− 1
2

Σ̄tH>H, σt = σB

(iii) Deterministic linear FPF:

Gt = A− 1
2

Σ̄tH>H +
1
2

Σ̄
−1
t ΣB, σt = 0

Moreover, from a solution Gt , one can construct a family of solutions Gt + Σ̄
−1
t Ωt , where Ωt is any skew-

symmetric matrix. In Sec. 3.3, we describe how to uniquely identify a solution, using optimal transportation

theory.

3.2.1 Finite-N implementation

In a numerical implementation of the linear FPF algorithm (3.5), one simulates N stochastic processes

(particles) {X i
t : 1≤ i≤ N}, where X i

t is the state of the ith-particle at time t. The evolution of X i
t is obtained

upon empirically approximating the mean-field terms. The finite-N filter for the linear FPF (3.5) is an

interacting particle system:

dX i
t = AX i

t dt +σBdBi
t +K

(N)
t (dZt −

HX i
t +Hm(N)

t

2
dt) (3.8)

where K
(N)
t := Σ

(N)
t H>; {Bi

t}N
i=1 are independent copies of Bt ; X i

0
i.i.d∼ N (m0,Σ0) for i = 1,2, . . . ,N; and the

empirical approximations of the two mean-field terms are as follows:

m(N)
t :=

1
N

N

∑
j=1

X i
t ,

Σ
(N)
t :=

1
N−1

N

∑
j=1

(X i
t −m(N)

t )(X i
t −m(N)

t )>
(3.9)

3.3 Optimal Transport FPF

3.3.1 Background on Optimal transportation

Let µX and µY be two given probability measures on Rd with finite second moments. The Monge optimal

transportation problem is to minimize
min

T
E[(T (X)−X)2] (3.10)
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over all measurable maps T : Rd → Rd such that

X ∼ µX , T (X)∼ µY (3.11)

If it exists, the minimizer T is called the optimal transport map between µX and µY . The optimal cost is

referred to as L2-Wasserstein distance between µX and µY .

The explicit form of the optimal transport map is known when the marginal distributions are Gaussians.

The explicit form of the optimal transport map is given in the following Theorem. This explicit form of

optimal transport map is used in our proposed time-stepping procedure in Sec. 3.3.2.

Theorem 3.2. (Optimal map between Gaussians [Givens et al., 1984, Prop. 7]) Consider the optimization

problem (3.10), with constraint (3.11). Suppose µX and µY are Gaussian distributions, N (mX ,ΣX) and

N (mY ,ΣY ), with ΣX ,ΣY � 0. Then the optimal transport map between µX and µY is given by

T (x) = mY +F(x−mX) (3.12)

where F = Σ
1
2
Y (Σ

1
2
Y ΣX Σ

1
2
Y )
− 1

2 Σ
1
2
Y .

3.3.2 The Time stepping optimization procedure

The following time stepping optimization procedure is proposed to obtain the optimal transport FPF:

1. Divide the time interval [0,T ] into n ∈ N equal time steps with the time instants t0 = 0 < t1 < .. . <

tn = T .

2. Initialize a discrete time random process {X̄tk}n
k=1 according to the initial distribution (prior) of X0,

X̄t0 ∼ π0

3. For each time step [tk, tk+1], evolve the process X̄tk according to

X̄tk+1 = Tk(X̄tk), for k = 0, . . . ,n−1 (3.13)

where the map Tk is the optimal transport map between two probability measures πtk and πtk+1 .

4. Take the limit as n→ ∞ to obtain the continuous-time process X̄t and the sde:

dX̄t = ut(X̄t)dt + K̄t(X̄t)dZt (3.14)

The procedure leads to the control laws ut and K̄t that depend upon πt . Since πt is unknown, one simply

replaces it with π̃t(·) := P(X̄t ∈ ·|Zt) – as the two are identical by construction. The resulted sde (3.14)

is referred to as the optimal transport FPF. Explicit formula for the optimal transport FPF in the linear

Gaussian case is the subject of the following. The proof appears in Appendix 3.5.2.
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Figure 3.1: The time stepping optimization procedure.

Proposition 3.1. Consider the linear Gaussian filtering problem (3.3a)-(3.3b). Assume Σ0 � 0 and Assump-

tion A1 holds. Then the optimal transport FPF is given by

dX̄t =Am̄tdt + K̄t(dZt −Hm̄dt)+Gt(X̄t − m̄t)dt (3.15)

where K̄t := Σ̄tHT , m̄t = E[X̄t |Zt ], Σ̄t = E[(X̄t− m̄t)(X̄t− m̄t)
>|Zt ], X̄0 ∼N (m0,Σ0), and Gt is the (unique)

symmetric matrix that solves the matrix equation

Gt Σ̄t + Σ̄tGt = Ricc(Σ̄t) (3.16)

The filter is exact. That is, the conditional distribution of X̄t is Gaussian N (m̄t , Σ̄t) with m̄t = mt and

Σ̄t = Σt .

Remark 3.1. The unique symmetric solution to the matrix equation (3.16) is given by:

Gt =
∫

∞

0
e−sΣ̄t Ricc(Σ̄t)e−sΣ̄t ds

For the purpose of comparison to the original form of the FPF algorithm, the solution can be expressed as:

Gt = A− 1
2

Σ̄tH>H +
1
2

ΣBΣ̄
−1
t +Ωt Σ̄

−1
t

where Ωt is the (unique) skew-symmetric matrix that solves the matrix equation

Ωt Σ̄
−1
t + Σ̄

−1
t Ωt =(A>−A)+ 1

2(Σ̄tH>H−H>HΣ̄t)+
1
2(ΣBΣ̄t − Σ̄tΣB) (3.17)

Using this form of the solution, the optimal transport sde (3.15) is expressed as

dX̄t =AX̄tdt +
1
2

ΣBΣ̄
−1
t (X̄t − m̄t)dt− K̄t(dZt −

HX̄t +Hm̄t

2
dt)+Ωt Σ̄

−1
t (X̄t − m̄t)dt (3.18)

Compared to the original (linear Gaussian) FPF (3.5), the optimal transport FPF (3.18) has two differ-

ences:

(i) The stochastic term dB̄t is replaced with the deterministic term 1
2 ΣBΣ̄

−1
t (X̄t − m̄t)dt. Given a

Gaussian prior, the two terms yield the same posterior. However, in a finite-N implementation,
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the difference becomes significant. The stochastic term serves to introduce an additional variance

error of order O( 1√
N
).

(ii) The sde (3.18) has an extra term involving the skew-symmetric matrix Ωt . The extra term does

not effect the posterior distribution. This term is viewed as a correction term that serves to make

the dynamics symmetric and hence optimal in the optimal transportation sense. It is noted that for

the scalar (d = 1) case, the skew-symmetric term is zero. Therefore, in the scalar case, the update

formula in the original FPF (3.5) is optimal. In the vector case, it is optimal iff Ωt ≡ 0.

Remark 3.2 (Finite-N implementation). A finite-N implementation of the optimal transport linear FPF (3.15)

requires empirical approximation of the mean-field terms m̄t and Σ̄t . However, with the empirical approxi-

mation, the assumption Σ
(N)
0 � 0 may not be satisfied. In particular, when N < d, the empirical covariance

matrix is of rank N < d, hence singular. If the covariance matrix is singular, the optimal transport FPF

can not be implemented, because a solution to the Lyapunov equation (3.16) may not exist. In contrast, the

stochastic linear FPF (3.5) does not have any terms involving Σ̄−1 and can be approximated for any choice

of N. In Sec. 3.4, we propose an alternative approach that allows for singular covariance matrix.

3.4 The singular covariance case

The derivation of the optimal transport linear FPF (3.15) crucially relies on the assumption that Σ̄0 � 0

which in turn implies that, in the time-stepping procedure, Σ̄
(N)
tk � 0 for k = 0,1, . . . ,n− 1. In the proof

of Prop. 3.1, the assumption is used to derive the optimal transport map Tk (see (3.12)). In general, when the

covariance of Gaussian random variables X̄tk or X̄tk+1 is singular, the optimal transport map Tk may not exist.

In the singular case, the relaxed form of the optimal transportation problem, first introduced by Kantorovich,

is used to search for optimal (stochastic) couplings instead of (deterministic) transport maps [Villani, 2003].

min
π

E(X ,Y )∼π [|X−Y |2] (3.19)

where π is a joint distribution on Rd×Rd , with marginals equal to µX and µY .

Example 3.1. Consider Gaussian random variable X and Y with distributions, N (mX ,ΣX) and N (mY ,ΣY ),

respectively. Suppose

mX = mY =

[
0

0

]
, ΣX =

[
1 0

0 ε

]
, ΣY =

[
1 0

0 1

]
where ε ≥ 0 is small. If ε > 0, the optimal transportation map exists, and is given by

Y =

[
1 0

0 1√
ε

]
X

If ε = 0, then there is no transport map that satisfies the constraints of the optimal transportation problem.
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However, a (stochastic) coupling that minimizes the Kantorovich problem (3.19) exists, given by

Y = X +

[
0

1

]
B

where B∼N (0,1) is independent of X.

In order to do consider the singular covariance case, the time-stepping procedure should be modified

to consider a sequence of optimal stochastic couplings, instead of deterministic optimal transport maps.

However, carrying out the time-stepping construction with stochastic maps become complicated due to lack

of a unique and explicit form of the stochastic couplings. Instead, we begin with a suitable general form of

the sde for the mean-field process

dX̄t = Gt(X̄t − m̄t)dt +dvt +σtdB̄t (3.20)

and then choose Gt , vt and σt such that the stochastic map X̄t → X̄t+∆t = X̄t +
∫ t+∆t

t Gs(X̄s− m̄s)ds+(vt+∆t−
vt)+

∫ t+∆t
t σsdBs is optimal, in the optimal transportation sense, in the asymptotic limit as ∆t → 0. In Ap-

pendix 3.5.3, we show that dvt = Am̄tdt + K̄t(dZt−Hm̄t)dt, and σt and Gt are the solutions to the following

optimization problem:

Optimization problem: Define the sets

DΣ := {(σ ,G) ∈ Rd×dB×Rd×d ; GΣ+ΣG>+σσ
> = Ricc(Σ)}

DΣ|σ∗ := {G ∈ Rd×d ; GΣ+ΣG>+σ
∗
σ
∗> = Ricc(Σ)}

The pair (σ∗,G∗) ∈DΣ is optimal if

Tr(σ∗(σ∗)>) = min
(σ ,G)∈DΣ

Tr(σσ
>), Tr(G∗Σ̄tG∗) = min

G∈DΣ|σ?

Tr(GΣ̄tG>) (3.21)

The justification for the optimization problem appears in Appendix 3.5.3 where the following proposi-

tion concerning its solution is also proved.

Proposition 3.2. Consider the optimization problem (3.21). Let

ut = arg min
u∈Rd×dB

‖Σ̄tu−σB‖= Proj(σB;Range(Σ̄t))

Then, σ∗t = σB− Σ̄tut and the unique symmetric matrix G?
t that solves the Lyapunov equation

G∗t Σ̄t + Σ̄tG∗t = Ricc(Σ̄t)−σ
∗
t (σ

∗
t )
> (3.22)
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minimize the optimization problem (3.21). The resulting optimal transport linear FPF is

dX̄t = Am̄t + K̄t(dZt −Hm̄tdt)+G∗t (X̄t − m̄t)dt +σ
∗
t dB̄t (3.23)

Remark 3.3. The solution to the Lyapunov equation (3.22) can be expressed as

Gt = A− 1
2

Σ̄tHH>+
1
2
(σB +σ

∗
t )u
>
t +Ω

(0)
t PK +Ω

(1)
t (PRΣ̄tPR)

−1 (3.24)

where Ω(0) is an arbitrary d× d matrix, Ω(1) is a skew-symmetric d× d matrix, PR is the projection into

range of Σ̄t , and PK is projection into the kernel of Σ̄t . The matrices Ω(0) and Ω(1) are chosen such that the

matrix Gt symmetric. Using this form of solution, the optimal transport linear FPF (3.23) is as follows

dX̄t =AX̄tdt +
1
2
(σB +σ

∗
t )u
>
t (X̄t − m̄t)dt +σ

∗
t dB̄t + K̄t(dZt −

HX̄t +Hm̄t

2
dt)

+(Ω
(0)
t PK +Ω

(1)
t (PRΣ̄tPR)

−1)(X̄t − m̄t)dt
(3.25)

It is noted that in the formula (3.25) reduces to the formula (3.18) when the covariance matrix is non-

singular, because ut = Prroj(σB;Range(Σ̄t)) = σB, σ∗t = 0, PK = 0 and PR = I. In particular, the stochastic

term σtdBt is zero when σB ∈ Range(Σ̄t). The role of the stochastic term σ∗t dB̄t is to account for the the

effect of the process noise σBdBt that can not be captured with the linear term Gt(X̄t − m̄t)dt.

3.4.1 Finite-N implementation

In a numerical implementation of the optimal transport linear FPF algorithm (3.23), one simulates N par-

ticles by empirically approximating the mean-field terms. The evolution of the particles is given by the

sde

dX i
t =Am(N)

t dt +K
(N)
t (dZt −Hm(N)

t dt)+G(N)
t (X i

t −m(N)
t )dt +σtdBi

t , X i
0 ∼N (m0,Σ0) (3.26)

where K
(N)
t := Σ

(N)
t H>; {Bi

t}N
i=1 are independent copies of Bt , σt = σB− ut , ut = arg minu ‖Σ

(N)
t u−σB‖,

G(N)
t is the unique symmetric matrix solution to the Lyapunov equation

G(N)
t Σ

(N)
t +Σ

(N)
t G(N)

t = Ricc(Σ(N)
t )−σtσ

>
t

and m(N)
t and Σ

(N)
t are empirical mean and covariance defined in (3.9). Note that the stochastic term is zero

when σB ∈ Range(Σ(N)
t ), which is true when σB ∈ span{X1

t , . . . ,X
N
t }.
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3.5 Proof of the main results

3.5.1 Proof of Theorem 3.1

Proof. First, we show that the conditional mean and covariance of X̄t evolve according to Kalman filtering

equations. Express the sde (3.5) in integral form,

X̄t = X̄0 +
∫ t

0
σbdB̄s +

∫ t

0
K̄s(dZs−

HX̄s +Hm̄s

2
ds)

Upon taking the conditional expectation of both sides

m̄t = E[X̄0|Zt ]+E[
∫ t

0
σbdB̄s|Zt ]

+E[
∫ t

0
K̄s(dZs−

HX̄s +Hm̄s

2
ds)|Zt ]

= E[X̄0|Z0]+
∫ t

0
E[K̄s|Zs]dZs−

∫ t

0
E[K̄s

HX̄s +Hm̄s

2
|Zs]ds

= m̄0 +
∫ t

0
K̄s(dZs−Hm̄sds)

where we used the fact that X̄t is adapted to the filteration Zt to obtain the second line (see [Xiong, 2008,

Lemma 5.4]). As a result, the sde for the conditional mean is

dm̄t = Am̄tdt + K̄t(dZt −Hm̄tdt) (3.27)

Define the error ξt according to ξt := X̄t − m̄t . The equation for ξt is obtained by simply subtracting (3.27)

from (3.5). This gives,

dξt = (A− Σ̄tHT H
2

)ξt +σBdB̄t

By application of the Itô rule

d(ξ̄t ξ̄
>
t ) =(A− 1

2
Σ̄tH>H)ξ̄t ξ̄

>
t dt +σBdB̄t ξ̄

>
t

+ ξ̄t ξ̄
>
t (A>− 1

2
H>HΣ̄t)dt + ξ̄t(σBdB̄t)

>+ΣBdt

which concludes the sde for the conditional covariance Σ̄t = E[ξtξ
>
t |Zt ] following the same procedure as

for the conditional mean,
d
dt

Σ̄t = AΣ̄t + Σ̄tAT +ΣB− Σ̄tHT HΣ̄t

which is identical to the Ricatti equation (3.4b). Hence Σ̄t = Σt for all t ≥ 0 because Σ̄0 = Σ0. This also

implies K̄t = Kt , which further implies that the sde for conditional mean (3.27) is identical to the Kalman

filter equation (3.4a). Therefore, m̄t = mt for all t ≥ 0 because m̄0 = m0.

Given Σ̄t = Σt and m̄t = mt , the mean-field terms in the McKean-Vlasov sde (3.5) can be treated as

exogenous processes. Therefore, the McKean-Vlasov sde (3.5) simplifies to a Ornstein-Uhlenbeck sde.
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Because the distribution of the initial condition X̄0 is Gaussian, the distribution of X̄t is also Gaussian given

by N (mt ,Σt) which is equal to the posterior distribution given by Kalman filter and concludes the proof.

3.5.2 Proof of Proposition 3.1

The key step in the proof is the following Lemma,

Lemma 3.1. Consider the ode (3.4b). Let Σt be the solution for t ∈ [0,T ]. Then the following relationship

holds ,

Σ
1
2
t+∆t(Σ

1
2
t+∆tΣtΣ

1
2
t+∆t)

− 1
2 Σ

1
2
t+∆t = I +Gt∆t +O(∆t2), (3.28)

where Gt is the solution to the matrix equation,

GtΣt +ΣtGt = AΣt +ΣtAT + I−ΣtHT HΣt , (3.29)

and the second order term is uniformly bounded for all t ∈ [0,T ].

Proof. The solution Σt is positive and bounded since the system is observable [Ocone and Pardoux, 1996].

Fix t ∈ [0,T ], and define

F(s) := Σ
1
2
t+s(Σ

1
2
t+sΣtΣ

1
2
t+s)

− 1
2 Σ

1
2
t+s.

The relationship (3.28) is obtained by considering the Taylor series of F(s) at s = 0,

F(∆t) = I + Ḟ(0)∆t +
1
2

F̈(τ)∆t2,

for some τ ∈ [0,∆t], and showing that Ḟ(0) = Gt . This is verified by considering,

F(s)ΣtF(s) = Σt+s.

On evaluating the derivative with respect to s at s = 0,

Ḟ(0)Σt +Σt Ḟ(0) = AΣt +ΣtAT + I−ΣtH>HΣt .

Since the solution to the Lyapunov equation (3.29) is unique, Ḟ(0) = Gt . Also the second order derivative

is uniformly bounded for all t ∈ [0,T ], by the observability assumption.

Proof. (Prop. 3.1) The proof of exactness is similar to the proof of Theorem 3.1 and is omitted. In order

to obtain the optimal transport sde, the time stepping procedure is used. The key step in the procedure

is to obtain the optimal transport map Tk. The optimal map is between two Gaussians, N (mtk ,Σtk) and

N (mtk+1 ,Σtk+1). By Theorem 3.2-(ii), the optimal map is,

X̄tk+1 = mtk+1 +Fk(X̄tk −mtk),
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where Fk = Σ
1
2
tk+1

(Σ
1
2
tk+1

Σtk Σ
1
2
tk+1

)−
1
2 Σ

1
2
tk+1

. Using Lemma 3.1,

X̄tk+1 = m̄tk+1 +(X̄tk −mtk)+Gk(X̄tk −mtk)∆t +O(∆t2).

To obtain the sde, take a sum over k = 0,1, . . . ,n−1,

X̄tn = X̄t0 + X̄tn−mt0 +
n−1

∑
k=0

[
Gk(X̄tk −mtk)∆t +O(∆t2)

]
.

In the limit as ∆t→ 0,

X̄tn = X̄t0 +mtn− X̂t0 +
∫ t

0
Gs(X̄s−ms)ds.

where the uniform boundedness of the second order term is used. The associated sde is,

dX̄t = dmt +Gt(X̄t −mt)dt,

where dmt is given by (3.4a). Finally one obtains (3.15) by replacing mt and Σt with m̄t and Σ̄t respectively,

which are identical by exactness.

3.5.3 Justification for the optimization problem (3.21) and proof of Prop. 3.2

The stochastic map X̄t → X̄t+∆t is equal to

X̄t+∆t = X̄t +
∫ t+∆t

t
Gs(X̄s− m̄s)ds+(vt+∆t − vt)+

∫ t+∆t

t
σsdBs

= X̄t +∆tGt(X̄t − m̄t)+ vt+∆t − vt +
√

∆tσtζ +o(∆t)

where ζ ∼N (0,1). In order for the stochastic map to be optimal, it should satisfy the marginal constant

X̄t+∆t ∼N (mt+∆t ,Σt+∆t) if X̄t ∼N (mt ,Σt), and minimize the cost E[|X̄t+∆t− X̄t |2]. The marginal constraint

is satisfied if

mt + vt+∆t − vt = mt+∆t

(I +∆tGt)Σt(I +∆tGt)+∆tσtσ
>
t +o(∆t) = Σt+∆t

The first constraint implies dvt = dmt = Amtdt+Kt(dZt−Hmtdt). Dividing the second constraint by ∆t and

taking the limit as ∆t→ 0 concludes

GtΣt +ΣtG>t +σtσ
>
t = Ricc(Σt) (3.30)

The optimal transportation cost is

E[|X̄t+∆t − X̄t |2] = |mt+∆t −mt |2 +∆t Tr(σtσ
>
t )︸ ︷︷ ︸

f1(σt)

+(∆t)2 Tr(GtΣtG>t )︸ ︷︷ ︸
f2(Gt)

+o(∆t2)
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Taking the limit as ∆t → 0 implies that one should minimize f1(σt) first, and then f2(Gt), under the con-

straint (3.30). This justifies the optimization problem (3.21).

In order to prove Proposition 3.2, decompose σB = σ∗t +Σtut , where ut = arg minu ‖Σtu−σB‖2. As a

result, σ∗t ∈ Ker(Σt). Express Gt = A− 1
2 ΣtH>H +(σ∗t + 1

2 Σtut)u>t + G̃t , where G̃t is the new optimization

variable. With the new variable, the constraint of the optimization problem becomes

σσ
>+ G̃Σt +ΣtG̃> = σ

∗
t (σ

∗
t )
>

Multiply both sides from left and right by the projection operator PK , into the kernel of Σt , to obtain

PKσσ
>PK = σ

∗
t (σ

∗
t )
>

where we used PKΣt = 0 and PKσ∗t =σ∗t . Then, it is clear that the minimizer of Tr(σσ>) under the constraint

PKσσ>PK = σ∗t (σ
∗
t )
> is equal to σ = σ∗t . The new constraint, with σ = σ∗t , is

GΣt +ΣtG> = Ricc(Σt)−σ
∗
t (σ

∗
t )

and the optimization problem is to minimize Tr(GΣtG>). Using the spectral representation Σt =∑
d
m=1 λmumu>m

where um are orthogonal eigenvectors, and λm ≥ 0 are eigenvalues, the constraint and optimization problem

is

minimize
d

∑
m,n=1

λmGmnGnm

subject to λnGmn +λmGnm = Rmn, for m,n = 1, . . . ,d

where Gnm = u>n Gum and R = Ricc(Σt)−σ∗t (σ
∗
t ). The solution to the optimization problem is G∗nm = Rmn

λm+λn
.

Therefore, the matrix G∗t is symmetric, and unique symmetric solution to the Lyapunov equation (3.22).
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Chapter 4

Finite-N system error analysis∗

4.1 Introduction

This chapter is concerned with error analysis and long-term stability analysis of the FPF algorithm. In the

mean-field (N = ∞) limit, the FPF is known to be exact, i.e, the conditional probability distribution of the

particles is equal to the posterior distribution. However, little is known about the convergence of the finite-N

system to the mean-field limit. The objective of this chapter is to address some of these questions in the

linear Gaussian setting.

In the linear Gaussian setting, the FPF algorithm is similar to the ensemble Kalman filter algorithm

(see Sec. 1.2.1). Ensemble Kalman filter (EnKF) was first introduced in [Evensen, 1994], in discrete time

setting, as an alternative to the extended Kalman filter (EKF) for applications in geophysical sciences. In

these applications, the state dimension is typically very high. The main advantage of the EnKF, compared

to the EKF, is that the computational cost of the EnKF scales linearly with the state dimension whereas the

computational cost of the EKF scales as the dimension squared.

Since its introduction, the EnKF has evolved into different formulations. The most two well-known for-

mulations are (i) EnKF based on perturbed observation [Evensen, 2003] and (ii) the square root EnKF [Whitaker

and Hamill, 2002]. For a review of the different discrete time formulations of the EnKF see [Reich and Cot-

ter, 2015, Ch. 6-7] [Law et al., 2015, Ch. 4]. The two aforementioned discrete time formulations of the

EnKF algorithm have been extended to the continuous time setting [Bergemann and Reich, 2012]. The con-

tinuous time formulation of the EnKF is usually referred to as the ensemble Kalman-Bucy filter (EnKBF).

For a recent review of the EnKBF algorithm and its connection to the FPF algorithm see [Taghvaei et al.,

2018]. The EnKBF algorithm and the linear FPF have the following three established formulations:

(i) EnKBF with perturbed observation [Bergemann and Reich, 2012] [Del Moral and Tugaut, 2016];

(ii) Stochastic linear FPF [Yang et al., 2016, Eq. (26)] which is same as the square root EnKBF [Berge-

mann and Reich, 2012];

(iii) Deterministic linear FPF [Taghvaei and Mehta, 2016a, Eq. (15)] [de Wiljes et al., 2016];

In this chapter, the stochastic linear FPF and the deterministic linear FPF are studied. Both the formulations

are exact in the following sense: In the mean-field limit the distribution of the particles equals the posterior

∗The preliminary results concerning the contributions of this chapter appears in [Taghvaei and Mehta, 2018a,b].
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distribution of the filter. The main difference between the two formulations is that the process noise term in

the stochastic FPF is replaced with a deterministic term in the deterministic FPF.

The goal of this chapter is to characterize the error properties of the FPF in the limit when the number of

particles N is large but finite. The error metrics of interest include the mean-squared error between the finite-

N estimates (empirical mean and the empirical covariance) and their mean-field limits (conditional mean

and covariance). Additionally, it is of interest to investigate the convergence of the empirical distribution of

the interacting particle system to the conditional distribution obtained in the mean-field limit.

4.1.1 Literature review on error analysis of EnKF

Theoretical error and convergence analysis of the EnKF algorithm is an active area of research. In the

discrete time setting, it is shown that the ensemble distribution converges to the mean-field limit with the

convergence rate O( 1√
N
) for any finite time [Le Gland et al., 2009] [Mandel et al., 2011]. The asymptotic

(in time) stability analysis is more difficult. It is shown that if the system dynamics is stable and admits a

Lyapunov function, and the observation model satisfies the ”observable energy criterion” (which holds under

full state observation), then the system is ergodic and it is stable with respect to initial conditions [Tong et al.,

2016]. The well-posedness of the EnKF and its accuracy using the variance inflation technique is studied

in [Kelly et al., 2014]. Related finite-time results on the convergence of the discrete-time square root EnKF

appear in [Kwiatkowski and Mandel, 2015]. The analysis in [Kwiatkowski and Mandel, 2015] is simpler as

the model is deterministic and the update formula exactly equals the Kalman filter update formula.

The analysis for EnKBF and linear FPF is more recent. For EnKBF with perturbed observation, under

certain assumptions (stable and fully observable), it has been shown that the empirical distribution of the

ensemble converges to the mean-field distribution uniformly for all time with the rate O( 1√
N
) [Del Moral

and Tugaut, 2016]. This result has been extended to the nonlinear setting for the case with Langevin type

dynamics with a strongly convex potential and full linear observation [Del Moral et al., 2017].

4.1.2 Notation

For a vector m, ‖m‖2 denotes the Euclidean norm. For a square matrix Σ, ‖Σ‖F denotes the Frobenius norm,

‖Σ‖2 is the spectral norm, Σ> is the matrix-transpose, tr(Σ) is the matrix-trace, and cond(Σ) = ‖Σ‖2‖Σ−1‖2

is the condition number. The space of symmetric positive definite matrices is denoted by Sd
++. N (m,Σ)

denotes a Gaussian probability distribution with mean m and covariance Σ ∈ Sd
++. There are three types of

stochastic process considered in this chapter: (i) Xt denotes the state of the (hidden) signal at time t; (ii)

X i
t denotes the state of the ith particle in a population of N particles; and (iii) X̄t denotes the state of the

McKean-Vlasov model obtained in the mean-field limit (N = ∞). The mean and the covariance for these

are denoted as follows: (i) (mt ,Σt) is the conditional mean and the conditional covariance pair for Xt ; (ii)

(m(N)
t ,Σ

(N)
t ) is the empirical mean and the empirical covariance for the ensemble {X i

t }N
i=1; and (iii) (m̄t , Σ̄t)

is the conditional mean and the conditional covariance for the mean-field process X̄t .

65



4.2 Problem formulation

We consider the linear Gaussian filtering problem (1.4a)-(1.4b), where the solution is given by the Kalman-

Bucy filter (1.5a)-(1.5b). We consider two types of linear FPF algorithms: The deterministic linear FPF, and

the stochastic linear FPF. The two algorithms are described next.

4.2.1 Deterministic linear FPF

The mean-field process X̄t evolves according to:

dX̄t = Am̄tdt + K̄t(dZt −Hm̄tdt)+
√

Ricc(Σ̄t)(X̄t − m̄t)dt, X̄0 ∼N (minit,Σinit) (4.1)

where K̄t = Σ̄tH> is the Kalman gain, m̄t = E[X̄t |Zt ] is the mean, and Σ̄t = E[(X̄t− m̄t)(X̄t− m̄t)
>|Zt ] is the

covariance, and √
Ricc(Q) := A− 1

2
QH>H +

1
2

ΣBQ−1 +ΩQ−1 (4.2)

for any Q ∈ Sd
++ where Ω is any skew symmetric d× d matrix. The optimal transport FPF formula (3.15)

is obtained by using a particular choice of the skew-symmetric matrix Ωt as specified in Prop. 3.1. The

more general case is considered here because the error analysis results are more generally applicable to the

model (4.3). This filter is referred to as the deterministic linear FPF.

The evolution of the particles X i
t is given by the sde:

dX i
t =Am(N)

t dt +K
(N)
t (dZt −Hm(N)

t dt)+
√

Ricc(Σ(N)
t )(X i

t −m(N)
t )dt, X i

0 ∼N (minit,Σinit) (4.3)

where K
(N)
t := Σ

(N)
t H>; and empirical approximations of mean and variance are

m(N)
t :=

1
N

N

∑
j=1

X i
t ,

Σ
(N)
t :=

1
N−1

N

∑
j=1

(X i
t −m(N)

t )(X i
t −m(N)

t )>
(4.4)

4.2.2 Stochastic linear FPF

The mean-field process is given by the sde

dX̄t = AX̄tdt +σBdB̄t + K̄t(dZt −
HX̄t +Hm̄t

2
dt), X̄0 ∼N (minit,Σinit) (4.5)

where K̄t = Σ̄tH> is the Kalman gain, m̄t = E[X̄t |Zt ] is the mean, and Σ̄t = E[(X̄t− m̄t)(X̄t− m̄t)
>|Zt ] is the

covariance.
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The evolution of the particles is given by

dX i
t = AX i

t dt +σBdBi
t +K

(N)
t (dZt −

HX i
t +Hm(N)

t

2
dt) (4.6)

where K
(N)
t := Σ

(N)
t H>; {Bi

t}N
i=1 are independent copies of Bt ; and the empirical approximations of the two

mean-field terms are given by (4.4).

Remark 4.1 (Comparison of the deterministic and the stochastic FPF). In the deterministic FPF, there is

no explicit Wiener process for the process noise. For example, with the choice of Ωt = 0, the deterministic

linear FPF (4.1) has the same terms as the stochastic linear FPF (4.5), except that the process noise term

σBdB̄t in (4.5) is replaced by 1
2 ΣBΣ̄

−1
t (X̄t − m̄t)dt in (4.1). With any Gaussian prior, the term serves to

simulate the effect of the process noise.

The sde (4.1) and (4.5) represents the mean-field limit of the interacting particle system (4.3) and (4.6)

respectively. These models are referred to as McKean-Vlasov SDEs [McKean, 1966] and their analysis is

referred to as propagation of chaos [Sznitman, 1991].

The convergence and error analysis relies closely on the classical results on stability of the Kalman filter,

which appears in Appendix 4.6.2.

4.3 Evolution equations for mean and covariance

Consider the finite-N filters – Eq. (4.6) for the stochastic FPF and Eq. (4.3) for the deterministic FPF. The

empirical mean and covariance are defined in Eq. (4.4). The error is defined as

ξ
i
t := X i

t −m(N)
t for i = 1,2, . . . ,N

Deterministic linear FPF: For the finite-N filter (4.3), the evolution equations for the mean, covariance,

and error are as follows:

dm(N)
t = Am(N)

t dt +K
(N)
t (dZt −Hm(N)

t dt) (4.7a)

dΣ
(N)
t

dt
= AΣ

(N)
t +Σ

(N)
t A>+σBσ

>
B −Σ

(N)
t H>HΣ

(N)
t (4.7b)

dξ i
t

dt
=
√

Ricc(Σ(N)
t )ξ i

t

The calculations leading to the derivation of these equations appear in the Appendix 4.6.1.

Stochastic linear FPF: For the finite-N filter (4.6), the evolution equations for the mean, covariance, and
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error are as follows:

dm(N)
t = Am(N)

t dt +K
(N)
t (dZt −Hm(N)

t dt)+
σB√

N
dB̃t (4.8a)

dΣ
(N)
t = (AΣ

(N)
t +Σ

(N)
t A>+ΣB−Σ

(N)
t H>HΣ

(N)
t )dt +

dMt√
N

(4.8b)

dξ
i
t = (A− 1

2
K
(N)
t H)ξ i

t dt +σBdBi
t −

σB√
N

dB̃t (4.8c)

where B̃t := 1√
N ∑

N
i=1 Bi

t is a standard Wiener process and dMt =
√

N
N−1 ∑

N
i=1(ξ

i
t dBi

t
>

σ>B + σBdBi
tξ

i
t
>
) is a

matrix-valued martingale with E[dMtdM>t ] = ( N
N−1)

2(Σ
(N)
t ΣB + ΣBΣ

(N)
t + 2Tr(ΣB)Σ

(N)
t )dt. The details of

derivation of these equations appear in Appendix 4.6.1.

Even though the fluctuations scale as O(N− 1
2 ), the analysis is challenging as has been noted in literature

(see the remark after Theorem 3.1 in [Del Moral and Tugaut, 2016]). Error analysis of the ensemble Kalman

filter with noise terms appears in [Del Moral and Tugaut, 2016, Bishop et al., 2017, Bishop and Del Moral,

2018] under the additional assumption that the matrix H>H is positive definite which is equivalent to the

observation matrix H be full-rank. Analysis of the deterministic FPF closely follows the stability theory for

Kalman filter. Related analysis appears in the recent work [de Wiljes et al., 2016].

4.4 Error Analysis

4.4.1 Deterministic linear FPF

The following is assumed throughout the rest of this Section:

Assumption A1: The system (A,H) is detectable and (A,σB) is stabilizable.

Assumption A2: Assume N > d and the initial empirical covariance matrix Σ
(N)
0 ∈ Sd

++.

The main result for the finite-N deterministic linear FPF is as follows with the proof given in Ap-

pendix 4.6.3.

Proposition 4.1. Consider the Kalman filter (3.4a)-(3.4b) initialized with the prior N (minit,Σinit) and the

finite-N deterministic FPF (4.3) initialized with X i
0

i.i.d∼ N (minit,Σinit) for i = 1,2, . . . ,N. Under Assumption

(A1)-(A2), the following characterizes the convergence and error properties of the empirical mean and

covariance (m(N)
t ,Σ

(N)
t ) obtained from the finite-N filter to the mean and covariance (mt ,Σt) obtained from

the Kalman filter:

(i) Convergence: For any finite N, as t→ ∞:

lim
t→∞

eλ t‖m(N)
t −mt‖2 = 0 a.s

lim
t→∞

e2λ t‖Σ(N)
t −Σt‖F = 0 a.s

for all λ ∈ (0,λ0).
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(ii) Mean-squared error: For any t > 0, as N→ ∞:

E[‖m(N)
t −mt‖2

2]≤ (const.)e−2λ t Tr(Σ0)+‖Σ0‖2
F

N
(4.9a)

E[‖Σ(N)
t −Σt‖2

F ]≤ (const.)e−4λ t ‖Σ0‖2
F

N
(4.9b)

for all λ ∈ (0,λ0) where λ0 is defined in Theorem 4.1. The constant depends on λ , ‖Σ0−Σ∞‖2,

and ‖H‖2.

Remark 4.2. Asymptotically (as t → ∞) the empirical mean and variance of the finite-N filter becomes

exact. This is because of the stability of the Kalman filter whereby the filter forgets the initial condition. In

fact, the i.i.d assumption on the initial condition X i
0 is not necessary to obtain this conclusion.

Remark 4.3. (Scaling with dimension) If the parameters of the linear Gaussian filtering problem (1.4a)-

(1.4b) scale with the dimension in a way that the spectral norms ‖Σ0‖2, ‖Σ∞‖2, ‖H‖2, and λ0 do not

change, then the constant in the error bounds (4.9a)-(4.9b) do not change. The only term that scales with

the dimension is ‖Σ0‖2
F and Tr(Σ0). For example, if one assumes Σ0 = σ2

0 Id×d , then |Σ0‖2
F = dσ4

0 and

Tr(Σ0) = dσ2
0 . Therefore, the error estimates scale linearly with d.

Remark 4.4. The error estimates (4.9a)-(4.9b) holds for any skew-symmetric choice of Ωt in (4.3). There-

fore, the optimal choice of Ωt does not effect the error estimates for mean and variance. In Sec. 4.5, we

study the error for estimating expectation of an arbitrary function f , where the choice of Ω can be effective.

4.4.2 Stochastic linear FPF

Assumption A3: The matrix A is stable, i.e µ(A) := λmax(
A+A>

2 ) < 0. And the matrix H>H = I identity

matrix.

The main result regarding the convergence of the empirical mean and empirical covariance is the fol-

lowing Proposition. The proof appears in the Appendix 4.6.5.

Proposition 4.2. Consider the mean-field system (3.5), and the finite-N system (4.6) under Assumption

(A3).

(i) For any t > 0, and as N→ ∞:

E[‖Σ(N)
t −Σt‖2

F ]≤
3‖Σ0‖2

F

N
e−(4µ(A)− 1

N )t +
cvar

N
(4.10)

where cvar =
1

2µ(A)(Tr(Σ2
B)+

1
2 Tr(Λ2

max)+
Tr(ΣB)

2

2µ(A) +2Tr(ΣB)Tr(Σ0)), and Λmax is an upper-bound

on the solution to the exact Riccati equation (see Lemma 4.1).

(ii) For any t > 0 and as N→ ∞:

E[‖m(N)
t −mt‖2]≤

Tr(Σ0)
1/2

√
N

e−µ(A)t +
cmean√

N
(4.11)
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where the constant cmean = (
3‖Σ0‖2

F+cvar
2µ(A) )

1
2 +(Tr(ΣB)

2µ(A) )
1
2 .

4.5 Propagation of chaos

At the initial time t = 0, the particles {X i
0}N

i=1 are sampled i.i.d. from the prior distribution. In any finite-N

implementation of the filter, the i.i.d. property is destroyed for t > 0 because of the interactions: For the

linear FPFs (4.6) and (4.3), the interaction terms are a function of the empirical mean m(N)
t and the empirical

covariance Σ
(N)
t . Since these terms depend upon all the particles, the ith particle in the population is coupled

to/interacts with (the randomness of) all other particles. Even though the particles are no longer i.i.d for

any finite choice of N, one (formally) expects the particles to become approximately i.i.d (in a sense that

needs to be made precise) for large N. Intuitively, this is because as N→∞, m(N)
t →mt and Σ

(N)
t → Σt . And

for the limiting mean-field model, the particles are i.i.d for t > 0 provided they are i.i.d. at the initial time

t = 0. The phenomenon is referred to as the propagation of chaos whereby the chaos (i.i.d property of the

population) propagates through time.

The mathematical definitions are as follows: Denote E :=Rd× [0,∞). Let µN be the probability measure

on EN associated with the process (X1, . . . ,XN). Let µ̄ be the probability measure on E associated with the

mean-field solution X̄ . Then µN is said to be µ̄-chaotic if

πkµN
weak−→ µ̄

(k) as N→ ∞

where πkµN is the k-marginal distribution, µ̄(k) is the k-fold product, and the convergence is in the weak

sense. A somewhat easier formulation of this condition appears in [Sznitman, 1991, Proposition 2.2] as

lim
N→∞

E

∣∣∣∣∣ 1
N

N

∑
i=1

f (X i)−E[ f (X̄)]

∣∣∣∣∣
2
= 0 (4.12)

for all bounded functionals f : E→ R.

Remark 4.5. Some difficulties in carrying out the propagation of chaos analysis for the FPF are as follows:

(i) The drift term in the evolution equation for the covariance is not Lipschitz; For the stochastic FPF (4.6),

the noise terms (the martingale Mt) depend upon the state. In our analysis, we circumvent some of these

difficulties by limiting to the linear Gaussian setting, and using our analysis of the empirical mean and

empirical covariance from Sec. 4.2. Even in this special case, we show the convergence for the marginal

distribution only for fixed time t > 0. That is, we show

lim
N→∞

E

∣∣∣∣∣ 1
N

N

∑
i=1

f (X i
t )−E[ f (X̄t)]

∣∣∣∣∣
2
= 0 (4.13)

for all bounded functions f : Rd → R.
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4.5.1 Deterministic linear FPF

Derivation of error estimates involve construction of N independent copies of the mean-field equation (4.1)

corresponding to the deterministic FPF (4.3). Consistent with our convention to denote mean-field variables

with a bar, the stochastic processes are denoted as {X̄ i
t : 1 ≤ i ≤ N} where X̄ i

t denotes the state of the ith

particle at time t. The particle evolves according to the mean-field equation (4.1) as

dX̄ i
t = Am̄tdt + K̄t(dZt −Hm̄tdt)+ Ḡt(X̄ i

t − m̄t)dt (4.14)

where the initial condition X̄ i
0 = X i

0 – the initial condition of the ith particle in the finite-N FPF (4.3). The

mean-field process X̄ i
t is thus coupled to X i

t through the initial condition. The following Proposition char-

acterizes the error between X i
t and X̄ i

t (the estimate is essential for the propagation of chaos analysis). The

proof appears in the Appendix 4.6.4.

Proposition 4.3. Consider the stochastic processes X i
t and X̄ i

t whose evolution is defined according to the

deterministic FPF (4.3) and its mean-field model (4.14), respectively. The initial condition X i
0

i.i.d∼ N (m0,Σ0)

for i = 1,2, . . . ,N Then under Assumptions (A1)-(A2):

E[‖X i
t − X̄ i

t ‖2
2]

1/2 ≤ (const.)√
N

(4.15)

The estimate (4.15) is used to prove the following important result that the empirical distribution of

the particles in the linear FPF converges weakly to the true posterior distribution. Its proof appears in the

Appendix 4.6.4.

Corollary 4.1. Consider the linear filtering problem (1.4a)-(1.4b) and the finite-N deterministic FPF (4.3).

The initial condition X i
0

i.i.d∼ N (m0,Σ0) for i = 1,2, . . . ,N and the dimension d = 1. Under Assumptions (A1)

and (A2), for any Lipschitz function f : Rd → R, in the asymptotic limit as N→ ∞

E

∣∣∣∣∣ 1
N

N

∑
i=1

f (X i
t )−E[ f (Xt)|Zt ]

∣∣∣∣∣
2
1/2

≤ (const.)√
N

4.5.2 Stochastic linear FPF

In this subsection, we carry out the propagation of chaos error analysis for the stochastic linear FPF (4.6).

Introduce N independent copies of the mean-field process (4.5) denoted by {X̄ i
t ; i = 1, . . . ,N} such that

dX̄ i
t = AX̄ i

t dt +dBi
t + K̄t(dZt −

HX̄ i
t +Hm̄t

2
dt), X̄ i

0 = X i
0 (4.16)

for i = 1, . . . ,N. Note that X̄ i
t and X i

t are coupled through the same initial condition and the same process

noise dBi
t . The result regarding the convergence of the empirical distribution is the following Proposition.

The proof appears in Appendix 4.6.6.
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Proposition 4.4. Consider the mean-field system (4.5), the finite-N system (4.6), and the stochastic pro-

cesses X̄ i
t defined in (4.16) under Assumption (A3).

(i) Particles: For any t > 0 and as N→ ∞:

E[‖X i
t − X̄ i

t ‖2]≤
(const.)√

N
(4.17)

for i = 1, . . . ,N

(ii) For any Lipschitz function f :

E

[∣∣∣∣∣ 1
N

N

∑
i=1

f (X i
t )−E[ f (X̄t)|Zt ]

∣∣∣∣∣
]
≤ (const)√

N
(4.18)

4.6 Proof of the main results

4.6.1 Derivation of evolution equations in Sec. 4.3

(A) Finite-N stochastic FPF: Consider Eq. (4.6) for the ith particle. Summing up over the index i= 1, . . . ,N

and dividing by N, Eq. (4.8a) for the mean is obtained. To obtain (4.8b), first define ξ i
t := X i

t −m(N)
t .

Therefore,

dξ
i
t = (A− 1

2
K
(N)
t H)ξ i

t dt +σBdBi
t −

1
N

N

∑
j=1

σBdB j
t

and

d(ξ i
t ξ

i
t
>
) =(A− 1

2
K
(N)
t H)ξ i

t ξ
i
t
>

dt +ξ
i
t ξ

i
t
>
(A− 1

2
K
(N)
t H)>dt

+
N−1

N
σBσ

>
B dt +ξ

i
t (dBi

t −
1
N

N

∑
j=1

dB j
t )
>

σ
>
B

+σB(dBi
t −

1
N

N

∑
j=1

dB j
t )ξ

i
t
>

Summing over i = 1, . . . ,N and dividing by (N−1) gives

dΣ
(N)
t = (A− 1

2
K
(N)
t C)Σ

(N)
t dt +Σ

(N)
t (A− 1

2
K
(N)
t H)>dt

+σBσ
>
B dt +

1
N−1

N

∑
i=1

ξ
i
t dBi

t
>

σ
>
B +

1
N−1

N

∑
i=1

σBdBi
tξ

i
t
>

which is Eq. (4.8b) for the covariance.

(B) Finite-N deterministic FPF: Eq. (4.3) is obtained as before by summing up Eq. (4.3) for the ith particle

from i= 1, . . . ,N. The equation for the empirical mean is simply obtained by summing up the equations (4.3)
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for i = 1, . . . ,N. To obtain the equation for the empirical covariance, first define ξ i
t := X i

t −m(N)
t . Therefore,

dξ i
t = G(N)

t ξ i
t dt and

d(ξ t
ξ

i
t
>
) = G(N)

t ξ
i
t ξ

i
t
>

dt +ξ
i
t ξ

i
t
>

G(N)
t
>

dt

Summing over i = 1, . . . ,N and dividing by (N−1) gives

dΣ
(N)
t

dt
= GN

t Σ
(N)
t +Σ

(N)
t G(N)

t
>

which is Eq. (4.7b) for the covariance.

It is noted that G(N)
t is well-defined because Σ

(N)
0 and thus Σ

(N)
t is invertible because of Assumption (A2).

4.6.2 Background on the Stability of the Kalman filter

Theorem 4.1 (Lemma 2.2 and Theorem 2.3 in [Ocone and Pardoux, 1996]). Consider the Kalman fil-

ter (3.4a)-(3.4b) with initial condition (m0,Σ0). Then, under Assumption (A1):

(i) There exists a solution Σ∞ � 0 to the algebraic Riccati equation (ARE)

AΣ∞ +Σ∞A>+σBσ
>
B −Σ∞H>HΣ∞ = 0 (4.19)

such that A−Σ∞H>H is Hurwitz. Let

0 < λ0 = min{−Real λ : λ is an eigenvalue of A−Σ∞H>H} (4.20)

(ii) The error covariance Σt → Σ∞ exponentially fast for any initial condition Σ0 (not necessarily

the prior): for all λ ∈ (0,λ0), there exists a constant cλ such that

lim
t→∞
‖Σt −Σ∞‖F ≤ cλ e−2λ t → 0

(iii) Starting from two initial conditions (m0,Σ0) and (m̃0, Σ̃0), the means converge in the following

senses:

lim
t→∞

E[‖mt − m̃t‖2] ≤ (const.) e−2λ t → 0

lim
t→∞
‖mt − m̃t‖eλ t = 0 a.s.

for all λ ∈ (0,λ0).

Throughout this paper, the notation Σ∞ is used to denote the positive definite solution of the ARE (4.19)

and λ0 is used to denote the spectral bound as defined in (4.20).
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Lemma 4.1 (Theorem 2.2 in [Bishop and Del Moral, 2017]). Consider the Riccati equation (3.4b) under

Assumption (I). Assume the initial matrix Σ0 ∈ Sd
++ is positive symmetric definite (p.s.d). Then, there exists

matrices Λmin,Λmax ∈ Sd
++ such that the solution Σt satisfies

Λmin � Σt � Λmax

4.6.3 Proof of the Prop. 4.1

Since the equations for the empirical mean (4.7a) and the empirical covariance (4.7b) are identical to the

Kalman filter (3.4a)-(3.4b), the a.s. convergence of mean and variance follows from the filter stability theory

(see Theorem 4.1). We present the proof for the mean-squared estimates in the following steps:

1. First, we form an estimate for the spectral norm of the transition matrix etF∞ . From Theorem 4.1

we know that all eigenvalues of F∞ have negative real parts smaller than −λ0. Consider the Jordan

decomposition J = T−1F∞T . In this case, we have the estimate

‖etF∞‖2 ≤ ‖T‖2‖T−1‖2

(
max

0≤k≤n

tk

k!

)
e−λ0t , ∀t > 0 (4.21)

where n the maximum multiplicity of eigenvalues of F∞. As a result, for all λ < λ0, there exists a

constant c′
λ

:= ‖T‖2‖T−1‖2 supt≥0 e−(λ0−λ )t
(

max0≤k≤n
tk

k!

)
such that

‖etF∞‖2 ≤ c′
λ

e−λ t (4.22)

2. Next, we show contraction properties of the transition matrix Φt,s corresponding to the linear system
d
dt Φt,s = FtΦt,s, Φs,s = I where Ft = A−ΣtH>H. For xt = Φt,sxs we have

d
dt

xt = Ftxt = F∞xt +(Σ∞−Σt)H>Hxt

Therefore

xt = etF∞xs +
∫ t

s
e(t−τ)F∞(Σ∞−Στ)H>Hxτdτ

Upon taking the norm and using the triangle inequality

‖xt‖2 ≤cλ e−tλ‖xs‖2 +
∫ t

s
cλ e−(t−τ)λ‖Στ −Σ∞‖2‖H>H‖2‖xτ‖2dτ

Using the Gronwall inequality

‖xt‖2 ≤ c′
λ

e−λ (t−s)‖xs‖2ec′
λ
‖H>H‖2

∫ t
s ‖Στ−Σ∞‖2dτ

concluding

‖Φt,s‖2 ≤ c′
λ

e−λ (t−s)ec′
λ
‖H>H‖2

∫ t
s ‖Στ−Σ∞‖2dτ
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Then, using the exponential convergence ‖Σt −Σ∞‖2 ≤ cλ e−2λ t from Lemma 4.1, we get

‖Φt,s‖2 ≤ c′
λ

e−λ (t−s)ec′
λ
‖H>H‖2

c
λ
‖Σ0−Σ∞‖2

2λ

which we express as ‖Φt,s‖2 ≤ cλ e−λ (t−s) by redefining the constant cλ . Similarly, the spectral bound

‖Φ(N)
t,s ‖2 ≤ cλ e−λ (t−s) holds when one replaces Σt with Σ

(N)
t , because Σ

(N)
t also evolves according to

the Riccati equation and converges exponentially to Σ∞.

3. In this step, we prove the estimate for the error Σ
(N)
t −Σt . From the Ricatti equation,

d
dt
(Σ

(N)
t −Σt) =(A−ΣtHH>)(Σ(N)

t −Σt)+(Σ
(N)
t −Σt)(A−Σ

(N)
t HH>)>

The solution satisfies

Σ
(N)
t −Σt = Φt,0(Σ

(N)
0 −Σ0)(Φ

(N)
t,0 )>

where Φt,0 and Φ
(N)
t,0 are the state transition matrices that were defined in step 2. Then,

‖Σ(N)
t −Σt‖F ≤ ‖ΦΣt

t ‖2‖ΦΣ
(N)
t

t ‖2‖Σ(N)
0 −Σ0‖F

≤ c2
λ

e−2λ t‖Σ(N)
0 −Σ0‖F

where we applied the upper-bound on the spectral norm of the transition matrix from step 2. Upon

squaring and taking the expectation of both sides

E[‖Σ(N)
t −Σt‖2

F ]≤ c4
λ

e−4λ tE[‖Σ(N)
0 −Σ0‖2

F ]

= c4
λ

e−4λ tE[Tr((Σ(N)
0 −Σ0)

2)]

= c4
λ

e−4λ tE[Tr((
1
N

N

∑
i=1

ξ
i
0ξ

i
0
>−Σ0)

2)]

= c4
λ

e−4λ t 1
N

E[Tr((ξ i
0ξ

i
0
>−Σ0)

2)]

≤ c4
λ

e−4λ t E[‖ξ0‖4
2]

N

= c4
λ

e−4λ t 3‖Σ0‖2
F

N

4. Finally, we prove the estimate for the mean. Subtracting the equation (3.4a) for Kalman mean from

the equation (4.7a) for empirical mean yields:

dm(N)
t −dmt =(A−Σ

(N)
t H>H)(m(N)

t −mt)dt +(Σ
(N)
t −Σt)H>HdIt
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where dIt = dZt −Hmtdt is the innovation process. The solution satisfies the equation:

m(N)
t −mt =Φ

(N)
t (m(N)

0 −m0)+
∫ t

0
Φ

(N)
t,s (Σ

(N)
s −Σs)H>HdIs

The mean-squared norm of the first term is bounded by:

E[‖Φ(N)
t (m(N)

0 −m0)‖2
2]≤ c2

λ
e−2λ tE[‖m(N)

0 −m0‖2
2]

≤ c2
λ

e−2λ t Tr(Σ0)

N

where we used the fact that the innovation process dIt is a Brownian motion [Xiong, 2008, Lemma

5.6]. The mean-squared norm of the first term is bounded by:

E

[∥∥∥∥∫ t

0
Φ

(N)
t,s (Σ

(N)
s −Σs)H>dIs

∥∥∥∥2

2

]
=
∫ t

0
E

[
Tr
(

Φ
(N)
t,s (Σ

(N)
s −Σs)H>H(Σ

(N)
s −Σs)Φ

(N)
t,s
>
)]

ds

≤
∫ t

0
E[‖Φ(N)

t,s (Σ
(N)
s −Σs)‖2

F ]‖H‖2
2ds

≤ ‖H‖2
2

∫ t

0
c2

λ
e−2λ (t−s)c4

λ
e−4λ sE[‖Σ(N)

0 −Σ0‖2
F ]ds

= c6
λ
‖H‖2

2
3‖Σ0‖2

F

N
e−2λ t

2λ

The bounds on the first term and second term add together to conclude

E[‖mt −m(N)
t ‖2

2]≤e−2λ t 2c2
λ

Tr(Σ0)

N
+ e−2λ t 6c6

λ
‖H‖2

2‖Σ0‖2
F

2λN

4.6.4 Proofs of the Prop. 4.3 and Cor. 4.1

Proof. Use the decomposition

X i
t = m(N)

t +ξ
i
t , X̄ i

t = mt + ξ̄
i
t

to express the error as

E[‖X i
t − X̄ i

t ‖2
2]

1/2 ≤ E[‖m(N)
t − m̄t‖2

2]
1/2 +E[‖ξ i

t − ξ̄
i
t ‖2

2]
1/2

The error m(N)
t − m̄t is already obtained in Proposition 4.1 as (4.9a). The key step is to analyze the error

ξ i
t − ξ̄ i

t . By definition,

dξ
i
t =
√

Ricc(Σ(N)
t )ξ i

t dt, dξ̄
i
t =
√

Ricc(Σt)ξ̄
i
t dt

Let Ψ
(Qt)
t,s be the state transition matrix corresponding to the linear system

d
dt

Ψ
(Qt)
t,s =

√
Ricc(Qt)Ψ

(Qt)
t,s , Ψ

(Qt)
s,s = I
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Therefore, ξ i
t = Ψ

(Σ
(N)
t )

t,0 ξ i
0 and ξ̄ i

t = Ψ
(Σt)
t,0 ξ̄ i

0. We bound the error ξ i
t − ξ̄ i

t in the following steps:

1) First, we bound the spectral norm of the transition matrix Ψ
(Σ∞)
t,s = e(t−s)

√
Ricc(Σ∞). Consider the linear

system:
d
dt

yt =
√

Ricc(Σ∞)
>yt

and the Lyapunov function V (y) = y>Σ∞y. Then,

d
dt

V (yt) = 0, ⇒ y>t Σ∞yt = y>s Σ∞ys

⇒ |yt |2 ≤
λmax(Σ∞)

λmin(Σ∞)
|ys|2

as a result

‖e(t−s)
√

Ricc(Σ∞)
>‖2 ≤ c, ∀t ≥ s≥ 0

where c =
√

λmax(Σ∞)
λmin(Σ∞)

. Therefore ‖Ψ(Σ∞)
t,s ‖2 = ‖e(t−s)

√
Ricc(Σ∞)

>‖2 ≤ c.

2) Next, we bound the spectral norm of the transition matrix Ψ
(Σt)
t,s . Consider the linear system

d
dt

xt =
√

Ricc(Σt)xt

=
√

Ricc(Σ∞)xt +(
√

Ricc(Σt)−
√

Ricc(Σ∞))xt

which satisfies

xt = Ψ
(Σ∞)
t,0 x0 +

∫ t

0
Ψ

(Σ∞)
t,s (
√

Ricc(Σs)−
√

Ricc(Σ∞))xsds

and the bound,

‖xt‖2 ≤ c‖x0‖2 + c
∫ t

0
‖
√

Ricc(Σs)−
√

Ricc(Σ∞)‖2‖xs‖2ds

where we used ‖Ψ(Σ∞)
t,s ‖2 ≤ c from step 1. By application of Gronwall inequality

‖xt‖2 ≤ c‖x0‖2ec
∫ t

0 ‖
√

Ricc(Σt)−
√

Ricc(Σ∞)‖2ds

Next, use

‖
√

Ricc(Σt)−
√

Ricc(Σ∞)‖2 ≤ ‖
1
2

ΣB(Σ
−1
t −Σ

−1
∞ )− 1

2
(Σt −Σ∞)H>H‖2

≤ 1
2
‖ΣB‖2‖Σ−1

∞ ‖2‖Σ−1
t ‖2‖Σt −Σ∞‖2 +

1
2
‖H>H‖2‖Σt −Σ∞‖2

≤ 1
2
(‖ΣB‖2‖Σ−1

∞ ‖2‖Λ−1
min‖2 +‖H>H‖2)cλ e−2λ t
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where we used ‖Σt−Σ∞‖2≤ cλ e−2λ t from Theorem 4.1 and ‖Σ−1
t ‖≤ ‖Λ−1

min‖2 from Lemma 4.1, to conclude

‖xt‖2 ≤ c‖x0‖2ec
c
λ

4λ
(‖ΣB‖2‖Σ−1

∞ ‖2‖Λ−1
min‖2+‖H>H‖2) =: c′‖x0‖

concluding ‖Ψ(Σt)
t,s ‖ ≤ c′ for all t ≥ s≥ 0.

3) Finally, we aim to bound the error ξ i
t − ξ̄ i

t . By definition,

dξ
i
t −dξ̄

i
t =
√

Ricc(Σ(N)
t )(ξ i

t − ξ̄
i
t )dt +(

√
Ricc(Σt)−

√
Ricc(Σ(N)

t ))ξ̄ i
t dt

Therefore

ξ
i
t − ξ̄

i
t =Ψ

(Σ
(N)
t )

t,0 (ξ i
0− ξ̄

i
0)+

∫ t

0
Ψ

(Σ
(N)
s )

t,s (
√

Ricc(Σs)−
√

Ricc(Σ(N)
s ))ξ̄ i

sds

Taking the norm ,

‖ξ i
t − ξ̄

i
t ‖2 ≤c′‖ξ i

0− ξ̄
i
0‖2 + c′

∫ t

0
‖(
√

Ricc(Σs)−
√

Ricc(Σ(N)
s ))‖2‖ξ̄ i

s‖ds

where we used the bound ‖Ψ(Σ
(N)
t )

t,s ‖ ≤ c′ from step (3). Upon taking the mean-squared norm of both sides

and using the triangle inequality and Cauchy-Schwartz inequality,

E[‖ξ i
t − ξ̄

i
t ‖2

2]
1/2 ≤ c′E[‖ξ i

0− ξ̄
i
0‖2

2]
1/2 + c′

∫ t

0
E[‖(
√

Ricc(Σs)−
√

Ricc(Σ(N)
s ))‖2

2]
1/2E[‖ξ̄ i

s‖2]1/2ds

Using the identity ξ i
0− ξ̄ i

0 = m0−m(N)
0 , the bound

‖
√

Ricc(Σ(N)
t )−

√
Ricc(Σt)‖2 ≤

1
2
(‖ΣB‖2‖Σ−1

t ‖2‖Σ(N)
t
−1
‖2 +‖H>H‖2)‖Σ(N)

t −Σt‖2

≤ 1
2
(‖ΣB‖2‖Λ−1

min‖
2
2 +‖H>H‖2)e−2λ t (const.)√

N

and the identity E[‖ξ̄ i
2‖2

2] = Tr(Σt) yields

E[‖ξ i
t − ξ̄

i
t ‖2

2]
1/2 ≤ (const.)√

N

∫ t

0
e−2λ sds≤ (const.)√

N

concluding the result.

Proof of the Corollary 4.1. Using the triangle inequality,

E

∣∣∣∣∣ 1
N

N

∑
i=1

f (X i
t )−E[ f (Xt)|Zt ]

∣∣∣∣∣
2
1/2

≤E

∣∣∣∣∣ 1
N

N

∑
i=1

f (X i
t )−

1
N

N

∑
i=1

f (X̄ i
t )

∣∣∣∣∣
2
1/2

+E

∣∣∣∣∣ 1
N

N

∑
i=1

f (X̄ i
t )−E[ f (Xt)|Zt ]

∣∣∣∣∣
2
1/2
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The second term is given by

E

∣∣∣∣∣ 1
N

N

∑
i=1

f (X̄ i
t )−E[ f (Xt)|Zt ]

∣∣∣∣∣
2
1/2

=
Var( f (Xt)|Zt)√

N

because X̄ i
t are i.i.d with distribution equal to the conditional distribution. It only remains to bound the first

term:

E

∣∣∣∣∣ 1
N

N

∑
i=1

f (X i
t )−

1
N

N

∑
i=1

f (X̄ i
t )

∣∣∣∣∣
2
1/2

≤ 1
N

N

∑
i=1

E
[∣∣ f (X i

t )− f (X̄ i
t )
∣∣2]1/2

≤ (const.)
N

N

∑
i=1

E
[∣∣X i

t − X̄ i
t

∣∣2]1/2
≤ (const.)√

N

where we used triangle inequality in the first step, the Lipschitz property of f in the second step, and the

estimate (4.15) in the last step.

4.6.5 Proof of the Proposition 4.2

Proof. (i) Recall the evolutions for Σt in (3.4b) and the evolution for Σ
(N)
t in (4.8b) stated below under the

Assumption that H>H = I:

dΣt = (AΣt +ΣtA>+ΣB−Σ
2
t )dt

dΣ
(N)
t = (AΣ

(N)
t +Σ

(N)
t A>+ΣB− (Σ

(N)
t )2)dt +

dMt√
N

First, we obtain a bound for E[Tr(Σ(N)
t )]

d
dt

E[Tr(Σ(N)
t )] = E[Tr((A+A>−Σ

(N)
t )Σ

(N)
t )]+Tr(ΣB)

≤−2µ(A)E[Tr(Σ(N)
t )]+Tr(ΣB)

Therefore

E[Tr(Σ(N)
t )]≤ e−2µ(A)tE[Tr(Σ(N)

0 )]+
Tr(ΣB)

2µ(A)

Next, we bound the error Σ
(N)
t −Σt . Subtracting the two equations for Σ

(N)
t and Σt yields,

d(Σ(N)
t −Σt) = (A− Σt +Σ

(N)
t

2
)(Σ

(N)
t −Σt)dt +(Σ

(N)
t −Σt)(A−

Σt +Σ
(N)
t

2
)>dt +

dMt√
N
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Define Rt = ‖Σ(N)
t −Σt‖2

F = Tr((Σ(N)
t −Σt)

2) the squared of the Forbenious norm of the error. By Itó rule

dRt =2Tr((A+A>−Σt −Σ
(N)
t )(Σ

(N)
t −Σt)

2)+
1√
N

Tr((dMt +dM>t )(Σ
(N)
t −Σt))

+
2
N
(Tr(Σ(N)

t ΣB)+Tr(Σ(N)
t )Tr(ΣB))dt

Then upon taking the expectation

d
dt

Rt ≤−4µ(A)Rt +
2
N
(E[Tr(Σ(N)

t ΣB)]+E[Tr(Σ(N)
t )]Tr(ΣB))

≤−4µ(A)Rt +
2
N
(
1
2

Rt +
1
2

Tr(Σ2
B)+Tr(ΣtΣB)+Tr(ΣB)E[Tr(Σ(N)

t )])

Concluding the estimate:

Rt ≤ e−(4µ(A)− 1
N )tR0 +

1
2µ(A)N

(Tr(Σ2
B)+

1
2

Tr(Λ2
max)+

Tr(ΣB)
2

2µ(A)
+2e−(2µ(A)− 1

N )tTr(ΣB)E[Tr(Σ(N)
0 )])

(ii) Recall the evolutions for mt in (3.4a) and the evolution for m(N)
t in (4.8a) stated below under the As-

sumption that H>H = I:

dmt = Amtdt +ΣtH>dIt

dm(N)
t = Am(N)

t dt +Σ
(N)
t H>dIt −Σ

(N)
t (m(N)

t −mt)dt +
1√
N

σBdB̃t

where the innovation process dIt = dZt −Hmtdt. Subtracting the two equations yields

d(m(N)
t −mt) = (A−Σ

(N)
t )(m(N)

t −mt)dt +(Σ
(N)
t −Σt)H>dIt +

1√
N

σBdB̃t

The solution satisfies

m(N)
t −mt = Φ

(N)
t,s (m(N)

0 −m0)+
∫ t

0
Φ

(N)
t,s (Σ

(N)
s −Σs)H>dIs +

1√
N

∫ t

0
Φ

(N)
t,s σBdB̃s

where Φ
(N)
t,s is the state transition matrix for the linear system d

dt xt = (A−Σ
(N)
t )xt . The state transition matrix

satisfies the bound ‖Φ(N)
t,s ‖ ≤ e−µ(A)(t−s) almost surely. Hence,

E‖m(N)
t −mt‖ ≤ e−µ(A)tE‖m(N)

0 −m0‖+E[(
∫ t

0
Φ

(N)
t,s (Σ

(N)
s −Σs)H>dIs)

2]1/2 +
1√
N

E[(
∫ t

0
Φ

(N)
t,s σBdB̃s)

2]1/2

≤ e−µ(A)tE‖m(N)
0 −m0‖+

(∫ t

0
e−2µ(A)(t−s)E[‖Σ(N)

t −Σt‖2
F ]ds

)1/2

+
1√
N

(∫ t

0
e−2µ(A)(t−s)Tr(ΣB)ds

)1/2

≤ e−µ(A)tE‖m(N)
0 −m0‖+

(
3‖Σ0‖2

F + cvar

2µ(A)N

)1/2

+

(
Tr(ΣB)

2µ(A)N

)1/2
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where cvar =
1

2µ(A)N (Tr(Σ2
B)+

1
2 Tr(Λ2

max)+
Tr(ΣB)

2

2µ(A) +2Tr(ΣB)E[Tr(Σ(N)
0 )]).

4.6.6 Proof of the Proposition 4.4

(i) Define ξ̄ i
t = X̄ i

t − m̄t . The evolution for ξ̄ i
t is

dξ̄
i
t = (A− 1

2
Σt)ξ̄

i
t +σBdBi

t , ξ̄
i
0 = X i

0−m0

Subtract this from (4.8c) yields:

d(ξ i
t − ξ̄

i
t ) = (A− 1

2
Σ
(N)
t )(ξ i

t − ξ̄t)dt− 1
2
(Σ

(N)
t −Σt)ξ̄

i
t −

1√
N

σBdB̃t , ξ
i
0− ξ̄

i
0 = m0−m(N)

0

The solution satisfies the implicit integral equation

ξ
i
t − ξ̄

i
t = Ψ

(N)
t,0 (ξ i

0− ξ̄
i
0)−

1
2

∫ t

0
Ψ

(N)
t,s (Σ

(N)
s −Σs)ξ̄

i
sds− 1√

N

∫ t

0
Ψ

(N)
t,s σBdB̃s

where Ψ
(N)
t,s is the state transition matrix corresponding to the linear system d

dt xt = (A− 1
2 Σ

(N)
t )xt

which satisfies the bound ‖Ψ(N)
t,s ‖ ≤ e−µ(A)(t−s). Upon taking the norm and expectation:

E[‖ξ i
t − ξ̄

i
t ‖]≤ e−µ(A)tE[‖m(N)

0 −m0‖]+
1
2

∫ t

0
e−µ(A)(t−s)E[‖Σ(N)

s −Σs‖2]1/2E[‖ξ̄ i
s‖2]1/2ds+

√
Tr(ΣB)

2µ(A)N

≤ e−µ(A)t Tr(Σ0)
1
2

√
N

+
(3‖Σ0‖2

F + cvar)
1
2 Tr(Λmax)

1
2

2µ(A)
√

N
+

√
Tr(ΣB)

2µ(A)N

Combining this result with the estimate (4.11) and the inequality

E[‖X i
t − X̄ i

t ‖]≤ E[‖m(N)
t − m̄t‖]+E[‖ξ i

t − ξ̄
i
t ‖]

concludes the estimate (4.17).

(ii) Note that

1
N

N

∑
i=1

f (X i
t )−E[ f (X̄t)|Zt ] =

1
N

N

∑
i=1

( f (X i
t )− f (X̄ i

t ))+
1
N

N

∑
i=1

f (X̄ i
t )−E[ f (X̄t)|Zt ]

Taking the norm and using the triangle inequality yields

E

[
| 1
N

N

∑
i=1

f (X i
t )−E[ f (X̄t)|Zt ]|

]
≤ 1

N

N

∑
i=1

Lip( f )E[‖X̄ i
t −X i

t ‖]+
var( f )√

N

where we used f is Lipschitz, and X̄ i
t are i.i.d. Using the result of part (i) concludes the proof.
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Chapter 5

Accelerated Flow for Probability Distributions∗

5.1 Introduction

Optimization on the space of probability distributions is important to a number of machine learning models

including variational inference [Blei et al., 2017], generative models [Goodfellow et al., 2014, Arjovsky

et al., 2017], and policy optimization in reinforcement learning [Sutton et al., 2000]. A number of recent

studies have considered solution approaches to these problems based upon a construction of gradient flow

on the space of probability distributions [Liu and Wang, 2016, Richemond and Maginnis, 2017, Zhang

et al., 2018, Frogner and Poggio, 2018, Chizat and Bach, 2018, Chen et al., 2018, Liu et al., 2018]. Such

constructions are useful for convergence analysis as well as development of numerical algorithms.

In this chapter, we propose a methodology and numerical algorithms that achieve accelerated gradient

flows on the space of probability distributions. The proposed numerical algorithms are related to yet distinct

from the accelerated stochastic gradient descent [Jain et al., 2017] and Hamiltonian Markov chain Monte-

Carlo (MCMC) algorithms [Neal et al., 2011, Cheng et al., 2017]. The proposed methodology extends the

variational formulation of [Wibisono et al., 2016] from vector valued variables to probability distributions.

The original formulation of [Wibisono et al., 2016] was used to derive and analyze the convergence proper-

ties of a large class of accelerated optimization algorithms, most significant of which is the continuous-time

limit of the Nesterov’s algorithm [Su et al., 2014]. The limit is referred to as the Nesterov’s ordinary differ-

ential equation.

The extension proposed in our work is based upon a generalization of the formula for the Lagrangian

in [Wibisono et al., 2016]: (i) the kinetic energy term is replaced with the expected value of kinetic energy;

(ii) the potential energy term is replaced with a suitably defined functional on the space of probability

distributions. The variational problem is to obtain a trajectory in the space of probability distributions that

minimizes the action integral of the Lagrangian.

The variational problem is modeled as a mean-field optimal problem [Bensoussan et al., 2013, Carmona

and Delarue, 2017]. The maximum principle of the optimal control theory is used to derive the Hamilton’s

equations which represent the first order optimality conditions. The Hamilton’s equations provide a gener-

alization of the Nesterov’s ODE to the space of probability distributions. A Lyapunov function is proposed

for the convergence analysis of the solution of the Hamilton’s equations. In this way, quantitative estimates

on convergence rate are obtained for the case when the objective functional is displacement convex [Mc-

∗The content of this chapter is based on [Taghvaei and Mehta, 2019].
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Cann, 1997]. Table 5.1 provides a summary of the relationship between the original variational formulation

in [Wibisono et al., 2016] and the extension proposed in this chapter.

We also consider the important special case when the objective functional is the relative entropy func-

tional D(ρ|ρ∞) defined with respect to a target probability distribution ρ∞. In this case, the accelerated gra-

dient flow is shown to be related to the continuous limit of the Hamiltonian Monte-Carlo algorithm [Cheng

et al., 2017] (Remark 5.2). The Hamilton’s equations are finite-dimensional for the special case when the

initial and the target probability distributions are both Gaussian. In this case, the mean evolves according to

the Nesterov’s ODE. For the general case, the Lyapunov function-based convergence analysis applies when

the target distribution is log-concave.

As a final contribution, the proposed methodology is used to obtain a numerical algorithm. The algo-

rithm is an interacting particle system that empirically approximates the distribution with a finite but large

number of N particles. The difficult part of this construction is the approximation of the interaction term

between particles. For this purpose, two types of approximations are described: (i) Gaussian approximation

which is asymptotically (as N→∞) exact in Gaussian settings; and (ii) Diffusion map approximation which

is computationally more demanding but asymptotically exact for a general class of distributions.

5.1.1 Related work

Construction of accelerated flows for probability distribution was proposed in [Liu et al., 2018] based on the

generalization of the Nesterov’s method to Riemannian manifolds [Liu et al., 2017]. The procedure involves

approximating the exponential map and parallel transport map for probability distributions in the Wasser-

stein space. Our construction of accelerated flow is different from [Liu et al., 2018] in several respects: i)

we describe a variational formulation and make connection to mean-field control theory; ii) our variational

construction yields a continuous-time algorithm providing a straightforward comparison to HMCMC; iii)

we carry out convergence analysis based upon a Lyapunov function method; iv) and analysis in Gaussian

setting shows we recover the Nesterov ode.

Another class of related work are the interacting particle-based numerical algorithms designed to sample

from a target distribution. An example is the Stein variational gradient descent (SVGD) algorithm [Liu and

Wang, 2016, Liu, 2017] based on the Riemannian construction of the gradient flow. Another example is the

particle optimization method [Chen et al., 2018], whose update is obtained from a solution to an optimization

problem based on the variational formulation of the Langevin dynamics. Interacting particle systems have

also been shown to be useful for numerically solving the nonlinear filtering problem [Del Moral et al., 1998,

Reich, 2011, Yang et al., 2016, Zhang et al., 2019].

Notation: The gradient and divergence operators are denoted as ∇ and ∇· respectively. With multiple

variables, ∇z denotes the gradient with respect to the variable z. Therefore, the divergence of the vector

field U is ∇ ·U(x) = ∑
d
n=1 ∇xnUn(x). The space of absolutely continuous probability measures on Rd with

finite second moments is denoted by Pac,2(Rd). For a measure µ ∈Pac,2(Rd) and a measurable map

T : Rd → Rd , the push-forward of µ by T is denoted by T #µ . The second-order Wasserstein distance

between any two measures µ,ν ∈Pac,2(Rd) is denoted as W2(µ,ν). The Wasserstein gradient and the
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Vector Probability distribution

State-space Rd P2(Rd)

Objective function f (x) F(ρ) := D(ρ|ρ∞)

Lagrangian eαt+γt
(1

2 |e
−αt u|2− eβt f (x)

)
eαt+γt E

[
1
2 |e
−αtU |2− eβt log( ρ(X)

ρ∞(X))
]

Lyapunov funct.
1
2 |x+ e−γt y− x̄|2 1

2 E[|Xt + e−γtYt −T ρ∞

ρt (Xt)|2]

+eβt ( f (x)− f (x̄)) +eβt (F(ρt)−F(ρ∞))

Convergence rate f (xt)− f (x̄)≤ O(e−βt ) F(ρt)−F(ρ∞)≤ O(e−βt )

Table 5.1: Summary of the variational formulations for vectors and probability distributions.

Gâteaux derivative of a functional F is denoted as ∇ρ F(ρ) and ∂F
∂ρ

(ρ) respectively (see Appendix 5.5.2 for

definition). The probability distribution of a random variable Z is denoted as Law(Z).

5.2 Review of the variational formulation of [Wibisono et al., 2016]

The basic problem is to minimize a C1 smooth convex function f on Rd . The standard form of the gradient

descent algorithm for this problem is an ODE:

dXt

dt
=−∇ f (Xt), t ≥ 0 (5.1)

Accelerated forms of this algorithm are obtained based on a variational formulation due to [Wibisono

et al., 2016]. The formulation is briefly reviewed here using an optimal control formalism. The Lagrangian

L : R+×Rd×Rd → R is defined as

L(t,x,u) := eαt+γt

(
1
2
|e−αt u|2︸ ︷︷ ︸

kinetic energy

− eβt f (x)︸ ︷︷ ︸
potential energy

)
(5.2)

where t ≥ 0 is the time, x ∈ Rd is the state, u ∈ Rd is the velocity or control input, and the time-varying

parameters αt ,βt ,γt satisfy the following scaling conditions: αt = log p− log t, βt = p log t + logC, and

γt = p log t where p≥ 2 and C > 0 are constants.

The variational problem is

Minimize
u

J(u) =
∫

∞

0
L(t,Xt ,ut)dt

Subject to
dXt

dt
= ut , X0 = x0

(5.3)

where ut is the control input chosen to minimize the objective function J(u). over all control laws {ut}t>0

in Rd .

The Hamiltonian function is

H(t,x,y,u) = y ·u−L(t,x,u) (5.4)

85



where y ∈ Rd is dual variable and y ·u denotes the dot product between vectors y and u.

According to the Pontryagin’s Maximum Principle, the optimal control u∗t = arg maxv H(t,Xt ,Yt ,v) =

eαt−γtYt . The resulting Hamilton’s equations are

dXt

dt
=+∇yH(t,Xt ,Yt ,u∗t ) = eαt−γtYt , X0 = x0 (5.5a)

dYt

dt
=−∇xH(t,Xt ,Yt ,u∗t ) =−eαt+βt+γt ∇ f (Xt), (5.5b)

The system (5.5) is an example of accelerated gradient descent algorithm. Specifically, if the parame-

ters αt ,βt ,γt are defined using p = 2, one obtains the continuous-time limit of the Nesterov’s accelerated

algorithm. It is referred to as the Nesterov’s ODE in this chapter.

For this system, a Lyapunov function is as follows:

V (t,x,y) =
1
2

∣∣x+ e−γt y− x̄
∣∣2 + eβt ( f (x)− f (x̄)) (5.6)

where x̄ ∈ arg minx f (x). It is shown in [Wibisono et al., 2016] that upon differentiating along the solution

trajectory, d
dt V (t,Xt ,Yt)≤ 0. This yields the convergence rate:

f (Xt)− f (x̄)≤ O(e−βt ), ∀t ≥ 0 (5.7)

5.3 Variational formulation for probability distributions

5.3.1 Motivation and background

Let F : Pac,2(Rd)→ R be a functional on the space of probability distributions. Consider the problem of

minimizing F(ρ). The (Wasserstein) gradient flow with respect to F(ρ) is a curve ρt such that

∂ρt

∂ t
(x) = ∇ · (ρt(x)∇ρ F(ρt)(x)) (5.8)

where (the vector field) ∇ρ F(ρ) : Rd → Rd is the Wasserstein gradient of F.

An important example is the relative entropy functional where F(ρ) = D(ρ|ρ∞) :=
∫
Rd log( ρ(x)

ρ∞(x)
)ρ(x)dx

where ρ∞ ∈Pac,2(Rd) is referred to as the target distribution. The gradient of relative entropy is given by

∇ρ F(ρ)(x) = ∇ log( ρ(x)
ρ∞(x)

) (Ch. 8.3 in [Villani, 2003]). The gradient flow

∂ρt

∂ t
(x) =−∇ · (ρt(x)∇ log(ρ∞(x)))+∆ρt(x) (5.9)

is the Fokker-Planck equation [Jordan et al., 1998]. The gradient flow achieves the density transport from

an initial probability distribution ρ0 to the target (here, also equilibrium) probability distribution ρ∞; and

underlies the construction and the analysis of Markov chain Monte-Carlo (MCMC) algorithms. The simplest
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MCMC algorithm is the Langevin stochastic differential equation (SDE):

dXt =−∇ f (Xt)dt +
√

2dBt , X0 ∼ ρ0

where Bt is the standard Brownian motion in Rd .

The main problem of this chapter is to construct an accelerated form of the gradient flow (5.8). The

proposed solution is based upon a variational formulation. As tabulated in Table 5.1, the solution repre-

sents a generalization of [Wibisono et al., 2016] from its original deterministic finite-dimensional to now

probabilistic infinite-dimensional settings.

The variational problem can be expressed in two equivalent forms: (i) The probabilistic form and (ii)

The partial differential equation (PDE)

5.3.2 Probabilistic form of the variational problem

Consider the stochastic process {Xt}t≥0 that takes values in Rd and evolves according to:

dXt

dt
=Ut , X0 ∼ ρ0

where the control input {Ut}t≥0 also takes values in Rd , and ρ0 ∈Pac,2(Rd) is the probability distribution of

the initial condition X0. It is noted that the randomness here comes only from the random initial condition.

Suppose the objective functional is of the form F(ρ) =
∫

F̃(ρ,x)ρ(x)dx. The Lagrangian L : R+×Rd×
Pac,2(Rd)×Rd → R is defined as

L(t,x,ρ,u) := eαt+γt

(
1
2
|e−αt u|2︸ ︷︷ ︸

kinetic energy

− eβt F̃(ρ,x)︸ ︷︷ ︸
potential energy

)
(5.10)

This formula is a natural generalization of the Lagrangian (5.2) and the parameters αt ,βt ,γt are defined

exactly the same as in the finite-dimensional case. The stochastic optimal control problem is:

Minimize J(u) = E

[∫
∞

0
L(t,Xt ,ρt ,Ut)dt

]
Subject to

dXt

dt
=Ut , X0 ∼ ρ0

(5.11)

where ρt = Law(Xt) ∈Pac,2(Rd) is the probability density function of the random variable Xt .

The Hamiltonian function H : R+×Rd ×Pac,2(Rd)×Rd ×Rd → R for this problem is given by (see

Sec. 6.2.3 in [Carmona and Delarue, 2017]):

H(t,x,ρ,y,u) := u · y−L(t,x,ρ,u) (5.12)

where y ∈ Rd is the dual variable.

Remark 5.1. The variational problem (5.11) is an example of a mean-field (McKean-Vlasov) optimal con-
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trol problem. This is because the Lagrangian depends also upon the law of the stochastic process; cf., Ch.

6 in [Carmona and Delarue, 2017].

5.3.3 PDE formulation of the variational problem

An equivalent pde formulation is obtained by considering the stochastic optimal control problem (5.11) as a

deterministic optimal control problem on the space of the probability distributions. Specifically, the process

{ρt}t≥0 is a deterministic process that takes values in Pac,2(Rd) and evolves according to the continuity

equation
∂ρt

∂ t
=−∇ · (ρtut)

where ut :Rd→Rd is now a time-varying vector field. The Lagrangian L :R+×Pac,2(Rd)×L2(Rd ;Rd)→
R is defined as:

L (t,ρ,u) := eαt+γt

[∫
Rd

1
2
|e−αt u(x)|2ρ(x)dx− eβt F(ρ)

]
(5.13)

The optimal control problem is:

Minimize
∫

∞

0
L (t,ρt ,ut)dt

Subject to
∂ρt

∂ t
+∇ · (ρtut) = 0

(5.14)

The Hamiltonian function H : R+×Pac,2(Rd)×C (Rd ;R)×L2(Rd ;Rd)→ R is

H (t,ρ,φ ,u) := 〈∇φ ,u〉L2(ρ)−L (t,ρ,u) (5.15)

where φ ∈ C (Rd ;R) is the dual variable and the inner-product 〈∇φ ,u〉L2(ρ) :=
∫
Rd ∇φ(x) ·u(x)ρ(x)dx

5.3.4 Main result

Theorem 5.1. Consider the variational problem (5.11)-(5.14).

(i) For the probabilistic form (5.11) of the variational problem, the optimal control U∗t = eαt−γtYt ,

where the optimal trajectory {(Xt ,Yt)}t≥0 evolves according to the Hamilton’s odes:

dXt

dt
=U∗t = eαt−γtYt , X0 ∼ ρ0 (5.16a)

dYt

dt
=−eαt+βt+γt ∇ρ F(ρt)(Xt), Y0 = ∇φ0(X0) (5.16b)

where φ0 is a convex function, and ρt = Law(Xt).

(ii) For the pde form (5.14) of the variational problem, the optimal control is u∗t = eαt−γt ∇φt(x),
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where the optimal trajectory {(ρt ,φt)}t≥0 evolves according to the Hamilton’s pdes:

∂ρt

∂ t
=−∇ · (ρt eαt−γt ∇φt︸ ︷︷ ︸

u∗t

), (5.17a)

∂φt

∂ t
=−eαt−γt

|∇φt |2

2
− eαt+γt+βt ∇ρ F(ρ) (5.17b)

(iii) The solutions of the two forms are equivalent in the following sense:

Law(Xt) = ρt , Ut = ut(Xt), Yt = ∇φt(Xt)

(iv) Suppose additionally that the functional F is displacement convex and ρ∞ is its minimizer.

Define

V (t) =
1
2

E[|Xt + e−γtYt −T ρ∞

ρt (Xt)|2]

+ eβt (F(ρ)−F(ρ∞))
(5.18)

where the map T ρ∞

ρt : Rd → Rd is the optimal transport map from ρt to ρ∞. Assume the dimension

d = 1. Consequently, the following rate of convergence is obtained along the optimal trajectory

F(ρt)−F(ρ∞)≤ O(e−βt ), ∀t ≥ 0

Proof sketch. The Hamilton’s equations are derived using the standard mean-field optimal control the-

ory [Carmona and Delarue, 2017]. The Lyapunov function argument is based upon the variational inequality

characterization of a displacement convex function (see Eq. 10.1.7 in [Ambrosio et al., 2008]). The detailed

proof appears in the Appendix 5.5.1. We expect that the assumption that d = 1 is not necessary. This is the

subject of the continuing work.

5.3.5 Relative entropy as the functional

In the remainder of this chapter, we assume that the functional F(ρ) = D(ρ|ρ∞) is the relative entropy where

ρ∞ ∈Pac,2(Rd) is a given target probability distribution. In this case the Hamilton’s equations are given by

dXt

dt
= eαt−γtYt , X0 ∼ ρ0 (5.19a)

dYt

dt
=−eαt+βt+γt (∇ f (Xt)+∇ log(ρt(Xt)), (5.19b)

with Y0 = ∇φ0(X0), where ρt = Law(Xt) and f =− log(ρ∞). Moreover, if f is convex (or equivalently ρ∞ is

log-concave), then F is displacement convex with the unique minimizer at ρ∞ and the convergence estimate

is given by D(ρt |ρ∞)≤ O(e−βt ).

Remark 5.2. The Hamilton’s equations (5.19) with the relative entropy functional is related to the under-

damped Langevin equation [Cheng et al., 2017]. A basic form of the under-damped (or second order)
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Langevin equation is
dXt = vtdt

dvt =−γvtdt−∇ f (Xt)dt +
√

2dBt

(5.20)

where {Bt}t≥0 is the standard Brownian motion.

Consider next, the the accelerated flow (5.19). Denote vt := eαt−γtYt . Then, with an appropriate choice

of scaling parameters (e.g. αt = 0, βt = 0 and γt =−γt ):

dXt = vtdt

dvt =−γvtdt−∇ f (Xt)dt−∇x log(ρt(Xt))
(5.21)

The scaling parameters are chosen here for the sake of comparison and do not satisfy the ideal scaling

conditions of [Wibisono et al., 2016].

The sdes (5.20) and (5.21) are similar except that the stochastic term
√

2dBt in (5.20) is replaced with

a deterministic term −∇x log(ρt(Xt)) in (5.21). Because of this difference, the resulting distributions are

different.

5.3.6 Quadratic Gaussian case

Suppose the initial distribution ρ0 and the target distribution ρ∞ are both Gaussian, denoted as N (m0,Σ0)

and N (x̄,Q), respectively. This is equivalent to the objective function f (x) being quadratic of the form

f (x) = 1
2(x− x̄)>Q−1(x− x̄). Therefore, this problem is referred to as the quadratic Gaussian case. The fol-

lowing Proposition shows that the mean of the stochastic process (Xt ,Yt) evolves according to the Nesterov

ODE (5.5):

Proposition 5.1. (Quadratic Gaussian case) Consider the variational problem (5.11) for the quadratic

Gaussian case. Then

(i) The stochastic process (Xt ,Yt) is a Gaussian process. The Hamilton’s equations are given by:

dXt

dt
= eαt−γtYt ,

dYt

dt
=−eαt+βt+γt (Q−1(Xt − x̄)−Σ

−1
t (Xt −mt))

where mt and Σt are the mean and the covariance of Xt .

(ii) Upon taking the expectation of both sides, and denoting nt := E[Yt ]

dmt

dt
= eαt−γt nt ,

dnt

dt
=−eαt+βt+γt Q−1(mt − x̄)︸ ︷︷ ︸

∇ f (mt)

which is identical to Nesterov ODE (5.5).

Proof sketch. Fix ρt . Consider the resulting pair (Xt ,Yt) from (5.19) and let ρ̃t =Law(Xt). The proof follows

from showing that a Gaussian ρt is a fixed-point of the map ρt 7→ ρ̃t .
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5.4 Numerical algorithm

The proposed numerical algorithm is based upon an interacting particle implementation of the Hamilton’s

equation (5.19). Consider a system of N particles {(X i
t ,Y

i
t )}N

i=1 that evolve according to:

dX i
t

dt
= eαt−γtY i

t , X i
0 ∼ ρ0

dY i
t

dt
=−eαt+βt+γt (∇ f (X i

t )+ I(N)
t (X i

t )︸ ︷︷ ︸
interaction term

),

with Y i
0 = ∇φ0(X i

0). The interaction term I(N)
t is an empirical approximation of the ∇ log(ρt) term in (5.19).

We propose two types of empirical approximations as follows:

1. Gaussian approximation: Suppose the density is approximated as a Gaussian N (mt ,Σt). In this

case, ∇ log(ρt(x))=−Σt
−1(x−mt). This motivates the following empirical approximation of the interaction

term:

I(N)
t (x) =−Σ

(N)
t
−1
(x−m(N)

t ) (5.23)

where m(N)
t := N−1

∑
N
i=1 X i

t is the empirical mean and Σ
(N)
t := 1

N−1 ∑
N
i=1(X

i
t −m(N)

t )(X i
t −m(N)

t )> is the em-

pirical covariance.

Even though the approximation is asymptotically (as N→∞) exact only under the Gaussian assumption,

it may be used in a more general settings, particularly when the density ρt is unimodal. The situation is

analogous to the (Bayesian) filtering problem, where an ensemble Kalman filter is used as an approximate

solution for non-Gaussian distributions [Evensen, 2003].

2. Diffusion map approximation: This is based upon the diffusion map approximation of the weighted

Laplacian operator [Coifman and Lafon, 2006, Hein et al., 2007]. For a C2 function f , the weighted Lapla-

cian is defined as ∆ρ f := 1
ρ

∇ · (ρ∇ f ). Denote e(x) = x as the coordinate function on Rd . It is a straightfor-

ward calculation to show that ∇ log(ρ) = ∆ρe. This allows one to use the diffusion map approximation of

the weighted Laplacian to approximate the interaction term as follows:

(DM) I(N)
t (X i

t ) =
1
ε

∑
N
j=1 kε(X i

t ,X
j

t )(X
j

t −X i
t )

∑
N
j=1 kε(X i

t ,X
j

t )
(5.24)

where the kernel kε(x,y) =
gε (x,y)√

∑
N
i=1 gε (y,X i)

is constructed empirically in terms of the Gaussian kernel gε(x,y) =

exp(−|x− y|2/(4ε)). The parameter ε is referred to as the kernel bandwidth. The approximation is asymp-

totically exact as ε ↓ 0 and N ↑∞. The approximation error is of order O(ε)+O( 1√
Nεd/4 ) where the first term

is referred to as the bias error and the second term is referred to as the variance error [Hein et al., 2007]. The

variance error is the dominant term in the error for small values of ε , whereas the bias error is the dominant

term for large values of ε (see Figure 5.2(d)).

The resulting interacting particle algorithm is tabulated in Table 5.1. The symplectic method proposed
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Algorithm 5.1 Interacting particle implementation of the accelerated gradient flow
Input: ρ0, φ0, N, t0, ∆t, p, C, K
Output: {X i

k}
N,K
i=1,k=0

Initialize {X i
0}N

i=1
i.i.d∼ ρ0, Y i

0 = ∇φ0(X i
0)

Compute I(N)
0 (X i

0) with (5.23) or (5.24)
for k = 0 to K−1 do

tk+ 1
2
= tk + 1

2 ∆t

Y i
k+ 1

2
= Y i

k −
1
2Cpt2p−1

k+ 1
2
(∇ f (X i

k)+ I(N)
k (X i

k))∆t

X i
k+1 = X i

k +
p

t p+1
k+ 1

2

Y i
k∆t

Compute I(N)
k+1(X

i
k+1) with (5.23)or (5.24)

Y i
k+1 = Y i

k+ 1
2
− 1

2Cpt2p−1
k+ 1

2
(∇ f (X i

k+1)+ I(N)
k+1(X

i
k+1))∆t

tk+1 = tk+ 1
2
+ 1

2 ∆t
end for

in [Betancourt et al., 2018] is used to carry out the numerical integration. The algorithm is applied to two

examples as described in the following sections.

Remark 5.3. For the case where there is only one particle ( N = 1), the interaction term is zero and the

system (5.22) reduces to the Nesterov ODE (5.5).

Remark 5.4. (Comparison with density estimation) The diffusion map approximation algorithm is con-

ceptually different from an explicit density estimation-based approach. A basic density estimation is to

approximate ρ(x) ≈ 1
N ∑

N
i=1 gε(x,X i

t ) where gε(x,y) is the Gaussian kernel. Using such an approximation,

the interaction term is approximated as

(DE) I(N)
t (X i

t ) =
1
ε

∑
N
j=1 gε(X i

t ,X
j

t )(X
j

t −X i
t )

2∑
N
j=1 gε(X i

t ,X
j

t )
(5.25)

Despite the apparent similarity of the two formulae, (5.24) for diffusion map approximation and (5.25) for

density estimation, the nature of the two approximations is different. The difference arises because the kernel

kε(x,y) in (5.24) is data-dependent whereas the kernel in (5.25) is not. While both approximations are exact

in the asymptotic limit as N ↑ ∞ and ε ↓ 0, they exhibit different convergence rates. Numerical experiments

presented in Figure 5.2(a)-(d) show that the diffusion map approximation has a much smaller variance for

intermediate values of N. Theoretical understanding of the difference is the subject of continuing work.

5.4.1 Gaussian Example

Consider the Gaussian example as described in Sec. 5.3.6. The simulation results for the scalar (d = 1)

case with initial distribution ρ0 = N (2,4) and target distribution N (x̄,Q) where x̄ = −5.0 and Q = 0.25

is depicted in Figure 5.1-(a)-(b). For this simulation, the numerical parameters are as follows: N = 100,

φ0(x) = 0.5(x− 2), t0 = 1, ∆t = 0.1, p = 2,C = 0.625, and K = 400. The result numerically verifies the
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(a) (b)

t=t0 t=t1 t=t2

t0 t1 t2

(c) (d)

Figure 5.1: Simulation result for the Gaussian case (Example 5.4.1): (a) The time traces of the particles; (b) The
KL-divergence as a function of time. Simulation result for the non-Gaussian case (Example 5.4.2): (c) The time
traces of the particles; (d) The KL-divergence as a function of time.

O(e−βt ) = O( 1
t2 ) convergence rate derived in Theorem 5.1 for the case where the target distribution is Gaus-

sian.

5.4.2 Non-Gaussian example

This example involves a non-Gaussian target distribution ρ∞ = 1
2N (−m,σ2)+ 1

2N (m,σ2) which is a mix-

ture of two one-dimensional Gaussians with m = 2.0 and σ2 = 0.8. The simulation results are depicted in

Figure 5.1-(c)-(d). The numerical parameters are same as in the Example 5.4.1. The interaction term is

approximated using the diffusion map approximation with ε = 0.01. The numerical result depicted in Fig-

ure 5.1-(c) show that the diffusion map algorithm converges to the mixture of Gaussian target distribution.

The result depicted in Figure 5.1-(d) suggests that the convergence rate O(e−βt ) also appears to hold for this

non-log-concave target distribution. Theoretical justification of this is subject of continuing work.

5.4.3 Comparison with MCMC and HMCMC

This section contains numerical experiment comparing the performance of the accelerated algorithm 5.1

using the diffusion map (DM) approximation (5.24) and the density estimation (DE)-based approximation

(5.25) with the Markov chain Monte-Carlo (MCMC) algorithm studied in [Durmus and Moulines, 2016]

and the Hamiltonian MCMC algorithm studied in [Cheng et al., 2017].
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Figure 5.2: Simulation-based comparison of the performance of the accelerated algorithm 5.1 using the diffusion
map (DM) approximation (5.24), the density estimation (DE)-based approximation (5.25) with the MCMC and
HMCMC algorithms: (a) the mean-squared error (m.s.e) (5.26) as a function of the number of samples N; (b) the
m.s.e as a function of the number of iterations; (c) the average computational time per iteration as a function of the
number of samples; (d) m.s.e comparison between the diffusion map and the density estimation-based approaches as
a function of the kernel bandwidth ε .

We consider the problem setting of the mixture of Gaussians as in example 5.4.2. All algorithms are

simulated with a fixed step-size of ∆t = 0.1 for K = 1000 iterations. The performance is measured by

computing the mean-squared error in estimating the expectation of the function ψ(x) = x1x≥0 denoted as

ψ̂ :=
∫

ψ(x)ρ∞(x)dx. The mean-square error at the k-th iteration is computed by averaging the error over

M = 100 runs:

m.s.ek =
1
M

M

∑
m=1

(
1
N

N

∑
i=1

ψ(X i,m
tk )− ψ̂

)2

(5.26)

The numerical results are depicted in Figure 5.2. Figure 5.2(a) depicts the m.s.e as a function of N.

It is observed that the accelerated algorithm 5.1 with the diffusion map approximation admits an order of

magnitude better m.s.e for the same number of particles. It is also observed that the m.s.e decreases rapidly

for intermediate values of N before saturating for large values of N, where the bias term dominates (see

discussion following Eq. 5.24).

Figure 5.2(b) depicts the m.s.e as a function of the number of iterations for a fixed number of particles

N = 100. It is observed that the accelerated algorithm 5.1 displays the quickest convergence amongst the

algorithms tested.
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Figure 5.2(c) depicts the average computational time per iteration as a function of the number of samples

N. The computational time of the diffusion map approximation scales as O(N2) because it involves comput-

ing a N×N matrix [kε(X i,X j)]Ni, j=1, while the computational cost of the MCMC and HMCMC algorithms

scale as O(N). The computational complexity may be improved by (i) exploiting the sparsity structure of the

N×N matrix ; (ii) sub-sampling the particles in computing the empirical averages; (iii) adaptively updating

the N×N matrix according to a certain error criteria.

Finally, we provide comparison between diffusion map approximation (5.25) and the density-based

approximation (5.25): Figure 5.2(d) depicts the m.s.e for these two approximations as a function of the

kernel-bandwidth ε for a fixed number of particles N = 100. For very large and for very small values of ε ,

where bias and variance dominates the error, respectively, the two algorithms have similar m.s.e. However,

for intermediate values of ε , the diffusion map approximation has smaller variance, and thus lower m.s.e.

5.5 Supplementary information

5.5.1 Proof of Thm. 5.1

Proof. (i) The Hamiltonian function defined in (5.12) is equal to

H(t,x,ρ,y,u) = y ·u− eγt−αt
1
2
|u|2 + eαt+γt βt F̃(ρ,x)

after inserting the formula for the Lagrangian. According to the maximum principle in probabilis-

tic form for (mean-field) optimal control problems (see [Carmona and Delarue, 2017, Sec. 6.2.3]),

the optimal control law U∗t = arg minv H(t,Xt ,ρt ,Yt ,v) = eαt−γtYt and the Hamilton’s equations are

dXt

dt
=+∇yH(t,Xt ,ρt ,Yt ,U∗t ) =U∗t = eαt−γtYt

dYt

dt
=−∇xH(t,Xt ,ρt ,Yt ,U∗t )− Ẽ[∇ρ H(t, X̃t ,ρt ,Ỹt ,Ũ∗t )(Xt)]

where X̃t ,Ỹt ,Ũ∗t are independent copies of Xt ,Yt ,U∗t . The derivatives

∇xH(t,x,ρ,y,u) = eαt+βt+γt ∇xF̃(ρ,x)

∇ρ H(t,x,ρ,y,u) = eαt+βt+γt ∇ρ F̃(ρ,x)

It follows that

dYt

dt
=−eαt+βt+γt

(
∇xF̃(ρt ,Xt)+ Ẽ[∇ρ F̃(ρt , X̃t)(Xt)]

)
=−eαt+βt+γt ∇ρ F(ρ)(Xt)

where we used the definition F(ρ) =
∫

F̃(x,ρ)ρ(x)dx and the identity [Carmona and Delarue,

2017, Sec. 5.2.2 Example 3]

∇ρ F(ρ)(x) = ∇xF̃(ρ,x)+
∫

∇ρ F̃(ρ, x̃)(x)ρ(x̃)dx̃
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(ii) The Hamiltonian function defined in (5.15) is equal to

H (t,ρ,φ ,u) =
∫ [

∇φ(x) ·u(x)− 1
2

eγt−αt |u(x)|2
]

ρ(x)dx+ eαt+γt+βt F(ρ)

after inserting the formula for the Lagrangian. According to the maximum principle for pde for-

mulation of mean-field optimal control problems (see [Carmona and Delarue, 2017, Sec. 6.2.4])

the optimal control vector field is u∗t = arg minv H (t,ρt ,φt ,v) = eαt−γt ∇φt and the Hamilton’s

equations are:

∂ρt

∂ t
=+

∂H

∂φ
(t,ρt ,φt ,ut) =−∇ · (ρt∇u∗t )

∂φt

∂ t
=−∂H

∂ρ
(t,ρt ,φt ,ut) =−(∇φ ·u∗− eγt−αt

1
2
|u∗t |2 + eαt+γt+βt

∂ F

∂ρ
(ρt))

inserting the formula u∗t = eαt−γt ∇φt concludes the result.

(iii) Consider the (ρt ,φt) defined from (5.17). The distribution ρt is identified with a stochastic

process X̃t such that dX̃t
dt = eαt−γt ∇φt(X̃t) and Law(X̃t) = ρt . Then define Ỹt = ∇φt(X̃t). Taking the

time derivative shows that

dỸt

dt
=

d
dt

∇φt(X̃t) = ∇
2
φt(X̃t)

dX̃t

dt
+∇

∂φt

∂ t
(Xt)

= eαt−γt ∇
2
φt(X̃t)∇φt(X̃t)− eαt−γt ∇

2
φt(X̃t)∇φt(Xt)− eαt+βt+γt ∇

∂ F

∂ρ
(ρt)(X̃t)

=−eαt+βt+γt ∇
∂ F

∂ρ
(ρt)(X̃t)

=−eαt+βt+γt ∇ρ F(ρt)(X̃t)

with the initial condition Ỹ0 =∇φ0(X̃0), where we used the identity ∇x
∂F
∂ρ

(ρ) =∇ρ F(ρ) [Carmona

and Delarue, 2017, Prop. 5.48]. Therefore the equations for X̃t and Ỹt are identical. Hence one

can identify (Xt ,Yt) with (X̃t ,Ỹt).

(iv) The energy functional

V (t) =
1
2

E
[
|Xt + e−γtYt −T ρ∞

ρt (Xt)|2
]

︸ ︷︷ ︸
first term

+eβt (F(ρ)−F(ρ∞))︸ ︷︷ ︸
second term

Then the derivative of the first term is

E
[
(Xt + e−γtYt −T ρ∞

ρt (Xt)) · (eαt−γtYt − γ̇te−γtYt − eαt+βt ∇ρ F(ρt)(Xt)+ξ (T ρ∞

ρt (Xt)))
]

where ξ (T ρ∞

ρt (Xt)) := d
dt T ρ∞

ρt (Xt). Using the scaling condition γ̇t = eαt the derivative of the first
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term simplifies to

E
[
(Xt + e−γtYt −T ρ∞

ρt (Xt)) · (−eαt+βt ∇ρ F(ρt)(Xt)+ξ (T ρ∞

ρt (Xt)))
]

We claim that when the dimension d = 1, the expectation

E[(Xt + e−γtYt −T ρ∞

ρt (Xt)) ·ξ (T ρ∞

ρt (Xt))] = 0 (5.27)

We present the proof for the claim at the end. Assuming that the claim is true, the derivative of

the first term simplifies to

E
[
(Xt + e−γtYt −T ρ∞

ρt (Xt)) · (−eαt+βt ∇ρF(ρt)(Xt))
]

The derivative of the second term is

d
dt
(second term) = β̇teβt (F(ρt)−F(ρ∞))+ eβt

d
dt

F(ρt)

= eαt+βt (F(ρt)−F(ρ∞))+ eβt E[∇ρ F(ρt)(Xt)eαt−γtYt ]

where we used the scaling condition β̇t = eαt and the chain-rule for the Wasserstein gradient [Am-

brosio et al., 2008, Ch. 10, E. Chain rule]. Adding the derivative of the first and second term

yields:

dV
dt

(t) = eαt+βt
(
F(ρt)−F(ρ∞)−E

[
(Xt −T ρ∞

ρt (Xt)) ·∇ρ F(ρt)(Xt)
])

which is negative by variational inequality characterization of the displacement convex function

F(ρ) [Ambrosio et al., 2008, Eq. 10.1.7].

We now present the proof of the claim (5.27) under the assumption that d = 1. According to

Brenier theorem [Villani, 2003], there exists a convex function ψt such that T ρ∞

ρt (x) = ∇ψt(x) and

T ρt
ρ∞
(x) = ∇ψ?

t (x) where ψ?
t is the convex conjugate of ψt . Because ρ∞ is the push-forward of ρt

under the map ∇ψt , we have

E[g(∇ψt(Xt))] =
∫

g(x)ρ∞(x)dx,

for all measurable functions g. Upon taking the derivative with respect to time,

d
dt

E[g(∇ψt(Xt))] =
d
dt

∫
g(x)ρ∞(x)dx = 0

Hence by application of the dominated convergence theorem (DCT) and interchanging the expec-

tation and the derivative,

E[
d
dt

g(∇ψt(Xt))] = E[∇g(∇ψt(Xt)) ·ξ (∇ψt(Xt))] = 0 (5.28)
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Letting g(x) = ψ∗(x)− e−γt
∫ x
−∞

∇φt(∇ψ?(z))dz− 1
2 |x|

2 where φt is defined in part-(ii) of the the-

orem 5.1 concludes

0 = E[∇g(∇ψt(Xt)) ·ξ (∇ψt(Xt)))] = E[Xt − e−γt ∇φt(Xt)−∇ψt(Xt)) ·ξ (∇ψt(Xt)))]

= E[Xt − e−γtYt −∇ψt(Xt)) ·ξ (∇ψt(Xt)))]

where we used Yt = ∇φt(Xt) from part-(iii) of Theorem 5.1. This concludes the proof of the claim.

Note that the application of DCT in (5.28) follows from smoothness of g(x) and assuming T ρ∞

ρt (x)

is differentiable with respect to time. Showing T ρ∞

ρt (x) is differentiable with respect to time is

technical out of the scope of this work.

5.5.2 Wasserstein gradient and Gâteaux derivative

This section contains definitions of the Wasserstein gradient and Gâteaux derivative [Ambrosio et al., 2008,

Carmona and Delarue, 2017].

Let F : Pac,2(Rd)→ R be a (smooth) functional on the space of probability distributions.

Gâteaux derivative: The Gâteaux derivative of F at ρ ∈Pac,2(Rd) is a real-valued function on Rd denoted

as ∂F
∂ρ

(ρ) : Rd → R. It is defined as a function that satisfies the identity

d
dt

F(ρt)

∣∣∣∣
t=0

=
∫
Rd

∂ F

∂ρ
(ρ)(x)(−∇ · (ρ(x)u(x)))dx

for all path ρt in Pac,2(Rd) such that ∂ρt
∂ t =−∇ · (ρtu) with ρ0 = ρ ∈Pac,2(Rd).

Wasserstein gradient: The Wasserstein gradient of F at ρ is a vector-field on Rd denoted as ∇ρ F(ρ) :

Rd → Rd . It is defined as a vector-field that satisfies the identity

d
dt

F(ρt)

∣∣∣∣
t=0

=
∫
Rd

∇ρ F(ρ)(x) ·u(x) ρ(x)dx

for all path ρt in Pac,2(Rd) such that ∂ρt
∂ t =−∇ · (ρtu) with ρ0 = ρ ∈Pac,2(Rd).

The two definitions imply the following relationship [Carmona and Delarue, 2017, Prop. 5.48]:

∇ρ F(ρ)(·) = ∇x
∂ F

∂ρ
(ρ)(·)

Example: Let F(ρ)=
∫

log( ρ(x)
ρ∞(x)

)ρ(x)dx be the relative entropy functional. Consider a path ρt in Pac,2(Rd)
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such that ∂ρt
∂ t =−∇ · (ρtu) with ρ0 = ρ ∈Pac,2(Rd). Then

d
dt

F(ρt) =
∫

log(
ρt(x)
ρ∞(x)

)
∂ρt

∂ t
(x)dx+

∫
∂ρt

∂ t
(x)dx

=−
∫

log(
ρt(x)
ρ∞(x)

)∇ · (ρt(x)u(x))dx

=
∫

∇x log(
ρt(x)
ρ∞(x)

) ·u(x) ρt(x)dx

where the divergence theorem is used in the last step. The definitions of the Gâteaux derivative and Wasser-

stein gradient imply

∂ F

∂ρ
(ρ)(x) = log(

ρ(x)
ρ∞(x)

)

∇ρ F(ρ)(x) = ∇x log(
ρ(x)
ρ∞(x)

)
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