MODEL THEORY OF PARTIALLY RANDOM STRUCTURES

BY
CHIEU-MINH TRAN

DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate College of the
University of Illinois at Urbana-Champaign, 2019

Urbana, Illinois

Doctoral Committee:
Professor Philipp Hieronymi, Chair
Professor Lou van den Dries, Director of Research
Professor Anand Pillay, University of Notre Dame
Professor Anush Tserunyan
Professor Erik Walsberg

Abstract

Many interactions between mathematical objects, e.g. the interaction between the set of primes and the additive structure of \mathbb{N}, can be usefully thought of as random modulo some obvious obstructions. In the first part of this thesis, we document several such situations, show that the randomness in these interactions can be captured using first-order logic, and deduce in consequence many model-theoretic properties of the corresponding structures. The second part of this thesis develops a framework to study the aforementioned situations uniformly, shows that many examples of interest in model theory fit into this framework, and recovers many known model-theoretic results about these examples from our theory.

To my family and friends.

Acknowledgements

First, I would like to thank my advisor Lou van den Dries for his guidance and support in the past several years, for telling me to ignore his opinions from time to time, and above all for being a great role model. His dedication to mathematics and good mathematical writing are the continuing motivations for me to better myself as a mathematician.

Another person I am indebted to is Erik Walsberg. He has been a great collaborator, friend, and informally my second advisor. The turning point of my graduate student career was one of his remark without which this thesis would probably not be here.

I thank my other collaborators, Neer Bhardwaj, Tigran Hakobyan, Alex Kruckman, Yifan Jing, and Souktik Roy for making the pursuit of mathematics more lively.

I had helpful conversations with many mathematicians and logicians about the material in this thesis and about career. For that, I would like to thank Patrick Allen, Artem Chernikov, Chee-Whye Chin, Chi-Tat Chong, Philipp Hieronymi, Ehud Hrushovski, Sheldon Katz, Itay Kaplan, Anand Pillay, Pierre Simon, Slawomir Solecki, Anush Tserunyan, and Yue Tang. Special thanks to my other committee members, Philipp Hieronymi, Anand Pillay, and Anush Tserunyan also for the work and time involved.

I would like to thank the student in the logic group at UIUC, especially fellow students in model theory and my academic siblings. Many other friends in the department and outside department also helped me getting along. Special thanks to William Balderrama for being amusingly annoying (or annoyingly amusing), to Jesse Huang for the conversations on fashion and aesthetics, to Mary Angelica Gramcko-Tursi for bringing her baby to the department, to Yun Shi for teaching me more algebraic geometry, to Jason Dove and Simon Lim for being long time housemates, to Jed Chou and Thao Do for the dinners and movies, to Zhidong Leong and Nicole Ng for the trip to Florida, and to Lu-Khoa Nguyen and Kartong Tan for being long time friends and talking to me regularly.

Finally, I would like to thanks my parents, my brother, and my sister for their support.

Contents

Notation and conventions vii
Chapter 1. Introduction 1
1.1. Why model theory and partially random structures? 1
1.2. What is in this thesis? 3
Part 1. Concrete partially random structures 13
Chapter 2. Tame structures via character sums over finite fields 14
2.1. Almost model companion of GMO^{-} 14
2.2. Model companion of ACFO^{-} 24
2.3. Standard models are existentially closed 36
Chapter 3. Additive groups of \mathbb{Z} and \mathbb{Q} and predicates for being square-free 41
3.1. Genericity of the examples 41
3.2. Logical Tameness 53
3.3. Combinatorial Tameness 60
Chapter 4. A family of dp-minimal expansions of the additive group \mathbb{Z} 67
4.1. Unary definable sets and definable equivalence 70
Part 2. Abstract partially random structures 77
Chapter 5. Preliminaries 78
5.1. Flat formulas 78
5.2. \mathcal{K}-completeness 79
5.3. Existential bi-interpretations 85
5.4. Stationary independence relations 87
Chapter 6. Interpolative structures and interpolative fusions 96
Chapter 7. Examples of interpolative fusions 101
7.1. Disjoint unions of theories 101
7.2. Fields with multiple independent valuations 102
7.3. The group of integers with p-adic valuations 103
7.4. Fields with multiplicative circular orders 104
7.5. Skolemizations 106
7.6. Graphs 107
7.7. Structures and fields with automorphisms 108
7.8. Differential fields and \mathcal{D}-fields 111
Chapter 8. Existence results 120
8.1. The pseudo-topological axioms 120
8.2. Relativization to pseudo-cells 124
8.3. Tame topological base 127
8.4. \aleph_{0}-stable base 131
8.5. Toward \aleph_{0}-categorical base 142
Chapter 9. Preservation results 150
9.1. Preservation of model-completeness 150
9.2. Preservation of acl- and bcl-completeness 151
9.3. Preservation of quantifier elimination 153
9.4. Consequences for general interpolative fusions 155
9.5. Preservation of stability and NIP 157
9.6. Preservation of \aleph_{0}-categoricity 158
9.7. Preservation of NSOP_{1} 160
9.8. Preservation of simplicity 163
Bibliography 165

Notation and conventions

We include here notation and conventions which will be in force throughout the entire thesis.
Uniformity conventions. Whenever we declare that a particular letter denotes a certain type of object in some portion of this thesis, that letter with decorations is also assumed to be the same type of object in that portion of the thesis. For example, k is used throughout for integers, so k^{\prime}, k_{1}, k^{*}, etc. also denote integers whenever they appear.

Numbers conventions. Throughout, h, k, and l range over the set \mathbb{Z} of integers, m and n range over the set \mathbb{N} of natural numbers (which contains 0), p ranges over the set of (positive) prime numbers, and q ranges over the set $\left\{p^{m}: m \geqslant 1\right\}$ of positive powers of primes.

Set theory conventions. We assume the reader is familiar with basic concepts and definitions from set theory. The letter κ will be reserved for a cardinal.

Logic and model theory conventions. We work in multi-sorted first-order logic. Our semantics allows empty sorts and empty structures. Our syntax includes logical constants T and \perp interpreted as true and false, respectively. We view constant symbols as 0 -ary function symbols. The equality symbol is considered a logical symbol.

We let L denote a (possibly multi-sorted) first-order language, and let \mathcal{M} be a structure in some language. Let x, y, and z be (possibly infinite) tuples of variables; strictly speaking, we should also specify the languages, but these are always obvious from the context. Suppose L has S its set of sort and \mathcal{M} is an L-structure. We use the corresponding capital letter M to denote the S-indexed family $\left(M_{s}\right)_{s \in S}$ of underlying sets of the sorts of \mathcal{M}. By $A \subseteq M$, we mean $A=\left(A_{s}\right)_{s \in S}$ with $A_{s} \subseteq M_{s}$ for each $s \in S$. If $A \subseteq M$, then a tuple of elements (possibly infinite) in A is a tuple each of whose components is in A_{s} for some $s \in S$. If $x=\left(x_{j}\right)_{j \in J}$ is a tuple of variables, we let $A^{x}=\prod_{j \in J} A_{s\left(x_{j}\right)}$ where $s\left(x_{j}\right)$ is the sort of the variable x_{j}.

Suppose \mathcal{M} is an L-structure. For $B \subseteq M$ and $b \in B^{y}$, let $L(B)$ and $L(b)$ be the extensions of L obtained by adding constant symbols for the elements of B and for the components of b, and view \mathcal{M} in the obvious way as an $L(B)$-structure and an $L(b)$-structure. For an L-formula $\varphi(x, y)$ and $b \in M^{y}$, we let $\varphi(\mathcal{M}, b)$ be the set defined in the structure \mathcal{M} by the $L(b)$-formula $\varphi(x, b)$.

CHAPTER 1

Introduction

This thesis is a fusion of four papers $[7,80,54,79]$ and some material from a paper under preparation [53]. They share a common theme dealing with the model theory of partially random structures, that is, structures that contain both predictable/algebraic features and random/generic features. These preprints consist of my stand-alone work as well as joint works with Neer Bhardwaj, Alex Kruckman, and Erik Walsberg.

In this introduction, I would like to give some justification for the current endeavor and offer a bird's-eye view of the whole thesis. I will start by colloquially explaining what it means to study the model theory of a structure or a class of structures and why it might be interesting to do so. Then I provide reasons for studying the model theory of partially random structures. The primary target audience of this part are fellow graduate students from outside model theory, but I hope it will also amuse/annoy some experts. Afterward, I will go into a more detailed description of the structure of this thesis and the main results of the chapters; this part is essentially a fusion of the introductions of the aforementioned papers. For it, I will assume more familiarity with model theory.

1.1. Why model theory and partially random structures?

Viewing a mathematical problem in a geometric light is often desirable and sometimes the key to its solution. This is the case even for very discrete problems like solving systems of polynomial equations over finite fields or counting the number of solutions of such systems. Model theory can be described as "geometry from a logical perspective": the subject allows us to put even more exotic problems under the lens of geometry, albeit in a weaker sense.

Let us make more sense of the above. Model theory is a subject that belongs to the "modern wing" of mathematical logic. The focus is no longer on using mathematical methods to investigate the way humans reason or to provide a foundation of mathematics. Instead, we want to study mathematical structures or classes of structures with a perspective informed by logic. A structure here consists of an ambient space M and relations on M, i.e., subsets of M^{n} for varying n thought of as relations between n elements of M; most mathematical objects can be seen as a structure in this way. Studying structures in the logic way means considering sets, functions, and groups that "can be described or constructed" from the basic
relations of the structure (or class of structures) and then studying various mathematical phenomena that arise from these settings. The meaning of "can be described or constructed" varies as we move across the areas of logic or even the areas of model theory. It should be noted that similar ideas are also native to other fields of mathematics. For instance, algebraic geometry studies affine algebraic varieties over a field, which are sets admitting a particular description, namely, as the solution set of a system of polynomial equation. Stretching the meaning further, one can think of a manifold as "can be described or constructed" compared to a totally arbitrary subset of the ambient space. Hence, one should not be too surprised that some aspects of classical geometric theories have analogues in favorable logical settings.

Model theory studies the above analogues, which we call notions of tameness, and the above favorable settings, which we call tame structures. Understanding these notions and structures is desirable as it makes available new geometric tools beyond the reach of classical geometric theories. The machinery has been applied to solve many problems outside logic which make model theory connected to virtually every major area of mathematics. We arrived at three main goals of model theory: Isolating and studying various notions of tameness, finding interesting structures and either showing that they satisfy some tameness notions or showing the opposite (often referred to as establishing the model-theoretic properties of the structure), and looking for opportunities elsewhere in mathematics to apply our understanding. These three tasks roughly corresponds to pure model theory, "middle-of-the-road" model theory, and applied model theory. They are intricately connected, as many notions of tameness arising out of purely logical consideration turned out to be keys to application.

Let us clarify the meaning of "partial randomness" through an example before saying why it ought to be studied. Consider $(\mathbb{N} ;+, \operatorname{Pr})$ where Pr is the set of prime numbers. The interaction between Pr and + is not fully random, it is quite different from how a set Rd given by coin-flipping interacts with + . For instance, $4 a$ is not in Pr for all $a \in \mathbb{N}$, but there is $b \in \mathbb{N}$ with $4 b \in \operatorname{Rd}$ (with probability 1). Nonetheless, it is possible to think of Pr as interacting with + randomly modulo such obstructions. It is also useful to do so as many conjectures in analytic number theory depends on such intuition. Strictly speaking, this situation should be called "partially pseudo-random" as Pr is completely predictable, but we will blur this distinction.

There are many other structures in mathematics that can be viewed in the same way as above. Moreover, a respectable strategy to deal with a structure is to decompose it into a predictable (algebraic) part and a random (generic) part and then try to handle them separately. Developing model theory (establishing tameness notions/generalized geometrical principles) for these structure might therefore give us new tools to solve problems.

This thesis observes that many natural partially random structures indeed satisfy certain known notions of tameness/generalized geometrical principles. We also build a general theory to study all these structures uniformly. Our tools need probably to be sharpened much further before they can find applications outside model theory, so what we have done so far is very "middle of the road". In the mean time, we have found that our framework is quite powerful for the purpose of organizing examples in model theory. We can view many important examples in model theory as an instance of partially random structures, and recover known model-theoretic results for them from our theory. On the other hand, our theory suggests new notions of tameness that ought to be studied, so there is hope that interesting pure model theory can come out of it as well.

1.2. What is in this thesis?

This thesis has two parts. The first part, concrete partially random structures, consists of the next three chapters. These correspond to three papers: my stand-alone paper [79], my joint paper [7] with Bhardwaj, and my joint paper with Erik [80]. The second part, abstract partially random structures, consists of the last five chapters. They comes from the two joint papers [54] and [53] with Kruckman and Walsberg.

As most of the above papers are joint, I am only partially to credit for many of the results presented here. In fact, a few items came close to being solely the work of my collaborators: The idea and proof of Section 7.7 on structures and fields with automorphism are mostly by to Walsberg. The conjecture behind Section 9.7 was made by me with input from Walsberg, and I obtained some partial results. However, the proof in its current final form is entirely due to Kruckman, who brought in many new ideas and came to the project with his own perspective. I will present these results here anyway as they make the story more complete.

Part 1. Concrete partially random structures. We consider several situations where randomness plays an important role in understanding the model-theoretic properties of structures. Chapter 2 looks at structures of the form $(\mathbb{F}, \triangleleft)$ where \mathbb{F} is an algebraic closure of a finite field, and \triangleleft is a circular ordering on the multiplicative group \mathbb{F}^{\times}which respects multiplication. Chapter 3 is about the structure $\left(\mathbb{Z}, \mathrm{SF}^{\mathbb{Z}}\right)$ with \mathbb{Z} the additive group of integers $\mathrm{SF}^{\mathbb{Z}}$ the set of square-free integers and several other structures in the same vein. In both chapters, establishing the model-theoretic properties of the structures under consideration requires observing that they are built up from two components interacting in a random way modulo obvious obstructions. Chapter 4 studies structures of the form $(\mathbb{Z}, \triangleleft)$ where \triangleleft is a circular ordering on the additive group \mathbb{Z} which respects addition. Here, randomness plays a role in classifying such structures up to interdefinability. We now give more detailed summaries of the chapters, together with the neccessary background to consider them.

Chapter 2. Tame structures via character sums over finite fields. Throughout the current summary and the corresponding chapter, \mathbb{F} is an algebraic closure of a finite field. We are interested in the following question:

Are there natural expansions of \mathbb{F} by order-type relations which are also model-theoretically tame?

There is no known order-type relation on \mathbb{F} which interacts in a sensible way with both addition and multiplication. This is in stark contrast to the situation with the field \mathbb{C} where addition and multiplication are compatible with the Euclidean metric induced by the natural order on its subfield \mathbb{R}. It is not hard to see the reason: the additive group of \mathbb{F} is an infinite torsion group of finite exponent, so even finding an additively compatible order-type relation seems unlikely. On the other hand, the multiplicative group \mathbb{F}^{\times}is a union of cyclic groups, so it is fairly natural to consider circular orders \triangleleft on \mathbb{F}^{\times}which are compatible with the multiplicative structure. In this paper, we will show that the resulting structures ($\mathbb{F}, \triangleleft)$ give a positive answer to some aspects of the above question.

We will take a step back to be more precise and to study the above structures as members of a natural class. A circular order on a group G is a ternary relation \triangleleft on G which is invariant under multiplication by elements in G and satisfies the following conditions for all $a, b, c \in G$:
(1) if $\triangleleft(a, b, c)$, then $\triangleleft(b, c, a)$;
(2) if $\triangleleft(a, b, c)$, then not $\triangleleft(c, b, a)$;
(3) if $\triangleleft(a, b, c)$ and $\triangleleft(a, c, d)$, then $\triangleleft(a, b, d)$;
(4) if a, b, c are distinct, then either $\triangleleft(a, b, c)$ or $\triangleleft(c, b, a)$.

A canonical example, also used later on, is $(\mathbb{T}, \triangleleft)$ where \mathbb{T} is the multiplicative group of complex numbers with norm 1 , and \triangleleft is the clockwise circular order (i.e., $\triangleleft(a, b, c)$ if b lies in the clockwise open arc from a to c viewing \mathbb{T} as the unit circle).

A multiplicative circular order on a field F is a circular order on the multiplicative group F^{\times}, viewed as a ternary relation on F. If \triangleleft is a multiplicative circular order on F, then (F, \triangleleft) is a structure in the total language L_{t} extending the language $L_{\mathrm{f}}=\left\{0,1,+,-, \times, \square^{-1}\right\}$ of fields by a ternary predicate symbol \triangleleft. Let ACFO^{-}be the L_{t}-theory whose models are such (F, \triangleleft) where F is algebraically closed. Section 2.1 and Section 2.2 establish our first main result:

Theorem 1.1. The theory ACFO^{-}has a model companion ACFO.
Underlying the proof of Theorem 1.1 is the following heuristic: the existential closed models of ACFO^{-}are $(F, \triangleleft) \vDash \mathrm{ACFO}^{-}$where $\left(F^{\times}, \triangleleft\right)$ is "sufficiently rich", and + interacts in a
"random fashion" with \triangleleft modulo their compatibility with \times. The challenges involve making sense of "sufficiently rich" and "random fashion", justifying this heuristic, and showing that these properties are first-order axiomatizable.

In section 2.3, we return to the structures described in the first paragraph:
Theorem 1.2. If \triangleleft is a multiplicative circular order on \mathbb{F}, then $(\mathbb{F}, \triangleleft) \vDash$ ACFO.
Every injective group homomorphism $\chi: \mathbb{F}^{\times} \rightarrow \mathbb{T}$ induces a multiplicative circular order on \mathbb{F}, namely, the pullback \triangleleft_{χ} of the clockwise circular order \triangleleft on \mathbb{T} by the map χ. It turns out that every multiplicative circular order on \mathbb{F} is of this form; see Corollary 2.6. The main idea of the proof of Theorem 1.2 is to exploit this connection and results on character sums over finite fields. These results are useful here as they reflect "number-theoretic randomness" [50]. This is precisely what we want for the interaction between + and \triangleleft.

This work is a response to the question below by van den Dries and Hrushovski; Kowalski also asked a related question in [51].

Do results on exponential sums and character sums over finite fields yield any model-theoretically tame structures?

Behind this question is the hope to find analogies of Ax's results in [4]. There, the modeltheoretic tameness of ultraproducts of finite fields essentially follows from results on counting points over finite fields. The theory ACFO is our proposed counterpart of the theory of pseudo-finite fields, and the above two theorems correspond to the fact that the theory of finite-fields is almost model complete and the fact that nonprincipal ultraproducts of finite fields are pseudofinite fields (in the definition given by Ax). There are also reasons to believe that there are deeper connections between ACFO and the theory of pseudo-finite fields. Both theories include certain "random features" and can be put under the framework of interpolative fusions discussed in Part 2; see Sections 7.4 and 7.7 for details.

Chapter 2 is essentially the updated version of [79]. The earlier versions of [79] contained several other results. Some of these are now generalized into results about interpolative fusions; see Chapter 9. We do not include them here to minimize overlapping.

The structures $(\mathbb{F}, \triangleleft)$ in Theorem 1.2 are not simple (in the sense of model theory) as they define dense linear orders. They also have IP by a result of Shelah and Simon [71]. It turns out that these structure do not even have TP_{2} (see Proposition 2.7). This brings ($\mathbb{F}, \triangleleft$) outside the current known boundary of the combinatorially tame universe. We hope these structures provide some motivation to push the boundary further and include them as well.

Chapter 3. Additive groups of \mathbb{Z} and \mathbb{Q} and predicates for being square-free. In this the current summary and the corresponding chapter, \mathbb{Z} is the additive group of integers implicitly assumed to contain the element 1 as a distinguished constant. Likewise, \mathbb{Q} is the additive group of rational numbers with 1 as a distinguished constant.

In [45], Kaplan and Shelah showed under the assumption of Dickson's conjecture that if Pr is the set of $a \in \mathbb{Z}$ such that either a or $-a$ is prime, then the theory of $(\mathbb{Z}, \operatorname{Pr})$ is model complete, decidable, and super-simple of U-rank 1. This result can be interpreted as an example of the central theme of this thesis where we can often capture aspects of randomness inside a structure using first-order logic and deduce in consequence several model-theoretic properties of that structure. In $(\mathbb{Z}, \operatorname{Pr})$, the conjectural randomness is that of the set of primes with respect to addition. Dickson's conjecture is useful here as it reflects this randomness in a fashion which can be made first-order.

This viewpoint in particular predicts that there are analogues of Kaplan and Shelah's results with Pr replaced by other random subsets of \mathbb{Z}. We confirm the above prediction here without the assumption of any conjecture when Pr is replaced with the set

$$
\mathrm{SF}^{\mathbb{Z}}=\left\{a \in \mathbb{Z}: v_{p}(a) \leqslant 1 \text { for all } p\right\}
$$

where v_{p} is the p-adic valuation associated to the prime p. As the reader can guess, "SF" stands for "square-free". We will introduce a first-order notion of "genericity" which encapsulates the partial randomness in the interaction between $\mathrm{SF}^{\mathbb{Z}}$ and the additive structure on \mathbb{Z}. Using an approach with the same underlying principle as that in [45], we obtain:

Theorem 1.3. The theory of $\left(\mathbb{Z}, \mathrm{SF}^{\mathbb{Z}}\right)$ is model complete, decidable, supersimple of U-rank 1 , and is k-independent for all $k \in \mathbb{N} \geqslant 1$.

The theorem above gives us without assuming any conjecture the first natural example of a simple unstable expansion of \mathbb{Z}. From the same notion of "genericity", we deduce entirely different consequences for a related structure:

Theorem 1.4. The theory of $\left(\mathbb{Z},<, \mathrm{SF}^{\mathbb{Z}}\right)$ defines multiplication.
The proof adapts the strategy Bateman, Jockusch, and Woods used in [6] to show that $\operatorname{Th}(\mathbb{N} ;+,<, \operatorname{Pr})$ with Pr the set of primes interprets arithmetic. The above two theorems are in stark contrast with one another in view of the fact that $(\mathbb{Z},<)$ is a minimal proper expansion of \mathbb{Z}; indeed, Conant proved in $[19]$ that adding any new definable set from $(\mathbb{Z},<)$ to \mathbb{Z} results in defining <. On the other hand, Dolich and Goodrick showed in [26] that there is no strong expansion of the theory of Presburger arithmetic, so the second theorem is perhaps not completely unexpected.

It is also natural to consider the structures $\left(\mathbb{Q}, \mathrm{SF}^{\mathbb{Q}}\right)$ and $\left(\mathbb{Q},<, \mathrm{SF}^{\mathbb{Q}}\right)$ where $\mathrm{SF}^{\mathbb{Q}}$ is the set $\left\{a \in \mathbb{Q}: v_{p}(a) \leqslant 1\right.$ for all primes $\left.p\right\}$, and the relation $<$ on \mathbb{Q} is the natural ordering. (We do not study $\left(\mathbb{Q}, \mathrm{SF}^{\mathbb{Z}}\right)$ as the set \mathbb{Z} is definable in $\left(\mathbb{Q}, \mathrm{SF}^{\mathbb{Z}}\right)$. Indeed, it follows from Lemma 3.2 that every integer is a sum of two elements in $\mathrm{SF}^{\mathbb{Z}}$.) The main new technical aspect here lies in getting other suitable notions of "genericity" and using this to prove:

Theorem 1.5. The theory of $\left(\mathbb{Q}, \mathrm{SF}^{\mathbb{Q}}\right)$ is model complete, decidable, simple but not supersimple, and is k-independent for all $k \in \mathbb{N} \geqslant 1$.

From the above, $\left(\mathbb{Q}, \mathrm{SF}^{\mathbb{Q}}\right)$ is "less tame" than $\left(\mathbb{Z}, \mathrm{SF}^{\mathbb{Z}}\right)$. The reader might therefore suspect that $\left(\mathbb{Q},<, \mathrm{SF}^{\mathbb{Q}}\right)$ is wild. However, this is not the case:

Theorem 1.6. The theory $\left(\mathbb{Q},<, \mathrm{SF}^{\mathbb{Q}}\right)$ is model complete, decidable, has NTP_{2} but is not strong, and is k-independent for all $k \in \mathbb{N} \geqslant 1$.

Above we presented the material of Chapter 2 structure by structure. However, the chapter actually proceeds by considering all the four structures in parallel fashion, and prove related results for them consecutively. More precisely, the first theorem is Theorem 3.3 and Theorem 3.6 put together, the second theorem is Theorem 3.5, the third theorem is a consequence of Theorem 3.4 and Theorem 3.7, and the fourth theorem is a consequence of Theorem 3.4 and Theorem 3.8. Having the same principle running through four structures hints that randomness can be indeed used as a framework to explain model-theoretic properties of multiple structures uniformly.

Chapter 4. A family of dp-minimal expansions of the additive group \mathbb{Z}. In this chapter and summary, \mathbb{Z} is the additive group of integers. We are interested in the following classification-type question:

What are the dp-minimal expansions of \mathbb{Z} ?

For a definition of dp-minimality, see [72, Chapter 4]. The terms expansion and reduct here are as used in the sense of definability: If \mathcal{M}_{1} and \mathcal{M}_{2} are structures with underlying set M and every \mathcal{M}_{1}-definable set is also definable in \mathcal{M}_{2}, we say that \mathcal{M}_{1} is a reduct of \mathcal{M}_{2} and that \mathcal{M}_{2} is an expansion of \mathcal{M}_{1}. Two structures are definably equivalent if each is a reduct of the other.

A very remarkable common feature of the known dp-minimal expansions of \mathbb{Z} is their "rigidity". In [21], Conant and Pillay showed that all proper stable expansions of \mathbb{Z} have infinite weight, hence infinite dp-rank, and so in particular are not dp-minimal. The expansion $(\mathbb{Z},<)$, well-known to be dp-minimal, does not have any proper dp-minimal expansion (a result in [3] by Aschenbrenner, Dolich, Haskell, Macpherson, and Starchenko), or any proper expansion of finite dp-rank, or even any proper strong expansion (a resut in [26] by Dolich
and Goodrick). Moreover, Conant showed that any reduct ($\mathbb{Z},<$) expanding \mathbb{Z} is definably equivalent to \mathbb{Z} or $(\mathbb{Z},<)$ [20]. Recently, Alouf and d'Elbée showed in [24] that $\left(\mathbb{Z},<_{p}\right)$ is dp-minimal for all p where $<_{p}$ is the partial order on \mathbb{Z} given by declaring $k<_{p} l$ if and only if $v_{p}(k)<v_{p}(l)$ with v_{p} the p-adic valuation on \mathbb{Z}. In the same paper, they showed that any reduct of $\left(\mathbb{Z},<_{p}\right)$ expanding \mathbb{Z} is definably equivalent to either \mathbb{Z} or $\left(\mathbb{Z},<_{p}\right)$.

The above "rigidity" gives hope for a classification of dp-minimal expansions of \mathbb{Z} analogous to Johnson's classification of dp-minimal fields [42]. In [2] (also by by Aschenbrenner, Dolich, Haskell, Macpherson, and Starchenko), the authors asked whether every dp-minimal expansion of \mathbb{Z} is a reduct of $(\mathbb{Z},<)$. In view of results in $[\mathbf{2 4}]$, the natural modified question is whether every dp-minimal expansion of \mathbb{Z} is a reduct of $(\mathbb{Z},<)$ or $\left(\mathbb{Z},<_{p}\right)$ for some p.

With the notion of circularly ordered abelian groups defined in the summary of Chapter 2, we show that:

Theorem 1.7. Every circularly ordered abelian group $(\mathbb{Z}, \triangleleft)$ is dp-minimal.
In Section 4.1, we characterize unary definable sets in these expansions of \mathbb{Z}, classify these structures up to definable equivalence, and show that there are continuumm many up to definable equivalence. Hence, we get a strong negative answer to the aforementioned question. The proof of many of the above results notably makes use of Kronecker's approximation theorem, which can be seen as reflecting randomness.

Part 2. Abstract partially random structures. We aim to develop a general framework to study structures with partial randomness. Chapter 5 is a preliminary chapter, but with several original results. Chapter 6 introduces the notion of an interpolative structure, which makes precise what it means to say that a structure is built up from multiple components interacting randomly over a common part. Chapter 7 shows that many examples with model theoretic interest fit into this framework. Chapter 8 provides several sufficient conditions under which randomness can be captured using first-order logic. Chapter 9 develops a general theory which allows us to understand definable sets in an interpolative structure in terms of definable sets in the components. Below we describe the chapters in more details omitting chapter 5 as it is a necessary supplement but not part of the storyline.

Chapter 6. Interpolative structures and interpolative fusions. For expository purpose, we only consider here a special case of the setting introduced in Chapter 6. In this summary, L_{1} and L_{2} are first-order languages with the same sorts, $L_{\cap}=L_{1} \cap L_{2}$, and $L_{\cup}=L_{1} \cup L_{2}$. We let T_{1} and T_{2} be L_{1} and L_{2}-theories, respectively, with a common set T_{\cap} of L_{\cap}-consequences, and $T_{\cup}=T_{1} \cup T_{2}$. Finally, \mathcal{M}_{\cup} is an L_{\cup}-structure, \mathcal{M}_{\square} is the L_{\square}-reduct of \mathcal{M}_{\cup}, and X_{\square} ranges over \mathcal{M}_{\square}-definable sets for $\square \in\{1,2, \cap\}$.

We say that \mathcal{M}_{\cup} is interpolative if for all $X_{1} \subseteq X_{2}$, there is an X_{\cap} such that

$$
X_{1} \subseteq X_{\cap} \text { and } X_{\cap} \subseteq X_{2}
$$

(more symmetrically: for all disjoint X_{1} and X_{2}, there are \mathcal{M}_{n}-definable sets X_{n}^{1} and X_{n}^{2} such that $X_{1} \subseteq X_{\cap}^{1}, X_{2} \subseteq X_{\cap}^{2}$, and $\left.X_{\cap}^{1} \cap X_{\cap}^{2}=\varnothing\right)$. This notion is an attempt to capture the idea that \mathcal{M}_{1} and \mathcal{M}_{2} interact, with respect to definability, in a generic, independent, or random fashion over the reduct \mathcal{M}_{n}. Informally, the above definition says that the only information \mathcal{M}_{1} has about \mathcal{M}_{2} comes from \mathcal{M}_{n}. If the class of interpolative models of T_{\cup} is elementary with theory T_{\cup}^{*}, then we say that T_{\cup}^{*} is the interpolative fusion (of T_{1} and T_{2} over T_{n}). We also say that " T_{\cup}^{*} exists" if the class of interpolative T_{\cup}-models is elementary.

The reader may notice similarities with the Craig interpolation theorem: for every $L_{1^{-}}$ sentence φ_{1} and L_{2}-sentence φ_{2} for which $\vDash \varphi_{1} \rightarrow \varphi_{2}$, there is an L_{n}-formula φ_{n} such that $\vDash \varphi_{1} \rightarrow \varphi_{\cap}$ and $\vDash \varphi_{\cap} \rightarrow \varphi_{2}$. The resemblance is consequential. It allows us to prove:

Theorem 1.8. Suppose T_{1} and T_{2} are model-complete. Then $\mathcal{M}_{\cup} \vDash T_{\cup}$ is interpolative if and only if \mathcal{M}_{\cup} is existentially closed in the class of T_{\cup}-models. Hence, T_{\cup}^{*} exists if and only if T_{\cup} has a model companion, in which case T_{\cup}^{*} is a model companion of T_{\cup}.

In the case that T_{1} and T_{2} are not model-complete, we can still think of T_{\cup}^{*} as a relative model companion of T_{U}, see Proposition 6.2.

Chapter 7. Examples of interpolative fusions. We adopt here the notational conventions of the summary of Chapter 6. We show that many theories of model-theoretic interest can be construed as interpolative fusions.

We show in Section 7.1 that if P is an infinite and co-infinite unary predicate on a singlesorted structure \mathcal{M} with underlying set M, then P is a generic predicate as defined by Chatzidakis and Pillay [11] if and only if $(\mathcal{M} ; P)$ is a model of the interpolative fusion of the theories of \mathcal{M} and (M, P) over the theory of the pure set M. Another source of examples with the same flavor is the expansion of a structure by a generic predicate for a reduct, recently described by d'Elbée [23]. We will discuss the latter examples and others in [53].

Certain notions of independence in mathematics give us interpolative fusions. Let K be an algebraically closed field and v_{1}, v_{2} be non-trivial valuations which induce distinct topologies on K. It follows from results in [43, Chapter 11] by Johnson that (K, v_{1}, v_{2}) is a model of the interpolative fusion of the theories of $\left(K, v_{1}\right)$ and (K, v_{2}) over the theory of K (see Section 7.2). Now write $k \leqslant_{p} l$ if $v_{p}(k) \leqslant v_{p}(l)$ with v_{p} the p-adic valuation. Following results in [24], if p and p^{\prime} are distinct, and \mathbb{Z} is the additive group of integers, then $\left(\mathbb{Z}, \Im_{p}, \Im_{p^{\prime}}\right)$ is a model of the interpolative fusion of the theories of $\left(\mathbb{Z}, \Im_{p}\right)$ and $\left(\mathbb{Z}, \Im_{p^{\prime}}\right)$ over the theory of \mathbb{Z}.

Consider the structures in the summary of Chapter 2: $(\mathbb{F} ;+, \times)$ is an algebraic closure of a finite field with the underlying set \mathbb{F}, and \triangleleft is a multiplicative circular order on $(\mathbb{F} ;+, \times)$. It follows rather easily from the main theorems of Chapter 2 that $(\mathbb{F} ;+, \times, \triangleleft)$ is a model of the interpolative fusion of the theories of $(\mathbb{F} ;+, \times)$ and $(\mathbb{F} ; \times, \triangleleft)$ over the theory of $(\mathbb{F} ; \times)$. The initial motivation to introduce the notion of interpolative fusions was to find a common generalization of this example and the first example in the preceding paragraph.

Many interesting theories are not themselves interpolative fusion, but bi-interpretable with one. Let σ be an automorphism of a model-complete L-structure \mathcal{M}, \mathcal{N} another L-structure, and τ an isomorphism from \mathcal{M} to \mathcal{N}. Let T be the theory of \mathcal{M} and $T_{\text {Aut }}$ be the theory of a T-model expanded by an L-automorphism. We show in Section 7.7 that ($\mathcal{M}, \mathcal{N} ; \tau$) and $(\mathcal{M}, \mathcal{N} ; \tau \circ \sigma)$ are both canonically bi-interpretable with \mathcal{M} and $(\mathcal{M}, \mathcal{N} ; \tau, \tau \circ \sigma)$ is canonically bi-interpretable with (\mathcal{M}, σ). Further, (\mathcal{M}, σ) is existentially closed in the collection of $T_{\text {Aut }^{-}}$ models if and only if $(\mathcal{M}, \mathcal{N} ; \tau, \tau \circ \sigma)$ is an interpolative structure. It follows that if $T_{\text {Aut }}$ has a model companion $T_{\text {Aut }}^{*}$, then $T_{\text {Aut }}^{*}$ is bi-interpretable with the interpolative fusion of two theories, each of which is bi-interpretable with T.

As a special case of the remarks in the preceding paragraph, we see that the model companion ACFA of the theory of difference fields is bi-interpretable with an interpolative fusion of two theories, each of which is bi-interpretable with the theory of algebraically closed fields. We also show that the analogous statement holds for the theory DCF of differentially closed fields. The general algebraic framework of \mathcal{D}-fields, developed by Moosa and Scanlon [60], gives a way of uniformly handling both ACFA and DCF. We show in Section 7.8 that the model companion of the theory of \mathcal{D}-fields of characteristic 0 is always bi-interpretable with an interpolative fusion of two theories, each of which is bi-interpretable with ACF_{0}.

Chapter 8. Existence results. We adopt here the notational conventions of the summary of Chapter 6. In general, T_{\cup}^{*} need not exist, and the existence of T_{\cup}^{*} may even involve classification-theoretic issues. For example, it is conjectured that if T is unstable, then $T_{\text {Aut }}$ does not have a model companion. In Chapter 8 we give general "pseudo-topological" conditions on T_{1}, T_{2}, and T_{n} which ensure the existence of T_{\cup}^{*}. These conditions are highly nontrivial, but they are satisfied in many interesting examples. We also give a natural set of pseudo-topological axioms for T_{\cup}^{*} when the pseudo-topological conditions are satisfied.

Suppose we can assign to each \mathcal{M}_{n}-definable set X_{\cap} in $\mathcal{M}_{\cap} \vDash T_{n}$ an ordinal dimension $\operatorname{dim}\left(X_{n}\right)$, and dim satisfies some minimal conditions given in Section 8.1. Most tame theories come with a canonical dimension. We say that an arbitrary set A is pseudo-dense in X_{n} if A intersects every \mathcal{M}_{\cap}-definable $Y_{\cap} \subseteq X_{\cap}$ such that $\operatorname{dim} Y_{\cap}=\operatorname{dim} X_{\cap}$. We say that X_{\cap} is a pseudo-closure of A if A is pseudo-dense in X_{n} and $A \subseteq X_{\cap}$.

For $i \in\{1,2\}$, we say that \mathcal{M}_{i} is approximable over \mathcal{M}_{n} if every \mathcal{M}_{i}-definable set has a pseudo-closure, and we say that T_{i} is approximable over T_{n} if the same situation holds for every T_{i}-model. Then T_{i} satisfies the pseudo-topological conditions if T_{i} is approximable over T_{n} and T_{i} defines pseudo-denseness (see Section 8.1 for a precise definition of the latter). If T_{1} and T_{2} satisfy the pseudo-topological conditions, then \mathcal{M}_{\cup} is interpolative if and only if $X_{1} \cap X_{2} \neq \varnothing$ whenever X_{1} and X_{2} are both pseudo-dense in some X_{n}. The definability of pseudo-denseness ensures this property is axiomatizable. In many settings of interest, the notions of approximability and definability of pseudo-denseness turn out to be equivalent to very natural notions in those settings.

The use of the term "pseudo-topological" is motivated by consideration of the case, treated in Section 8.3, when T_{n} is o-minimal and dim is the canonical o-minimal dimension. In this case, any theory extending T_{n} defines pseudo-denseness. Furthermore T_{i} is approximable over T_{n} if and only if T_{n} is an open core of T_{i}, i.e. the closure of any \mathcal{M}_{i}-definable set in any T_{i}-model \mathcal{M}_{i} is already \mathcal{M}_{n}-definable. This leads to the following:

Theorem 1.9. Suppose T_{\cap} is o-minimal. If T_{\cap} is an open core of both T_{1} and T_{2} then T_{\cup}^{*} exists.

In the case when $L_{\mathrm{n}}=\varnothing$ and T_{n} is the theory of an infinite set, the notion of interpolative fusion is essentially known and was studied by Winkler in his thesis [89]. Winkler shows that T_{\cup}^{*} exists if only if T_{1} and T_{2} both eliminate \exists^{∞}. In Section 8.4, we show that if T_{n} is κ_{0}-stable, and dim is Morley rank, then any theory extending T_{n} is approximable over T_{n} (e.g. if T_{n} is the theory of algebraically closed fields, then this follows from the fact that every Zariski closed set is definable). In Section 8.5 , we show that if T_{n} is $\aleph_{0^{-}}$-stable, $\aleph_{0^{-}}$ categorical, and weakly eliminates imaginaries, then T_{i} defines pseudo-denseness if and only if T_{i} eliminates \exists^{∞}. This yields a generalization of Winkler's theorem:

Theorem 1.10. Suppose that T_{\cap} is \aleph_{0}-stable, \aleph_{0}-categorical, and weakly eliminates imaginaries. If T_{1} and T_{2} both eliminate \exists^{∞}, then T_{\cup}^{*} exists.

The preceding theorem can also be used to prove another main result of [89]: the existence of generic Skolemizations of model-complete theories eliminating $\exists \infty$. We explain this in Section 7.5.

In [81, Chapter 3], van den Dries notes a similarity between his main result and Winkler's theorem and remarks that this similarity ". . . suggests a common generalization of Winkler's and my results". This chapter can be seen as a moral answer to this suggestion, but not yet the final one, as our result only covers a special case of the main result in [81, Chapter 3].

Chapter 9. Preservation results. We adopt here the notational convention of the summary of Chapter 6. Suppose that the interpolative fusion T_{\cup}^{*} exists. The examples described above motivate the following question:

How are the model-theoretic properties of T_{\cup}^{*} determined by T_{1}, T_{2}, and T_{n} ?
Model-theoretic properties of T_{\cup}^{*} should be largely determined by how T_{i} relates to T_{n} for $i \in\{1,2\}$, and not by any relationship between T_{1} and T_{2}. We describe a general framework for strengthenings of model-completeness in Section 5.2 and prove syntactic preservation results in Chapter 9. The most important is the following, see Proposition 9.2.

Theorem 1.11. Suppose T_{\cap} is stable with weak elimination of imaginaries. Suppose T_{\cup}^{*} exists. Then every L_{\cup}-formula $\psi(x)$ is T_{\cup}^{*}-equivalent to a finite disjunction of formulas of the form

$$
\exists y\left(\varphi_{1}(x, y) \wedge \varphi_{2}(x, y)\right)
$$

where $\varphi_{i}(x, y)$ is an L_{i}-formula for $i \in\{1,2\}$ and $\left(\varphi_{1}(x, y) \wedge \varphi_{2}(x, y)\right)$ is bounded in y, i.e. there exists k such that $T_{\cup}^{*} \vDash \forall x \exists \leqslant k y\left(\varphi_{1}(x, y) \wedge \varphi_{2}(x, y)\right)$.

This result is close to optimal, as L_{\cup}-formulas are in general not T_{\cup}^{*}-equivalent to boolean combinations of L_{1} and L_{2}-formulas. However, in Proposition 9.4, we show that certain restrictive conditions on algebraic closure in T_{1} and T_{2} do imply that every L_{\cup}-formula is T_{\cup}^{*}-equivalent to a boolean combination of L_{1} and L_{2}-formulas. If this special situation holds, and if T_{1} and T_{2} are both stable (NIP), then T_{*}^{*} must also be stable (NIP), see Section 9.5. These syntactic preservation results can be applied to obtain classification-theoretic preservation results which relate the (neo)stability-theoretic properties of T_{\cup}^{*} to those of T_{1}, T_{2}, and T_{n}. The most notable result we have obtained so far in this direction is the following:

Theorem 1.12. If both T_{1} and T_{2} have NSOP_{1} and T_{\cap} is stable with 3 -uniqueness, then T_{\cup}^{*} has NSOP_{1}.

On the other hand, NTP_{2} is not preserved even in very natural situations, which brings us to the hope that the boundary of the tame universe can be extended to include these examples as well.

Part 1

Concrete partially random structures

CHAPTER 2

Tame structures via character sums over finite fields

To minimize repetition, we treat this chapter as the continuation of the corresponding summary in Section 1.2, and keep the definitions and statements of theorems given there. Throughout this chapter, we also assume that $x=\left(x_{1}, \ldots, x_{m}\right)$ is an m-tuple of variables, $y=\left(y_{1}, \ldots, y_{n}\right)$ is an n-tuple of variables, G is a multiplicative abelian group, F is a field, and F^{\times}is the multiplicative group of F. Again, \mathbb{T} is the multiplicative group of complex numbers of norm 1 , and \mathbb{F} is an algebraic closure of a finite field.

2.1. Almost model companion of GMO^{-}

For understanding ACFO^{-}and finding its model companion, we need to first understand F^{\times} and $\left(F^{\times}, \triangleleft\right)$ as (F, \triangleleft) ranges over the models of ACFO^{-}. Two phenomena turn out to be important later on:
(1) the "reduct" of ACFO^{-}to the language of multiplicative groups is very simple: it "almost" admits quantifier elimination and has a natural notion of dimension;
(2) the "reduct" of ACFO^{-}to the language of circularly ordered multiplicative groups "almost" has a model companion.
2.1.1. Multiplicative groups of algebraically closed fields. We will consider the theory of multiplicative groups of algebraically closed fields (i.e., the set of statements which hold in all such structures) in a suitable language, show that this theory "almost" admits quantifier elimination and coincides with the theory of multiplicative groups of ACFO^{-}-models, and obtain an axiomatization along the way as usual.

Throughout Section 2.1.1, G is a multiplicative abelian group. If a and b in G are such that $b^{n}=a$, we call b an $n \mathbf{t h}$ root of a. If $n \geqslant 1$, an nth root of the identity element 1_{G} of G is trivial if it is 1_{G}. An nth root of $1_{\mathbb{T}}$ in the multiplicative group \mathbb{T} for some $n \geqslant 1$ is called a root of unity. Let $\mathbb{U} \subseteq \mathbb{T}$ be the multiplicative group of roots of unity. For a given p, let $\mathbb{U}_{(p)} \subseteq \mathbb{T}$ be the multiplicative group of roots of unity whose order is coprime to p. So $\mathbb{U}_{(p)}$ is isomorphic to \mathbb{F}^{\times}as a group when $\operatorname{char}(\mathbb{F})=p$.

Let $L_{\mathrm{m}}=\left\{1, \times, \square^{-1}\right\}$ be the language of multiplicative groups. It is easy to obtain an $L_{\mathrm{m}^{-}}$ theory GM such that $G \vDash$ GM if and only if the following conditions hold:
(0^{\times}) every finite subgroup of G is cyclic;
$\left(1^{\times}\right)$the group G is divisible;
$\left(2^{\times}\right)$for any two distinct prime numbers p and l, either 1_{G} has a nontrivial p th root, or 1_{G} has a nontrivial l th root.

The theory GM is our candidate for axiomatizing the theory of multiplicative groups of algebraically closed fields. It has several natural extensions. For a given p, let GM_{p} be the L_{m}-theory whose models are $G \vDash G M$ which satisfy the following extra property:
$\left(c_{p}^{\times}\right)$every p th root of 1_{G} is trivial.
It is easy to see that if $G \vDash \mathrm{GM}_{p}$, then 1_{G} has a nontrivial l th root for any prime number $l \neq p$. Let GM_{0} be the L_{m}-theory whose models are $G \vDash$ GM which satisfy the following extra property:
$\left(c_{0}^{\times}\right)$for all prime numbers $l, 1_{G}$ has a nontrivial l th root.
Hence, a model of GM is either a model of GM_{p} for some p or a model of GM_{0}.
Remark 2.1. Suppose G satisfies conditions (0^{\times}) and (1^{\times}), and l is a prime number. The condition that 1_{G} has a nontrivial l-root is also equivalent to several other conditions:
(1) 1_{G} has exactly l many l th roots;
(2) for all $k \geqslant 1,1_{G}$ has exactly l^{k} many l^{k} th roots;
(3) for all $k \geqslant 1$, every $a \in G$ has exactly l^{k} th many l^{k} th roots.

Likewise, the condition that every p th root of 1_{G} is trivial is also equivalent to two other conditions:
(1) for all k, every p^{k} th root of 1_{G} is trivial;
(2) for all $k \geqslant 1$, every $a \in G$ has exactly one p^{k} th root.

From Remark 2.1, we easily deduce the following:
Remark 2.2. For every $p, \mathbb{U}_{(p)}$ is a model of GM_{p}, and so is \mathbb{F}^{\times}when $\operatorname{char}(\mathbb{F})=p$. Moreover, if G is a model of GM_{p}, then the group of torsion elements of G is isomorphic to $\mathbb{U}_{(p)}$. The group \mathbb{U} is a model of GM_{0} and is isomorphic to the group of torsion elements of any $\mathrm{GM}_{0^{-}}$ model.

Lemma 2.1 confirms that our candidate GM at least meets the basic requirements:
Lemma 2.1. If G is the multiplicative group of an ACF-model, then $G \vDash G M$. Similar statements hold for ACF_{p} together with GM_{p} for an arbitrary p and for ACF_{0} together with GM_{0}.

Proof. It is easy to see that if G is the multiplicative group of a prime model of ACF, then conditions $\left(0^{\times}\right),\left(1^{\times}\right)$, and $\left(2^{\times}\right)$are satisfied. Hence, the first statement follows from the fact that ACF is model complete. The proof of the second statement is similar.

Suppose B is a subset of G, and $t(x)$ and $t^{\prime}(x)$ are $L_{\mathrm{m}}(B)$-terms. Then we call the atomic formula $t(x)=t^{\prime}(x)$ a multiplicative equation over B. A multiplicative equation over B is trivial if it defines in every abelian group G^{\prime} extending $\langle B\rangle$ the set $\left(G^{\prime}\right)^{m}$. If $a \in G^{m}$ does not satisfy any nontrivial multiplicative equation over B, we say that a is multiplicatively independent over B.

Proposition 2.1 below is the "almost" quantifier-elimination result we promised. This can be seen as folklore and can be obtained as a consequence of the characterization of elementary embeddings of abelian groups [30] and the quantifier-reduction for abelian groups [65, page 46]. Since the situation is relatively simple, we briefly indicate a direct proof:

Proposition 2.1. For each p, the theory GM_{p} is complete and admits quantifier elimination. A similar statement holds for GM_{0}. However, GM is not model complete.

Proof. We will only prove the first statement for GM_{p} with p fixed as the proof for GM_{0} is very similar. By Remark 2.2, $\mathbb{U}_{(p)}$ is an L_{m}-substructure of every model of GM_{p}, so completeness will follow from quantifier elimination. Using a standard test for quantifier elimination, we need to show the following: if G and G^{\prime} are models of GM_{p} such that G^{\prime} is $|G|^{+}$-saturated, and f is a partial L_{m}-isomorphism from G to G^{\prime} (i.e., f is an L_{m}-isomorphism from an L_{m}-substructure of G to an L_{m}-substructure of G^{\prime}) such that Domain $(f) \neq G$, then there is a partial L_{m}-isomorphism from G to G^{\prime} which properly extends f.

In each of the following cases, we will obtain a in $G \backslash$ Domain (f) and a^{\prime} in $G^{\prime} \backslash \operatorname{Image}(f)$. A proper extension of f can then be defined by

$$
a^{k} b \mapsto\left(a^{\prime}\right)^{k} f(b) \text { for } k \in \mathbb{Z} \text { and } b \in \operatorname{Domain}(f)
$$

We will leave the reader to check that the function is well-defined and is a partial $L_{\mathrm{m}}{ }^{-}$ isomorphism from G to G^{\prime}.

Suppose l is a prime number, and $a \in G \backslash \operatorname{Domain}(f)$ is a nontrivial l th root of 1_{G}. As G satisfies $\left(\mathrm{c}_{p}^{\times}\right), l \neq p$. Since G and G^{\prime} both satisfy $\left(0^{\times}\right)$, Domain (f) and Image (f) contain no nontrivial l th roots of 1_{G} and $1_{G^{\prime}}$ respectively. We can then choose $a^{\prime} \in G^{\prime} \backslash \operatorname{Image}(f)$ to be an l th root of $1_{G^{\prime}}$, which must exist because G^{\prime} satisfies $\left(c_{p}^{\times}\right)$and $\left(2^{\times}\right)$.

Now suppose Domain (f) contains all roots of 1_{G} with prime order, l is a prime and $a \in G \backslash \operatorname{Domain}(f)$ is such that $a^{l} \in \operatorname{Domain}(f)$. If b is another l th root of a^{l}, then $a b^{-1}$ is an l th root of 1_{G}. Hence, Domain (f) contains no l th root of a^{l}, and Image (f) contains no
l th root of $f\left(a^{l}\right)$. We then choose a^{\prime} to be an l th root of $f\left(a^{l}\right)$ which must exist because G^{\prime} satisfies (1^{\times}).

The last case is when $\operatorname{Domain}(f)$ is divisibly closed in G, and $a \in G$ \Domain (f). Using the fact that G^{\prime} is $|G|^{+}$-saturated, we obtain $a^{\prime} \in G^{\prime}$ which is multiplicatively independent over Image (f).

For the last statement, note that both $\mathbb{U}_{(p)}$ and \mathbb{U} are models of $\mathrm{GM}, \mathbb{U}_{(p)}$ is a substructure of \mathbb{U}, but \mathbb{U}_{p} is not not an elementary substructure of \mathbb{U}.

Fact 2.1 is an easy consequence of Želeva's characterization of circularly orderable groups [85] and Levi's characterization of linearly orderable abelian group [55]:

Fact 2.1. An abelian group is circularly orderable if and only if it satisfies (0^{\times}).
Combining Proposition 2.1 and Fact 2.1 confirms the validity of our candidate GM:
Corollary 2.1. Every model of GM is elementarily equivalent to both the multiplicative group of an algebraically closed field and the multiplicative group of a model of ACFO^{-}.

Many other model-theoretic properties of the theory GM are also immediate:
Corollary 2.2. The theory GM is strongly minimal.
Hence, definable sets, types, and elements in a model of GM can be given a canonical dimension mdim which coincides with Morley rank and the $\operatorname{acl}_{\mathrm{m}}$-dimension; see [58] for details. Proposition 2.1 also yields:

Corollary 2.3. Suppose G is a model of GM, B is a subset of G, and a is in G^{m}. Then $\operatorname{mdim}(a \mid B)<m$ if and only if a is multiplicatively dependent over B.
2.1.2. Circularly ordered multiplicative groups of ACFO^{-}-models. We next consider the theory of circularly ordered multiplicative groups of models of ACFO^{-}. We want to show that that this theory "almost" has a model companion and obtain an axiomatization for this model companion along the way.

Throughout Section 2.1.2, we adopt the notational conventions of Section 2.1.1. Moreover, G is assumed to be circularly orderable, and (G, \triangleleft) ranges over the circularly ordered multiplicative abelian groups. For each (G, \triangleleft), we define the linear order \lessdot on (G, \triangleleft) by setting $1_{G} \lessdot a$ for all $a \in G \backslash\left\{1_{G}\right\}$ and

$$
a \lessdot b \text { if and only if } \triangleleft\left(1_{G}, a, b\right) \text { for } a, b \in G \backslash\left\{1_{G}\right\} .
$$

When G is \mathbb{T}, \mathbb{U}, or $\mathbb{U}_{(p)}$, we let \triangleleft denotes the clockwise circular orders on the respective sets. From Fact 2.1, we can easily deduce the following:

Remark 2.3. For given (G, \triangleleft) and finite subgroup A of G, if $a \in A \backslash\left\{1_{G}\right\}$ is minimal with respect to \lessdot, then $A=\langle a\rangle$.

Let $L_{\mathrm{mc}}=L_{\mathrm{m}} \cup\{\triangleleft\}$ be the language of circularly ordered abelian groups. Let GMO^{-}be the theory whose models are (G, \triangleleft) such that $G \vDash G M$, or equivalently, G satisfies $\left(1^{\times}\right)$ and $\left(2^{\times}\right)\left(\right.$as $\left(0^{\times}\right)$is automatic by Fact 2.1). Let $\mathrm{GMO}_{p}^{-}=\mathrm{GMO}^{-} \cup \mathrm{GM}_{p}$ for all p, and let $\mathrm{GMO}_{0}^{-}=\mathrm{GMO}^{-} \cup \mathrm{GM}_{0}$. We show below that GMO^{-}is an axiomatization of the theory of circularly ordered multiplicative groups of algebraically closed fields:

Lemma 2.2. An L_{mc}-structure (G, \triangleleft) is a model of GMO^{-}if and only if (G, \triangleleft) is elementarily equivalent to the circularly ordered group of an ACF-model. Similar statements hold for GMO_{p}^{-}together with ACF_{p} for an arbitrary p and GMO_{0}^{-}together with ACF_{0}.

Proof. The backward implication of the first statement follows immediately from Lemma 2.1. For the forward implication of the first statement, suppose (G, \triangleleft) is a model of GMO^{-}. We assume further that (G, \triangleleft) is a model of GMO_{p}^{-}and omit the proof of the similar case where (G, \triangleleft) is a model of GMO_{0}^{-}. Replacing (G, \triangleleft) by an elementary extension if necessary, we can arrange that $|G|=\kappa>\aleph_{0}$. By Corollary $2.2, \mathrm{GMO}_{p}^{-}$is κ-categorical. Hence, G is is isomorphic to the multiplicative group G^{\prime} of a model of ACF_{p} of size κ. Pushing forward \triangleleft by the isomorphism we get a circular orderding \triangleleft^{\prime} on G^{\prime} such that $\left(G^{\prime}, \triangleleft^{\prime}\right)$ is L_{mc}-isomorphic to (G, \triangleleft). This also proved the second statement.

A rather awkward aspect dealing with (G, \triangleleft) comes from the fact that $<$ is not invariant under translation. We will consider here a partial rectification. The winding number $W\left(a_{1}, \ldots, a_{n}\right)$ of $\left(a_{1}, \ldots, a_{n}\right) \in G^{n}$ is defined to be the cardinality of the set

$$
\left\{k: 1 \leqslant k \leqslant n-1, \prod_{i=1}^{k+1} a_{i} \lessdot \prod_{i=1}^{k} a_{i}\right\} .
$$

It is intuitively the number of times the sequence $a_{1}, a_{1} a_{2}, \ldots, \prod_{i=1}^{n-1} a_{i}, \prod_{i=1}^{n} a_{i}$ "winds around the circle". If $a_{1}=\ldots=a_{n}=a$, we also denote $W\left(a_{1}, \ldots, a_{n}\right)$ as $W_{n}(a)$.

Remark 2.4. Suppose a and b in G satisfy $a \lessdot b$. Then for all $c \in G$, either $a c \lessdot b c$ or $W(a, c)<W(b, c)$. So in this sense the notion of winding number accounts for the noninvariant of \lessdot.

For $a \in G$, we say that a is n-divisible with winding number r if a has an nth root b with $W_{n}(b)=r$.

Remark 2.5. Consider (G, \triangleleft) and $a \in G$. From Remark 2.4, it is easy to see that every $a \in G$ has at most one nth root b such that $W_{n}(b)=r$. So if there are distinct b_{1}, \ldots, b_{n} such that $b_{i}^{n}=a$ for all $i \in\{1, \ldots, n\}$, then for each $r \in\{1, \ldots, n\}$ there is exactly one $i \in\{1, \ldots, n\}$ such that $W_{n}\left(b_{i}\right)=r$.

Let GMO be the L_{mc}-theory such that its models are (G, \triangleleft) with $G \vDash$ GM and the following density condition is satisfied:
$\left(\mathrm{d}^{\times}\right)$for any given $n, r \in\{0, \ldots, n-1\}$, and c and d in G, there is $a \in G$ such that $\triangleleft(c, a, d)$ and a is n-divisible with winding number r.
The theory GMO is our candidate for the "almost" model companion of GMO^{-}. Also set $\mathrm{GMO}_{p}=\mathrm{GMO} \cup \mathrm{GMO}_{p}^{-}$for an arbitrary p, and set $\mathrm{GMO}_{0}=\mathrm{GMO} \cup \mathrm{GMO}_{0}^{-}$.

To handle circularly ordered groups, it is convenient to "linearize" them; see also [34] and [31] for related material. Let $(H,<)$ be a linearly ordered additive group with identity element 0_{H}, and let $\omega \in H$ be a distinguished positive element such that $(n \omega)_{n>0}$ is cofinal in $(H,<)$ (i.e., for every $\alpha \in H, \alpha<n \omega$ for sufficiently large n). For every k, set

$$
[k, k+1)_{H}=\{\alpha \in H: k \omega \leqslant \alpha<(k+1) \omega\} .
$$

A surjective group homomorphism $e: H \rightarrow G$ with kernel $\langle\omega\rangle$ is a covering map from $(H, \omega,<)$ to (G, \triangleleft) if for all n and all $\alpha, \beta, \gamma \in[n, n+1)_{H} \triangleleft(e(\alpha), e(\beta), e(\gamma))$ is equivalent to

$$
\alpha<\beta<\gamma \quad \text { or } \quad \beta<\gamma<\alpha \quad \text { or } \quad \gamma<\alpha<\beta \text {. }
$$

If there is a covering map from $(H, \omega,<)$ to (G, \triangleleft), we call $(H, \omega,<)$ a universal cover of (G, \triangleleft).

Remark 2.6. Suppose $(H, \omega,<)$ is as described in the preceding paragraph. Then the above definition also allow us to construct (G, \triangleleft) such that $(H, \omega,<)$ is a universal cover of (G, \triangleleft).

The examples in the following remark will hopefully make this notion concrete:
Remark 2.7. Let the additive groups \mathbb{R}, \mathbb{Q}, and $\mathbb{Z}_{(p)}$ be equipped with their natural orders $<$. With $\alpha \mapsto e^{2 \pi i \alpha}$ the covering map, we have the following:
(1) $(\mathbb{R}, 1,<)$ is a universal cover of $(\mathbb{T}, \triangleleft)$;
(2) $(\mathbb{Q}, 1,<)$ is a universal cover of $(\mathbb{U}, \triangleleft)$;
(3) $\left(\mathbb{Z}_{(p)}, 1,<\right)$ is a universal cover of $\left(\mathbb{U}_{(p)}, \triangleleft\right)$.

The lemma below illustrates the advantage of having a universal cover.
Lemma 2.3. Suppose $(H, \omega,<)$ is a universal cover of (G, \triangleleft) with e the covering map, $\alpha_{1}, \ldots, \alpha_{n}$ are in $[0,1)_{H}$, and $a_{i}=e\left(\alpha_{i}\right)$ for $i \in\{1, \ldots, n\}$. Then

$$
W\left(a_{1}, \ldots, a_{n}\right)=r \text { if and only if } \alpha_{1}+\ldots+\alpha_{n} \in[r, r+1)_{H} .
$$

Proof. It follows from the definition of a universal cover that $\sum_{i=1}^{k} \alpha_{i} \in[l, l+1)_{H}$ and $\sum_{i=1}^{k+1} \alpha_{i} \in[l+1, l+2)_{H}$ if and only if $\prod_{i=1}^{k+1} a_{i} \lessdot \prod_{i=1}^{k} a_{i}$. The desired conclusion follows.

Applying Lemma 2.3 into the setting where $a_{1}=\ldots=a_{n}=a$, we get:
Corollary 2.4. Suppose $(H, \omega,<)$ is a universal cover of (G, \triangleleft) with e the covering map, a is in $G, n \geqslant 1, r$ is in $\{0, \ldots, n-1\}$, and $\alpha \in[r, r+1)_{H}$ is such that $e(\alpha)=a$. Then the following are equivalent:
(i) a is n-divisible with winding number r;
(ii) α is n-divisible.

We can view such $(H, \omega,<)$ as a structure in a language $L_{\text {al }}$ consisting of function symbols for $0, \omega$, and + and a relation symbol for $<$. It turns out that the convenience of a universal cover is something we can always afford. Moreover, we get it partially definably:

Lemma 2.4. Every (G, \triangleleft) has a universal cover $(H, \omega,<)$. Moreover, there is an $L_{\mathrm{mc}^{-}}{ }^{-}$ isomorphic copy $(\tilde{G}, \tilde{\triangleleft})$ of (G, \triangleleft) such that the underlying set of \tilde{G} is $[0,1)_{H}$, and the multiplication on \tilde{G} and $\tilde{\triangleleft}$ can be defined by L_{al}-formulas whose choice is independent of the choice of (G, \triangleleft) and the choice of $(H, \omega,<)$.

Proof. Set $H=\mathbb{Z} \times G$, and define

$$
(k, a)+\left(k^{\prime}, a^{\prime}\right)=\left(k+k^{\prime}+W\left(a, a^{\prime}\right), a a^{\prime}\right)
$$

for (k, a) and $\left(k^{\prime}, a^{\prime}\right)$ in H. Let < be the lexicographic product of the usual order on \mathbb{Z} and the linear order \lessdot on G. Set $0_{H}=\left(0_{\mathbb{Z}}, 1_{G}\right)$ and $\omega=\left(1_{\mathbb{Z}}, 1_{G}\right)$. We can easily check that $(H, \omega,+,<)$ is a universal cover of G. For $a, a^{\prime} \in\left[0_{H}, \omega\right)_{H}$, set

$$
a \tilde{\times} a^{\prime}= \begin{cases}a+a^{\prime} & \text { if } a+a^{\prime} \in[0,1)_{H} \\ a+a^{\prime}-\omega & \text { otherwise }\end{cases}
$$

Define $\tilde{\triangleleft}$ by setting $\tilde{\triangleleft}(a, b, c)$ for any $a, b, c \in[0,1)_{H}$ such that $a<b<c$ or $b<c<a$ or $c<a<b$. It is easy to see the quotient map $H \rightarrow G$ induces an isomorphism from ($\left.[0,1)_{H}, \tilde{x}, \tilde{\triangleleft}\right)$ to (G, \triangleleft).

The universal cover notion is functorial in the following sense:
Lemma 2.5. Suppose $(H, \omega,<)$ is a universal cover of (G, \triangleleft) with convering map e, and $\left(H^{\prime}, \omega^{\prime},<^{\prime}\right)$ is a universal cover of $\left(G^{\prime}, \triangleleft^{\prime}\right)$ with convering map e^{\prime}. Then we have the following:
(i) if g is an L_{mc}-embedding from (G, \triangleleft) to $\left(G^{\prime}, \triangleleft^{\prime}\right)$, then there is a unique L_{al}-embedding h from $(H, \omega,<)$ to $\left(H^{\prime}, \omega^{\prime},<^{\prime}\right)$ such that the diagram below commutes:

in particular, e is the unique covering map from $(H, \omega,<)$ to (G, \triangleleft), and any two universal coverings of (G, \triangleleft) are isomorphic as L_{al}-structures;
(ii) if h is an L_{al}-embedding from $(H, \omega,<)$ to $\left(H^{\prime}, \omega^{\prime},<^{\prime}\right)$, then there is a unique L_{mc} embedding g from (G, \triangleleft) to $\left(G^{\prime}, \triangleleft^{\prime}\right)$ such that the same diagram above commutes.

Proof. For (i), let $h: H \rightarrow H^{\prime}$ be such that $\alpha \in[k, k+1)_{H}$ is mapped to the unique $\beta \in[k, k+1)_{H^{\prime}}$ with $g \circ e(\alpha)=e^{\prime}(\beta)$. For (ii), let $g: G \rightarrow G^{\prime}$ be such that $e(\alpha)$ is mapped to $e^{\prime} \circ h(\alpha)$ for $\alpha \in H$. It is easy to check that h and g are as desired.

We extend the "linearization" procedure to theories GMO^{-}and GMO . Let HAO^{-}be an L_{al}-theory such that an L_{al}-structure $(H, \omega,<)$ is a model of HAO^{-}if and only if $(H,<)$ is a linearly ordered additive abelian group, ω is a positive element in H, and the the following additional two properties are satisfied:
$\left(1^{+}\right)$for each n and $\alpha \in H$, there is at least one $r \in\{0, \ldots, n-1\}$ such that $\alpha+r \omega$ is n-divisible; $\left(2^{+}\right)$for any prime numbers p and l, ω is either p-divisible or l-divisible.
Note that $\left(1^{+}\right)$and $\left(2^{+}\right)$correspond to $\left(1^{\times}\right)$and $\left(2^{\times}\right)$. There is no $\left(0^{+}\right)$because $\left(0^{\times}\right)$is trivial in our current setting. The condition that ω is cofinal in H cannot be included here as it is not first-order. For a given p, let HAO_{p}^{-}be the L_{al}-theory whose models are the $(H, \omega,<) \vDash \mathrm{HAO}^{-}$which satisfy the addition condition:
$\left(\mathrm{c}_{p}^{+}\right) \omega$ is not p-divisible.
We also let let HAO_{0}^{-}be the L_{al}-theory whose models are the $(H, \omega,<) \vDash \mathrm{HAO}^{-}$which satisfy the additional condition:
(c_{0}^{+}) for all prime numbers l, ω is l-divisible.
Let HAO be an $L_{\text {al }}$-theory whose models are the $(H, \omega,<) \vDash \mathrm{HAO}^{-}$which also satisfy the additional condition:
$\left(\mathrm{d}^{+}\right)$for any given n and $\beta, \gamma \in H$ with $\beta<\gamma$, there is $\alpha \in H$ such that α is n-divisible and $\beta<\alpha<\gamma$.
Finally, set $\mathrm{HAO}_{p}=\mathrm{HAO} \cup \mathrm{HAO}_{p}^{-}$for each p, and $\mathrm{HAO}_{0}=\mathrm{HAO} \cup \mathrm{HAO}_{0}^{-}$; in fact, HAO_{0} is just the theory of divisible ordered abelian groups. The next Lemma explains precisely what it means by saying that these are "linearization" of GMO^{-}and GMO:

Lemma 2.6. Suppose $(H, \omega,<)$ is a universal cover of (G, \triangleleft). Then we have:
(i) for all $p,(H, \omega,<) \vDash \mathrm{HAO}^{-}$if and only if $(G, \triangleleft) \vDash \mathrm{GMO}^{-}$. Similar statements hold for HAO_{p}^{-}together with GMO_{p}^{-}and HAO_{0}^{-}together with GMO_{0}^{-};
(ii) for all $p,(H, \omega,<) \vDash \mathrm{HAO}$ if and only if $(G, \triangleleft) \vDash$ GMO. Similar statements hold for HAO_{p} together with GMO_{p} and HAO_{0} together with GMO_{0}.

Proof. All these statements are immediate consequences of Corollary 2.4.

Lemma 2.6 allows us to deduce results for GMO^{-}-models and GMO-models from generally much easier results for HAO^{-}-models and HAO-models. Below is the first demonstration of its usefulness:

Lemma 2.7. Let $\left(\mathbb{Z}_{(p)}, 1,<\right)$ and $(\mathbb{Q}, 1,<)$ be as in Remark 2.7. Then we have $\left(\mathbb{Z}_{(p)}, 1,<\right) \vDash$ HAO_{p} and $(\mathbb{Q}, 1,<) \vDash \mathrm{HAO}_{0}$. Moreover, there is a unique L_{al}-embedding of $\left(\mathbb{Z}_{(p)}, 1,<\right)$ into every HAO_{p}^{-}-model and a unique L_{al}-embedding of $(\mathbb{Q}, 1,<)$ into every HAO_{0}^{-}-model.

Proof. It is easy to verify that $\left(\mathbb{Z}_{(p)}, 1,<\right)$ is a model of HAO_{p}^{-}. Since $\mathbb{Z}_{(p)}$ is dense in \mathbb{R} with respect to the natural order, it follows that $\left(\mathbb{Z}_{(p)}, 1,<\right)$ is a model of HAO_{p}. Suppose $(H, \omega,<)$ is a model of HAO_{p}^{-}. Then the subgroup of H generated by ω is an isomorphic copy of $\mathbb{Z}_{(p)}$. This gives us an L_{al}-embedding of $\left(\mathbb{Z}_{(p)}, 1,<\right)$ into $(H, \omega,<)$. This L_{al}-embedding is unique as any such $L_{\text {al }}$-embedding must send 1 to ω. The statements for $(\mathbb{Q}, 1,<)$ can be proven similarly.

Combining with Lemma 2.5 and Lemma 2.6, we get:
Proposition 2.2. We have $\left(\mathbb{U}_{(p)}, \triangleleft\right) \vDash \mathrm{GMO}_{p}$ and $(\mathbb{U}, \triangleleft) \vDash \mathrm{GMO}_{0}$. Moreover, there is a unique L_{mc}-embedding of $\left(\mathbb{U}_{(p)}, \triangleleft\right)$ into every GMO_{p}^{-}-model and a unique L_{mc}-embedding of $(\mathbb{U}, \triangleleft)$ into every GMO_{0}^{-}-model.

Suppose σ is an L_{m}-automorphism of $\mathbb{U}_{(p)}$. Define \triangleleft_{σ} to be the image of the clockwise circular order \triangleleft under σ. From Lemma 2.2, we get the following:

Corollary 2.5. Every circular order on $\mathbb{U}_{(p)}$ is equal to \triangleleft_{σ} for a unique L_{m}-automorphism σ of $\mathbb{U}_{(p)}$.

For an injective group homomorphism $\chi: \mathbb{F}^{\times} \rightarrow \mathbb{T}$, define the circular order \triangleleft_{χ} to be the pullback of \triangleleft via χ. Note that $\chi\left(\mathbb{F}^{\times}\right)=\mathbb{U}_{(p)}$ as a subgroup of \mathbb{T}. So applying Corrollary 2.5, we get:

Corollary 2.6. Every multiplicative circular order on \mathbb{F} is equal to \triangleleft_{χ} for a unique injective group homomorphism $\chi: \mathbb{F}^{\times} \rightarrow \mathbb{T}$.

Toward showing that GMO is "almost" the model companion of GMO- , we first show the "linearized" version of the result. This is also folklore [88], but not everything we want is written down, so we briefly indicate a proof.

Lemma 2.8. For each p, the theory HAO_{p} is complete and is the model companion of HAO_{p}^{-}. A similar statement holds for HAO_{0} and HAO_{0}^{-}. The theory HAO is not model complete.

Proof. To show the first statement, we require some preparation. For each $(H, \omega,<) \vDash$ HAO_{p}^{-}, define the family $D=\left(D_{n}\right)_{n>0}$ of unary relations on H by setting

$$
D_{n}=\{\alpha \in H: \text { there is } \beta \in H \text { such that } n \beta=\alpha .\}
$$

Then such $(H, \omega,<, D)$ is naturally a structure in a language $L_{\text {al }}^{\diamond}$ extending $L_{\text {al }}$ by adding a family of unary relation symbols for D. The theory HAO_{p}^{-}and HAO_{p} can be naturally expanded to $L_{\text {al }}^{\diamond}$-theories by adding the obvious axioms defining such D. Note that when $(H, \omega,<) \vDash \mathrm{HAO}_{p}^{-}$and $D=\left(D_{n}\right)_{n>0}$ are as above, we also have

$$
D_{n}=\left\{\alpha \in H: \text { for all } \beta \in H, \bigwedge_{r=1}^{n-1} n \beta \neq \alpha+r \omega .\right\}
$$

It follows that such D_{n} is both universally and existentially definable. Moreover, we can choose the formula defining such D_{n} independent of the choice of $(H, \omega,<)$. Thus, the problem is reduced to showing that the natural $L_{\mathrm{al}}^{\diamond}$-expansion of HAO_{p} is complete, admits quantifier elimination, and is the model companion of the natural $L_{\text {al }}^{\diamond}$ expansion of HAO_{p}^{-}.

It follows from Lemma 2.7 that $\left(\mathbb{Z}_{(p)}, 1,<, D\right)$ can be canonically viewed as a $L_{\text {al }}^{\diamond}$ substructure of any model of the natural $L_{\mathrm{al}}^{\diamond}$-expansion of HAO_{p}. Hence, it suffices to show the following: if $(H, \omega,<, D)$ is the natural $L_{\mathrm{al}}^{\diamond}$-expansion of a model of $\mathrm{HAO}_{p}^{-},\left(H^{\prime}, \omega^{\prime},<^{\prime}, D^{\prime}\right)$ is the natural $L_{\mathrm{al}}^{\diamond}$-expansion of a model of HAO_{p} and is moreover $|H|^{+}$-saturated, and $f: H \rightarrow H^{\prime}$ is a partial $L_{\mathrm{al}}^{\diamond}$-isomorphism from $(H, \omega,<, D)$ to $\left(H^{\prime}, \omega^{\prime},<^{\prime}, D^{\prime}\right)$ with $\operatorname{Domain}(f) \neq H$, then we can find a partial $L_{\mathrm{al}}^{\diamond}$-embedding which properly extends f.

It is easy to reduce to the case where $\operatorname{Domain}(f)$ is a divisibly closed subgroup of H. Let $\alpha \in H \backslash \operatorname{Domain}(f)$. If $\alpha-r \omega$ is p^{k}-divisible and $\beta<\alpha<\beta^{\prime}$ for β and β^{\prime} in $\operatorname{Domain}(f)$, then we can find α^{\prime} in $H^{\prime} \backslash \operatorname{Image}(f)$ such that $\alpha^{\prime}-r \omega^{\prime}$ is p^{k}-divisible and $f(\beta)<\alpha^{\prime}<f\left(\beta^{\prime}\right)$ using the fact that $\left(H^{\prime}, \omega^{\prime},<^{\prime}\right)$ satisfies $\left(\mathrm{d}^{+}\right)$. As H^{\prime} is $|H|^{+}$-saturated, we can arrange that α^{\prime} satisfies all such conditions simultaneously. Let g be the obvious extension of f sending α to α^{\prime}. It is easy to check that g is as desired.

The proof of the second statement is similar to the proof of the first statement. Note that $\left(\mathbb{Z}_{(p)}, 1,<\right)$ is an $L_{\text {al-substructure }}$ of $(\mathbb{Q}, 1,<)$, and both are models of HAO, but the former is not an elementary substructure of the latter. So HAO is not model complete.

Proposition 2.3. For each p, the theory GMO_{p} is complete and is the model companion of GMO_{p}^{-}. A similar statement holds for GMO_{0} and GMO_{0}^{-}. However, GMO is not model complete.

Proof. By Proposition 2.2, $\left(\mathbb{U}_{(p)}, \triangleleft\right)$ is a model of GMO_{p} and is an L_{mc}-substructure of any model of GMO_{p}. Hence to get the completeness of GMO_{p}, it suffices to show that GMO_{p} is model complete. Suppose (G, \triangleleft) and $\left(G^{\prime}, \triangleleft\right)$ are models of GMO_{p} and that the former
is a substructure of the latter. By Lemma 2.6, the universal covers $(H, \omega,<)$ and $\left(H^{\prime}, \omega,<\right)$ of (G, \triangleleft) and $\left(G^{\prime}, \triangleleft\right)$ are models of HAO_{p}. It follows from Lemma 2.5 and Lemma 2.8 that $(H, \omega,<)$ can be viewed as an elementary substructure of $\left(H^{\prime}, \omega,<\right)$. Combining this with the second part of Lemma 2.4, we get that (G, \triangleleft) is an elementary substructure of $\left(G^{\prime}, \triangleleft\right)$.

Next we show that every model of GMO_{p}^{-}can be embedded into a model of GMO_{p}. Suppose (G, \triangleleft) is a model of GMO_{p}^{-}. By Lemma 2.6, the universal cover $(H, \omega,<)$ of (G, \triangleleft) is a model of HAO_{p}^{-}. Hence, it follows from Lemma 2.8 that $(H, \omega,<)$ has an extension $\left(H^{\prime}, \omega,<\right)$ which is a model of HAO_{p}. Construct $\left(G^{\prime}, \triangleleft\right)$ as mentioned in Remark 2.6. Then $\left(G^{\prime}, \triangleleft\right)$ is a model of GMO_{p} by Lemma 2.6 and $\left(G^{\prime}, \triangleleft\right)$ can be considered a substructure of $\left(G^{\prime}, \triangleleft\right)$ by Lemma 2.5.

The second statement can be proved similarly. The third statement can be deduced from Lemma 2.8 using similar ideas. It can also be observed directly by looking at ($\left.\mathbb{U}_{(p)}, \triangleleft\right)$ and $(\mathbb{Q}, \triangleleft)$.

Remark 2.8. The theory HAO_{0} is just the theory of divisible ordered abelian groups, so HAO_{0} has quantifier elimination. For the second statement of Proposition 2.3, we can also get that GMO_{0} admits quantifier elimination. Since we will not use this later on, we leave it to the interested reader.

2.2. Model companion of ACFO^{-}

We will establish that ACFO^{-}has a model companion in two steps:
(1) obtaining a characterization of the existentially closed models of ACFO^{-}following the ideas in [11];
(2) showing that the class of ACFO^{-}-models satisfying the characterization in (1) is elementary by using model-theoretic/geometric properties of the reducts of ACFO^{-}to the language of rings and the language of circularly ordered multiplicative groups.
2.2.1. Geometric characterization of the existentially closed models. Intuitively, in an existentially closed model (F, \triangleleft) of ACFO^{-}, the field F interacts "randomly" with the circularly ordered abelian group $\left(F^{\times}, \triangleleft\right) \vDash$ GMO over their "common reduct" F^{\times}. In this section, we will make precise this intuition through a "geometric characterization" and then verify its correctness.

We keep the the notational conventions of Section 2.1.1 and Section 2.1.2. Suppose (G, \square) is an L-structure expanding G. For convenience, we call a set $X \subseteq G^{m}$ which is defined in (G, \square) by a quantifier-free $L(G)$-formula a qf-set in (G, \square). For $X \subseteq G^{m}$ definable in (G, \square) and an elementary extension $\left(G^{\prime}, \square\right)$ of (G, \square), let $X\left(G^{\prime}\right) \subseteq\left(G^{\prime}\right)^{m}$ be the set defined in $\left(G^{\prime}, \square\right)$ by any $L(G)$-formula formula $\varphi(x)$ that defines X.

We first correct a minor issue: the group F^{\times}is, strictly speaking, not a reduct of F, as 0 is not an element of F^{\times}. Set

$$
\Sigma_{n+1}=\left\{\left(a_{1}, \ldots, a_{n+1}\right) \in\left(F^{\times}\right)^{n+1}: a_{1}+\ldots+a_{n}=a_{n+1}\right\}
$$

and let $\Sigma=\left(\Sigma_{n+1}\right)$. We call $\left(F^{\times}, \Sigma\right)$ the punctured field associated to F. Then $\left(F^{\times}, \Sigma\right)$ is naturally a structure in the language $L_{\mathrm{f}}^{\times}=L_{\mathrm{m}} \cup\left\{\Sigma_{n+1}\right\}$. The group F^{\times}is now an honest reduct of $\left(F^{\times}, \Sigma\right)$.

We will see in the proof of Lemma 2.14 a more substantial advantage working with L_{f}^{\times}instead of L_{f}, namely, L_{f}^{\times}expands L_{m} only by relation symbols and not by function symbols.

Remark 2.9. The following "adding 0" procedure allows us to recover an isomorphic copy of a field from its associated punctured field, but the procedure is applicable to any L_{f}^{\times}structure expanding a multiplicative abelian group. Starting with an L_{f}^{\times}-structure (G, Σ), set $F=G \cup\{0\}$, define + on F^{2} by pretending that G is F^{\times}(i.e. $0+0=0, a+0=0+a=a$ for $a \in G, a+b=c$ for a and b in G if c is the unique element of G satisfying $\Sigma_{3}(a, b, c)$, and $a+b=0$ for the remaining cases), and define \times on F^{2} similarly.

As immediate consequence of Remark 2.9, we get:
Remark 2.10. Suppose F is a field and $\left(F^{\times}, \Sigma\right)$ is its associated punctured field. Then $X \subseteq\left(F^{\times}\right)^{m}$ is definable in F if and only if X is definable in $\left(F^{\times}, \Sigma\right)$.

From Remark 2.9, it is also easy to find an L_{f}^{\times}-theory whose models are precisely the punctured fields. Likewise, we get L_{f}^{\times}-theories $\mathrm{ACF}^{\times}, \mathrm{ACF}_{p}^{\times}$for every p, and $\mathrm{ACF}_{0}^{\times}$whose models are punctured models of $\mathrm{ACF}^{\times}, \mathrm{ACF}_{p}^{\times}$, and $\mathrm{ACF}_{0}^{\times}$respectively. The basic model theory ACF^{\times}can be obtained:

Lemma 2.9. The theory ACF^{\times}admits quantifier elimination and is the model companion of the theory of punctured fields. The theories $\mathrm{ACF}_{p}^{\times}$for various p and $\mathrm{ACF}_{0}^{\times}$are the only completions of ACF^{\times}.

Proof. These statements are easy consequences of Remark 2.9, Remark 2.10, the quantifier elimination of ACF , and the fact that ACF_{p} for various p and ACF_{0} are the only completions of ACF.

Let (F, \triangleleft) be an ACFO^{-}-model and $\left(F^{\times}, \Sigma\right)$ the punctured field associated to F. We call $\left(F^{\times}, \Sigma, \triangleleft\right)$ the punctured ACFO^{-}-model associated to (F, \triangleleft). Then $\left(F^{\times}, \Sigma, \triangleleft\right)$ is a structure in the language $L_{\mathrm{t}}^{\times}=L_{\mathrm{f}}^{\times} \cup L_{\mathrm{mc}}$. We define punctured ACFO_{p}^{-}-models for various p and punctured ACFO_{0}^{-}-models likewise.

By the discussion on "adding 0 " in Remark 2.9, it is easy to see that there is an L_{t}^{\times}-theory whose models are precisely the punctured ACFO^{-}-models. We say that a punctured ACFO^{-}model is existentially closed if it is an existentially closed model of this theory.

The following Lemma allows us to trade existentially closed ACFO^{-}-models with existentially closed punctured ACFO^{-}-models:

Lemma 2.10. An ACFO^{-}-model is existentially closed if and only if its associated punctured ACFO^{-}-model is existentially closed.

Proof. Let $\left(F^{\times}, \Sigma, \triangleleft\right)$ be the punctured ACFO^{-}-model associated to a model (F, \triangleleft) of ACFO^{-}, and suppose $\left(F^{\times}, \Sigma, \triangleleft\right)$ is existentially closed. We assume further that $(F, \triangleleft) \vDash$ ACFO_{p}^{-}for a fixed p and omit the proof of the similar case where (F, \triangleleft) is a model of ACFO_{0}^{-}. Note that an ACFO^{-}-model extending (F, \triangleleft) is then automatically an ACFO_{p}^{-}-model. Let $\varphi(x)$ be a quantifier-free L_{t}-formula which defines a nonempty set in some ACFO_{p}^{-}-model extending (F, \triangleleft). To get the backward implication, we need to show that $\varphi(x)$ already defines a nonempty set in (F, \triangleleft).

Note that $\varphi(x)$ is logically equivalent to $\left(\varphi(x) \wedge x_{i}=0\right) \vee\left(\varphi(x) \wedge x_{i} \neq 0\right)$ with $i \in\{1, \ldots, m\}$, and $\varphi(x) \wedge x_{i}=0$ is equivalent over ACFO_{p}^{-}to a quantifier-free formular with fewer variables. So we reduced to the case where $\varphi(x)$ is logically equivalent to $\varphi(x) \wedge \wedge_{i=1}^{m} x_{i} \neq 0$. Consider the special case where the only atomic formulas of $\varphi(x)$ in which + appears are of the form

$$
t_{1}(x)+\ldots+t_{n}(x)=t_{n+1}(x)
$$

where $t_{i}(x)$ does not further contain + for $i \in\{1, \ldots, n+1\}$. Such a formula $t_{1}(x)+\ldots+t_{n}(x)=$ $t_{n+1}(x)$ defines in an arbitary ACFO_{p}^{-}-model the same set that $\Sigma_{n+1}\left(t_{1}(x), \ldots, t_{n}(x), t_{n+1}(x)\right)$ defines in the associated punctured ACFO_{p}^{-}-model. So we get an L_{t}^{\times}formula $\varphi^{\times}(x)$ such that $\varphi(x)$ defines in an ACFO_{p}^{-}-model the same set that $\varphi^{\times}(x)$ defines in its associated punctured ACFO_{p}^{-}-model. In particular, $\varphi^{\times}(x)$ defines a nonempty set in a punctured ACFO_{p}^{-}-model extending $\left(F^{\times}, \Sigma, \triangleleft\right)$. As $\left(F^{\times}, \Sigma, \triangleleft\right)$ is existentially closed, $\varphi^{\times}(x)$ defines a nonempty set in $\left(F^{\times}, \Sigma, \triangleleft\right)$. Thus, in this special case, $\varphi(x)$ defines a nonempty set in (F, \triangleleft).

We next reduce to the special case in the preceding paragraph. Arrange that every term $t(x)$ appearing in $\varphi(x)$ is of the form $t_{1}(x)+\ldots+t_{k}(x)$ where $t_{i}(x)$ does not contain + for $i \in\{1, \ldots, k\}$. Introduce a new variable y_{t} for each such t, and set y to be the tuple of variables built up from such y_{t}. Replace the appearance of each aforementioned $t(x)$ in $\varphi(x)$ with y_{t} to get a formula $\psi(x, y)$. Then $\varphi(x)$ is equivalent across ACFO_{p}^{-}-models to

$$
\exists y\left(\psi(x, y) \wedge \bigwedge_{t} t(x)=y_{t}\right)
$$

Note that $\psi(x, y) \wedge \wedge_{t} y_{t}=t(x)$ is of the form in the preceding paragraph and defines a nonempty set in an ACFO_{p}-models extending (F, \triangleleft). So $\psi(x, y) \wedge \wedge_{t} y_{t}=t(x)$ defines a nonempty set in (F, \triangleleft). Hence, $\varphi(x)$ also defines a nonempty set in (F, \triangleleft), which concludes the proof of the backward implication.

The forward implication is much easier. The main difficulty with the backward implication comes from the fact that + has no corresponding function symbol in L_{t}^{\times}. On the other hand, basic functions of $\left(F^{\times}, \Sigma, \triangleleft\right)$ are restrictions of basic functions of (F, \triangleleft) to 0 -definable sets of (F, \triangleleft), and basic relations of $\left(F^{\times}, \Sigma, \triangleleft\right)$ are 0-definable sets of (F, \triangleleft). So the analogous argument can be carried out without worrying about the aforementioned difficulty.

In order to "geometrically" characterize the existentially closed models of the expansion of a theory by a unary predicate, Chatzidakis and Pillay implicitly introduced a "largeness property" for definable sets [11]; the name largeness here is taken from the paper [71] by Shelah and Simon. We will provide an analogous notion in this setting.

Suppose (G, \square) is an expansion of $G, X \subseteq G^{m}$ is definable in (G, \square), and (\boldsymbol{G}, \square) is a monster elementary extension of (G, \square). We say that X is multiplicatively large if there is $a \in X(\boldsymbol{G})$ which is not a solution of any nontrivial multiplicative equations over G.

The above definition in particular applies to definable sets in a circularly ordered abelian group (G, \triangleleft) and definable sets in a punctured field (G, Σ). We can extend it in an obvious way to cover definable sets in a field F. A definable subset $X \subseteq F^{m}$ is multiplicative large if $X \cap\left(F^{\times}\right)^{m}$ is multiplicatively large as a definable subset of the punctured field (F^{\times}, Σ) associated to F.

Remark 2.11. Suppose (G, \square) is an expansion of G, and X, X_{1}, and X_{2} are definable in (G, \square) with $X=X_{1} \cup X_{2}$. Then X is multiplicatively large if and only if either X_{1} is multiplicatively large or X_{2} is multiplicatively large.

Even though multiplicative largeness can be defined very generally, it only behaves well under stronger assumptions:

Lemma 2.11. Suppose (G, \square) is an expansion of $G \vDash G M$, and $X \subseteq G^{m}$ is a multiplicatively large definable set in (G, \square). If $\left(G^{\prime}, \square\right)$ is an elementary extension of (G, \square), then $X\left(G^{\prime}\right)$ is a multiplicatively large definable set in $\left(G^{\prime}, \square\right)$.

Proof. Suppose $(G, \square),\left(G^{\prime}, \square\right)$, and X are as above. It follows from Lemma 2.3 that $\operatorname{mdim}(X)=m$. As mdim coincides with Morley rank which is preserved under taking elementary extension, $\operatorname{mdim}\left(X\left(G^{\prime}\right)\right)=m$. Applying Lemma 2.3 again, we get that $X\left(G^{\prime}\right)$ is also multiplicatively large.

We now move on to give the geometric characterization we promised. Suppose $(G, \Sigma, \triangleleft)$ is a punctured ACFO_{p}^{-}-model. We say that $(G, \Sigma, \triangleleft)$ satisfies the geometric characterization if the following two conditions are satisfied:
(1) (G, \triangleleft)) GMO ;
(2) if $X_{1} \subseteq G^{m}$ is a multiplicatively large qf-set in (G, Σ) and $X_{2} \subseteq G^{m}$ is a multiplicative large qf-set in (G, \triangleleft), then $X_{1} \cap X_{2} \neq \varnothing$.

We say that an ACFO^{-}-model (F, \triangleleft) satisfies the geometric characterization if its associated punctured ACFO^{-}-model does, or equivalently, if it satisfies a definition as above but with (G, \triangleleft) replaced by $\left(F^{\times}, \triangleleft\right)$ and (G, Σ) replaced by F. Note that ACF^{\times}admits quantifier elimination, so the assumption that X_{1} is a qf-set is in fact unnecessary.

In the rest of the section, we will show that an ACFO^{-}-model is existentially closed if and only if it satisfies the geometric characterization. If T is an L-theory, let $T(\forall)$ denote the set of L-consequences of T.

Lemma 2.12. Suppose $(G, \Sigma, \triangleleft)$ is an L_{t}^{\times}-structure with $(G, \Sigma) \vDash \operatorname{ACF}_{p}^{\times}(\forall)$ and $(G, \triangleleft) \vDash$ $\mathrm{GMO}_{p}(\forall)$. Then $(G, \Sigma, \triangleleft)$ can be L_{t}^{\times}-embedded into a punctured ACFO_{p}^{-}-model $\left(G^{\prime}, \Sigma, \triangleleft\right)$ such that $\left(G^{\prime}, \triangleleft\right)$ is a model of GMO. A similar statement holds for L_{t}^{\times}-structure with $(G, \Sigma) \vDash \mathrm{ACF}_{0}^{\times}(\forall)$ and $(G, \Sigma) \vDash \mathrm{GMO}_{0}(\forall)$.

Proof. We will only prove the first statement as the proof of the second statement is similar. Let $(G, \Sigma, \triangleleft)$ be as above. We will construct a sequence $\left(G_{n}, \Sigma, \triangleleft\right)_{n}$ of L_{t}^{\times}-structure such that
(1) $\left(G_{0}, \Sigma, \triangleleft\right)$ extends $(G, \Sigma, \triangleleft)$ as an L_{t}^{\times}-structure;
(2) $\left(G_{n+1}, \Sigma, \triangleleft\right)$ is an L_{t}^{\times}-extension of $\left(G_{n}, \Sigma, \triangleleft\right)$;
(3) $\left(G_{2 n}, \Sigma\right)$ is a punctured ACFO_{p}^{-}-model;
(4) $\left(G_{2 n+1}, \triangleleft\right) \vDash \mathrm{GMO}_{p}$ and $\left(G_{2 n+1}, \Sigma\right)$ is a model of $\mathrm{ACF}_{p}^{\times}(\forall)$.

Then we can take $\left(G^{\prime}, \Sigma, \triangleleft\right)$ to be the union of $\left(G_{n}, \Sigma, \triangleleft\right)_{n}$. Note that $\mathrm{ACF}_{p}^{\times}$and GMO_{p} are both inductive theories, as they are model complete, so it is easy to see that $\left(G^{\prime}, \Sigma, \triangleleft\right)$ satisfied the desired conclusion.

As $(G, \Sigma) \vDash \operatorname{ACF}_{p}^{\times}(\forall)$, we can get $\left(G_{0}, \Sigma\right) \vDash \operatorname{ACF}_{p}^{\times}$extending (G, Σ) as an L_{f}^{\times}-structure. On the other hand $(G, \triangleleft) \vDash \mathrm{GMO}_{p}(\forall)$, so we can get a monster model $(\boldsymbol{G}, \triangleleft)$ of GMO_{p} extending (G, \triangleleft) as an L_{mc}-structure. Now both G_{0} and \boldsymbol{G} are models of GM_{p}, and recall that the theory GM_{p} admits quantifier elimination by Proposition 2.1. Hence, there is an embedding of G_{0} into \boldsymbol{G}. We can then define \triangleleft on G_{0} by pull-back via f. Clearly, $\left(G_{0}, \Sigma, \triangleleft\right)$ is a model of ACFO_{p}^{-}.

Suppose we have constructed $\left(G_{2 n}, \Sigma, \triangleleft\right)$ satisfying both (2) and (3). Then $\left(G_{2 n}, \triangleleft\right)$ is a model of GMO_{p}^{-}which has GMO_{p} as a model companion, so we can get $\left(G_{2 n+1}, \triangleleft\right) \vDash \mathrm{GMO}_{p}$
extending $\left(G_{2 n}, \triangleleft\right)$ as an L_{mc}-structure. Choose a monster model (\boldsymbol{G}, Σ) of $\mathrm{ACF}_{p}^{\times}$extending $\left(G_{2 n}, \Sigma\right)$. Note that $G_{2 n}, G_{2 n+1}$, and \boldsymbol{G} are models of GM_{p}, which is a model complete $L_{\mathrm{m}^{-}}$ theory. So there is an L_{m}-embedding $f: G_{2 n+1} \rightarrow \boldsymbol{G}$ which extends the identity map on $G_{2 n}$. Define the family of relations Σ on $\left(G_{2 n+1}, \triangleleft\right)$ as the pull-back via f of the family Σ on \boldsymbol{G}. Then $G_{2 n+1} \vDash \mathrm{ACF}_{p}^{\times}(\forall)$ by construction, and so $\left(G_{2 n+1}, \triangleleft\right) \vDash \mathrm{GMO}_{p}$ satisfies (4).

Finally, suppose we have constructed $\left(G_{2 n+1}, \Sigma, \triangleleft\right)$ satisfying both (2) and (4). We note that the only thing used in the preceding paragraph is that GMO_{p} is the model companion of GMO_{p}^{-}and that GM_{p} is model complete. Hence, we can carry out exactly the same strategy to get the desired conclusion by replacing the former with the fact that $\mathrm{ACF}_{p}^{\times}$is the model companion of $\mathrm{ACF}_{p}(\forall)$ and reusing the latter.

Remark 2.12. Using the fact that GM_{p} is strongly minimal, one can produce a quicker proof of Lemma 2.12 by constructing $\left(G^{\prime}, \Sigma, \triangleleft\right)$ directly. We still choose to present the longer proof here to make the neccesary ingredients transparent.

We need another embedding lemma:
Lemma 2.13. Suppose $(G, \Sigma, \triangleleft)$ is a punctured ACFO_{p}^{-}-model with $(G, \triangleleft) \vDash \mathrm{GMO}_{p}$. Then $(G, \Sigma, \triangleleft)$ can be L_{t}^{\times}-embedded into a punctured ACFO_{p}^{-}-model which satisfies the geometric characterization. A similar statement holds for a punctured $\mathrm{ACFO}_{0}^{-}-\operatorname{model}(G, \Sigma, \triangleleft)$ with $(G, \triangleleft) \vDash \mathrm{GMO}_{0}$.

Proof. We will only prove the first statement, as the proof for the second statement is similar. Suppose $(G, \Sigma, \triangleleft)$ is as stated. Let $X_{1} \subseteq\left(F^{\times}\right)^{m}$ is a multiplicative large qf-set in (G, Σ) and $X_{2} \subseteq\left(F^{\times}\right)^{m}$ is a multiplicative large qf-set in (G, \triangleleft). Our problem can be reduced to finding $\left(G^{\prime}, \Sigma, \triangleleft\right) \vDash \mathrm{ACFO}_{p}^{-}$extending $(G, \Sigma, \triangleleft)$ with $\left(G^{\prime}, \triangleleft\right) \vDash$ GMO such that $X_{1}\left(G^{\prime}\right) \cap X_{2}\left(G^{\prime}\right) \neq \varnothing$. Indeed, we can simply iterate this construction and take the union.

We now construct the aforementioned $\left(G^{\prime}, \Sigma, \triangleleft\right)$. Take a monster elementary extension $\left(\boldsymbol{G}_{\mathbf{1}}, \Sigma\right)$ of (G, Σ) and a monster elementary extension $\left(\boldsymbol{G}_{\boldsymbol{2}}, \triangleleft\right)$ of (G, \triangleleft). As X_{1} is multiplicatively large, we get $a^{\prime} \in X_{1}\left(\boldsymbol{G}_{1}\right)$ whose components are multiplicatively independent over G. Likewise, we get $b^{\prime} \in X_{1}\left(\boldsymbol{G}_{2}\right)$ whose components are multiplicatively independent over G. Let $f:\left\langle G, a^{\prime}\right\rangle \rightarrow \boldsymbol{G}_{2}$ be the unique map which extends the identity map on G and maps a^{\prime} to b^{\prime}. Define the family Σ on $\left\langle G, a^{\prime}\right\rangle$ by restricting the family with the same name on $\boldsymbol{G}_{\boldsymbol{1}}$, and define the relation \triangleleft on $\left\langle G, a^{\prime}\right\rangle$ by pulling back via f the relation with the same name on $\boldsymbol{G}_{\mathbf{2}}$. Then $\left(\left\langle G, a^{\prime}\right\rangle, \Sigma, \triangleleft\right)$ is an L_{t}^{\times}-structure with $\left(\left\langle G, a^{\prime}\right\rangle, \Sigma\right) \vDash \mathrm{ACF}^{\times}(\forall)$ and $\left(\left\langle G, a^{\prime}\right\rangle, \Sigma\right) \vDash \operatorname{GMO}(\forall)$. Applying Lemma 2.12, we get the desired conclusion.

Lemma 2.13 essentially gives us that the characterization works in one direction:

Corollary 2.7. Suppose $(G, \Sigma, \triangleleft)$ is an existentially closed punctured ACFO^{-}-model. Then (G, \triangleleft) satisfies the geometric characterization.

Proof. We consider only the case where $(G, \Sigma, \triangleleft)$ is a punctured ACFO_{p}^{-}-model; the other case with $(G, \Sigma, \triangleleft)$ a punctured ACFO_{0}^{-}-model is very similar. Using Lemma 2.13, we obtain a punctured ACFO_{p}^{-}-model $\left(G^{\prime}, \Sigma, \triangleleft\right)$ extending $(G, \Sigma, \triangleleft)$ as an L_{t}^{\times}-structure such that $\left(G^{\prime}, \Sigma, \triangleleft\right)$ satisfies the geometric characterization.

The structure $(G, \Sigma, \triangleleft)$ is existentially closed in $\left(G^{\prime}, \Sigma, \triangleleft\right)$, so (G, \triangleleft) is existentially closed in $\left(G^{\prime}, \triangleleft\right)$. As $\left(G^{\prime}, \Sigma, \triangleleft\right)$ satisfies the geometric characterization, $\left(G^{\prime}, \triangleleft\right)$ is a model of GMO_{p}. The theory GMO_{p} is model complete, so we can assume that it only consists of $\forall \exists$ statements. It follows that (G, \triangleleft) is also a model of GMO_{p}.

Suppose $X_{1} \subseteq G^{m}$ is a multiplicatively large qf-set in (G, Σ) and $X_{2} \subseteq G^{m}$ is multiplicatively large qf-set in (G, \triangleleft). Then $X_{1}\left(G^{\prime}\right)$ is multiplicatively large in $\left(G^{\prime}, \Sigma\right)$, and $X_{2}\left(G^{\prime}\right)$ is multiplicatively large in $\left(G^{\prime}, \triangleleft\right)$ by Lemma 2.11 and the fact that both $\mathrm{ACF}_{p}^{\times}$and GMO_{p} are model complete. As $\left(G^{\prime}, \Sigma, \triangleleft\right)$ satisfies the geometric characterization, $X_{1}\left(G^{\prime}\right) \cap X_{2}\left(G^{\prime}\right) \neq \varnothing$. So $X_{1} \cap X_{2} \neq \varnothing$ as well by the fact that $(G, \Sigma, \triangleleft)$ is existentially closed. The desired conclusion follows.

We next verify that the characterization works in the other direction:
Lemma 2.14. Suppose $(G, \Sigma, \triangleleft)$ is a punctured model of ACFO^{-}that satisfies the geometric characterization. Then $(G, \Sigma, \triangleleft)$ is existentially closed.

Proof. It suffices to prove the corresponding statements for punctured ACFO_{p}^{-}-models and punctured ACFO_{0}^{-}-models. We will only prove the former as the latter is very similar. Suppose $(G, \Sigma, \triangleleft)$ is a generic punctured model of ACFO_{p}^{-}, and $\varphi(x)$ is a quantifier-free $L_{\mathrm{t}}^{\times}(G)$ formula which defines a nonempty set in a punctured ACFO_{p}^{-}-model $\left(G^{\prime}, \Sigma, \triangleleft\right)$ extending $(G, \Sigma, \triangleleft)$. Our job is to show that $\varphi(x)$ defines a nonempty set in $(G, \Sigma, \triangleleft)$.

As the only function symbols in both L_{f}^{\times}and L_{mc} already appear in L_{m}, we can reduce to the case where $\varphi(x)=\psi(x) \wedge \theta(x)$ with $\psi(x)$ a quantifier-free $L_{\mathrm{f}}^{\times}(G)$-formula and $\theta(x)$ a quantifier-free $L_{\mathrm{mc}}(G)$-formula. Let $a^{\prime} \in\left(G^{\prime}\right)^{m}$ be such that $\left(G^{\prime}, \Sigma, \triangleleft\right) \vDash \varphi\left(a^{\prime}\right)$. Suppose a^{\prime} is multiplicatively independent. Then $\psi(x)$ and $\theta(x)$ define multiplicatively large sets in (G, Σ) and (G, \triangleleft). So $\varphi(x)$ defines a nonempty set in $(G, \Sigma, \triangleleft)$ by the assumption that $(G, \Sigma, \triangleleft)$ satisfies the geometric characterization.

Now consider the general case where a^{\prime} might not be multiplicatively independent. Then we can choose a tuple $b^{\prime} \in\left(G^{\prime}\right)^{n}$ which is multiplicatively independent such that $a^{\prime}=t\left(b^{\prime}\right)$ with $t=\left(t_{1}, \ldots, t_{m}\right)$ and $t_{i}(y)$ is an L_{m}-term for $i \in\{1, \ldots, m\}$. Applying the earlier case for the formula $\varphi(t(y))=\psi(t(y)) \wedge \theta(t(y))$, we get $b \in G^{y}$ such that $(G, \Sigma, \triangleleft) \vDash \varphi(t(b))$. Thus, $\varphi(x)$ defines in $(G, \Sigma, \triangleleft)$ a nonempty set, which is our desired conclusion.

Finally, we put everything together:
Proposition 2.4. An ACFO^{-}-model (F, \triangleleft) is existentially closed if and only if (F, \triangleleft) satisfies the geometric characterization.

Proof. This follows easily from Lemma 2.10, Corollary 2.7, and Lemma 2.14.
2.2.2. Axiomatization. Just as in [11], we want to establish that the class of models of ACFO^{-}satisfying the geometric characterization is elementary. In order to do so, the key is to show that ACF and GMO each "defines multiplicative largeness".

Throughout Section 2.2.2, F is an algebraically closed field, and $V \subseteq\left(F^{\times}\right)^{m}$ is a quasi-affine variety (i.e, a Zariski-open subset of an irreducible Zariski-closed subset of $\left.\left(F^{\times}\right)^{m}\right)$. We equip $\left(F^{\times}\right)^{m}$ with the group structure given by coordinate-wise multiplication, and let $1^{(m)}$ be the identity element of $\left(F^{\times}\right)^{m}$.

Suppose T is an L-theory, $\varphi(x, y)$ is an L-formula, and \mathcal{P} is a property of \mathcal{M}-definable subsets of M^{x} with $\mathcal{M} \vDash T$. We say that T defines \mathcal{P} for $\varphi(x, y)$ if there is an L-formula $\delta(y)$ such that for all $\mathcal{M} \vDash T$ and $b \in M^{y}$, we have

$$
\varphi(\mathcal{M}, b) \text { satisfies } \mathcal{P} \quad \text { if and only if } \quad \mathcal{M} \vDash \delta(b) .
$$

A formula $\delta(y)$ as above is called a \mathcal{P}-defining formula over T for $\varphi(x, y)$. The fact that this is key to axiomatization can be seen through the following lemma:

Lemma 2.15. Assume ACF defines multiplicative largeness for all L_{f}-formulas $\varphi(x, y)$ and GMO defines multiplicative largeness for all quantifier-free L_{mc}-formulas $\psi(x, z)$. Then the class of ACFO^{-}-models satisfying the geometric characterization is elementary.

Proof. Let $\mathrm{ACFO}^{-1 / 2}$ be the $L_{\mathrm{t}^{-}}$-theory whose models are $(F, \triangleleft) \vDash \mathrm{ACFO}^{-}$with $\left(F^{\times}, \triangleleft\right) \vDash$ GMO. Obtain ACFO from $\mathrm{ACFO}^{-1 / 2}$ by adding for each L_{f}-formula $\varphi(x, y)$ and L_{mc}-formula $\psi(x, z)$ the formula

$$
\forall y \forall z(\delta(y) \wedge \hat{\theta}(z) \rightarrow \exists x(\varphi(x, y) \wedge \hat{\psi}(x, z)))
$$

where $\delta(y)$ is a multiplicative largeness-defining formula over ACF for $\varphi(x, y), \theta(z)$ is a multiplicative largeness-defining formula over GMO for $\psi(x, z)$, and $\hat{\theta}(z)$ and $\hat{\psi}(x, z)$ are the obvious modifications of $\theta(z)$ and $\psi(x, z)$ such that $\hat{\theta}(z)$ and $\hat{\psi}(x, z)$ apply to all tuples with components in F. It is easy to see that ACFO axiomatizes the class of ACFO^{-}-models satisfying the geometric characterization.

We next obtain various characterizations of multiplicative largeness in models of ACF and deduce from them the first condition of Lemma 2.15.

Lemma 2.16. A quasi-affine variety $V \subseteq\left(F^{\times}\right)^{m}$ is multiplicatively large if and only if no nontrivial multiplicative equation vanishes on V.

Proof. The forward implication is immediate. Suppose no nontrivial multiplicative equation vanishes on V. As V is irreducible, it is not a subset of a finite union of solution sets of nontrivial multiplicative equations. The desired conclusion then follows a compactness argument.

If $B \subseteq F^{\times}$, a multiplicative system over B is simply a conjunction of multiplicative equations over B. Fact 2.2 below about definable subgroups of $\left(F^{\times}\right)^{m}$ is a consequence of the fact that definable subgroups of $\left(F^{\times}\right)^{m}$ are closed and of the characterization of algebraic subgroups of $\left(F^{\times}\right)^{m}$. For the former, see for instance [58, Lemma 7.4.9]. For the latter, see for instance [8, Corollary 3.2.15]; the proof there is for characteristic 0 but goes through in positive characteristics.

Fact 2.2. Every connected definable subgroup of $\left(F^{\times}\right)^{m}$ is defined by a multiplicative system over \varnothing.

Suppose X_{1}, \ldots, X_{n} are subsets of G. Set $X_{1} \cdots X_{n}=\left\{a_{1} \cdots a_{n}: a_{i} \in X_{i}\right.$ for $\left.1 \leqslant i \leqslant n\right\}$. Moreover, if $X_{1}=\cdots=X_{n}=X$, then we denote this as $\Pi_{m}(X)$. The following fact is a special case of Zilber's Indecomposability theorem for structures of finite Morley rank but was also known much earlier for algebraically closed fields; see [58, Theorem 7.3.2].

Fact 2.3. Suppose $1^{(m)}$ is in V. Then $\Pi_{2 m}(V)$ is (the underlying set of) a connected definable subgroup of $\left(F^{\times}\right)^{m}$. Hence, $\Pi_{2 m}(V)$ is a subgroup of every definable subgroup of $\left(F^{\times}\right)^{m}$ containing V as a subset.

We now have a simple criterion for multiplicative largeness:
Lemma 2.17. If $1^{(m)}$ is in V, then V is multiplicatively large if and only if $\Pi_{2 m}(V)=\left(F^{\times}\right)^{m}$. Proof. For the forward implication, suppose V is multiplicatively large. Then by Lemma 2.16 and Fact 2.2, no proper definable subgroup of $\left(F^{\times}\right)^{m}$ contains V as a subset. It then follows from Fact 2.3 that $\Pi_{2 m}(V)=\left(F^{\times}\right)^{m}$. The backward implication is immediate from Lemma 2.16.

To get from quasi-affine varieties over F to general sets definable in F, we need a result related to defining irreducibility. This and other related results are included in Fact 2.4 as we will also need them later on; see [43, Chapter 10] for details.

Fact 2.4. Supose $\varphi(x, y)$ is an L_{f}-formula, d is in \mathbb{N}, and r is in $\mathbb{N} \geqslant 1$. Then there are formulas $\delta_{d}(y), \mu_{r}(y), \iota(y)$, and $\psi(x, z)$ such that if the families $\left(X_{b}\right)_{b \in Y}$ and $\left(X_{c}\right)_{c \in Z}$ are defined in F by $\varphi(x, y)$ and $\psi(x, z)$, we have the following:
(i) $F \vDash \delta_{d}(b)$ for $b \in Y$ if and only if $\operatorname{dim}\left(X_{b}\right)=d$;
(ii) $F \vDash \mu_{r}(b)$ for $b \in Y$ if and only if the Morley degree of X_{b} is r;
(ii) $F \vDash \iota(b)$ for $b \in Y$ if and only if X_{b} is a quasi-affine subvariety of F^{m};
(iv) $\left(X_{c}\right)_{c \in Z}$ is a family of quasi-affine varieties which contains all irreducible components of members of $\left(X_{b}\right)_{b \in Y}$.

We now put together Fact 2.4 and Lemma 2.17:
Proposition 2.5. The theory ACF defines multiplicative largeness for every L_{f}-formula.
Proof. Suppose $\varphi(x, y)$ is an arbitrary L_{f}^{\times}-formula, $\psi(x, z)$ is as in Fact 2.4, and $\varphi(x, y)$ and $\psi(x, z)$ define in F the families $\left(X_{b}\right)_{b \in Y}$ and $\left(X_{c}\right)_{c \in Z}$. Observe that X_{b} with $b \in Y$ is multiplicatively large if and only if there is $c \in Z$ with $X_{c} \subseteq X_{b}$ and $a \in X_{c} \cap\left(F^{\times}\right)^{m}$ such that $\Pi_{2 m}\left(a^{-1}\left(X_{c} \cap\left(F^{\times}\right)^{m}\right)\right)=\left(F^{\times}\right)^{m}$. It is easy to see from here that ACF defines multiplicative largeness for $\varphi(x, y)$.

Every multiplicative equation over \varnothing is equivalent over GM to a multiplicative equation $t(x)=t^{\prime}(x)$ of the simplified form where the power of every variable is nonnegative and each variable appears only on at most one side of the equation. The degree of a multiplicative equation is the highest power of x_{i} which appears in the above simplified form as i ranges over $\{1, \ldots, m\}$. A simple application of the compactness theorem yields the following corollary:

Corollary 2.8. Suppose $\left(V_{b}\right)_{b \in Y}$ is a family of quasi-affine subvarieties of $\left(F^{\times}\right)^{m}$ passing through $1^{(m)}$. Then there is $N>0$ such that for all $b \in Y$, either V_{b} is multiplicatively large or a nontrivial multiplicative equation over \varnothing with degree at most N vanishes on V_{b}.

We will next obtain a characterization of multiplicative largeness in models of GMO and from there obtain the second condition of Lemma 2.15.

Suppose $(G, \triangleleft) \vDash$ GMO. The \triangleleft-topology on G^{m} is defined as the topology which has a basis consisting of sets of the form $U=U_{1} \times \cdots \times U_{m}$ where U_{i} is the "interval"

$$
\left\{a \in G: \triangleleft\left(d_{i}, a, d_{i}^{\prime}\right)\right\}
$$

with d_{i} and d_{i}^{\prime} in G for $i \in\{1, \ldots, m\}$. It is also easy to see that the \triangleleft-topology on G^{m} is simply the product of the \triangleleft-topologies on the m copies of G.

Lemma 2.18. Suppose (G, \triangleleft) is a model of GMO. Then we have the following:
(i) \triangleleft as a subset of G^{3} is \triangleleft-open;
(ii) the multiplication map is continous.

Proof. It is well known that $\mathbb{U}_{(p)}$ for an arbitrary p and \mathbb{U} are dense in \mathbb{T} with respect to the Euclidean topology. Hence, when (G, \triangleleft) is $\left(\mathbb{U}_{(p)}, \triangleleft\right)$ for some given p or $(\mathbb{U}, \triangleleft)$, the
\triangleleft-topology is just the subspace topology with respect to the usual Euclidean topology on \mathbb{T}. Hence, (i) and (ii) are automatic in these cases. Note that properties (i) and (ii) can be expressed as L_{mc}-statements, so the desired conclusion follows from Proposition 2.2 and Proposition 2.3.

Proposition 2.6. Suppose (G, \triangleleft) is a model of GMO and $X \subseteq G^{m}$ is defined in (G, \triangleleft) by a quantifer-free $L_{\mathrm{mc}}(G)$-formula. Then X is multiplicatively large if and only if X contains a nonempty subset which is \triangleleft-open in G^{m}.

Proof. Let (G, \triangleleft) and X be as stated above. For the forward implication, suppose X is multiplicative large. Note that $\neg \triangleleft(x, y, z)$ is equivalent over GMO to

$$
\triangleleft(z, y, x) \vee(x=y) \vee(y=z) \vee(z=x) .
$$

So quantifier free L_{mc}-formulas are equivalent over GMO to positive quantifier-free formulas. Applying also Remark 2.11, we can assume that X is defined by a formula of the form

$$
\bigwedge_{i \in I} \triangleleft\left(t_{i}(x), t_{i}^{\prime}(x), t_{i}^{\prime \prime}(x)\right) \wedge \bigwedge_{j \in J}\left(t_{j}(x)=t_{j}^{\prime}(x)\right) .
$$

where $t_{i}(x), t_{i}^{\prime}(x), t_{i}^{\prime \prime}(x), t_{j}(x), t_{j}^{\prime}(x)$ are $L_{\mathrm{m}}(G)$-terms for all $i \in I$ and $j \in J$. As X is multiplicatively large, one must have that $t_{j}(x)=t_{j}^{\prime}(x)$ is trivial for all $j \in J$. It then follows from Lemma 2.18 that X is open, which gives us the desired conclusion.

For the backward implication, suppose X contains a a nonempty subset which is \triangleleft-open in G^{m}. We may assume that $X=\prod_{i=1}^{m} X_{i}$ where

$$
X_{i}=\left\{a_{i} \in G: \triangleleft\left(d_{i}, a_{i}, d_{i}^{\prime}\right)\right\},
$$

with $d_{i}, d_{i}^{\prime} \in G$ and $d_{i} \neq d_{i}^{\prime}$ for $i \in\{1, \ldots, m\}$. Let $(\boldsymbol{G}, \triangleleft)$ be a monster elementary extension of (G, \triangleleft). Using Proposition 2.3, it is easy to show that X_{i} is infinite by reducing to the special cases where $G=\mathbb{U}$ or $G=\mathbb{U}_{(p)}$ for some p. Hence, $\left|X_{i}(\boldsymbol{G})\right|>|G|$ for $i \in I$. Hence, we can choose the desired $a^{\prime}=\left(a_{1}^{\prime}, \ldots, a_{m}^{\prime}\right)$ in $X(\boldsymbol{G})$ by ensuring that $a_{i+1}^{\prime} \in X_{i}(\boldsymbol{G})$ is multiplicatively independent over $a_{1}^{\prime}, \ldots, a_{i}^{\prime}$ for $i \in\{1, \ldots, m-1\}$.

From the definition of \triangleleft-topology, we immediately get:
Corollary 2.9. The theory GMO defines multiplicative largeness for all quantifier free $L_{\mathrm{mc}}{ }^{-}$ formulas.

Combining Proposition 2.6, Remark 2.11, and the well-known fact that definable sets in ACF-models are finite unions of quasi-affine varieties, we get:

Corollary 2.10. Suppose (F, \triangleleft) is a model of ACFO^{-}with $\left(F^{\times}, \triangleleft\right) \vDash \operatorname{GMO}$. Then (F, \triangleleft) satisfies the geometric characterization if and only if all multiplicatively large $V \subseteq\left(F^{\times}\right)^{m}$ are dense with respect to the \triangleleft-topology.

We now put together the results of this section and the preceding section to get the existence of the model companion ACFO of ACFO^{-}.

Proof of Theorem 1.1. The desired conclusion follows immediately from Proposition 2.4, Lemma 2.15, Proposition 2.5, and Corollary 2.9.

As a side note, we will show that every model of ACFO has TP_{2}. The notion was defined in [68] by Shelah and systematically studied in [16] by Chernikov. We use here a finitary version of the definition given in [16]. Let \mathcal{M} be an L-structure. An L-formula $\varphi(x, y)$ witnesses that \mathcal{M} has TP_{2} if for each finite set I, there is a family $\left(b_{i j}\right)_{(i, j) \in I^{2}}$ of elements of M^{n} such that the following conditions hold:
(1) $\mathcal{M} \vDash \neg \exists x\left(\varphi\left(x, b_{i j}\right) \wedge \varphi\left(x, b_{i j^{\prime}}\right)\right)$ for every $i \in I$ and distinct j and j^{\prime} in I;
(2) $\mathcal{M} \vDash \exists x \wedge_{i \in I} \varphi\left(x, b_{i f(i)}\right)$ for any $f: I \rightarrow I$.

We say that \mathcal{M} has TP_{2} if there is a formula $\varphi(x, y)$ which witnesses that \mathcal{M} has TP_{2} and say that \mathcal{M} has NTP_{2} otherwise.

Proposition 2.7. Every model of ACFO has TP_{2}.
Proof. Suppose (F, \triangleleft) is a model of ACFO. Let x be a single variable, $y=\left(z, t, t^{\prime}\right)$ with z, t, and t^{\prime} single variables, and $\varphi(x, y)$ the formula

$$
\triangleleft\left(x+z, t, t^{\prime}\right) .
$$

Let I be an arbitrary finite set. Get a family $\left(c_{i}\right)_{i \in I}$ of distinct elements in F. Obtain a family $\left(d_{j}, d_{j}^{\prime}\right)_{j \in I}$ of pairs of elements in F^{\times}with $d_{j} \neq d_{j}^{\prime}$ for all $j \in J$ and

$$
(F, \triangleleft) \vDash \neg \exists x\left(\triangleleft\left(d_{j}, x, d_{j}^{\prime}\right) \wedge \triangleleft\left(d_{j^{\prime}}, x, d_{j^{\prime}}^{\prime}\right)\right) \quad \text { for distinct } j, j^{\prime} \in I
$$

Set $b_{i j}=\left(c_{i}, d_{j}, d_{j}^{\prime}\right)$. It is easy to see that $\varphi(x, y)$ together with $\left(b_{i j}\right)_{(i, j) \in I^{2}}$ satisfy (1) in the definition of a TP_{2}-witness. We assume without loss of generality that $I=\{1, \ldots, k\}$. Set

$$
V=\left\{\left(a+c_{1}, \ldots, a+c_{k}\right): a \in F\right\} .
$$

It suffices to show that V is multiplicatively large as it will follow that $\varphi(x, y)$ together with $\left(b_{i j}\right)_{(i, j) \in I^{2}}$ satisfies (2) in the definition of a TP_{2}-formula as well. We can reduce further to showing triviality for an arbitrarily chosen multiplicative equation $x_{1}^{n_{1}} \cdots x_{m}^{n_{m}}=c x_{1}^{n_{1}^{\prime}} \cdots x_{k}^{n_{m}^{\prime}}$ vanishing on V where c is in F^{\times}, and n_{i} and n_{i}^{\prime} are in \mathbb{N} with either $n_{i}=0$ or $n_{i}^{\prime}=0$ for $i \in\{1, \ldots, m\}$. In this case, we have

$$
\left(a+c_{1}\right)^{n_{1} \cdots}\left(a+c_{m}\right)^{n_{m}}=c\left(a+c_{1}\right)^{n_{1}^{\prime}} \cdots\left(a+c_{m}\right)^{m_{m}^{\prime}} \quad \text { for all } a \in F .
$$

For $i \in\{1, \ldots, m\}$, we substitute $a=-c_{i}$ and deduce $n_{i}=n_{i}^{\prime}=0$. Hence, we also get $c=1$, and the desired conclusion follows.

Remark 2.13. Proposition 2.7 is surprising: following [11], one would expect that models of ACFO have NTP_{2}. It suggests that NTP_{2} is not quite "stable + order + random". In the same direction, recent evidence seems to suggest that "stable + random" is NSOP ${ }_{1}$ instead of simple as earlier thought $[\mathbf{5 2}, \mathbf{5 3}]$. We hope a new candidate for "stable + order + random" will be introduced in the near future.

2.3. Standard models are existentially closed

We will finally show that if \triangleleft is a multiplicative circular order on \mathbb{F}, then $(\mathbb{F}, \triangleleft)$ is a model of ACFO, or in other words, $(\mathbb{F}, \triangleleft)$ satisfies the geometric characterization. This will require two steps:
(1) simplifying the characterization of ACFO-models given by Corollary 2.10 into a characterization that only concerns curves.
(2) using number-theoretic results on character sums over finite fields and counting points over finite fields in combination with Weyl's criterion for equidistribution to show that $(\mathbb{F}, \triangleleft)$ satisfies the characterization specified in (1).
2.3.1. Geometric characterization with curves. We will show that every multiplicatively large variety contains as a subset a curve which is multiplicatively large. This curve will be obtained by intersecting the original variety with suitably chosen hyperplanes of the ambient space. Combining this with Corollary 2.10, we will get the desired simplified characterization of ACFO-models.

Throughout Section 2.3.1, we work with a fixed algebraically closed fied F, and definable means definable in F. The notions of open, closed, irreducible, and dense are with respect to the Zariski topology, which is natural in this context. Let dim be the canonical dimension for algebraically closed fields, so dim coincides with Morley rank, topological dimension, acl-dimension, etc. Let mult be the Morley degree. If $X \subseteq F^{m}$ is definable with mult $X=1$, we say that X is generically irreducible and let the maximal component of X be the unique quasi-affine variety with maximal dimension in the decomposition of X into irreducible components. We let V range over the quasi-affine subvarieties of $\left(F^{\times}\right)^{m}$ and C range over the one-dimension quasi-affine subvarieties of $\left(F^{\times}\right)^{m}$.

Let S be $F^{m} \backslash\left\{0^{(n)}\right\}$. If b is an element of S, let H_{b} be the hyperplane defined by the equation $b \cdot x=1$ where $b \cdot x$ is the usual vector dot product between b and x. So S is essentially the space parametrizing the affine hyperplanes of F^{m}. For each definable set $X \subseteq F^{m}$ and $b_{1}, \ldots, b_{n} \in S$, set

$$
X\left(b_{1}, \ldots, b_{n}\right)=X \cap H_{b_{1}} \cap \ldots \cap H_{b_{n}}
$$

Fact 2.5 below is a well-known consequence of Fact 2.4, Bezout's theorem [67, Section 4.1] and Bertini's theorem [67, Theorem 2.26].

Fact 2.5. Suppose $W \subseteq F^{m}$ is generically irreducible, and $\operatorname{dim} W=n+1$. Then the set of $\left(b_{1}, \ldots, b_{n}\right) \in S^{n}$ satisfying the following conditions (i) and (ii) is definable and dense in S^{n} :
(i) $W\left(b_{1}, \ldots, b_{i}\right)$ is generically irreducible for $i \in\{1, \ldots, n\}$;
(ii) $\operatorname{dim} W\left(b_{1}, \ldots, b_{i}\right)=\operatorname{dim} W\left(b_{1}, \ldots, b_{i-1}\right)-1$ for all $i \in\{1, \ldots, n\}$.

Hence, for such $\left(b_{1}, \ldots, b_{n}\right) \in S^{n}$, the maximal component of $W\left(b_{1}, \ldots, b_{i}\right)$ is a subset of the maximal component of $W\left(b_{1}, \ldots, b_{i-1}\right)$ for $i \in\{1, \ldots, n\}$.

For each $V \subseteq F^{m}$, define S_{V} to be the set of $b \in S$ such that V is a subset of H_{b}.
Remark 2.14. If V is a single point c, then S_{c} is an irreducible quasi-affine variety and $\operatorname{dim} S_{c}=m-1$. If $\operatorname{dim}(V) \geqslant 1$, then $\operatorname{dim} S_{V} \leqslant m-2$.

We need a variation of Fact 2.5:
Lemma 2.19. Suppose $W \subseteq F^{m}$ is generically irreducible, and $\operatorname{dim} W=n+1$. Then there is c in the maximal component of W such that the set Y_{c} of $\left(b_{1}, \ldots, b_{n}\right) \in S_{c}^{n}$ satisfying conditions (i)-(iii) below is dense in S_{c}^{n}.
(i) $W\left(b_{1}, \ldots, b_{i}\right)$ is generically irreducible for $i \in\{1, \ldots, n\}$;
(ii) $\operatorname{dim} W\left(b_{1}, \ldots, b_{i}\right)=\operatorname{dim} W\left(b_{1}, \ldots, b_{i-1}\right)-1$ for all $i \in\{1, \ldots, n\}$;
(iii) c is in $W\left(b_{1}, \ldots, b_{n}\right)$.

Moreover, with the above c, if $X \subseteq W$ is definable and satisfies $\operatorname{dim} X<\operatorname{dim} W$, then the set of $\left(b_{1}, \ldots, b_{n}\right) \in Y_{c}$ such that $\operatorname{dim} X\left(b_{1}, \ldots, b_{n}\right) \leqslant 0$ is also dense in S_{c}^{n}.

Proof. Suppose W and n are as stated above, and $Y \subseteq S^{n}$ is the set obtained in Fact 2.5. We show the first statement of the lemma. Let Γ be

$$
\left\{\left(b_{1}, \ldots, b_{n}, c\right) \in Y \times W: c \text { is in the maximal component of } W\left(b_{1}, \ldots, b_{n}\right)\right\}
$$

We note that Γ is definable by Fact 2.4. Let $\pi_{1}: \Gamma \rightarrow Y$ and $\pi_{2}: \Gamma \rightarrow W$ be the projection maps. For each $c \in W$, we have $\pi_{2}^{-1}(c) \subseteq S_{c}^{n} \times\{c\}$ and $\pi_{1}\left(\pi_{2}^{-1}(c)\right) \subseteq S_{c}^{n}$. We want to find c such that $\pi_{1}\left(\pi_{2}^{-1}(c)\right)$ is dense in S_{c}^{n}. As S_{c}^{n} is irreducible of dimension $n(m-1)$, for the current purpose, it suffices to find $c \in W$ such that $\operatorname{dim} \pi_{2}^{-1}(c)=n(m-1)$.

For each $\left(b_{1}, \ldots, b_{n}\right) \in Y$, we have $\operatorname{dim} \pi_{1}^{-1}\left(b_{1}, \ldots, b_{n}\right)=1$. As $\operatorname{dim} Y=\operatorname{dim} S^{n}=m n$, it follows that $\operatorname{dim} \Gamma=m n+1$. As $\operatorname{dim} W=n+1$, the set

$$
\left\{c \in W: \operatorname{dim} \pi_{2}^{-1}(c)=n(m-1)\right\}
$$

must be dense in W. So we obtain c such that the set Y_{c} of $\left(b_{1}, \ldots, b_{n}\right) \in S_{c}^{n}$ satisfying conditions (i)-(iii) is dense in S_{c}^{n}.

Now suppose X is as in the second part of the statement. Note that $\operatorname{dim} X\left(b_{1}, \ldots, b_{n}\right)$ is at most $\operatorname{dim} W\left(b_{1}, \ldots, b_{n}\right)=1$. By Fact 2.4 and the irreducibility of S_{c}^{n}, exactly one of the following two possibilities happens:
(1) $\left\{\left(b_{1}, \ldots, b_{n}\right) \in Y_{c}: \operatorname{dim} X\left(b_{1}, \ldots, b_{n}\right) \leqslant 0\right\}$ is dense in S_{c}^{n}
(2) $\left\{\left(b_{1}, \ldots, b_{n}\right) \in Y_{c}: \operatorname{dim} X\left(b_{1}, \ldots, b_{n}\right)=1\right\}$ is dense in S_{c}^{n}.

We need to show that (2) cannot happen. Suppose to the contrary that it does. Then using Fact 2.4, we get a definable dense subset R_{c} of S_{c}^{n} and $i \in\{1, \ldots, n\}$ such that

$$
\operatorname{dim} X\left(b_{1}, \ldots, b_{i}\right)=\operatorname{dim} X\left(b_{1}, \ldots, b_{i-1}\right)=\operatorname{dim} W\left(b_{1}, \ldots, b_{i}\right)<\operatorname{dim} W\left(b_{1}, \ldots, b_{i-1}\right)
$$

for all $\left(b_{1}, \ldots, b_{n}\right)$ in R_{c}. Shrinking R_{c} further if necessary, we can arrange that $R_{c}=U_{c}^{n}$ with U_{c} a definable dense subset of S_{c}. Fix $\left(b_{1}, \ldots, b_{i-1}\right) \in U_{c}^{i-1}$. Then for all b_{i} in U_{c}, the hyperplane $H_{b_{i}}$ must contain an irreducible component of $X\left(b_{1}, \ldots, b_{i-1}\right)$ with dimension $\geqslant 1$. Remark 2.14 then gives us that $\operatorname{dim} U_{c} \leqslant m-2$ which contradicts the fact that U_{c} is dense in S_{c} and $\operatorname{dim} S_{c}=m-1$. The desired conclusion follows.

Proposition 2.8. Suppose V is multiplicatively large and $\operatorname{dim} V=n+1$. Then there is $\left(b_{1}, \ldots, b_{n}\right) \in S^{n}$ such that $V\left(b_{1}, \ldots, b_{n}\right)$ is generically irreducible with multiplicatively large maximal component of dimension one.

Proof. Obtain c in V and Y_{c} as in the first part of Lemma 2.19. Then for all $\left(b_{1}, \ldots, b_{n}\right) \in Y_{c}$, $V\left(b_{1}, \ldots, b_{n}\right)$ is generically irreducible with maximal component $C\left(b_{1}, \ldots, b_{n}\right)$ of dimension one. It suffices to show that the set

$$
\left\{\left(b_{1}, \ldots, b_{n}\right) \in Y_{c}: C\left(b_{1}, \ldots, b_{n}\right) \text { is multiplicatively large }\right\}
$$

is dense in Y_{c}. Replacing V with $c^{-1} V$ and c with $1^{(m)}$ if neccesary, we arrange that $c=1^{(m)}$. Hence, $\left(C\left(b_{1}, \ldots, b_{m}\right)\right)_{\left(b_{1}, \ldots, b_{m}\right) \in Y_{c}}$ is a family of subvarieties of $\left(F^{\times}\right)^{m}$ passing through $1^{(m)}$. Obtain N as in Corollary 2.8 for this family. Let $\left(X_{i}\right)_{i=1}^{k}$ list the intersections of V with the solution sets of the multiplicative equations of the form $M(x)=1$ with $\operatorname{deg} M<N$, and set $X=\bigcup_{i=1}^{k} X_{i}$. As V is multiplicatively large, $\operatorname{dim} X<\operatorname{dim} V$. It then follows from the second part of Lemma 2.19 that

$$
\left\{\left(b_{1}, \ldots, b_{n}\right) \in Y_{c}: \operatorname{dim} X\left(b_{1}, \ldots, b_{n}\right) \leqslant 0\right\} \text { is dense in } Y_{c} .
$$

Suppose $\left(b_{1}, \ldots, b_{n}\right)$ is in the above set. Then $C\left(b_{1}, \ldots b_{n}\right)$ is not a subset of $X\left(b_{1}, \ldots, b_{n}\right)$. So $C\left(b_{1}, \ldots b_{n}\right)$ is not a subset of $X=\bigcup_{i=1}^{k} X_{i}$. By the property of $N, C\left(b_{1}, \ldots, b_{n}\right)$ is multiplicatively large, which gives us the desired conclusion.

Combining with Corollary 2.10, we get:

Corollary 2.11. Suppose (F, \triangleleft) is a model of ACFO^{-}and $\left(F^{\times}, \triangleleft\right) \vDash \operatorname{GMO}$. Then (F, \triangleleft) satisfies the geometric characterization if and only if all multiplicatively large $C \subseteq\left(F^{\times}\right)^{m}$ are dense with respect to the \triangleleft-topology.
2.3.2. Standard models and number-theoretic randomness. We now use the results in the preceding section to prove Theorem 1.2. Other ingredients include a variant of Weyl's criterion for equidistribution and results on counting points and character sums over finite fields, which are consequences of the Weil conjectures for curves over finite fields.

In Section 2.3.2, let \triangleleft be the clockwise circular order on \mathbb{T}. The multiplicative group \mathbb{T}^{m} is a compact topological group. So \mathbb{T}^{m} is equipped with a unique normalized Haar measure μ. A sequence $\left(X_{n}\right)$ of finite subsets of \mathbb{T}^{m} becomes equidistributed in \mathbb{T}^{m} if

$$
\lim _{n \rightarrow \infty} \frac{\left|X_{n} \cap U\right|}{\left|X_{n}\right|}=\mu(U) \quad \text { for all } \triangleleft \text {-open } U \subseteq \mathbb{T}^{m}
$$

The following result is a variant of Weyl's criterion for this setting; a proof can be obtained by adapting that of [77, Theorem 2.1].

Fact 2.6. A sequence $\left(X_{n}\right)$ of finite subsets of \mathbb{T}^{m} becomes equidistributed if and only if

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{\left|X_{n}\right|} \sum_{a \in X_{n}} a_{1}^{l_{1} \cdots a_{m}^{l_{m}}}\right)=0 \quad \text { for all }\left(l_{1}, \ldots, l_{m}\right) \in \mathbb{Z}^{m} \backslash\left\{0^{(m)}\right\}
$$

Below are the consequences of Weil conjectures for curves that we need; see [87] for Fact 2.7(i) and [63, Proposition 4.5] for a stronger version of Fact 2.7(ii).

Fact 2.7. Suppose $C \subseteq \mathbb{F}^{m}$ is a one-dimensional quasi-affine variety over $\mathbb{F}, f \in \mathbb{F}[C]$ has image in \mathbb{F}^{\times}, char $(\mathbb{F})=p, C$ and f are definable over \mathbb{F}_{q} (in the model-theory sense, or equivalently for perfect fields like \mathbb{F}_{q}, in the field sense), and $\chi: \mathbb{F}^{\times} \rightarrow \mathbb{C}^{\times}$is an injective group homomorphism. Then there is a constant $N \in \mathbb{N} \geqslant 1$ such that for all $n \geqslant 1$,
(i) $\left|C\left(\mathbb{F}_{q^{n}}\right)\right|<q^{n}+N \sqrt{q^{n}}$;
(ii) $\left|\sum_{a \in C\left(\mathbb{F}_{q^{n}}\right)} \chi(f(a))\right|<N \sqrt{q^{n}}$.

Here, $C\left(\mathbb{F}_{q^{n}}\right)$ is the set of $\mathbb{F}_{q^{n}}$-points of C.
Proof of Theorem 1.2. Applying Corollary 2.6, it suffices to verify for fixed \mathbb{F}, injective group homomorphism $\chi: \mathbb{F}^{\times} \rightarrow \mathbb{T}$, and multiplicative circular order \triangleleft_{χ} on \mathbb{F} (as defined in the paragraph preceding the same corollary), that $\left(\mathbb{F}, \triangleleft_{\chi}\right)$ is a model of ACFO. By Proposition 2.4, it suffices to show that $\left(\mathbb{F}, \triangleleft_{\chi}\right)$ satisfies the geometric characterization. Using Proposition 2.2 and Corollary 2.11, we reduce the problem further to showing for a fixed multiplicatively large one-dimensional quasi-affine variety $C \subseteq\left(\mathbb{F}^{\times}\right)^{m}$ that C is dense in $\left(\mathbb{F}^{\times}\right)^{m}$ with respect to the $\triangleleft \chi$-topology. This is equivalent to showing that $\chi(C)$ is dense in \mathbb{T}^{m} with respect to the \triangleleft-topology.

Assume, without loss of generality, that $\operatorname{char}(\mathbb{F})=p$ and C is definable over \mathbb{F}_{q}. Let $C\left(\mathbb{F}_{q^{n}}\right)$ be the set of $\mathbb{F}_{q^{n}}$-points of C. Note that $C=\bigcup_{n} C\left(\mathbb{F}_{q^{n}}\right)$. Hence, the denseness of $\chi(C)$ in \mathbb{T}^{m} with respect to the \triangleleft-topology follows from a stronger result: if X_{n} is the image of $C\left(\mathbb{F}_{q^{n}}\right)$ under χ, then the sequence $\left(X_{n}\right)$ becomes equidistributed. Using Fact 2.6 , we reduce the problem to verifying that

$$
\lim _{n \rightarrow \infty}\left(\frac { 1 } { | C (\mathbb { F } _ { q ^ { n } }) | } \sum _ { a \in C (\mathbb { F } _ { q ^ { n } }) } \chi \left(a_{1}^{\left.\left.l_{1} \cdots a_{m}^{l_{m}}\right)\right)=0 \quad \text { for all }\left(l_{1}, \ldots, l_{m}\right) \in \mathbb{Z}^{m} \backslash\left\{0^{(m)}\right\} . . . ~ . ~}\right.\right.
$$

It is easy to check that C together with $f(x)=x_{1}^{l_{1} \cdots x_{m}^{l_{m}} \text { satisfies all the conditions described }}$ in Fact 2.7, so we arrive at the desired conclusion.

Remark 2.15. All approaches to prove Theorem 1.2 so far require the use of character sums over finite fields, counting points over finite fields, and Weyl's criterion for equidistribution. However, slightly different paths could have been taken.

The original approach in our earlier write-up [79] did not go through Section 2.3.1, but directly used Corollary 2.10 and appealed to the much deeper results on character sums over varieties and counting points over varieties [25]. It is possible to avoid these results in the appendix through a rather lengthy proof of "Lang-Weil Theorem for character sums" provided in the appendix of the same manuscript.

We also proved there that ACFO is acl $_{\text {f }}$-complete (i.e., every complete type over a fieldtheoretic algebraically closed set is determined by the quantifier-free part of that type); this is a refinement of the fact that ACFO is model complete as every ACFO-model expands an algebraically closed field. Hrushovski pointed out a shorter path to aclf-completeness which only uses character sums and counting points over curves: using a similar aproach as in our proof of Theorem 1.1, one can get a similar axiomatization correspoding to the simplified geometric characterization in Corollary 2.3.1; then one can show directly that the resulting theory is acle-complete by a back-and-forth argument. Only results for curves are necessary in this approach as in the back-and-forth argument, one can extend a field-theoretic algebraically closed set each time by an element with transcendence degree $\leqslant 1$.

The current approach is in between. It preserves some of the original intuitive ideas in [79] while not appealing to deep number-theoretic results. The current geometric characterization of existentially closed models of ACFO^{-}is closer to the notion of an interpolative structure in Chapter 6 than the simplified geometric characterization that one would get following the approach suggested by Hrushovski. Proposition 2.8 is interesting in its own right, and the technology might be useful elsewhere. The acl ${ }_{f}$-completeness of ACFO can also be obtained now from the general machinery of interpolative fusions [54].

CHAPTER 3

Additive groups of \mathbb{Z} and \mathbb{Q} and predicates for being square-free

We also treat this chapter as the continuation of the corresponding summary in the introduction and keep the notational conventions, definitions, and statements of theorems given there. In Section 3.1, we define the appropriate notions of randomness for the structures under consideration. The model completeness and decidability results are proven in Section 3.2 and the combinatorial tameness results are proven in Section 3.3.

Throughout the chapter, let x be a single variable, y a finite tuple of variables of unspecified length, z the tuple $\left(z_{1}, \ldots, z_{n}\right)$ of variables, and z^{\prime} the tuple $\left(z_{1}^{\prime}, \ldots, z_{n^{\prime}}^{\prime}\right)$ of variables. For an n-tuple a of elements from a certain set, we let a_{i} denote the i-th component of a for $i \in\{1, \ldots, n\}$. For an abelian group G and $a \in G$, we define $k a$ in the obvious way and write k for $k 1$.

3.1. Genericity of the examples

We can view \mathbb{Z} and \mathbb{Q} as structures in a language L_{b} consisting of function symbols for 0,1 , ,$+ a \mapsto-a$; we will refer to L_{b} as the base language. So $\left(\mathbb{Z}, \mathrm{SF}^{\mathbb{Z}}\right)$ and $\left(\mathbb{Q}, \mathrm{SF}^{\mathbb{Q}}\right)$ are structures in the language L_{u} extending L_{b} by a unary predicate symbol for $\mathrm{SF}^{\mathbb{Z}}$, and $\left(\mathbb{Z},<, \mathrm{SF}^{\mathbb{Z}}\right)$ and $\left(\mathbb{Q},<, \mathrm{SF}^{\mathbb{Q}}\right)$ as structures in the language L_{ou} extending L_{u} by a binary predicate symbol for the natural orderings $<$.

We study the structure $\left(\mathbb{Z}, \mathrm{SF}^{\mathbb{Z}}\right)$ indirectly by looking at its definable expansion to a richer language. For given p and l, set

$$
U_{p, l}^{\mathbb{Z}}=\left\{a \in \mathbb{Z}: v_{p}(a) \geqslant l\right\} .
$$

Let $\mathcal{U}^{\mathbb{Z}}=\left(U_{p, l}^{\mathbb{Z}}\right)$. The definition for $l \leqslant 0$ is not too useful as $U_{p, l}^{\mathbb{Z}}=\mathbb{Z}$ in this case. However, we still keep this for the sake of uniformity as we treat $\left(\mathbb{Q}, \mathrm{SF}^{\mathbb{Q}}\right)$ later. For $m>0$, set

$$
P_{m}^{\mathbb{Z}}=\left\{a \in \mathbb{Z}: v_{p}^{\mathbb{Z}}(a)<2+v_{p}(m) \text { for all } p\right\} .
$$

In particular, $P_{1}^{\mathbb{Z}}=\mathrm{SF}^{\mathbb{Z}}$. Let $\mathcal{P}^{\mathbb{Z}}=\left(P_{m}^{\mathbb{Z}}\right)_{m>0}$. We have that $\left(\mathbb{Z}, U^{\mathbb{Z}}, \mathcal{P}^{\mathbb{Z}}\right)$ is a structure in the language L_{u}^{*} extending L_{u} by families of unary predicate symbols for $\mathcal{U}^{\mathbb{Z}}$ and $\left(P_{m}^{\mathbb{Z}}\right)_{m>1}$. Note that

$$
U_{p, l}^{\mathbb{Z}}=\mathbb{Z} \text { for } l \leqslant 0, \quad U_{p, l}^{\mathbb{Z}}=p^{l} \mathbb{Z} \text { for } l>0, \text { and } \quad P_{m}^{\mathbb{Z}}=\bigcup_{d \mid m} d \mathrm{SF}^{\mathbb{Z}} \text { for } m>0
$$

Hence, $U_{p, l}^{\mathbb{Z}}$ and $P_{m}^{\mathbb{Z}}$ are definable in $\left(\mathbb{Z}, \mathrm{SF}^{\mathbb{Z}}\right)$, and so a subset of \mathbb{Z} is definable in $\left(\mathbb{Z}, \mathcal{U}^{\mathbb{Z}}, \mathcal{P}^{\mathbb{Z}}\right)$ if and only if it is definable in $\left(\mathbb{Z}, \mathrm{SF}^{\mathbb{Z}}\right)$.

Let $\left(G, \mathcal{P}^{G}, \mathcal{U}^{G}\right)$ be an L_{u}^{*}-structure. Then \mathcal{U}^{G} is a family indexed by pairs (p, l), and \mathcal{P}^{G} is a family indexed by m. For p, l, and m, define $U_{p, l}^{G} \subseteq G$ to be the member of \mathcal{U}^{G} with index (p, l) and $P_{m}^{G} \subseteq G$ to be the member of the family \mathcal{P}^{G} with index m. In particular, we have $\mathcal{U}^{G}=\left(U_{p, l}^{G}\right)$ and $P^{G}=\left(P_{m}^{G}\right)_{m>0}$. Clearly, this generalizes the previous definition for \mathbb{Z}.

We isolate the basic first-order properties of $\left(\mathbb{Z}, \mathcal{U}^{\mathbb{Z}}, \mathcal{P}^{\mathbb{Z}}\right)$. Let $\mathrm{Sf}_{\mathbb{Z}}^{*}$ be a recursive set of $L_{\mathrm{u}}^{*}-$ sentences such that an L_{u}^{*}-structure $\left(G, \mathcal{U}^{G}, \mathcal{P}^{G}\right)$ is a model of $\mathrm{Sf}_{\mathbb{Z}}^{*}$ if and only if $\left(G, \mathcal{U}^{G}, \mathcal{P}^{G}\right)$ satisfies the following properties:
(Z1) G is elementarily equivalent to \mathbb{Z};
(Z2) $U_{p, l}^{G}=G$ for $l \leqslant 0$, and $U_{p, l}^{G}=p^{l} G$ for $l>0$;
(Z3) 0 and 1 are in P_{1}^{G};
(Z4) for any given p, we have that $p a \in P_{1}^{G}$ if and only if $a \in P_{1}^{G}$ and $a \notin U_{p, 1}^{G}$;
(Z5) $P_{m}^{G}=\bigcup_{d \mid m} d P_{1}^{G}$ for all $m>0$.
The fact that we could choose $\mathrm{Sf}_{\mathbb{Z}}^{*}$ to be recursive follows from the well-known decidability of \mathbb{Z}. Clearly, $\left(\mathbb{Z}, \mathcal{U}^{\mathbb{Z}}, \mathcal{P}^{\mathbb{Z}}\right)$ is a model of $\mathrm{Sf}_{\mathbb{Z}}^{*}$. Several properties which hold in $\left(\mathbb{Z}, \mathcal{U}^{\mathbb{Z}}, \mathcal{P}^{\mathbb{Z}}\right)$ also hold in an arbitrary model of $\mathrm{Sf}_{\mathbb{Z}}^{*}$:

Lemma 3.1. Let $\left(G, \mathcal{U}^{G}, \mathcal{P}^{G}\right)$ be a model of $\mathrm{Sf}_{\mathbb{Z}}^{*}$. Then we have the following:
(i) $\left(G, \mathcal{U}^{G}\right)$ is elementarily equivalent to $\left(\mathbb{Z}, \mathcal{U}^{\mathbb{Z}}\right)$;
(ii) for all k, p, l, and $m>0$, we have that

$$
k \in U_{p, l}^{G} \text { if and only if } k \in U_{p, l}^{\mathbb{Z}} \text { and } k \in P_{m}^{G} \text { if and only if } k \in P_{m}^{\mathbb{Z}}
$$

(iii) for all $h \neq 0, p$, and l, we have that $h a \in U_{p, l}^{G}$ if and only if $a \in U_{p, l-v_{p}(h)}^{G}$;
(iv) if $a \in G$ is in $U_{p, 2+v_{p}(m)}^{G}$ for some p, then $a \notin P_{m}^{G}$;
(v) for all $h \neq 0$ and $m>0, h a \in P_{m}^{G}$ if and only if we have

$$
a \in P_{m}^{G} \quad \text { and } a \notin U_{p, 2+v_{p}(m)-v_{p}(h)}^{G} \text { for all } p \text { which divides } h ;
$$

(vi) for all $h>0$ and $m>0, a \in P_{m}^{G}$ if and only if $h a \in P_{m h}^{G}$.

Proof. Fix a model $\left(G, \mathcal{U}^{G}, \mathcal{P}^{G}\right)$ of $\mathrm{Sf}_{\mathbb{Z}}^{*}$. It follows from (Z2) that the same first-order formula defines both $U_{p, l}^{G}$ in G and $U_{p, l}^{\mathbb{Z}}$ in \mathbb{Z}. Then using (Z1), we get (i). The first assertion of (ii) is immediate from (i). Using this, (Z3), and (Z4), we get the second assertion of (ii) for the case $m=1$. For $m \neq 1$, we reduce to the case $m=1$ using property (Z5). Statement (iii) is an immediate consequence of (i). We only prove below the cases $m=1$ of (iv -vi) as the remaining cases of the corresponding statements can be reduced to these using (Z5). Statement (iv) is immediate for the case $m=1$ using (Z2) and (Z4). The case $m=1$ of (v)
follows from (iii), (iv), and repeated application of (Z4). The case $m=1$ of (vi) follows from (iv), (v) and (Z5).

We next consider the structures $\left(\mathbb{Q}, \mathrm{SF}^{\mathbb{Q}}\right)$ and $\left(\mathbb{Q},<, \mathrm{SF}^{\mathbb{Q}}\right)$. For given p, l, and $m>0$, in the same fashion as above, we set

$$
U_{p, l}^{\mathbb{Q}}=\left\{a \in \mathbb{Q}: v_{p}(a) \geqslant l\right\} \quad \text { and } \quad P_{m}^{\mathbb{Q}}=\left\{a \in \mathbb{Q}: v_{p}(a)<2+v_{p}(m) \text { for all } p\right\},
$$

and let

$$
\mathcal{U}^{\mathbb{Q}}=\left(U_{p, l}^{\mathbb{Q}}\right) \quad \text { and } \quad \mathcal{P}^{\mathbb{Q}}=\left(P_{m}^{\mathbb{Q}}\right)_{m>0} .
$$

Then $\left(\mathbb{Q}, \mathcal{U}^{\mathbb{Q}}, \mathcal{P}^{\mathbb{Q}}\right)$ is a structure in the language L_{u}^{*}. Clearly, every subset of \mathbb{Q}^{n} definable in $\left(\mathbb{Q}, \mathrm{SF}^{\mathbb{Q}}\right)$ is also definable in $\left(\mathbb{Q}, \mathcal{U}^{\mathbb{Q}}, \mathcal{P} \mathbb{Q}\right)$. A similar statement holds for $\left(\mathbb{Q},<, \mathrm{SF}^{\mathbb{Q}}\right)$ and $\left(\mathbb{Q},<, \mathcal{U}^{\mathbb{Q}}, \mathcal{P}^{\mathbb{Q}}\right)$. We will show that the reverse implications are also true.
Lemma 3.2. Every integer is a sum of two elements from $\mathrm{SF}^{\mathbb{Z}}$.
Proof. We prove the statement for a given integer k. $\mathrm{As}_{\mathrm{SF}^{\mathbb{Z}}}=-\mathrm{SF}^{\mathbb{Z}}$ and the cases where $k=0$ or $k=1$ are immediate, we assume that $k>1$. It follows from [66] that the number of square-free positive integers lesser than k is at least $\frac{53 k}{88}$. Since $\frac{53}{88}>\frac{1}{2}$, this implies k can be written as a sum of two positive square-free integers which is the desired conclusion.
Lemma 3.3. For all p and $l, U_{p, l}^{\mathbb{Q}}$ is existentially 0 -definable in $\left(\mathbb{Q}, \mathrm{SF}^{\mathbb{Q}}\right)$.
Proof. As $U_{p, l+n}^{\mathbb{Q}}=p^{n} U_{p, l}^{\mathbb{Q}}$ for all l and n, it suffices to show the statement for $l=0$. Fix a prime p. We have for all $a \in \mathrm{SF}^{\mathbb{Q}}$ that

$$
v_{p}(a) \geqslant 0 \text { if and only if } p^{2} a \notin \mathrm{SF}^{\mathbb{Q}} .
$$

Using Lemma 3.2, for all $a \in \mathbb{Q}$, we have that $v_{p}(a) \geqslant 0$ if and only if there are $a_{1}, a_{2} \in \mathbb{Q}$ such that

$$
\left(a_{1} \in \mathrm{SF}^{\mathbb{Q}} \wedge v_{p}\left(a_{1}\right) \geqslant 0\right) \wedge\left(a_{2} \in \mathrm{SF}^{\mathbb{Q}} \wedge v_{p}\left(a_{2}\right) \geqslant 0\right) \text { and } a=a_{1}+a_{2}
$$

Hence, the set $U_{p, 0}^{\mathbb{Q}}=\left\{a \in \mathbb{Q}: v_{p}(a) \geqslant 0\right\}$ is existentially definable in $\left(\mathbb{Q}, \mathrm{SF}^{\mathbb{Q}}\right)$. The desired conclusion follows.

It is also easy to see that for all $m, P_{m}^{\mathbb{Q}}=m \mathrm{SF}^{\mathbb{Q}}$ for all $m>0$, and so $P_{m}^{\mathbb{Q}}$ is existentially 0 -definable in $\left(\mathbb{Q}, \mathrm{SF}^{\mathbb{Q}}\right)$. Combining with Lemma 3.3, we get:

Proposition 3.1. Every subset of \mathbb{Q}^{n} definable in $\left(\mathbb{Q}, \mathcal{U}^{\mathbb{Q}}, \mathcal{P}^{\mathbb{Q}}\right)$ is also definable in $\left(\mathbb{Q}, \mathrm{SF}^{\mathbb{Q}}\right)$. The corresponding statement for $\left(\mathbb{Q},<, \mathcal{U}^{\mathbb{Q}}, \mathcal{P}^{\mathbb{Q}}\right)$ and $\left(\mathbb{Q},<, \mathrm{SF}^{\mathbb{Q}}\right)$ holds.

In view of the first part of Proposition 3.1, we can analyze $\left(\mathbb{Q}, \mathrm{SF}^{\mathbb{Q}}\right)$ via $\left(\mathbb{Q}, \mathcal{U}^{\mathbb{Q}}, \mathcal{P}^{\mathbb{Q}}\right)$ in the same way we analyze $\left(\mathbb{Z}, \mathrm{SF}^{\mathbb{Z}}\right)$ via $\left(\mathbb{Z}, \mathcal{U}^{\mathbb{Z}}, \mathcal{P}^{\mathbb{Z}}\right)$. Let $\mathrm{Sf}_{\mathbb{Q}}^{*}$ be a recursive set of L_{u}^{*}-sentences such that an L_{u}^{*}-structure $\left(G, \mathcal{U}^{G}, \mathcal{P}^{G}\right)$ is a model of $\mathrm{Sf}_{\mathbb{Q}}^{*}$ if and only if $\left(G, \mathcal{U}^{G}, \mathcal{P}^{G}\right)$ satisfies the following properties:
(Q1) G is elementarily equivalent to \mathbb{Q};
(Q2) for any given $p, U_{p, 0}^{G}$ is an n-divisible subgroup of G for all n coprime with p;
(Q3) $1 \in U_{p, 0}^{G}$ and $1 \notin U_{p, 1}^{G}$;
(Q4) for any given $p, p^{-l} U_{p, l}^{G}=U_{p, 0}^{G}$ if $l<0$ and $U_{p, l}=p^{l} U_{p, 0}$ if $l>0$;
(Q5) $U_{p, 0}^{G} / U_{p, 1}^{G}$ is isomorphic as a group to $\mathbb{Z} / p \mathbb{Z}$;
(Q6) $1 \in P_{1}^{G}$;
(Q7) for any given p, we have that $p a \in P_{1}^{G}$ if and only if $a \in P_{1}^{G}$ and $a \notin U_{p, 1}^{G}$;
(Q8) $P_{m}^{G}=m P_{1}^{G}$ for $m>0$;
The fact that we could choose $\mathrm{Sf}_{\mathbb{Q}}^{*}$ to be recursive follows from the well-known decidability of \mathbb{Q}. Obviously, $\left(\mathbb{Q}, \mathcal{U}^{\mathbb{Q}}, \mathcal{P}^{\mathbb{Q}}\right)$ is a model of $\mathrm{Sf}_{\mathbb{Q}}^{*}$. Several properties which hold in $\left(\mathbb{Q}, \mathcal{U}^{\mathbb{Q}}, \mathcal{P} \mathbb{Q}\right)$ also hold in an arbitrary model of $\mathrm{Sf}_{\mathbb{Q}}^{*}$:

Lemma 3.4. Let $\left(G, \mathcal{U}^{G}, \mathcal{P}^{G}\right)$ be a model of $\mathrm{Sf}_{\mathbb{Q}}^{*}$. Then we have the following:
(i) For all p and all $l, l^{\prime} \in \mathbb{Z}$ with $l \leqslant l^{\prime}$, we have $U_{p, l}^{G}$ is a subgroup of $G, U_{p, l^{\prime}}^{G} \subseteq U_{p, l}^{G}$, and

$$
U_{p, l}^{G} / U_{p, l^{\prime}}^{G} \cong_{L_{\perp}} \mathbb{Z} /\left(p^{l^{\prime}-l} \mathbb{Z}\right) ;
$$

(ii) for all $h, k \neq 0, p$, l, and $m>0$, we have that

$$
\frac{h}{k} \in U_{p, l}^{G} \text { if and only if } \frac{h}{k} \in U_{p, l}^{\mathbb{Q}} \text { and } \frac{h}{k} \in P_{m}^{G} \text { if and only if } \frac{h}{k} \in P_{m}^{\mathbb{Q}}
$$

where $h k^{-1}$ is the obvious element in \mathbb{Q} and in G;
(iii) the replica of (iii - vi) of Lemma 3.1 holds.

Proof. Fix a model $\left(G, \mathcal{U}^{G}, \mathcal{P}^{G}\right)$ of $\mathrm{Sf}_{\mathbb{Q}}^{*}$. From (Q2) we have that $U_{p, 0}^{G}$ is a subgroup of G for all p. It follows from (Q4) that $U_{p, l^{\prime}}^{G} \subseteq U_{p, l}^{G}$ are subgroups of G for all p and $l \leqslant l^{\prime}$. We get an L_{\perp}-embedding of $\mathbb{Z} /\left(p^{l^{\prime}-l} \mathbb{Z}\right)$ into $U_{p, l}^{G} / U_{p, l^{\prime}}^{G}$ and $\left|U_{p, l}^{G} / U_{p, l^{\prime}}^{G}\right|=p^{\left(l^{\prime}-l\right)}$ using (Q2)-(Q5) and induction on $l^{\prime}-l$. So, the aforementioned embedding must be an isomorphism and we get (i). The first assertion of (ii) follows easily from (Q2)-Q(4). The second assertion for the case $m=1$ follows from the first assertion, (Q6), and (Q7). Finally, the case with $m \neq 1$ follows from the case $m=1$ using (Q8). The proof for (iii) is similar to the proofs for (iii -vi) of Lemma 3.1.

As the reader may expect by now, we will study $\left(\mathbb{Q},<, \mathrm{SF}^{\mathbb{Q}}\right)$ via $\left(\mathbb{Q},<, \mathcal{U}^{\mathbb{Q}}, \mathcal{P}^{\mathbb{Q}}\right)$. Let $L_{\text {ou }}^{*}$ be $L_{\mathrm{ou}} \cup L_{\mathrm{u}}^{*}$. Then $\left(\mathbb{Q},<, \mathcal{U}^{\mathbb{Q}}, \mathcal{P}^{\mathbb{Q}}\right)$ can be construed as an L_{ou}^{*}-structure in the obvious way. Let $\mathrm{OSf}_{\mathbb{Q}}^{*}$ be a recursive set of L_{ou}^{*}-sentences such that an $L_{\text {ou }}^{*}$-structure $\left(G, \mathcal{U}^{G}, \mathcal{P}^{G}\right)$ is a model of $\mathrm{OSf}_{\mathbb{Q}}^{*}$ if and only if $\left(G, \mathcal{U}^{G}, \mathcal{P}^{G}\right)$ satisfies the following properties:
(1) $(G,<)$ is elementarily equivalent to $(\mathbb{Q},<)$;
(2) $\left(G, \mathcal{U}^{G}, \mathcal{P}^{G}\right)$ is a model of $\mathrm{Sf}_{\mathbb{Q}}^{*}$.

As $\operatorname{Th}(\mathbb{Q},<)$ is decidable, we could choose $\mathrm{OSf}_{\mathbb{Q}}^{*}$ to be recursive.

Returning to the theory $\mathrm{Sf}_{\mathbb{Z}}^{*}$, we see that it does not fully capture all the first-order properties of $\left(\mathbb{Z}, \mathcal{U}^{\mathbb{Z}}, \mathcal{P}^{\mathbb{Z}}\right)$. For instance, we will show later in Corollary 3.1 that for all $c \in \mathbb{Z}$, there is $a \in \mathbb{Z}$ such that

$$
a+c \in \mathrm{SF}^{\mathbb{Z}} \text { and } a+c+1 \in \mathrm{SF}^{\mathbb{Z}}
$$

while the interested reader can construct models of $\mathrm{Sf}_{\mathbb{Z}}^{*}$ where the corresponding statement is not true. Likewise, the theories $\mathrm{Sf}_{\mathbb{Q}}^{*}$ and $\mathrm{OSf}_{\mathbb{Q}}^{*}$ do not fully capture all the first-order properties of $\left(\mathbb{Q}, \mathcal{U}^{\mathbb{Q}}, \mathcal{P}^{\mathbb{Q}}\right)$ and $\left(\mathbb{Q},<, \mathcal{U}^{\mathbb{Q}}, \mathcal{P}^{\mathbb{Q}}\right)$.

To give a precise formulation of the missing first-order properties of $\left(\mathbb{Z}, \mathcal{U}^{\mathbb{Z}}, \mathcal{P}^{\mathbb{Z}}\right),\left(\mathbb{Q}, \mathcal{U}^{\mathbb{Q}}, \mathcal{P}^{\mathbb{Q}}\right)$, and $\left(\mathbb{Q},<\mathcal{U}^{\mathbb{Q}}, \mathcal{P}^{\mathbb{Q}}\right)$, we need more terminologies. Let $t(z)$ be an L_{u}^{*}-term (or equivalently an $L_{\text {ou }}^{*}$-term) with variables in z. If $\left(G, \mathcal{U}^{G}, \mathcal{P}^{G}\right)$ is either an L_{u}^{*}-structure or an L_{ou}^{*}-structure, and $c \in G^{n}$, define $t^{G}(c)$ to be the \mathbb{Z}-linear combination of the components of c given by $t(z)$. Define in the obvious way the formulas

$$
t(z)=0, t(z) \neq 0, t(z)<0, t(z)>0, t(z) \leqslant 0 \text { and } t(z) \geqslant 0 .
$$

An L_{u}^{*}-formula (or an L_{ou}^{*}-formula) which is a boolean combination of formulas having the form $t(z)=0$ where we allow t to vary is called an equational condition. Similarly, an $L_{\text {ou }}^{*}$-formula which is a boolean combination of formulas having the form $t(z)<0$ where t is allowed to vary is called an order-condition. For any given p, l define $t(z) \in U_{p, l}$ to be the obvious formula in $L_{\mathrm{u}}^{*}(z)$ which defines in an arbitrary L_{u}^{*}-structure $\left(G, \mathcal{U}^{G}, \mathcal{P}^{G}\right)$ the set

$$
\left\{c \in G^{n}: t^{G}(c) \in U_{p, l}^{G}\right\}
$$

Define the quantifier-free formulas $t(z) \notin U_{p, l}, t(z) \in P_{m}$, and $t(z) \notin P_{m}$ in $L_{\mathrm{u}}^{*}(z)$ for p, l, and for $m>0$ likewise. For each prime p, An L_{u}^{\star}-formula (or an $L_{\text {ou }}^{*}$-formula) which is a boolean combination of formulas of the form $t(z) \notin U_{p, l}$ where t and l are allowed to vary is called a p-condition. We call a p-condition as in the previous statement trivial if the boolean combination is the empty conjunction.

A parameter choice of variable type $\left(x, z, z^{\prime}\right)$ is a triple (k, m, Θ) such that k is in $\mathbb{Z} \backslash\{0\}$, m is in $\mathbb{N} \geqslant 1$, and $\Theta=\left(\theta_{p}\left(x, z, z^{\prime}\right)\right)$ where $\theta_{p}\left(x, z, z^{\prime}\right)$ is a p-condition for each prime p and is trivial for all but finitely many p. We say that an L_{u}^{*}-formula $\psi\left(x, z, z^{\prime}\right)$ is special if it has the form

$$
\bigwedge_{p} \theta_{p}\left(x, z, z^{\prime}\right) \wedge \bigwedge_{i=1}^{n}\left(k x+z_{i} \in P_{m}\right) \wedge \bigwedge_{i^{\prime}=1}^{n^{\prime}}\left(k x+z_{i}^{\prime} \notin P_{m}\right)
$$

where k, m and $\theta_{p}\left(x, z, z^{\prime}\right)$ are taken from a parameter choice of variable type (x, z, z^{\prime}). Every special formula corresponds to a unique parameter choice and vice versa. Special formulas are special enough that we have a "local to global" phenomenon in the structures of interest
but general enough to represent quantifier free formula. We will explain the former point in the remaining part of the section and make the latter point precise with Theorem 3.10.

Let $\psi\left(x, z, z^{\prime}\right)$ be a special formula with parameter choice (k, m, Θ) and $\theta_{p}\left(x, z, z^{\prime}\right)$ is the p-condition in Θ for each p. We define the associated equational condition of $\varphi\left(x, z, z^{\prime}\right)$ to be the formula

$$
\bigwedge_{i=1}^{n} \bigwedge_{i^{\prime}=1}^{n^{\prime}}\left(z_{i} \neq z_{i^{\prime}}^{\prime}\right)
$$

and the associated p-condition of $\varphi\left(x, z, z^{\prime}\right)$ to be the formula

$$
\theta_{p}\left(x, z, z^{\prime}\right) \wedge \bigwedge_{i=1}^{n}\left(k x+z_{i} \notin U_{p, 2+v_{p}(m)}\right) .
$$

It is easy to see for an arbitrary special formula that its associated equational condition and its associated p-condition for any prime p are its logical consequences.

Suppose $\left(G, \mathcal{U}^{G}, \mathcal{P}^{G}\right)$ and $\left(H, \mathcal{U}^{H}, \mathcal{P}^{H}\right)$ are L_{u}^{\star}-structures such that the former is an $L_{\mathrm{u}^{-}}^{*}$ substructure of the latter. Let $\psi\left(x, z, z^{\prime}\right)$ be a special formula, $\psi_{=}\left(z, z^{\prime}\right)$ the associated equational condition, and $\psi_{p}\left(x, z, z^{\prime}\right)$ the associated p-condition for any given prime p. For $c \in G^{n}$ and $c^{\prime} \in G^{n^{\prime}}$, we call the quantifier-free $L_{\mathrm{u}}^{*}(G)$-formula $\psi\left(x, c, c^{\prime}\right)$ a G-system. An element $a \in H$ such that $\psi\left(a, c, c^{\prime}\right)$ holds is called a solution of $\psi\left(x, c, c^{\prime}\right)$ in H. We say that $\psi\left(x, c, c^{\prime}\right)$ is satisfiable in H if it has a solution in H and infinitely satisfiable in H if it has infinitely many solutions in H. We say that $\psi\left(x, c, c^{\prime}\right)$ is nontrivial if $\psi_{=}\left(c, c^{\prime}\right)$ holds or more explicitly if c and c^{\prime} have no common components. For a given p, we say that $\psi\left(x, c, c^{\prime}\right)$ is p-satisfiable in H if there is $a_{p} \in H$ such that $\psi_{p}\left(a_{p}, c, c^{\prime}\right)$ holds. A G-system is locally satisfiable in H if it is p-satisfiable in H for all p.

Suppose ($G,<, \mathfrak{U}^{G}, \mathcal{P}^{G}$) and ($H,<, \mathfrak{U}^{H}, \mathcal{P}^{H}$) are $L_{\text {out }}^{*}$-structures such that the former is an L_{ou}^{*}-substructure of the latter. All the definitions in the previous paragraph have obvious adaptations to this new setting as $\left(G, \mathcal{U}^{G}, \mathcal{P}^{G}\right)$ and $\left(H, \mathcal{U}^{H}, \mathcal{P}^{H}\right)$ are L_{u}^{*}-structures. For b and b^{\prime} in H such that $b<b^{\prime}$, define

$$
\left(b, b^{\prime}\right)^{H}=\left\{a \in H: b<a<b^{\prime}\right\} .
$$

A G-system $\psi\left(x, c, c^{\prime}\right)$ is satisfiable in every H-interval if it has a solution in the interval $\left(b, b^{\prime}\right)^{H}$ for all b and b^{\prime} in H such that $b<b^{\prime}$. The following observation is immediate:

Lemma 3.5. Suppose $\left(G, \mathcal{U}^{G}, \mathcal{P}^{G}\right)$ is a model of either $\mathrm{Sf}_{\mathbb{Z}}^{*}$ or $\mathrm{Sf}_{\mathbb{Q}}^{*}$. Then every G-system which is satisfiable in G is nontrivial and locally satisfiable in G.

It turns out that the converse and more are also true for the structures of interest. We say that a model $\left(G, \mathcal{U}^{G}, \mathcal{P}^{G}\right)$ of either $\mathrm{Sf}_{\mathbb{Z}}^{*}$ or $\mathrm{Sf}_{\mathbb{Q}}^{*}$ is generic if every nontrivial locally satisfiable G-system is infinitely satisfiable in G. A $\operatorname{OSf}_{\mathbb{Q}}^{*} \operatorname{model}\left(G,<, \mathcal{U}^{G}, \mathcal{P}^{G}\right)$ is generic if every
nontrivial nontrivial locally satisfiable G-system is satisfiable in every G-interval. We will later show that $\left(\mathbb{Z}, \mathcal{U}^{\mathbb{Z}}, \mathcal{P}^{\mathbb{Z}}\right),\left(\mathbb{Q}, \mathcal{U}^{\mathbb{Q}}, \mathcal{P}^{\mathbb{Q}}\right)$, and $\left(\mathbb{Q},<, \mathcal{U}^{\mathbb{Q}}, \mathcal{P}^{\mathbb{Q}}\right)$ are generic.

Before that we will show that the above notions of genericity are first-order. Let $\psi\left(x, z, z^{\prime}\right)$ be the special formula corresponding to a parameter choice (k, m, Θ) with $\Theta=\left(\theta_{p}\left(x, z, z^{\prime}\right)\right)$. A boundary of $\psi\left(x, z, z^{\prime}\right)$ is a number $B \in \mathbb{N}^{>0}$ such that $B>\max \{|k|, n\}$ and $\theta_{p}\left(x, z, z^{\prime}\right)$ is trivial for all $p>B$.

Lemma 3.6. Let $\psi\left(x, z, z^{\prime}\right)$ be a special formula, B a boundary of $\psi\left(x, z, z^{\prime}\right)$, and $\left(G, \mathcal{U}^{G}, \mathcal{P}^{G}\right)$ a model of either $\mathrm{Sf}_{\mathbb{Z}}^{*}$ or $\mathrm{Sf}_{\mathbb{Q}}^{*}$. Then every G-system $\psi\left(x, c, c^{\prime}\right)$ is p-satisfiable for $p>B$.

Proof. Let $\psi\left(x, z, z^{\prime}\right)$ be the special formula corresponding to a parameter choice (k, m, Θ), and $B,\left(G, \mathcal{U}^{G}, \mathcal{P}^{G}\right)$ as in the statement of the lemma. Suppose $\psi\left(x, c, c^{\prime}\right)$ is a G-system, $p>$ B, and $\psi_{p}\left(x, z, z^{\prime}\right)$ is the associated p-condition of $\psi\left(x, z, z^{\prime}\right)$. Then $\psi_{p}\left(x, c, c^{\prime}\right)$ is equivalent to

$$
\bigwedge_{i=1}^{n}\left(k x+c_{i} \notin U_{p, 2+v_{p}(m)}\right) \quad \text { in }\left(G, \mathcal{U}^{G}, \mathcal{P}^{G}\right)
$$

We will show a stronger statement that there is a $a_{p} \in \mathbb{Z}$ satisfying the latter. Note that for all $d \notin U_{p, 0}^{G}$, we have that $\left(k a+d \notin U_{p, 0}\right)$ for all $a \in \mathbb{Z}$. From Lemma 3.4, we have that $U_{p, l}^{G} \subseteq U_{p, k}^{G}$ whenever $k<l$, so we can assume that $c_{i} \in U_{p, 0}^{G}$ for $i \in\{1, \ldots, n\}$. In light of Lemma 3.1 (i) and Lemma 3.4 (i), we have that

$$
U_{p, 2+v_{p}(m)}^{G} / U_{p, 0}^{G} \cong L_{\perp} \mathbb{Z} /\left(p^{2+v_{p}(m)} \mathbb{Z}\right) .
$$

It is easy to see that k is invertible $\bmod p^{2+v_{p}(m)}$ and that $p^{2+v_{p}(m)}>n$. Choose a_{p} in $\left\{0, \ldots, p^{2+v_{p}(m)}-1\right\}$ such that the images of $k a_{p}+c_{1}, \ldots, k a_{p}+c_{n}$ in $\mathbb{Z} /\left(p^{2+v_{p}(m)} \mathbb{Z}\right)$ are not 0 . We check that a_{p} is as desired.

Corollary 3.1. There is an L_{u}^{*}-theory $\mathrm{SF}_{\mathbb{Z}}^{*}$ such that the models of $\mathrm{SF}_{\mathbb{Z}}^{*}$ are the generic models of $\mathrm{Sf}_{\mathbb{Z}}^{*}$. Similarly, there is an L_{u}^{*}-theory $\mathrm{SF}_{\mathbb{Q}}^{*}$ and an L_{ou}^{*}-theory $\mathrm{OSF}_{\mathbb{Q}}^{*}$ satisfying the corresponding condition for $\mathrm{Sf}_{\mathbb{Q}}^{*}$ and $\mathrm{OSf}_{\mathbb{Q}}^{*}$.

In the rest of the chapter, we fix $\mathrm{SF}_{\mathbb{Z}}^{*}, \mathrm{SF}_{\mathbb{Q}}^{*}$, and $\mathrm{OSF}_{\mathbb{Q}}^{*}$ to be as in the previous lemma. We can moreover arrange them to be recursive. In the remaining part of this section, we will show that $\left(\mathbb{Z}, \mathcal{U}^{\mathbb{Z}}, \mathcal{P}^{\mathbb{Z}}\right),\left(\mathbb{Q}, \mathcal{U}^{\mathbb{Q}}, \mathcal{P}^{\mathbb{Q}}\right)$ and $\left(\mathbb{Q},<, \mathcal{U}^{\mathbb{Q}}, \mathcal{P}^{\mathbb{Z}}\right)$ are models of $\mathrm{SF}_{\mathbb{Z}}^{*}, \mathrm{SF}_{\mathbb{Q}}^{*}$, and $\mathrm{OSF}_{\mathbb{Q}}^{*}$ respectively. The proof that the latter are in fact the full axiomatizations of the theories of the former needs to wait until next section. Further we fix $\mathrm{SF}_{\mathbb{Z}}$ and $\mathrm{SF}_{\mathbb{Q}}$ to the theories whose models are precisely the L_{u}-reducts of models of $\mathrm{SF}_{\mathbb{Z}}^{*}$ and $\mathrm{SF}_{\mathbb{Q}}^{*}$ respectively, and $\mathrm{OSF}_{\mathbb{Q}}$ to be the theory whose models are precisely L_{ou} reducts of models of $\mathrm{OSF}_{\mathbb{Q}}^{*}$. For the reader's reference, the following table lists all the languages, the corresponding theories and primary structures under consideration:

Languages	Theories	Primary structures
L_{u}	$\mathrm{SF}_{\mathbb{Z}}, \mathrm{SF}_{\mathbb{Q}}$	$\left(\mathbb{Z}, \mathrm{SF}^{\mathbb{Z}}\right),\left(\mathbb{Q}, \mathrm{SF}^{\mathbb{Q}}\right)$
$L_{\text {ou }}$	$\mathrm{OSF}_{\mathbb{Q}}$	$\left(\mathbb{Z},<, \mathrm{SF}^{\mathbb{Z}}\right),\left(\mathbb{Q},<, \mathrm{SF}^{\mathbb{Q}}\right)$
L_{u}^{*}	$\mathrm{Sf}_{\mathbb{Z}}^{*}, \mathrm{SF}_{\mathbb{Z}}^{*}, \mathrm{Sf}_{\mathbb{Q}}^{*}, \mathrm{SF}_{\mathbb{Q}}^{*}$	$\left(\mathbb{Z}, \mathcal{U}^{\mathbb{Z}}, \mathcal{P}^{\mathbb{Z}}\right),\left(\mathbb{Q}, \mathcal{U}^{\mathbb{Q}}, \mathcal{P}^{\mathbb{Q}}\right)$
$L_{\text {ou }}^{*}$	$\mathrm{OSf}_{\mathbb{Q}}^{*}, \mathrm{OSF}_{\mathbb{Q}}^{*}$	$\left(\mathbb{Q},<, \mathcal{U}^{\mathbb{Q}}, \mathcal{P}^{\mathbb{Q}}\right)$

TABLE 3.1. Languages, theories, and primary structures

Suppose $h \neq 0$ and $\varphi(z)$ is a boolean combination of atomic formulas of the form $t(z) \in U_{p, l}$ or $t(z) \in P_{m}$ where $t(z)$ is an L_{u}^{*}-term. Define $\varphi^{h}(z)$ to be the formula obtained by replacing $t(z) \in U_{p, l}$ and $t(z) \in P_{m}$ in φ with $t(z) \in U_{p, l+v_{p}(h)}$ and $t(z) \in P_{m h}$ for every choice of p, l, m and L_{u}^{*}-term t. By construction and linearity of terms, across models of $\mathrm{Sf}_{\mathbb{Z}}^{*}$ and $\mathrm{Sf}_{\mathbb{Q}}^{*}$, using Lemma 3.1 (iii), (vi) and Lemma 3.4 (iii), we have that

$$
\varphi^{h}(h z) \text { is equivalent to } \varphi(z)
$$

Moreover, if $\theta(z)$ is a p-condition, then $\theta^{h}(z)$ is also p-condition. If $\psi\left(x, z, z^{\prime}\right)$ is the special formula corresponding to a parameter choice (k, m, Θ) with $\Theta=\left(\theta_{p}\left(x, z, z^{\prime}\right)\right)$, then $\psi^{h}\left(x, z, z^{\prime}\right)$ is the special formula corresponding to the parameter choice $\left(k, h m, \Theta^{h}\right)$ with $\Theta^{h}=\left(\theta_{p}^{h}\left(x, z, z^{\prime}\right)\right)$. It is easy to see from here that:

Lemma 3.7. Any boundary of a special formula $\psi\left(x, z, z^{\prime}\right)$ is also a boundary of $\psi^{h}\left(x, z, z^{\prime}\right)$ and vice versa.

Let $\psi\left(x, z, z^{\prime}\right)$ be a special formula, $\left(G, \mathcal{U}^{G}, \mathcal{P}^{G}\right)$ a model of either $\mathrm{Sf}_{\mathbb{Z}}^{*}$ or $\mathrm{Sf}_{\mathbb{Q}}^{*}$, and $\psi\left(x, c, c^{\prime}\right)$ a G-system. Then $\psi^{h}\left(x, h c, h c^{\prime}\right)$ is also a G-system which we refer to as the h-conjugate of $\psi\left(x, c, c^{\prime}\right)$. This has the property that $\psi^{h}\left(h a, h c, h c^{\prime}\right)$ if and only if $\psi\left(a, c, c^{\prime}\right)$ for all $a \in G$.

For a and b in \mathbb{Z}, we write $a \equiv_{n} b$ if a and b have the same remainder when divided by n. We need the following version of Chinese remainder theorem:

Lemma 3.8. Suppose B is in $\mathbb{N}^{>0}$, Θ is a family $\left(\theta_{p}(x, z)\right)_{p \leqslant B}$ where $\theta_{p}(x, z)$ is a p-condition for all $p \leqslant B$, and $c \in \mathbb{Z}^{n}$ is such that $\theta_{p}(x, c)$ defines a nonempty set in $\left(\mathbb{Z}, \mathcal{U}^{\mathbb{Z}}, \mathcal{P}^{\mathbb{Z}}\right)$ for all $p \leqslant B$. Then we can find $D \in \mathbb{N}^{>0}$ such that for all $h \neq 0$ with $\operatorname{gcd}(h, B!)=1$, for some $r_{h} \in\{0, \ldots, D-1\}$ we have that

$$
a \equiv_{D} r_{h} \text { implies } \bigwedge_{p \leqslant B} \theta_{p}^{h}(a, h c) \quad \text { for all } a \in \mathbb{Z} .
$$

Proof. Let B, Θ, and c be as stated. Fix $h \neq 0$ such that $\operatorname{gcd}(h, B!)=1$ and so we have that $\theta_{p}(x, z)=\theta_{p}^{h}(x, z)$ for all $p \leqslant B$. For each $p \leqslant B$, the p-condition $\theta_{p}^{h}(x, z)$ is a boolean
combination of atomic formulas of the form $k x+t(z) \in U_{p, l}$ where $t(z)$ is an L_{u}^{*}-term. Now for $p \leqslant B$, let l_{p} be the largest value of l occurring in an atomic formula in $\theta_{p}(x, z)$. Set

$$
D=\prod_{p \leqslant B} p^{l_{p}} .
$$

Obtain a_{p} such that $\theta_{p}\left(a_{p}, c\right)$ holds. By the Chinese remainder theorem, we get r in $\{0, \ldots, D-1\}$ such that

$$
r \equiv_{p^{l_{p}}} a_{p} \quad \text { for all } p \leqslant B
$$

Suppose $a \in \mathbb{Z}$ is such that $a \equiv_{D} h r$. By construction, if $p \leqslant B$ and $k x+t(z) \in U_{p, l}$ is any atomic formula, then $k a+t(h c) \in U_{p, l}^{\mathbb{Z}}$ if and only if $k\left(h a_{p}\right)+t(h c) \in U_{p, l}^{\mathbb{Z}}$. It follows that $\theta_{p}^{h}(a, h c)$ holds for all $p \leqslant B$. The desired conclusion follows with any $r_{h} \equiv_{D} h r$.

Towards showing that the structures of interest are generic, the key number-theoretic ingredient we need is the following result:

Lemma 3.9. Let $\psi\left(x, z, z^{\prime}\right)$ be a special formula and $\psi\left(x, c, c^{\prime}\right)$ a nontrivial \mathbb{Z}-system which is locally satisfiable in \mathbb{Z}. For $h>0$, and $s, t \in \mathbb{Q}$ with $s<t$, set

$$
\Psi^{h}(h s, h t)=\left\{a \in \mathbb{Z}: \psi^{h}\left(a, h c, h c^{\prime}\right) \text { holds and } h s<a<h t\right\} .
$$

Then there exists $N \in \mathbb{N}^{>0}, \varepsilon \in(0,1)$, and $C \in \mathbb{R}$ such that for all $h>0$ with $\operatorname{gcd}(h, N!)=1$ and $s, t \in \mathbb{Q}$ with $s<t$, we have that

$$
\left|\Psi^{h}(h s, h t)\right| \geqslant \varepsilon h(t-s)-\left(\sum_{i=1}^{n} \sqrt{\left|h k s+h c_{i}\right|}+\sqrt{\left|h k t+h c_{i}\right|}\right)+C .
$$

Proof. Throughout this proof, let $\psi\left(x, z, z^{\prime}\right), \psi\left(x, c, c^{\prime}\right)$, and $\Psi^{h}(h s, h t)$ be as stated. We first make a number of observations. Suppose $\psi\left(x, z, z^{\prime}\right)$ corresponds to the parameter choice (k, m, Θ) and has a boundary B, and $\psi_{p}\left(x, z, z^{\prime}\right)$ is the associated p-condition of $\psi\left(x, z, z^{\prime}\right)$. Then $\psi^{h}\left(x, z, z^{\prime}\right)$ corresponds to the parameter choice $\left(k, h m, \Theta^{h}\right)$, and B is also a boundary of $\psi^{h}\left(x, z, z^{\prime}\right)$ by Corollary 3.7. Moreover $\psi_{p}^{h}\left(x, z, z^{\prime}\right)$ is the associated p-condition of $\psi^{h}\left(x, z, z^{\prime}\right)$. Using Lemma 3.8, we fix $D \in \mathbb{N}^{>0}$ and obtain for each $h>0$ with $\operatorname{gcd}(h, B!)=1$ an $r_{h} \in\{0, \ldots, D-1\}$ such that

$$
a \equiv_{D} r_{h} \text { implies } \bigwedge_{p \leqslant B} \psi_{p}^{h}\left(a, h c, h c^{\prime}\right) \text { for all } a \in \mathbb{Z}
$$

We note that D here is independent of the choice of h for all h with $\operatorname{gcd}(h, B!)=1$.
We introduce a variant of $\Psi^{h}(h s, h t)$ which is needed in our estimation of $\left|\Psi^{h}(h s, h t)\right|$. Until the end of the proof, set $l_{p}=2+v_{p}(m)$. Fix primes $p_{1}, \ldots, p_{n^{\prime}}$ such that $p_{1}>c_{i}$ for all $i \in\{1, \ldots, n\}, p_{1}>c_{i^{\prime}}^{\prime}$ for all $i^{\prime} \in\left\{1, \ldots, n^{\prime}\right\}$ and

$$
B<p_{1}<\ldots<p_{n^{\prime}} .
$$

For $M>p_{n^{\prime}}, h>0$ with $\operatorname{gcd}(h, B!)=1$ ，and corresponding r_{h} ，define $\Psi_{M}^{h}(h s, h t)$ to be the set of $a \in \mathbb{Z}$ such that $h s<a<h t$ and

$$
\left(a \equiv_{D} r_{h}\right) \wedge \bigwedge_{B<p \leqslant M}\left(\bigwedge_{i=1}^{n}\left(k a+h c_{i} \not 三_{p^{\prime p+v_{p}(h)}} 0\right)\right) \wedge \bigwedge_{i^{\prime}=1}^{n^{\prime}}\left(k a+h c_{i^{\prime}}^{\prime} \notin P_{h m}^{\mathbb{Z}}\right)
$$

It is not hard to see that $\Psi^{h}(h s, h t) \cap\left\{a \in \mathbb{Z}: a \equiv_{D} r_{h}\right\} \subseteq \Psi_{M}^{h}(h s, h t)$ ，and the latter is intended to be and upper approximation of the former．The desired lower bound for $\left|\Psi^{h}(h s, h t)\right|$ will be obtained via a lower bound for $\left|\Psi_{M}^{h}(h s, h t)\right|$ and an upper bound for $\left|\Psi_{M}^{h}(h s, h t) \backslash \Psi^{h}(h s, h t)\right|$.

Now we work towards establishing a lower bound on $\left.\mid \Psi_{M}^{h}(h s, h t)\right) \mid$ in the case where $M>p_{n^{\prime}}, h>0$ ，and $\operatorname{gcd}(h, M!)=1$ ．The latter assumption implies in particular that $p^{l_{p}+v_{p}(h)}=p^{l_{p}}$ for all $p \leqslant M$ ．For $p>B$ ，we have that $p>|k|$ and so k is invertible $\bmod p^{l_{p}}$ ． Set

$$
\Delta=\{p: B<p \leqslant M\} \backslash\left\{p_{i^{\prime}}: 1 \leqslant i^{\prime} \leqslant n^{\prime}\right\} .
$$

For $p \in \Delta$ ，as k is invertible $\bmod p^{l_{p}}$ ，there are at least $p^{l_{p}}-n$（note we have $p>B>n$ ） choices of r_{p} in $\left\{0, \ldots, p^{l_{p}}-1\right\}$ such that if $a \equiv_{p^{l_{p}}} r_{p}$ ，then

$$
\bigwedge_{i=1}^{n}\left(k a+h c_{i} \not ⿻ 三 丨 p_{p_{p}} 0\right) .
$$

Suppose $p=p_{i^{\prime}}$ for some $i^{\prime} \in\left\{1, \ldots, n^{\prime}\right\}$ ．By the assumption that $\psi\left(x, c, c^{\prime}\right)$ is nontrivial，c has no common components with c^{\prime} ．Since $\operatorname{gcd}(h, M!)=1, h$ and p are coprime，and so the components of $h c$ and $h c^{\prime}$ are pairwise distinct $\bmod p^{l_{p}}$ ．As k is invertible $\bmod p^{l_{p}}$ ，there is exactly one r_{p} in $\left\{0, \ldots, p^{l_{p}}-1\right\}$ such that if $a \equiv_{p^{l_{p}}} r_{p}$ ，then

$$
\bigwedge_{i=1}^{n}\left(k a+h c_{i} \not 三_{p_{p}} 0\right) \wedge\left(k a+h c_{i^{\prime}}^{\prime} \equiv_{p^{l_{p}}} 0\right) \text { and consequently } k a+h c_{i^{\prime}}^{\prime} \notin P_{h m}^{\mathbb{Z}} .
$$

Now it follows by the Chinese remainder theorem that，

$$
\left|\Psi_{M}^{h}(h s, h t)\right| \geqslant\left\lfloor\frac{h t-h s}{D \prod_{B<p \leqslant M} p^{l_{p}}}\right\rfloor \prod_{p \in \Delta}\left(p^{l_{p}}-n\right) .
$$

Then it follows that，

$$
\left|\Psi_{M}^{h}(h s, h t)\right| \geqslant \frac{h t-h s}{D} \prod_{p \leqslant p_{n^{\prime}}} \frac{1}{p^{l_{p}}} \prod_{p>p_{n^{\prime}}}^{\leqslant M}\left(1-\frac{n}{p^{l_{p}}}\right)-\prod_{p \leqslant M} p^{l_{p}} .
$$

Set

$$
\varepsilon=\frac{1}{2 D} \prod_{p \leqslant p_{n^{\prime}}} \frac{1}{p^{l_{p}}} \prod_{p>p_{n^{\prime}}}\left(1-\frac{n}{p^{l_{p}}}\right) .
$$

Now as $l_{p} \geqslant 2$, for $U \in \mathbb{N}^{>0}$ with $U>\max \left\{p_{n}^{\prime}, n^{2}\right\}$ we have that

$$
\prod_{p>U}\left(1-\frac{n}{p^{l_{p}}}\right)>\prod_{p>U}\left(1-\frac{1}{p^{\frac{3}{2}}}\right) .
$$

Hence, it follows from Euler's product formula that $\varepsilon>0$. We now have

$$
\left|\Psi_{M}^{h}(h s, h t)\right| \geqslant 2 \varepsilon(h t-h s)-\prod_{p \leqslant M} p^{l_{p}} .
$$

We note that ε is independent of the choice of M and h, and will serve as the promised ε in the statement of the lemma.

Next we obtain a upper bound on $\left|\Psi_{M}^{h}(s, t) \backslash \Psi^{h}(s, t)\right|$ for $M>p_{n^{\prime}} h>0$ and $\operatorname{gcd}(h, M!)=$ 1. We arrange that $k>0$ by replacing c by $-c$ and c^{\prime} by $-c^{\prime}$ if necessary. Note that an element $a \in \Psi_{M}^{h}(s, t) \backslash \Psi^{h}(s, t)$ must be such that

$$
h k s+h c_{i}<k a+h c_{i}<h k t+h c_{i} \text { for all } i \in\{1, \ldots, n\}
$$

and $k a+h c_{i}$ is a multiple of $p^{l_{p}}$ for some $p>M$ and $i \in\{1, \ldots, n\}$. For each p and $i \in\{1, \ldots, n\}$, the number of multiples of $p^{l_{p}}$ in $\left(h k s+h c_{i}, h k t+h c_{i}\right)$ is

$$
\text { either }\left\lfloor h k(t-s) p^{-l_{p}}\right\rfloor \quad \text { or }\left\lfloor h k(t-s) p^{-l_{p}}\right\rfloor+1 .
$$

In the latter case, as $l_{p} \geqslant 2$ we moreover have

$$
p^{2} \leqslant\left|h k s+h c_{i}\right| \quad \text { or } \quad p^{2} \leqslant\left|h k t+h c_{i}\right|,
$$

and so

$$
p \leqslant \sqrt{\left|h k s+h c_{i}\right|}+\sqrt{\left|h k t+h c_{i}\right|} .
$$

As $l_{p} \geqslant 2$, we have $\left\lfloor h k(t-s) p^{-l_{p}}\right\rfloor \leqslant h k(t-s) p^{-2}$. Therefore we have that

$$
\left|\Psi_{M}^{h}(s, t) \backslash \Psi^{h}(s, t)\right| \leqslant h(t-s) \sum_{p>M} \frac{n k}{p^{2}}+\sum_{i=1}^{n} \sqrt{\left|h k s+h c_{i}\right|}+\sqrt{\left|h k t+h c_{i}\right|} .
$$

We now obtain N and C as in the statement of the lemma. Note that

$$
\sum_{p>T} p^{-2} \leqslant \sum_{n>T} n^{-2}=O\left(T^{-1}\right) .
$$

Using this, we obtain $N \in \mathbb{N}^{>0}$ such that $N>p_{n^{\prime}}$ and $\sum_{p>N} k n p^{-2}<\varepsilon$ where ε is from the preceding paragraph. Set $C=-\prod_{p \leqslant N} p^{l_{p}}$. Combining the estimations from the preceding two paragraphs for $M=N$ it is easy to see that ε, N, C are as desired.

Remark 3.1. The above weak lower bound is all we need for our purpose. We expect that a stronger estimate can be obtained using modifications of available techniques in the literature; see for example [59].

Corollary 3.2. For all $c \in \mathbb{Z}$, there is $a \in \mathbb{Z}$ such that

$$
a+c \in \mathrm{SF}^{\mathbb{Z}} \text { and } a+c+1 \in \mathrm{SF}^{\mathbb{Z}} .
$$

Proof. We have that for all $c \in \mathbb{Z}, \psi(x, c)=\left(x+c \in \mathrm{SF}^{\mathbb{Z}}\right) \wedge\left(x+c+1 \in \mathrm{SF}^{\mathbb{Z}}\right)$ is a locally satisfiable \mathbb{Z}-system. Applying Lemma 3.9 for $h=1, s=0$, and t sufficiently large we see there is a solution $a \in \mathbb{Z}$ for $\psi(x, c)$.

We next prove the main theorem of the section:

Theorem 3.1. The $\mathrm{Sf}_{\mathbb{Z}}^{*}-\operatorname{model}\left(\mathbb{Z}, \mathcal{U}^{\mathbb{Z}}, \mathcal{P}^{\mathbb{Z}}\right)$, the $\mathrm{Sf}_{\mathbb{Q}}^{*}-\operatorname{model}\left(\mathbb{Q}, \mathcal{U}^{\mathbb{Q}}, \mathcal{P}^{\mathbb{Q}}\right)$, and the $\mathrm{OSf}_{\mathbb{Q}^{*}}^{*}$-model $\left(\mathbb{Q},<, \mathcal{U}^{\mathbb{Q}}, \mathcal{P}^{\mathbb{Q}}\right)$ are generic.

Proof. We get the first part of the theorem by applying Lemma 3.9 for $h=1, s=0$, and t sufficiently large. As the second part of the theorem follows easily from the third part, it remains to show that the $\operatorname{OSf}_{\mathbb{Q}}^{*}$-model $\left(\mathbb{Q},<, \mathcal{U}^{\mathbb{Q}}, \mathcal{P}^{\mathbb{Q}}\right)$ is generic. Throughout this proof, suppose $\psi(x, z, z)$ is a special formula and $\psi\left(x, c, c^{\prime}\right)$ is a \mathbb{Q}-system which is nontrivial and locally satisfiable in \mathbb{Q}. Our job is to show that the \mathbb{Q}-system $\psi\left(x, c, c^{\prime}\right)$ has a solution in the \mathbb{Q}-interval $\left(b, b^{\prime}\right)^{\mathbb{Q}}$ for an arbitrary choice of $b, b^{\prime} \in \mathbb{Q}$ such that $b<b^{\prime}$.

We first reduce to the special case where $\psi\left(x, c, c^{\prime}\right)$ is also a \mathbb{Z}-system which is nontrivial and locally satisfiable in \mathbb{Z}. Let B be the boundary of $\psi\left(x, z, z^{\prime}\right)$ and for each p, let $\psi_{p}\left(x, z, z^{\prime}\right)$ be the associated p-condition of $\psi\left(x, z, z^{\prime}\right)$. Using the assumption that $\psi\left(x, c, c^{\prime}\right)$ is locally satisfiable \mathbb{Q}-system, for each $p<B$ we obtain $a_{p} \in \mathbb{Q}$ such that $\psi_{p}\left(a_{p}, c, c^{\prime}\right)$ holds. Let $h>0$ be such that

$$
h c \in \mathbb{Z}^{n}, h c^{\prime} \in \mathbb{Z}^{n^{\prime}} \text { and } h a_{p} \in \mathbb{Z} \text { for all } p<B
$$

Then by the choice of h, Lemma 3.6, and Lemma 3.7, the h-conjugate $\psi^{h}\left(x, h c, h c^{\prime}\right)$ of $\psi\left(x, c, c^{\prime}\right)$ is a \mathbb{Z}-system which is nontrivial and locally satisfiable in \mathbb{Z}. On the other hand, $\psi\left(x, c, c^{\prime}\right)$ has a solution in a interval $\left(b, b^{\prime}\right)^{\mathbb{Q}}$ if and only if

$$
\psi^{h}\left(x, h c, h c^{\prime}\right) \text { has a solution in }\left(h b, h b^{\prime}\right)^{\mathbb{Q}}
$$

Hence, by replacing $\psi\left(x, z, z^{\prime}\right)$ with $\psi^{h}\left(x, z, z^{\prime}\right), \psi\left(x, c, c^{\prime}\right)$ with $\psi^{h}\left(x, h c, h c^{\prime}\right)$, and $\left(b, b^{\prime}\right)^{\mathbb{Q}}$ with $\left(h b, h b^{\prime}\right)^{\mathbb{Q}}$ if necessary we get the desired reduction.

We show $\psi\left(x, c, c^{\prime}\right)$ has a solution in the \mathbb{Q}-interval $\left(b, b^{\prime}\right)^{\mathbb{Q}}$ for the special case in the preceding paragraph. By an argument similar to the preceding paragraph, it suffices to show that for some $h \neq 0, \psi^{h}\left(x, h c, h c^{\prime}\right)$ has a solution in $\left(h b, h b^{\prime}\right)^{\mathbb{Q}}$. Applying Lemma 3.9 for $s=b, t=b^{\prime}$, and h sufficiently large satisfying the condition of the lemma, we get the desired conclusion.

3.2. Logical Tameness

We will next prove that $\mathrm{SF}_{\mathbb{Z}}^{*}, \mathrm{SF}_{\mathbb{Q}}^{*}$, and $\mathrm{OSF}_{\mathbb{Q}}^{*}$ admit quantifier elimination. We first need a technical lemma saying that over $\mathrm{Sf}_{\mathbb{Z}}^{*}$ or $\mathrm{Sf}_{\mathbb{Q}}^{*}$, quantifier free formulas are not much more complicated than special formulas.

Lemma 3.10. Suppose $\varphi(x, y)$ is a quantifier-free L_{u}^{*}-formula. Then $\varphi(x, y)$ is equivalent over $\mathrm{Sf}_{\mathbb{Z}}^{*}$ to a disjunction of quantifier-free formulas of the form

$$
\rho(y) \wedge \varepsilon(x, y) \wedge \psi\left(x, t(y), t^{\prime}(y)\right)
$$

where
(i) $t(y)$ and $t^{\prime}(y)$ are tuples of L_{u}^{*}-terms with length n and n^{\prime} respectively;
(ii) $\rho(y)$ is a quantifier-free L_{u}^{*}-formula, $\varepsilon(x, y)$ an equational-condition, $\psi\left(x, z, z^{\prime}\right)$ a special formula.

The corresponding statement with $\mathrm{Sf}_{\mathbb{Z}}^{*}$ replaced by $\mathrm{Sf}_{\mathbb{Q}}^{*}$ also holds.
Proof. Let $\varphi(x, y)$ be a quantifier-free L_{u}^{\star}-formula. We will use the following disjunction observation several times in our proof: If $\varphi(x, y)$ is a finite disjunction of quantifier-free L_{u}^{*}-formulas and we have proven the desired statement for each of those, then the desired statement for $\varphi(x, y)$ follows. In particular, we can assume that $\varphi(x, y)$ is the conjunction

$$
\rho(y) \wedge \varepsilon(x, y) \wedge \bigwedge_{p} \eta_{p}(x, y) \wedge \bigwedge_{i=1}^{n}\left(k_{i} x+t_{i}(y) \in P_{m_{i}}\right) \wedge \bigwedge_{i=1}^{n^{\prime}}\left(k_{i}^{\prime} x+t_{i}^{\prime}(y) \notin P_{m_{i}^{\prime}}\right)
$$

where $\rho(y)$ is a quantifier-free L_{u}^{*}-formula, $\varepsilon(x, y)$ is an equational condition, k_{1}, \ldots, k_{n} and $k_{1}^{\prime}, \ldots, k_{n^{\prime}}^{\prime}$ are in $\mathbb{Z} \backslash\{0\}, m_{1}, \ldots, m_{n}$ and $m_{1}^{\prime}, \ldots, m_{n^{\prime}}^{\prime}$ are in $\mathbb{N} \geqslant 1, t_{1}(y), \ldots, t_{n}(y)$ and $t_{1}^{\prime}(y), \ldots, t_{n}^{\prime}(y)$ are L_{u}^{*}-terms with variables in $y, \eta_{p}(x, y)$ is a p-condition for each p, and $\eta_{p}(x, y)$ is trivial for all but finitely many p.

We make further reductions to the form of $\varphi(x, y)$. Set $t(y)=\left(t_{1}(y), \ldots, t_{n}(y)\right)$ and $\left(t_{1}^{\prime}(y), \ldots, t_{n^{\prime}}^{\prime}(y)\right)$. Using the disjunction observation and the fact that $\left(x+y_{j} \in P_{1}\right) \vee\left(x+y_{j} \notin\right.$ P_{1}) is a tautology for every component y_{j} of y, we can assume that either $x+y_{j} \in P_{1}$ or $x+y_{j} \notin P_{1}$ are among the conjuncts of $\varphi(x, y)$, and so y_{j} is among the components of $t(y)$ or $t^{\prime}(y)$. Then we obtain for each prime p a p-condition $\theta_{p}\left(x, z, z^{\prime}\right)$ such that $\theta_{p}\left(x, t(y), t\left(y^{\prime}\right)\right)$ is logically equivalent to $\eta_{p}(x, y)$. Let $\xi\left(x, z, z^{\prime}\right)$ be the formula

$$
\bigwedge_{p} \theta_{p}\left(x, z, z^{\prime}\right) \wedge \bigwedge_{i=1}^{n}\left(k_{i} x+z_{i} \in P_{m_{i}}\right) \wedge \bigwedge_{i=1}^{n^{\prime}}\left(k_{i}^{\prime} x+z_{i}^{\prime} \notin P_{m_{i}^{\prime}}\right) .
$$

Clearly, $\varphi(x, y)$ is equivalent to the formula $\rho(y) \wedge \varepsilon(x, y) \wedge \xi\left(x, t(y), t^{\prime}(y)\right)$, so we can assume that $\varphi(x, y)$ is the latter.

We need a small observation. For a p-condition $\theta_{p}(z)$ and $h \neq 0$, we will show that there is another p-condition $\eta_{p}(z)$ such that over $\mathrm{Sf}_{\mathbb{Z}}^{*}$ and $\mathrm{Sf}_{\mathbb{Q}}^{*}$,

$$
\eta_{p}\left(z_{1}, \ldots, z_{i-1}, h z_{i}, z_{i+1}, \ldots, z_{n}\right) \text { is equivalent to } \theta_{p}(z)
$$

For the special case where $\theta_{p}(z)$ is $t(z) \in U_{p, l}$, the conclusion follows from Lemma 3.1(iii), Lemma 3.4(iii) and the fact that there is an L_{u}^{*}-term $t^{\prime}(z)$ such that $t^{\prime}\left(z, \ldots, z_{i-1}, h z_{i}, z_{i+1}, \ldots, z_{n}\right)=$ $h t(z)$. The statement of the paragraph follows easily from this special case.

With $\varphi(x, y)$ as in the end of the second paragraph, we further reduce the main statement to the special case where there is $k \neq 0$ such that $k_{i}=k_{i^{\prime}}^{\prime}=k$ for all $i \in\{1, \ldots, n\}$ and $i^{\prime} \in\left\{1, \ldots, n^{\prime}\right\}$. Choose $k \neq 0$ to be a common multiple of k_{1}, \ldots, k_{n} and $k_{1}^{\prime}, \ldots k_{n^{\prime}}^{\prime}$. Then by Lemma 3.1(vi) and Lemma 3.4(iii), we have for each $i \in\{1, \ldots, n\}$ that

$$
k_{i} x+z_{i} \in P_{m_{i}} \text { is equivalent to }\left(k x+k k_{i}^{-1} z_{i} \in P_{k k_{i}^{-1} m_{i}}\right) \text { over either } \mathrm{Sf}_{\mathbb{Z}}^{*} \text { or } \mathrm{Sf}_{\mathbb{Q}}^{*} .
$$

We have a similar observation for k and $k_{i^{\prime}}^{\prime}$ with $i^{\prime} \in\left\{1, \ldots, n^{\prime}\right\}$. The desired reduction easily follows from these observations and the preceding paragraph.

Continuing with the reduction in the preceding paragraph, we next arrange that there is $m>0$ such that $m_{i}=m_{i^{\prime}}^{\prime}=m$ for all $i \in\{1, \ldots, n\}$ and $i^{\prime} \in\left\{1, \ldots, n^{\prime}\right\}$. Let m be a common multiple of m_{1}, \ldots, m_{n} and $m_{1}^{\prime}, \ldots m_{n^{\prime}}^{\prime}$. By Lemma 3.1(v, vi) and Lemma 3.4(iii), we have for $i \in\{1, \ldots, n\}$ that over either $\mathrm{Sf}_{\mathbb{Z}}^{*}$ or $\mathrm{Sf}_{\mathbb{Q}}^{*}$

$$
k x+z_{i} \in P_{m_{i}} \text { is equivalent to } k x+z_{i} \in P_{m} \wedge \bigwedge_{p \left\lvert\, \frac{m}{m_{i}}\right.} k x+z_{i} \notin U_{p, 2+v_{p}\left(m_{i}\right)}
$$

and for $i^{\prime} \in\left\{1, \ldots, n^{\prime}\right\}$ that over either $\mathrm{Sf}_{\mathbb{Z}}^{*}$ or $\mathrm{Sf}_{\mathbb{Q}}^{*}$

$$
k x+z_{i^{\prime}}^{\prime} \notin P_{m_{i^{\prime}}^{\prime}} \text { is equivalent to } k x+z_{i^{\prime}}^{\prime} \notin P_{m} \vee \underset{p \left\lvert\, \frac{m}{m_{i^{\prime}}^{\prime}}\right.}{ } k x+z_{i^{\prime}}^{\prime} \in U_{p, 2+v_{p}\left(m_{i^{\prime}}^{\prime}\right)} .
$$

It follows that $\varphi(x, y)$ is equivalent to a disjunction of formulas of the form we are aiming for. The desired conclusion of the lemma follows from the disjunction observation.

Corollary 3.3. Suppose $\varphi(x, y)$ is a quantifier-free $L_{\text {ou }}^{*}$ formula. Then $\varphi(x, y)$ is equivalent over $\operatorname{OSf}_{\mathbb{Q}}^{*}$ to a disjunction of quantifier-free formulas of the form

$$
\rho(y) \wedge \lambda(x, y) \wedge \psi\left(x, t(y), t^{\prime}(y)\right)
$$

where
(i) $t(y)$ and $t^{\prime}(y)$ are tuples of L_{ou}^{*}-terms with length n and n^{\prime} respectively;
(ii) $\rho(y)$ is a quantifier-free $L_{\text {ou- }}^{*}$-formula, $\lambda(x, y)$ an order condition, $\psi\left(x, z, z^{\prime}\right)$ a special formula.

In the next lemma, we show a "local quantifier elimination" result.

Lemma 3.11. If $\varphi(x, z)$ is a p-condition, then over either $\mathrm{Sf}_{\mathbb{Z}}^{*}$ or $\mathrm{Sf}_{\mathbb{Q}}^{*}$, the formula $\exists x \varphi(x, z)$ is equivalent to a p-condition $\psi(z)$.

Proof. If $\varphi(x, z)$ is a p-condition, then it is a boolean combination of atomic formulas of the form $k x+t(z) \in U_{p, l}$ where $t(z)$ is an L_{u}^{*}-term. Let l_{p} be the largest value of l occurring in an atomic formula in $\varphi(x, z)$ and $S=\left\{1 \leqslant m<p^{l_{p}} \mid \exists x \varphi(x, m)\right\}$. Then by Lemma 3.1 (i), $\exists x \varphi(x, z)$ is equivalent to the p-condition $\bigvee_{m \in S}\left(z \equiv_{p^{l}} m\right)$ over $\mathrm{Sf}_{\mathbb{Q}}^{*}$.

Now, we proceed to prove the statement for models of $\mathrm{Sf}_{\mathbb{Q}}^{*}$. Throughout the rest of the proof, suppose $\varphi(x, z)$ is a p-condition, $k, k^{\prime}, l, l^{\prime}$ are in \mathbb{Z}, and $t(z), t^{\prime}(z)$ are L_{u}^{*}-terms. First, we consider the case where $\varphi(x, z)$ is a p-condition of the form $k x+t(z) \in U_{p, l}$. The case $k=0$ is trivial. If $k \neq 0$, then $\exists x\left(k x+t(z) \in U_{p, l}\right)$ is tautological over $\mathrm{Sf}_{\mathbb{Q}}^{*}$ following from (Q1) in the definition of $\mathrm{Sf}_{\mathbb{Q}}^{*}$ and Lemma 3.4(i).

We next consider the case where $\varphi(x, z)$ is a finite conjunction of p-conditions in $L_{\mathrm{u}}^{*}(x, z)$ such that one of the conjuncts is $k x+t(z) \in U_{p, l}$ with $k \neq 0$ and the other conjuncts are either of the form $k^{\prime} x+t^{\prime}(z) \in U_{p, l^{\prime}}$ or of the form $k^{\prime} x+t^{\prime}(z) \notin U_{p, l^{\prime}}$ where we do allow l^{\prime} to vary. It follows from Lemma 3.4(i) that if $k=k^{\prime}, l \geqslant l^{\prime}$, then

$$
k^{\prime} x+t^{\prime}(z) \in U_{p, l^{\prime}} \text { if and only if } t(z)-t^{\prime}(z) \in U_{p, l^{\prime}}
$$

So we have means to replace conjuncts of $\varphi(x, z)$ by terms independent of the variable x. However, the above will not work if $k \neq k^{\prime}$ or $l<l^{\prime}$. By Lemma 3.4(iii), across models of $\mathrm{Sf}_{\mathbb{Q}}^{*}$, we have that

$$
k x+t(z) \in U_{p, l} \text { if and only if } h k x+h t(z) \in U_{p, l+v_{p}(h)} \quad \text { for all } h \neq 0 .
$$

From this observation, it is easy to see that we can resolve the issue of having $k \neq k^{\prime}$. By Lemma 3.4(i,ii), across models of $\mathrm{Sf}_{\mathbb{Q}}^{*}$, we have that

$$
k x+t(z) \in U_{p, l} \text { if and only if } \bigvee_{i=1}^{p^{m}} k z+t(z)+i p^{l} \in U_{p, l+m} \text { for all } l \geqslant 0 \text { and all } m .
$$

Using the preceding two observations we resolve the issue of having $l<l^{\prime}$. The statement of the lemma for this case then follows from the first paragraph.

We now prove the full lemma. It suffices to consider the case where $\varphi(x, z)$ is a conjunction of atomic formulas. In view of the preceding paragraph, we reduce further to the case where $\varphi(x, z)$ is of the form

$$
\bigwedge_{i=1}^{m} k x+t_{i}(z) \notin U_{p, l_{i}}
$$

We now show that $\exists \varphi(x, z)$ is a tautology over $\mathrm{Sf}_{\mathbb{Q}}^{*}$ and thus complete the proof. Suppose $\left(G, \mathcal{U}^{G}, \mathcal{P}^{G}\right) \vDash \mathrm{Sf}_{\mathbb{Q}}^{*}$ and $c \in G^{n}$. It suffices to find $a \in G$ such that the p-condition $k a+t_{i}(c) \notin$ $U_{p, l_{i}}^{G}$ holds for all $i \in\{1, \ldots, m\}$. Without loss of generality, we assume that $t_{1}(c), \ldots, t_{m^{\prime}}(c)$
are not in $U_{p, l}^{G}$ for all l and that $t_{m^{\prime}+1}(c), \ldots, t_{m}(c)$ are in $U_{p, l_{0}}^{G}$ for some l_{0} such that $l_{0}<l_{i}$ for all $i \in\{1, \ldots, m\}$. Using 3.4(ii), choose a such that $k a \in U_{p, l_{0}-1}^{G} \backslash U_{p, l_{0}}^{G}$. It follows from Lemma 3.4(i) that a is as desired.

Theorem 3.2. The theories $\mathrm{SF}_{\mathbb{Z}}^{*}, \mathrm{SF}_{\mathbb{Q}}^{*}$, and $\mathrm{OSF}_{\mathbb{Q}}^{*}$ admit quantifier elimination.

Proof. As the three situations are very similar, we will only present here the proof that $\mathrm{OSF}_{\mathbb{Q}}^{*}$ admits quantifier elimination. The proof for $\mathrm{SF}_{\mathbb{Z}}^{*}$ and $\mathrm{SF}_{\mathbb{Q}}^{*}$ are simpler as there is no ordering involved. Along the way we point out the necessary modifications needed to get the proof for $\mathrm{SF}_{\mathbb{Z}}^{*}$ and $\mathrm{SF}_{\mathbb{Q}}^{*}$. Fix $\mathrm{OSF}_{\mathbb{Q}}^{*}$-models $\left(G,<, \mathcal{U}^{G}, \mathcal{P}^{G}\right)$ and $\left(H,<, \mathcal{U}^{H}, \mathcal{P}^{H}\right)$ such that the latter is $|G|^{+}$-saturated. Suppose

$$
f \text { is a partial } L_{\mathrm{ou}}^{*} \text {-embedding from }\left(G,<, \mathcal{U}^{G}, \mathcal{P}^{G}\right) \text { to }\left(H,<, \mathcal{U}^{H}, \mathcal{P}^{H}\right) \text {, }
$$

in other words, f is an $L_{\text {ou }}^{*}$-embedding of an $L_{\text {ou }}^{*}$-substructure of $\left(G,<, \mathcal{U}^{G}, \mathcal{P}^{G}\right)$ into ($H,<$ $\left., \mathfrak{U}^{H}, \mathcal{P}^{H}\right)$. By a standard test, it suffices to show that if $\operatorname{Domain}(f) \neq G$, then there is a partial $L_{\text {ou }}^{*}$-embedding from $\left(G,<, \mathcal{U}^{G}, \mathcal{P}^{G}\right)$ to $\left(H,<, \mathcal{U}^{H}, \mathcal{P}^{H}\right)$ which properly extends f. For the corresponding statements with $\mathrm{SF}_{\mathbb{Z}}^{*}$ or $\mathrm{SF}_{\mathbb{Q}}^{*}$, we need to consider instead $\left(G, \mathcal{U}^{G}, \mathcal{P}^{G}\right)$ and $\left(H, \mathfrak{U}^{H}, \mathcal{P}^{H}\right)$ depending on the situation.

We remind the reader that our choice of language includes a symbol for additive inverse, and so Domain (f) is automatically a subgroup of G. Suppose Domain (f) is not a pure subgroup of G, that is, there is an element $\operatorname{Domain}(f)$ which is n-divisible in G but not n-divisible in Domain (f) for some $n>0$. Then there is p and a in $G \backslash \operatorname{Domain}(f)$ such that $p a \in \operatorname{Domain}(f)$. Using divisibility of H, we get $b \in H$ such that $p b=f(p a)$. Let g be the extension of f given by

$$
k a+a^{\prime} \mapsto k b+f\left(a^{\prime}\right) \quad \text { for } k \in\{1, \ldots, p-1\} \text { and } a^{\prime} \in \operatorname{Domain}(f) .
$$

It is routine to check that g is an ordered group isomorphism from $\langle\operatorname{Domain}(f), a\rangle$ to $\langle\operatorname{Image}(f), b\rangle$. It is also easy to check using Lemma 3.4(iii) that $k a+a^{\prime} \in U_{p, l}^{G}$ if and only if $k b+f\left(a^{\prime}\right) \in U_{p, l}^{G}$ and $k a+a^{\prime} \in P_{m}^{G}$ if and only if $k b+f\left(a^{\prime}\right) \in U_{m}^{G}$ for all k, l, m, and $a^{\prime} \in \operatorname{Domain}(f)$. Hence,
g is a partial L_{ou}^{*}-embedding from $\left(G,<, \mathfrak{U}^{G}, \mathcal{P}^{G}\right)$ to $\left(H,<, \mathfrak{U}^{H}, \mathcal{P}^{H}\right)$.
Clearly, g properly extends f, so the desired conclusion follows. The proof for $\mathrm{SF}_{\mathbb{Q}}^{*}$ is the same but without the verification that the ordering is preserved. The situation for $\mathrm{SF}_{\mathbb{Z}}^{*}$ is slightly different as H is not divisible. However, $p a$ is in $p G=U_{p, 1}^{G}$, and so $f(p a)$ is in $U_{p, 1}^{H}=p H$. The proof proceeds similarly using 3.1(4-6).

The remaining case is when $\operatorname{Domain}(f) \neq G$ is a pure subgroup of G. Let a be in $G \backslash \operatorname{Domain}(f)$. We need to find b in $H \backslash \operatorname{Image}(f)$ such that

$$
\operatorname{qftp}_{L_{\mathrm{ou}}^{\star}}(a \mid \operatorname{Domain}(f))=\operatorname{qft}_{L_{\text {ou }}^{\star}}(b \mid \operatorname{Image}(f))
$$

By the fact that Domain (f) is pure in G, and Corollary 3.3, $\operatorname{qft}_{L_{\text {ou }}^{\star}}(a \mid \operatorname{Domain}(f))$ is isolated by formulas of the form

$$
\rho(b) \wedge \lambda(x, b) \wedge \psi\left(x, t(b), t^{\prime}(b)\right)
$$

where $\rho(y)$ is a quantifier-free $L_{\text {ou }}^{*}$-formula, $\lambda(x, y)$ is an order condition, $\psi\left(x, z, z^{\prime}\right)$ a special formula, $t(y)$ and $t^{\prime}(y)$ are tuples of $L_{\text {ou }}^{*}$-terms of suitable length, b is a tuple of elements of Domain (f) of suitable length, and $\psi\left(x, t(b), t^{\prime}(b)\right)$ is a nontrival Domain (f)-system. As Domain (f) is a pure subgroup of G, we can moreover arrange that $\lambda(x, b)$ is simply the formula $b_{1}<x<b_{2}$. Since f is an L_{ou}^{*}-embedding, $\rho(f(b))$ holds, $f\left(b_{1}\right)<f\left(b_{2}\right)$, and $\psi\left(x, t(f(b)), t^{\prime}(f(b))\right)$ is a nontrivial Image (f)-system. Using the fact that $\left(H,<, \mathcal{U}^{H}, \mathcal{P}^{H}\right)$ is $|G|^{+}$-saturated, the problem reduces to showing that

$$
\psi\left(x, f(t(b)), f\left(t^{\prime}(b)\right)\right) \text { has a solution in the interval }\left[f\left(b_{1}\right), f\left(b_{2}\right)\right]^{H}
$$

As $\psi\left(x, t(b), t^{\prime}(b)\right)$ is satisfiable in G, it is locally satisfiable in G by Lemma 3.5. For each p, let $\psi_{p}\left(x, z, z^{\prime}\right)$ be the associated p-condition of $\psi\left(x, z, z^{\prime}\right)$. By Lemma 3.11, for all p, the formula $\exists x \psi_{p}\left(x, z, z^{\prime}\right)$ is equivalent over $\mathrm{Sf}_{\mathbb{Q}}^{*}$ to a quantifier free formula in $L_{\mathrm{u}}^{*}\left(z, z^{\prime}\right)$. Hence, $\exists x \psi_{p}\left(x, f(c), f\left(c^{\prime}\right)\right)$ holds in $\left(H,<, \mathcal{U}^{H}, \mathcal{P}^{H}\right)$ for all p. Thus,
the Image (f)-system $\psi\left(x, f(t(b)), f\left(t^{\prime}(b)\right)\right)$ is locally satisfiable in H.
The desired conclusion follows from the genericity of $\left(H,<, \mathfrak{U}^{H}, \mathcal{P}^{H}\right)$. The proofs for $\mathrm{SF}_{\mathbb{Z}}^{*}$ and $\mathrm{SF}_{\mathbb{Q}}^{*}$ are similar. However, we have there the formula $\bigwedge_{i=1}^{k} x \neq b_{i}$ with $k \leqslant|b|$ instead of the formula $b_{1}<x<b_{2}$, Lemma 3.10 instead of Corollary 3.3, and the corresponding notion of genericity instead of the current one.

Corollary 3.4. The theory $\mathrm{SF}_{\mathbb{Z}}^{*}$ is a recursive axiomatization of $\operatorname{Th}\left(\mathbb{Z}, \mathcal{U}^{\mathbb{Z}}, \mathcal{P}^{\mathbb{Z}}\right)$, and is therefore decidable. Similar statements hold for $\mathrm{SF}_{\mathbb{Q}}^{*}$ in relation to $\operatorname{Th}\left(\mathbb{Q}, \mathcal{U Q}^{\mathbb{Q}}, \mathcal{P}^{\mathbb{Q}}\right)$ and $\mathrm{OSF}_{\mathbb{Q}}^{*}$ in relation to $\operatorname{Th}\left(\mathbb{Q},<\mathcal{U}^{\mathbb{Q}}, \mathcal{P}^{\mathbb{Q}}\right)$.

Proof. By Lemma 3.1(ii), the relative divisible closure of 1 in an arbitrary model ($G, \mathcal{U}^{G}, \mathcal{P}^{G}$) of $\mathrm{SF}_{\mathbb{Z}}^{*}$ is an isomorphic copy of $\left(\mathbb{Z}, \mathcal{U}^{\mathbb{Z}}, \mathcal{P}^{\mathbb{Z}}\right)$. Hence by Theorem 3.2, $\mathrm{SF}_{\mathbb{Z}}^{*}$ is complete, and on the other hand $\left(\mathbb{Z}, \mathcal{U}^{\mathbb{Z}}, \mathcal{P}^{\mathbb{Z}}\right) \vDash \mathrm{SF}_{\mathbb{Z}}^{*}$ by Theorem 3.1. The first statement of the corollary follows. The justification of the second statement is obtained in a similar fashion.

We will next deduce consequence for the structures $\left(\mathbb{Z}, \mathrm{SF}^{\mathbb{Z}}\right),\left(\mathbb{Q}, \mathrm{SF}^{\mathbb{Q}}\right)$, and $\left(\mathbb{Q},<, \mathrm{SF}^{\mathbb{Q}}\right)$ in the original language.

Theorem 3.3. The theory of $\left(\mathbb{Z}, \mathrm{SF}^{\mathbb{Z}}\right)$ is model complete and decidable.
Proof. For all $p, l \geqslant 0, m>0$, and all $a \in \mathbb{Z}$, we have the following:
(1) $a \in U_{p, l}^{\mathbb{Z}}$ if and only there is $b \in \mathbb{Z}$ such that $p^{l} b=a$;
(2) $a \notin U_{p, l}^{\mathbb{Z}}$ if and only if for some $i \in\left\{1, \ldots, p^{l}-1\right\}$, there is $b \in \mathbb{Z}$ such that $p^{l} b=a+i$;
(3) $a \in P_{m}^{\mathbb{Z}}$ if and only if for some $d \mid m$, there is $b \in \mathbb{Z}$ such that $a=b d$ and $b \in \mathrm{SF}^{\mathbb{Z}}$;
(4) $a \notin P_{m}^{\mathbb{Z}}$ if and only if for all $d \mid m$, either for some $i \in\{1, \ldots, d-1\}$, there is $b \in \mathbb{Z}$ such that $d b=a+i$ or there is $b \in \mathbb{Z}$ such that $a=b d$ and $b \notin \mathrm{SF}^{\mathbb{Z}}$.
As $\left(\mathbb{Z}, \mathcal{U}^{\mathbb{Z}}, \mathcal{P}^{\mathbb{Z}}\right) \vDash \mathrm{SF}_{\mathbb{Z}}^{*}$, it then follows from Theorem 3.2 and the above observation that every 0 -definable set in $\left(\mathbb{Z}, \mathrm{SF}^{\mathbb{Z}}\right)$ is existentially 0 -definable. Hence, the theory of $\left(\mathbb{Z}, \mathrm{SF}^{\mathbb{Z}}\right)$ is model complete. The decidability of $\operatorname{Th}\left(\mathbb{Z}, \mathrm{SF}^{\mathbb{Z}}\right)$ is immediate from the preceding corollary.

Lemma 3.12. Suppose $a \in \mathbb{Q}$ has $v_{p}(a)<0$. Then there is $\varepsilon \in \mathbb{Q}$ such that $v_{p}(\varepsilon) \geqslant 0$ and $a+\varepsilon \in \mathrm{SF}^{\mathbb{Q}}$.

Proof. Suppose a is as stated. If $a \in \mathrm{SF}^{\mathbb{Q}}$ we can choose $\varepsilon=0$, so suppose a is in $\mathbb{Q} \backslash \mathrm{SF}^{\mathbb{Q}}$. We can also arrange that $a>0$. Then there are $m, n, k \in \mathbb{N} \geqslant 1$ such that

$$
a=\frac{m}{n p^{k}},(m, n)=1,(m, p)=1, \text { and }(n, p)=1
$$

It suffices to show there is $b \in \mathbb{Z}$ such that $m+p^{k} b$ is a square-free integer as then

$$
a+\frac{b}{n}=\frac{m+p^{k} b}{n p^{k}} \in \mathrm{SF}^{\mathbb{Q}} .
$$

For all prime l, it is easy to check that there is $b_{l} \in \mathbb{Z}$ such that $p^{k} b_{l}+m \notin U_{l, 2}^{\mathbb{Q}}$. The conclusion then follows from the genericity of $\left(\mathbb{Z}, \mathcal{U}^{\mathbb{Z}}, \mathcal{P}^{\mathbb{Z}}\right)$ as established in Theorem 3.1.

Corollary 3.5. For all p and $l, U_{p, l}^{\mathbb{Q}}$ is universally 0 -definable in $\left(\mathbb{Q}, \mathrm{SF}^{\mathbb{Q}}\right)$.
Proof. We will instead show that $\mathbb{Q} \backslash U_{p, l}^{\mathbb{Q}}=\left\{a: v_{p}(a)<l\right\}$ is existentially 0-definable for all p and l. As $\mathbb{Q} \backslash U_{p, l+n}^{\mathbb{Q}}=p^{n}\left(\mathbb{Q} \backslash U_{p, l}^{\mathbb{Q}}\right)$ for all p, l, and n, it suffices to show the statement for $l=0$. Fix a prime p. By the preceding lemma we have that for all $a, v_{p}(a)<0$ if and only if there is ε such that $v_{p}(\varepsilon) \geqslant 0, a+\varepsilon \in \mathrm{SF}^{\mathbb{Q}}$ and $v_{p}(a+\varepsilon)<0$.

We recall that $\left\{\varepsilon: v_{p}(\varepsilon) \geqslant 0\right\}$ is existentially 0 -definable by Lemma 3.3. Also, for all $a^{\prime} \in \mathrm{SF}^{\mathbb{Q}}$, we have that $v_{p}\left(a^{\prime}\right)<0$ is equivalent to $p^{2} a^{\prime} \in \mathrm{SF}^{\mathbb{Q}}$. The conclusion hence follows.

Theorem 3.4. The theories of $\left(\mathbb{Q}, \mathrm{SF}^{\mathbb{Q}}\right)$ and $\left(\mathbb{Q},<, \mathrm{SF}^{\mathbb{Q}}\right)$ are model complete and decidable.
Proof. We show that the L_{u}-theory of $\left(\mathbb{Q}, \mathrm{SF}^{\mathbb{Q}}\right)$ and L_{ou}-theory of $\left(\mathbb{Q},<, \mathrm{SF}^{\mathbb{Q}}\right)$ is model complete and decidable. The proof is almost exactly the same as that of part 1 of Theorem 1.2. It follows from Lemma 3.3 and Corollary 3.5 that for all p and l, the sets $U_{p, l}^{\mathbb{Q}}$ are
existentially and universally 0-definable in $\left(\mathbb{Q}, \mathrm{SF}^{\mathbb{Q}}\right)$. For all $m, P_{m}^{\mathbb{Q}}=m \mathrm{SF}^{\mathbb{Q}}$ and $\mathbb{Q} \backslash P_{m}^{\mathbb{Q}}=$ $m\left(\mathbb{Q} \backslash \mathrm{SF}^{\mathbb{Q}}\right)$ are clearly existentially 0 -definable. The conclusion follows.
Next, we will show that the L_{ou}-theory of $\left(\mathbb{Z},<, \mathrm{SF}^{\mathbb{Z}}\right)$ is bi-interpretable with arithmetic. The proof follow closely the arguments from [6]. In fact, we can slightly modify Corollary 3.6 to use essentially the same proof at the cost of replacing n^{2} with $n^{2}+n$.

Lemma 3.13. Let c_{1}, \ldots, c_{n} be an increasing sequence of natural numbers, assume that for all primes p, there is a solution to the system of congruence inequations

$$
x+c_{i} \notin U_{p, 2}^{\mathbb{Z}} \text { for all } i \in\{1, \ldots, n\} .
$$

Then there is $a \in \mathbb{N}$ such that $a+c_{1}, \ldots, a+c_{n}$ are consecutive square-free integers.
Proof. Suppose c_{1}, \ldots, c_{n} are as given. Let $c_{1}^{\prime}, \ldots, c_{n^{\prime}}^{\prime}$ be the listing in increasing order of elements in the set of $c \in \mathbb{N}$ such that $c_{1} \leqslant c \leqslant c_{n}$ and $c \neq c_{i}$ for $i \in\{1, \ldots, n\}$. The conclusion that there are infinitely many a such that

$$
\bigwedge_{i=1}^{n}\left(a+c_{i} \in \mathrm{SF}^{\mathbb{Z}}\right) \wedge \bigwedge_{i=1}^{n^{\prime}}\left(a+c_{i}^{\prime} \notin \mathrm{SF}^{\mathbb{Z}}\right)
$$

follows from the assumptions about c_{1}, \ldots, c_{n} and the genericity of $\left(\mathbb{Z}, \mathcal{U}^{\mathbb{Z}}, \mathcal{P}^{\mathbb{Z}}\right)$ as established in Theorem 3.1.

Corollary 3.6. For all $n \in \mathbb{N}>0$, there is $a \in \mathbb{N}$ such that $a+1, a+4, \ldots, a+n^{2}$ are consecutive square-free integers .

Proof. For each p, we can obtain $a \in\left\{1,2, \ldots, p^{2}-1\right\}$ such that

$$
a \neq p^{2}-m^{2} \text { for all } m \text {. }
$$

Hence, for any given $n>0$ and p, the p-condition $\bigwedge_{i=1}^{n}\left(x+i^{2} \notin U_{p, 2}^{\mathbb{Z}}\right)$ has a solution. The result now follows immediately from the preceding lemma.

Theorem 3.5. The theory of $\left(\mathbb{Z},<, \mathrm{SF}^{\mathbb{Z}}\right)$ defines multiplication.
Proof. It suffices to show that $\left(\mathbb{Z},<, \mathrm{SF}^{\mathbb{Z}}\right)$ interprets multiplication on \mathbb{N}. Let T be the set of $(a, b) \in \mathbb{N}^{2}$ such that for some $n \in \mathbb{N} \geqslant 1$,

$$
b=a+n^{2} \text { and } a+1, a+4, \ldots, a+n^{2} \text { are consecutive square-free integers. }
$$

The set T is definable in $\left(\mathbb{Z},<, \mathrm{SF}^{\mathbb{Z}}\right)$ as $(a, b) \in T$ and $b \neq a+1$ if and only if $a<b, a+1$ and $a+4$ are consecutive square-free integers, b is square-free, and whenever c, d, and e are consecutive square-free integers with $a<c<d<e \leqslant b$, we have that

$$
(e-d)-(d-c)=2
$$

Let S be the set $\left\{n^{2}: n \in \mathbb{N}\right\}$. If $c=0$ or there are a, b such that $(a, b) \in T$ and $b-a=c$, then $c=n^{2}$ for some n. Conversely, if $c=n^{2}$, then either $c=0$ or by Corollary 3.6,
there is $(a, b) \in T$ with $b-a=c$.
Therefore, S is definable in $\left(\mathbb{Z},<, \mathrm{SF}^{\mathbb{Z}}\right)$. The map $n \mapsto n^{2}$ in \mathbb{N} is definable in $\left(\mathbb{Z},<, \mathrm{SF}^{\mathbb{Z}}\right)$ as $b=a^{2}$ if and only if $b \in S$ and whenever $c \in S$ is such that $c>b$ and b, c are consecutive in S, we have that $c-b=2 a+1$. Finally, $c=b a$ if and only if $2 c=(b+a)^{2}-b^{2}-a^{2}$. Thus, multiplication on \mathbb{N} is definable in $\left(\mathbb{Z},<, \mathrm{SF}^{\mathbb{Z}}\right)$.

3.3. Combinatorial Tameness

As the theories $\mathrm{SF}_{\mathbb{Z}}^{*}, \mathrm{SF}_{\mathbb{Q}}^{*}$, and $\mathrm{OSF}_{\mathbb{Q}}^{*}$ are complete, it is convenient to work in the so-called monster models, that is, models which are very saturated and homogeneous. Until the end of the chapter, let $\left(\mathbb{G}, \mathcal{U}^{\mathbb{G}}, \mathcal{P}^{\mathbb{G}}\right)$ be a monster model of either $\mathrm{SF}_{\mathbb{Z}}^{*}$ or $\mathrm{SF}_{\mathbb{Q}}^{*}$ depending on the situation. In the latter case, we suppose $\left(\mathbb{G},<, \mathcal{U}^{\mathbb{G}}, \mathcal{P}^{\mathbb{G}}\right)$ is a monster model of OSF $_{\mathbb{Q}}^{*}$. We assume that κ, A and I have small cardinalities compared to \mathbb{G}.

Our general strategy to prove the tameness of $\mathrm{SF}_{\mathbb{Z}}^{*}, \mathrm{SF}_{\mathbb{Q}}^{*}$, and $\mathrm{OSF}_{\mathbb{Q}}^{*}$ is to link them to the corresponding "local" facts. The next lemma says that $\mathrm{SF}_{\mathbb{Z}}^{*}$ is "locally" supersimple of U-rank 1.

Lemma 3.14. Suppose $\left(\mathbb{G}, \mathcal{U}^{\mathbb{G}}, \mathcal{P}^{\mathbb{G}}\right) \vDash \mathrm{SF}_{\mathbb{Z}}^{*}, \theta_{p}(x, y)$ is a consistent p-condition, and b is in $\mathbb{G}^{|y|}$. Then $\theta_{p}(x, b)$ does not divide over any base set $A \subseteq \mathbb{G}$.

Proof. Suppose $\left(\mathbb{G}, \mathcal{U}^{\mathbb{G}}, \mathcal{P}^{\mathbb{G}}\right), \theta_{p}(x, b)$ are as stated, and A is a small subset of \mathbb{G}. Suppose I is an infinite ordered set and $\left(\sigma_{i}\right)_{i \in I}$ a family of L_{u}^{\star}-automorphisms of $\left(\mathbb{G}, \mathcal{U}^{\mathbb{G}}, \mathcal{P}^{\mathbb{G}}\right)$ such that $\left(\sigma_{i} b\right)_{i \in I}$ is indiscernible over A. By the monstrosity of \mathbb{G}, the problem reduces to showing that the set $\left\{\theta_{p}\left(x, \sigma_{i} b\right): i \in I\right\}$ is consistent. It is easy to see from Lemma 3.1(i, ii) that for some $l, \theta_{p}(x, b)$ defines a nonempty finite union of translations of $U_{p, l}^{\mathbb{G}}$, which is a set definable over the empty-set. Then $\theta_{p}\left(x, \sigma_{i} b\right)$ defines the same set for all $i \in I$, and so $\bigcap_{i \in I} \theta_{p}\left(x, \sigma_{i} b\right) \neq \varnothing$. The conclusion follows.

Theorem 3.6. The theory of $\left(\mathbb{Z}, \mathrm{SF}^{\mathbb{Z}}\right)$ is supersimple of U-rank 1 and k-independent for all $k \in \mathbb{N} \geqslant 1$.

Proof. We first show that $\operatorname{Th}\left(\mathbb{Z}, \mathrm{SF}^{\mathbb{Z}}\right)$ is supersimple of U-rank 1 ; see [44, p. 36] for a definition of U-rank or SU-rank. By the fact that $\left(\mathbb{Z}, \mathrm{SF}^{\mathbb{Z}}\right)$ have the same definable sets as $\left(\mathbb{Z}, \mathcal{U}^{\mathbb{Z}}, \mathcal{P}^{\mathbb{G}}\right)$ and Corollary 3.4, we can replace $\operatorname{Th}\left(\mathbb{Z}, \mathrm{SF}^{\mathbb{Z}}\right)$ with $\mathrm{SF}_{\mathbb{Z}}^{*}$. Suppose $\left(\mathbb{G}, \mathcal{U}^{\mathbb{G}}, \mathcal{P}^{\mathbb{G}}\right) \vDash$ $\mathrm{SF}_{\mathbb{Z}}^{*}$. Our job is to show that every $L_{\mathrm{u}}^{*}(\mathbb{G})$-formula $\varphi(x, b)$ which forks over a small subset A of \mathbb{G} must define a finite set in \mathbb{G}. We can easily reduce to the case that $\varphi(x, b)$ divides
over A. Moreover, we can assume that $\varphi(x, b)$ is quantifier free by Theorem 3.2 which states that $\left(\mathbb{G}, \mathcal{U}^{\mathbb{G}}, \mathcal{P}^{\mathbb{G}}\right)$ admits quantifier elimination. Using Lemma 3.10, we can also arrange that $\varphi(x, b)$ has the form

$$
\rho(b) \wedge \varepsilon(x, b) \wedge \psi\left(x, t(b), t^{\prime}(b)\right)
$$

where $\rho(y)$ is a quantifier-free formula, $\varepsilon(x, y)$ is an equational condition, $t(y)$ and $t^{\prime}(y)$ are tuples of L_{u}^{*}-terms with length n and n^{\prime} respectively, and $\psi\left(x, z, z^{\prime}\right)$ is a special formula.

Suppose to the contrary that $\varphi(x, b)$ divives over A but $\varphi(x, b)$ defines an infinite set in \mathbb{G}. From the first assumption, we get an infinite ordering I and a family $\left(\sigma_{i}\right)_{i \in I}$ of $L_{\mathrm{u}^{-}}^{\star}$ automorphisms of $\left(\mathbb{G}, \mathcal{U}^{\mathbb{G}}, \mathcal{P}^{\mathbb{G}}\right)$ such that $\left(\sigma_{i} b\right)_{i \in I}$ is indiscernible over A and $\bigwedge_{i \in I} \varphi\left(x, \sigma_{i} b\right)$ is inconsistent. As $\varphi(x, b)$ defines an infinite set in \mathbb{G}, we get from the second assumption that $\rho(b)$ holds in $\mathbb{G}, \varepsilon(x, b)$ defines a cofinite set in \mathbb{G}, and $\psi\left(x, t(b), t^{\prime}(b)\right)$ defines an infinite hence non-empty set in \mathbb{G}. As $\left(\sigma_{i} b\right)_{i \in I}$ is indiscernible, we have that $\rho\left(\sigma_{i} b\right)$ holds in \mathbb{G} and $\varepsilon\left(x, \sigma_{i} b\right)$ defines a cofinite set in \mathbb{G} for all $i \in I$. Using the saturatedness of \mathbb{G}, we get a finite set $\Delta \subseteq I$ such that

$$
\theta_{\Delta}(x):=\bigwedge_{i \in \Delta} \psi\left(x, t\left(\sigma_{i} b\right), t^{\prime}\left(\sigma_{i} b\right)\right) \text { defines a finite set in } \mathbb{G} .
$$

As $\theta_{\Delta}(x)$ is a conjunction of \mathbb{G}-systems given by the same special formula, it is easy to see that $\theta_{\Delta}(x)$ is also a \mathbb{G}-system.

We will show that $\theta_{\Delta}(x)$ defines an infinite set and thus obtain the desired contradiction. As $\left(\mathbb{G}, \mathcal{U}^{\mathbb{G}}, \mathcal{P}^{\mathbb{G}}\right)$ is a model of $\mathrm{SF}_{\mathbb{Z}}^{*}$ and hence generic, it suffices to show that $\theta_{\Delta}(x)$ is nontrivial and locally satisfiable. As $\varphi(x, b)$ is consistent, $t(b)$ has no common components with $t^{\prime}(b)$. The assumption that $\left(\sigma_{i} b\right)_{i \in I}$ is indiscernible gives us that $t\left(\sigma_{i} b\right)$ has no common components with $t^{\prime}\left(\sigma_{j} b\right)$ for all i and j in I. It follows that $\theta_{\Delta}(x)$ is non-trivial. For each p, let $\psi_{p}\left(x, z, z^{\prime}\right)$ be the associated p-condition of $\psi\left(x, z, z^{\prime}\right)$. For all p, we have that $\psi_{p}\left(x, z, z^{\prime}\right)$ defines a nonempty set and consequently by Lemma 3.14,

$$
\bigwedge_{i \in \Delta} \psi_{p}\left(x, t\left(\sigma_{i} b\right), t^{\prime}\left(\sigma_{i} b\right)\right) \text { defines a nonempty set in } \mathbb{G} .
$$

We easily check that the above means $\theta_{\Delta}(x)$ is p-satisfiable for all p. Thus $\theta_{\Delta}(x)$ is locally satisfiable which completes our proof that $\operatorname{Th}\left(\mathbb{Z}, \mathrm{SF}^{\mathbb{Z}}\right)$ has U-rank 1.

We will next prove that $\operatorname{Th}\left(\mathbb{Z}, \mathrm{SF}^{\mathbb{Z}}\right)$ is k-independent for all $k>0$; see $[\mathbf{1 7}]$ for a definition of k-independence. The proof is almost the exact replica of the proof in [45] except the necessary modifications taken in the current paragraph. Suppose $l>0, S$ is an arbitrary subset of $\{0, \ldots, l-1\}$. Our first step is to show that there are $a, d \in \mathbb{N}$ such that for $t \in\{0, \ldots, l-1\}$,

$$
a+t d \text { is square-free if and only if } t \text { is in } S \text {. }
$$

Let $n=|S|$ and $n^{\prime}=l-n$, and let $c \in \mathbb{Z}^{n}$ be the increasing listing of elements in S and $c^{\prime} \in \mathbb{Z}^{n^{\prime}}$ the increasing listing of elements in $\{0, \ldots, l-1\} \backslash S$. Choose $d=(l!)^{2}$. We need to find a such that

$$
\bigwedge_{i=1}^{n}\left(a+c_{i} d \in \mathrm{SF}^{\mathbb{Z}}\right) \wedge \bigwedge_{i=1}^{n^{\prime}}\left(a+c_{i}^{\prime} d \notin \mathrm{SF}^{\mathbb{Z}}\right) .
$$

For $p \leqslant l$, if $a_{p} \notin p^{2} \mathbb{Z}=U_{p, 2}^{\mathbb{Z}}$, then $a_{p}+c_{i} d \notin p^{2} \mathbb{Z}$ for all $i \in\{1, \ldots, n\}$. For $p>l$, it is easy to see that $0+c_{i} d \notin p^{2} \mathbb{Z}$ for all $i \in\{1, \ldots, n\}$. The desired conclusion follows from the genericity of $\left(\mathbb{Z}, \mathcal{U}^{\mathbb{Z}}, \mathcal{P}^{\mathbb{Z}}\right)$.

Fix $k>0$. We construct an explicit L_{u}-formula which witnesses the k-independence of $\operatorname{Th}\left(\mathbb{Z}, \mathrm{SF}^{\mathbb{Z}}\right)$. Let $y=\left(y_{0}, \ldots, y_{k-1}\right)$ and let $\varphi(x, y)$ be a quantifier-free L_{u}^{*}-formula such that for all $a \in \mathbb{Z}$ and $b \in \mathbb{Z}^{k}$,

$$
\varphi(a, b) \text { if and only if } a+b_{0}+\cdots+b_{k-1} \in \mathrm{SF}^{\mathbb{Z}} \quad \text { where } b=\left(b_{0}, \ldots, b_{k-1}\right)
$$

We will show that for any given $n>0$, there are families $\left(a_{\Delta}\right)_{\Delta \subseteq\{0, \ldots, n-1\}^{k}}$ and $\left(b_{i j}\right)_{0 \leqslant i<k, 0 \leqslant j<n}$ of integers such that

$$
\varphi\left(a_{\Delta}, b_{0, j_{0}}, \ldots, b_{k-1, j_{k-1}}\right) \text { if and only if }\left(j_{0}, \ldots, j_{k-1}\right) \in \Delta .
$$

Let $f: \mathcal{P}\left(\{0, \ldots, n-1\}^{k}\right) \rightarrow\left\{0, \ldots, 2^{\left(n^{k}\right)}-1\right\}$ be an arbitrary bijection. Let g be the bijection from $\{0, \ldots, n-1\}^{k}$ to $\left\{0, \ldots, n^{k}-1\right\}$ such that if b and b^{\prime} are in $\{0, \ldots, n-1\}^{k}$ and $b<_{\text {lex }} b^{\prime}$, then $g(b)<g\left(b^{\prime}\right)$. More explicitly, we have

$$
g\left(j_{0}, \ldots, j_{k-1}\right)=j_{0} n^{k-1}+j_{1} n^{k-2}+\cdots+j_{k-1} \text { for }\left(j_{0}, \ldots, j_{k-1}\right) \in\{0, \ldots, n-1\}^{k}
$$

It follows from the preceding paragraph that we can find an arithmetic progression $\left(c_{i}\right)_{i \in\left\{0, \ldots, n^{k} 2^{\left(n^{k}\right)}-1\right\}}$ such that for all $\Delta \subseteq\{0, \ldots, n-1\}^{k}$ and $\left(j_{0}, \ldots, j_{k-1}\right)$ in $\{0, \ldots, n-1\}^{k}$, we have that

$$
c_{f(\Delta) n^{k}+g\left(j_{0}, \ldots, j_{k-1}\right)} \in \mathrm{SF}^{\mathbb{Z}} \text { if and only if }\left(j_{0}, \ldots, j_{k-1}\right) \in \Delta .
$$

Suppose $d=c_{1}-c_{0}$. Set $b_{i j}=d j n^{k-i-1}$ for $i \in\{0, \ldots, k-1\}$ and $j \in\{0, \ldots, n-1\}$, and set $a_{\Delta}=c_{f(\Delta) n^{k}}$ for $\Delta \subseteq\{0, \ldots, n-1\}^{k}$. We have

$$
c_{f(\Delta) n^{k}+g\left(j_{0}, \ldots, j_{k-1}\right)}=c_{f(\Delta) n^{k}}+d g\left(j_{0}, \ldots, j_{k-1}\right)=a_{\Delta}+b_{0, j_{0}}+\cdots+b_{k-1, j_{k-1}} .
$$

The conclusion thus follows.
Lemma 3.15. Every p-condition $\theta_{p}(x, y)$ is stable in $\mathrm{SF}_{\mathbb{Q}}^{*}$.
Proof. Suppose $\theta_{p}(x, y)$ is as in the statement of the lemma. It is clear that if $\theta_{p}(x, y)$ does not contain the variable x, then it is stable. As stability is preserved under taking boolean combinations, we can reduce to the case where $\theta_{p}(x, y)$ is $k x+t(y) \in U_{p, l}$ with $k \neq 0$. We note that for any b and b^{\prime} in $\mathbb{G}^{|y|}$, the sets defined by $\theta_{p}(x, b)$ and $\theta_{p}\left(x, b^{\prime}\right)$ are either the same or disjoint. It follows easily that $\theta_{p}(x, y)$ does not have the order property; in other
words, $\theta_{p}(x, y)$ is stable. Alternatively, the desired conclusion also follows from the fact that $\left(\mathbb{Q}, \mathcal{U}^{\mathbb{Q}}\right)$ is an abelian structure and hence stable; see [86, p. 49] for the relevant definition and result.

Theorem 3.7. The theory of $\left(\mathbb{Q}, \mathrm{SF}^{\mathbb{Q}}\right)$ is simple but not supersimple, and is k-independent for all $k \in \mathbb{N} \geqslant 1$.

Proof. We first show that $\operatorname{Th}\left(\mathbb{Q}, \mathrm{SF}^{\mathbb{Q}}\right)$ is simple. By the fact that $\left(\mathbb{Q}, \mathrm{SF}^{\mathbb{Q}}\right)$ has the same definable sets as $\left(\mathbb{Q}, \mathcal{U}^{\mathbb{Q}}, \mathcal{P}^{\mathbb{Q}}\right)$ and Corollary 3.4 , we can replace $\operatorname{Th}\left(\mathbb{Q}, \mathrm{SF}^{\mathbb{Q}}\right)$ with $\mathrm{SF}_{\mathbb{Q}}^{*}$. Towards a contradiction, suppose that the latter is not simple. We obtain as in a formula $\varphi(x, y)$ witnessing the tree property of $\mathrm{SF}_{\mathbb{Q}}^{*}$; see [44, pp. 24-25] for the definition and proof that this is one of the equivalent characterizations of simplicity. We can arrange that $\varphi(x, y)$ is quantifier-free by Theorem 3.2. Disjunction preserves simplicity of formulas [9, pp. 22-23], so using Lemma 3.10 we can arrange that $\varphi(x, y)$ is of the form

$$
\rho(y) \wedge \varepsilon(x, y) \wedge \psi\left(x, t(y), t^{\prime}(y)\right)
$$

where $\rho(y)$ is a quantifier-free L_{u}^{*}-formula, $\varepsilon(x, y)$ is an equational-condition, $t(y)$ and $t^{\prime}(y)$ are tuples of L_{u}^{*}-terms with lengths n and n^{\prime} respectively, and $\psi\left(x, z, z^{\prime}\right)$ is a special formula. Let $\left(\mathbb{G}, \mathcal{U}^{\mathbb{G}}, \mathcal{P}^{\mathbb{G}}\right) \vDash \mathrm{SF}_{\mathbb{Q}}^{*}$. Then there is $b \in \mathbb{G}^{k}$, an uncountable cardinal κ, and a tree $\left(\sigma_{s}\right)_{s \in \omega^{\kappa \kappa}}$ of L_{u}^{*}-automorphisms of $\left(\mathbb{G}, \mathcal{U}^{\mathbb{G}}, \mathcal{P}^{\mathbb{G}}\right)$ with the following properties:
(1) for all $s \in \omega^{<\kappa},\left\{\varphi\left(x, \sigma_{s \sim(i)} b\right): i \in \omega\right\}$ is inconsistent;
(2) for all $\hat{s} \in \omega^{\kappa},\left\{\varphi\left(x, \sigma_{\hat{s} \upharpoonright \alpha} b\right): \alpha<\kappa\right\}$ is consistent;
(3) for every $\alpha<\kappa$ and $s \in \omega^{\alpha}$, the sequence of trees $\left(\left(\sigma_{s \sim(i)-s^{\prime}} b\right)_{s^{\prime} \epsilon \omega^{<\kappa}}\right)_{i \in \omega}$ is indiscernible.

More precisely, we can get b, κ, and $\left(\sigma_{t}\right)_{t \in \omega^{<\kappa}}$ satisfying (1) and (2) from the fact that $\varphi(x, y)$ witness the tree property of $\mathrm{SF}_{\mathbb{Q}}^{*}$, a standard Ramsey arguments, and the monstrosity of $\left(\mathbb{G}, \mathcal{U}^{\mathbb{G}}, \mathcal{P}^{\mathbb{G}}\right)$. We can then arrange that (3) also holds using results in [48]; a direct argument is also straightforward.

We deduce the desired contradiction by showing that there is $s \in \omega^{<\kappa}$ such that $\left\{\varphi\left(x, \sigma_{s \sim(i)} b\right)\right.$: $i \in \omega\}$ is consistent. From (1-3), we get for all $s \in \omega^{<\kappa}$ that $\rho\left(\sigma_{s} b\right)$ holds and $\varepsilon\left(x, \sigma_{s} b\right)$ defines a cofinite set. By montrosity of \mathbb{G}, it suffices to find $s \in \omega^{<\kappa}$ such that any finite conjunction of $\left\{\psi\left(x, t\left(\sigma_{s \sim(i)} b\right), t^{\prime}\left(\sigma_{s \sim(i)} b\right)\right): i \in \omega\right\}$ defines an infinite set in \mathbb{G}. For $s \in \omega^{<\kappa}$ and a finite $\Delta \subseteq \omega$, set

$$
\theta_{s, \Delta}(x):=\bigwedge_{i \in \Delta} \psi\left(x, t\left(\sigma_{s _(i)} b\right), t^{\prime}\left(\sigma_{s \neg(i)} b\right)\right) .
$$

As κ is uncountable, it suffices to show for fixed Δ that for all but countably many $\alpha<\kappa$ and all $s \in \omega^{\alpha}$, the formula $\theta_{s, \Delta}(x)$ defines an infinite set in \mathbb{G}.

Note that $\theta_{s, \Delta}(x)$ is a conjunction of \mathbb{G}-systems given by the same special formula, so $\theta_{s, \Delta}(x)$ is also a \mathbb{G}-system. By the genericity of $\mathrm{SF}_{\mathbb{Q}}^{*}$ established in Theorem 3.1, we need to
check that for all but countably many $\alpha<\kappa$ and all $s \in \omega^{\alpha}$, the \mathbb{G}-system $\theta_{s, \Delta}(x)$ is nontrivial and locally satisfiable. By (2), $\varphi(x, b)$ is consistent, and so is $\psi\left(x, t(b), t^{\prime}(b)\right)$. This implies in particular that $t(b)$ and $t^{\prime}(b)$ have no common components. It then follows from (3) that for $s \in \omega^{\kappa \kappa}$ and $i, j \in \omega$,

$$
t\left(\sigma_{s _(i)} b\right) \text { and } t^{\prime}\left(\sigma_{s _(j)} b\right) \text { have no common elements . }
$$

Hence, $\theta_{s, \Delta}(x)$ is nontrivial for all $s \in \omega^{<\kappa}$. Let $\psi_{p}\left(x, z, z^{\prime}\right)$ be the associated p-condition of $\psi\left(x, z, z^{\prime}\right)$. We then get from (2) that $\left\{\psi_{p}\left(x, \sigma_{\hat{s} \upharpoonright \alpha} b\right): \alpha<\kappa\right\}$ is consistent for all $\hat{s} \in \omega^{\kappa}$. By Lemma 3.15, the formula $\psi_{p}\left(x, t(y), t^{\prime}(y)\right)$ is stable and hence does not witness the tree property. It follows that for all but finitely many $\alpha<\kappa$ and all $s \in \omega^{\alpha}$, the set

$$
\left\{\psi_{p}\left(x, t\left(\sigma_{s _(i)} b\right), t^{\prime}\left(\sigma_{s \sim(i)} b\right)\right): i \in \omega\right\} \text { is consistent. }
$$

For such s, we have that $\theta_{s, \Delta}(x)$ is p-satisfiable. So for all but countably many $\alpha<\kappa$ and all $s \in \omega^{\alpha}, \theta_{s, \Delta}(x)$ is locally satisfiable which completes the proof that $\operatorname{Th}\left(\mathbb{Q}, \mathrm{SF}^{\mathbb{Q}}\right)$ is simple.

We next prove that $\operatorname{Th}\left(\mathbb{Q}, \mathrm{SF}^{\mathbb{Q}}\right)$ is not strong which implies that it is not supersimple; for the definition of strength and the relation to supersimplicity see [1]. Again, we can replace $\operatorname{Th}\left(\mathbb{Q}, \mathrm{SF}^{\mathbb{Q}}\right)$ by $\mathrm{SF}_{\mathbb{Q}}^{*}$ using Proposition 3.1 and Corollary 3.4. For each p, let $\varphi_{p}(x, y)$ with $|y|=1$ be the formula $x-y \in U_{p, 0}$. For all p and n, set $b_{p, i}=p^{-i}$. We will show that $\left.\left(\varphi_{p}(x, y),\left(b_{p, i}\right)_{i \in \mathbb{N}}\right)\right)$ forms an inp-pattern of infinite depth in $\left(\mathbb{Q}, \mathcal{U}^{\mathbb{Q}}, \mathcal{P}^{\mathbb{Q}}\right)$. For distinct i and j in \mathbb{N}, we have that $p^{i}-p^{j} \notin U_{p, 0}^{\mathbb{Q}}$ which implies that $\varphi_{p}\left(x, b_{p, i}\right) \wedge \varphi_{p}\left(x, b_{p, i}\right)$ is inconsistent. On the other hand, if S is a finite set of primes, then by the weak approximation theorem $\wedge_{i \in S} \varphi_{p}\left(x, b_{p, f(p)}\right)$ is consistent for all $f: S \rightarrow \mathbb{N}$. The desired conclusion follows.

Finally, we note that $\left(\mathbb{Z}, \mathcal{U}^{\mathbb{Z}}, \mathcal{P}^{\mathbb{Z}}\right)$ is a substructure of $\left(\mathbb{Q}, \mathcal{U}^{\mathbb{Q}}, \mathcal{P}^{\mathbb{Q}}\right)$, the former theory admits quantifier elimination and has IP_{k} for all $k>0$. Therefore, the latter also has IP_{k} for all $k>0$. In fact, the construction in part 2 of the proof of Theorem 3.6 carries through.

Lemma 3.16. Any order-condition has NIP in $\mathrm{OSF}_{\mathbb{Q}}^{*}$.
Proof. The statement immediately follows from the fact that every order condition is a formula in the language of ordered groups and the fact that the reduct of any model of $\mathrm{OSF}_{\mathbb{Q}}^{*}$ to this language is an ordered abelian group, which has NIP; see for example [73, p. 151]

Theorem 3.8. The theory $\left(\mathbb{Q},<, \mathrm{SF}^{\mathbb{Q}}\right)$ has NTP_{2} but is not strong, and is k-independent for all $k \in \mathbb{N} \geqslant 1$.

Proof. In the proof of part 2 of Theorem 3.7, we have shown that $\operatorname{Th}\left(\mathbb{Q}, \mathrm{SF}^{\mathbb{Q}}\right)$ is not strong and is k-independent for all $k>0$, so the corresponding conclusions for $\operatorname{Th}\left(\mathbb{Q},<, \mathrm{SF}^{\mathbb{Q}}\right)$ also follow. It remains to show that $\operatorname{Th}\left(\mathbb{Q},<, \mathrm{SF}^{\mathbb{Q}}\right)$ has NTP_{2}. The proof is essentially the same as
the proof that $\operatorname{Th}\left(\mathbb{Q}, \mathrm{SF}^{\mathbb{Q}}\right)$ is simple, but with extra complications coming from the ordering. By Proposition 3.1 and Corollary 3.4, we can replace $\operatorname{Th}\left(\mathbb{Q},<, \mathrm{SF}^{\mathbb{Q}}\right)$ with $\mathrm{OSF}_{\mathbb{Q}}^{*}$. Towards a contradiction, we obtain as in [16, pp. 700-701] a formula $\varphi(x, y)$ witnessing the that OSF $_{\mathbb{Q}}$ has TP_{2}. We can arrange that $\varphi(x, y)$ is quantifier-free by Theorem 3.2. Disjunctions of formulas with NTP_{2} again have $\mathrm{NTP}_{2}[\mathbf{1 6}$, p. 701], so using Lemma 3.3 we can arrange that $\varphi(x, y)$ is of the form

$$
\rho(y) \wedge \lambda(x, y) \wedge \psi\left(x, t(y), t^{\prime}(y)\right)
$$

where $\rho(y)$ is a quantifier-free $L_{\text {ou }}^{*}$-formula, $\lambda(x, y)$ an order condition, $\psi\left(x, z, z^{\prime}\right)$ a special formula, and $t(y)$ and $t^{\prime}(y)$ are tuples of $L_{\text {ou }}^{*}$-terms with length n and n^{\prime} respectively. Then there is $b \in \mathbb{G}^{k}$ and an array $\left(\sigma_{i j}\right)_{i \epsilon \omega, j \epsilon \omega}$ of $L_{\text {ou }}^{*}$-automorphisms of $\left(\mathbb{G},<, \mathcal{U}^{\mathbb{G}}, \mathcal{P}^{\mathbb{G}}\right)$ with the following properties:
(1) for all $i \in \omega,\left\{\varphi\left(x, \sigma_{i j} b\right): j \in \omega\right\}$ is inconsistent;
(2) for all $f: \omega \rightarrow \omega,\left\{\varphi\left(x, \sigma_{i f(i)} b\right): i \in \omega\right\}$ is consistent;
(3) for all $i \in \omega,\left(\sigma_{i j} b\right)_{j \in \omega}$ is indiscernible over $\left\{\sigma_{i^{\prime} j} b: i^{\prime} \in \omega, i^{\prime} \neq i, j \in \omega\right\}$;
(4) the sequence of "rows" $\left(\left(\sigma_{i j} b\right)_{j \in \omega}\right)_{i \in \omega}$ is indiscernible.

We could get b, ω, and $\left(\sigma_{i j}\right)_{i \epsilon \omega, j \epsilon \omega}$ as above from the definition of NTP_{2}, Ramsey arguments, and the monstrosity of $\left(\mathbb{G}, \mathcal{U}^{\mathbb{G}}, \mathcal{P}^{\mathbb{G}}\right)$; see also [16, p. 697] for the type of argument we need to get (3).

We deduce that the set $\left\{\varphi\left(x, \sigma_{i j} b\right): j \in \omega\right\}$ is consistent for all $i \in \omega$, which is the desired contradiction. We get from (2) that $\rho\left(\sigma_{i j} b\right)$ holds for all $i \in \omega$ and $j \in \omega$. Hence, it suffices to show for all $i \in \omega$ that

$$
\left\{\lambda\left(x, \sigma_{i j} b\right) \wedge \psi\left(x, t\left(\sigma_{i j} b\right), t^{\prime}\left(\sigma_{i j} b\right)\right): j \in \omega\right\} \text { is consistent. }
$$

The order condition $\lambda(x, y)$ has NIP by Lemma 3.16, and so it has NTP_{2}. Using conditions (2-4), we get that

$$
\left\{\lambda\left(x, \sigma_{i j} b\right): j \in \omega\right\} \text { is consistent for all } i \in \omega .
$$

Hence, any finite conjunction from $\left\{\lambda\left(x, \sigma_{i j} b\right): j \in \omega\right\}$ contains an interval for all $i \in \omega$. For $i \in \omega$ and a finite $\Delta \subseteq \omega$, set

$$
\theta_{i, \Delta}(x):=\bigwedge_{j \in \Delta} \psi\left(x, t\left(\sigma_{i j} b\right), t^{\prime}\left(\sigma_{i j} b\right)\right) .
$$

It suffices to show that $\theta_{i, \Delta}(x)$ defines a non-empty set in every non-empty \mathbb{G}-interval.
We have that $\theta_{i, \Delta}(x)$ is a conjunction of \mathbb{G}-system given by the same special formula, and so is again a \mathbb{G}-system. By the genericity of $\mathrm{OSF}_{\mathbb{Q}}^{*}$, the problem reduces to showing $\theta_{i, \Delta}(x)$ is nontrivial and locally satisfiable. By (2), $\varphi(x, b)$ is consistent, and so is $\psi\left(x, t(b), t^{\prime}(b)\right)$. This implies in particular that $t(b)$ and $t^{\prime}(b)$ have no common components. It then follows
from (3) that for $i \in \omega$ and distinct $j, j^{\prime} \in \omega$,

$$
t\left(\sigma_{i j} b\right) \text { and } t^{\prime}\left(\sigma_{i j^{\prime}} b\right) \text { have no common elements. }
$$

Hence, $\theta_{i, \Delta}(x)$ is nontrivial for all $i \in \omega$. Let $\psi_{p}\left(x, z, z^{\prime}\right)$ be the associated p-condition of $\psi\left(x, z, z^{\prime}\right)$. We then get from (2) that $\left\{\psi_{p}\left(x, \sigma_{i f(i)} b\right): i \in \omega\right\}$ is consistent for all $f: \omega \rightarrow \omega$. By Lemma 3.15, the formula $\psi_{p}\left(x, t(y), t^{\prime}(y)\right)$ is stable and hence has NTP_{2}. It follows that for all but finitely many $i \in \omega$ the set

$$
\left\{\psi_{p}\left(x, t\left(\sigma_{i j} b\right), t^{\prime}\left(\sigma_{i j} b\right)\right): j \in \omega\right\} \text { is consistent. }
$$

Combining with (4), we get that $\theta_{i, \Delta}(x)$ is p-satisfiable for all p which completes the proof.

Corollary 3.7. The set \mathbb{Z} is not definable in $\left(\mathbb{Q},<, \mathrm{SF}^{\mathbb{Q}}\right)$.
Proof. Towards a contradiction, suppose \mathbb{Z} is definable in $\left(\mathbb{Q},<, \mathrm{SF}^{\mathbb{Q}}\right)$. Then by Theorem $3.5,(\mathbb{N},+, \times,<, 0,1)$ is interpretable in $\left(\mathbb{Q},<, \mathrm{SF}^{\mathbb{Q}}\right)$. It then follows from Theorem 3.8 that $(\mathbb{N},+, \times,<, 0,1)$ has NTP_{2}, but this is well-known to be false.

CHAPTER 4

A family of dp-minimal expansions of the additive group \mathbb{Z}

We treat this chapter as the continuation of the corresponding summary in the introduction and keep the notational conventions, definitions, and statements of theorems given there. We also assume throughout this chapter that G is an additive abelian group, $(H,<)$ is a linearly ordered additive abelian group, j range over the integers, the operation + on \mathbb{N}, \mathbb{Z}, $\mathbb{Z}^{2}, \mathbb{Q}$, and \mathbb{R} are the standard ones, and likewise for \times and the ordering $<$ on all the above except \mathbb{Z}^{2}. If $<$ is a linear order on a set M and $a, b \in M$, set $[a, b)_{M}=\{t \in M: a \leqslant t<b\}$, likewise for other intervals.

A circular order \triangleleft on the underlying set of an additive abelian group G is additive if \triangleleft is preserved under the group operation. In this case, we call the combined structure (G, \triangleleft) a circularly ordered abelian group.

Suppose u is an element in $H^{>0}$ such that $(n u)_{n>0}$ is cofinal in $(H,<)$, and $\pi: H \rightarrow G$ induces an isomorphism from $H /\langle u\rangle$ to G. Define the relation \triangleleft on G by:

$$
\triangleleft(\pi(a), \pi(b), \pi(c)) \text { if } a<b<c \text { or } b<c<a \text { or } c<a<b \quad \text { for } a, b, c \in[0, u)_{H} .
$$

We can easily check that \triangleleft is an additive circular ordering on G. We call $(H, u,<)$ as above a universal cover of (G, \triangleleft) and π a covering map.

The above three definitions were already given for multiplicative groups in Section 1.2 and Section 2.1.2. Even though there is no real difference between additive and multiplicative abelian groups, we decided to repeat the definitions as we find it mentally helpful to distinct the additive and multiplicative cases. Lemma 4.1 below is simply a restatement of Proposition 2.4, so we will not provide a proof.

Lemma 4.1. Suppose (G, \triangleleft) is a circularly ordered abelian group. Then (G, \triangleleft) has a universal cover $(H, u,<)$ which is unique up to unique isomorphism. Moreover, (G, \triangleleft) is isomorphic to $\left([0, u)_{H} ; \tilde{+}, \tilde{\triangleleft}\right)$ where $\tilde{+}$ and $\tilde{\triangleleft}$ are definable in $(H, u,<)$.

Lemma 4.1 gives us a correspondence between additive circular orderings on \mathbb{Z} and additive linear orderings on \mathbb{Z}^{2} :

Proposition 4.1. Let $(\mathbb{Z}, \triangleleft)$ be a circularly ordered group. Then there is a linear order $<$ on \mathbb{Z}^{2} such that a universal cover of $(\mathbb{Z}, \triangleleft)$ is $\left(\mathbb{Z}^{2}, u,<\right)$ with $u=(1,0)$.

Proof. Suppose $(\mathbb{Z}, \triangleleft)$ is as above and $(H, u,<)$ is its universal cover. Then \mathbb{Z} is $(H /\langle u\rangle$. Using also the fact that $\langle u\rangle$ is isomorphic to \mathbb{Z}, we arrange that H is \mathbb{Z}^{2}. Choose $v \in \mathbb{Z}^{2}$ such that v is mapped to 1 in \mathbb{Z} under the quotient map. Then $\langle u, v\rangle=\mathbb{Z}^{2}$, and so by a change of basis we can arrange that $u=(1,0)$.

The dp-minimality of the circularly ordered groups $(\mathbb{Z}, \triangleleft)$ can be established rather quickly using a criterion in [41]:

Proof of Theorem 1.7. By the last statement of Lemma 4.1 and Proposition 4.1, it suffices to check that every linearly ordered group $\left(\mathbb{Z}^{2},<\right)$ is dp-minimal. We have that

$$
\left|\mathbb{Z}^{2} / n \mathbb{Z}^{2}\right|=n^{2}<\infty .
$$

The desired conclusion follows from the criterion in [41, Proposition 5.1].
So far it is still possible that every circularly ordered group $(\mathbb{Z},<)$ is a reduct of a known dpminimal expansion of \mathbb{Z}. Toward showing that this is not the case, we need a more explicit description of the additive circular orders on \mathbb{Z}.

Define the circular ordering \triangleleft_{+}on \mathbb{Z} by setting $\triangleleft_{+}(j, k, l)$ if and only if $j<k<l$ or $l<j<k$ or $k<l<j$. We define the opposite circular ordering \triangleleft_{-}on \mathbb{Z} by setting

$$
\triangleleft_{-}(j, k, l) \text { if and only if } \triangleleft_{+}(-j,-k,-l) .
$$

We observe that \triangleleft_{+}and \triangleleft_{-}are distinct, but $\left(\mathbb{Z}, \triangleleft_{+}\right)$and $\left(\mathbb{Z}, \triangleleft_{-}\right)$are isomorphic via the map $k \mapsto-k$ and both have $\left(\mathbb{Z}^{2},<_{\text {lex }}\right)$ as a universal cover where $<_{\text {lex }}$ is the usual lexicographic ordering on \mathbb{Z}^{2}. It is easy to see that both $\left(\mathbb{Z}, \triangleleft_{+}\right)$and $\left(\mathbb{Z}, \triangleleft_{-}\right)$are definably equivalent with ($\mathbb{Z},<$).

Let $(\mathbb{R} / \mathbb{Z}, \triangleleft)$ be the circularly ordered group with a universal cover $(\mathbb{R}, 1,<)$ and such that $\triangleleft(0+\mathbb{Z}, 1 / 4+\mathbb{Z}, 1 / 2+\mathbb{Z})$ holds. We call $(\mathbb{R} / \mathbb{Z}, \triangleleft)$ the positively oriented circle. For $a, b \in \mathbb{R}$ such that $a-b \notin \mathbb{Z}$, we set $[a, b)_{\mathbb{R} / \mathbb{Z}}$ to be the set

$$
\{t \in \mathbb{R} / \mathbb{Z}: t=a+\mathbb{Z} \text { or } \triangleleft(a+\mathbb{Z}, t, b+\mathbb{Z})\}
$$

Let α be in $\mathbb{R} \backslash \mathbb{Q}$. Define the additive circular ordering \triangleleft_{α} on \mathbb{Z} by setting

$$
\triangleleft_{\alpha}(j, k, l) \text { if and only if } \triangleleft(\alpha j+\mathbb{Z}, \alpha k+\mathbb{Z}, \alpha l+\mathbb{Z}) .
$$

In other words, \triangleleft_{α} is the pull-back of \triangleleft by the character $\chi_{\alpha}: \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}, l \mapsto \alpha l+\mathbb{Z}$. As before, we observe that \triangleleft_{α} and $\triangleleft_{-\alpha}$ are distinct. However, $\left(\mathbb{Z}+, \triangleleft_{\alpha}\right)$ and $\left(\mathbb{Z}, \triangleleft_{-\alpha}\right)$ are isomorphic via the map $k \mapsto-k$ and both have $\left(\mathbb{Z}^{2},<_{\alpha}\right)$ as a universal cover with $<_{\alpha}$ the pull-back of the ordering $<$ on \mathbb{R} by the group embedding

$$
\psi_{\alpha}: \mathbb{Z}^{2} \rightarrow \mathbb{R}, \quad(k, l) \mapsto k+\alpha l .
$$

We also note that $\left(\mathbb{Z}^{2},<_{\alpha}\right)$ is not isomorphic to $\left(\mathbb{Z}^{2},<_{\text {lex }}\right)$ as the former is archimedean and the latter is not. It follows that $\left(\mathbb{Z}, \triangleleft_{\alpha}\right)$ is not isomorphic to $\left(\mathbb{Z}, \triangleleft_{+}\right)$and $\left(\mathbb{Z}, \triangleleft_{-}\right)$.
The following result is essentialy the well-known classification of linearly ordered group expanding \mathbb{Z}^{2} up to isomorphism:

Lemma 4.2. Suppose $\left(\mathbb{Z}^{2},<\right)$ is a linearly ordered group such that $(n u)_{n>0}$ is cofinal in \mathbb{Z}^{2} with $u=(1,0)$. Then $\left(\mathbb{Z}^{2}, u,<\right)$ is isomorphic to either $\left(\mathbb{Z}^{2}, u,<_{\operatorname{lex}}\right)$ or $\left(\mathbb{Z}^{2}, u,<_{\alpha}\right)$ for a unique $\alpha \in[0,1 / 2)_{\mathbb{R} \backslash \mathbb{Q}}$.

Proof. Suppose $\left(\mathbb{Z}^{2},<\right)$ and u are as stated above. Using the fact that $(n u)_{n>0}$ is cofinal in \mathbb{Z}^{2}, we obtain k such that $k u<(0,1)<(k+1) u$. Let v be $(0,1)-k u$ if $2 k u<(0,2)<(2 k+1) u$ and let u be $(k+1) u-(0,1)$ otherwise. Then

$$
\langle u, v\rangle=\mathbb{Z}^{2} \text { and } 0<2 v<u .
$$

If $(n v)_{n>0}$ is not cofinal in \mathbb{Z}^{2}, then it is easy to see that the map

$$
\mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}, \quad k u+l v \mapsto(k, l)
$$

is an ordered group isomorphism from $\left(\mathbb{Z}^{2}, u,<\right)$ to $\left(\mathbb{Z}^{2}, u,<_{\operatorname{lex}}\right)$. Now suppose $(n v)_{n>0}$ is cofinal in \mathbb{Z}^{2}. Then set

$$
\alpha=\sup \left\{\frac{m}{n}: m, n>0 \text { and } m u<n v\right\} .
$$

It is easy to check that $\alpha \in[0,1 / 2)_{\mathbb{R} \backslash \mathbb{Q}}$ and that the map $\mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}, k u+l v \mapsto(k, l)$ is an isomorphism from $\left(\mathbb{Z}^{2}, u,<\right)$ to $\left(\mathbb{Z}^{2}, u,<_{\alpha}\right)$.

Finally, suppose α and β are in $[0,1 / 2)_{\mathbb{R} \backslash \mathbb{Q}}$ and f is an isomorphism from $\left(\mathbb{Z}^{2}, u,<_{\alpha}\right)$ to $\left(\mathbb{Z}^{2}, u,<_{\beta}\right)$ with $u=(1,0)$. Let $v=(0,1)$. Then

$$
\langle u, f(v)\rangle=\mathbb{Z}^{2} \text { and } 0<2 f(v)<u .
$$

The former condition implies $f(v)$ is either $(k, 1)$ or $(k,-1)$ for some k. Combining with the latter condition, we get $f(v)=(0,1)$, and so $f=\mathrm{id}_{\mathbb{Z}^{2}}$. It follows easily from the definition of $<_{\alpha}$ and $<_{\beta}$ that $\alpha=\beta$.

We deduce a classification of additive circular orders on \mathbb{Z} :
Proposition 4.2. Every additive circular order on \mathbb{Z} is either $\triangleleft_{+}, \triangleleft_{-}$, or \triangleleft_{α} for some $\alpha \in \mathbb{R} \backslash \mathbb{Q}$. Moreover, for $\alpha, \beta \in \mathbb{R} \backslash \mathbb{Q}, \triangleleft_{\alpha}=\triangleleft_{\beta}$ if and only if $\alpha-\beta \in \mathbb{Z}$.

Proof. Suppose \triangleleft is an additive circular order on \mathbb{Z}. It follows from Proposition 4.1 and Lemma 4.2 that $(\mathbb{Z}, \triangleleft)$ is isomorphic to either $\left(\mathbb{Z}, \triangleleft_{+}\right)$or $\left(\mathbb{Z}, \triangleleft_{\alpha}\right)$ for $\alpha \in \mathbb{R} \backslash \mathbb{Q}$. Note that the only group automorphism of \mathbb{Z} are $\mathrm{id}_{\mathbb{Z}}$ and $k \mapsto-k$. The latter maps \triangleleft_{+}to \triangleleft_{-}and \triangleleft_{α} to $\triangleleft_{-\alpha}$ for all $\alpha \in \mathbb{R} \backslash \mathbb{Q}$. The first statement of the proposition follows.

The backward direction of the second statement follows from the easy observations that $\triangleleft_{\alpha}=\triangleleft_{\alpha+1}$. For the forward direction of the second statement, suppose $\alpha, \beta \in \mathbb{R} \backslash \mathbb{Q}$ and $\triangleleft_{\alpha}=\triangleleft_{\beta}$. In particular, this implies that

$$
\left(\mathbb{Z}, \triangleleft_{-\alpha}\right) \cong\left(\mathbb{Z}, \triangleleft_{\alpha}\right) \cong\left(\mathbb{Z}, \triangleleft_{\beta}\right) \cong\left(\mathbb{Z}, \triangleleft_{-\beta}\right) .
$$

By the backward direction of the second statement, we can arrange that α and β are in $[-1 / 2,1 / 2)_{\mathbb{R} \backslash \mathbb{Q}}$. If both α and β are in $[0,1 / 2)_{\mathbb{R} \backslash \mathbb{Q}}$, then it follows from Lemma 4.2 that $\alpha=\beta$. If both α and β are in $[-1 / 2,0)_{\mathbb{R} \backslash \mathbb{Q}}$, a similar argument shows that $-\alpha=-\beta$, and so $\alpha=\beta$. Finally, suppose one out of α, β is in $[-1 / 2,0)_{\mathbb{R} \backslash \mathbb{Q}}$ and the other is in $[0,1 / 2)_{\mathbb{R} \backslash \mathbb{Q}}$. A similar argument as the previous cases give us that $\alpha=-\beta$. However, \triangleleft_{α} is always different from $\triangleleft_{-\alpha}$, so this last case never happens.

We also need a well-known result of Kronecker: If $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}^{n}$ is a \mathbb{Q}-linearly independent tuple of variables, then

$$
\left(\alpha_{1} m+\mathbb{Z} \ldots, \alpha_{n} m+\mathbb{Z}\right)_{m>0} \text { is dense in }(\mathbb{R} / \mathbb{Z})^{n}
$$

where the latter is equipped with the obvious topology. See also [79] for another instance where a phenomenon of this type is of central importance in dealing with circular orders.

Theorem 4.1. Let α be in $\mathbb{R} \backslash \mathbb{Q}$. Then $\left(\mathbb{Z}, \triangleleft_{\alpha}\right)$ is a reduct of neither $(\mathbb{Z},<)$ nor $\left(\mathbb{Z},<_{p}\right)$ for any prime p.

Proof. Suppose the notations are as given. We will show that $X=\{k: \triangleleft(0, k, 1)\}$ is definable neither in $(\mathbb{Z},<)$ nor $\left(\mathbb{Z},<_{p}\right)$. By $[\mathbf{2 4}$, Remark 3.2], any subset of \mathbb{Z} definable in $\left(\mathbb{Z},<_{p}\right)$ is definable in \mathbb{Z}. Hence, it suffices to show that X is not definable in $(\mathbb{Z},<)$.

Toward a contradiction, suppose X is definable in $(\mathbb{Z},<)$. By the one-dimensional case of Kronecker's approximation theorem, we get that both X and $\mathbb{Z} \backslash X$ are infinite. It then follows easily from the quantifier elimination for $(\mathbb{Z},<)$ that there is $k \neq 0$ and l such that

$$
\{k m+l: m>0\} \subseteq \mathbb{Z} \backslash X .
$$

On the other hand, by Kronecker's approximation theorem again, we have that $X \cap\{k m+l$: $m>0\} \neq \varnothing$ for all $k \neq 0$ and all l, which is absurd.

4.1. Unary definable sets and definable equivalence

We now show that if $\alpha, \beta \in \mathbb{R} \backslash \mathbb{Q}$ are \mathbb{Q}-linearly independent then $\left(\mathbb{Z}, \triangleleft_{\alpha}\right)$ does not define \triangleleft_{β}. This follows from a characterization of unary definable sets in a circularly ordered expansion of \mathbb{Z} and Kronecker's approximation theorem.

Let \triangleleft be a circular order on a set G. A subset J of G is convex (with respect to \triangleleft) if whenever $a, b \in J$ are distinct we either have $\{t: \triangleleft(a, t, b)\} \subseteq J$ or $\{t: \triangleleft(b, t, a)\} \subseteq J$. Intervals are convex, and it is easy to see that the union of a nested family of convex sets is convex.

Lemma 4.3. Let (G, \triangleleft) be densely circularly ordered abelian group with universal cover $(H, u,<)$ and covering map $\pi: H \rightarrow G$. If $J \subseteq H$ is convex (with respect to <) then $\pi(J)$ is convex (with respect to \triangleleft).

Proof. Let $J \subseteq H$ be convex. Then J is the union of a nested family of closed intervals $\left\{I_{a}: a \in L\right\}$, i.e. we either have $I_{a} \subseteq I_{b}$ or $I_{b} \subseteq I_{a}$ for all $a, b \in L$. It follows that $\pi(J)$ is the union of the nested family $\left\{\pi\left(I_{a}\right): a \in L\right\}$. It suffices to show that $\pi(J)$ is convex when J is a closed interval. Suppose $J=[g, h]$.

We first suppose $h-g \geqslant u$. Then $[0, u]_{H} \subseteq J-g$. The restriction of π to $[0, u]_{H}$ is a surjection so $\pi(J-g)=G$. As $\pi(J-g)=\pi(J)-\pi(g)$, we have $\pi(J)=G+\pi(g)=G$. So in particular $\pi(J)$ is convex. Now suppose $h-g<u$. Then $J-g \subseteq[0, u]_{H}$. It follows that

$$
\pi(J-g)=\{t \in G: \triangleleft(0, t, \pi(g-h))\}
$$

so $\pi(J-g)$ is convex. Then $\pi(J)=\pi(J-g)+\pi(g)$ is a translate of a convex set and is hence convex.

Suppose (G, \ldots) expands either a linear order $<$ or a circular order \triangleleft; convexity in the definitions below is with respect to either < or \triangleleft. A tmc-set is a translation of a multiple of a convex subset of G, that is, a subset of G the form $a+m J$ with $a \in G$ and convex $J \subseteq G$. A cnc-set is a set of the form $J \cap(a+n G)$ with convex $J \subseteq G$ and $a \in G$.

We say that (G, \ldots) is tmc-minimal if every definable unary set is a finite union of tmc-sets and that (G, \ldots) is cnc-minimal if every definable unary set is a finite union of cnc-sets. These two notions coincide for linearly ordered groups.

Lemma 4.4. Suppose that $(G,<)$ is a linearly ordered group. Then the collection of tmc-sets and the collection of cnc-sets coincide.

Proof. Let $X \subseteq G$ be an cnc-set. Let $X=I \cap A$ for a convex $I \subseteq G$ and $A=a+n G$. Let $J=\{g \in G: n g \in I-a\}$. Monotonocity of $g \mapsto n g$ implies J is convex as $I-a$ is convex. The definition of J implies $g \in J$ if and only if $a+n g \in I$. As $a+n g \in A$ for all $g \in G$ we have $g \in J$ if and only if $a+n g \in I \cap A$. So $X=a+n J$.

Conversely, suppose J is convex. A translate of an cnc-set is an cnc-set, so it suffices to show $n J$ is an cnc-set. Let I be the convex hull of $n J$. Then $n J \subseteq I \cap n G$. We show the
other inclusion. Suppose $g \in G$ and $n g \in I$. Then $n h \leqslant n g \leqslant n h^{\prime}$ for some $n h, n h^{\prime} \in n J$. Then $h \leqslant g \leqslant h^{\prime}$, so $g \in J$ as $h, h^{\prime} \in J$ and J is convex. Thus $n g \in n J$.

In circularly ordered abelian groups there may be tmc-sets which are not cnc-sets. More precisely, it can be shown that there are tmc-sets which are not even finite unions of cncsets. An example is the set $\{2 k: \alpha k \in[0,1 / 2)+\mathbb{Z}\}$ in the structure $\left(\mathbb{Z}, \triangleleft_{\alpha}\right)$ with $\alpha \in \mathbb{R} \backslash \mathbb{Q}$. As this will not be used later, we leave the proof to the interested readers.

Lemma 4.5. If $\alpha \in \mathbb{R} \backslash \mathbb{Q}$ then $\left(\mathbb{Z}^{2},<_{\alpha}\right)$ is cnc-minimal.
Proof. The structure $\left(\mathbb{Z}^{2},<_{\alpha}\right)$ admits quantifier elimination in the extended language where we add a predicate symbol defining $n \mathbb{Z}$ for each n. See [88], for example. It follows that any definable subset of \mathbb{Z}^{2} is a finite union of finite intersections of sets of one of the following types:
(1) $\left\{t: k_{1} t+a<{ }_{\alpha} k_{2} t+b\right\}$ for some k_{1}, k_{2} and $a, b \in \mathbb{Z}^{2}$,
(2) $\left\{t: k_{1} t+a \geqslant_{\alpha} k_{2} t+b\right\}$ for some k_{1}, k_{2} and $a, b \in \mathbb{Z}^{2}$,
(3) $\left\{t: k t+a \in n \mathbb{Z}^{2}\right\}$ for some k, n and $a \in \mathbb{Z}^{2}$,
(4) $\left\{t: k t+a \notin n \mathbb{Z}^{2}\right\}$ for some k, n and $a \in \mathbb{Z}^{2}$,
(5) $\left\{t: k_{1} t+a_{1}=k_{2} t+a_{2}\right\}$ for some k_{1}, k_{2} and $a_{1}, a_{2} \in \mathbb{Z}^{2}$,
(6) $\left\{t: k_{1} t+a_{1} \neq k_{2} t+a_{2}\right\}$ for some k_{1}, k_{2} and $a_{1}, a_{2} \in \mathbb{Z}^{2}$.

We show that any finite intersection of sets of type (1)-(6) is a finite union of cnc-sets. Every set of type (1) or (2) is either upwards or downwards closed. It follows that any intersection of such sets is convex.

Suppose $A=\left\{t: k t+a \in n \mathbb{Z}^{2}\right\}$. Suppose A is nonempty and $t^{\prime} \in A$. Then $k t+a \in n \mathbb{Z}^{2}$ if and only if

$$
(k t+a)-\left(k t^{\prime}+a\right)=k\left(t-t^{\prime}\right) \in n \mathbb{Z}^{2} .
$$

For any m we have $k m \in n \mathbb{Z}$ if and only if m is in $N \mathbb{Z}$ where $N=n / \operatorname{gcd}(k, n)$. So $t \in A$ if and only if $t-t^{\prime} \in N \mathbb{Z}^{2}$, equivalently if $t \in N \mathbb{Z}^{2}+t^{\prime}$. So A is a coset of a subgroup of the form $N \mathbb{Z}^{2}$. So any finite intersection of sets of type (3) and (4) is a boolean combination of cosets of subgroups of the form $n \mathbb{Z}^{2}$. As $\left|\mathbb{Z}^{2} / n \mathbb{Z}^{2}\right|<\infty$, a complement of a coset of a subgroup of the form $n \mathbb{Z}^{2}$ is a finite union of such cosets. It follows that any boolean combination of cosets of subgroups of the form $n \mathbb{Z}^{2}$ is a finite union of such cosets.

We have shown that a finite intersection of sets of type (1)-(4) is an intersection of a convex set by a finite union of cosets of subgroups of the form $n \mathbb{Z}^{2}$. It follows that any finite intersection of sets of type (1)-(4) is a finite union of cnc-sets.

Any set of type (5) or (6) is either empty, \mathbb{Z}^{2}, a singleton, or the complement of a singleton. It follows that any finite intersection of such sets is either finite or co-finite. Suppose that X is a finite union of cnc-sets. The intersection of a X and a finite set is finite,
hence is a finite union of cnc-sets. It is easy to see that the intersection of X and a co-finite set is a finite union of cnc-sets.

Theorem 4.2. Let $\alpha \in \mathbb{R} \backslash \mathbb{Q}$. Then $\left(\mathbb{Z}, \triangleleft_{\alpha}\right)$ is tmc-minimal.
Proof. Suppose $X \subseteq \mathbb{Z}$ is definable. Set

$$
Y=\pi^{-1}(X) \cap[0, u)_{\mathbb{Z}^{2}}
$$

Then $X=\pi(Y)$ and Y is a finite union of cnc-sets Y_{1}, \ldots, Y_{k} by 4.5. As

$$
\pi(Y)=\pi\left(Y_{1}\right) \cup \ldots \cup \pi\left(Y_{k}\right)
$$

we may assume Y is an cnc-set. Applying Lemma 4.4 we suppose that $Y=a+n J$ for $a \in \mathbb{Z}^{2}$ and convex $J \subseteq \mathbb{Z}^{2}$. As π is a homomorphism we have

$$
X=\pi(Y)=\pi(a)+n \pi(J)
$$

It follows from Lemma 4.3 that $\pi(J)$ is convex. Thus X is a tmc-set.
We say that $X \subseteq \mathbb{Z}$ is \triangleleft_{α}-dense if it is dense with respect to the obvious topology induced by \triangleleft_{α}.

Lemma 4.6. Suppose, α and β in $\mathbb{R} \backslash \mathbb{Q}$ are \mathbb{Q}-linearly independent and $J_{\beta} \subseteq \mathbb{Z}$ is \triangleleft_{β}-convex and infinite, fix $n \geqslant 1, k$. Then $k+n J_{\beta}$ is \triangleleft_{α}-dense.

Proof. Suppose $X \subseteq \mathbb{Z}$ is \triangleleft_{α}-dense. It follows by elementary topology that the image of X under the map $l \mapsto k+n l$ is \triangleleft_{α}-dense in $k+n \mathbb{Z}$. As $k+n \mathbb{Z}$ is \triangleleft_{α}-dense, it follows that $k+n X$ is \triangleleft_{α}-dense. It therefore suffices to show that J_{β} is dense with respect to the topology induced by \triangleleft_{α}. We show that J_{β} intersects an arbitrary infinite \triangleleft_{α}-convex $J_{\alpha} \subseteq \mathbb{Z}$. Let J_{α}^{\prime} and J_{β}^{\prime} be \triangleleft-convex subsets of \mathbb{R} / \mathbb{Z} such that $J_{\alpha}=\chi_{\alpha}^{-1}\left(J_{\alpha}^{\prime}\right)$ and $J_{\beta}=\chi_{\beta}^{-1}\left(J_{\beta}^{\prime}\right)$. Then $J_{\alpha}^{\prime}, J_{\beta}^{\prime}$ are infinite and so have nonempty interior. It follows from \mathbb{Q}-linear independence of α and β and Kronecker's theorem that

$$
\left\{\left(\chi_{\alpha}(m), \chi_{\beta}(m)\right): m \in \mathbb{Z}\right\} \text { is dense in }(\mathbb{R} / \mathbb{Z})^{2}
$$

In particular, there is $m \in \mathbb{Z}$ such that $\left(\chi_{\alpha}(m), \chi_{\beta}(m)\right) \in J_{\alpha}^{\prime} \times J_{\beta}^{\prime}$. Then m is in $J_{\alpha} \cap J_{\beta}$, which implies that the latter is non-empty.

Corollary 4.1. Suppose $\alpha, \beta \in \mathbb{R} \backslash \mathbb{Q}$ are \mathbb{Q}-linearly independent. Then there is $a\left(\mathbb{Z}, \triangleleft_{\beta}\right)$ definable subset of \mathbb{Z} which is not definable in $\left(\mathbb{Z}, \triangleleft_{\alpha}\right)$.

Proof. Suppose that α and β are \mathbb{Q}-linearly independent elements of $\mathbb{R} \backslash \mathbb{Q}$. Let J_{α} be an infinite \triangleleft_{α}-convex set definable in $\left(\mathbb{Z}, \triangleleft_{\alpha}\right)$ with infinite complement. Suppose $\mathbb{Z} \backslash J_{\alpha}$ is definable in $\left(\mathbb{Z}, \triangleleft_{\beta}\right)$. It follows from tmc-minmality of the latter that $\mathbb{Z} \backslash J_{\alpha} \supseteq k+n J_{\beta}$ where
J_{β} is \triangleleft_{β}-covex and $n \geqslant 1$. Lemma 4.6 shows that $k+n J_{\beta}$ is \triangleleft_{α}-dense and thus intersects J_{α}, contradiction.

As consequence of Corollary 4.1 we obtain uncountably many definably distinct dp-minimal expansions of \mathbb{Z}.

Corollary 4.2. There are continumn many pairwise definably distinct circularly ordered groups expanding \mathbb{Z}.

We now show that if $\alpha, \beta \in \mathbb{R} \backslash \mathbb{Q}$ are \mathbb{Q}-linearly dependent then \triangleleft_{β} is $\left(\mathbb{Z}, \triangleleft_{\alpha}\right)$-definable. It follows that $\left(\mathbb{Z}, \triangleleft_{\alpha}\right)$ and $\left(\mathbb{Z}, \triangleleft_{\beta}\right)$ are definably equivalent if and only if α and β are \mathbb{Q}-linearly dependent, i,e, if $\beta=q \alpha+r$ for some $q, r \in \mathbb{Q}$. This requires several steps.

Lemma 4.7. Suppose α is in $\mathbb{R} \backslash \mathbb{Q}$, n is in $\mathbb{N} \geqslant 1$, and r is in $\{0, \ldots, n-1\}$. Then the set

$$
\{l: \alpha l+\mathbb{Z} \in[r / n,(r+1) / n)+\mathbb{Z}\}
$$

is definable in $(\mathbb{Z}, \triangleleft \alpha)$.
Proof. Let the notation be as given and $(\mathbb{R} / \mathbb{Z}, \triangleleft)$ be the oriented circle. We have that $\alpha l+\mathbb{Z}$ is in $[r / n,(r+1) / n)+\mathbb{Z}$ if and only if $(\alpha i l+\mathbb{Z})_{i=0}^{n}$ "winds" r times around \mathbb{R} / \mathbb{Z}, that is,

$$
\triangleleft(0+\mathbb{Z}, \alpha(i+1) l+\mathbb{Z}, \alpha i l+\mathbb{Z}) \text { holds for exactly } r \text { values of } i \in\{1, \ldots, n-1\} .
$$

The desired conclusion follows.

Corollary 4.3. If α and β are in $\mathbb{R} \backslash \mathbb{Q}$ and $\beta=\alpha+m / n$ with $n \geqslant 1$, then $\triangleleft \beta$ is definable in $\left(\mathbb{Z}, \triangleleft_{\alpha}\right)$.

Proof. Suppose α is in $\mathbb{R} \backslash \mathbb{Q}$. Note that $\triangleleft_{-\alpha}(j, k, l)$ if and only if $\triangleleft_{\alpha}(-j,-k,-l)$, so $\triangleleft_{-\alpha}$ is definable in $(\mathbb{Z}, \triangleleft \alpha)$. As $\alpha-m / n=-(-\alpha+m / n)$ is suffices to treat the case when $m \geqslant 1$. It suffices to treat the case $\beta=\alpha+1 / n$ and then apply this case m times to get the general case.

Suppose α, β are in $\mathbb{R} \backslash \mathbb{Q}$ and $\beta=\alpha+1 / n$ with $n \geqslant 1$. As \triangleleft_{α} is additive it suffices to show that the set of pairs (k, l) such that $\triangleleft_{\beta}(0, k, l)$ is definable in $\left(\mathbb{Z}, \triangleleft_{\alpha}\right)$. Let $(\mathbb{R} / \mathbb{Z}, \triangleleft)$ be the positively oriented circle. By definition, $\triangleleft{ }_{\beta}(0, k, l)$ is equivalent to $\triangleleft(0+\mathbb{Z}, \beta k+\mathbb{Z}, \beta l+\mathbb{Z})$. The latter holds if and only if either there are $r, s \in\{0, \ldots, n-1\}$ with $r<s$ such that

$$
\beta k+\mathbb{Z} \in[r / n,(r+1) / n)+\mathbb{Z} \text { and } \beta l+\mathbb{Z} \in[s / n,(s+1) / n)+\mathbb{Z}
$$

or there is $r \in\{0, \ldots, n-1\}$ such that

$$
\beta k+\mathbb{Z}, \beta l+\mathbb{Z} \in[r / n,(r+1) / n)+\mathbb{Z} \text { and } \triangleleft(0, \beta n k+\mathbb{Z}, \beta n l+\mathbb{Z}) .
$$

For all $a \in \mathbb{R}$, we have that $a+k / n+\mathbb{Z} \in[r / n,(r+1) / n)+\mathbb{Z}$ holds if an only if a is in $\left[r^{\prime} / n,\left(r^{\prime}+1\right) / n\right)+\mathbb{Z}$ with $r^{\prime} \in\{0, \ldots, n-1\}$ and $r^{\prime}+k \equiv r(\bmod n)$. Hence, it follows from $\beta=\alpha+1 / n$ that $\beta k+\mathbb{Z} \in[r / n,(r+1) / n)+\mathbb{Z}$ is equivalent to

$$
\alpha k+\mathbb{Z} \in\left[r^{\prime} / n,\left(r^{\prime}+1\right) / n\right)+\mathbb{Z} \text { with } r^{\prime} \in\{0, \ldots, n-1\} \text { and } r^{\prime}+k \equiv r \quad(\bmod n) .
$$

On the other hand, as $n \beta=n \alpha+1$, so we get

$$
\triangleleft(0+\mathbb{Z}, \beta n k+\mathbb{Z}, \beta n l+\mathbb{Z}) \text { is equivalent to } \triangleleft(0+\mathbb{Z}, \alpha n k+\mathbb{Z}, \alpha n l+\mathbb{Z}) .
$$

By definition of \triangleleft_{α}, the latter holds if and only if $\triangleleft_{\alpha}(0, n k, n l)$. Combining with Lemma 4.7 we get the desired conclusion.

Lemma 4.8. Suppose α is in $[0,1)_{\mathbb{R} \backslash \mathbb{Q}}, m, n$ are in $\mathbb{N} \geqslant 1$, and r is in $\{0, \ldots, n-1\}$. Then the set

$$
\{l: \alpha l+\mathbb{Z} \in[0, r \alpha / n)+\mathbb{Z}\}
$$

is definable in $\left(\mathbb{Z}, \triangleleft{ }_{\alpha}\right)$.

Proof. Suppose α, n, and r are as given and $(\mathbb{R} / \mathbb{Z}, \triangleleft)$ is the positively oriented circle. We note that $\alpha l+\mathbb{Z}$ is in $[0, \alpha / n)+\mathbb{Z}$ if and only if $\triangleleft(0+\mathbb{Z}, \alpha n l+\mathbb{Z}, \alpha+\mathbb{Z})$ and $(\alpha i l+\mathbb{Z})_{i=0}^{n}$ does not"winds" around \mathbb{R} / \mathbb{Z}, that is,

$$
\triangleleft(0+\mathbb{Z}, \alpha i l+\mathbb{Z}, \alpha(i+1) l+\mathbb{Z}) \text { for all } i \in\{1, \ldots, n-1\}
$$

Recall that by definition $\triangleleft(\alpha j+\mathbb{Z}, \alpha k+\mathbb{Z}, \alpha l+\mathbb{Z})$ if and only if $\triangleleft{ }_{\alpha}(j, k, l)$. Hence,

$$
\{l: \alpha l+\mathbb{Z} \in[0, \alpha / n)+\mathbb{Z}\} \text { is definable in }\left(\mathbb{Z}, \triangleleft_{\alpha}\right)
$$

The conclusion follow the easy observation that $\alpha l+\mathbb{Z}$ is in $[0, r \alpha / n)+\mathbb{Z}$ if and only if $\triangleleft_{\alpha}(0, l, r k)$ for some $k \in[0, \alpha / n)+\mathbb{Z}$.

Corollary 4.4. Suppose α is in $[0,1)_{\mathbb{R} \backslash \mathbb{Q}}$, n is in $\mathbb{N} \geqslant 1$, and $\beta=m \alpha / n$. Then \triangleleft_{β} is definable in $\left(\mathbb{Z}, \triangleleft_{\alpha}\right)$.

Proof. As $\chi_{\alpha / n}(m k)=\chi_{m \alpha / n}(k)$ for all k we have $\triangleleft_{m \alpha / n}(i, j, l)$ if and only if $\triangleleft_{\alpha / n}(m i, m j, m l)$. It therefore suffices to treat the case $\beta=\alpha / n$. For any given k and $r \in\{0,1, \ldots, n\}$, let

$$
X_{k, r}=\{l: \alpha l+\mathbb{Z} \in[0, k \alpha+r \alpha / n)+\mathbb{Z}\} .
$$

We first prove that $X_{k, r}$ is definable in $\left(\mathbb{Z}, \triangleleft_{\alpha}\right)$ for all k and r as above. This is true for $r=0$ as $l \in X_{k, 0}$ if and only if either $l=0$ or $\triangleleft(0+\mathbb{Z}, l \alpha+\mathbb{Z}, k \alpha+\mathbb{Z})$. The later is equivalent to $\triangleleft_{\alpha}(0, k, l)$ by definition. The case where $k=0$ is just the preceding lemma. In general, we
have that

$$
X_{k, r}= \begin{cases}X_{k, 0} \cup\left(k+X_{0, r}\right) & \text { if } X_{k, 0} \cap\left(k+X_{0, r}\right)=\varnothing \\ X_{k, 0} \cap\left(k+X_{0, r}\right) & \text { otherwise }\end{cases}
$$

Let r, s be in $\{0, \ldots, n-1\}$. We have that $\triangleleft_{\beta}(0, k n+r, l n+s)$ is equivalent to $\triangleleft(0+\mathbb{Z}, \beta(k n+$ $r)+\mathbb{Z}, \beta(\ln +s)+\mathbb{Z})$ by definition. The latter holds if and only if $k n+r, \ln +s$, and 0 are all distinct and $X_{k, r} \subseteq X_{l, r}$. The conclusion follows.

Corollary 4.3 and Corollary 4.4 show that \triangleleft_{β} is definable in $\left(\mathbb{Z}, \triangleleft_{\alpha}\right)$ whenever $\alpha, \beta \in \mathbb{R} \backslash \mathbb{Q}$ are \mathbb{Q}-linearly dependent. Combining with Corollary 4.1 we get:

Theorem 4.3. Suppose α and β are in $\mathbb{R} \backslash \mathbb{Q}$. Then $\left(\mathbb{Z}, \triangleleft_{\alpha}\right)$ and $\left(\mathbb{Z}, \triangleleft_{\beta}\right)$ are definably equivalent if and only if α, β are \mathbb{Q}-linearly dependent.

Finally, we give an example of a dp-minimal expansion of \mathbb{Z} which defines uncountably many subsets of \mathbb{Z}. Let $\mathcal{M}=(M, \ldots)$ be a structure and $\mathcal{N}=(N, \ldots)$ be a highly saturated elementary expansion of \mathcal{M}. Then a subset of M^{k} is externally definable if it is of the form $A \cap M^{k}$ where $A \subseteq N^{k}$ is definable in \mathcal{N}. A standard saturation argument shows that the collection of externally definable sets does not depend on the choice of \mathcal{N}. The Shelah expansion of \mathcal{M} is the expansion $\mathcal{M}^{\mathrm{Sh}}$ of \mathcal{M} obtained by adding a predicate defining every externally definable subset of every M^{k}. It was shown in [70] that $\mathcal{M}^{\mathrm{Sh}}$ is NIP whenever \mathcal{M} is, see also [72, Chapter 3]. It was observed in [62, 3.8] that the main theorem of [70] also shows that $\mathcal{N}^{\mathrm{Sh}}$ is dp-minimal whenever \mathcal{M} is dp-minimal. In particular $\left(\mathbb{Z}, \triangleleft_{\alpha}\right)^{\mathrm{Sh}}$ is dp-minimal for any $\alpha \in \mathbb{R} \backslash \mathbb{Q}$.

Proposition 4.3. Fix $\alpha \in \mathbb{R} \backslash \mathbb{Q}$. Then $(\mathbb{Z}, \triangleleft)^{\text {Sh }}$ defines uncountably many distinct subsets of \mathbb{Z} and has uncountably many definably distinct reducts.

Proof. If \mathcal{M}, \mathcal{N} are as above, and \mathcal{M} expands a linear or circular order then it is easy to see that any convex subset of M is of the form $I \cap M$ for an interval $I \subseteq N$. It follows that $\left(\mathbb{Z}, \triangleleft_{\alpha}\right)^{\mathrm{Sh}}$ defines every \triangleleft_{α}-convex subset of \mathbb{Z} and thus defines uncountably many subsets of \mathbb{Z}. Any reduct of $\left(\mathbb{Z}, \triangleleft_{\alpha}\right)^{\text {Sh }}$ to a countable language defines only countably many subsets of \mathbb{Z}, it follows that $\left(\mathbb{Z}, \triangleleft_{\alpha}\right)^{\text {Sh }}$ has uncountably many definably distinct reducts.

Part 2

Abstract partially random structures

CHAPTER 5

Preliminaries

Throughout, L is a language with S the set of sorts, and \mathcal{M} is an L-structure. Concepts like variables, functions, formulas, etc. are by default with respect to L. We refer to $L(\varnothing)$ definable sets and $L(M)$-definable sets simply as L-definable sets and \mathcal{M}-definable set.

When the structure in question is the monster model for a complete theory, we boldface the relevant notations, i.e., writing \mathcal{M} instead of \mathcal{M} and \boldsymbol{M} instead of M. When discussing a monster model, we adopt the usual convention that all models of $\operatorname{Th}(\mathcal{M})$ are small elementary substructures of $\boldsymbol{\mathcal { M }}$, and all sets of parameters are small subsets of \boldsymbol{M}.

We often work with multiple languages with the same set of sorts S. In these cases, we may define the union and intersection of the languages in the obvious manner and use tuples of variables without specifying the language. Whenever we consider multiple reducts of a structure, we decorate these reducts with the same decorations as their languages. For example, if $L_{0} \subseteq L_{1}$ are languages, we denote an L_{1}-structure by \mathcal{N}_{1}, and we denote its reduct $\left.\mathcal{M}_{1}\right|_{L_{0}}$ to L_{0} by \mathcal{M}_{0}. In this situation, we write "in \mathcal{M}_{0} " to denote that we are evaluating some concept in the reduct.

In this chapter, we review background material and establish general results for later use which are not specific to the context of abstract partially random structures. The reader may skip to Chapter 6 and refer back to this chapter as needed.

5.1. Flat formulas

A formula is atomic flat if it is of the form $x=y, R\left(x_{1}, \ldots, x_{n}\right)$, or $f\left(x_{1}, \ldots, x_{n}\right)=y$, where R is an n-ary relation symbol and f is an n-ary function symbol. Here $x, y, x_{1}, \ldots, x_{n}$ are single variables, which need not be distinct.

A flat literal is an atomic flat formula or the negation of an atomic flat formula. The flat $\operatorname{diagram} \operatorname{fdiag}(\mathcal{A})$ of an L-structure \mathcal{A} is the set of all flat literal $L(A)$-sentences true in \mathcal{A}.

A flat formula is a conjunction of finitely many flat literals. An $\mathbf{E} b$-formula is a formula of the form $\exists y \varphi(x, y)$, where $\varphi(x, y)$ is flat and $\vDash \forall x \exists \leqslant 1 y \varphi(x, y)$.

Remark 5.1. The class of $\mathrm{E} b$-formulas is closed (up to equivalence) under finite conjunction: the conjunction of the Eb -formulas $\exists y_{1} \varphi_{1}\left(x, y_{2}\right)$ and $\exists y_{2} \varphi_{2}\left(x, y_{2}\right)$ is equivalent to the $\mathrm{E} b$ formula

$$
\exists y_{1} y_{2}\left(\varphi_{1}\left(x, y_{1}\right) \wedge \varphi_{2}\left(x, y_{2}\right)\right)
$$

The following lemma essentially appears as Theorem 2.6.1 in [37]. Note Hodges uses the term "unnested" instead of "flat".

Lemma 5.1. Every literal (atomic or negated atomic formula) is logically equivalent to an Eb-formula.

Proof. We first show that for any term $t(x)$, with variables $x=\left(x_{1}, \ldots, x_{n}\right)$, there is an associated Eb -formula $\varphi_{t}(x, y)$ such that $\varphi_{t}(x, y)$ is logically equivalent to $t(x)=y$. We apply induction on terms. For the base case where $t(x)$ is the variable x_{k}, we let $\varphi_{t}(x, y)$ be $x_{k}=y$. Now suppose $t_{1}(x), \ldots, t_{m}(x)$ are terms and f is an m-ary function symbol. Then $\varphi_{f\left(t_{1}, \ldots, t_{m}\right)}$ is the $\mathrm{E} b$-formula equivalent to

$$
\exists z_{1} \ldots z_{m}\left[\bigwedge_{i=1}^{m} \varphi_{t_{i}}\left(x, z_{i}\right) \wedge\left(f\left(z_{1}, \ldots, z_{m}\right)=y\right)\right] .
$$

We now show that every atomic or negated atomic formula is equivalent to an $\mathrm{E} b$-formula. Suppose $t_{1}(x), \ldots, t_{m}(x)$ are terms and R is either an m-ary relation symbol or $=$ (in the latter case, we have $m=2$). Then the atomic formula $R\left(t_{1}(x), \ldots, t_{m}(x)\right)$ is equivalent to

$$
\exists y_{1} \ldots \exists y_{m}\left[\bigwedge_{i=1}^{m} \varphi_{t_{i}}\left(x, y_{i}\right) \wedge R\left(y_{1}, \ldots, y_{m}\right)\right] .
$$

Negated atomic formulas can be treated similarly.
Corollary 5.1. Every quantifier-free formula is logically equivalent to a finite disjunction of Eb-formulas.

Proof. Suppose $\varphi(x)$ is quantifier-free. Then $\varphi(x)$ is equivalent to a formula in disjunctive normal form, i.e., a finite disjunction of finite conjunctions of literals. Applying Lemma 5.1 to each literal and using Remark 5.1, we find that $\varphi(x)$ is equivalent to a finite disjunction of Eb -formulas.

5.2. K-completeness

In this section, T is an L-theory and \mathcal{K} is a class of pairs $(\mathcal{A}, \mathcal{M})$, where $\mathcal{M} \vDash T$ and \mathcal{A} is a substructure of \mathcal{M}.

We say that T is \mathcal{K}-complete if for all $(\mathcal{A}, \mathcal{M}) \in \mathcal{K}$, every embedding from \mathcal{A} to another T-model is partial elementary: if $f: \mathcal{A} \rightarrow \mathcal{N}$ is an embedding and $\mathcal{N} \vDash T$, then $\mathcal{N} \vDash \varphi(a)$ if and only if $\mathcal{N} \vDash \varphi(f(a))$ for any formula $\varphi(x)$ and any $a \in A^{x}$.

Remark 5.2. The terminology \mathcal{K}-complete comes from the following equivalent definition: T is \mathcal{K}-complete if and only if for all $(\mathcal{A}, \mathcal{M}) \in \mathcal{K}$,

$$
T \cup \operatorname{fdiag}(\mathcal{A}) \vDash \operatorname{Th}_{L(A)}(\mathcal{M})
$$

i.e., $T \cup \operatorname{fdiag}(\mathcal{A})$ is a complete $L(A)$-theory. Indeed, if \mathcal{N} is an $L(A)$-structure, then $\mathcal{N} \vDash$ $\operatorname{fdiag}(\mathcal{A})$ if and only if the obvious map $\mathcal{A} \rightarrow \mathcal{N}$ is an embedding.

Suppose T is \mathcal{K}-complete. If \mathcal{K} is the class of pairs $(\mathcal{M}, \mathcal{M})$ such that $\mathcal{M} \vDash T$, then T is model-complete. We say T is substructure-complete if \mathcal{K} is the class of all pairs $(\mathcal{A}, \mathcal{M})$ such that \mathcal{A} is a substructure of \mathcal{M}. If cl is a closure operator on T-models and \mathcal{K} is the class of all pairs $(\mathcal{A}, \mathcal{M})$ such that \mathcal{A} is a cl-closed substructure of \mathcal{M}, i.e., $\operatorname{cl}(A)=A$, then we say T is cl-complete.

The class of T-models has the \mathcal{K}-amalgamation property if whenever $(\mathcal{A}, \mathcal{M}) \in \mathcal{K}, \mathcal{N} \vDash T$, and $f: \mathcal{A} \rightarrow \mathcal{N}$ is an embedding, then there is an elementary extension $\mathcal{N} \leqslant \mathcal{N}^{\prime}$ and an elementary embedding $f^{\prime}: \mathcal{M} \rightarrow \mathcal{N}^{\prime}$ such that $\left.f^{\prime}\right|_{A}=f$, i.e., the following diagram commutes:

If, in the situation above, we can choose \mathcal{N}^{\prime} and f^{\prime} with the further condition that

$$
f^{\prime}(M) \cap N=f^{\prime}(A)=f(A),
$$

then the class of T-models has the disjoint \mathcal{K}-amalgamation property.

Proposition 5.1. The theory T is \mathcal{K}-complete if and only if the class of T-models has the \mathcal{K}-amalgamation property. Further, if T is \mathcal{K}-complete, then \mathcal{A} is algebraically closed in \mathcal{M} for all $(\mathcal{A}, \mathcal{M}) \in \mathcal{K}$ if and only if the class of T-models has the disjoint \mathcal{K}-amalgamation property.

Proof. We prove the first equivalence. Suppose T is \mathcal{K}-complete. The \mathcal{K}-amalgamation property follows from [37, Theorem 6.4.1].

Conversely, suppose the class of T-models has the \mathcal{K}-amalgamation property. If \mathcal{M} and \mathcal{N} are T-models, $\mathcal{A} \subseteq \mathcal{M}$ is in \mathcal{K}, and $f: \mathcal{A} \rightarrow \mathcal{N}$ is an embedding, then there is an elementary extension $\mathcal{N} \leqslant \mathcal{N}^{\prime}$ and an elementary embedding $f^{\prime}: \mathcal{M} \rightarrow \mathcal{N}^{\prime}$ such that $\left.f^{\prime}\right|_{A}=f$. For any L formula $\varphi(x)$ and $a \in A^{x}, \mathcal{M} \vDash \varphi(a)$ if and only if $\mathcal{N}^{\prime} \vDash \varphi\left(f^{\prime}(a)\right)$ if and only if $\mathcal{N} \vDash \varphi(f(a))$. So f is partial elementary. Thus T is \mathcal{K}-complete.

Now, assuming T is \mathcal{K}-complete, we prove the second equivalence. If every structure in \mathcal{K} is algebraically closed, then the class of T-models has the disjoint \mathcal{K}-amalgamation property, by [37, Theorem 6.4.5].

Conversely, suppose the class of T-models has the disjoint \mathcal{K}-amalgamation property. Assume towards a contradiction that $(\mathcal{A}, \mathcal{M}) \in \mathcal{K}$ and A is not algebraically closed in \mathcal{M}. Then there is some $c \in M \backslash A$ such that $\operatorname{tp}(c / A)$ has exactly k realizations c_{1}, \ldots, c_{k} in $M \backslash A$. Taking $\mathcal{N}=\mathcal{M}$ and $f=\operatorname{id}_{A}$ in the disjoint \mathcal{K}-amalgamation property, there is an elementary extension $\mathcal{M} \leqslant \mathcal{N}^{\prime}$ and an elementary embedding $f^{\prime}: \mathcal{M} \rightarrow \mathcal{M}^{\prime}$ which is the identity on A and satisfies $f^{\prime}(M) \cap M=A$. Then $\operatorname{tp}(c / A)$ has $2 k$ distinct realizations $c_{1}, \ldots, c_{k}, f^{\prime}\left(c_{1}\right), \ldots, f^{\prime}\left(c_{k}\right)$ in \mathcal{M}^{\prime}, contradiction.

We recall some classical facts about model-completeness and model companions.
Fact 5.1 ([37], Theorem 6.5.9, Exercise 6.5.5). The following are equivalent:
(1) T admits an $\forall \exists$-axiomatization.
(2) The class of T-models is closed under unions of chains.
(3) The class of T-models is closed under directed colimits (in the category of L-structures and embeddings).

If one of the above equivalent conditions are satisfied, we say that T is inductive.
Fact 5.2 ([37], Theorem 8.3.3). Every model-complete theory is inductive.
An L-theory T^{*} is a model companion of T if T^{*} is model-complete, every T-model embeds into a T^{*}-model, and every T^{*}-model embeds into a T-model.

Fact 5.3 ([37], Theorem 8.2.1, Theorem 8.3.6). Suppose T is inductive. Then:
(1) Every T-model embeds into an existentially closed T-model.
(2) T has a model companion if and only if the class of existentially closed T-models is elementary.
(3) If T has a model companion T^{*}, then T^{*} is the theory of existentially closed T-models.

Model-completeness has a syntactic equivalent: every L-formula is T-equivalent to an existential (hence also universal) formula [37, Theorem 8.3.1(e)].

Substructure-completeness also has a syntactic equivalent: quantifier elimination. This follows from [37, Theorem 8.4.1] and Proposition 5.1 above.

Many of the theories we consider are acl-complete. Unfortunately, there does not seem to be a natural syntactic equivalent to acl-completeness. We introduce a slightly stronger notion, bcl-completeness, which does have a syntactic equivalent.

An L-formula $\varphi(x, y)$ is bounded in y with bound k (with respect to T) if

$$
T \vDash \forall x \exists^{\leqslant k} y \varphi(x, y) .
$$

A formula $\exists y \psi(x, y)$ is boundedly existential (b.e.) (with respect to T) if $\psi(x, y)$ is quantifier-free and bounded in y. We allow y to be the empty tuple of variables, so every quantifier-free formula is b.e. (with bound $k=1$, by convention). The Eb-formulas from Section 5.1 are also b.e. with bound $k=1$ with respect to the empty theory.

Remark 5.3. The class of b.e. formulas is closed (up to T-equivalence) under conjunction: if $\exists y \psi_{1}\left(x, y_{1}\right)$ and $\exists y_{2} \psi_{2}\left(x, y_{2}\right)$ are b.e. with bounds k_{1} and k_{2} on y_{1} and y_{2} respectively, then

$$
\left(\exists y_{1} \psi_{1}\left(x, y_{1}\right)\right) \wedge\left(\exists y_{2} \psi_{2}\left(x, y_{2}\right)\right)
$$

is T-equivalent to

$$
\exists y_{1} y_{2}\left(\psi_{1}\left(x, y_{1}\right) \wedge \psi_{2}\left(x, y_{2}\right)\right)
$$

which is b.e. with bound $k_{1} \cdot k_{2}$ on $y_{1} y_{2}$.
Suppose $\mathcal{M} \vDash T$ and $A \subseteq \mathcal{M}$. The boundedly existential algebraic closure of A in \mathcal{M}, denoted $\operatorname{bcl}(A)$, is the set of all b in M such that $\mathcal{M} \vDash \exists z \varphi(a, b, z)$ for some quantifier-free L-formula $\varphi(x, y, z)$ bounded in $y z$ and some $a \in A^{x}$.

Remark 5.4. The formula $\varphi(x, y, z)$ is bounded in $y z$ if and only if it is bounded in z and $\exists z \varphi(x, y, z)$ is bounded in y. As a consequence, $b \in \operatorname{bcl}(A)$ if and only if b satisfies a b.e. formula $\exists z \varphi(y, z)$ with parameters from A, which is bounded in y. Such a formula is algebraic, $\operatorname{so} \operatorname{bcl}(A) \subseteq \operatorname{acl}(A)$.

Lemma 5.2. If $A \subseteq \mathcal{M}$ then $\langle A\rangle \subseteq \operatorname{bcl}(A)$. Furthermore, bcl is a closure operator.
Proof. Fix $A \subseteq \mathcal{M}$. Suppose $b \in\langle A\rangle$. Then $t(a)=b$ for a term $t(x)$ and a tuple a from A. Then the formula $t(x)=y$ is b.e. (taking z to be the empty tuple of variables) and bounded in y (with bound 1), so it witnesses $b \in \operatorname{bcl}(A)$ by Remark 5.4.

It follows that $A \subseteq \operatorname{bcl}(A)$, and it is clear that $A \subseteq B$ implies $\operatorname{bcl}(A) \subseteq \operatorname{bcl}(B)$. It remains to show bcl is idempotent.

Suppose $b \in \operatorname{bcl}(\operatorname{bcl}(A))$. Then $\mathcal{M} \vDash \exists z \varphi(a, b, z)$ for some quantifier-free formula $\varphi(x, y, z)$ which is bounded in $y z$ and some tuple $a=\left(a_{1}, \ldots, a_{n}\right)$ from $\operatorname{bcl}(A)$. For each $1 \leqslant j \leqslant n$, since a_{j} is in $\operatorname{bcl}(A), \mathcal{M} \vDash \exists z_{j} \psi_{j}\left(d_{j}, a_{j}, z_{j}\right)$ for some quantifier-free formula $\psi_{j}\left(w_{j}, x_{j}, z_{j}\right)$ which is bounded in $x_{j} z_{j}$, and some tuple d_{j} from A.

Then the quantifier-free formula

$$
\left(\bigwedge_{j=1}^{n} \psi_{j}\left(w_{j}, x_{j}, z_{j}\right)\right) \wedge \varphi\left(x_{1}, \ldots, x_{n}, y, z\right)
$$

is bounded in $x_{1} \ldots x_{n} y z_{1} \ldots z_{n} z$ (by the product of the bounds for φ and the ψ_{j}), and

$$
\mathcal{M} \vDash \exists x_{1} \ldots x_{n} z_{1} \ldots z_{n} z\left(\bigwedge_{j=1}^{n} \psi_{j}\left(d_{j}, x_{j}, z_{j}\right)\right) \wedge \varphi\left(x_{1}, \ldots, x_{n}, b, z\right),
$$

so $b \in \operatorname{bcl}(A)$.
Remark 5.5. Every model is acl-closed, every acl-closed set is bcl-closed, and every bclclosed set is a substructure, therefore:

$$
\mathrm{QE} \Leftrightarrow \text { substructure-complete } \Rightarrow \text { bcl-complete } \Rightarrow \text { acl-complete } \Rightarrow \text { model-complete. }
$$

Theorem 5.1 clarifies the relationship between acl- and bcl-completeness and provides the promised syntactic equivalent to bcl-completeness.

Theorem 5.1. The following are equivalent:
(1) Every L-formula is T-equivalent to a finite disjunction of b.e. formulas.
(2) T is acl-complete and $\mathrm{acl}=\mathrm{bcl}$ in T-models.
(3) T is bcl-complete.

Proof. We assume (1) and prove (2). We first show acl and bcl agree. Suppose $A \subseteq \mathcal{M} \vDash T$ and $b \in \operatorname{acl}(A)$, witnessed by an algebraic formula $\varphi(a, y)$ with parameters a from A. Suppose there are exactly k tuples in M^{y} satisfying $\varphi(a, y)$. Let $\varphi^{\prime}(x, y)$ be the formula

$$
\varphi(x, y) \wedge \exists^{\leqslant k} y^{\prime} \varphi\left(x, y^{\prime}\right)
$$

and note $\varphi^{\prime}(x, y)$ is bounded in y. By assumption, $\varphi^{\prime}(x, y)$ is equivalent to a finite disjunction of boundedly existential formulas, so there is some boundedly existential formula $\psi(x, y)$ such that $T \vDash \psi(x, y) \rightarrow \varphi^{\prime}(x, y)$ and $\mathcal{M} \vDash \psi(a, b)$. Since $\varphi^{\prime}(x, y)$ is bounded in y, so is $\psi(x, y)$, and hence $b \in \operatorname{bcl}(A)$ by Remark 5.4.

We continue to assume (1) and show T is acl-complete. Suppose \mathcal{A} is an algebraically closed substructure of $\mathcal{M} \vDash T$ and $f: \mathcal{A} \rightarrow \mathcal{N} \vDash T$ is an embedding. We show that for any formula $\varphi(x)$, if $\mathcal{M} \vDash \varphi(a)$, where $a \in A^{x}$, then $\mathcal{N} \vDash \varphi(f(a))$. By our assumption, $\varphi(x)$ is equivalent to a finite disjunction of boundedly existential formulas, so there is some boundedly existential formula $\exists y \psi(x, y)$ such that

$$
T \vDash(\exists y \psi(x, y)) \rightarrow \varphi(x) \quad \text { and } \quad \mathcal{N} \vDash \exists y \psi(a, y) .
$$

Let $b \in M^{y}$ be a witness for the existential quantifier. Then each component of the tuple b is in $\operatorname{acl}(a) \subseteq A$, since A is algebraically closed. And ψ is quantifier-free, so $\mathcal{N} \vDash \psi(f(a), f(b))$, and hence $\mathcal{N} \vDash \varphi(f(a))$.

It is clear that (2) implies (3).

We now assume (3) and prove (1). For any finite tuple of variables x, let Δ_{x} be the set of boundedly existential formulas with free variables from x.

Claim: For all models \mathcal{M} and \mathcal{N} of T and all tuples $a \in M^{x}$ and $a^{\prime} \in N^{x}$, if $\operatorname{tp}_{\Delta_{x}}(a) \subseteq$ $\operatorname{tp}_{\Delta_{x}}\left(a^{\prime}\right)$, then $\operatorname{tp}(a)=\operatorname{tp}\left(a^{\prime}\right)$.

Proof of claim: Suppose that \mathcal{M} and \mathcal{N} are models of $T, a \in M^{x}, a^{\prime} \in N^{x}$, and $\operatorname{tp}_{\Delta_{x}}(a) \subseteq$ $\operatorname{tp}_{\Delta_{x}}\left(a^{\prime}\right)$. Let y be a tuple of variables enumerating the elements of $\operatorname{bcl}(a)$ which are not in a. Let $p(x, y)=\operatorname{qftp}(\operatorname{bcl}(a))$, and let $q(x)=\operatorname{tp}\left(a^{\prime}\right)$. We claim that $T \cup p(x, y) \cup q(x)$ is consistent.

Let $b=\left(b_{1}, \ldots, b_{n}\right)$ be a finite tuple from $\operatorname{bcl}(a)$ which is disjoint from a, and let $\psi\left(x, y^{\prime}\right)$ be a quantifier-free formula such that $\mathcal{M} \vDash \psi(a, b)$ (where $y^{\prime}=\left(y_{1}, \ldots, y_{n}\right)$ is the finite subtuple of y enumerating b).

For each $1 \leqslant j \leqslant n$, the fact that $b_{j} \in \operatorname{bcl}(a)$ is witnessed by $\mathcal{M} \vDash \exists z_{j} \varphi_{j}\left(a, b_{j}, z_{j}\right)$, where $\varphi_{j}\left(x, y_{j}, z_{j}\right)$ is quantifier-free and bounded in $y_{j} z_{j}$. Letting $z=\left(z_{1}, \ldots, z_{n}\right)$, the conjunction $\bigwedge_{j=1}^{n} \varphi_{j}\left(x, y_{j}, z_{j}\right)$ is a quantifier-free formula $\varphi\left(x, y^{\prime}, z\right)$ which is bounded in $y^{\prime} z$. It follows that $\varphi\left(x, y^{\prime}, z\right) \wedge \psi\left(x, y^{\prime}\right)$ is also bounded in $y^{\prime} z$, and $\mathcal{M} \vDash \exists z(\varphi(a, b, z) \wedge \psi(a, b))$. Then

$$
\exists y^{\prime} z\left(\varphi\left(x, y^{\prime}, z\right) \wedge \psi\left(x, y^{\prime}\right)\right) \in \operatorname{tp}_{\Delta_{x}}(a) \subseteq \operatorname{tp}_{\Delta_{x}}\left(a^{\prime}\right)
$$

so $\mathcal{N} \vDash \exists y^{\prime} z\left(\varphi\left(a^{\prime}, y^{\prime}, z\right) \wedge \psi\left(a^{\prime}, y^{\prime}\right)\right)$. Letting $b^{\prime} \in N_{y^{\prime}}$ be a witness for the first block of existential quantifiers, $\mathcal{N} \vDash \psi\left(a^{\prime}, b^{\prime}\right)$, so $T \cup\left\{\psi\left(x, y^{\prime}\right)\right\} \cup q(x)$ is consistent.

By compactness, $T \cup p(x, y) \cup q(x)$ is consistent, so there exists a model $\mathcal{N}^{\prime} \vDash T$, a tuple $a^{\prime \prime} \in\left(N^{\prime}\right)^{x}$ realizing $q(x)$, and an embedding $f: \operatorname{bcl}(a) \rightarrow \mathcal{N}^{\prime}$ such that $f(a)=a^{\prime \prime}$. By bcl-completeness, we have $\operatorname{tp}(a)=\operatorname{tp}\left(a^{\prime \prime}\right)=\operatorname{tp}\left(a^{\prime}\right)$, as was to be shown.

Having established the claim, we conclude with a standard compactness argument. Let $\varphi(x)$ be an L-formula. Suppose $\mathcal{M} \vDash T$ and $\mathcal{M} \vDash \varphi(a)$. Let $p_{a}(x)=\operatorname{tp}_{\Delta_{x}}(a)$. By the claim, $T \cup p_{a}(x) \cup\{\neg \varphi(x)\}$ is inconsistent. Since $p_{a}(x)$ is closed under finite conjunctions (up to equivalence) by Remark 5.3, there is a formula $\psi_{a}(x) \in p_{a}(x)$ such that $T \vDash \psi_{a}(x) \rightarrow \varphi(x)$.

Now

$$
T \cup\{\varphi(x)\} \cup\left\{\neg \psi_{a}(x) \mid \mathcal{M} \vDash T \text { and } \mathcal{M} \vDash \varphi(a)\right\}
$$

is inconsistent, so there are finitely many a_{1}, \ldots, a_{n} such that $T \vDash \varphi \rightarrow\left(\bigvee_{i=1}^{n} \psi_{a_{i}}(x)\right)$. Since also $T \vDash\left(\bigvee_{i=1}^{n} \psi_{a_{i}}(x)\right) \rightarrow \varphi(x)$, we have shown that $\varphi(x)$ is T-equivalent to $\bigvee_{i=1}^{n} \psi_{a_{i}}(x)$.

It may be surprising that acl-completeness does not already imply every formula is equivalent to a finite disjunction of b.e. formulas, i.e., acl-completeness is not equivalent to bclcompleteness. We give a counterexample.

Example 5.1. Let L be the language with a single unary function symbol f. We denote by $E(x, y)$ the equivalence relation defined by $f(x)=f(y)$. We say an element of an L-structure is special if it is in the image of f. Let T be the theory asserting the following:
(1) Models of T are nonempty.
(2) There are no cycles, i.e., for all $n \geqslant 1, \forall x f^{n}(x) \neq x$.
(3) Each E-class is infinite and contains exactly one special element.

Every T-model can be decomposed into a disjoint union of connected components, each of which is a chain of E-classes, $\left(C_{n}\right)_{n \in \mathbb{Z}}$, such that each class C_{n} contains a unique special element a_{n}, and $f(b)=a_{n}$ for all $b \in C_{n-1}$.

Let A be a subset of a T-model. Then $\operatorname{acl}(A)$ consists of A, together with the \mathbb{Z}-indexed chain of special elements in each connected component which meets A. But $\operatorname{bcl}(A)$ is just the substructure generated by A : it only contains the special elements from E-classes further along in the chain than some element of A. Indeed, if a_{n} is the unique special element in class $C_{n}, a_{n} \notin A$, and no element of A is in any class C_{m} with $m<n$ in the same connected component, then a_{n} does not satisfy any bounded and b.e. formula with parameters from A.

It is not hard to show that T is acl-complete (and hence complete, $\operatorname{since} \operatorname{acl}(\varnothing)=\varnothing)$, but not bcl-complete. For an explicit example of a formula which is not equivalent to a disjunction of b.e. formulas, consider the formula

$$
\exists y f(y)=x
$$

defining the special elements.

5.3. Existential bi-interpretations

Here we set our notation for interpretations and related notions. We will then show that existential bi-interpretations preserve the property of being existentially closed, and hence restrict to bi-interpretations between model companions, when these exist.

Let T be an L-theory, and let T^{\prime} be an L^{\prime}-theory. An interpretation of T^{\prime} in $T, F: T \leadsto T^{\prime}$, consists of the following data:
(1) For every sort s^{\prime} in L^{\prime}, an L-formula $\varphi_{s^{\prime}}\left(x_{s^{\prime}}\right)$ and an L-formula $E_{s^{\prime}}\left(x_{s^{\prime}}, x_{s^{\prime}}^{*}\right)$.
(2) For every relation symbol R^{\prime} in L^{\prime} of type $\left(s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right)$ in L^{\prime}, an L-formula $\varphi_{R^{\prime}}\left(x_{s_{1}^{\prime}}, \ldots, x_{s_{n}^{\prime}}\right)$.
(3) For every function symbol f^{\prime} in L^{\prime} of type $\left(s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right) \rightarrow s^{\prime}$ in L^{\prime}, an L-formula $\varphi_{f^{\prime}}\left(x_{s_{1}^{\prime}}, \ldots, x_{s_{n}^{\prime}}, x_{s^{\prime}}\right)$.
We then require that for every model $\mathcal{M} \vDash T$, the formulas above define an L^{\prime}-structure \mathcal{N}^{\prime} in the natural way, such that $\mathcal{M}^{\prime} \vDash T^{\prime}$. See [37, Section 5.3] for details. We sometimes denote \mathcal{N}^{\prime} by $F(\mathcal{M})$. For every sort s^{\prime} in L^{\prime}, we write $\pi_{s^{\prime}}$ for the surjective quotient map $\varphi_{s^{\prime}}(\mathcal{M}) \rightarrow M_{s^{\prime}}^{\prime}$.

An interpretation $F: T \leadsto T^{\prime}$ is an existential interpretation if for each sort s^{\prime} in L^{\prime}, the L-formula $\varphi_{s^{\prime}}\left(x_{s^{\prime}}\right)$ is T-equivalent to an existential formula, and all other formulas involved in the interpretation and their negations (i.e., the formulas $E_{s^{\prime}}, \neg E_{s^{\prime}}, \varphi_{R^{\prime}}, \neg \varphi_{R^{\prime}}, \varphi_{f^{\prime}}$, and $\left.\neg \varphi_{f^{\prime}}\right)$ are also T-equivalent to existential formulas.

Lemma 5.3. Suppose $F: T \leadsto T^{\prime}$ is a existential interpretation. Let $\varphi^{\prime}(y)$ be a quantifier-free L^{\prime}-formula, where $y=\left(y_{1}, \ldots, y_{n}\right)$ and y_{i} is a variable of sort s_{i}^{\prime}. Then there is an existential L-formula $\widehat{\varphi}\left(x_{s_{1}^{\prime}}, \ldots, x_{s_{n}^{\prime}}\right)$ such that for every $\mathcal{M} \vDash T$ and every tuple $a=\left(a_{1}, \ldots, a_{n}\right)$ with $a_{i} \in \varphi_{s_{i}^{\prime}}(\mathcal{M}), \mathcal{M} \vDash \widehat{\varphi}(a)$ if and only if $F(\mathcal{M}) \vDash \varphi^{\prime}\left(\pi_{s_{1}}\left(a_{1}\right), \ldots, \pi_{s_{n}}\left(a_{n}\right)\right)$.

Proof. By Corollary 5.1, $\varphi^{\prime}(y)$ is equivalent to a finite disjunction of Eb formulas. The rest of the proof is as in [37, Theorem 5.3.2]. The fact that the formulas $E_{s^{\prime}}, \neg E_{s^{\prime}}, \varphi_{R^{\prime}}, \neg \varphi_{R^{\prime}}, \varphi_{f^{\prime}}$, and $\neg \varphi_{f^{\prime}}$ are existential implies that flat literal L^{\prime}-formulas can be pulled back to existential L-formulas, and the fact that the formulas φ_{s}^{\prime} are existential is used in the inductive step to handle existential quantifiers.

A bi-interpretation $\left(F, G, \eta, \eta^{\prime}\right)$ between T and T^{\prime} consists of an interpretation $F: T \leadsto T^{\prime}$, an interpretation $G: T^{\prime} \leadsto T$, together with L-formulas and L^{\prime}-formulas defining for each $\mathcal{M} \vDash T$ and each $\mathcal{N}^{\prime} \vDash T^{\prime}$ isomorphisms

$$
\eta_{\mathcal{M}}: \mathcal{N} \rightarrow G(F(\mathcal{M})) \quad \text { and } \quad \eta_{\mathcal{N}^{\prime}}^{\prime}: \mathcal{N}^{\prime} \rightarrow F\left(G\left(\mathcal{N}^{\prime}\right)\right)
$$

See [37, Section 5.4] for the precise definition. Such a bi-interpretation is existential if F and G are each existential interpretations, and moreover the aforementioned L-formulas and L^{\prime}-formulas are existential. If there is an existential bi-interpretation between T and T^{\prime}, we say that T and T^{\prime} are existentially bi-interpretable. The following is [37, Exercise 5.4.3]:

Lemma 5.4. Suppose $F: T \leadsto T^{\prime}$ is existential. Then F induces a functor from the category of models of T and embeddings to the category of models of T^{\prime} and embeddings. Suppose moreover that $\left(F, G, \eta, \eta^{\prime}\right)$ is an existential bi-interpretation from T to T^{\prime}. Then the induced functors form an equivalence of categories; in particular, if $f: \mathcal{M} \rightarrow \mathcal{N}$ is an L-embedding, then the following diagram commutes:

We next prove the main result of this section:
Proposition 5.2. Suppose T and T^{\prime} are existentially bi-interpretable. Then \mathcal{M} is an existentially closed model of T if and only if $F(\mathcal{M})$ is an existentially closed model of T^{\prime}.

Proof. Let ($F, G, \eta, \eta^{\prime}$) be an existential bi-interpretation of between T and T^{\prime}. It suffices to show that if $F(\mathcal{M})$ is an existentially closed model of T^{\prime}, then \mathcal{M} is an existentially closed model of T. Indeed, by symmetry it follows that if $G\left(\mathcal{N}^{\prime}\right)$ is an existentially closed model of T, then \mathcal{N}^{\prime} is an existentially closed model of T^{\prime}. And then, since $\eta_{\mathcal{M}}: \mathcal{M} \rightarrow G(F(\mathcal{M}))$ is an isomorphism, if \mathcal{M} is existentially closed, then $F(\mathcal{M})$ is existentially closed.

So assume that $F(\mathcal{M})$ is an existentially closed model of T^{\prime}. Let $f: \mathcal{M} \rightarrow \mathcal{N}$ be an embedding of T-models, and let $\varphi(y)$ be a quantifier-free formula with parameters from \mathcal{M} which is satisfied in \mathcal{N}. By commutativity of the diagram in Lemma 5.4, after moving the parameters of $\varphi(y)$ into $G(F(\mathcal{M}))$ by the isomorphism $\eta_{\mathcal{M}}$, we find that $\varphi(y)$ is satisfied in $G(F(\mathcal{N}))$, and it suffices to show that it is satisfied in $G(F(\mathcal{M}))$.

By Lemma 5.3, there is an existential L^{\prime}-formula $\widehat{\varphi}^{\prime}(x)$ with parameters from $F(\mathcal{M})$ such that $F(\mathcal{N}) \vDash \widehat{\varphi}^{\prime}(a)$ if and only if $G(F(\mathcal{N})) \vDash \varphi(b)$, where b is the image of a under the appropriate π_{s} quotient maps. Writing $\widehat{\varphi}^{\prime}(x)$ as $\exists z \psi^{\prime}(x, z)$, we have $F(\mathcal{N}) \vDash \psi^{\prime}(a, c)$ for some c, where a is any preimage of the tuple from $G(F(\mathcal{N}))$ satisfying $\varphi(y)$. But since $F(\mathcal{M})$ is existentially closed, there are some a^{*} and c^{*} in $F(\mathcal{M})$ such that $\mathcal{M} \vDash \psi^{\prime}\left(a^{*}, c^{*}\right)$, so $\mathcal{M} \vDash \widehat{\varphi}^{\prime}\left(a^{*}\right)$, and it follows that $\varphi(y)$ is satisfied in $G(F(\mathcal{M}))$, as desired.

Corollary 5.2. Suppose T and T^{\prime} are inductive, and T has a model companion T^{*}. If $\left(F, G, \eta, \eta^{\prime}\right)$ is an existential bi-interpretation between T and T^{\prime}, then T^{\prime} has a model companion $\left(T^{\prime}\right)^{*}$, and $\left(F, G, \eta, \eta^{\prime}\right)$ restricts to an existential bi-interpretation between T^{*} and $\left(T^{\prime}\right)^{*}$.

Proof. By [37, Theorem 5.3.2], for every L-sentence $\varphi \in T^{*}$, there is an L^{\prime}-sentence φ^{\prime} such that for all $\mathcal{N}^{\prime} \vDash T^{\prime}, \mathcal{M}^{\prime} \vDash \varphi^{\prime}$ if and only if $G(\mathcal{M}) \vDash \varphi$. Let $\left(T^{\prime}\right)^{*}=T^{\prime} \cup\left\{\varphi^{\prime} \mid \varphi \in T^{*}\right\}$. Then $\mathcal{M}^{\prime} \vDash\left(T^{\prime}\right)^{*}$ if and only if $\mathcal{N}^{\prime} \vDash T^{\prime}$ and $G\left(\mathcal{N}^{\prime}\right) \vDash T^{*}$. By Proposition 5.2, $\mathcal{M}^{\prime} \vDash\left(T^{\prime}\right)^{*}$ if and only if \mathcal{M}^{\prime} is an existentially closed model of T^{\prime}. So $\left(T^{\prime}\right)^{*}$ is the model companion of T^{\prime}. And Proposition 5.2 further implies that $\mathcal{M} \vDash T^{*}$ if and only if $F(\mathcal{M}) \vDash\left(T^{\prime}\right)^{*}$. So $\left(F, G, \eta, \eta^{\prime}\right)$ restricts to an existential bi-interpretation between the model companions.

5.4. Stationary independence relations

In this section, T is a complete L-theory, L^{\prime} is a first order language extending L, and T^{\prime} is a complete L^{\prime}-theory extending T. Let \mathcal{M}^{\prime} be a monster model of T^{\prime} and \mathcal{M} be the L-reduct of \mathcal{M}^{\prime}, so \mathcal{M} is a monster model of T.

Let \downarrow be a ternary relation on small subsets of \mathcal{M}. We consider the following properties that \downarrow may satisfy. The first three are specific to T, while the fourth concerns the relationship between T and T^{\prime}. We let A, B, and C range over arbitrary small subsets of \mathcal{M}.
(1) Invariance: If σ is an automorphism of \mathcal{M}, then $A \downarrow_{C} B$ if and only if $\sigma(A) \downarrow_{\sigma(C)} \sigma(B)$.
(2) Algebraic independence: If $A \downarrow_{C} B$, then

$$
\operatorname{acl}_{L}(A C) \cap \operatorname{acl}_{L}(B C)=\operatorname{acl}_{L}(C) .
$$

(3) Stationarity (over algebraically closed sets): If $C=\operatorname{acl}_{L}(C), \operatorname{tp}_{L}(A / C)=\operatorname{tp}_{L}\left(A^{*} / C\right)$, $A \downarrow_{C} B$, and $A^{*} \downarrow_{C} B$, then $\operatorname{tp}_{L}(A / B C)=\operatorname{tp}_{L}\left(A^{*} / B C\right)$.
(4) Full existence (over algebraically closed sets) in T^{\prime} : If $C=\operatorname{acl}_{L^{\prime}}(C)$ then there exists A^{*} with $\operatorname{tp}_{L^{\prime}}\left(A^{*} / C\right)=\operatorname{tp}_{L^{\prime}}(A / C)$ and $A^{*} \downarrow_{C} B$ in \mathcal{M}.

For brevity, we omit the parenthetical "(over algebraically closed sets)" in properties (3) and (4).

We say \downarrow is a stationary independence relation in T if it satisfies invariance, algebraic independence, and stationarity. In particular, a stationary independence relation identifies, for every L-type $p(x) \in S_{x}(C)$ with $C=\operatorname{acl}_{L}(C)$ and every set B, a unique "independent" extension of $p(x)$ in $S_{x}(B C)$.

Our definition of a stationary independence relation differs from that introduced in [78]. Most natural stationary independence relations satisfy additional axioms (symmetry, monotonicity, etc.). We only require the axioms listed above.

Forking independence \downarrow^{f} in a stable theory with weak elimination of imaginaries is the most familiar stationary independence relation, and this is the relation we will use in most examples. However, as the next example shows, there are also non-trivial examples in unstable theories.

Example 5.2. Suppose L contains a single binary relation E, and T is the theory of the random graph (the Fraïssé limit of the class of finite graphs). Define:

$$
\begin{aligned}
& A \underset{C}{\downarrow^{E}} B \Longleftrightarrow A \cap B \subseteq C \text { and } a E b \text { for all } a \in A \backslash C \text { and } b \in B \backslash C \\
& A \underset{C}{\downarrow^{\mathscr{E}}} B \Longleftrightarrow A \cap B \subseteq C \text { and } \neg a E b \text { for all } a \in A \backslash C \text { and } b \in B \backslash C .
\end{aligned}
$$

Both \downarrow^{E} and \downarrow^{L} are stationary independence relations in T.
Now let $L^{\prime}=\{E, P\}$, where P is a unary predicate, and let T^{\prime} be the theory of the Fraïssé limit of the class of finite graphs with a predicate P naming a clique. T^{\prime} extends T and has quantifier elimination, and $\operatorname{acl}_{L^{\prime}}(A)=A$ for all sets A.

Then \downarrow^{E} has full existence in T^{\prime}. Indeed, for any A, B, and C, let $p(x)=\operatorname{tp}_{L^{\prime}}(A / C)$, where $x=\left(x_{a}\right)_{a \in A}$ is a tuple of variables enumerating A. The type $p(x) \cup\left\{x_{a} E b \mid a \in\right.$ $A \backslash C$ and $b \in B \backslash C\}$ is consistent, and for any realization A^{*} of this type, we have $A^{*} \downarrow_{C}^{E} B$ in \mathcal{M}.

On the other hand, let a and b be any two elements of \mathcal{M}^{\prime} satisfying P. Then for any realization a^{*} of $\operatorname{tp}_{L^{\prime}}(a / \varnothing)$, we have $P\left(a^{*}\right)$, so $a^{*} E b$, and $a^{*} \Psi^{\phi} b$ in \mathcal{M}. So \downarrow^{\neq}does not have full existence in T^{\prime}.

The remainder of this section is devoted to the proof that when T is stable with weak elimination of imaginaries, the stationary independence relation \mathbb{L}^{f} in T always has full existence in T^{\prime}. We first recall some definitions. T has stable forking if whenever a complete type $p(x)$ over B forks over $A \subseteq B$, then there is a stable formula $\delta(x, y)$ such that $\delta(x, b) \in p(x)$ and $\delta(x, b)$ forks over A. Every theory with stable forking is simple; the converse is the Stable Forking Conjecture, which remains open (see [49]).

We recall a few variations on the notion of elimination of imaginaries (see [10]).
(1) T has elimination of imaginaries if every $a \in \mathcal{M}^{\text {eq }}$ is interdefinable with some $b \in \mathcal{M}$, i.e., $a \in \operatorname{dcl}^{\mathrm{eq}}(b)$ and $b \in \operatorname{dcl}^{\mathrm{eq}}(a)$.
(2) T has weak elimination of imaginaries if for every $a \in \mathcal{M}^{\text {eq }}$ there is some $b \in \mathcal{M}$ such that $a \in \operatorname{dcl}^{\mathrm{eq}}(b)$ and $b \in \operatorname{acl}^{\mathrm{eq}}(a)$.
(3) T has geometric elimination of imaginaries if every $a \in \mathcal{M}^{\text {eq }}$ is interalgebraic with some $b \in \mathcal{M}$, i.e., $a \in \operatorname{acl}^{\text {eq }}(b)$ and $b \in \operatorname{acl}^{\text {eq }}(a)$.
Let $\delta(x, y)$ be a formula. An instance of δ is a formula $\delta(x, b)$ with $b \in \boldsymbol{M}^{y}$, and a δ-formula is a Boolean combination of instances of δ. A global δ-type is a maximal consistent set of δ-formulas with parameters from \boldsymbol{M}. We denote by $S_{\delta}(\boldsymbol{M})$ the Stone space of global δ-types.

The following lemma is a well-known fact about the existence of weak canonical bases for δ-types when $\delta(x, y)$ is stable.

Lemma 5.5. Suppose T has geometric elimination of imaginaries, and $\delta(x, y)$ is a stable formula. For any $q(x) \in S_{\delta}(\boldsymbol{M})$, there exists a tuple d such that:
(1) $q(x)$ has finite orbit under automorphisms of \mathfrak{M} fixing d.
(2) d has finite orbit under automorphisms of \mathcal{M} fixing $q(x)$.
(3) $q(x)$ does not divide over d.

If T has weak elimination of imaginaries, we can arrange that d is fixed by automorphisms of \mathcal{M} fixing $q(x)$. And if T has elimination of imaginaries, we can further arrange that $q(x)$ is fixed by automorphisms of $\mathfrak{\mathcal { M }}$ fixing d.

Proof. Let $e \in \mathcal{M}^{\text {eq }}$ be the canonical base for $q(x)$. Then $q(x)$ is fixed by all automorphisms fixing e, e is fixed by all automorphisms fixing $q(x)$, and $q(x)$ does not divide over e. By geometric elimination of imaginaries, e is interalgebraic with a real tuple d, and (1), (2), and
(3) follow immediately. The cases when T has elimination of imaginaries or weak elimination of imaginaries are similar.

The following lemma is essentially the same idea as [64, Lemma 3], which itself makes use of key ideas from [40, Lemmas 5.5 and 5.8].

Lemma 5.6. Suppose T has stable forking and geometric elimination of imaginaries. Then \downarrow^{f} in T has full existence in T^{\prime}.

Proof. Suppose towards a contradiction that there exist sets A, B, and C in \mathcal{M}^{\prime} such that $C=\operatorname{acl}_{L^{\prime}}(C)$, and for any A^{*} with $\operatorname{tp}_{L^{\prime}}\left(A^{*} / C\right)=\operatorname{tp}_{L^{\prime}}(A / C), A^{*} \pm_{C}^{f} B$ in \mathcal{M}. We may assume $C \subseteq B$. Let $p(x)=\operatorname{tp}_{L^{\prime}}(A / C)$. Since T has stable forking, the fact that $\operatorname{tp}_{L}\left(A^{*} / B\right)$ forks over C is always witnessed by a stable L-formula. So the partial type

$$
p(x) \cup\{\neg \delta(x, b) \mid \delta(x, y) \in L \text { is stable, and } \delta(x, b) \text { forks over } C \text { in } \mathcal{M}\}
$$

is not satisfiable in \mathcal{M}^{\prime}. By saturation and compactness, we may assume that A is finite and x is a finite tuple of variables. And as stable formulas and forking formulas are closed under disjunctions, there is an $L^{\prime}(C)$-formula $\varphi(x) \in p(x)$, a stable L-formula $\delta(x, y)$, and $b \in \boldsymbol{M}^{y}$ such that $\delta(x, b)$ forks over C, and

$$
\mathcal{M}^{\prime} \vDash \forall x(\varphi(x) \rightarrow \delta(x, b)) .
$$

Since forking and dividing agree in simple theories [9, Prop. 5.17], $\delta(x, b)$ divides over C.
Let $[\varphi]$ be the set of all δ-types in $S_{\delta}(\boldsymbol{M})$ which are consistent with $\varphi(x)$. This is a closed set in $S_{\delta}(\boldsymbol{M})$: it consists of all global δ-types $r(x)$ such that $\chi(x) \in r(x)$ whenever $\chi(x)$ is a δ-formula and $\varphi\left(\mathcal{M}^{\prime}\right) \subseteq \chi\left(\mathcal{M}^{\prime}\right)$. In particular, if $r(x) \in[\varphi]$, then $\delta(x, b) \in r(x)$. Since δ is stable, $[\varphi]$ contains finitely many points of maximal Cantor-Bendixson rank. Let $q(x)$ be such a point.

Let d be the weak canonical base for $q(x)$ obtained in Lemma 5.5. Since [φ] is fixed setwise by any L^{\prime}-automorphism fixing $C, q(x)$ has finitely many conjugates under such automorphisms. It follows that d too has finitely many conjugates, so $d \in C$, as C is algebraically closed in \mathcal{N}^{\prime}. But then $q(x)$ does not divide over C, contradicting the fact that $\delta(x, b) \in q(x)$.

Remark 5.6. The following counterexample shows the assumptions of geometric elimination of imaginaries in T and $C=\operatorname{acl}(C)$ in \mathcal{M}^{\prime} (not just in \mathcal{M}) in Lemma 5.6 are necessary. Let T be the theory of an equivalence relation with infinitely many infinite classes. Let T^{\prime} be the expansion of this theory by a single unary predicate P naming one of the classes. Let a and b be two elements of the class named by P in \mathcal{M}^{\prime}, and let $C=\varnothing$ (which is algebraically closed in \mathcal{M} and $\left.\mathcal{M}^{\prime}\right)$. For any a^{*} such that $\operatorname{tp}_{L^{\prime}}\left(a^{*} / \varnothing\right)=\operatorname{tp}_{L^{\prime}}(a / \varnothing)$, we have $a^{*} E b$, and $x E b$ forks
over \varnothing in \mathcal{M}. To fix this, we move to $\mathcal{M}^{\text {eq }}$, so we have another sort containing names for all the E-classes. Note that $\operatorname{acl}^{\mathrm{eq}}(\varnothing)$ in \mathcal{M} still doesn't contain any of these names. $\mathrm{But} \mathrm{acl}^{\text {eq }}(\varnothing)$ in $\boldsymbol{\mathcal { M }}^{\prime}$ contains the name for the class named by P, since it is fixed by L^{\prime}-automorphisms. And we recover the lemma, since $x E b$ does not fork over the name for the E-class of b.

Remark 5.7. It is also possible for Lemma 5.6 to fail when there are unstable forking formulas. Let T be be the theory of $(\mathbb{Q},<)$ and T^{\prime} be the expansion of T by a unary predicate P defining an open interval (p, p^{\prime}), where $p<p^{\prime}$ are irrational reals. Let $b_{1}<a<b_{2}$ be elements of \mathcal{M}^{\prime} such that $a \in P$ and $b_{1}, b_{2} \notin P$. Let $C=\varnothing$ (which is algebraically closed in $\left.\mathcal{M}^{\prime}\right)$. Then for any realization a^{*} of $\operatorname{tp}_{L^{\prime}}(a / \varnothing)$, we have $a^{*} \mathcal{L}_{\varnothing}^{f} b_{1} b_{2}$ in \mathcal{M}, witnessed by the formula $b_{1}<x<b_{2}$.

Remark 5.8. It is not possible to strengthen the conclusion of Lemma 5.6 to the following: For all small sets A, B, and C, such that $C=\operatorname{acl}_{L^{\prime}}(C)$, and for any $A^{\prime \prime}$ such that $\operatorname{tp}_{L}\left(A^{\prime \prime} / C\right)=\operatorname{tp}_{L}(A / C)$ and $A^{\prime \prime} \mathbb{L}_{C}^{f} B$ in \mathcal{M}, there exists A^{\prime} with $\operatorname{tp}_{L^{\prime}}\left(A^{\prime} / C\right)=\operatorname{tp}_{L^{\prime}}(A / C)$ and $\operatorname{tp}_{L}\left(A^{\prime} / B C\right)=\operatorname{tp}_{L}\left(A^{\prime \prime} / B C\right)$.

That is, while it is possible to find a realization A^{\prime} of $\operatorname{tp}_{L^{\prime}}(A / C)$ such that $\operatorname{tp}_{L}\left(A^{\prime} / B C\right)$ is a nonforking extension of $\operatorname{tp}_{L}(A / C)$, it is not possible in general to obtain an arbitrary nonforking extension of $\operatorname{tp}_{L}(A / C)$ in this way.

For a counterexample, consider the theories T and T^{\prime} from Example 5.2 above. T has stable forking and geometric elimination of imaginaries. Let a and b be elements of the clique defined by P in \mathcal{M}^{\prime}, and let $C=\varnothing$ (which is algebraically closed in \mathcal{M}^{\prime}). Let $a^{\prime \prime}$ be any element such that $\mathcal{M}^{\prime} \vDash \neg a^{\prime \prime} E b$, and note that $a^{\prime \prime} \perp_{\varnothing}^{f} b$ and $\operatorname{tp}_{L}\left(a^{\prime \prime} / \varnothing\right)=\operatorname{tp}_{L}(a / \varnothing)$ (there is only one 1-type over the empty set with respect to $T)$. But for any a^{\prime} with $\operatorname{tp}_{L^{\prime}}\left(a^{\prime} / \varnothing\right)=\operatorname{tp}_{L^{\prime}}(a / \varnothing)$, $\mathcal{M}^{\prime} \vDash P\left(a^{\prime}\right)$, so $a^{\prime} E b$, and $\operatorname{tp}_{L}\left(a^{\prime} / b\right) \neq \operatorname{tp}_{L}\left(a^{\prime \prime} / b\right)$.

We have seen that the hypotheses of stable forking (and hence simplicity) and geometric elimination of imaginaries in T are sufficient to ensure that \downarrow^{f} has full existentence in T^{\prime}, with no further assumptions on T^{\prime}. But we would also like \downarrow^{f} to be a stationary independence relation in T.

In a simple theory T, \downarrow^{f} satisfies stationarity over acl ${ }^{\text {eq }}$-closed sets if and only if T is stable $[\mathbf{9}$, Ch. 11]. And a stable theory has weak elimination of imaginaries if and only if it has geometric elimination of imaginaries and \downarrow^{f} satisfies stationarity over acl-closed sets [10, Prop. 3.2 and 3.4]. So stability with weak elimination of imaginaries is the natural hypothesis on T in the following proposition.

Proposition 5.3. If T is stable with weak elimination of imaginaries, then \downarrow^{f} is a stationary independence relation in T which has full existence in T^{\prime}.
5.4.1. NSOP_{1}. Dzamonja and Shelah [29] introduced NSOP_{1}. Let \leqslant be the lexicographic order on $2^{<\omega}$ and let $\nu \hat{\eta}$ be the usual concatenation of $\nu, \eta \in 2^{<\omega}$. Let T be a theory. A formula $\varphi(x ; y)$ has $\mathbf{S O P}_{1}$ (relative to T) if there are tuples $\left(a_{\eta}\right)_{\eta \in 2^{<\omega}}$ in a model of T such that:
(1) $\nu^{\wedge} 0 \leqslant \eta$ implies $\left\{\varphi\left(x ; a_{\eta}\right), \varphi\left(x ; a_{\nu^{\wedge} 1}\right)\right\}$ is inconsistent for all $\nu, \eta \in 2^{<\omega}$,
(2) $\left\{\varphi\left(x ; a_{\left.\sigma\right|_{n}}\right) \mid n \in \omega\right\}$ is consistent for all $\sigma \in 2^{\omega}$.

We say that T is NSOP_{1} if no formula has SOP_{1} relative to T.
We recall the definition of Kim independence, due to Ramsey, and review some foundational results, most of which are due to Kaplan and Ramsey. Suppose T is complete, let \mathcal{M} be a monster model of T, and let $\mathcal{M} \leqslant \mathcal{M}$ be a small submodel.

A global type $q(y) \in S_{y}(\mathcal{M})$ is M-invariant if for any formula $\psi(y, z)$ and any elements $c \equiv_{M} c^{\prime}$ of \boldsymbol{M}_{z}, we have $\psi(y, c) \in q$ if and only if $\psi\left(y, c^{\prime}\right) \in q$. A sequence $\left(b_{i}\right)_{k \in \omega}$ is a Morley sequence for q over M if b_{k} realizes the restriction of $q(y)$ to $M b_{0} \ldots b_{k-1}$ for all i. Suppose $q(y)$ is a global M-invariant type extending $\operatorname{tp}(b / M)$ and $\left(b_{i}\right)_{i \in \omega}$ is a Morley sequence for q over M. The formula $\varphi(x, b) q$-divides over M if $\left\{\varphi\left(x, b_{i}\right)\right\}_{i \epsilon \omega}$ is inconsistent. The formula $\varphi(x, b) \operatorname{Kim}$ divides over M if it q-divides over M for some global M-invariant type q extending $\operatorname{tp}(b / M)$. A formula Kim forks over M if it implies a disjunction of formulas which Kim divide over M. We write $A \downarrow_{M}^{K} B$ (read " A is Kim independent from B over M ") to mean that no formula in $\operatorname{tp}(A / M B)$ Kim forks over M.

These definitions are made over a submodel M of \mathcal{M}, rather than over an arbitrary small set A of parameters, as a type over A need not extend to a global A-invariant type.

Theorem 5.2 ([44] Theorem 3.15). Suppose T is NSOP_{1}. If $\varphi(x, b) q$-divides for some global M-invariant type q extending $\operatorname{tp}(b / M)$, then $\varphi(x, b) q$-divides for every global M-invariant type q extending $\operatorname{tp}(b / M)$.

Theorem 5.2 is a version of Kim's lemma for Kim independence in NSOP $_{1}$ theories. Kim's lemma was originally proven for forking in simple theories.

Theorem 5.3 ([44] Proposition 3.19). Suppose T is NSOP_{1}. If $\varphi_{i}\left(x, b_{i}\right)$ Kim divides over M for all $1 \leqslant i \leqslant n$, then $\bigvee_{i=1}^{n} \varphi_{i}\left(x, b_{i}\right)$ Kim divides over M.

Theorem 5.3 shows Kim forking and Kim dividing agree.
Theorem 5.4 ([44] Corollary 5.17). If T is NSOP_{1}, then for all A, B and submodels M,

$$
A \underset{M}{\downarrow^{K}} B \quad \text { if and only if } \operatorname{acl}(M A) \underset{M}{\perp^{K}} \operatorname{acl}(M B) .
$$

Theorem 5.5 below characterizes simple theories among NSOP $_{1}$ theories. Kim independence satisfies base monotonicity over models if $a \downarrow_{M}^{K} N b$ implies $a \downarrow_{N}^{K} b$ for all $M \leqslant N$.

Theorem 5.5. Suppose T is NSOP_{1}. Then the following are equivalent:
(1) T is simple,
(2) $\perp_{M}^{f}=\perp^{K}{ }_{M}$ for all submodels M.
(3) T is $N T P_{2}$,
(4) Kim independence satisfies base monotonicity over models.

The equivalence of (1), (2), and (4) above follows from Proposition 8.4 and Proposition 8.8 of [44]. The equivalence of (1) and (3) is Corollary 8.5 of [44], but it also follows immediately from the well-known facts that a non-simple theory has TP_{1} or $\mathrm{TP}_{2}[69]$, any NSOP_{1} theory is $\mathrm{NSOP}_{2}[29]$, and NTP_{1} is equivalent to NSOP_{2} [47].

Theorem 5.6 ([44] Theorem 9.1). Suppose \downarrow satisfies the following for all $A, A^{\prime}, B, B^{\prime}$ and all submodels M, M^{\prime} :
(1) Invariance: If $A \perp_{M} B$ and $M A B \equiv M^{\prime} A^{\prime} B^{\prime}$, then $A^{\prime} \perp_{M^{\prime}} B^{\prime}$.
(2) Existence: $A \downarrow_{M} M$
(3) Monotonicity: If $A \downarrow_{M} B$ and $A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B$, then $A^{\prime} \perp_{M} B^{\prime}$.
(4) Symmetry: If $A \downarrow_{M} B$, then $B \downarrow_{M} A$.
(5) The independence theorem: If $A \equiv_{M} A^{\prime}, A \downarrow_{M} B, A^{\prime} \downarrow_{M} C$, and $B \downarrow_{M} C$, then there exists $A^{\prime \prime}$ such that $A^{\prime \prime} \equiv_{M B} A, A^{\prime \prime} \equiv_{M C} A^{\prime}$, and $A^{\prime \prime} \downarrow_{M} B C$.
(6) Strong finite character: If $A \pm_{M} B$, then there is a formula $\varphi(x, b, m) \in \operatorname{tp}(A / M B)$ such that for any c such that $\mathcal{M} \vDash \varphi(c, b, m)$, we have $c \pm_{M} b$.
Then T is NSOP_{1}. If \downarrow additionally satisfies
(7) Witnessing: If $A \pm_{M} B$, then there is a formula $\varphi(x, b, m) \in \operatorname{tp}(A / M B)$ which Kim divides over M.

Then $\perp_{M}=\perp^{K}$ for all M.
Theorem 5.6 gives a positive axiomatic characterization of NSOP_{1}. An earlier version of this criterion appeared in [18].

Remark 5.9. If T is NSOP_{1}, then Kim independence satisfies all of the properties in Theorem 5.6. The only nontrivial properties are symmetry ([44] Theorem 5.16) and the independence theorem ([44] Theorem 6.5).

Now suppose, that $L \subseteq L^{\prime}, T$ is a complete L-theory, T^{\prime} is a complete L^{\prime}-theory extending T, and \mathcal{M} and \mathcal{M}^{\prime} are monster models of T and T^{\prime}, respectively. We consider the relationship between independence in \mathcal{M} and \mathcal{M}^{\prime}.

It is not clear from the definition that Kim dividing is preserved under reducts, since the property of being an M-invariant type is not preserved under reducts in general. However, Theorem 5.2 shows that Kim dividing is always witnessed by q-dividing for a global type q which is finitely satisfiable in M, and this property is preserved under reducts. This gives us the following lemma.

Lemma 5.7. If T^{\prime} is NSOP_{1} then:
(1) T is NSOP_{1}.
(2) Let $\mathcal{M} \leqslant \mathcal{M}^{\prime}$, and let $\varphi(x, b)$ be an L-formula. Then $\varphi(x, b)$ Kim divides over M in \mathcal{M} if and only if it Kim divides over M in \mathcal{M}^{\prime}.
(3) Kim independence is preserved by reducts: if $A \downarrow^{K}{ }_{M} B$ in \mathcal{M}^{\prime}, then also $A \downarrow^{K}{ }_{M} B$ in \mathcal{M}.

Proof. For (1), the fact that NSOP_{1} is preserved by reducts is clear from the definition: any formula with SOP_{1} relative to T also has SOP_{1} relative to T^{\prime}.

For (2), fix a global L^{\prime}-type q^{\prime} extending $\operatorname{tp}_{L^{\prime}}(b / M)$, which is finitely satisfiable in M (hence M-invariant). Let $\left(b_{i}\right)_{i \in \omega}$ be a Morley sequence for q^{\prime} over M. Let q be the restriction of q^{\prime} to L. Then q is also finitely satisfiable in M (hence M-invariant) and extends $\operatorname{tp}_{L}(b / M)$, and $\left(b_{i}\right)_{i \in \omega}$ is a Morley sequence for q over M. By Theorem 5.2 and (1), $\varphi(x, b)$ Kim divides over M in \mathcal{M} if and only if $\left\{\varphi\left(x, b_{i}\right)\right\}_{i \in \omega}$ is inconsistent if and only if $\varphi(x, b)$ Kim divides over M in \mathcal{M}^{\prime}.

For (3), suppose $A \downarrow^{K}{ }_{M} B$ in \mathcal{M}^{\prime}. Then no formula in $\operatorname{tp}_{L^{\prime}}(A / M B)$ Kim divides over M in \mathcal{M}^{\prime}, so in particular, by (2), no formula in $\operatorname{tp}_{L}(A / M B)$ Kim divides over M in \mathcal{M}. So $A \downarrow_{M}^{K} B$ in \mathcal{M}.

Define the relation \mathcal{L}^{r}, independence in the reduct, in \mathcal{M}^{\prime} :

$$
a \underset{C}{\downarrow^{r}} b \Leftrightarrow \operatorname{acl}^{\prime}(C a) \underset{\operatorname{acl}^{\prime}(C)}{\downarrow^{f}} \operatorname{acl}^{\prime}(C b) \text { in } \mathcal{M}
$$

where acl^{\prime} is the algebraic closure operator in \mathbf{M}^{\prime}.
Note that if L is the language of equality and T is the theory of an infinite set then $\downarrow^{r}=\downarrow^{a}$ in \mathcal{M}^{\prime}, where \downarrow^{a} is algebraic independence:

$$
a \underset{C}{\downarrow^{a}} b \Leftrightarrow \operatorname{acl}(C a) \cap \operatorname{acl}(C b)=\operatorname{acl}(C) .
$$

Strengthened versions of extension and the independence theorem, adding additional instances of algebraic independence to the conclusion, were established for Kim independence in NSOP_{1} theories in [52]. Theorem 5.7 is a modified version of these results, with \downarrow^{a} replaced by \mathfrak{L}^{r}, and additional hypotheses on T coming from Proposition 5.3. The proof will be given in [53].

Theorem 5.7. Suppose T^{\prime} is NSOP_{1} and T is simple with stable forking and geometric elimination of imaginaries. Then we have the following:
(1) Reasonable extension: For all $a \downarrow_{M}^{K} b$ and for all c, there exists a^{\prime} such that $a^{\prime} \equiv_{M b} a$, $a^{\prime} ป_{M}^{K} b c$, and $a^{\prime} \downarrow^{r}{ }_{M b} c$;
(2) Reasonable independence: If $a \downarrow_{M}^{K} b, a^{\prime} \downarrow_{M}^{K} c, b \downarrow_{M}^{K} c$, and $a \equiv_{M} a^{\prime}$, then there exists $a^{\prime \prime}$ such that $a^{\prime \prime} \equiv_{M b} a$, $a^{\prime \prime} \equiv_{M c} a^{\prime}$, and $a^{\prime \prime} \downarrow_{M}^{K} b c$, and further $a \downarrow^{r}{ }_{M c} b, a \downarrow^{r}{ }_{M b} c$, and

CHAPTER 6

Interpolative structures and interpolative fusions

In addition to the notation convention of Chapter 5, we also assume the following throughout this chapter. let $L_{\mathrm{\cap}}$ be a language and let $\left(L_{i}\right)_{i \in I}$ be a nonempty family of languages, all with the same set S of sorts, such that $L_{i} \cap L_{j}=L_{\cap}$ for all distinct $i, j \in I$. Let T_{i} be a (possibly incomplete) L_{i}-theory for each $i \in I$, and assume that each T_{i} has the same set T_{n} of L_{n}-consequences. This assumption is quite mild: given an arbitrary family of L_{i}-theories $\left(T_{i}\right)_{i \in I}$, we can extend each T_{i} with the set of all L_{\cap}-consequences of $\bigcup_{i \in I} T_{i}$. Set

$$
L_{\cup}=\bigcup_{i \in I} L_{i} \quad \text { and } \quad T_{\cup}=\bigcup_{i \in I} T_{i},
$$

and assume that T_{\cup} is consistent. Alternatively, we could assume that T_{n} is consistent, as these two assumptions are equivalent by Corollary 6.1 below and the assumption that the theories T_{i} have the same set of T_{\cap}-consequences.

Let \mathcal{M}_{\cup} be an L_{\cup}-structure. Suppose $J \subseteq I$ is finite and $X_{i} \subseteq M^{x}$ is \mathcal{M}_{i}-definable for all $i \in J$. Then $\left(X_{i}\right)_{i \in J}$ is separated if there is a family $\left(X^{i}\right)_{i \in J}$ of \mathcal{M}_{n}-definable subsets of M^{x} such that

$$
X_{i} \subseteq X^{i} \text { for all } i \in J, \text { and } \bigcap_{i \in J} X^{i}=\varnothing
$$

We say \mathcal{M}_{\cup} is interpolative if for all families $\left(X_{i}\right)_{i \in J}$ such that $J \subseteq I$ is finite and $X_{i} \subseteq M^{x}$ is \mathcal{M}_{i}-definable for all $i \in J,\left(X_{i}\right)_{i \in J}$ is separated if and only if $\bigcap_{i \in J} X_{i} \neq \varnothing$. Note that this generalizes the setting in the introduction.

When the class of interpolative T_{U}-models is elementary, we denote the theory of this class by T_{\cup}^{*} and call it the interpolative fusion of $\left(T_{i}\right)_{i \in I}$ over T_{\cap}. In this case, we say that " T_{\cup}^{*} exists".

Remark 6.1. The notion of interpolative structure is rather robust. If we change languages in a way that does not change the class of definable sets (with parameters), then the class of interpolative L_{\cup}-structures is not affected. In particular:
(1) An interpolative structure \mathcal{M}_{\cup} remains so after adding new constant symbols naming elements of M to all the languages L_{\square} for $\square \in I \cup\{\cup, \cap\}$.
(2) Suppose L_{\square}^{\diamond} is a definitional expansion of L_{\square} for $\square \in I \cup\{\cap\}, L_{i}^{\diamond} \cap L_{j}^{\diamond}=L_{\cap}^{\diamond}$ for distinct i and j in I, and $L_{\cup}^{\diamond}=\bigcup_{i \in I} L_{i}^{\diamond}$ is the resulting definitional expansion of L_{\cup}. Then any
L_{\cup}-structure \mathcal{M}_{\cup} has a canonical expansion $\mathcal{M}_{\cup}^{\diamond}$ to an L_{\cup}^{\diamond}-structure. And \mathcal{M}_{\cup} is an interpolative L_{\cup}-structure if and only if $\mathcal{M}_{\cup}^{\diamond}$ is an interpolative L_{\cup}^{\diamond}-structure.
(3) An interpolative \mathcal{M}_{\cup}-structure remains so after replacing each function symbol f in each of the languages L_{\square} for $\square \in I \cup\{\cup, \cap\}$ by a relation symbol R_{f}, interpreted as the graph of the interpretation of f in \mathcal{M}_{\cup}.
(4) Suppose \mathcal{M}_{\cup} is an L_{\cup}-structure. Moving to $\mathcal{M}_{\cap}^{\text {eq }}$ involves the introduction of new sorts and function symbols for quotients by L_{\cap}-definable equivalence relations on M. For all $\square \in I \cup\{\cup, \cap\}$, let $L_{\square}^{\cap-e q}$ be the language obtained by adding these new sorts and function symbols to L_{\square} (note that we do not add quotients by L_{i}-definable equivalence relations), and let $\mathcal{M}_{\square}^{n-e q}$ be the natural expansion of \mathcal{M}_{\square} to $L_{\square}^{n-\text { eq }}$. Then \mathcal{M}_{\cup} is interpolative if and only if $\mathcal{M}_{\cup}^{\cap-e q}$ is interpolative. This follows from the fact that if X_{\square} is an $\mathcal{M}_{\square}^{n-e q}$-definable set in one of the new sorts, corresponding to the quotient of M^{x} by an L_{\cap}-definable equivalence relation, then the preimage of X_{\square} under the quotient is \mathcal{M}_{\square}-definable.

The name "interpolative fusion" is inspired by a connection to the classical Craig interpolation theorem, which we recall now (see, for example, [37, Theorem 6.6.3]). It is well-known that in the context of first-order logic, the Craig interpolation theorem is equivalent to Robinson's joint consistency theorem.

Theorem 6.1. Suppose L_{1} and L_{2} are first order languages with intersection L_{\cap} and φ_{i} is an L_{i}-sentence for $i \in\{1,2\}$. If $\vDash\left(\varphi_{1} \rightarrow \varphi_{2}\right)$ then there is an L_{\cap}-sentence ψ such that $\vDash\left(\varphi_{1} \rightarrow \psi\right)$ and $\vDash\left(\psi \rightarrow \varphi_{2}\right)$. Equivalently: $\left\{\varphi_{1}, \varphi_{2}\right\}$ is inconsistent if and only if there is an L_{\cap}-sentence ψ such that $\vDash\left(\varphi_{1} \rightarrow \psi\right)$ and $\vDash\left(\varphi_{2} \rightarrow \neg \psi\right)$.

We make extensive use of the following easy generalization of Theorem 6.1.
Corollary 6.1. For each $i \in I$, let $\Sigma_{i}(x)$ be a set of L_{i}-formulas. If $\bigcup_{i \in I} \Sigma_{i}(x)$ is inconsistent, then there is a finite subset $J \subseteq I$ and an L_{\cap}-formula $\varphi^{i}(x)$ for each $i \in J$ such that:

$$
\Sigma_{i}(x) \vDash \varphi^{i}(x) \text { for all } i \in J, \text { and }\left\{\varphi^{i}(x) \mid i \in J\right\} \text { is inconsistent. }
$$

Proof. Using the standard trick of introducing a new constant for each free variable, we reduce to the case when x is the empty tuple of variables. We may also assume that the sets Σ_{i} are closed under conjunction. By compactness, if $\bigcup_{i \in I} \Sigma_{i}$ is inconsistent, then there is a nonempty finite subset $J \subseteq I$ and a formula $\varphi_{i} \in \Sigma_{i}$ for all $i \in J$ such that $\left\{\varphi_{i} \mid i \in J\right\}$ is inconsistent.

We argue by induction on the size of J. For the sake of notational simplicity, we suppose $J=\{1, \ldots, n\}$. If $n=1$, then we choose φ^{1} to be the contradictory L_{\cap}-formula \perp. Suppose $n \geqslant 2$. Then $\left(\varphi_{1} \wedge \ldots \wedge \varphi_{n-1}\right)$ is an $\left(L_{1} \cup \ldots \cup L_{n-1}\right)$-sentence and the set

$$
\left\{\left(\varphi_{1} \wedge \ldots \wedge \varphi_{n-1}\right), \varphi_{n}\right\} \text { is inconsistent. }
$$

Applying Theorem 6.1, we get a sentence ψ in $L_{n} \cap\left(L_{1} \cup \ldots \cup L_{n}\right)=L_{\cap}$ such that

$$
\vDash\left(\varphi_{1} \wedge \ldots \wedge \varphi_{n-1}\right) \rightarrow \psi \quad \text { and } \quad \vDash \varphi_{n} \rightarrow \neg \psi .
$$

Then $\left\{\varphi_{i} \wedge \neg \psi \mid i \leqslant n-1\right\}$ is inconsistent and $\varphi_{i} \wedge \neg \psi$ is an L_{i}-sentence for $1 \leqslant i \leqslant n-1$. Applying induction, we choose for each $1 \leqslant i \leqslant n-1$ an L-sentence θ^{i} such that

$$
\vDash\left(\varphi_{i} \wedge \neg \psi\right) \rightarrow \theta^{i} \text { for all } 1 \leqslant i \leqslant n-1, \text { and } \vDash \neg\left(\theta^{1} \wedge \ldots \wedge \theta^{n-1}\right) .
$$

Finally, set φ^{i} to be $\left(\psi \vee \theta^{i}\right)$ for $1 \leqslant i \leqslant n-1$ and φ^{n} to be $\neg \psi$. It is easy to check that all the desired conditions are satisfied.

The following consistency condition for types follows immediately from Corollary 6.1. This is the generalization to our context of Robinson's joint consistency theorem.

Corollary 6.2. Let $p(x)$ be a complete L_{\cap}-type, and for all $i \in I$, let $p_{i}(x)$ be a complete L_{i}-type such that $p(x) \subseteq p_{i}(x)$. Then $\bigcup_{i \in I} p_{i}(x)$ is consistent.

The following lemma says that any family of definable sets which is not separated has "potentially" nonempty intersection.

Lemma 6.1. Let \mathcal{M}_{\cup} be an L_{\cup}-structure, and suppose $J \subseteq I$ is finite and $X_{i} \subseteq M^{x}$ is $\mathcal{M}_{i^{-}}$ definable for all $i \in J$. The family $\left(X_{i}\right)_{i \in J}$ is separated if and only if for every L_{\cup}-structure \mathcal{N}_{\cup} such that $\mathcal{M}_{i} \leqslant \mathcal{N}_{i}$ for all $i \in I, \bigcap_{i \in J} X_{i}\left(\mathcal{N}_{\cup}\right)=\varnothing$.

Proof. Suppose $\left(X_{i}\right)_{i \in J}$ is separated. Then there are \mathcal{M}_{n}-definable X^{1}, \ldots, X^{n} such that $X_{i} \subseteq X^{i}$ for all $i \in J$ and $\bigcap_{i \in J} X^{n}=\varnothing$. Suppose \mathcal{N}_{U} is a T_{U}-model satisfying $\mathcal{M}_{i} \leqslant \mathcal{N}_{i}$ for all $i \in I$. Then $X_{i}\left(\mathcal{N}_{\cup}\right) \subseteq X^{i}\left(\mathcal{N}_{\cup}\right)$ for all $i \in J$ and $\bigcap_{i \in J} X^{i}\left(\mathcal{N}_{\cup}\right)=\varnothing$, so also $\bigcap_{i \in J} X_{i}\left(\mathcal{N}_{\cup}\right)=\varnothing$.

Conversely, suppose that for every L_{\cup}-structure \mathcal{N}_{\cup} such that $\mathcal{M}_{i} \leqslant \mathcal{N}_{i}$ for all $i \in I$, $\bigcap_{i \in J} X_{i}\left(\mathcal{N}_{U}\right)=\varnothing$. For each $i \in J$, let $\varphi_{i}(x, b)$ be an $L_{i}(M)$-formula defining X_{i}. Then the partial type

$$
\bigcup_{i \in I} \operatorname{Ediag}\left(\mathcal{M}_{i}\right) \cup \bigcup_{i \in J} \varphi_{i}(x, b) \quad \text { is inconsistent. }
$$

By compactness, there is a finite subset $J^{\prime} \subseteq I$ with $J \subseteq J^{\prime}$, a finite tuple $c \in M^{y}$ and a formula $\psi_{i}(b, c) \in \operatorname{Ediag}\left(\mathcal{M}_{i}\right)$ for each $i \in J^{\prime}$ such that

$$
\left\{\psi_{i}(b, c) \mid i \in J^{\prime}\right\} \cup\left\{\varphi_{i}(x, b) \mid i \in J\right\} \quad \text { is inconsistent. }
$$

Let φ_{i} be the true formula T when $i \in J^{\prime} \backslash J$, and define $\varphi_{i}^{\prime}(x, y, z)=\varphi_{i}(x, y) \wedge \psi_{i}(y, z)$ for all $i \in J^{\prime}$. Note that since $\mathcal{M}_{i} \vDash \psi_{i}(b, c)$,

$$
\varphi_{i}\left(\mathcal{M}_{\cup}, b\right)=\varphi_{i}^{\prime}\left(\mathcal{M}_{\cup}, b, c\right) .
$$

Applying Lemma 6.1, we obtain an an inconsistent family $\left\{\theta_{i}(x, y, z) \mid i \in J^{\prime}\right\}$ of $L_{\cap^{\prime}}$-formulas such that $\vDash \varphi_{i}^{\prime}(x, y, z) \rightarrow \theta_{i}(x, y, z)$ for each $i \in J^{\prime}$. It follows that

$$
\varphi_{i}\left(\mathcal{M}_{\cup}, b, c\right) \subseteq \theta_{i}\left(\mathcal{M}_{\cup}, b, c\right) \text { for all } i \in J^{\prime} \text {, and } \bigcap_{i \in J^{\prime}} \theta_{i}\left(\mathcal{M}_{\cup}, b, c\right)=\varnothing \text {. }
$$

But since $\varphi_{i}\left(\mathcal{M}_{\cup}, b, c\right)=M^{x}$ when $i \in J^{\prime} \backslash J$, and also $\theta_{i}\left(\mathcal{M}_{\cup}, b, c\right)=M^{x}$ when $i \in J^{\prime} \backslash J$. So already $\bigcap_{i \in J} \theta_{i}\left(\mathcal{M}_{\cup}, b, c\right)=\varnothing$, and the family $\left(\theta_{i}\left(\mathcal{M}_{\cup}, b, c\right)\right)_{i \in J}$ separates $\left(X_{i}\right)_{i \in J}$.

We now show that interpolative models of T_{\cup} can be thought of as "relatively existentially closed" models of T_{\cup}, and the interpolative fusion T_{\cup}^{*} can be thought of as the "relative model companion" of T_{\cup}.

Theorem 6.2. Suppose \mathcal{M}_{\cup} is a model of T_{\cup}.
(1) \mathcal{M}_{\cup} is interpolative if and only if for all \mathcal{N}_{\cup} such that $\mathcal{M}_{i} \leqslant \mathcal{N}_{i}$ for all $i \in I$,

$$
\mathcal{N}_{\cup} \vDash \exists x \varphi_{\cup}(x) \quad \text { implies } \quad \mathcal{M}_{\cup} \vDash \exists x \varphi_{\cup}(x)
$$

whenever $\varphi_{\cup}(x)$ is a Boolean combination of L_{i}-formulas with parameters from M.
(2) There exists an interpolative L_{\cup}-structure \mathcal{N}_{\cup} such that $\mathcal{M}_{\cup} \subseteq \mathcal{N}_{\cup}$, and $\mathcal{M}_{i} \leqslant \mathcal{N}_{i}$ for all $i \in I$.
(3) If T_{\cup}^{*} exists, $\mathcal{M}_{\cup} \vDash T_{\cup}^{*}, \mathcal{N}_{\cup} \vDash T_{\cup}^{*}$, and $\mathcal{M}_{i} \leqslant \mathcal{N}_{i}$ for all $i \in I$, then $\mathcal{M} \leqslant \mathcal{N}$.

Proof. Part (1) is a restatement of Lemma 6.1. Part (2) can be proven by an elementary chain argument, similar to the proof of Fact 5.3(1), by iteratively applying Lemma 6.1 to add solutions to families of definable sets which are not separated.

We now prove part (3), assuming T_{\cup}^{*} exists. By Morleyizing each T_{i}, and replacing each function symbol with its graph, we can arrange for each $i \in I$ that T_{i} admits quantifierelimination and L_{i} only contains relation symbols, without changing the class of interpolative structures or the relation of elementary substructure (see [37, Theorem 2.6.5] and Remark 6.1, and see Section 9.4 below for a more careful treatment of Morleyization). Then, since each T_{i} is model-complete, whenever $\mathcal{M}_{\cup} \subseteq \mathcal{N}_{\cup}$ are both models of T_{\cup}, we have

$$
\mathcal{M}_{i} \leqslant \mathcal{N}_{i} \quad \text { for all } i \in I .
$$

And since there are no function symbols in L_{\cup}, every quantifier-free L_{\cup}-formula is logically equivalent to a Boolean combination of L_{i}-formulas. So it follows from (1) that \mathcal{M}_{\cup} is interpolative if and only if it is existentially closed in the class of T_{\cup}-models. By Facts 5.1 and 5.2 , each T_{i} has an axiomatization by $\forall \exists$-sentences, so T_{\cup} does too. Hence T_{\cup} is inductive and Fact 5.3 applies: T_{\cup}^{*} is the model companion of T_{\cup}. The desired conclusion then follows from model-completeness of T_{\cup}^{*}.

The proof of Proposition 6.2 shows that if T_{i} admits quantifier eliminations and L_{i} only contains relation symbols for each $i \in I$, then the interpolative models of T_{\cup} are just its existentially closed models of T_{\cup} and the interpolative fusion of T_{\cup} is just its model companion. This is also true in a slightly more general situation.

Remark 6.2. Any flat literal L_{\cup}-formula (see Section 5.1) is an L_{i}-formula for some $i \in I$. This trivial observation has two important consequences:
(1) If $\varphi(x)$ is a flat L_{\cup}-formula, then there is some finite $J \subseteq I$ and a flat L_{i}-formula $\varphi_{i}(x)$ for all $i \in J$ such that $\varphi(x)$ is logically equivalent to $\bigwedge_{i \in J} \varphi_{i}(x)$.
(2) If \mathcal{A}_{\cup} is an L_{\cup}-structure, then $\operatorname{fdiag}\left(\mathcal{A}_{\cup}\right)=\bigcup_{i \in I} \operatorname{fdiag}_{L_{i}}\left(\mathcal{A}_{i}\right)$.

Theorem 6.3. Suppose each T_{i} is model-complete. Then $\mathcal{M}_{\cup} \vDash T_{\cup}$ is interpolative if and only if it is existentially closed in the class of T_{\cup}-models. Hence, T_{\cup}^{*} is precisely the model companion of T_{\cup}, if either of these exists.

Proof. We prove the first statement. Let $\mathcal{M} \vDash T_{\cup}$ be existentially closed. Suppose $J \subseteq I$ is finite and $\varphi_{i}(x)$ is an $L_{i}(M)$-formula for each $i \in J$ such that $\left(\varphi_{i}(\mathcal{M})\right)_{i \in J}$ is not separated. We may assume each $\varphi_{i}(x)$ is existential as T_{i} is model-complete. Lemma 6.1 gives a $T_{\mathcal{U}^{-}}$ model \mathcal{N} extending \mathcal{M} such that $\mathcal{N} \vDash \exists x \wedge_{i \in J} \varphi_{i}(x)$. As \mathcal{M} is existentially closed and each φ_{i} is existential, we have $\mathcal{M} \vDash \exists x \bigwedge_{i \in J} \varphi_{i}(x)$. Thus \mathcal{M} is interpolative.

Now suppose $\mathcal{M} \vDash T_{\cup}$ is interpolative. Suppose $\psi(x)$ is a quantifier-free $L_{\cup}(M)$-formula and \mathcal{N} is a T_{ν}-model extending \mathcal{M} such that $\mathcal{N} \vDash \exists x \psi(x)$. Applying Corollary 5.1, $\psi(x)$ is logically equivalent to a finite disjunction of Eb -formulas $\bigvee_{k=1}^{n} \exists y_{k} \psi_{k}\left(x, y_{k}\right)$. Then for some $k, \mathcal{N} \vDash \exists x \exists y_{k} \psi_{k}\left(x, y_{k}\right)$. By Remark 6.2, the flat $L_{\cup}(M)$-formula $\psi_{k}\left(x, y_{k}\right)$ is equivalent to a conjunction $\bigwedge_{i \in J} \varphi_{i}\left(x, y_{k}\right)$ where $J \subseteq I$ is finite and $\varphi_{i}\left(x, y_{k}\right)$ is a flat $L_{i}(M)$-formula for each $i \in J$. So $\mathcal{N} \vDash \exists x \exists y_{k} \bigwedge_{i \in J} \varphi_{i}\left(x, y_{k}\right)$. As each T_{i} is model-complete, we have $\mathcal{M}_{i} \leqslant \mathcal{N}_{i}$ for all $i \in I$. By Lemma 6.1, the sets defined by $\varphi_{i}\left(x, y_{k}\right)$ are not separated, and since \mathcal{M} is interpolative, $\mathcal{M} \vDash \exists x \exists y_{k} \bigwedge_{i \in J} \varphi_{i}\left(x, y_{k}\right)$. So $\mathcal{M} \vDash \exists x \exists y_{k} \psi_{k}\left(x, y_{k}\right)$, and $\mathcal{M} \vDash \exists x \psi(x)$.

By Facts 5.1 and 5.2 , each T_{i} has an axiomatization by $\forall \exists$-sentences, so T_{\cup} does too. Hence T_{\cup} is inductive and Fact 5.3 applies. The second statement then follows from the first statement.

CHAPTER 7

Examples of interpolative fusions

In this chapter, we continue to adopt the notational conventions of Chapter 6. We show that several theories previously studied in the literature are interpolative fusions or biinterpretable with interpolative fusions. This can be explained by two phenomena:
(1) Model theorists often study model companions of theories of interest.
(2) Many natural theories are either equal to or bi-intepretable with a union of two or more simpler theories.
If a theory T is a union of model-complete theories, then Theorem 6.3 identifies the model companion of T with the interpolative fusion of these theories. It turns out that the context of interpolative fusions includes a wider breadth of examples than one might initially expect, since Corollary 5.2 implies that if T is merely existentially bi-interpretable with a union of model-complete theories, then the model companion of T is existentially bi-interpretable with the interpolative fusion of these theories.

The general theory of interpolative fusions developed in Chapters 8 and 9 will allow us to recover many known results about these examples.

7.1. Disjoint unions of theories

In this section we assume $L_{\cap}=\varnothing$, so the languages L_{i} are pairwise disjoint. Note that equality is a primitive logical symbol, so T_{n} is the theory of a (usually infinite) set with equality. The following result is proven in Winkler's thesis [89].

Theorem 7.1. Suppose each T_{i} is model-complete and eliminates $\exists{ }^{\infty}$. Then T_{\cup} has a model companion.

By Theorem 6.3, the model companion in this case is precisely T_{\cup}^{*}. So Theorem 7.1 provides us with the simplest class of interpolative fusions. Since we can Morleyize each theory T_{i} without changing the class of interpolative models (see Remark 6.1), we can do without the assumption of model-completeness.

Corollary 7.1. Suppose T_{i} eliminates \exists^{∞}. Then T_{\cup}^{*} exists.
A special case is the expansion by a generic unary predicate defined in [11] and [28]. This deserves special mention as it often serves as a good toy example.

Suppose L is a one-sorted language, \mathcal{M} is an infinite L-structure, and P is a unary predicate on \mathcal{M} which is not in L. An \mathcal{M}-definable set $X \subseteq M^{n}$ is said to be large if there is a tuple $\left(a_{1}, \ldots, a_{n}\right) \in X(\mathcal{M})$ such that

$$
a_{i} \notin M \text { for all } i \quad \text { and } \quad a_{i} \neq a_{j} \text { for all } i \neq j .
$$

The predicate P is generic if and only if the following holds: For every large \mathcal{M}-definable $X \subseteq M^{n}$ and every $S \subseteq\{1, \ldots, n\}$, there exists $\left(a_{1}, \ldots, a_{n}\right) \in X$ such that for all $1 \leqslant k \leqslant n$,

$$
a_{k} \in P \text { if and only if } k \in S .
$$

Equivalently, every large \mathcal{M}-definable subset of M^{n} intersects every subset of the form $S_{1} \times$ $\ldots \times S_{n}$ where $S_{i} \in\{P, M \backslash P\}$ for $1 \leqslant i \leqslant n$.
Let $L_{\mathrm{u}}=L \cup\{P\}$. Let T be an L-theory with no finite models, and let T_{u} be T viewed as an L_{u}-theory, so that the models of T_{u} are the L_{u}-structures (\mathcal{M}, P), where $\mathcal{M} \vDash T$ and P is an arbitrary predicate on \mathcal{M}. The following is shown in [11].

Theorem 7.2. Suppose T is model-complete and eliminates \exists^{∞}. Then T_{u} has a model companion T_{u}^{*}. Moreover, the models of T_{u}^{*} are precisely the L_{u}-structures (\mathcal{M}, P), where $\mathcal{M} \vDash T$ and P is a generic predicate on \mathcal{M}.

We can realize T_{u}^{*} as an interpolative fusion of two theories in disjoint languages as follows. Let $I=\{1,2\}, L_{1}=L$, and $L_{2}=\{P\}$. Then we have $L_{\cap}=\varnothing$ and $L_{\cup}=L_{\mathrm{u}}$. Let $T_{1}=T$, and let T_{2} be the L_{2}-theory such that $(M ; P) \vDash T_{2}$ if and only if $P \subseteq M$ is both infinite and coinfinite. It is easy to see that T_{1} and T_{2} have a common set of L_{\cap}-consequences T_{n}, which is simply the theory of infinite sets. The theory T_{\cup} properly extends T_{u}, and every model of T_{u} can be embedded into a model of T_{\cup}, so T_{u}^{*} is also the model companion of T_{U}. The theory T_{1} is model-complete by assumption, and it is also easy to check that T_{2} is model-complete. So $T_{\cup}^{*}=T_{\mathrm{u}}^{*}$ by Theorem 6.3.

By Morleyization, we get the following restatement of Theorem 7.2 in our context, without assuming model-completeness.

Corollary 7.2. Suppose T_{1} is an L_{1}-theory which eliminates \exists^{∞}, and T_{2} is the theory of an infinite and coinfinite predicate in the language $L_{2}=\{P\}$. Then T_{\cup}^{*} exists. Moreover, the models of T_{\cup}^{*} are precisely the L_{\cup}-structures (\mathcal{M}, P), where $\mathcal{M} \vDash T$ and P is a generic predicate on \mathcal{M}.

7.2. Fields with multiple independent valuations

The theory of algebraically closed fields with multiple independent valuations studied in $[82,43]$ is an interpolative fusion of copies of the theory ACVF of algebraically closed
valued fields. This is one instance of a large class of examples coming from expansions of algebraically closed fields by extra structure (e.g. valuations, derivations, automorphisms, etc.) in multiple independent ways.

A valuation v on a field K is trivial if the v-topology on K is discrete, equivalently if every element of K lies in the valuation ring of v. In this section, all valuations are non-trivial. Two valuations are independent if they induce distinct topologies.

Suppose K is a field and $\left(v_{i}\right)_{i \in I}$ is a family of valuations on K. For $i \in I$, let R_{i} be the valuation ring $\left\{a \in K: v_{i}(a) \geqslant 0\right\}$ of v_{i}. Note that v_{i} can be recovered from its valuation ring R_{i}. We view K as a structure in a language consisting of the language of rings together with a unary predicate naming R_{i} for each $i \in I$. We set this to be our L_{\cup}. Then L_{n} is the language of rings, and $L_{i}=L_{\cap} \cup\left\{R_{i}\right\}$ for each $i \in I$. Note that the only difference between L_{i} and L_{j} when $i \neq j$ is the name of the relation symbol.

Let each T_{i} be the L_{i}-theory of algebraically closed valued fields, and let T_{n} be the common set of L_{n}-consequences of T_{i} for $i \in I$. By well-known results about algebraically closed valued fields (often treated in slightly different languages), each T_{i} is model-complete; see for example [36, Theorem 2.1.1]. Hence, T_{\cup}^{*} is the model companion of T_{\cup} if either of these exist by Theorem 6.3.

The following Theorem 7.3 can be found in [43]. The first statement is a special case of [81, 3.1.6], so this was known earlier.

Theorem 7.3. T_{\cup} has a model companion T_{\cup}^{*}. Moreover, $\left(K,\left(R_{i}\right)_{i \in I}\right)$ is a model of T_{\cup}^{*} if and only if $\left(K ;\left(R_{i}\right)_{i \in I}\right) \vDash T_{\cup}$ and the valuations $\left(v_{i}\right)_{i \in I}$ are pairwise independent.

Let T_{i}^{-}be the L_{i}-theory of valued fields for $i \in I$, and let $T_{\cup}^{-}=\bigcup_{i \in I} T_{i}^{-}$. As every valuation on a field can be extended to a valuation on its algebraic closure, every model of T_{\cup}^{-}can be embedded into a model of T_{\cup}. So T_{\cup}^{*} is also the model companion of T_{\cup}^{-}.

7.3. The group of integers with p-adic valuations

In a similar spirit, we can consider the additive group of integers $(\mathbb{Z} ; 0,+,-)$ equipped with multiple p-adic valuations, as studied in [24].

Let I be the set of primes. We let v_{p} be the p-adic valuation on \mathbb{Z} for $p \in I$, and declare $k \leqslant_{p} l$ if $v_{p}(k) \leqslant v_{p}(l)$. Note that v_{p} can be recovered from \leqslant_{p}. We view \mathbb{Z} as a structure in a language extending the language of additive groups by a binary relation \leqslant_{p} for each prime p. This is our L_{\cup}. Then we set L_{\cap} to be the language of additive groups and $L_{p}=L_{\cap} \cup\left\{\leqslant_{p}\right\}$ for each $p \in I$.

For p in I, set $T_{p}=\operatorname{Th}\left(\mathbb{Z}, 0,+,-, \preccurlyeq_{p}\right)$. Then the theories T_{p} with $p \in I$ have a common set of L_{\cap}-consequences, which is simply $\operatorname{Th}(\mathbb{Z} ; 0,+,-)$. The theory T_{p} is model-complete. This was proven independently by Guingnot [33] and Mariaule [57], but it can also be deduced from a more general result in $[\mathbf{2 4}]$. By Theorem $6.3, T_{\cup}^{*}$ is the model companion of T_{\cup}, if either of these exists. The following was shown in [24].

Theorem 7.4. T_{\cup} is model-complete, and so $T_{\cup}=T_{\cup}^{*}$.

This naturally raises the following question.
Question. When is a union of model-complete theories model-complete? In other words, under what conditions on the theories T_{i} is every model of T_{\cup} interpolative?

See Example 9.2 below for another example of this phenomenon.

7.4. Fields with multiplicative circular orders

The next example was considered by the second author in [79], and the original motivation for developing a general theory of interpolative fusions came from the idea of unifying this example with the examples in Section 7.2. This example illustrates that interpolative fusions can arise naturally in contexts often described as "pseudo-random" in mathematics. Here, the pseudo-randomness comes from number-theoretic results on character sums over finite fields.

A circular order on an abelian group G is a ternary relation \triangleleft on G which is invariant under the group operation and satisfies the following for all $a, b, c \in G$:
(1) If $\triangleleft(a, b, c)$, then $\triangleleft(b, c, a)$.
(2) If $\triangleleft(a, b, c)$, then not $\triangleleft(c, b, a)$.
(3) If $\triangleleft(a, b, c)$ and $\triangleleft(a, c, d)$, then $\triangleleft(a, b, d)$.
(4) If a, b, c are distinct, then either $\triangleleft(a, b, c)$ or $\triangleleft(c, b, a)$.

An example to keep in mind is the multiplicative group \mathbb{T} of complex numbers with norm 1 , thought of as the unit circle in the complex plane, together with the circular order \triangleleft^{+}of positive orientation.

A multiplicative circular order on a field F is a circular order on the multiplicative group F^{\times}, viewed as a ternary relation on F. Let ACFO^{-}be the theory whose models are (F, \triangleleft), where F is an algebraically closed field (viewed as a structure in the language of rings), and \triangleleft is multiplicative circular order on F. The following result is essentially shown in [79].

Theorem 7.5. ACFO^{-}has a model companion ACFO. Moreover, if $\overline{\mathbb{F}}_{p}$ is the field-theoretic algebraic closure of the prime field of characteristic $p>0$, and \triangleleft is any multiplicative circular order on $\overline{\mathbb{F}}_{p}$, then $\left(\overline{\mathbb{F}}_{p}, \triangleleft\right)$ is a model of ACFO.

It can be shown that for any multiplicative circular order \triangleleft on $\overline{\mathbb{F}}_{p}$, there is an injective group homomorphism $\chi: \overline{\mathbb{F}}_{p}^{\times} \rightarrow \mathbb{T}$ such that \triangleleft is the preimage of \triangleleft^{+}, i.e.,

$$
\triangleleft(a, b, c) \text { if and only if } \triangleleft^{+}(\chi(a), \chi(b), \chi(c)) \quad \text { for } a, b, c \in \overline{\mathbb{F}}_{p}^{\times} .
$$

The proof of the second statement of Theorem 7.5 in [79] proceeds by exploiting this connection and results on character sums over finite fields mentioned earlier.

We next explain how to realize ACFO as an interpolative fusion. Let $L_{\cup}=\{+,-, \times, 0,1, \triangleleft\}$ be the language of ACFO. Let $L_{1}=\{+,-, \times, 0,1\}$ be the language of rings, and let $L_{2}=$ $\{\times, 0,1, \triangleleft\}$. Then $L_{\cap}=L_{1} \cap L_{2}=\{\times, 0,1\}$.

Let T_{1} be ACF, and let T_{2} be the L_{2}-consequences of ACFO . Then $\mathrm{ACFO}^{-} \subseteq T_{\cup}$ and $T_{\cup} \subseteq$ ACFO, and so ACFO is the model companion of T_{\cup}. Each completion of the theory T_{2} is model complete, and T_{1} and T_{2} have the same set of L_{n}-consequences; see [79] for the details. Thus $T_{\cup}^{*}=$ ACFO.

In fact, the proof of the existence of the model companion ACFO in [79] proceeded by developing a notion of interpolative model of ACFO^{-}(called "generic" in [79]) and concluding that the interpolative fusion (the theory ACFO of the "generic" models) is the model companion of ACFO^{-}. So the story here is told backward.

We end with a few remarks.

Remark 7.1. The reader might wonder why we do not consider fields with additive cyclic orders. An infinite field of characteristic $p>0$ does not admit an additive circular order, because every element is p-torsion. In characteristic 0 , the theory of algebraically closed fields with an additive circular order is consistent, but we believe that it does not have a model companion.

We also expect that some aspects of the results above still hold if we replace the role of the theory of algebraically closed fields with the theory of pseudo-finite fields. Note that in this case T_{\cup}^{*} is not model-complete in its natural language, as the theory of pseudo-finite fields is not model-complete in the language of rings. Hence, this would be a natural example of an interpolative fusion which is not a model companion.

7.5. Skolemizations

In this section, we treat another construction from Winkler's thesis [89]. Let L be a onesorted language, and let T be an L-theory with only infinite models. Suppose $\varphi(x, y)$ is an L-formula, where y is a single variable and x is a tuple of variables of length $n>0$, such that

$$
T \vDash \forall x \exists^{\geqslant k} y \varphi(x, y) \text { for all } k \text {. }
$$

Let $L_{+}=L \cup\{f\}$, where f is a new n-ary function symbol, and let

$$
T_{+}=T \cup\{\forall x \varphi(x, f(x))\} .
$$

Then T_{+}is the " φ-Skolemization" of T. Theorem 7.6 was shown in [89].
Theorem 7.6. If T is model-complete and eliminates \exists^{∞}, then T_{+}has a model companion T_{+}^{*}, the generic φ-Skolemization of T.

We will show that T_{+}is existentially bi-interpretable with a union of two theories, one of which is is existentially bi-interpretable with T, and the other of which is interpretable in the theory of an infinite set. This will imply, by Corollary 5.2, that T_{+}^{*} is existentially bi-interpretable with the interpolative fusion of these theories.

Suppose $(\mathcal{M}, f) \vDash T_{+}$. Let $E \subseteq M^{n+1}$ be $\varphi(\mathcal{M})$, let $p_{x}: E \rightarrow M^{n}$ and $p_{y}: E \rightarrow M$ be the projection on the first n coordinates and the last coordinate, respectively, and let $g: M^{n} \rightarrow E$ be the function $a \mapsto(a, f(a))$. Note that p_{x} is an infinite-to-one surjection onto M^{n}, and g is a section of p_{x}. We consider $\left(\mathcal{M}, E ; p_{x}, p_{y}, g\right)$ as a structure in a two-sorted language consisting of a copy of L for \mathcal{M}, together with function symbols p_{x}, p_{y}, and g. Let this be L_{\cup}, let L_{1} be the sublanguage of L_{\cup} without g, and let L_{2} be the sublanguage of L_{\cup} containing only p_{x} and g (without p_{y} and the copy of L). Then L_{\cap} contains only p_{x}.

Let T_{1} be the L_{1}-theory whose models are ($\mathcal{M}, E ; p_{x}, p_{y}$) such that $\mathcal{M} \vDash T$, and $e \mapsto$ $\left(p_{x}(e), p_{y}(e)\right)$ is a bijection from E to $\varphi(\mathcal{M})$. It is easy to see that T_{1} is existentially bi-interpretable with T. Let T_{2} be the L_{2}-theory whose models are ($M, E ; p_{x}, g$) such that M and E are infinite sets, p_{x} is an infinite-to-one surjection $E \rightarrow M^{n}$, and g is a section of p_{x}. This theory T_{2} is interpretable in the theory of an infinite set M : let $E=M^{n+1}$, let p_{x} be the projection on the first n coordinates, and define $g\left(a_{0}, \ldots, a_{n-1}\right)=\left(a_{0}, \ldots, a_{n-1}, a_{0}\right)$. Then T_{n} is the L_{\cap}-theory whose models are ($M, E ; p_{x}$) where M and E are infinite and p_{x} is an infinite-to-one surjection $E \rightarrow M^{n}$.

Now T_{\cup} is the theory whose models are $\left(\mathcal{M}, E ; p_{x}, p_{y}, g\right)$, where $\mathcal{M} \vDash T$, $e \mapsto\left(p_{x}(e), p_{y}(e)\right)$ is a bijection from E to $\varphi(\mathcal{M})$, and $g: M^{n} \rightarrow E$ is a section of p_{x}. We have seen above how to obtain such a structure from a model of T_{+}. And conversely, given a model of T_{U}, we
can recover the Skolem function f as $p_{y} \circ g$. So the following theorem follows easily, by Corollary 5.2.

Theorem 7.7. T_{+}is existentially bi-interpretable with T_{U}. Hence, T_{+}has a model companion T_{+}^{*} if and only if T_{\cup} has a model companion T_{\cup}^{*}. Moreover, T_{+}^{*} and T_{\cup}^{*} are existentially biinterpretable whenever they both exist.

In [89], Winkler handles the case of simultaneously adding Skolem functions for an arbitrary family of formulas, and he does not impose the restriction that every set defined by an instance of the formula φ is infinite. It is possible to adjust our construction to handle this more general context, but the technical difficulties would obscure the main point of the example.

Remark 7.2. In the notation above, if φ is T , then T_{+}is the theory of models of T expanded by an arbitrary new n-ary function f, and T_{+}^{*} is the "generic expansion" of T by f. In the special case that T is the theory of an infinite set, T_{+}is the theory T_{n} of a "random n-ary function". It follows from the discussion above that T_{n} is existentially bi-interpretable with a union of two theories, each of which is interpretable in the theory of an infinite set. In [52], Ramsey and the first author showed that T_{n} is NSOP_{1} (but not simple when $n \geqslant 2$), and more generally that if T is NSOP_{1}, then any generic Skolemization of T or generic expansion of T by new function symbols is NSOP_{1}. We will show how to recover these results from general results about interpolative fusions in the next paper [53].

7.6. Graphs

We now illustrate how to obtain "random n-ary relations" in the context of interpolative fusions (compare with the "random n-ary functions" in Remark 7.2 above). In particular, we show that the theory of the random graph is existentially bi-interpretable with an interpolative fusion of two model-complete theories, each of which is interpretable in the theory of an infinite set.

Let L be the language of graphs and T be the the theory of (undirected, loopless) infinite graphs with infinitely many edges. Suppose $(V, E) \vDash T$. Let S_{V} be the quotient $\left\{\left(v_{1}, v_{2}\right) \in\right.$ $\left.V^{2}: v_{1} \neq v_{2}\right\} / \sim$ where the equivalence relation \sim is defined by

$$
\left(v_{1}, v_{2}\right) \sim\left(v_{1}^{\prime}, v_{2}^{\prime}\right) \quad \text { if and only if } \quad\left\{v_{1}, v_{2}\right\}=\left\{v_{1}^{\prime}, v_{2}^{\prime}\right\}
$$

Let $\pi_{V}:\left\{\left(v_{1}, v_{2}\right) \in V^{2}: v_{1} \neq v_{2}\right\} \rightarrow S_{V}$ be the quotient map seen as a relation on $V^{2} \times S_{V}$, and let E_{V} be the image of E under π_{V}, seen as a relation on S_{V}. One can observe that the twosorted structure ($V, S_{V} ; \pi_{V}, E_{V}$) is essentially equivalent to (V, E). Indeed, for distinct v_{1} and v_{2} in $V,\left(v_{1}, v_{2}\right)$ is in E if and only if $\pi_{V}\left(v_{1}, v_{2}\right)$ is in E_{V}. On the other hand, $\left(V, S_{V} ; \pi_{V}, E_{V}\right)$
can be seen as built up from the two components $\left(V, S_{V} ; \pi_{V}\right)$ and ($V, S_{V} ; E_{V}$) agreeing on the common part (V, S_{V}).

The observations in the preceding paragraph translate into model-theoretic language. Let ($V, S_{V} ; \pi_{V}, E_{V}$) be as above. Choose the obvious languages L_{1} and L_{2} for $\left(V, S_{V} ; \pi_{V}\right)$ and $\left(V, S_{V} ; E_{V}\right)$. Then with $I=\{1,2\},\left(V, S_{V} ; \pi_{V}, E_{V}\right)$ and $\left(V, S_{V}\right)$ are an L_{U}-structure and an L_{\cap}-structure, respectively. Let T_{1} be the L_{1}-theory such that $(V, S ; \pi) \vDash T_{1}$ if V, S are infinite sets and $\pi:\left\{\left(v_{1}, v_{2}\right) \in V^{2}: v_{1} \neq v_{2}\right\} \rightarrow S$ has

$$
\pi(a)=\pi(b) \quad \text { if and only if } \quad a \sim b
$$

Let T_{2} be the L_{2}-theory such that $(V, S ; E) \vDash T_{2}$ when V, S are infinite sets and E is an infinite subset of S. The theories T_{1} and T_{2} are easily seen to be model-complete and interpretable in the theory of an infinite set. The constructions of ($V, S_{V} ; \pi_{V}, E_{V}$) from (V, E) and vice versa are very simple, so we can easily verify that they form an existential bi-interpretation between T and T_{U}.

It is well known that the theory of graphs has a model companion, the theory of the random graph. We obtain:

Theorem 7.8. The theory T is existentially bi-interpretable with the theory T_{\cup}. Hence, T_{\cup}^{*} has a model companion which is existentially bi-interpretable with the theory of the random graph.

This example can be easily modified to show that the theory of the random n-hypergraph, random directed graph, and random bipartite graph are all bi-interpretable with an interpolative fusion of two theories, each of which is interpretable in the theory of an infinite set.

7.7. Structures and fields with automorphisms

In this section T is a one-sorted model-complete consistent L-theory. Let $L_{\text {Aut }}$ be the extension of L by a new unary function symbol and $T_{\text {Aut }}$ be the theory such that $(\mathcal{M}, \sigma) \vDash T_{\text {Aut }}$ if and only if $\mathcal{M} \vDash T$ and σ is an automorphism of \mathcal{M}. We will show that $T_{\text {Aut }}$ is existentially bi-interpretable with the union of two theories each of which is existentially bi-interpretable with T. This brings generic automorphisms as defined in [11] into our framework.

Let $(\mathcal{M}, \sigma) \vDash T$, and set $I=\{1,2\}$. We can view $\left(\mathcal{M}, \mathcal{M} ; \mathrm{id}_{\mathcal{M}}, \sigma\right)$ as a structure in a twosorted language consisting of two disjoint copies of L for the two copies of \mathcal{M} and two function symbols for $\mathrm{id}_{\mathcal{M}}$ and σ respectively. Set this to be our L_{\cup}. Let L_{1}, L_{2}, and L_{n} to be the sublanguages of L_{\cup} for the reducts $\left(\mathcal{M}, \mathcal{M} ; \mathrm{id}_{\mathcal{M}}\right)$, $(\mathcal{M}, \mathcal{M} ; \sigma)$, and $(\mathcal{M}, \mathcal{M})$ respectively.

We note that L_{1} differs from L_{2} only in the name of the function symbol. Let T_{1} be the $L_{1^{-}}$ theory whose models are $(\mathcal{M}, \mathcal{N} ; f)$ with $\mathcal{M} \vDash T, \mathcal{N} \vDash T$, and $f: \mathcal{M} \rightarrow \mathcal{N}$ is an L-isomorphism. Obtain T_{2} from T_{1} by replacing the function symbol from L_{1} with the corresponding function symbol from L_{2}.

Proposition 7.1. The theories T_{1} and T_{2} are each existentially bi-interpretable with T.
Proof. As T_{2} is a copy of T_{1}, it suffices to prove the statement for T_{1}. If $(\mathcal{M}, \mathcal{N} ; f) \vDash T_{1}$, then $\mathcal{M} \vDash T$. If $\mathcal{M} \vDash T$, then $\left(\mathcal{M}, \mathcal{M} ; \mathrm{id}_{\mathcal{M}}\right) \vDash T_{1}$. The two constructions above can be easily turned into existential mutual interpretation between T_{1} and T.

Applying the first construction above followed by the second construction above to $(\mathcal{M}, \mathcal{N} ; f) \vDash T_{1}$ gives us $\left(\mathcal{M}, \mathcal{M} ; \mathrm{id}_{\mathcal{M}}\right)$. It is easy to see that $\left(\mathrm{id}_{\mathcal{M}}, f^{-1}\right)$ is an isomorphism from $(\mathcal{M}, \mathcal{N} ; f)$ to $\left(\mathcal{M}, \mathcal{M} ; \mathrm{id}_{\mathcal{M}}\right)$ in this case. Applying the second construction above followed by the first construction above to $\mathcal{M} \vDash T$ gives us back \mathcal{M}, so $i_{\mathcal{M}}$ is already the desired isomorphism. It is easy to see that these isomorphism can be defined by existential formulas in the respective languages. Moreover, the choice of these formulas can be made independent of the choice of $(\mathcal{M}, \mathcal{N} ; f) \vDash T_{1}$ and $\mathcal{M} \vDash T$.

The existential bi-interpretation between T_{1} and T above restricts to a mutual interpretation between T_{n} and T. But T_{n} and T are not bi-interpretable.

It is easy to see that T_{1} and T_{2} are inductive. So by Corollary 5.2, T_{1} and T_{2} are both modelcomplete. Hence, T_{\cup}^{*} is the model companion of T_{\cup} if either of these exists by Theorem 6.3. We prove the main result of this section:

Theorem 7.9. The theory $T_{\text {Aut }}$ is existentially bi-interpretable with T_{\cup}. Hence, $T_{\text {Aut }}$ has a model companion $T_{\text {Aut }}^{*}$ if and only if the interpolative fusion T_{\cup}^{*} exists. Moreover, $T_{\text {Aut }}^{*}$ and T_{\cup}^{*} are existentially bi-interpretable whenever they exist.

Proof. Applying Corollary 5.2 and the easy fact that $T_{\text {Aut }}$ is inductive, we get the second and third claims from the first statement. So it remains to prove the first statement. If $(\mathcal{M} ; \sigma) \vDash T_{\text {Aut }}$, then $\left(\mathcal{M}, \mathcal{M} ; \operatorname{id}_{\mathcal{M}}, \sigma\right) \vDash T_{\cup}$. Suppose $(\mathcal{M}, \mathcal{N} ; f, g)$ is a model of T_{\cup}. Then $\left(\mathcal{M}, f^{-1} \circ g\right) \vDash T_{\text {Aut }}$. It is easy to see that the two constructions above can be turned into existential mutual interpretation between $T_{\text {Aut }}$ and T_{U}.

Applying the first construction above followed by the second construction above to $(\mathcal{M}, \sigma) \vDash T_{\text {Aut }}$ gives us back (\mathcal{M}, σ), so $\operatorname{id}_{\mathcal{M}}$ is already the desired isomorphism. Applying the second construction above followed by the first construction above to $(\mathcal{M}, \mathcal{N} ; f, g) \vDash T_{\cup}$ gives us back ($\left.\mathcal{M}, \mathcal{M} ; \mathrm{id}_{\mathcal{M}}, f^{-1} \circ g\right)$. Then $\left(\mathrm{id}_{\mathcal{M}}, f^{-1}\right)$ is an isomorphism from $(\mathcal{M}, \mathcal{N} ; f, g)$ to $\left(\mathcal{M}, \mathcal{M} ; \mathrm{id}_{\mathcal{M}}, f^{-1} \circ g\right)$ in this case. It is easy to see that these isomorphisms can be defined by
existential formulas in the respective languages. Moreover, the choice of these formulas can be made independent of the choice of $(\mathcal{M}, \mathcal{N} ; f) \vDash T_{1}$ and $(\mathcal{M} ; \sigma) \vDash T_{\text {Aut }}$.

The existence of a model companion of $T_{\text {Aut }}$ is tied to classification-theoretic issues. If T has the strict order property then $T_{\text {Aut }}$ does not have a model companion [46]. It is conjectured that if T is unstable then $T_{\text {Aut }}$ does not have a model companion. Baldwin and Shelah [5] gave necessary and sufficient conditions for $T_{\text {Aut }}$ to admit a model companion when T is stable.

In the special case where T is ACF , it is well-known that $T_{\text {Aut }}$ has a model companion, called ACFA. This important theory is treated in $[\mathbf{1 3}, \mathbf{5 6}]$ and many other places. Hence, we get the following as a corollary of Theorem 7.9:

Corollary 7.3. If $T=\mathrm{ACF}$, then the interpolative fusion T_{\star}^{*} exists and is existentially bi-interpretable with ACFA.

Following our motivational theme that many mathematical structures that exhibit randomness in some sense can be treated in the context of interpolative fusions, it is natural to ask whether this is true of pseudofinite fields, i.e, infinite field which is a model of the theory of finite fields. We do not see a way to make the theory of pseudofinite fields bi-interpretable with an interpolative fusion. Proposition 7.2 below implies that the theory of pseudo-finite fields is interpretable in ACFA, and hence is interpretable in an interpolative fusion. This is a folklore result which follows from unpublished work of Hrushovski [38]. We include here a direct short proof for the sake of completeness.

The fixed field of a difference field (L, σ) is the subfield $\{x \in L: \sigma(x)=x\}$.

Proposition 7.2. A field is pseudofinite if and only if it is elementarily equivalent to the fixed field of a model of ACFA.

Proof. See [56, Theorem 6] for a proof of the fact that the fixed field of a model of ACFA is pseudofinite. Suppose k is a pseudofinite field. Let K be an algebraic closure of k, and let σ be some automorphism of K with fixed field k. As ACFA is the model companion of $T_{\text {Aut }}$ when T is the theory of fields, there is an ACFA-model $\left(K^{\prime}, \sigma^{\prime}\right)$ such that (K, σ) is a sub-difference field of $\left(K^{\prime}, \sigma^{\prime}\right)$. Let F be the fixed field of $\left(K^{\prime}, \sigma^{\prime}\right)$. Then k is a subfield of F, and the (field-theoretic) algebraic closure of k inside of F is equal to k. It follows that the algebraic closure of the prime subfield of F agrees with that of k. A well known theorem of Ax (see for example [12, Theorem 1]) implies that K and F are elementarily equivalent.

7.8. Differential fields and \mathcal{D}-fields

We treat the \mathcal{D}-fields formalism developed in [60], a framework which generalizes both differential fields and difference fields. As special cases, we show that the theories DCF_{0} (the model companion of the theory of differential fields of characteristic 0) and ACFA_{0} (the model companion of the theory of difference fields of characteristic 0) are each bi-interpretable with an interpolative fusion of two theories, each of which is bi-interpretable with ACF_{0}. In the case of ACFA_{0}, this provides an alternative presentation as an interpolative fusion to the one described in Section 7.7.

In this subsection, all rings are commutative with unit. If K is a field, a K-algebra is a pair (A, ρ), where A is a ring and $\rho: K \rightarrow A$ is a ring homomorphism. Note that ρ is necessarily injective unless A is the zero ring. The homomorphism ρ makes A a vector space over K with left multiplication by elements in K given by

$$
a \cdot r:=\rho(a) r \quad \text { for } a \in K \text { and } r \in A \text {. }
$$

We denote this K-vector space as $V(A, \rho)$. A K-algebra (A, ρ) is finite if $V(A, \rho)$ has finite dimension. In particular, $\left(K, \mathrm{id}_{K}\right)$ is a finite K-algebra. A K-algebra homomorphism $(A, \rho) \rightarrow\left(A^{\prime}, \rho^{\prime}\right)$ is a ring homomorphism $f: A \rightarrow A^{\prime}$ such that $f \circ \rho=\rho^{\prime}$.

We fix a field F, a non-zero finite F-algebra $\left(\mathcal{D}_{F}, \rho_{F}\right)$, an F-algebra homomorphism $\pi_{F}: \mathcal{D}_{F} \rightarrow$ F (in other words, π_{F} is a ring homomorphism with $\pi_{F} \circ \rho_{F}=\mathrm{id}_{F}$), and a basis $e=\left(e_{0}, \ldots, e_{m}\right)$ of $V\left(\mathcal{D}_{F}, \rho_{F}\right)$ such that $\pi_{F}\left(e_{0}\right)=1_{F}$ and $\pi_{F}\left(e_{i}\right)=0_{F}$ for all $i \in\{1, \ldots, m\}$.

Now suppose K is a field extending F. We will define objects parallel to those in the preceding paragraph by extension of scalars. Identifying K with the F-algebra (K, ι) where $\iota: F \rightarrow K$ is the inclusion map, we define the K-algebra $\left(\mathcal{D}_{K}, \rho_{K}\right)$ and a K-algebra homomorphism $\pi_{K}: \mathcal{D}_{K} \rightarrow K$ by setting:

$$
\mathcal{D}_{K}=K \otimes_{F} \mathcal{D}_{F}, \quad \rho_{K}=\operatorname{id}_{K} \otimes_{F} \rho_{F}, \quad \text { and } \quad \pi_{K}=\operatorname{id}_{K} \otimes_{F} \pi_{F} .
$$

Identifying \mathcal{D}_{F} with its image in \mathcal{D}_{K} under the injective map $a \mapsto 1_{K} \otimes a$, it is easy to see that $\left(\mathcal{D}_{K}, \rho_{K}\right)$ is a non-zero finite K-algebra and e is a basis for $V\left(\mathcal{D}_{K}, \rho_{K}\right)$ satisfying

$$
\pi_{K}\left(e_{0}\right)=1_{K} \text { and } \pi_{K}\left(e_{i}\right)=0_{K} \quad \text { for all } i \in\{1, \ldots, m\} .
$$

It follows that any $a \in \mathcal{D}_{K}$ can be written as $\rho_{K}\left(a_{0}\right) e_{0}+\cdots+\rho_{K}\left(a_{m}\right) e_{m}$ for unique elements $a_{0}, \ldots, a_{m} \in K$, and $\pi_{K}(a)=\pi_{K}\left(\rho_{K}\left(a_{0}\right)\right)=a_{0}$.

Suppose $\partial_{i}: K \rightarrow K$ are functions for $i \in\{1, \ldots, m\}$, and the map

$$
\delta_{K}: K \rightarrow \mathcal{D}_{K}, \quad a \mapsto \rho_{K}(a) e_{0}+\rho_{K}\left(\partial_{1}(a)\right) e_{1}+\ldots+\rho_{K}\left(\partial_{m}(a)\right) e_{m}
$$

is an F-algebra homomorphism $(K, \iota) \rightarrow\left(\mathcal{D}_{K}, \rho_{K} \circ \iota\right)$. In this case, we call $\left(K, \partial_{1}, \ldots, \partial_{m}\right)$ a \mathcal{D}-field. Note in particular that δ_{K} is a section of π_{K}, since for all $a \in K, \pi_{K}\left(\delta_{K}(a)\right)=$ $\pi_{K}\left(\rho_{K}(a)\right)=a$.

Example 7.1. We show how the framework above generalizes differential fields and difference fields.
(1) Let $F=\mathbb{Q}, \mathcal{D}_{\mathbb{Q}}=\mathbb{Q}[\varepsilon] /\left(\varepsilon^{2}\right), \rho(a)=a+0 \varepsilon, \pi(a+b \varepsilon)=a$, and $e=(1, \varepsilon)$. For any field K of characteristic $0, \mathcal{D}_{K} \cong K[\varepsilon] /\left(\varepsilon^{2}\right)$. If $\delta: K \rightarrow K$ is a function, then the map $\delta_{K}: K \rightarrow \mathcal{D}_{K}$ given by $a \mapsto a+\partial(a) \varepsilon$ is a \mathbb{Q}-algebra homomorphism if and only if ∂ is a derivation on K. So a \mathcal{D}-field in this case is the same thing as a differential field of characteristic 0 .
(2) Let $F=\mathbb{Q}, \mathcal{D}_{\mathbb{Q}}=\mathbb{Q} \times \mathbb{Q}, \rho(a)=(a, a), \pi(a, b)=a$, and $e=((1,0),(0,1))$. For any field K of characteristic $0, \mathcal{D}_{K} \cong K \times K$. If $\sigma: K \rightarrow K$ is a function, then the map $\delta_{K}: K \rightarrow \mathcal{D}_{K}$ given by $a \mapsto(a, \sigma(a))$ is a \mathbb{Q}-algebra homomorphism if and only if σ is a field endomorphism. So a \mathcal{D}-field in this case is the same thing as a difference field of characteristic 0 .

The key to viewing a \mathcal{D}-field as built up from two simpler structures is to see the two F algebra homomorphisms ρ_{K} and δ_{K} in a more symmetric way. As we have seen, both ρ_{K} and δ_{K} are sections of π_{K}. Remark 7.3 below tells us that even more is true:

Remark 7.3. Since e is a basis of $V\left(\mathcal{D}_{F}, \rho_{F}\right)$, there are uniquely determined elements $c_{i j k}$ in F for $0 \leqslant i, j, k \leqslant m$ such that

$$
e_{i} e_{j}=\sum_{k=0}^{m} \rho_{F}\left(c_{i j k}\right) e_{k} \quad \text { for all } 0 \leqslant i, j \leqslant m .
$$

And since $\pi_{F} \circ \rho_{F}=\operatorname{id}_{F}$, there are uniquely determined elements d_{k} in F for $1 \leqslant k \leqslant m$ such that

$$
1_{\mathcal{D}_{F}}=\rho_{F}\left(1_{F}\right)=e_{0}+\sum_{k=1}^{m} \rho_{F}\left(d_{k}\right) e_{k}
$$

Note that the constants $c_{i j k}$ and d_{k} determine the multiplicative structure of \mathcal{D}_{F}.
Let $\left(K, \partial_{1}, \ldots, \partial_{m}\right)$ be a \mathcal{D}-field. Then as ρ_{K} and δ_{K} are both F-algebra homomorphisms, and the constants $c_{i j k}$ and d_{k} are in F,

$$
e_{i} e_{j}=\sum_{k=0}^{n} \rho_{K}\left(c_{i j k}\right) e_{k}=\sum_{k=0}^{n} \partial_{K}\left(c_{i j k}\right) e_{k} \quad \text { for all } 0 \leqslant i, j \leqslant m
$$

Likewise, $1_{\mathcal{D}_{K}}=\rho_{K}\left(1_{K}\right)=\delta_{K}\left(1_{K}\right)=e_{0}+\sum_{k=1}^{m} \rho_{K}\left(d_{k}\right) e_{k}=e_{0}+\sum_{k=1}^{m} \delta_{K}\left(d_{k}\right) e_{k}$.
The F-algebra homomorphisms ρ_{K} and δ_{K} in a \mathcal{D}-field are still different in one important respect: e is a basis of $V\left(\mathcal{D}_{K}, \rho_{K}\right)$ but might not be a basis for $V\left(\mathcal{D}_{K}, \delta_{K}\right)$. Proposition 7.3 tells us that e is a basis for $V\left(\mathcal{D}_{K}, \delta_{K}\right)$ if and only if the \mathcal{D}-field is inversive, a condition
introduced in [60]. When \mathcal{D}_{F} is a local F-algebra (e.g., in the case of the dual numbers $\left.F[\varepsilon] /\left(\varepsilon^{2}\right)\right)$, the inversive assumption is the trivial requirement that $\pi_{K} \circ \delta_{K}=\mathrm{id}_{K}$ is a field automorphism of K, so e is here automatically a basis for $V\left(\mathcal{D}_{K}, \delta_{K}\right)$. The reader who is primarily interested in this case may prefer to skip directly to Proposition 7.3.

In the general case, every finite F-algebra is isomorphic to a product of finite local F algebras. So there exist $n \geqslant 0$ and finite local F-algebras $\left(\mathcal{D}_{F}^{j}, \rho_{F}^{j}\right)$ for $0 \leqslant j \leqslant n$ such that \mathcal{D}_{F} is isomorphic as a ring to $\prod_{j=0}^{n} \mathcal{D}_{F}^{j}$, and for $0 \leqslant i \leqslant n$, we have

$$
\rho_{F}^{j}=\theta_{F}^{j} \circ \rho_{F} \quad \text { where } \theta_{F}^{j}: \mathcal{D}_{F} \rightarrow \mathcal{D}_{F}^{j} \text { is the projection map. }
$$

For each $j \in\{0, \ldots, n\}, \mathcal{D}_{F}^{j}$ has a unique maximal ideal \mathfrak{m}_{F}^{j} and a residue map $\pi_{F}^{j}: \mathcal{D}_{F}^{j} \rightarrow \mathcal{D}_{F}^{j} /$ \mathfrak{m}_{F}^{j}. Then as j ranges over $\{0, \ldots, n\},\left(\theta_{F}^{j}\right)^{-1}\left(\mathfrak{m}_{F}^{j}\right)$ ranges over the $n+1$ maximal ideals of \mathcal{D}_{F}. Let $\mathfrak{m}_{F}=\operatorname{ker}\left(\pi_{F}\right)$. Then \mathfrak{m}_{F} is a maximal ideal of \mathcal{D}_{F}, and so $\mathfrak{m}_{F}=\left(\theta_{F}^{j}\right)^{-1}\left(\mathfrak{m}_{F}^{j}\right)$ for some $j \in\{0, \ldots, n\}$. Without loss of generality, we assume $j=0$, i.e., $\mathfrak{m}_{F}=\left(\theta_{F}^{0}\right)^{-1}\left(\mathfrak{m}_{F}^{0}\right)$. It follows that $\mathcal{D}_{F} / \mathfrak{m}_{F} \cong \mathcal{D}_{F}^{0} / \mathfrak{m}_{F}^{0}$, and since π_{F} is surjective onto F, the composition $\pi_{F}^{0} \circ \rho_{F}^{0}: F \rightarrow \mathcal{D}_{F}^{0} /$ \mathfrak{m}_{F}^{0} is an isomorphism. We make the further assumption that for all $j \in\{1, \ldots, n\}$, the composition $\pi_{F}^{j} \circ \rho_{F}^{j}: F \rightarrow \mathcal{D}_{F}^{j} / \mathfrak{m}_{F}^{j}$ is an isomorphism. This assumption, together with the fact that we work with a base field F instead of an arbitrary ring, corresponds to Assumptions 4.1 in [60]. The assumption holds trivially when $n=0$, or equivalently, when \mathcal{D}_{F} is a local F-algebra. Note that $\mathcal{D}_{F}^{i} / \mathfrak{m}_{F}^{j}$ is necessarily a finite field extension of F, so the assumption also holds trivially if F is algebraically closed.

The entire discussion above is preserved under tensor product with K. Explicitly:
(1) With $\mathcal{D}_{K}^{j}=K \otimes_{F} \mathcal{D}_{F}^{j}, \theta_{K}^{j}=\operatorname{id}_{K} \otimes_{F} \theta_{F}^{j}$, and $\rho_{K}^{j}=\operatorname{id}_{K} \otimes_{F} \rho_{F}^{j}$ for $j \in\{1, \ldots, n\}$, each $\left(\mathcal{D}_{K}^{j}, \rho_{K}^{j}\right)$ is a finite local K-algebra, and $\mathcal{D}_{K} \cong \prod_{j=0}^{n} \mathcal{D}_{K}^{j}$ as K-algebras, with the θ_{K}^{j} as projection maps. In particular, $\rho_{K}^{j}=\theta_{K}^{j} \circ \rho_{K}$ for $j \in\{1, \ldots, n\}$. We identify \mathcal{D}_{F}^{j} with its image in \mathcal{D}_{K}^{j} under the injective map $a \mapsto 1_{K} \otimes a$.
(2) The unique maximal ideal of \mathcal{D}_{K}^{j} is $\mathfrak{m}_{K}^{j}=K \otimes_{F} \mathfrak{m}_{F}^{j}$, and $\pi_{K}^{j}=\operatorname{id}_{K} \otimes_{F} \pi_{F}^{j}$ is the residue $\operatorname{map} \mathcal{D}_{K}^{j} \rightarrow \mathcal{D}_{K}^{j} / \mathfrak{m}_{K}^{j}$ for all $0 \leqslant i \leqslant n$.
(3) $\mathfrak{m}_{K}=K \otimes_{F} \mathfrak{m}_{F}=\operatorname{ker}\left(\pi_{K}\right)$ is equal to $\left(\theta_{K}^{0}\right)^{-1}\left(\mathfrak{m}_{K}^{0}\right)$, and $\pi_{K}^{j} \circ \rho_{K}^{j}: K \rightarrow \mathcal{D}_{K}^{i} / \mathfrak{m}_{K}^{j}$ is an isomorphism for $j \in\{0, \ldots, n\}$.

For $j \in\{0, \ldots, n\}$, let $\delta_{K}^{j}=\theta_{K}^{j} \circ \delta_{K}: K \rightarrow \mathcal{D}_{K}^{j}$. Then δ_{K}^{j} is an F-algebra homomorphism, but not necessarily a K-algebra homomorphism. Since $\left(\pi_{K}^{j} \circ \rho_{K}^{j}\right): K \rightarrow \mathcal{D}_{K}^{j}$ is an isomorphism, we obtain an F-algebra endomorphism

$$
\sigma_{j}=\left(\pi_{K}^{j} \circ \rho_{K}^{j}\right)^{-1} \circ\left(\pi_{K}^{j} \circ \delta_{K}^{j}\right): K \rightarrow K .
$$

When $j=0, \sigma_{0}=\mathrm{id}_{K}$, since δ_{K} is a section of π_{K} and $\mathcal{D}_{K} / \mathfrak{m}_{K} \cong \mathcal{D}_{K}^{0} / \mathfrak{m}_{K}^{0}$. We call $\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ the associated endomorphisms of the \mathcal{D}-field $\left(K, \partial_{1}, \ldots, \partial_{m}\right)$. We say that the \mathcal{D}-field is inversive if each of its associated endomorphisms is an automorphism, equivalently if $\pi_{K}^{j} \circ \delta_{K}^{j}$ is surjective for all $j \in\{1, \ldots, n\}$.

Remark 7.4. Continuing Example 7.1, we will consider what these notions mean in the cases of differential fields and difference fields.
(1) Every \mathcal{D}-field is trivially inversive when $n=0$, or equivalently, when \mathcal{D}_{F} is a local F-algebra. So in particular, differential fields of characteristic 0 are always inversive.
(2) The finite \mathbb{Q}-algebra $\mathbb{Q} \times \mathbb{Q}$ is a product of two finite local \mathbb{Q}-algebras, namely \mathbb{Q} and $\mathbb{Q}, \pi_{\mathbb{Q}}^{0}$ and $\pi_{\mathbb{Q}}^{1}$ are the projections onto the first and second factors, and $\pi_{\mathbb{Q}}^{j} \circ \rho_{\mathbb{Q}}^{j}=\operatorname{id}_{\mathbb{Q}}$ for $j \in\{0,1\}$. So a difference field (K, σ) has one associated endomorphism, namely $\pi_{K}^{1} \circ \delta_{K}=\sigma$, and (K, σ) is inversive if and only if σ is an automorphism.

The next result provides the promised alternative characterization of inversive \mathcal{D}-fields. The reader who is only interested in the case where \mathcal{D}_{F} is a local F-algebra might read the proof below in the following way: In that special case, $n=0, \pi_{K}^{j}=\pi_{K}$, and $\delta_{K}^{j}=\delta_{K}$ for all $j \in\{0, \ldots, n\}$, so the only use of the inversive hypothesis in the forward direction of the proof is not necessary.

Proposition 7.3. Suppose $\left(K, \partial_{1}, \ldots, \partial_{m}\right)$ is a \mathcal{D}-field and $\delta_{K}: K \rightarrow \mathcal{D}_{K}$ is the associated F-algebra homomorphism. Then the following are equivalent:
(1) $\left(K, \partial_{1}, \ldots, \partial_{m}\right)$ is inversive
(2) e is a basis of the K-vector space $V\left(\mathcal{D}_{K}, \delta_{K}\right)$.

Hence, if \mathcal{D}_{F} is a local F-algebra, then e is a basis of the K-vector space $V\left(\mathcal{D}_{K}, \delta_{K}\right)$.
Proof. For the forward direction, suppose $\left(K, \partial_{1}, \ldots, \partial_{m}\right)$ is inversive. We reduce the problem to finding for each $j \in\{0, \ldots, n\}$ a basis $e^{j}=\left(e_{0}^{j}, \ldots, e_{m_{j}}^{j}\right)$ of $V\left(\mathcal{D}_{F}^{j}, \rho_{F}^{j}\right)$ such that e^{j} is also a basis of $V\left(\mathcal{D}_{K}^{j}, \delta_{K}^{j}\right)$. Then for all $j \in\{0, \ldots, n\}$ and $i \in\left\{0, \ldots, m_{j}\right\}$, let \tilde{e}_{i}^{j} be the element in \mathcal{D}_{F} satisfying

$$
\theta_{F}^{j}\left(\tilde{e}_{i}^{j}\right)=e_{i}^{j} \text { and } \theta_{F}^{j^{\prime}}\left(\tilde{e}_{i}^{j}\right)=0 \text { for } j^{\prime} \in\{0, \ldots, n\} \backslash\{j\} .
$$

Since $V\left(\mathcal{D}_{F}, \rho_{F}\right) \cong \oplus_{j=0}^{n} V\left(\mathcal{D}_{F}^{j}, \rho_{F}^{j}\right)$ and $V\left(\mathcal{D}_{K}, \delta_{K}\right) \cong \oplus_{j=0}^{n} V\left(\mathcal{D}_{K}^{j}, \delta_{K}^{j}\right)$, we have that $\tilde{e}=$ $\left(\left(\tilde{e}_{i}^{j}\right)_{i=0}^{m_{j}}\right)_{j=0}^{n}$ is a basis for both vector spaces. It follows that \tilde{e} and e have the same cardinality, so it suffices to show that e spans $V\left(\mathcal{D}_{K}, \delta_{K}\right)$. But this is clear, since each component of \tilde{e} can be written as an F-linear combination of e, and δ_{K} is an F-algebra homomorphism.

Next we explain how to obtain the basis e^{j} for a fixed $j \in\{1, \ldots, n\}$. Note that for all $l \leqslant 0,\left(\mathfrak{m}_{F}^{j}\right)^{l}$ is a subspace of $V\left(\mathcal{D}_{F}^{j}, \rho_{F}^{j}\right)$, and $\left(\mathfrak{m}_{F}^{j}\right)^{l}=0$ when l is large enough. Let be e^{j}
be any basis of $V\left(\mathcal{D}_{F}^{j}, \rho_{F}^{j}\right)$ such that for each $l \geqslant 0$, a basis of $\left(\mathfrak{m}_{F}^{j}\right)^{l}$ can be chosen from the components of e^{j}. This can be done by taking a basis of $\left(\mathfrak{m}_{F}^{j}\right)^{l}$ for the largest l such that $\left(\mathfrak{m}_{F}^{j}\right)^{l} \neq 0$, extending it to a basis of $\left(\mathfrak{m}_{F}^{j}\right)^{l-1}$ for the same l, and continuing in the same fashion until we reach $\left(\mathfrak{m}_{F}^{j}\right)^{0}=\mathcal{D}_{F}^{j}$.

Extending scalars to K, we have that e^{j} is a basis of $V\left(\mathcal{D}_{K}^{j}, \rho_{K}^{j}\right)$ such that for each $l \geqslant 0$, a basis of $\left(\mathfrak{m}_{K}^{j}\right)^{l}$ can be chosen from the components of e^{j}. It remains to show that e^{j} is also a basis of $V\left(\mathcal{D}_{K}^{j}, \delta_{K}^{j}\right)$. Fix some l such that $\left(\mathfrak{m}_{K}^{j}\right)^{l} \neq 0$. Permuting the components of e^{j} if necessary, we suppose $e_{0}^{j}, \ldots, e_{k}^{j}$ are the only components of e^{j} which are in $\left(\mathfrak{m}_{K}^{j}\right)^{l} \backslash\left(\mathfrak{m}_{K}^{j}\right)^{l+1}$. Then if $r \in\left(\mathfrak{m}_{K}^{j}\right)^{l}$, there are unique $b_{0}, \ldots, b_{k} \in K$ such that

$$
r-\rho_{K}^{j}\left(b_{0}\right) e_{0}^{j}-\ldots-\rho_{K}^{j}\left(b_{k}\right) e_{k}^{j} \text { is in }\left(\mathfrak{m}_{K}^{j}\right)^{l+1}
$$

We reduce the problem to showing for arbitrary $r \in\left(m_{K}^{j}\right)^{l}$ that there are unique $a_{0}, \ldots, a_{k} \in K$ such that

$$
r-\delta_{K}^{j}\left(a_{0}\right) e_{0}^{j}-\ldots-\delta_{K}^{j}\left(a_{k}\right) e_{k}^{j} \text { is in }\left(\mathfrak{m}_{K}^{j}\right)^{l+1} .
$$

If this is true, then an easy induction argument shows that for any $r \in \mathcal{D}_{K}^{j}$, there are unique $c_{0}, \ldots, c_{m_{j}} \in K$ such that

$$
r=\sum_{i=0}^{m_{j}} \delta_{K}^{j}\left(c_{i}\right) e_{i}^{j}
$$

So fix $r \in\left(m_{K}^{j}\right)^{l}$. Let b_{0}, \ldots, b_{k} be the unique elements of K such that $r-\rho_{K}^{j}\left(b_{0}\right) e_{0}^{j}-$ $\ldots-\rho_{K}^{j}\left(b_{k}\right) e_{k}^{j}$ is in $\left(\mathfrak{m}_{K}^{j}\right)^{l+1}$. As $\left(K, \partial_{1}, \ldots, \partial_{m}\right)$ is inversive, we have that $\left(\pi_{K}^{j} \circ \delta_{K}^{j}\right)$ is a field isomorphism. Hence, there are unique $a_{0}, \ldots, a_{k} \in K$ such that

$$
\left(\pi_{K}^{j} \circ \delta_{K}^{j}\right)\left(a_{i}\right)=\left(\pi_{K}^{j} \circ \rho_{K}^{j}\right)\left(b_{i}\right) \text { for } i \in\{0, \ldots, k\} .
$$

It follows that $\rho_{K}^{j}\left(b_{i}\right)-\delta_{K}^{j}\left(a_{i}\right) \in \mathfrak{m}_{K}^{j}$ for $i \in\{0, \ldots, k\}$, so

$$
\left(\rho_{K}^{j}\left(b_{0}\right)-\delta_{K}^{j}\left(a_{0}\right)\right) e_{0}^{j}+\cdots+\left(\rho_{K}^{j}\left(b_{k}\right)-\delta_{K}^{j}\left(a_{k}\right)\right) e_{k}^{j} \text { is in }\left(\mathfrak{m}_{K}^{j}\right)^{l+1},
$$

and hence

$$
r-\delta_{K}^{j}\left(a_{0}\right) e_{0}^{j}-\ldots-\delta_{K}^{j}\left(a_{k}\right) e_{k}^{j} \text { is in }\left(\mathfrak{m}_{K}^{j}\right)^{l+1}
$$

For uniqueness, suppose $a_{0}^{\prime}, \ldots, a_{k}^{\prime} \in K$ also satisfy the conclusion. As $\left(\pi_{K}^{j} \circ \rho_{K}^{j}\right)$ is a field isomorphism, running the construction above backwards gives us $b_{0}^{\prime}, \ldots, b_{k}^{\prime} \in K$ such that $\left(\pi_{K}^{j} \circ \delta_{K}^{j}\right)\left(a_{i}^{\prime}\right)=\left(\pi_{K}^{j} \circ \rho_{K}^{j}\right)\left(b_{i}^{\prime}\right)$ for $i \in\{0, \ldots, k\}$, and $r-\rho_{K}^{j}\left(b_{0}^{\prime}\right) e_{0}^{j}-\ldots-\rho_{K}^{j}\left(b_{k}^{\prime}\right) e_{k}^{j}$ is in $\left(\mathfrak{m}_{K}^{j}\right)^{l+1}$. Hence, $b_{i}^{\prime}=b_{i}$ for $i \in\{0, \ldots, k\}$. It follows that $a_{i}^{\prime}=a_{i}$ for $i \in\{0, \ldots, k\}$, which gives us the desired uniqueness.

For the backward direction, suppose e is a basis of $V\left(\mathcal{D}_{K}, \delta_{K}\right)$. Consider

$$
f: \mathcal{D}_{K} \rightarrow \mathcal{D}_{K}, \quad \sum_{i=0}^{m} \delta_{K}\left(a_{i}\right) e_{i} \mapsto \sum_{i=0}^{m} \rho_{K}\left(a_{i}\right) e_{i}
$$

where a_{i} is in K for $i \in\{0, \ldots m\}$. It is easy to check that f is a K-algebra isomorphism from $\left(\mathcal{D}_{K}, \delta_{K}\right)$ to $\left(\mathcal{D}_{K}, \rho_{K}\right)$. For any $j \in\{0, \ldots, n\}, f$ induces an isomorphism $\left(\mathcal{D}_{K}^{j}, \delta_{K}^{j}\right) \cong$ $\left(\mathcal{D}_{K}^{j^{\prime}}, \rho_{K}^{j^{\prime}}\right)$ for some $j^{\prime} \in\{0, \ldots, n\}$ (in fact, it is not hard to show that we must have $j=$ j^{\prime}, but we do not need to use this). Since the composition $\pi_{K}^{j^{\prime}} \circ \rho_{K}^{j^{\prime}}: K \rightarrow \mathcal{D}_{K}^{j^{\prime}} / \mathfrak{m}_{K}^{j^{\prime}}$ is a field isomorphism, it follows that $\pi_{K}^{j} \circ \delta_{K}^{j}: K \rightarrow \mathcal{D}_{K}^{j} / \mathfrak{m}_{K}^{j}$ is also a field isomorphism. So $\left(K, \partial_{1}, \ldots, \partial_{m}\right)$ is inversive.

The proposition above suggests how to find an existential bi-interpretation between the theory of inversive \mathcal{D}-fields and a union of two theories, each of which is existentially biinterpretable with the theory of fields extending F. We now spell out the details.

In the rest of the section, we will never seriously encounter the situation where two different F-algebras have the same underlying ring. Therefore, we will suppress the F-embedding ρ, refer to an F-algebra (A, ρ) as the F-algebra A, and refer to $\rho(c)$ for $c \in F$ as c_{A}. Note that the data specified by the ring A and $\left(c_{A}\right)_{c \in F}$ is completely equivalent to the data of (A, ρ). We can then view an F-algebra A as a structure in a language extending the language of rings by constants for the elements c_{A} as c ranges over F. We will refer to this as the language of F-algebras.

Let $\left(K, \partial_{1}, \ldots, \partial_{m}\right)$ be a \mathcal{D}-field and δ_{K} its associated F-algebra homomorphism. Then we can view ($K, \mathcal{D}_{K} ; \pi_{K}, e, \rho_{K}, \delta_{K}$) naturally as a structure in a two-sorted language which consists of two copies of the language of F-algebras for K and \mathcal{D}_{K}, constant symbols for the components of e, and function symbols for ρ_{K} and δ_{K}. We set this language to be L_{\cup}. Let L_{1}, L_{2}, and L_{n} be the sublanguages corresponding to the reducts ($K, \mathcal{D}_{K} ; \pi_{K}, e, \rho_{K}$), ($K, \mathcal{D}_{K} ; \pi_{K}, e, \delta_{K}$), and $\left(K, \mathcal{D}_{K} ; \pi_{K}, e\right)$, respectively. We note that L_{1} and L_{2} only differ in the names of the function symbols ρ_{K} and δ_{K}.

Let T_{1}^{-}be the L_{1}-theory whose models ($K, A ; \pi, u, \rho$) satisfy the following conditions:
(1) K and A are F-algebras, and K is a field.
(2) $\rho: K \rightarrow A$ is an embedding of F-algebras.
(3) $u=\left(u_{0}, \ldots, u_{m}\right)$ is a basis of $V(A, \rho)$ such that

$$
u_{i} u_{j}=\sum_{i, j, k}\left(c_{i j k}\right)_{A} u_{k}
$$

and

$$
1_{A}=u_{0}+\sum_{i=1}^{m}\left(d_{i}\right)_{A} u_{i}
$$

(4) $\pi: A \rightarrow K$ is an F-algebra homomorphism with $\pi\left(u_{0}\right)=1_{K}$ and $\pi\left(u_{i}\right)=0_{K}$ for $i \epsilon$ $\{1, \ldots, m\}$

Let T_{2}^{-}be the copy of T_{1}^{-}obtained by replacing L_{1}-symbols with L_{2}-symbols. Set $T_{\cup}^{-}=$ $T_{1}^{-} \cup T_{2}^{-}$, and let T_{n}^{-}be the set of L_{\cap}-consequence of T_{1}^{-}(equivalently, of T_{2}^{-}). Suppose $\left(K, \partial_{1}, \ldots, \partial_{m}\right)$ be a \mathcal{D}-field and δ_{K} its associated F-algebra homomorphism. It is easy to see that

$$
\left(K, \mathcal{D}_{K} ; \pi_{K}, e, \rho_{K}\right) \vDash T_{1}^{-} \quad \text { and } \quad\left(K, \mathcal{D}_{K} ; \pi_{K}, e\right) \vDash T_{n}^{-} .
$$

If $\left(K, \partial_{1}, \ldots, \partial_{m}\right)$ is inversive, it follows from Proposition 7.3 that

$$
\left(K, \mathcal{D}_{K} ; \pi_{K}, e, \delta_{K}\right) \vDash T_{2}^{-} \quad \text { and } \quad\left(K, \mathcal{D}_{K} ; \pi_{K}, e, \rho_{K}, \delta_{K}\right) \vDash T_{\cup}^{-}
$$

The following lemma can be easily verified.
Lemma 7.1. Suppose $(K, A ; \pi, u, \rho) \vDash T_{1}^{-}$. Then

$$
f: A \rightarrow \mathcal{D}_{K}, \quad \sum_{i=0}^{m} \rho\left(a_{i}\right) u_{i} \mapsto \sum_{i=0}^{m} \rho_{K}\left(a_{i}\right) e_{i}
$$

is K-algebra isomorphism which moreover induces an L_{1}-isomorphism from ($K, A ; \pi, u, \rho$) to $\left(K, \mathcal{D}_{K} ; \pi_{K}, e, \rho_{K}\right)$ which we also denote by f.
We will view a field extending F as a structure in the language of F-algebras.
Proposition 7.4. Both T_{1}^{-}and T_{2}^{-}are existentially bi-interpretable with the theory of fields extending F.

Proof. It suffices to prove the statement for T_{1}^{-}. If $(K, A ; \pi, u, \rho)$ is a model of T_{1}^{-}, then K is a field extending F. Conversely, if K is a field extending F, then since $V\left(\mathcal{D}_{K}, \rho_{K}\right)$ is isomorphic to K^{m} as a K-vector space, we can define a K-algebra (K^{m}, ρ) such that $\left(K, K^{m} ; \pi, e, \rho\right) \vDash T_{1}^{-}$, where e is the standard basis of K^{m} and π is the projection on the first coordinate. It is easy to see that these constructions correspond to existential interpretations. If we start with K and apply the second construction followed by the first, we get K back, and id_{K} is the required isomorphism. And if we start with $(K, A ; \pi, u, \rho) \vDash T_{1}^{-}$and apply the first construction followed by the second, we obtain the required isomorphism from Lemma 7.1, since both structures are isomorphic to $\left(K, \mathcal{D}_{K} ; \pi_{k}, e, \rho_{K}\right)$. It is also easy to check that this can be defined by an existential formula chosen independently of ($K, A ; \pi, u, \rho$). Thus T_{1} and the theory of fields are existentially bi-interpretable.

The existential bi-interpretation in Proposition 7.4 restricts to a mutual interpretation between T_{n}^{-}and the theory of fields extending F. But this is not a bi-interpretation, due to the fact that ρ_{K} is not definable in the structure $\left(K, \mathcal{D}_{K} ; \pi_{K}, e\right)$. In fact, if $(K, A ; \pi, e) \vDash T_{n}^{-}$, it does not necessarily follow that A is isomorphic to \mathcal{D}_{K} as an K-algebra (or even as a ring). The model companion of the theory of fields extending F is the theory of algebraically closed fields extending F. Applying Corollary 5.2, we get the following.

Corollary 7.4. The theories T_{1}^{-}and T_{2}^{-}have model companions T_{1} and T_{2}. The theories T_{1} and T_{2} are each existentially bi-interpretable with the theory of algebraically closed fields extending F.

For the rest of the section, we let T_{1} and T_{2} be as described in Corollary 7.4. Let $T_{\cup}^{-}=T_{1}^{-} \cup T_{2}^{-}$ and $T_{\cup}=T_{1} \cup T_{2}$.

We view a \mathcal{D}-field $\left(K, \partial_{1}, \ldots, \partial_{n}\right)$ as a structure in a language extending the language of F-algebras by adding function symbols for $\partial_{1}, \ldots, \partial_{n}$. In [60], it is verified that the class of \mathcal{D}-fields and the class of inversive \mathcal{D}-fields are elementary. It follows that we can also axiomatize the theory of algebraically closed \mathcal{D}-fields (\mathcal{D}-fields whose underlying fields are algebraically closed).

Theorem 7.10. The theory of inversive \mathcal{D}-fields is existentially bi-interpretable with T_{\cup}^{-}, and the theory of algebraically closed inversive \mathcal{D}-fields is existentially bi-interpretable with T_{U}. Hence, the theory of algebraically closed inversive \mathcal{D}-fields has a model companion if and only if T_{\cup}^{*} exists. Moreover, this model companion is bi-interpretable with T_{\cup}^{*} whenever they both exist.

Proof. We will only prove the first claim, as the other claims are immediate consequences. If ($K, A ; \pi, u, \rho, \delta) \vDash T_{\cup}^{-}$, then since u is a basis for $V(A, \rho)$ and δ and ρ are both sections of π, we have that for any $a \in K$, there exist unique $d_{1}, \ldots, d_{m} \in K$ such that

$$
\delta(a)=\rho(a) u_{0}+\rho\left(d_{1}\right) u_{1}+\cdots+\rho\left(d_{m}\right) u_{m} .
$$

We define $\partial_{i}(a)=d_{i}$ for all $i \in\{1, \ldots, m\}$. Then it follows from Proposition 7.3 that $\left(K, \partial_{1}, \ldots, \partial_{m}\right)$ is an inversive \mathcal{D}-field. Conversely, suppose $\left(K, \partial_{1}, \ldots, \partial_{m}\right)$ is an inversive \mathcal{D}-field and δ_{K} is the associated F-algebra homomorphism. Then by Proposition 7.3, and encoding an isomorphic copy of \mathcal{D}_{K} with domain K^{m} as in the proof of Proposition 7.4, we have $\left(K, \mathcal{D}_{K} ; \pi_{K}, e, \rho_{K}, \delta_{K}\right) \vDash T_{\cup}^{-}$. It is easy to see that the two constructions above describe existential interpretations between T_{\cup}^{-}and the theory of inversive \mathcal{D}-fields.

If $(K, A ; \pi, u, \rho, \delta) \vDash T_{\cup}^{-}$, then applying the first construction followed by the second construction in the preceding paragraph gives us ($K, \mathcal{D}_{K} ; \pi_{K}, e, \rho_{K}, \delta_{K}$), and a calculation shows that $\left(\mathrm{id}_{K}, f\right)$ is an isomorphism from ($\left.K, A ; \pi, u, \rho, \delta\right)$ to $\left(K, \mathcal{D}_{K} ; \pi_{K}, e, \rho_{K}, \delta_{K}\right)$ where f is the function in Lemma 7.1. If $\left(K, \partial_{1}, \ldots, \partial_{m}\right)$ is an inversive \mathcal{D}-field, then applying the second construction followed by the first construction in the preceding paragraph gives us back $\left(K, \partial_{1}, \ldots, \partial_{m}\right)$, and id_{K} is already the desired isomorphism. It is also easy to check that there are existential formulas chosen independently from $(K, A ; \pi, u, \rho, \delta)$ and $\left(K, \partial_{1}, \ldots, \partial_{m}\right)$ that define these isomorphisms. Thus the two theories are existentially bi-interpretable.

In [60], it is shown that when $\operatorname{char}(F)=0$, every \mathcal{D}-field can be embedded into an algebraically closed inversive \mathcal{D}-field, and the theory of \mathcal{D}-fields has a model companion. Hence, we get the following corollary.

Corollary 7.5. If $\operatorname{char}(F)=0$, then the model companion of the theory of \mathcal{D}-fields is biinterpretable with T_{\cup}^{*}.

In the special cases from Example 7.1, \mathcal{D}-fields are simply differential fields of characteristic 0 or difference fields of characteristic 0 , and the theory of algebraically closed fields extending \mathbb{Q} is simply ACF_{0}, so we obtain the following consequence.

Corollary 7.6. The theories DCF_{0} and ACFA_{0} are each bi-interpretable with an interpolative fusion of two theories T_{1} and T_{2}, each of which is bi-interpretable with ACF_{0}.

CHAPTER 8

Existence results

Throughout this chapter, we assume in addition to the notational conventions of Chapters 5 and 6 that L^{\prime} is a first-order language also with S the set of sorts and $L \subseteq L^{\prime}, \mathcal{M}$ and \mathcal{N}^{\prime} are an L-structure and an L^{\prime}-structure both with underlying collection of sorts M, T^{\prime} is an L^{\prime}-theory, and T is the set of L-consequences of T^{\prime}.

The goal of the chapter is to provide sufficient conditions for the existence of the interpolative fusion with an eye toward natural examples. For this purpose, it is useful to find simpler characterizations of interpolative T_{\cup}-models in various settings. In Section 8.1, we accomplish this in the setting when T_{n} admits an ordinal-valued dimension function, highlighting the notions of approximability and definability of pseudo-denseness in the expansions T_{i}. In Section 8.2, we show how to relativize these conditions to collections of definable sets we call pseudo-cells. In the remaining sections, we investigate these notions under additional hypotheses on T_{n} such as \aleph_{0}-stability and o-minimality.

Our general theory allows us to recover many results on the existence of model companions in the literature. In fact, the existing proofs of these results can be thought of as specializations of the general arguments developed here. This is an imprecise claim which cannot be rigorously justified, but we will demonstrate what we mean by revisiting the earlier examples from Chapter 7.

8.1. The pseudo-topological axioms

In an interpolative structure \mathcal{M}_{\cup}, any finite family of L_{i}-definable sets which is not separated has nonempty intersection. Heuristically, if each X_{i} is "large" in a some fixed X_{n}, then $\left(X_{i}\right)_{i \in I}$ cannot be separated. When T_{n} has a reasonable notion of dimension we can make this idea precise. The setting has a certain topological flavor, hence the name.

Throughout this section, we assume the existence of a function dim, which assigns an ordinal or the formal symbol $-\infty$ to each \mathcal{M}-definable set so that for all \mathcal{M}-definable $X, X^{\prime} \subseteq M^{x}$:
(1) $\operatorname{dim}\left(X \cup X^{\prime}\right)=\max \left\{\operatorname{dim} X, \operatorname{dim} X^{\prime}\right\}$,
(2) $\operatorname{dim} X=-\infty$ if and only if $X=\varnothing$,
(3) $\operatorname{dim} X=0$ if and only if X is nonempty and finite,

We call such a function dim an ordinal rank on \mathcal{M}. A function on the collection of definable sets in T-models that restricts to an ordinal rank on each T-model, and such that $\operatorname{dim} X(\mathcal{M})=$ $\operatorname{dim} X(\mathcal{N})$ for all $\mathcal{M} \vDash T, \mathcal{M}$-definable sets X, and elementary extensions \mathcal{N} of \mathcal{M}, is called an ordinal rank on T. In all cases of interest T defines dim in families. Note that when T is complete, an ordinal rank on T is essentially the same as an ordinal rank on the monster model of T.

We can equip any theory with a trivial ordinal rank by declaring $\operatorname{dim}(X)=1$ whenever X is infinite. Tame theories are generally equipped with a natural (often canonical) ordinal rank. Examples are \aleph_{0}-stable theories with Morley rank, superstable theories with U-rank, and supersimple theories with SU-rank.

Let X be a definable subset of M^{x} and A be an arbitrary subset of M^{x}. Then A is pseudodense in X if A intersects every nonempty definable $X^{\prime} \subseteq X$ such that $\operatorname{dim} X^{\prime}=\operatorname{dim} X$. We call X a pseudo-closure of A if $A \subseteq X$ and A is pseudo-dense in X. The following lemma collects a few easy facts about pseudo-denseness, the proofs of which we leave to the readers.

Lemma 8.1. Let X and X^{\prime} be \mathcal{M}-definable subsets of M^{x}, and let A be an arbitrary subset of M^{x}. Then:
(1) When X is finite, A is pseudo-dense in X if and only if $X \subseteq A$.
(2) If A is pseudo-dense in $X, X^{\prime} \subseteq X$, and $\operatorname{dim} X^{\prime}=\operatorname{dim} X$, then A is pseudo-dense in X^{\prime}.
(3) If $X^{1}, \ldots, X^{n} \subseteq X$ are \mathcal{M}-definable, with $\operatorname{dim} X^{i}=\operatorname{dim} X$ for all i, and

$$
\operatorname{dim} X \triangle\left(X^{1} \cup \ldots \cup X^{n}\right)<\operatorname{dim} X
$$

then A is pseudo-dense in X if and only if A is pseudo-dense in each X^{i}.
If in addition X is a pseudo-closure of A, then:
(4) $A \subseteq X^{\prime}$ implies $\operatorname{dim} X \leqslant \operatorname{dim} X^{\prime}$.
(5) If X^{\prime} is another pseudo-closure of A, then $\operatorname{dim}\left(X \triangle X^{\prime}\right)<\operatorname{dim} X=\operatorname{dim} X^{\prime}$.
(6) If $A \subseteq X^{\prime} \subseteq X$ then X^{\prime} is a pseudo-closure of A.

Suppose \mathcal{N}^{\prime} is an expansion of \mathcal{M}. Then \mathcal{M}^{\prime} is approximable over \mathcal{M} (with respect to dim) if every \mathcal{M}^{\prime}-definable set admits an \mathcal{M}-definable pseudo-closure.

The definition above admits an obvious generalization to theories. If T is equipped with an ordinal rank, we say that T^{\prime} is approximable over T if \mathcal{N}^{\prime} is approximable over $\mathcal{N}=\mathcal{N}^{\prime} \uparrow L$ for all $\mathcal{M}^{\prime} \vDash T^{\prime}$.

Proposition 8.1. Suppose $J \subseteq I$ is finite and $X_{i} \subseteq M^{x}$ is \mathcal{M}_{i}-definable for all $i \in J$. If there is an \mathcal{M}_{n}-definable set X in which each X_{i} is pseudo-dense, then $\left(X_{i}\right)_{i \in J}$ is not separated. The converse implication holds provided \mathcal{M}_{i} is approximable over \mathcal{M}_{n} for all $i \in J$.

Proof. For the first statement, suppose X is a nonempty \mathcal{M}_{n}-definable subset of M^{x} in which each X_{i} is pseudo-dense, and $\left(X^{i}\right)_{i \in J}$ is a family of \mathcal{M}_{\cap}-definable sets satisfying $X_{i} \subseteq X^{i}$ for each $i \in J$. As X_{i} is pseudo-dense in X and disjoint from $X \backslash X^{i}$, we have $\operatorname{dim} X \backslash X^{i}<$ $\operatorname{dim} X$ for all $i \in J$. Hence,

$$
\operatorname{dim} \bigcup_{i \in J}\left(X \backslash X^{i}\right)<\operatorname{dim} X
$$

Thus $\operatorname{dim} \bigcap_{i \in J} X^{i} \geqslant \operatorname{dim} X$, so $\bigcap_{i \in J} X^{i}$ is nonempty.
Now suppose \mathcal{M}_{i} is approximable over \mathcal{M}_{\cap} for each $i \in J$. Simplifying notation, we let $J=\{1, \ldots, n\}$. Suppose X_{i} is an \mathcal{M}_{i}-definable set for each $1 \leqslant i \leqslant n$, and suppose there is no \mathcal{M}_{n}-definable set Z in which all of the X_{i} are pseudo-dense. We show $\left(X_{i}\right)_{i=1}^{n}$ is separated by applying simultaneous transfinite induction to d_{1}, \ldots, d_{n} where d_{i} is the dimension of any pseudo-closure of X_{i}.

Let X^{i} be a pseudo-closure of X_{i} for each i and let

$$
Z=X^{1} \cap \ldots \cap X^{n}
$$

If $\operatorname{dim} X^{j}=-\infty$ for some $j \in J$, then X^{j} and Z are both empty, so $\left(X^{i}\right)_{i=1}^{n}$ separates $\left(X_{i}\right)_{i=1}^{n}$. If $\operatorname{dim} X^{i}=\operatorname{dim} Z$ for each i, then Lemma 8.1(2) shows each X_{i} is pseudo-dense in Z, contradiction. After re-arranging the X_{i} if necessary we suppose $\operatorname{dim} Z<\operatorname{dim} X^{1}$. Let $Y_{1}=X_{1} \cap Z$. As $\left(X_{i}\right)_{i=1}^{n}$ cannot be simultaneously pseudo-dense in an \mathcal{M}_{\cap}-definable set, it follows that $Y_{1}, X_{2}, \ldots, X_{n}$ cannot be simultaneously pseudo-dense in an \mathcal{M}_{n}-definable set. As the dimension of any pseudo-closure of Y_{1} is strictly less then the dimension of X^{1}, an application of the inductive hypothesis provides \mathcal{M}_{n}-definable sets Y^{1}, \ldots, Y^{n} separating $Y_{1}, X_{2}, \ldots, X_{n}$. It is easy to see

$$
Y^{1} \cup\left(X^{1} \backslash Z\right), Y^{2} \cap X^{2}, \ldots, Y^{n} \cap X^{n}
$$

separates X_{1}, \ldots, X_{n}, which completes the proof.

We say \mathcal{M}_{\cup} is approximately interpolative if whenever $J \subseteq I$ is finite, $X_{i} \subseteq M^{x}$ is $\mathcal{M}_{i^{-}}$ definable for $i \in J$, and $\left(X_{i}\right)_{i \in J}$ are simultaneously pseudo-dense in some nonempty $\mathcal{M}_{n^{-}}$ definable set, then $\bigcap_{i \in J} X_{i} \neq \varnothing$. As we will see in the later parts of Chapter 8, this definition is very close in spirit to the definitions of generic predicates in [11], generic automorphisms in [13], algebraically closed fields with independent valuations in [42], and algebraically closed fields with generic multiplicative circular order in [79].

The following corollary is an immediate consequence of Proposition 8.1.

Corollary 8.1. If \mathcal{M}_{\cup} is interpolative, then it is approximately interpolative. The converse also holds if \mathcal{M}_{i} is approximable over \mathcal{M}_{\cap} for each $i \in I$.

We say that T^{\prime} defines pseudo-denseness over T if for every L-formula $\varphi(x, y)$ and every L^{\prime}-formula $\varphi^{\prime}(x, z)$, there is an L^{\prime}-formula $\delta^{\prime}(y, z)$ such that if $\mathcal{M}^{\prime} \vDash T^{\prime}, b \in M^{y}$, and $c \in M^{z}$, then

$$
\varphi^{\prime}\left(\mathcal{M}^{\prime}, c\right) \text { is pseudo-dense in } \varphi\left(\mathcal{M}^{\prime}, b\right) \text { if and only if } \mathcal{N}^{\prime} \vDash \delta(b, c) .
$$

Theorem 8.1. Suppose dim is an ordinal rank on T_{n}. Then:
(1) If T_{i} defines pseudo-denseness over T_{\cap} for all $i \in I$, then the class of approximately interpolative T_{U}-models is elementary.
(2) If, in addition, T_{i} is approximable over T_{\cap} for all $i \in I$, then T_{\cup}^{*} exists.

Proof. We first prove (1). Let $\varphi_{\cap}(x, y)$ be an L_{\cap}-formula, let $J \subseteq I$ be finite, and let $\varphi_{i}\left(x, z_{i}\right)$ be an L_{i}-formula for each $i \in J$. Let $\delta_{i}\left(y, z_{i}\right)$ be an L_{i}-formula defining pseudodenseness for $\varphi_{\cap}(x, y)$ and $\varphi_{i}\left(x, z_{i}\right)$. For simplicity, we assume $J=\{1, \ldots, n\}$. Then we have the following axiom:

$$
\forall y, z_{1}, \ldots, z_{n}\left(\left(\bigwedge_{i=1}^{n} \delta_{i}\left(y, z_{i}\right)\right) \rightarrow \exists x \bigwedge_{i=1}^{n} \varphi_{i}\left(x, z_{i}\right)\right) .
$$

Then T_{\cup}, together with one such axiom for each choice of $\varphi_{\cap}(x, y), J$, and $\varphi_{i}\left(x, z_{i}\right)$ for $i \in J$ as above, axiomatizes the class of approximately interpolative T_{U}-models. Statement (2) follows from statement (1) and Corollary 8.1.

We refer to the axiomatization given in the proof of Theorem 8.1 as the pseudo-topological axioms.

Remark 8.1. We shall see that many examples where T_{\cup}^{*} exists can be viewed as special cases of Theorem 8.1. On the other hand, there are also interesting examples which are not covered by Theorem 8.1. In Proposition 9.7, we consider another sufficient condition for the existence of T_{\cup}^{*}, which does not assume any notion of dimension on T_{n}. Therefore, this lies completely outside the framework of Chapter 8. Below, we will revisit the example from Section 7.3. Here, there is a good notion of dimension on T_{n}, and T_{\cup}^{*} exists, but none of the T_{i} are approximable over T_{n}, so this is not a special case of Theorem 8.1.

Consider the setting of Section 7.3. Let dim be the canonical rank on the additive group of integers, which coincides with U-rank, acl-dimension, etc; see for example [20].

Proposition 8.2. Suppose $\left(Z ; 0,+,-, \leqslant_{p}\right)$ is an \aleph_{1}-saturated elementary extension of $\left(\mathbb{Z} ; 0,+,-, \leqslant_{p}\right.$). Then $\left(Z ; 0,+,-\varsigma_{p}\right)$ is not approximable over $(Z ; 0,+,-)$.

Proof. Let N be an element of Z such that $k \leqslant_{p} N$ for all $k \in \mathbb{Z}$. We show that

$$
E:=\left\{z \in Z \mid N \preccurlyeq_{p} z\right\}
$$

does not have a pseudo-closure in Z. We make use of the fact that a $(Z ; 0,+,-)$-definable subset of Z is one-dimensional if and only if it is infinite. Quantifier elimination for $(Z ;+, 0,1)$ implies that every $(Z ; 0,+,-)$-definable subset of Z is a finite union of sets of the form $(k Z+l) \backslash F$ for $k, l \in \mathbb{Z}$ and finite F. This is also a special case of Conant's quasi-coset decomposition.

Thus, if E has a pseudo-closure then E is pseudo-dense in $k Z+l$ for some $k, l \in \mathbb{Z}$. We fix $k \in \mathbb{Z}$ and $l \in\{0, \ldots, k-1\}$, and we show E is not pseudo-dense in $k Z+l$. As E is a subgroup of Z and $k Z+l$ is a coset of a subgroup, E and $k Z+l$ are disjoint when $l \neq 0$, so it suffices to treat the case when $l=0$. Then $E \subseteq k Z$. Let $k^{\prime}=p k$ so $v_{p}\left(k^{\prime}\right)=v_{p}(k)+1$. Then $E \subseteq k^{\prime} Z \subseteq k Z$. As $v_{p}\left(k^{\prime} m\right) \geqslant v_{p}(k)+1$ and $v_{p}\left(k^{\prime} m+k\right)=v_{p}(k)$ for all $m \in \mathbb{Z}, k^{\prime} Z+k$ is disjoint from $k^{\prime} Z$. Thus, $k^{\prime} Z+k$ is a one-dimensional definable subset of $k Z$ which is disjoint from E. Hence E is not pseudo-dense in $k Z$.

Remark 8.2. One can in fact show that $\left(\mathbb{Z} ; 0,+,-, \Im_{p}\right)$ is not approximable over $(\mathbb{Z} ; 0,+,-)$ by applying the "quasi-coset" decomposition of $(\mathbb{Z} ; 0,+,-)$-definable sets given in $[\mathbf{2 0}$, Theorem 4.10] to show that

$$
\left\{(k, l) \in \mathbb{Z}^{2}: k \leqslant_{p} l\right\}
$$

does not have a pseudo-closure in \mathbb{Z}^{2}. This presents some technical difficulties so we do not include it here. As every $\left(\mathbb{Z} ; 0,+,-, \leqslant_{p}\right)$-definable subset of \mathbb{Z} is $(\mathbb{Z} ; 0,+,-)$-definable [24], we must pass to an elementary extension to obtain a unary set without a pseudo-closure.

The following two issues deserve further investigation. First, when the class of approximately interpolative T_{U}-models is elementary, we could call the theory of this class the approximate interpolative fusion. Can we say anything interesting about the model theory of the approximate interpolative fusion in cases when not all the T_{i} are approximable over T_{n} ? Second, Theorem 8.1 tells us that defining pseudo-denseness is the key sufficient property for existence of the approximate interpolative fusion. We believe the converse may also be true when T_{n} defines dimension, but we currently do not have a proof.

8.2. Relativization to pseudo-cells

Sometimes it is enough to check the sufficient conditions of the previous section for a sufficiently rich collection \mathcal{C} of \mathcal{M}_{n}-definable sets. We call such a \mathcal{C} a pseudo-cell collection.

Suppose \mathcal{M} is an L-structure equipped with an ordinal rank dim and \mathcal{C} is a collection of \mathcal{M}-definable sets. We say that an \mathcal{M}-definable set X admits a \mathcal{C}-decomposition if there is a finite family $\left(X_{j}\right)_{j \in J}$ from \mathcal{C} such that

$$
\operatorname{dim}\left(X \triangle \bigcup_{j \in J} X^{j}\right)<\operatorname{dim} X
$$

An \mathcal{M}-definable set X admits a \mathcal{C}-patching if there is a finite family $\left(X^{j}, Y^{j}, f^{j}\right)_{j \in J}$ such that for all $j, j^{\prime} \in J$:
(1) Y^{j} is in \mathcal{C}.
(2) $f^{j}: X^{j} \rightarrow Y^{j}$ is an \mathcal{M}-definable bijection.
(3) And finally,

$$
\operatorname{dim}\left(X \triangle \bigcup_{j \in J} X^{j}\right)<\operatorname{dim} X .
$$

We say \mathcal{C} is a pseudo-cell collection for \mathcal{M} if either every \mathcal{M}-definable set admits a \mathcal{C} decomposition or dim is preserved under \mathcal{M}-definable bijections and every \mathcal{M}-definable set admits a \mathcal{C}-patching. Examples include the collection of irreducible varieties in an algebraically closed field and the collection of cells in an o-minimal structure.

The definition above naturally extends to theories. Let T be an L-theory equipped with an ordinal rank dim and \mathcal{C} a collection of definable sets in T-models. We say that \mathcal{C} is a pseudo-cell collection for T if for all $\mathcal{M} \vDash T, \mathcal{C} \cap \operatorname{Def}(\mathcal{M})$ is a pseudo-cell collection for \mathcal{M}.

Suppose dim is an ordinal rank on \mathcal{M}_{n} and \mathcal{C} is a collection of \mathcal{M}_{n}-definable sets. We say \mathcal{M}_{\cup} is \mathcal{C}-approximately interpolative if for all finite $J \subseteq I, X_{\cap} \in \mathcal{C}$, and $\left(X_{i}\right)_{i \in J}$, where X_{i} is \mathcal{M}_{i}-definable and pseudo-dense in X_{n}, we have $\bigcap_{i \in J} X_{i} \neq \varnothing$. Clearly, if \mathcal{M}_{\cup} is approximately interpolative then it is \mathcal{C}-approximately interpolative. The following proposition gives situations where the converse is true. We omit the straightforward proof.

Proposition 8.3. Suppose \mathcal{C} is a collection of pseudo-cells in \mathcal{M}_{n}. Then we have the following:
(1) \mathcal{M}_{\cup} is approximately interpolative if and only if it is \mathcal{C}-approximately interpolative.
(2) If moreover \mathcal{M}_{i} is approximable over \mathcal{M}_{n} for all $i \in I$, then \mathcal{M}_{\cup} is interpolative if and only if it is \mathcal{C}-approximately interpolative.

Let \mathcal{C} be a collection of definable sets in T-models. We say that T defines \mathcal{C}-membership if for every L-formula $\varphi(x, y)$ there is an L-formula $\gamma(y)$ such that for all $\mathcal{M} \vDash T$ and $b \in M^{y}$, $\varphi(\mathcal{M}, b)$ is in \mathcal{C} if and only if $\mathcal{M} \vDash \gamma(b)$.

We say that T^{\prime} defines pseudo-denseness over \mathcal{C} if for every L^{\prime}-formula $\varphi(x, y)$ and every L-formula $\varphi(x, z)$, there is an L^{\prime}-formula $\delta^{\prime}(y, z)$ such that if $\mathcal{N}^{\prime} \vDash T^{\prime}$ and $c \in M^{y}$ with $\varphi\left(\mathcal{M}^{\prime}, c\right) \in \mathcal{C}$, then
$\varphi^{\prime}\left(\mathcal{N}^{\prime}, b\right)$ is pseudo-dense in $\varphi\left(\mathcal{M}^{\prime}, c\right)$ if and only if $\mathcal{M}^{\prime} \vDash \delta^{\prime}(b, c)$.

Theorem 8.2. Suppose dim is an ordinal rank on T_{n}, \mathcal{C} is a collection of definable sets of T_{n}-models such that T_{n} defines \mathcal{C}-membership, and T_{i} defines pseudo-denseness over \mathcal{C} for $i \in I$. Then we have the following:
(1) The class of \mathcal{C}-approximately interpolative T_{\cup}-models is elementary.
(2) If \mathcal{C} is a pseudo-cell collection for T_{n}, then the class of approximately interpolative T_{\cup}-models is elementary.
(3) If, in addition, T_{i} is approximable over T_{n} for each $i \in I$, then the interpolative fusion exists.

Proof. We first prove statement (1). Let $\varphi_{\cap}(x, y)$ be an L_{\cap}-formula, let $J \subseteq I$ be finite, and let $\varphi_{i}\left(x, z_{i}\right)$ be an L_{i}-formula for each $i \in J$. Let $\gamma_{n}(y)$ be an L_{n}-formula defining \mathcal{C} membership for $\varphi_{\cap}(x, y)$ and $\delta_{i}\left(y, z_{i}\right)$ an L_{i}-formula defining pseudo-denseness over \mathcal{C} for $\varphi_{\cap}(x, y)$ and $\varphi_{i}\left(x, z_{i}\right)$ for each $i \in J$. For simplicity, we assume $J=\{1, \ldots, n\}$. Then we have the following axiom:

$$
\forall y, z_{1}, \ldots, z_{n}\left(\left(\gamma_{\cap}(y) \wedge \bigwedge_{i=1}^{n} \delta_{i}\left(y, z_{i}\right)\right) \rightarrow \exists x \bigwedge_{i=1}^{n} \varphi_{i}\left(x, z_{i}\right)\right)
$$

Then T_{\cup}, together with one axiom of the above form for each choice of $\varphi_{\cap}(x, y), J$, and $\varphi_{i}\left(x, z_{i}\right)$ for $i \in J$ as above, axiomatizes the class of \mathcal{C}-approximately interpolative T_{\cup}-models. Assertions (2) and (3) follow immediately from Proposition 8.3.

The axiomatization given in the proof of Theorem 8.2 is slightly different than that of Theorem 8.1. They are nevertheless very similar in spirit, so we also refer to the former as the pseudo-topological axioms.

Clearly, if T^{\prime} defines pseudo-denseness over T, then T^{\prime} defines pseudo-denseness over any collection \mathcal{C} of definable sets of T-models. The converse is true when the dimension is definable.

We say T defines dimension if for every ordinal α, and every L-formula $\varphi(x, y)$, there is an L-formula $\delta_{\alpha}(x, y)$ such that for all $\mathcal{M} \vDash T$ and $b \in M^{y}$

$$
\operatorname{dim} \varphi(\mathcal{M}, b)=\alpha \quad \text { if and only if } \quad \mathcal{M} \vDash \delta_{\alpha}(b)
$$

We leave the straightforward proof of the following proposition to the reader.
Proposition 8.4. Suppose \mathcal{C} is a collection of pseudo-cells, T defines \mathcal{C}-membership and dimension, and T^{\prime} defines pseudo-denseness over \mathcal{C}. Then T^{\prime} defines pseudo-denseness over T.

8.3. Tame topological base

If \mathcal{M} is o-minimal, then \mathcal{N}^{\prime} is approximable over \mathcal{M} if and only if the closure of every \mathcal{N}^{\prime} definable set is \mathcal{M}-definable. This equivalence only depends on two well-known facts from o-minimality. One of these is known as the frontier inequality, and we refer to the other as the residue inequality. We explore these issues in an abstract setting below.

A definable topology \mathcal{T} on \mathcal{M} consists of a topology \mathcal{T}_{x} on each M^{x}, for which there is an L-formula $\varphi(x, y)$ such that $\left\{\varphi(\mathcal{M}, a): a \in M^{y}\right\}$ is an open basis for \mathcal{T}_{x}. Note that we also obtain a definable topology on every structure elementarily equivalent to \mathcal{M}.

For the rest of Section 8.3, we suppose \mathcal{T} is a definable topology on \mathcal{M} and dim is an ordinal rank on $T=\operatorname{Th}(\mathcal{M})$, such that T defines dimension.

Let A be a subset of M^{x}. We denote by $\operatorname{cl}(A)$ the closure of A with respect to \mathcal{T}_{x}. The frontier of $A, \operatorname{fr}(A)$, is defined as $\operatorname{cl}(A) \backslash A$. Since \mathcal{T} is a definable topology, the interior, closure, and frontier of a definable subset of M^{x} are definable. We say that A has nonempty interior in $X \subseteq M^{x}$ if there is an open $U \subseteq M^{x}$ such that $U \cap X \subseteq A$.

In general there need be no connection between pseudo-denseness and \mathcal{T}-denseness. We give conditions under which the two naturally relate. We say \mathcal{M} satisfies the frontier inequality if

$$
\operatorname{dim} \operatorname{fr}(X)<\operatorname{dim} X \quad \text { for all definable } X
$$

This is a strong assumption which in particular implies, by a straight-forward induction on dimension, that every definable set is a Boolean combination of open definable sets.

Lemma 8.2. Suppose \mathcal{M} satisfies the frontier inequality and $X^{\prime} \subseteq X$ are \mathcal{M}-definable sets. If $\operatorname{dim} X^{\prime}=\operatorname{dim} X$, then X^{\prime} has nonempty interior in X.

Proof. If X^{\prime} has empty interior in X, then $X \backslash X^{\prime}$ is dense in X, and so $X^{\prime} \subseteq X \subseteq \operatorname{cl}\left(X \backslash X^{\prime}\right)$. In particular, $X^{\prime} \subseteq \operatorname{fr}\left(X \backslash X^{\prime}\right)$. The frontier inequality implies $\operatorname{dim} X^{\prime}<\operatorname{dim} X \backslash X^{\prime} \leqslant$ $\operatorname{dim} X$.

Lemma 8.3. The following are equivalent:
(1) \mathcal{M} satisfies the frontier inequality.
(2) If $A \subseteq M^{x}$ is dense in a definable $X \subseteq M^{x}$ then A is pseudo-dense in X.

Proof. Suppose that \mathcal{M} satisfies the frontier inequality and that $A \subseteq M^{x}$ is dense in a definable set $X \subseteq M^{x}$. Suppose $X^{\prime} \subseteq X$ is definable and $\operatorname{dim} X^{\prime}=\operatorname{dim} X$. Lemma 8.2 implies that X^{\prime} has nonempty interior in X. Thus A intersects X^{\prime}. It follows that A is pseudo-dense in X.

Conversely, assume (2), and let $X \subseteq M^{x}$ be definable. Since X is dense in $\operatorname{cl}(X), X$ is also pseudo-dense in $\operatorname{cl}(X)$. But since X does not intersect $\operatorname{fr}(X)$, we have $\operatorname{dim} \operatorname{fr}(X)<\operatorname{dim} \operatorname{cl}(X)$. It follows that $\operatorname{dim} X=\operatorname{dim} \operatorname{cl}(X)$, so the frontier inequality holds.

The converse to (2) above almost always fails for general definable sets X. For example, if $A \subseteq M^{x}$ is an infinite definable set and $p \in M^{x}$ does not lie in $\operatorname{cl}(A)$, then A is pseudo-dense in $X=A \cup\{p\}$ but not dense in X. However, the converse to (2) does hold for certain definable sets, which we call dimensionally pure.

Let $X \subseteq M^{x}$ be definable. Given $p \in X$, we define

$$
\operatorname{dim}_{p} X=\min \{\operatorname{dim}(U \cap X): U \text { is a definable neighborhood of } p\} .
$$

We say that X is dimensionally pure if $\operatorname{dim}_{p} X=\operatorname{dim} X$ for all $p \in X$. Equivalently, X is dimensionally pure if and only if $\operatorname{dim} U=\operatorname{dim} X$ for all $U \subseteq X$ such that U is definable, nonempty, and open in X.

Lemma 8.4. Suppose $X \subseteq M^{x}$ is definable. Then the following are equivalent:
(1) X is dimensionally pure.
(2) If a subset A of M^{x} is pseudo-dense in X, then A is dense in X.

Proof. Suppose X is not dimensionally pure. Let U be a definable nonempty open subset of X such that $\operatorname{dim} U<\operatorname{dim} X$. Then $X \backslash U$ is pseudo-dense in X and not dense in X.

Suppose X is dimensionally pure and A is pseudo-dense in X. Suppose U is a nonempty open subset of X. Then there is a definable nonempty open subset U^{\prime} of U. Then $\operatorname{dim} U^{\prime}=$ $\operatorname{dim} X$, so A intersects U^{\prime}. Hence A is dense in X.

The following proposition gives another characterization of dimensionally pure sets. We will not use this characterization, so we leave its proof to the reader.

Proposition 8.5. Suppose $X \subseteq M^{x}$ is definable. If X is dimensionally pure, then there are no definable sets X^{1} and X^{2} such that $X=X^{1} \cup X^{2}, X^{1}$ and X^{2} are closed in X, neither X^{1} nor X^{2} contains the other, and $\operatorname{dim} X^{1} \neq \operatorname{dim} X^{2}$. If \mathcal{M} satisfies the frontier inequality, then the converse holds.

For a definable $X \subseteq M^{x}$, we define the essence of X, es (X), and the residue of $X, \operatorname{rs}(X)$:

$$
\begin{aligned}
& \operatorname{es}(X)=\left\{p \in X: \operatorname{dim}_{p} X=\operatorname{dim} X\right\} \\
& \operatorname{rs}(X)=\left\{p \in X: \operatorname{dim}_{p} X<\operatorname{dim} X\right\}
\end{aligned}
$$

As \mathcal{T}_{x} admits a definable basis, and T defines dimension, it follows that es (X) and $\operatorname{rs}(X)$ are definable.

We say that \mathcal{M} satisfies the residue inequality if

$$
\operatorname{dim} \operatorname{rs}(X)<\operatorname{dim} X \quad \text { for all definable } X
$$

Note that the residue inequality implies that all definable discrete sets are finite.
Lemma 8.5. If \mathcal{M} satisfies the residue inequality, then for all definable $X \subseteq M^{x}$, $\operatorname{es}(X)$ is dimensionally pure.

Proof. As $X=\operatorname{rs}(X) \cup \operatorname{es}(X)$ and $\operatorname{dim} r s(X)<\operatorname{dim} X$, we have $\operatorname{dim} \operatorname{es}(X)=\operatorname{dim}(X)$. Now suppose $p \in \operatorname{es}(X)$ and U is a definable neighborhood of p. Then we have $\operatorname{dim}_{p} X=\operatorname{dim} X$ and $\operatorname{dim}(U \cap X)=\operatorname{dim} X$. But

$$
(U \cap X)=(U \cap \operatorname{rs}(X)) \cup(U \cap \operatorname{es}(X)),
$$

and $\operatorname{dim}(U \cap \mathrm{rs}(X)) \leqslant \operatorname{dimrs}(X)<\operatorname{dim} X$, so $\operatorname{dim}(U \cap \operatorname{es}(X))=\operatorname{dim} X=\operatorname{dimes}(X)$. Hence $\operatorname{dim}_{p} \operatorname{es}(X)=\operatorname{dim} \operatorname{es}(X)$, as was to be shown.

We will not use the following proposition, but we include it here, since it provides additional motivation for the residue inequality.

Proposition 8.6. \mathcal{M} satisfies the residue inequality if and only if every definable set is a finite disjoint union of dimensionally pure definable sets.

Proof. Suppose first that \mathcal{M} satisfies the residue inequality. Let $X \subseteq M^{x}$ be definable. We argue by induction on $\operatorname{dim} X$. If $\operatorname{dim} X=-\infty$, then $X=\varnothing$ and the conclusion holds vacuously. Otherwise, X is the disjoint union of es (X) and $\mathrm{rs}(X)$. By Lemma 8.5 , es (X) is dimensionally pure, and by the residue inequality $\operatorname{dim} \operatorname{rs}(X)<\operatorname{dim} X$, so by induction $\operatorname{rs}(X)$ is a finite disjoint union of dimensionally pure definable sets.

Conversely, for any definable set X, suppose that X is a disjoint union of dimensionally pure definable sets Y_{1}, \ldots, Y_{m}. We will show that $\operatorname{dim} \operatorname{rs}(X)<\operatorname{dim} X$. We may assume without loss of generality that $1 \leqslant j \leqslant m$ is such that

$$
\operatorname{dim} Y_{k}=\operatorname{dim} X \text { when } k \leqslant j \quad \text { and } \quad \operatorname{dim} Y_{k}<\operatorname{dim} X \text { when } k>j .
$$

Let $p \in \operatorname{rs}(X)$, and suppose for contradiction that $p \in Y_{k}$ for some $k \leqslant j$. Then since Y_{k} is dimensionally pure, $\operatorname{dim}_{p} Y_{k}=\operatorname{dim} Y_{k}=\operatorname{dim} X$, so for any definable neighborhood U of p,

$$
\operatorname{dim} X=\operatorname{dim}\left(U \cap Y_{k}\right) \leqslant \operatorname{dim}(U \cap X) \leqslant \operatorname{dim} X
$$

So $\operatorname{dim}_{p} X=\operatorname{dim} X$, contradicting the fact that $p \in \operatorname{rs}(X)$. Thus $\operatorname{rs}(X) \subseteq \bigcup_{k>j} Y_{k}$, and $\operatorname{dim} \mathrm{rs}(X) \leqslant \operatorname{dim} \bigcup_{k>j} Y_{k}<\operatorname{dim} X$.

We say \mathcal{T} is dim-compatible if \mathcal{M} satisfies both the frontier inequality and the residue inequality. For the remainder of Section 8.3, dim is an ordinal rank on $T=\operatorname{Th}(\mathcal{M})$
such that T defines dimension, and \mathcal{T} is a dim-compatible definable topology on \mathcal{M}. Definability of the dimension and the topology ensure that dim-compatibility is an elementary property, i.e., the topology on any model of T is dim-compatible.

Proposition 8.7. Suppose $X \subseteq M^{x}$ is definable and $A \subseteq M^{x}$. Then A is pseudo-dense in X if and only if A is dense in es (X).

Proof. Since $\operatorname{dim} \operatorname{rs}(X)<\operatorname{dim} X$ and $\operatorname{dimes}(X)=\operatorname{dim} X, A$ is pseudo-dense in X if and only if A is pseudo-dense in es (X). The equivalence then follows from Lemma 8.3, Lemma 8.4, and Lemma 8.5.

Proposition 8.8. Any expansion T^{\prime} of T defines pseudo-denseness over T.
Proof. Suppose \mathcal{N} is a T-model and \mathcal{N}^{\prime} is a T^{\prime}-model expanding \mathcal{M}. Suppose $\left(X_{b}\right)_{b \in M^{y}}$ and $\left(X_{c}^{\prime}\right)_{c \in M^{z}}$ are families of subsets of M^{x}, which are \mathcal{M}-definable and \mathcal{N}^{\prime}-definable, respectively. By Proposition 8.7, X_{c}^{\prime} is pseudo-dense in X_{b} if and only if X_{c}^{\prime} is dense in es $\left(X_{b}\right)$.

Using definability of the topology and dimension, essences of definable sets are uniformly definable, i.e., there is an \mathcal{M}-definable family $\left(Y_{b}\right)_{b \in M^{y}}$ such that $Y_{b}=\operatorname{es}\left(X_{b}\right)$ for all $b \in M^{y}$. Thus X_{c}^{\prime} is pseudo-dense in X_{b} if and only if X_{c}^{\prime} is dense in Y_{b}. And using definability of the topology, the set of all (b, c) such that X_{c}^{\prime} is dense in Y^{b} is definable.

Proposition 8.9. Suppose \mathcal{N}^{\prime} expands \mathcal{M}. Then \mathcal{N}^{\prime} is approximable over \mathcal{M} if and only if the closure of any \mathcal{M}^{\prime}-definable set is \mathcal{M}-definable.

Proof. Suppose that the closure of any \mathcal{N}^{\prime}-definable set is \mathcal{M}-definable. Then for any \mathcal{M}^{\prime}-definable $X \subseteq M^{x}, \operatorname{cl}(X)$ is a pseudo-closure of X by Lemma 8.3.

Conversely, suppose \mathcal{N}^{\prime} is approximable over \mathcal{M} and $X^{\prime} \subseteq M^{x}$ is \mathcal{N}^{\prime}-definable. Let X be a pseudo-closure of X^{\prime}. We apply induction to the dimension of X. If $\operatorname{dim} X=-\infty$, then X^{\prime} is empty and trivially \mathcal{M}-definable. Now suppose $\operatorname{dim} X \geqslant 0$. We have

$$
\operatorname{cl}\left(X^{\prime}\right)=\operatorname{cl}\left(X^{\prime} \cap \operatorname{es}(X)\right) \cup \operatorname{cl}\left(X^{\prime} \cap \operatorname{rs}(X)\right)
$$

Since X^{\prime} is pseudo-dense in X, X^{\prime} is dense in es (X) by Proposition 8.7. It follows that $\operatorname{cl}\left(X^{\prime} \cap \operatorname{es}(X)\right)=\operatorname{cl}(\operatorname{es}(X))$, which is \mathcal{M}-definable. As $\left(X^{\prime} \cap \operatorname{rs}(X)\right) \subseteq \operatorname{rs}(X)$, any pseudoclosure of $\left(X^{\prime} \cap \operatorname{rs}(X)\right)$ has dimension at most $\operatorname{dim} \operatorname{rs}(X)<\operatorname{dim} X$. So $\operatorname{cl}\left(X^{\prime} \cap \operatorname{rs}(X)\right)$ is \mathcal{M}-definable by induction. Thus $\operatorname{cl}\left(X^{\prime}\right)$ is a union of two \mathcal{M}-definable sets and is therefore \mathcal{M}-definable.

We conclude this section by giving examples of structures with compatible definable topologies. In each case \mathcal{T} and dim are canonical, so we do not describe them in detail. And in each case the existence of dimensionally pure decompositions (and hence the residue inequality,
by Proposition 8.6) follows from the appropriate cell decomposition or "weak cell decomposition" result. In different settings, cells (or "weak cells") have different definitions, but they are easily seen to be dimensionally pure in each case.

The most familiar case is when \mathcal{M} is an o-minimal expansion of a dense linear order, see [84]. Similarly, it follows from [76, Proposition 4.1,4.3] that if \mathcal{M} is a dp-minimal expansion of a divisible ordered abelian group then the usual order topology is compatible. This covers the case when \mathcal{M} is an expansion of an ordered abelian group with weakly o-minimal theory. It is shown in Johnson's thesis [43] that a dp-minimal, non strongly minimal, expansion of a field admits a definable field topology and it is shown in [76] that this topology is compatible. It follows in particular that a C-minimal expansion of an algebraically closed field, or a P-minimal expansion of a p-adically closed field admits a compatible definable topology. It was previously shown in [22] that P-minimal expansions of p-adically closed fields satisfy the frontier inequality and admit dimensionally pure decompositions.

We say that T is an open core of T^{\prime} if the closure of every T^{\prime}-definable set in every T^{\prime}-model \mathcal{M}^{\prime} is $\mathcal{M}=\mathcal{M}^{\prime} \mid L$ definable. Proposition 8.8 and Proposition 8.9 together yield the following theorem.

Theorem 8.3. If T_{n} admits an ordinal rank dim and a dim-compatible definable topology, and T_{n} is an open core of T_{i} for each $i \in I$, then T_{\cup}^{*} exists. In particular, if T_{n} is an o-minimal expansion of a dense linear order or a p-minimal expansion of a p-adically closed field, and T_{\cap} is an open core of T_{i} for each $i \in I$, then T_{\cup}^{*} exists.

We give a concrete example of Theorem 8.3. Suppose T_{n} is a complete and model complete o-minimal theory that extends the theory of ordered abelian groups. For each $i \in I$, let T_{i} be the theory of a T-model \mathcal{N} equipped with a unary predicate R_{i} defining a dense elementary substructure of \mathcal{N}. Then T_{i} is model complete by [83, Thm 1] and T_{n} is an open core of T_{i} [27, Section 5]. Applying Theorem 8.3, we see that the theory T_{\cup} of a T-model \mathcal{N} equipped with a family $\left(R_{i}\right)_{i \in I}$ of unary predicates defining dense elementary substructures of \mathcal{N} has a model companion.

8.4. \aleph_{0}-stable base

We assume throughout this section that T is \aleph_{0}-stable and dim is Morley rank on T. We write mult for Morley degree on T.

Suppose X^{1} and X^{2} are \mathcal{M}-definable subsets of M^{x}. Then X^{1} is almost a subset of X^{2}, if

$$
\operatorname{dim}\left(X^{1} \backslash X^{2}\right)<\operatorname{dim}\left(X^{1}\right)
$$

and X^{1} is almost equal to X^{2}, if X^{1} is almost a subset of X^{2} and vice versa. An \mathcal{M} definable subset X of M^{x} is almost irreducible if whenever $X=X^{1} \cup X^{2}$ for \mathcal{M}-definable X^{1} and X^{2}, we have X is almost equal to X^{1} or to X^{2}. Any \mathcal{M}-definable set of Morley degree one is almost irreducible, and the converse holds when $\operatorname{Th}(\mathcal{M})$ defines Morley rank or when \mathcal{M} is \aleph_{0}-saturated.

The following easy proposition is the main advantage of assuming that T_{n} is \aleph_{0}-stable in our setting.

Lemma 8.6. Suppose A is a subset of M^{x}. Then an \mathcal{M}-definable set $X \subseteq M^{x}$ is a pseudoclosure of A if and only if $A \subseteq X$ and

$$
(\operatorname{dim} X, \operatorname{mult} X) \leqslant_{\operatorname{Lex}}\left(\operatorname{dim} X^{\prime}, \operatorname{mult} X^{\prime}\right)
$$

for all \mathcal{M}-definable $X^{\prime} \subseteq M^{x}$ with $A \subseteq X^{\prime}$.
Proof. By standard properties of Morley rank and degree in \aleph_{0}-stable theories, for any \mathcal{M} definable X and X^{\prime}, if $\left(\operatorname{dim} X^{\prime}, \operatorname{mult} X^{\prime}\right)<_{\text {Lex }}(\operatorname{dim} X, \operatorname{mult} X)$, then $\operatorname{dim}\left(X \backslash X^{\prime}\right)=\operatorname{dim} X$. If $X^{\prime} \subseteq X$, then the converse is true.

Let X be a pseudo-closure of A, so $A \subseteq X$, and suppose for contradiction that there is some \mathcal{M}-definable $X^{\prime} \subseteq M^{x}$ with $A \subseteq X^{\prime}$ and $\left(\operatorname{dim} X^{\prime}\right.$, mult $\left.X^{\prime}\right)<_{\text {Lex }}(\operatorname{dim} X$, mult $X)$. Then $\operatorname{dim}\left(X \backslash X^{\prime}\right)=\operatorname{dim} X$, but $A \cap\left(X \backslash X^{\prime}\right)=\varnothing$, contradicting the fact that A is pseudo-dense in X.

Conversely, suppose $A \subseteq X$ and $(\operatorname{dim} X, \operatorname{mult} X)$ is minimal in the lexicographic order among \mathcal{M}-definable sets containing A. Then for any \mathcal{M}-definable $X^{\prime} \subseteq X$ with $\operatorname{dim} X^{\prime}=$ $\operatorname{dim} X,\left(\operatorname{dim}\left(X \backslash X^{\prime}\right), \operatorname{mult}\left(X \backslash X^{\prime}\right)\right)<_{\text {Lex }}(\operatorname{dim} X, \operatorname{mult} X)$. It follows that $A \nsubseteq\left(X \backslash X^{\prime}\right)$, so $A \cap X^{\prime} \neq \varnothing$. Hence X is a pseudo-closure of A.

The preceding lemma has the following important immediate consequence for the approximability condition in this setting.

Proposition 8.10. Every $A \subseteq M^{x}$ has a pseudo-closure. Hence every expansion of \mathcal{M} is approximable over \mathcal{M} and every expansion of T is approximable over T.

Proof. This is an immediate consequence of Lemma 8.6, using the fact that the lexicographic order on pairs $(\operatorname{dim} X$, mult $X)$ is a well-order.

Corollary 8.2. If $\operatorname{Th}\left(\mathcal{M}_{\cap}\right)$ is \aleph_{0}-stable and dim is Morley rank, then \mathcal{M}_{\cup} is interpolative if and only it is approximately interpolative.

As a demonstration of the material developed so far, we will revisit the example of difference fields as presented in Section 7.7. Suppose K is a model of ACF. We say that $V \subseteq K^{x}$ is a
irreducible if it is K-definable and irreducible with respect to the Zariski topology on K, or equivalently, V is a quasi-affine variety.

Suppose K and K^{\prime} are algebraically closed fields and $f: K \rightarrow K^{\prime}$ is a field isomorphism. Then ($K, K^{\prime} ; f$) is a model of the theory T_{1} (or equivalently of T_{2}) in Corollary 7.3. As in the proof of Proposition $7.1,\left(K, K^{\prime} ; f\right)$ is isomorphic to $\left(K, K ; \mathrm{id}_{K}\right)$ via the map $\left(\mathrm{id}_{K}, f^{-1}\right)$. If $Z \subseteq K^{m} \times\left(K^{\prime}\right)^{n}$, set

$$
\left(\operatorname{id}_{K}, f^{-1}\right)(Z)=\left\{\left(a, f^{-1}(b)\right) \mid(a, b) \in Z\right\} \subseteq K^{m+n}
$$

Then $Z \subseteq K^{m} \times\left(K^{\prime}\right)^{n}$ is $\left(K, K^{\prime} ; f\right)$-definable if and only if $\left(\mathrm{id}_{K}, f^{-1}\right)(Z)$ is K-definable. Hence, we can liberally import concepts and results from definable sets in ACF to definable sets in $\left(K, K^{\prime} ; f\right)$. In particular, we say Z is irreducible if $\left(\mathrm{id}_{K}, f^{-1}\right)(Z)$ is irreducible. Likewise, we say Z is Zariski-closed in Z^{\prime} if $\left(\operatorname{id}_{K}, f^{-1}\right)(Z)$ is Zariski-closed in $\left(\operatorname{id}_{K}, f^{-1}\right)\left(Z^{\prime}\right)$.

The remark below follows easily from quantifier elimination in ACF.
Remark 8.3. Suppose K and K^{\prime} are algebraically closed fields.
(1) Every (K, K^{\prime})-definable subset of $K^{m} \times\left(K^{\prime}\right)^{n}$ is a finite union of sets of the form $V \times V^{\prime}$ where $V \subseteq K^{m}$ is an irreducible K-definable set and $V^{\prime} \subseteq\left(K^{\prime}\right)^{m}$ is an irreducible K^{\prime}-definable set.
(2) If $f: K \rightarrow K^{\prime}$ is a field isomorphism, then every $\left(K, K^{\prime} ; f\right)$-definable set is a finite union of irreducible ($K, K^{\prime} ; f$)-definable sets.
(3) If $V \subseteq K^{m}$ is an irreducible K-definable set, and $V \subseteq\left(K^{\prime}\right)^{n}$ is an irreducible K^{\prime}-definable set, then $V \times V^{\prime}$ is an irreducible ($K, K^{\prime} ; f$)-definable set.

Recall that T_{n} is the theory of pairs (K, K^{\prime}), where K and K^{\prime} are algebraically closed fields. It is easy to see that this theory is \aleph_{0}-stable. We write dim for Morley rank on $\left(K, K^{\prime}\right)$ and mult for Morley degree on $\left(K, K^{\prime}\right)$. The following facts are easy to verify.

Remark 8.4. If $V \subseteq K^{m}$ is $\left(K, K^{\prime}\right)$-definable, then $\operatorname{dim}(V)$ and mult(V) are equal to the dimension and multiplicity of V considered as a K-definable set relative to ACF, and similarly for $V^{\prime} \subseteq\left(K^{\prime}\right)^{n}$. If $V \subseteq K^{m}$ is K-definable and $V \subseteq\left(K^{\prime}\right)^{m^{\prime}}$ is K^{\prime}-definable, then $\operatorname{dim}\left(V \times V^{\prime}\right)=\operatorname{dim}(V)+\operatorname{dim}\left(V^{\prime}\right)$. If V and V^{\prime} are irreducible, then $V \times V^{\prime}$ is irreducible and $\operatorname{mult}\left(V \times V^{\prime}\right)=1$. The collection of all such irreducible sets $V \times V^{\prime}$ is a pseudo-cell collection for T_{n}.

These observations lead immediately to a characterization of pseudo-denseness.
Lemma 8.7. Suppose $V \subseteq K^{x}$ and $V^{\prime} \subseteq\left(K^{\prime}\right)^{y}$ are irreducible, π and π^{\prime} are the coordinate projections from $V \times V^{\prime}$ to V and V^{\prime}, and $Z \subseteq V \times V^{\prime}$ is an irreducible definable set in
($K, K^{\prime} ; f$). Then Z is pseudo-dense in $V \times V^{\prime}$ if and only if $\pi(Z)$ is Zarski-dense in V and $\pi^{\prime}(Z)$ is Zarski-dense in V^{\prime}.

Proof. Suppose $\pi(Z)$ is Zariski-dense in V and $\pi^{\prime}(Z)$ is Zariski-dense in V^{\prime}. Using Remark 8.3, Z has a pseudo closure of the form

$$
\left(W_{1} \times W_{1}^{\prime}\right) \cup \ldots \cup\left(W_{n} \times W_{n}^{\prime}\right)
$$

where W_{i} is an irreducible K-definable subset of V, and W_{i}^{\prime} is an irreducible K^{\prime}-definable subset of V^{\prime} for $i \in\{1, \ldots, n\}$. Using Lemma 8.6 and replacing the relevant sets with their Zariski-closures in V and V^{\prime} if necessary, we can arrange that W_{i} is closed in V, W_{i}^{\prime} is closed in V^{\prime}, and hence $W_{i} \times W_{i}^{\prime}$ is closed in $V \times V^{\prime}$ for $i \in\{1, \ldots, n\}$. As Z is irreducible, we must have

$$
Z \subseteq W_{i} \times W_{i}^{\prime} \quad \text { for a single } i \in\{1, \ldots, n\}
$$

Thus Z has a pseudo-closure of the form $W \times W^{\prime}$ with $W \subseteq V$ and $W^{\prime} \subseteq V^{\prime}$ irreducible. As $\pi(Z) \subseteq W$, and $\pi^{\prime}(Z) \subseteq W^{\prime}, W$ is Zariski-dense in V and W^{\prime} is Zariski-dense in V^{\prime}. Applying Remark 8.4, we get $\operatorname{dim}\left(W \times W^{\prime}\right)=\operatorname{dim}\left(V \times V^{\prime}\right)$. Since mult $\left(V \times V^{\prime}\right)=1$, it follows from Lemma 8.6 that $V \times V^{\prime}$ is a pseudo-closure of Z. In particular, Z is pseudo-dense in $V \times V^{\prime}$.

Now suppose Z is pseudo-dense in $V \times V^{\prime}$. Let $W \subseteq V$ be a pseudo-closure of $\pi(Z)$, and let $W^{\prime} \subseteq V^{\prime}$ be a pseudo-closure of $\pi^{\prime}(Z)$. As $V \times V^{\prime}$ is a pseudo-closure of Z, we must have $\operatorname{dim}\left(V \times V^{\prime}\right) \leqslant \operatorname{dim}\left(W \times W^{\prime}\right)$. This forces $\operatorname{dim} W=\operatorname{dim} V$ and $\operatorname{dim} W^{\prime}=\operatorname{dim} V^{\prime}$. Since V and V^{\prime} are irreducible, $\operatorname{mult}(V)=\operatorname{mult}\left(V^{\prime}\right)=1$. Applying Lemma 8.6, $\pi(Z)$ is pseudo-dense in V, and $\pi^{\prime}(Z)$ is pseudo-dense in V^{\prime}. Since V and V^{\prime} are irreducible, $\pi(Z)$ is Zariski-dense in V and $\pi^{\prime}(Z)$ is Zariski-dense in V^{\prime}, as desired.

Suppose K is an algebraically closed field and σ is an automorphism of K. We say that σ is a generic automorphism if for all irreducible K-definable sets $V \subseteq K^{m}$ and $Z \subseteq V \times \sigma(V)$ such that the projections of Z onto V and $\sigma(V)$ are Zariski-dense in V and $\sigma(V)$ respectively, we can find $a \in V$ such that

$$
(a, \sigma(a)) \in Z
$$

It is well known that $(K ; \sigma) \vDash$ ACFA if and only if $K \vDash \mathrm{ACF}$ and σ is a generic automorphism. This description of models of ACFA is often referred to as Hrushovksi's geometric characterization/axioms [56]. The following proposition clarifies the relationship between this and our pseudo-topological characterization/axioms.

Proposition 8.11. Suppose K is an algebraically closed field and σ is an automorphism of K. Then the following statements are equivalent:
(1) σ is a generic automorphism.
(2) With $I=\{1,2\},\left(K, K ; \operatorname{id}_{K}\right)$ viewed as an L_{1}-structure, and $(K, K ; \sigma)$ viewed as an L_{2} structure for L_{1} and L_{2} as in Corollary 7.3, the L_{\cup}-structure $\left(K, K ; \mathrm{id}_{K}, \sigma\right)$ is approximately interpolative.

Proof. We first show the backward direction. Suppose (2) holds, and let V and Z be as in the definition of a generic automorphism. Set $V^{\prime}=\sigma(V)$. Applying Lemma 8.7, we find that Z as a ($K, K ; \mathrm{id}_{K}$)-definable set is pseudo-dense in $V \times V^{\prime}$. Also by Lemma 8.7, $\{(a, \sigma(a)): a \in K\}$ as a $(K, K ; \sigma)$-definable set is pseudo-dense in $V \times V^{\prime}$. Therefore $Z \cap$ $\{(a, \sigma(a)): a \in K\} \neq \varnothing$ by (2), which is the desired conclusion.

Conversely, suppose (1) holds. By Remark 8.4, (K, K)-definable sets of the form $V \times V^{\prime}$ with V and V^{\prime} irreducible form a pseudo-cell collection. Hence, it suffices to fix V and V^{\prime}, and show that $X \cap Y \neq \varnothing$ whenever X is a $\left(K, K ; \operatorname{id}_{K}\right)$-definable set, Y is a $(K, K ; \sigma)$-definable set, and X and Y are each pseudo-dense in $V \times V^{\prime}$. Using Remark 8.3, we can reduce to the case when X and Y are irreducible. Let $Y^{*}=\left(\operatorname{id}_{K}, \sigma^{-1}\right)(Y)$. Our job is to show that there is $(a, b) \in V \times V^{\prime}$ with $(a, b) \in X$ and $\left(a, \sigma^{-1}(b)\right) \in Y^{*}$. By Lemma 8.7, we have that the projections of Y^{*} and X onto V, of Y^{*} onto $\sigma^{-1}\left(V^{\prime}\right)$, and of X onto V^{\prime} have Zariski-dense image. Using generic flatness (see [32] or [61]), we can arrange that these maps are flat by shrinking X, Y^{*}, V, and V^{\prime} if necessary. Let $Y^{*} \times_{V} X$ be the fiber product of Y^{*} and X over V. Then

$$
Y^{*} \times_{V} X \subseteq\left(V \times \sigma^{-1}\left(V^{\prime}\right)\right) \times_{V}\left(V \times V^{\prime}\right)=V \times \sigma^{-1}\left(V^{\prime}\right) \times V^{\prime}
$$

As flatness is preserved under base-change and composition, the obvious maps from $Y^{*} \times_{V} X$ to $\sigma^{-1}\left(V^{\prime}\right)$ and to V^{\prime} are flat. Let \tilde{Z} be an irreducible component of $Y^{*} \times_{V} X$ and Z the image of \tilde{Z} in $\sigma^{-1}(V) \times V^{\prime}$. As flat maps are open [35, Exercise III.9.1], the image of the projections of \tilde{Z} and hence of Z onto $\sigma^{-1}\left(V^{\prime}\right)$ and onto V^{\prime} contain Zariski-open subsets of $\sigma^{-1}\left(V^{\prime}\right)$ and V^{\prime} respectively. By $(1), Z$ contains a point of the form $\left(\sigma^{-1}(b), b\right)$. Hence, there is a point of the form $\left(a, \sigma^{-1}(b), b\right)$ in $Y^{*} \times_{V} X$. This implies that $\left(a, \sigma^{-1}(b)\right)$ is in Y^{*} and (a, b) is in X, which is our desired conclusion.

Proposition 8.12 below, combined with Theorem 7.9, allows us to recover the fact that the theory of difference fields has a model companion.

Proposition 8.12. Let T_{1} and T_{2} be as in Corollary 7.3. Then T_{\cup}^{*} exists.
Proof. By Proposition 7.1, T_{1} and T_{2} are bi-interpretable with ACF, so in particular they are \aleph_{0}-stable. It follows that T_{n} is also \aleph_{0}-stable, so T_{1} and T_{2} are automatically approximable over $T_{n} . T_{1}$ and T_{2} also define pseudo-denseness over T_{n}, using Lemma 8.7 and the fact that ACF defines dimension and irreducibility. Thus T_{\cup}^{*} exists by Theorem 8.1.

Remark 8.5. Note that the proof of Proposition 8.12 does not use Proposition 8.11. It follows from Corollary 7.3 that $(K ; \sigma) \vDash$ ACFA if and only if $\left(K, K ; \operatorname{id}_{K}, \sigma\right) \vDash T_{\uplus}^{*}$ where T_{\uplus}^{*} is as in Proposition 8.12. Combining with the fact the $(K ; \sigma) \vDash$ ACFA if and only if σ is a generic automorphism, and the fact that the models of T_{\cup}^{*} are the approximately interpolative models of T_{U}, we get an alternative proof of Proposition 8.11.

The proof we gave for Proposition 8.11 is purely at the level of structures and not theories. This is technically harder but done to make a point: In addition to recovering the fact that various theories in the literature have a model companion, the material we develop in this section is the common abstraction of the proofs in the literature that these theories have model companions.

Having finished our discussion of ACFA, we now return to the general case. In Proposition 8.2, we gave a concrete example of an expansion of $T=\operatorname{Th}(\mathbb{Z} ; 0,+,-)$ which is not approximable over T. It is well known that T is superstable but not \aleph_{0}-stable, so this demonstrates that superstability is not sufficient for Proposition 8.10. For the reader who is still looking for a free ride outside of the \aleph_{0}-stable context, Proposition 8.13 will dash this hope.

If $\operatorname{dim}_{1}, \operatorname{dim}_{2}$ are ordinal ranks on an L^{\diamond}-theory T^{\diamond} then we say dim_{1} is smaller than dim_{2} if $\operatorname{dim}_{1} X \leqslant \operatorname{dim}_{2} X$ for all definable sets X.

Lemma 8.8. The theory T^{\diamond} is \aleph_{0}-stable if and only if it admits an ordinal rank dim such that for every T^{\diamond}-model \mathcal{M}^{\diamond}, \mathcal{M}^{\diamond}-definable set X, and family $\left(X_{n}\right)_{n \in \mathbb{N}}$ of pairwise disjoint \mathcal{M}^{\diamond}-definable subsets of X, we have $\operatorname{dim} X_{n}<\operatorname{dim} X$ for some n. If T^{\diamond} is \aleph_{0}-stable, then Morley rank is the smallest ordinal rank with this property.

Proof. It is well-known that Morley rank RM is an ordinal rank satisfying the hypotheses when T^{\diamond} is \aleph_{0}-stable. Suppose dim is an ordinal rank satisfying the hypotheses. We will show that $\mathrm{RM}(X) \leqslant \operatorname{dim} X$ for all \mathcal{M}^{\diamond}-definable sets X in T^{\diamond}-models \mathcal{M}^{\diamond}. This implies that RM is ordinal valued and hence that T^{\diamond} is \aleph_{0}-stable.

As RM and dim are preserved in elementary extensions, it suffices to fix an \aleph_{0}-saturated T^{\diamond}-model \mathcal{M}^{\diamond} and show $\mathrm{RM}(X) \leqslant \operatorname{dim}(X)$ for all \mathcal{M}^{\diamond}-definable sets X. We show by induction on ordinals α that if $\alpha \leqslant \operatorname{RM}(X)$, then $\alpha \leqslant \operatorname{dim}(X)$. If $0 \leqslant \operatorname{RM}(X)$, then X is nonempty, so $0 \leqslant \operatorname{dim}(X)$. If α is a limit ordinal and $\alpha \leqslant \operatorname{RM}(X)$, then $\beta \leqslant \operatorname{RM}(X)$ for all $\beta<\alpha$, so by induction $\beta \leqslant \operatorname{dim}(X)$ for all $\beta<\alpha$, and hence $\alpha \leqslant \operatorname{dim}(X)$. If $\alpha=\beta+1$ is a successor ordinal and $\alpha \leqslant \operatorname{RM}(X)$, then since \mathcal{M}^{\diamond} is \aleph_{0}-saturated, there are pairwise disjoint \mathcal{M}-definable subsets $\left(X_{n}\right)_{n \in \mathbb{N}}$ of X such that $\beta \leqslant \operatorname{RM}\left(X_{n}\right)$ for all n. By induction, $\beta \leqslant \operatorname{dim}\left(X_{n}\right)$ for all n, and by our assumption on dim there is some n such that $\operatorname{dim}\left(X_{n}\right)<\operatorname{dim}(X)$. So $\alpha \leqslant \operatorname{dim}(X)$.

Proposition 8.13. Suppose L^{\diamond} is countable and $\operatorname{dim}^{\diamond}$ is an ordinal rank on a complete L^{\diamond} theory T^{\diamond}. If T^{\diamond} is not \aleph_{0}-stable, then there is an expansion of T^{\diamond} which is not approximable over T^{\diamond}.

Proof. Suppose T^{\diamond} is not \aleph_{0}-stable. Applying Lemma 8.8, we obtain a T^{\diamond}-model $\mathcal{M}{ }^{\diamond}$, an \mathcal{M}^{\diamond}-definable set X with $\operatorname{dim}^{\diamond} X=\alpha$, and a sequence $\left(X_{n}\right)_{n \in \mathbb{N}}$ of pairwise disjoint \mathcal{M}^{\diamond} definable subsets of X such that $\operatorname{dim}^{\diamond} X_{n}=\alpha$ for all n. Since X and each X_{n} are definable with parameters from a countable elementary submodel, we may assume \mathcal{N}^{\diamond} is countable.

Given $S \subseteq \mathbb{N}$, let $A_{S}=\bigcup_{n \in S} X_{n}$. We show that A_{S} does not have a pseudo-closure for uncountably many $S \subseteq \mathbb{N}$. Suppose $S \subseteq \mathbb{N}$ is nonempty and X^{\prime} is a pseudo-closure of A_{S}. As $A_{S} \subseteq X$, we have $\operatorname{dim}^{\diamond} X^{\prime} \leqslant \alpha$. As S is nonempty, we have $X_{n} \subseteq X^{\prime}$ for some n, so $\operatorname{dim}^{\diamond} X^{\prime} \geqslant \alpha$. Thus any pseudo-closure X^{\prime} of A_{S} has $\operatorname{dim}^{\diamond} X^{\prime}=\alpha$.

Now suppose $S, S^{\prime} \subseteq \mathbb{N}$ are nonempty and $S \nsubseteq S^{\prime}$. We show any pseudo-closure of A_{S} is not a pseudo-closure of $A_{S^{\prime}}$. Fix $n \in S \backslash S^{\prime}$ and suppose X^{\prime} is a pseudo-closure of A_{S}. Then $\operatorname{dim}^{\diamond} X^{\prime}=\alpha, X_{n}$ is an \mathcal{M}^{\diamond}-definable subset of X^{\prime} with $\operatorname{dim}^{\diamond} X_{n}=\alpha$, but X_{n} is disjoint from $A_{S^{\prime}}$. Thus X^{\prime} is not a pseudo-closure of $A_{S^{\prime}}$.

Let \mathfrak{J} be an uncountable collection of nonempty subsets of \mathbb{N} such that $S \nsubseteq S^{\prime}$ for all distinct $S, S^{\prime} \in \mathfrak{J}$. If $S, S^{\prime} \in \mathfrak{J}$ are distinct, then A_{S} and $A_{S^{\prime}}$ cannot have a common pseudoclosure. As \mathcal{M}^{\diamond} and L are countable, there are only countably many \mathcal{M}^{\diamond}-definable sets, so there are uncountably many $S \in \mathfrak{J}$ such that A_{S} does not have a pseudo-closure. The expansion of $\mathcal{M} \diamond$ by a predicate defining any such A_{S} is not approximable over \mathcal{M}^{\diamond}. It follows that the theory of this expansion is not approximable over T^{\diamond}.

We next give a useful characterization of definability of pseudo-denseness over an \aleph_{0}-stable theory. Lemma 8.6 motivates the following definition. Suppose M^{\prime} is a model of $T^{\prime}, \mathcal{M}=$ $\mathcal{M}^{\prime} \uparrow L$, and $X^{\prime} \subseteq M^{x}$ is \mathcal{M}^{\prime}-definable. Define

$$
\operatorname{dim}^{\prime} X^{\prime}=\operatorname{dim} X \quad \text { and } \quad \operatorname{mult}^{\prime} X^{\prime}=\operatorname{mult} X
$$

where X is a pseudo-closure of X^{\prime}. The following corollary is an immediate consequence of Lemma 8.6.

Lemma 8.9. For $A \subseteq M^{x}$ and \mathcal{M}-definable $X \subseteq M^{x}$, we have the following:
(1) A is pseudo-dense in X if and only if we have both $\operatorname{dim}^{\prime}(X \cap A)=\operatorname{dim}(X)$ and $\operatorname{mult}^{\prime}(X \cap$ $A)=\operatorname{mult}(X)$.
(2) If X is almost irreducible, then A is pseudo-dense in X if and only if $\operatorname{dim}^{\prime}(X \cap A)$ is the same as $\operatorname{dim}(X)$.

In general dim ${ }^{\prime}$ might not be an ordinal rank on T^{\prime} as $\operatorname{dim}^{\prime}\left(X^{\prime}\right)$ might be different from $\operatorname{dim}^{\prime}\left(X^{\prime}\left(\mathcal{N}^{\prime}\right)\right)$ where \mathcal{N}^{\prime} is an elementary extension of \mathcal{N}^{\prime}. When T defines Morley rank, we
can easily check that $\operatorname{dim}^{\prime}$ is an ordinal rank on T^{\prime}, which we will refer to as the induced rank on T^{\prime}.

We say T defines multiplicity (or has the DMP) if for all L-formulas $\varphi(x, y)$, ordinals α, and n, there is an L-formula $\mu_{\alpha, n}(y)$ such that for all $\mathcal{M} \vDash T$ and $b \in M^{y}$ we have that

$$
\mathcal{M} \vDash \mu_{\alpha, n}(b) \text { if and only if } \operatorname{dim} \varphi(\mathcal{M}, b)=\alpha \text { and mult } \varphi(\mathcal{M}, b)=n .
$$

In particular, if T defines multiplicity, then T defines Morley rank, and the induced rank on T^{\prime} is well-defined.

Proposition 8.14. Suppose T defines multiplicity. Then T^{\prime} defines pseudo-denseness over T if and only if T^{\prime} defines induced rank.

Proof. Suppose T^{\prime} defines pseudo-denseness and $\varphi^{\prime}(x, y)$ is an L^{\prime}-formula. Let $\left(X_{b^{\prime}}^{\prime}\right)_{b^{\prime} \in Y^{\prime}}$ be a family of subsets of M^{x} defined by $\varphi^{\prime}(x, y)$. Using the assumption that T^{\prime} defines pseudo-denseness and a standard compactness argument, we obtain a family $\left(X_{c}\right)_{c \in Z}$ defined by a formula whose choice might depend on $\varphi^{\prime}(x, y)$ but not on \mathcal{N}^{\prime}, such that for every $b^{\prime} \in Y, X_{b}^{\prime}$ has a pseudo-closure which in a member of the family $\left(X_{c}\right)_{c \in Z}$. It follows from Proposition 8.10 that $\operatorname{dim}^{\prime}\left(X_{b^{\prime}}^{\prime}\right)=\alpha$ for $b^{\prime} \in Y$ if and only there is $c \in Z$ such that X_{b}^{\prime} is pseudodense in X_{c} and $\operatorname{dim}\left(X_{c}\right)=\alpha$. As T defines multiplicity and T^{\prime} defines pseudo-denseness, it follows that T^{\prime} defines induced rank.

Now suppose T^{\prime} defines induced rank. Let \mathcal{C} be the collection of almost irreducible subsets of T-models. Then \mathcal{C} is a collection of pseudo-cells for T. As T defines multiplicity, T defines \mathcal{C}-membership. So by Proposition 8.4, it suffices to show T^{\prime} defines pseudo-denseness over \mathcal{C}. Let $\left(X_{b^{\prime}}^{\prime}\right)_{b^{\prime} \in Y^{\prime}}$ and $\left(X_{c}\right)_{c \in Z}$ be a families defined by an L^{\prime}-formula $\varphi^{\prime}(x, y)$ and an L-formula $\varphi(x, z)$. It follows from Lemma 8.6 that when X_{c} is in $\mathcal{C}, X_{b^{\prime}}^{\prime}$ is pseudo-dense in X_{c} if and only if $\operatorname{dim}^{\prime}\left(X \cap X^{\prime}\right)=\operatorname{dim}(X)$. The desired conclusion follows.

Remark 8.6. If T defines Morley rank, then mult' is preserved under elementary extensions, so we may speak of induced multiplicity on T^{\prime}. There is also an analogue of Proposition 8.14 which involves both $\operatorname{dim}^{\prime}$ and mult': Suppose T defines Morley rank. Then T^{\prime} defines pseudodenseness if and only if T^{\prime} defines induced rank and induced multiplicity. We do not include it here as we do not have an application in mind.

Theorem 8.4. Suppose T_{n} is \aleph_{0}-stable and defines multiplicity. If each T_{i} defines induced rank, then T_{\cup}^{*} exists.

Proof. This is an immediate consequence of Theorem 8.1, Proposition 8.10, and Proposition 8.14.

Proposition 8.14 and Theorem 8.4 are mainly of interest because there are several situations where the induced rank on T^{\prime} is a natural notion of dimension, and its definability follows from our general knowledge about T^{\prime}. Proposition 8.15 below presents a general class of such situations.

The algebraic dimension $\operatorname{adim}(X)$ of an \mathcal{N}-definable set X is the maximal k for which there is $a=\left(a_{1}, \ldots, a_{n}\right) \in X(\mathcal{N})$ such that (after permuting coordinates) a_{1}, \ldots, a_{k} are aclindependent over N. It is well-known that algebraic dimension is an ordinal rank on $\operatorname{Th}(\mathcal{N})$, which coincides with Morley rank for strongly minimal theories. The following fact is also well known (see [11, Lemma 2.2]).

Fact 8.1. A theory defines algebraic dimension if and only if it eliminates \exists^{∞}.
Proposition 8.15. Suppose T is strongly minimal and acl' agrees with acl in all T^{\prime}-models. Then T^{\prime} defines induced rank if and only if T^{\prime} eliminates \exists^{∞}.

Proof. Suppose $\mathcal{M}^{\prime} \vDash T^{\prime}$, and $\mathcal{M}=\mathcal{M}^{\prime} \uparrow L$. Since T is strongly minimal, dim $=$ adim. We write $\operatorname{dim}^{\prime}$ for the induced rank on T^{\prime} and adim' for the algebraic dimension in \mathcal{M}^{\prime}. Using Fact 8.1, it suffices to show that $\operatorname{dim}^{\prime}=$ adim $^{\prime}$.

If X^{\prime} is an arbitrary \mathcal{M}^{\prime}-definable subset of M^{x},

$$
\operatorname{dim}^{\prime}\left(X^{\prime}\right)=\min \left\{\operatorname{adim}(X) \mid X \subseteq M^{x} \text { is } \mathcal{M} \text {-definable, and } X^{\prime} \subseteq X\right\}
$$

As acl ${ }^{\prime}=\operatorname{acl}$, whenever $a \in X^{\prime}\left(\mathcal{M}^{\prime}\right)$ has k components which are $\operatorname{acl}^{\prime}$-independent over M, these components are also acl-independent over M, and we have $a \in X\left(\mathcal{M}^{\prime}\right)$ for any \mathcal{M} definable X such that $X^{\prime} \subseteq X$. Hence, $\operatorname{adim}^{\prime}\left(X^{\prime}\right) \leqslant \operatorname{dim}^{\prime}\left(X^{\prime}\right)$.

Conversely, let $X \subseteq M^{x}$ be a pseudo-closure of X^{\prime}, and $n=\operatorname{adim}(X)$. Then X^{\prime} is not contained in any \mathcal{M}-definable set of smaller dimension. Since the set of \mathcal{M}-definable sets of dimension less than n is closed under finite unions, by compactness there is some $a^{\prime} \in X^{\prime}\left(\mathcal{M}^{\prime}\right)$ which is not contained in any \mathcal{M}-definable set of dimension less than n. If a^{\prime} does not have n components which are acl'-independent over M, then since acl ${ }^{\prime}=$ acl, this dependence is witnessed by $a^{\prime} \in Y$, where Y is \mathcal{M}-definable and $\operatorname{adim}(Y)<n$. This contradicts the choice of a^{\prime}.

As a demonstration of Proposition 8.14 and Proposition 8.15, we will revisit the theory of algebraically closed fields with multiple valuations described in Section 7.2 and show that this has a model companion. We need the following fact about algebraically closed valued fields, which can be found in [82].

Fact 8.2. Suppose K is an algebraically closed field and $R \subseteq K$ is a nontrivial valuation ring. Then the model-theoretic algebraic closure in $(K ; R)$ agrees with the field-theoretic algebraic closure in K (which agrees with the model-theoretic algebraic closure in K).

Applying Proposition 8.14, Proposition 8.15, and Fact 8.2 we recover the promised fact, which is also the first part of Theorem 7.3.

Proposition 8.16. Suppose L_{\cap} is the language of rings, and for each $i \in I, L_{i}$ extends L_{\cap} by a unary relation symbol, T_{i} is the theory whose models are $\left(K ; R_{i}\right)$ with $K \vDash \mathrm{ACF}$ and R_{i} a nontrivial valuation ring on K. Then T_{*}^{*} exists.

In [81] and [43], the strategy to show that the theory of algebraically closed fields with multiple valuations has a model companion involves:
(1) Identifying a class \mathcal{C} of "generic" algebraically closed fields with multiple valuations.
(2) Showing that \mathcal{C} consists precisely of the existentially closed models of the theory of algebraically closed fields with multiple valuations.
(3) Showing that \mathcal{C} is first-order axiomatizable.

For an algebraically closed field K and a family $\left(R_{i}\right)_{i \in I}$ of nontrivial valuation rings on K, we say $\left(K ;\left(R_{i}\right)_{i \in I}\right)$ is generic if whenever $V \subseteq K^{m}$ is Zariski-closed and irreducible, $J \subseteq I$ is finite, $U_{i} \subseteq K^{m}$ is v_{i}-open in in V for $i \in J$, we have $\bigcap_{i \in J} U_{i} \neq \varnothing$.

We will show that this notion of genericity agrees with our notion of approximately interpolative structure. This is a special case of the notions of genericity in [81] and [43]: they work in a more general setting and use different terminology. We need the following lemma about algebraically closed valued fields.

Lemma 8.10. Suppose K is an algebraically closed field, $R \subseteq K$ is a nontrivial valuation ring, $V \subseteq K^{m}$ is irreducible, and $X \subseteq V$ is $(K ; R)$-definable. Let v be the valuation associated to R and dim be the acl-dimension on $(K ; R)$. Then the following are equivalent:
(1) $\operatorname{dim} X=\operatorname{dim} V$.
(2) X is Zariski-dense (equivalently pseudo-dense) in V.
(3) X has nonempty interior in the v-topology on V.

Proof. Fact 8.2 together with Lemma 8.6 shows that (1) and (2) are equivalent. The proof of [82, Proposition 2.18] shows that (2) implies (3). As every Zariski-closed set is v-closed, it follows that any subset of V which is not Zariski-dense in V has empty interior in the v-topology on V.

Proposition 8.17. Suppose $\left(K ;\left(R_{i}\right)_{i \in I}\right)$ has $K \vDash \mathrm{ACF}$ and R_{i} a nontrivial valuation ring on K for $i \in I$. Then following are equivalent:
(1) $\left(K ;\left(R_{i}\right)_{i \in I}\right)$ is generic.
(2) With L_{N} the language of rings and L_{i} extending L_{n} by a unary relation symbol for each $i \in I,\left(K ;\left(R_{i}\right)_{i \in I}\right)$ as an L_{\cup}-structure is approximately interpolative.

Proof. The backward direction follows immediately from Lemma 8.10. It is easy to see that the collection of irreducible varieties forms a pseudo-cell collection for ACF. Applying Lemma 8.10 again, we get the forward direction.

Remark 8.7. Proposition 8.17 can alternatively be obtained as a consequence of Theorem 7.3, Corollary 8.1, the fact that T_{n} is \aleph_{0}-stable, and the result from [81] and [43] that the generic models are the existentially closed models of T_{U}. The current proof of Proposition 8.17 again illustrates the point made in Remark 8.5 that the material we develop in this section is the common abstraction of the proofs in the literature that various theories have model companions

Note that a separate argument is needed to show that $\left(K ;\left(R_{i}\right)_{i \in I}\right)$ as in Proposition 8.17 is generic if and only if $\left(v_{i}\right)_{i \in I}$ is an independent family of valuations. We do not include a proof of this result here, as we found no other way except to essentially repeat the argument in [43].

In the same spirit but more closely related to the notion of induced dimension, we show how the definition of generic predicates is related to approximately interpolative structures. The proof that $T_{ \pm}^{*}$ exists for this example must wait until Section 8.5.

Proposition 8.18. Suppose \mathcal{M} is an infinite one-sorted L-structure and P is a unary predicate on \mathcal{M} which is not in L. Set $I=\{1,2\}$, and let $L_{1}=L$ and $L_{2}=\{P\}$. Then the following are equivalent:
(1) P is a generic predicate.
(2) \mathcal{M}_{\cup} is approximately interpolative.

Proof. Note that T_{n} is the strongly minimal theory of an infinite set with no structure, so $\operatorname{dim}=\operatorname{adim}$. Let \mathcal{C} be the collection of M^{n} as n ranges over \mathbb{N}. From the fact that T_{n} admits quantifier elimination, it is easy to deduce that \mathcal{C} is a pseudo-cell collection. Therefore, by Proposition 8.3, it suffices to show that P is a generic predicate if and only if \mathcal{M}_{\cup} is \mathcal{C}-approximately interpolative, i.e., $X_{1} \cap X_{2} \neq \varnothing$ whenever the \mathcal{M}_{1}-definable set $X_{1} \subseteq M^{n}$ and the \mathcal{M}_{2}-definable set $X_{2} \subseteq M^{n}$ are pseudo-dense in M^{n}.

We first show that an \mathcal{M}_{1}-definable set $X_{1} \subseteq M^{n}$ is large if and only if X_{1} is pseudo-dense in M^{n}. Let adim' be the induced dimension on \mathcal{M}_{1}. As algebraic closure in T_{n} is trivial, it follows directly from the definitions that an \mathcal{M}_{1}-definable subset X_{1} of M^{n} is large if and only if $\operatorname{adim}^{\prime}\left(X_{1}\right)=n$. On the other hand, as $\operatorname{adim}^{\prime}\left(X_{1}\right)<n$ if and only if X_{1} is contained in an M-definable set of Morley rank < n, and M^{n} has Morley degree 1 (as an M-definable set), it follows by Lemma 8.6 that X_{1} is pseudo-dense in M^{n} if and only if $\operatorname{adim}^{\prime}\left(X_{1}\right)=n$.

On the other hand, it follows from quantifier elimination that an \mathcal{M}_{2}-definable set $X_{2} \subseteq$ M^{n} is pseudo-dense in M^{n} if and only if it differs by an \mathcal{M}_{n}-definable set of smaller dimension
from a set of the form $\prod_{i=1}^{n} S_{i}$, where $S_{i} \in\{P, M \backslash P\}$ for all $1 \leqslant i \leqslant n$. So \mathcal{M}_{\cup} is \mathcal{C} approximately interpolative if and only if every large \mathcal{M}_{1}-definable set meets every set of this form, as desired.

Remark 8.8. The notion of genericity introduced in [79] is also very close in spirit to the notion of approximately interpolative structure. It is also possible to prove that these notions are equivalent in the same fashion as Proposition 8.11, Proposition 8.17, and Proposition 8.18, but that is outside the scope of this paper.

8.5. Toward \aleph_{0}-categorical base

Throughout this section, we assume L has finitely many sorts and T is \aleph_{0}-stable, $\aleph_{0^{-}}$ categorical, weakly eliminates imaginaries, and has no finite models. We write dim for Morley rank on T and mult for Morley degree on T. We make extensive use of Proposition 8.10, which ensures that every subset of a model of T. Despite this, we consider this section more of a first step toward developing the theory of interpolative fusions over an $\aleph_{0^{-}}$ categorical base, rather than a continuation of the preceding section. A full-fledged theory should also cover Proposition 9.7.

The \aleph_{0}-stable assumption also gives us the following "inductive" procedure to check whether a subset is pseudo-dense in an almost irreducible set.

Lemma 8.11. Suppose $X \subseteq M^{x}$ is almost irreducible, \mathcal{D} is a collection of almost irreducible subsets of M^{x} such that any almost irreducible subset of M^{x} is almost equal to an element in \mathcal{D}, and A is a subset of M^{x}. For $\alpha<\operatorname{dim} X$, let $\mathcal{D}_{\alpha}(A, X)$ be the collection of almost irreducible $X_{\alpha} \in \mathcal{D}$ such that

$$
\operatorname{dim} X_{\alpha}=\alpha, A \text { is pseudo-dense in } X_{\alpha}, \text { and } X_{\alpha} \text { is almost a subset of } X .
$$

If $\mathcal{D}_{\beta}(A, X)=\varnothing$ for all $\alpha<\beta<\operatorname{dim} X$, then we have the following:
(1) If $\mathcal{D}_{\alpha}(A, X)$ is infinite up to almost equality, then A is pseudo-dense in X.
(2) If $\mathcal{D}_{\alpha}(A, X)$ is finite up to almost equality, $X_{\alpha}^{1}, \ldots, X_{\alpha}^{n}$ are the representatives of the almost equality classes, and

$$
A^{\prime}:=A \backslash \bigcup_{i=1}^{n} X_{\alpha}^{i},
$$

then $\mathcal{D}_{\beta}\left(A^{\prime}, X\right)=\varnothing$ for all $\alpha \leqslant \beta<\operatorname{dim} X$, and A is pseudo-dense in X if and only if A^{\prime} is.

Proof. As \mathcal{M} is \aleph_{0}-stable, $A \cap X$ has a pseudo-closure Y which is a subset of X by Proposition 8.10. Suppose $\mathcal{D}_{\beta}(A, X)=\varnothing$ for all $\alpha<\beta<\operatorname{dim} X$. Then either $\operatorname{dim} Y \leqslant \alpha$ or $\operatorname{dim} Y=\operatorname{dim} X$. If $\mathcal{D}_{\alpha}(A, X)$ is infinite up to almost equality, then $\operatorname{dim} Y>\alpha$, and so
$\operatorname{dim} Y=\operatorname{dim} X$. The latter implies A is pseudo-dense in X by Lemma 8.6. Thus we get statement (1).

Now suppose $X_{\alpha}^{1}, \ldots, X_{\alpha}^{n}$ and A^{\prime} are as stated in (2). Since A^{\prime} is a subset of $A, \mathcal{D}_{\beta}\left(A^{\prime}, X\right)$ is a subset of $\mathcal{D}_{\beta}(A, X)$ for all β. So in particular, $\mathcal{D}_{\beta}\left(A^{\prime}, X\right)=\varnothing$ for all $\alpha<\beta<\operatorname{dim} X$. Suppose X_{α} is an element of $\mathcal{D}_{\alpha}\left(A^{\prime}, X\right)$. Then A is also pseudo-dense in X_{α} and so X_{α} is almost equal to X_{α}^{i} with $i \in\{1, \ldots, n\}$. As $X_{\alpha}^{i} \cap A^{\prime}=\varnothing, X_{\alpha}^{i}$ and X_{α} are both almost irreducible, and $\operatorname{dim} X_{\alpha}^{i}=\operatorname{dim} X_{\alpha}$, it follows from Lemma 8.1 that A^{\prime} is not pseudo-dense in X_{α} which is absurd. Thus,

$$
\mathcal{D}_{\alpha}\left(A^{\prime}, X\right)=\varnothing \quad \text { for all } \alpha \leqslant \beta<\operatorname{dim} X .
$$

If A^{\prime} is pseudo-dense in X then clearly A is. Suppose A^{\prime} is not pseudo-dense in X. Then $A^{\prime} \cap X$ has a pseudo-closure Y^{\prime} with $\operatorname{dim} Y^{\prime}<\operatorname{dim} X$. It follows that A has a pseudo-closure Y which is a subset of $Y^{\prime} \cup X_{\alpha}^{1} \cup \ldots \cup X_{\alpha}^{n}$. It is easy to see that $\operatorname{dim} Y<\operatorname{dim} X$, and so A is not pseudo-dense in X. We have thus obtained all the desired conclusions in (2).

The lemma above is hardly useful if the purpose is defining pseudo-denseness for a general κ_{0}-stable theory. The issue is that many of the objects involved in the previous lemma are not definable. Remarkably, many of them are definable when we additionally assume T is \aleph_{0}-categorical. We recall a number of facts about \aleph_{0}-stable and \aleph_{0}-categorical theories.

Fact 8.3. The first two statements below only require \aleph_{0}-categoricity:
(1) T is complete.
(2) For all finite x, there are finitely many formula $\varphi(x)$ up to T equivalence.
(3) T defines multiplicity.
(4) ([14], Theorem 5.1) \mathcal{M} has finite Morley rank, that is, for all finite $x, \operatorname{dim} M^{x}<\omega$.
(5) ([14], Theorem 6.3) if x is a single variable, and $p \in S^{x}(\mathcal{M})$, then p is definable over $M^{x} \times M^{x}$.

We now prove a key lemma that does not hold outside of the \aleph_{0}-categorical setting.
Lemma 8.12. For each finite x there is an L-formula $\psi(x, z)$ such that whenever $\mathcal{M} \vDash T$ and $\mathcal{D}=\left(X_{c}\right)_{c \in Z}$ is the family of subsets of M^{x} defined by $\psi(x, z)$, we have that every member of \mathcal{D} is almost irreducible and every almost irreducible subset of M^{x} is almost equal to a member of \mathcal{D}.

Proof. Fix $\mathcal{M} \vDash T$ of the given T, and a finite tuple x of variables. We reduce the problem to finding a formula $\psi(x, z)$ independent of the choice of \mathcal{M} such that with $\mathcal{D}=\left(X_{c}\right)_{c \in Z}$ the family of subsets of M^{x} defined by $\psi(x, z)$, every almost irreducible X is almost equal to X_{c} for some $c \in M^{z}$. The analogous statement also hold in other models of T as T is complete.

As T defines multiplicity, we can modify $\psi(x, z)$ to exclude the X_{c} which are not almost irreducible.

We reduce the problem further to showing that every almost irreducible $X \subseteq M^{x}$ is almost equal to a subset of M^{x} which is \mathcal{M}-definable over some element of M^{w} with $|w|=2|x|$. Suppose we have done so. By Fact $8.3(2)$, there are finitely many formulas $\psi_{1}(x, w), \ldots, \psi_{l}(x, w)$ such that every L-formula in variables (x, w) is T-equivalent to one of these. By routine manipulation, we can get a finite tuple z of variables and a formula $\psi(x, z)$ such that for all $i \in\{1, \ldots, l\}$ and $d \in M^{w}$, there is $c \in M^{z}$ with $\psi_{i}(\mathcal{M}, d)=\psi(\mathcal{M}, c)$. Hence, we obtained the desired reduction.

Let $p \in S^{x}(M)$ be the generic type of X and $p^{\text {eq }}$ the unique element of $S^{x}\left(M^{\text {eq }}\right)$ extending p. By merging the sorts, we can arrange that $|x|=1$. By Fact 8.3(5), there is $c \in M^{2}$ such that p is definable over c. Hence $p^{\text {eq }}$ is definable over c and therefore stationary over $\operatorname{acl}^{\text {eq }}(c)$. It follows that

$$
q=p^{\mathrm{eq}} \upharpoonright S^{x}\left(\operatorname{acl}^{\mathrm{eq}}(c)\right) \text { has } \operatorname{mult}(q)=1
$$

Let $X^{\prime} \subseteq M^{x}$ be defined by a minimal formula of q. Then X^{\prime} is $\mathcal{M}^{\text {eq }}$-definable over acl ${ }^{\text {eq }}(c)$ and X^{\prime} is almost equal to X. Let $X_{1}^{\prime}, \ldots, X_{l}^{\prime}$ be all the finitely many conjugates of X^{\prime} by $\operatorname{Aut}(\mathcal{M} / c)$. Then $\bigcap_{i=1}^{l} X_{i}^{\prime}$ is \mathcal{M}-definable over c and is almost equal to X which is the desired conclusion.

A function up-to-permutation from $Z \subseteq M^{z}$ to M^{w} is a relation $f \subseteq Z \times M^{w}$ satisfying the following two conditions:
(1) For all $c \in Z$, there is $d \in M^{w}$ such that $(c, d) \in f$.
(2) If (c, d) and $\left(c, d^{\prime}\right)$ are both in f, then d is a permutation of d^{\prime}.

A function up-to-permutation f determines an ordinary function $\tilde{f}: Z \rightarrow M^{w} / \sim$, where \sim is the equivalence relation defined by permutations. We are interested in f instead of \tilde{f}, as it is possible that f is \mathcal{M}-definable while \tilde{f} is only $\mathcal{M}^{\text {eq }}$-definable. For $C \subseteq Z$, we will write $f(Z)$ for the set

$$
\left\{d \in M^{w} \mid \text { there is } c \in C \text { such that }(c, d) \in f\right\} .
$$

It is easy to observe that $|\tilde{f}(Z)| \leqslant|f(Z)| \leqslant|w|!|\tilde{f}(Z)|$ with \tilde{f} as above. In particular, $f(Z)$ is finite if and only if $\tilde{f}(Z)$ is.

The following fact only uses the assumption that T is complete and weakly eliminates imaginaries.

Fact 8.4. For all $\mathcal{M} \vDash T$, 0 -definable $Z \subseteq M^{z}$, and 0 -definable equivalence relation $R \subseteq Z^{2}$, there is w and a 0-definable function up-to-permutation from Z to M^{w} such that $c R c^{\prime}$ in Z if and only if $f(c)=f\left(c^{\prime}\right)$. Moreover, the choice of formula defining f can be made depending only on the choices of L-formulas defining Z and R but not on the choice of \mathcal{M}.

Proposition 8.19. The theory T^{\prime} defines pseudo-denseness over T if and only if T^{\prime} eliminates \exists^{∞}.

Proof. For the forward direction, suppose T and T^{\prime} are fixed, T^{\prime} defines pseudo-denseness, $\varphi^{\prime}(x, y)$ is an L^{\prime}-formula, $\mathcal{N}^{\prime} \vDash T^{\prime}, \mathcal{M}=\mathcal{N}^{\prime} \uparrow L,\left(X_{b}^{\prime}\right)_{b \in Y^{\prime}}$ is the family of subsets of M^{x} defined by $\varphi^{\prime}(x, y)$. Our job is to show that the set of $b \in Y^{\prime}$ with infinite X_{b}^{\prime} can be defined by a formula whose choice might depend on $\varphi(x, y)$ but does not depend on \mathcal{N}^{\prime}. Let $\mathcal{D}=\left(X_{c}\right)_{c \in Z}$ be the family of subsets of M^{x} defined by an L-formula $\psi(x, z)$ as described in Lemma 8.12. Note that X_{b}^{\prime} is infinite if and only if there is $c \in Z$ such that

$$
X_{b}^{\prime} \text { is pseudo-dense in } X_{c} \text { and } \operatorname{dim}\left(X_{c}\right)>0 .
$$

By assumption, the set of pairs (b, c) with X_{b}^{\prime} pseudo-dense in X_{c} can be defined by a formula whose choice does not depend on \mathcal{M}^{\prime}. By Fact 8.3, T defines multiplicity. In particular, the set of $c \in Z$ with $\operatorname{dim} X_{c}>0$ can be defined by an L-formula whose choice does not depend on \mathcal{M}^{\prime}. The desired conclusion follows.

For the backward implication, suppose T and T^{\prime} are fixed, T^{\prime} eliminates $\exists{ }^{\infty}, \varphi^{\prime}(x, y)$ and $\psi(x, z)$ are an L^{\prime}-formula and an L-formula, $\mathcal{N}^{\prime} \vDash T^{\prime}, \mathcal{M}=\mathcal{N}^{\prime} \uparrow L$, and $\left(X_{b}^{\prime}\right)_{b \in Y^{\prime}}$ and $\left(X_{c}\right)_{c \in Z}$ are the families of subsets of M^{x} defined by $\varphi^{\prime}(x, y)$ and $\psi(x, z)$. Set

$$
\mathfrak{P d}=\left\{(b, c) \in M^{(y, z)} \mid X_{b}^{\prime} \text { is pseudo-dense in } X_{c}\right\} .
$$

We need to show that $\mathfrak{P d}$ can be defined by an L^{\prime}-formula whose choice might depend on $\varphi^{\prime}(x, y)$ and $\psi(x, z)$ but not on \mathcal{N}^{\prime}.

We first reduce to the special case where $\psi(x, z)$ is a formula as described in Lemma 8.12. Let $\delta(x, w)$ be a formula as described in Lemma 8.12 and $\left(X_{d}\right)_{d \in W}$ the family of subsets of M^{x} defined by $\delta(x, w)$, and suppose we have proven the corresponding statement for $\delta(x, w)$. We note that X_{b}^{\prime} is pseudo-dense in X_{c} for $b \in Y^{\prime}$ and $c \in Z$ if and only if for all $d \in W$ with X_{d} almost a subset of X_{c} and $\operatorname{dim} X_{d}=\operatorname{dim} X_{c}$, we have X_{b}^{\prime} is pseudo-dense in X_{d}. The desired reduction follows from the special case and Fact 8.3, which states that T defines multiplicity.

We next make a further reduction. Note that by the reduction in the preceding paragraph, $\mathcal{D}=\left(X_{c}\right)_{c \in Z}$ is a family as described in Lemma 8.11, so we will set ourselves up to apply this lemma. For $\alpha<\operatorname{dim} M^{x}, b \in Y$, and $c \in Z$, we define $\mathfrak{D}_{\alpha, b, c}$ to be the set of $d \in Z$ such that $\operatorname{dim} X_{d}=\alpha, X_{b}^{\prime}$ is pseudo-dense in X_{d}, and X_{d} is almost a subset of X_{c}. In other words, if $\mathcal{D}_{\alpha}\left(X_{b}^{\prime}, X_{c}\right)$ is defined as in Lemma 8.11, then

$$
d \text { is in } \mathfrak{D}_{\alpha, b, c} \quad \text { if and only if } \quad X_{d} \text { is in } \mathcal{D}_{\alpha}\left(X_{b}^{\prime}, X_{c}\right) .
$$

Set $\mathfrak{P d}{ }^{0}$ to be the set of $(b, c) \in \mathfrak{P d}$ with $\operatorname{dim} X_{c}=0$. For $\alpha<\gamma \leqslant \operatorname{dim} M^{x}$, set $\mathfrak{P d}^{\gamma}=\{(b, c) \in$ $\left.\mathfrak{P d} \mid \operatorname{dim} X_{c}=\gamma\right\}$ and set

$$
\mathfrak{P} \mathfrak{o}_{\alpha}^{\gamma}=\left\{(b, c) \in \mathfrak{P d} \mid \operatorname{dim} X_{c}=\gamma \text { and } \mathfrak{D}_{\beta, b, c}=\varnothing \text { for all } \alpha<\beta<\gamma\right\} .
$$

We reduce the problem further to showing $\mathfrak{P d}_{\alpha}^{\gamma}$ can be defined by an L^{\prime}-formula whose choice is independent of \mathcal{N}^{\prime} for all $\alpha<\gamma \leqslant \operatorname{dim} M^{x}$. Note that $(b, c) \in M^{(y, z)}$ is in $\mathfrak{P d}^{0}$ if and only if $X_{c} \subseteq X_{b}^{\prime}$ and $\operatorname{dim}\left(X_{c}\right)=0$, so $\mathfrak{P d}^{0}$ can be defined by a formula whose choice is independent of \mathcal{M}^{\prime}. Moreover, $\mathfrak{P d}=\bigcup_{\beta<\operatorname{dim} M^{x}} \mathfrak{P d}^{\beta}$ and $\mathfrak{P d}{ }^{\beta}=\mathfrak{P d}_{\beta-1}^{\beta}$, so by Fact 8.3(4) we obtained the desired reduction.

We will show the statement in the previous paragraph by lexicographic induction on (γ, α). We first settle some simple cases. For $\gamma=1$ and $\alpha=0$, the condition $\mathfrak{D}_{\beta, b, c}=\varnothing$ for all $\alpha<\beta<\gamma$ is vacuous, and the desired conclusion follows from the fact that T defines multiplicity and T^{\prime} eliminates \exists^{∞}. Suppose we have proven the statement for all smaller values of γ. It follows from $\mathfrak{P d}^{\beta}=\mathfrak{P d}_{\beta-1}^{\beta}$ that for all $\beta<\gamma, \mathfrak{P d}^{\beta}$ can be defined by an L^{\prime}-formula whose choice is independent of \mathcal{M}^{\prime}. Let

$$
Z_{\gamma}=\left\{c \in Z \mid \operatorname{dim}\left(X_{c}\right)=\gamma\right\} .
$$

Note for $\beta<\gamma$ and $(b, c) \in Y \times Z_{\gamma}$ that $d \in M^{z}$ is in $\mathfrak{D}_{\beta, b, c}$ if and only if $\operatorname{dim} X_{d}=\beta$ and $(b, d) \in \mathfrak{P d}_{\beta}^{\gamma}$. Using the fact that T defines multiplicity, we get for each $\beta<\gamma$ that the family $\left(\mathfrak{D}_{\beta, b, c}\right)_{(b, c) \in Y \times Z_{\gamma}}$ can be defined by a formula independent of the choice of \mathcal{N}^{\prime}. We get from Lemma 8.11 that $(b, c) \in M^{(y, z)}$ is in $\mathfrak{P d}_{0}^{\gamma}$ if and only if

$$
\operatorname{dim} X_{c}=\gamma, \quad \mathfrak{D}_{\beta, b, c}=\varnothing \text { for all } 0<\beta<\gamma, \quad \text { and } X_{b}^{\prime} \text { is infinite. }
$$

Hence, $\mathfrak{P d} \mathfrak{d}_{0}^{\gamma}$ can be defined by an L^{\prime}-formula independent of the choice of \mathcal{N}^{\prime} by the assumption that T^{\prime} eliminates \exists^{∞} and Fact 8.3(3).

Suppose $0<\alpha<\gamma \leqslant \operatorname{dim} M^{x}$ and we have shown the statement for all lexicographic lesser values of (γ, α) not just for the formula $\varphi(x, y)$ but also for any similar chosen $\varphi^{*}\left(x, y^{*}\right)$. From the argument in the preceding paragraph, $\mathfrak{P d}^{0}, \ldots, \mathfrak{P d}^{\gamma-1}$ and $\left(\mathfrak{D}_{\beta, b, d}\right)_{(b, c) \in Y \times Z_{\gamma}}$ for each $\beta<\gamma$ can be defined by formulas independent of the choice of \mathcal{M}^{\prime}. By the assumption that T weakly eliminates \exists^{∞} and Fact 8.4, there is w and a L-definable function up-to-permutation f from Z to M^{w} defined by a formula whose choice does not depend on \mathcal{N}^{\prime} such that for all d_{1} and d_{2} in Z,

$$
f\left(d_{1}\right)=f\left(d_{2}\right) \text { if and only if } X_{d_{1}} \text { is almost equal to } X_{d_{2}}
$$

In particular, the family $\left(f\left(\mathfrak{D}_{\alpha, b, c}\right)\right)_{(b, c) \in Y \times Z_{\gamma}}$ can be defined by a formula whose choice does not depend on \mathcal{N}^{\prime}. As T^{\prime} eliminates \exists^{∞}, there is n such that

$$
\left|f\left(\mathfrak{D}_{\alpha, b, c}\right)\right|>n|w|!\text { implies } f\left(\mathfrak{D}_{\alpha, b, c}\right) \text { is infinite. }
$$

Now let Y^{*} be the set of $b^{*}=\left(b, c, d_{1}, \ldots, d_{n}\right)$ in $Y \times Z \times \ldots \times Z$ where the product by Z is taken $n+1$-times such that the following properties hold:
(1) $c \in Z_{\gamma}$ and $\mathfrak{D}_{\beta, b, c}=\varnothing$ for all $0<\beta<\gamma$.
(2) $f\left(\mathfrak{D}_{\alpha, b, c}\right)$ is finite.
(3) $\operatorname{dim} X_{d_{i}}=\alpha$ and X_{b}^{\prime} is pseudo-dense in $Z_{d_{i}}$ for $i \in\{1, \ldots, n\}$.
(4) If $\operatorname{dim} X_{d}=\alpha$ and X_{b}^{\prime} is pseudo-dense in Z_{d} for some $d \in Z$, then X_{d} is almost equal to $X_{d_{i}}$ for some $i \in\{1, \ldots, n\}$.

For each $b^{*} \in Y^{*}$, set

$$
X_{b^{*}}^{\prime}=X_{b}^{\prime} \backslash \bigcup_{i=1}^{n} X_{d_{i}} .
$$

Then by the induction hypothesis and Fact $8.3(3)$ the family $\left(X_{b^{*}}^{\prime}\right)_{b^{*} \in Y^{*}}$ can be defined by a formula $\varphi^{*}\left(x, y^{*}\right)$ whose choice does not depend on \mathcal{M}^{\prime}. We obtain $\mathfrak{P d}_{\alpha-1}^{* \gamma}$ from $\varphi^{*}\left(x, y^{*}\right)$ in the same fashion as we get $\mathfrak{P} \mathfrak{d}_{\alpha-1}^{\gamma}$ from $\varphi(x, y)$. The induction hypothesis implies that $\mathfrak{P} \mathfrak{d}_{\alpha-1}^{* \gamma}$ can be defined by formulas whose choice does not depend on \mathcal{N}^{\prime}. It follows from Lemma 8.11 that $(b, c) \in \mathfrak{P d}_{\alpha}^{\gamma}$ if and only if $\operatorname{dim} Z_{c}=\gamma$ and $\mathfrak{D}_{\beta, b, c}=\varnothing$ for all $\alpha<\beta<\gamma$ and either of the following hold:
(1) $f\left(\mathfrak{D}_{\alpha, b, c}\right)$ is infinite.
(2) There are d_{1}, \ldots, d_{n} in Z such that $b^{*}=\left(b, c, d_{1}, \ldots, d_{n}\right)$ is in Y^{*} and

$$
X_{b^{*}}^{\prime} \text { is in } \mathfrak{P o}_{\alpha-1}^{* \gamma} .
$$

Thus $\mathfrak{P d}{ }_{\alpha}^{\gamma}$ can be defined by a formula whose choice does not depend on \mathcal{M}^{\prime} which completes the proof.

Combining Theorem 8.1, Proposition 8.10, and Proposition 8.19, we have proven the following theorem.

Theorem 8.5. Suppose L has finitely many sorts, T_{n} is an \aleph_{0}-stable and \aleph_{0}-categorial theory with no finite models which weakly eliminates imaginaries, and T_{i} eliminates $\exists \infty$ for all $i \in I$. Then T_{\cup}^{*} exists.

The conditions of Theorem 8.5 are satisfied for instance when $L_{n}=\varnothing$ and T_{n} is the theory of infinite sets. Hence, we recover Winkler's "prehistoric results" on interpolative fusions, Theorem 7.1 and Corollary 7.1. The following proposition combined with Theorem 7.7 allows us to recover Theorem 7.6, the other result from Winkler.

Proposition 8.20. Suppose $I=\{1,2\}, T_{1}$ and T_{2} are as in Section 7.5, and T_{1} eliminates \exists^{∞}. Then T_{\cup}^{*} exists.

Proof. We will verify the conditions of Theorem 8.5 to show that T_{\cup}^{*} exists. We have assumed that T_{1} eliminates \exists^{∞}. We saw in Section 7.5 that T_{2} is interpretable in the theory of an infinite set, and hence so is its reduct T_{n}. So both T_{2} and T_{n} are \aleph_{0}-categorical and \aleph_{0}-stable. It follows that T_{2} eliminates \exists^{∞}. It is also easy to see that T_{n} admits weak elimination of imaginaries.

A similar argument allows us to deduce from Theorem 7.8 the fact that the theory of graphs has a model companion. We also get from Theorem 7.9 that if T satisfies the conditions of this section, then $T_{\text {Aut }}$ has a model companion. We will leave the details to the reader.

The theory T_{q} of vector spaces over the finite field \mathbb{F}_{q} with q elements is \aleph_{0}-stable, $\aleph_{0^{-}}$ categorical, and weakly eliminates imaginaries. Thus any theory T^{\prime} extending T_{q} defines pseudo-denseness if and only if it eliminates \exists^{∞}. This does not generalize to vector spaces over characteristic zero fields, which are \aleph_{0}-stable and weakly eliminate imaginaries, but are not \aleph_{0}-categorical. For example, let T be the theory of torsion-free divisible abelian groups (vector spaces over \mathbb{Q}). Let T^{\prime} be ACF_{0}, and note that T^{\prime} is an expansion of T. Then T^{\prime} does not define pseudo-denseness over T. Suppose \mathcal{M}^{\prime} is an \aleph_{1}-saturated model of T^{\prime}. Let

$$
L=\left\{(a, b, c) \in \boldsymbol{M}^{3}: a b=c\right\}
$$

and consider the definable family $\left\{L_{a}: a \in M\right\}$ where $L_{a}=\left\{(b, c) \in \boldsymbol{M}^{2}: a b=c\right\}$. We leave the easy verification of the following to the reader:

Lemma 8.13. Fix $a \in \boldsymbol{M}$. Then L_{a} is pseudo-dense in \boldsymbol{M}^{2} if and only if $a \notin \mathbb{Q}$.
As \mathbb{Q} is countable and infinite it cannot be a definable set in an \aleph_{1}-saturated structure. Thus \mathcal{M}^{\prime} does not define pseudo-denseness over ($\boldsymbol{M} ;+$).

There is a natural rank rk on any \aleph_{0}-categorical theory, described in [75, Section 2.3] and [15, Section 2.2.1]. This rank is known to agree with thorn rank on \aleph_{0}-categorical structures, so it is an ordinal rank on rosy \aleph_{0}-categorical theories. A special case of Theorem 8.3 is that any expansion of the theory DLO of dense linear orders defines pseudo-denseness over DLO with respect to rk (which agrees with the usual o-minimal dimension over DLO). This fact, together with Proposition 8.19, and recent groundbreaking work on NIP \aleph_{0}-categorical structures $[\mathbf{7 5}, \mathbf{7 4}]$ motivates the following question.

Question. Suppose T is NIP, \aleph_{0}-categorical, and rosy. If T^{\prime} eliminates \exists^{∞} than must T define psuedo-denseness over T (with respect to rk)?

Unfortunately rk does not necessarily agree with Morley rank on \aleph_{0}-stable, \aleph_{0}-categorical theories. One might hope that an approach to Question 8.5 would synthesize the ideas of Section 8.5 and Section 8.3.

CHAPTER 9

Preservation results

Throughout this chapter, we use the notational conventions of Chapters 5 and 6 . We also fix I, languages L_{\square} and theories T_{\square} for $\square \in I \cup\{\cup, \cap\}$, and assume T_{\cup}^{*} exists.

We seek to understand when properties of the theories T_{i} are preserved in passing to the interpolative fusion T_{\cup}^{*}. We have already seen a close connection between interpolative fusions and model completeness, which we reformulate as a preservation result in the brief Section 9.1 below. In order to understand definable sets and types, we often want something stronger than model-completeness, so Section 9.2 and 9.3 are devoted to \mathcal{K}-completeness of T_{\cup}^{*} for various classes \mathcal{K} (see Section 5.2).

Remark 9.1. Much of this chapter is devoted to \mathcal{K}-completeness of T_{\cup}^{*} for various classes \mathcal{K} (see Section 5.2). By Remarks 5.2 and 6.2 , if T_{\cup}^{*} is \mathcal{K}-complete, then for any pair $\left(\mathcal{A}_{\cup}, \mathcal{M}_{\cup}\right) \in$ \mathcal{K},

$$
T_{\cup}^{*} \cup \bigcup_{i \in I} \operatorname{fdiag}_{L_{i}}\left(\mathcal{A}_{i}\right) \vDash \operatorname{Th}_{L_{\cup}(A)}\left(\mathcal{M}_{\cup}\right) .
$$

This allows us to understand certain L_{\cup}-types in terms of quantifier-free L_{i}-types.
Many of the results in this chapter contain the hypothesis "suppose T_{n} admits a stationary independence relation which satisfies full existence in T_{i} for all $i \in I$ ". When T_{n} or T_{i} is incomplete, we mean that this property holds in all consistent completions of these theories. By Proposition 5.3, this hypothesis is always satisfied by \downarrow^{f} when T_{n} is stable with weak elimination of imaginaries. For example, this applies when T_{n} is the theory of an infinite set or the theory of algebraically closed fields. In the general case, elimination of imaginaries for T_{n} is easily arranged (see Remark 6.1).

9.1. Preservation of model-completeness

We interpret Theorem 6.3 as a first preservation result.
Theorem 9.1. Suppose each T_{i} is model-complete. Then T_{\cup}^{*} is model-complete, and every L_{\cup}-formula $\psi(x)$ is T_{\cup}^{*}-equivalent to a finite disjunction of formulas of the form

$$
\exists y \bigwedge_{i \in J} \varphi_{i}(x, y)
$$

where $J \subseteq I$ is finite and each $\varphi_{i}(x, y)$ is a flat L_{i}-formula.

Proof. The first assertion follows immediately from Theorem 6.3. Since T_{\cup}^{*} is modelcomplete, $\psi(x)$ is T_{\cup}^{*}-equivalent to an existential L_{\cup}-formula $\exists z \varphi(x, z)$. By Corollary 5.1, $\varphi(x, z)$ is equivalent to a finite disjunction of Eb -formulas. Distributing the quantifier $\exists z$ over the disjunction and applying Remark 6.2 yields the desired result.

9.2. Preservation of acl- and bcl-completeness

Given $\square \in I \cup\{\cup, \cap\}$, let $\operatorname{acl}_{\square}(A)$ be the \mathcal{M}_{\square}-algebraic closure of a subset A of a T_{\cup}^{*}-model \mathcal{M}_{\cup}. The combined closure, $\operatorname{ccl}(A)$, of a subset A of \mathcal{M}_{\cup} is the smallest set containing A which is acl_{i}-closed for each $i \in I$. More concretely, $b \in \operatorname{ccl}(A)$ if and only if

$$
b \in \operatorname{acl}_{i_{n}}\left(\ldots\left(\operatorname{acl}_{i_{1}}(A)\right) \ldots\right) \text { for some } i_{1}, \ldots, i_{n} \in I
$$

Theorem 9.2. Suppose T_{n} admits a stationary independence relation \downarrow which satisfies full existence in T_{i} for all i. If each T_{i} is acl-complete then T_{\cup}^{*} is acl-complete and acl $_{\cup}=\operatorname{ccl}$.

Proof. Theorem 9.1 shows T_{\cup}^{*} is model-complete. In order to apply Proposition 5.1, we will show that the class of T_{\cup}^{*}-models has the disjoint ccl-amalgamation property.

So suppose \mathcal{A}_{\cup} is a ccl-closed substructure of a T_{\cup}^{*}-model \mathcal{M}_{\cup} and $f: \mathcal{A}_{\cup} \rightarrow \mathcal{N}_{\cup} \vDash T_{\cup}^{*}$ is an embedding. Let \mathcal{M}_{\cup} be a monster model of $\widehat{T}_{\cup}=\operatorname{Th}_{L_{\cup}}\left(\mathcal{N}_{\cup}\right)$, so \mathcal{N}_{\cup} is an elementary substructure of \mathcal{M}_{\cup}. Let $A^{\prime}=f(A) \subseteq N$. Let $p_{\square}(x)=\operatorname{tp}_{L_{\square}}(M / A)$ for each $\square \in I \cup\{\cap\}$, where x is a tuple of variables enumerating M. By acl-completeness of $T_{i}, f: \mathcal{A}_{i} \rightarrow \mathcal{N}_{i}$ is partial elementary for all $i \in I$, so $f: \mathcal{A}_{\cap} \rightarrow \mathcal{N}_{n}$ is also partial elementary, and we can replace the parameters from A in $p_{\square}(x)$ by their images under f, obtaining a consistent type $p_{\square}^{\prime}(x)$ over A^{\prime} for all $\square \in I \cup\{\cap\}$.

Fix $i \in I$. Since A is algebraically closed in $\mathcal{M}_{i}, A^{\prime}$ is algebraically closed in \mathcal{M}_{i}. By full existence for \downarrow in T_{i}, there is a realization M_{i}^{\prime} of $p_{i}^{\prime}(x)$ in \mathcal{M}_{i} such that $M_{i}^{\prime} \downarrow_{A^{\prime}} N$ in \mathcal{M}_{i}. Let $q_{i}(x)=\operatorname{tp}_{L_{i}}\left(M_{i}^{\prime} / N\right)$.

For all $i, j \in I, \operatorname{tp}_{L_{\cap}}\left(M_{i}^{\prime} / A^{\prime}\right)=\operatorname{tp}_{L_{\cap}}\left(M_{j}^{\prime} / A^{\prime}\right)=p_{\cap}^{\prime}(x)$, so by stationarity for $\downarrow, \operatorname{tp}_{L_{\cap}}\left(M_{i}^{\prime} / N\right)=$ $\operatorname{tp}_{L_{\cap}}\left(M_{j}^{\prime} / N\right)$. Let $q_{\cap}(x)$ be this common type, so $q_{\cap}(x) \subseteq q_{i}(x)$ for all i. We claim that $\bigcup_{i \in I} q_{i}(x)$ is realized an an elementary extension of \mathcal{N}_{u}.

By Lemma 6.2, the partial $L_{\cup}(N)$-type

$$
\bigcup_{i \in I}\left(\operatorname{Ediag}\left(\mathcal{N}_{i}\right) \cup q_{i}(x)\right)
$$

is consistent, since each $L_{i}(N)$-type $\left(\operatorname{Ediag}\left(\mathcal{N}_{i}\right) \cup q_{i}(x)\right)$ contains the complete $L_{n}(N)$-type $\left(\operatorname{Ediag}\left(\mathcal{N}_{\cap}\right) \cup q_{\cap}(x)\right)$. Suppose it is realized by $M^{\prime \prime}$ in $\mathcal{N}_{\cup}^{\prime}$. Then $M^{\prime \prime}$ is the domain of a substructure $\mathcal{M}_{\cup}^{\prime \prime}$ isomorphic to \mathcal{M}_{\cup} via the enumeration of both structures by the variables x. Let $f^{\prime}: \mathcal{M}_{\cup} \rightarrow \mathcal{M}_{\cup}^{\prime \prime}$ be this isomorphism. Also $\mathcal{N}_{i} \leqslant \mathcal{N}_{i}^{\prime}$ for all $i \in I$, and in particular $\mathcal{N}_{\cup}^{\prime} \vDash T_{\cup}$. Since T_{\cup} is inductive, there is an extension \mathcal{N}_{\cup}^{*} of $\mathcal{N}_{\cup}^{\prime}$ such that \mathcal{N}_{\cup}^{*} is existentially
closed, i.e., $\mathcal{N}_{\cup}^{*} \vDash T_{\cup}^{*}$. Since each T_{i} is model-complete, we have $\mathcal{N}_{i}^{\prime} \leqslant \mathcal{N}_{i}^{*}$ for all $i \in I$, so $M^{\prime \prime}$ satisfies $\bigcup_{i \in I} q_{i}(x)$ in \mathcal{N}_{\cup}^{*}. And since T_{\cup}^{*} is model-complete, $\mathcal{N}_{\cup} \leqslant \mathcal{N}_{\cup}^{*}$.

We view \mathcal{N}_{\cup}^{*} as an elementary substructure of \mathcal{M}_{\cup}, and we view f^{\prime} as an embedding $\mathcal{M}_{\cup} \rightarrow \mathcal{N}_{\cup}^{*}$. If $a \in A$, then a is enumerated by a variable x_{a} from x, and the formula $x_{a}=a$ is in $p_{\cap}(x)$. So $f^{\prime}(a)$ satisfies the formula $x_{a}=f(a)$. This establishes the amalgamation property.

For the disjoint amalgamation property, note that we have $M^{\prime \prime} \downarrow_{A^{\prime}} N$ in \mathcal{M}_{n}, so by algebraic independence for $\mathcal{L}, M^{\prime \prime} \cap N=A^{\prime}$, and hence $f^{\prime}(M) \cap N=f(A)$.

By Proposition 5.1, T_{\cup}^{*} is ccl-complete and every ccl-closed substructure is acl ${ }_{\mathrm{U}}$-closed. It follows that for any set $B \subseteq \mathcal{M} \vDash T, \operatorname{acl}_{\cup}(B) \subseteq \operatorname{ccl}(B)$.

For the converse, it suffices to show $\operatorname{acl}_{\cup}(B)$ is acl_{i}-closed for all $i \in I$. Indeed,

$$
\operatorname{acl}_{i}\left(\operatorname{acl}_{\cup}(B)\right) \subseteq \operatorname{acl}_{\cup}\left(\operatorname{acl}_{\cup}(B)\right)=\operatorname{acl}_{\cup}(B)
$$

So acl ${ }_{\cup}=\mathrm{ccl}$, and T_{\cup}^{*} is acl-complete.
Corollary 9.1. Assume T_{n} admits a stationary independence relation which satisfies full existence in T_{i} for all i. Suppose each T_{i} is bcl-complete. Then T_{*}^{*} is bcl complete and every L_{\cup}-formula is T_{\cup}^{*}-equivalent to a finite disjunction of b.e. formulas of the form

$$
\exists y \bigwedge_{i \in J} \varphi_{i}(x, y),
$$

where $J \subseteq I$ is finite and $\varphi_{i}(x, y)$ is a flat L_{i} formula for all $i \in J$.

Proof. Theorem 5.1 implies T_{i} is acl-complete and $\mathrm{bcl}_{i}=\operatorname{acl}_{i}$ for all $i \in I$. We have $\operatorname{bcl}_{\cup}(A) \subseteq \operatorname{acl}_{\cup}(A)$ for any subset A of a T_{\cup}-model. But also, for all $i \in I$,

$$
\begin{aligned}
\operatorname{acl}_{i}\left(\operatorname{bcl}_{\cup}(A)\right) & =\operatorname{bcl}_{i}\left(\operatorname{bcl}_{\cup}(A)\right) \\
& \subseteq \operatorname{bcl}_{\cup}\left(\operatorname{bcl}_{\cup}(A)\right) \\
& =\operatorname{bcl}_{\cup}(A) .
\end{aligned}
$$

Theorem 9.2 implies T_{\cup}^{*} is acl-complete and $\operatorname{ccl}(A)=\operatorname{bcl}_{\cup}(A)=\operatorname{acl}_{\cup}(A)$. Applying Theorem 5.1 again, T_{\cup}^{*} is bcl-complete.

It remains to characterize L_{\cup}-formulas up to equivalence. Theorem 5.1 shows every L_{\cup}-formula is T_{U}^{*}-equivalent to a finite disjunction of b.e. formulas. Let $\exists y \psi(x, y)$ be a b.e. formula appearing in the disjunction. By Corollary 5.1, the quantifier-free formula $\psi(x, y)$ is equivalent to a finite disjunction of $\mathrm{E} b$-formulas $\bigvee_{j=1}^{m} \exists z_{j} \theta_{j}\left(x, y, z_{j}\right)$. Distributing the quantifier $\exists y$ over the disjunction, we find that $\exists y \exists z_{j} \theta_{j}\left(x, y, z_{j}\right)$ is a b.e. formula. Applying Remark 6.2 to the flat formula $\theta_{j}\left(x, y, z_{j}\right)$ yields the result.

We conclude with two counterexamples showing that the hypotheses on T_{n} are necessary for acl-completeness of interpolative fusions. In the first example T_{\cap} is unstable with elimination of imaginaries, and in the second example T_{n} is stable but fails weak elimination of imaginaries. In neither example does T_{n} admit a stationary independence relation which satisfies full existence in T_{i} for all i.

Example 9.1. Let $L_{\cap}=\{\leqslant\}$ and L_{i} be the expansion of L_{\cap} by a unary predicate P_{i} for $i \in\{1,2\}$. Let $T_{n}=\mathrm{DLO}$, and T_{i} be the theory of a dense linear order equipped with a downwards closed supremum-less set defined by P_{i} for $i \in\{1,2\}$. Then T_{\cup}^{*} exists and has exactly two completions: an L_{\cup}-structure \mathcal{M}_{\cup} is a T_{\cup}^{*}-model if and only if we either have $P_{1}\left(\mathcal{M}_{\cup}\right) \mp P_{2}\left(\mathcal{M}_{\cup}\right)$ or $P_{2}\left(\mathcal{M}_{\cup}\right) \mp P_{1}\left(\mathcal{M}_{\cup}\right)$. In either kind of model \varnothing is easily seen to be algebraically closed. The completions of T_{\cup}^{*} are not determined by fdiag $L_{L_{1}}(\varnothing) \cup \mathrm{fdiag}_{L_{2}}(\varnothing)$, so T_{\cup}^{*} is not acl-complete.

Example 9.2. Let $L_{\mathrm{n}}=\{E\}$ where E is a binary relation symbol. Let $L_{i}=\left\{E, P_{i}\right\}$ where P_{i} is unary for $i \in\{1,2\}$. Let T_{\cap} be the theory of an equivalence relation with infinitely many infinite classes. Let T_{i} be the theory of a T_{n}-model with a distinguished equivalence class named by P_{i}. Then every model of T_{\cup} is interpolative, so $T_{\cup}^{*}=T_{\cup}$. A T_{\cup}^{*}-model \mathcal{M}_{\cup} may have $P_{1}\left(\mathcal{M}_{\cup}\right)=P_{2}\left(\mathcal{M}_{\cup}\right)$ or $P_{1}\left(\mathcal{M}_{\cup}\right) \neq P_{2}\left(\mathcal{M}_{\cup}\right)$, so T_{\cup}^{*} has exactly two completions. Again, $\operatorname{acl}_{\cup}(\varnothing)=\varnothing$ and the completions are not determined by $\operatorname{fdiag}_{L_{1}}(\varnothing) \cup \operatorname{fdiag}_{L_{2}}(\varnothing)$, so T_{\cup}^{*} is not acl-complete.

9.3. Preservation of quantifier elimination

When is quantifier elimination is preserved in interpolative fusions? In contrast to preservation of model-completeness, acl-completeness, and bcl-completeness, we cannot obtain quantifier elimination in T_{\cup}^{*} without tight control on algebraic closure in the T_{i}. In this section we will assume each T_{i} admits quantifier elimination, hence T_{i} is bcl-complete and $\operatorname{bcl}_{i}=\operatorname{acl}_{i}$ for all $i \in I$ by Theorem 5.1.

Theorem 9.3 below is motivated by some comments in the introduction of [60] on the failure of quantifier elimination in ACFA.

Theorem 9.3. Assume T_{\cap} admits a stationary independence relation which satisfies full existence in T_{i} for all i. Suppose every T_{i} has quantifier elimination, and

$$
\operatorname{acl}_{i}(A)=\operatorname{acl}_{\cap}(A) \quad \text { and } \quad \operatorname{Aut}_{L_{\cap}}\left(\operatorname{acl}_{\cap}(A) / A\right)=\operatorname{Aut}_{L_{i}}\left(\operatorname{acl}_{\cap}(A) / A\right)
$$

for all L_{\cup}-substructures A of T_{\cup}^{*}-models and all $i \in I$. Then T_{\cup}^{*} has quantifier elimination.
Proof. Theorem 9.2 shows T_{\cup}^{*} is ccl-complete. We will show T_{\cup}^{*} is substructure complete. Suppose \mathcal{A}_{\cup} is an L_{\cup}-substructure of a T_{\cup}^{*}-model $\mathcal{M}_{\cup}, \mathcal{N}_{\cup}$ is another model of $T_{\cup}^{*}, f: \mathcal{A}_{\cup} \rightarrow \mathcal{N}_{\cup}$
is an embedding. Any acl n_{n}-closed subset of M is acl_{i}-closed for all $i \in I$. Hence,

$$
\operatorname{acl}_{\cap}(A)=\operatorname{acl}_{i}(A)=\operatorname{ccl}(A) \quad \text { for all } i \in I
$$

As each T_{i} is substructure complete, f is partial elementary $\mathcal{M}_{i} \rightarrow \mathcal{N}_{i}$, so f extends to a partial elementary map $g_{i}: \operatorname{acl}_{i}(A)=\operatorname{acl}_{n}(A) \rightarrow \mathcal{N}_{i}$.

Fix $j \in I$. For all $i \in I, g_{i}^{-1} \circ g_{j}$ is an L_{\cap}-automorphism of $\operatorname{acl}_{n}(A)$ fixing A pointwise, so in fact it is an L_{i}-automorphism of $\operatorname{acl}_{\cap}(A)$ by the assumption on the automorphism groups. It follows that $g_{j}=g_{i} \circ\left(g_{i}^{-1} \circ g_{j}\right)$ is an L_{i}-embedding $\operatorname{acl}_{n}(A) \rightarrow \mathcal{N}_{i}$. Since i was arbitrary, g_{j} is an L_{\cup}-embedding. But $\operatorname{acl}_{n}(A)=\operatorname{ccl}(A)$, so by ccl-completeness, g_{j} is partial elementary $\mathcal{M}_{\cup} \rightarrow \mathcal{N}_{\cup}$, and hence so is $\left.g_{j}\right|_{A}=f$.

We prefer hypothesis which can be checked language-by-language, i.e., which refer only to properties of T_{i}, T_{n}, and the relationship between T_{i} and T_{n} rather than how T_{i} and T_{j} relate when $i \neq j$, or how T_{i} relates to T_{U}. The hypothesis of Theorem 9.3 is not strictly language-by-language, because it refers to an arbitrary L_{\cup}-substructure A. However, there are several natural strengthenings of this hypothesis which are language-by-language. One is to simply assume the hypothesis of Theorem 9.3 for all sets A. Simpler language-by-language criteria are given in the following corollaries.

Corollary 9.2. Assume T_{n} admits a stationary independence relation which satisfies full existence in T_{i} for all i. Suppose each T_{i} admits quantifier elimination. If either of the following conditions hold for all sets A, then T_{\cup}^{*} has quantifier elimination:
(1) $\operatorname{acl}_{i}(A)=\langle A\rangle_{L_{i}}$ for all $i \in I$.
(2) $\operatorname{acl}_{i}(A)=\operatorname{dcl}_{\cap}(A)$ for all $i \in I$.

Proof. We apply Theorem 9.3, so assume $A=\langle A\rangle_{L_{U}}$.
(1) We have $A \subseteq \operatorname{acl}_{\cap}(A) \subseteq \operatorname{acl}_{i}(A)=\langle A\rangle_{L_{i}}=A$.
(2) We have $\operatorname{dcl}_{\cap}(A) \subseteq \operatorname{acl}_{\cap}(A) \subseteq \operatorname{acl}_{i}(A)=\operatorname{dcl}_{\cap}(A)$.

In both cases, the group $\operatorname{Aut}_{L_{\cap}}\left(\operatorname{acl}_{\cap}(A) / A\right)$ is already trivial, so its subgroup $\operatorname{Aut}_{L_{i}}\left(\operatorname{acl}_{n}(A) / A\right)$ is too.

Corollary 9.3. Assume T_{n} admits a stationary independence relation which satisfies full existence in T_{i} for all i. Suppose each T_{i} admits quantifier elimination and a universal axiomization. Then T_{\cup}^{*} has quantifier elimination.

Proof. Every L_{i}-substructure of a model of T_{i} is an elementary substructure, and hence acl_{i}-closed, so we can apply Corollary $9.2(1)$.

9.4. Consequences for general interpolative fusions

Many of the results above can be translated to the general case (when the T_{i} are not modelcomplete) by Morleyization. This allows us to understand $L_{U^{\prime}}$-formulas and complete $L_{U^{-}}$ types relative to L_{i}-formulas and complete L_{i}-types.

To set notation: For each i, Morleyization gives a definitional expansion L_{i}^{\diamond} of L_{i} and an extension T_{i}^{\diamond} of T_{i} by axioms defining the new symbols in L_{i}^{\diamond}. We assume that the new symbols in L_{i}^{\diamond} and L_{j}^{\diamond} are distinct for $i \neq j$, so that $L_{i}^{\diamond} \cap L_{j}^{\diamond}=L_{\cap}$. It follows that each T_{i}^{\diamond} has the same set of L_{\cap} consequences, namely T_{n}. We let $L_{\cup}^{\diamond}=\bigcup_{i \in I} L_{i}^{\diamond}$ and $T_{\cup}^{\diamond}=\bigcup_{i \in I} T_{i}^{\diamond}$. Then every T_{\cup}-model \mathcal{M}_{\cup} has a canonical expansion to a T_{\cup}^{\diamond}-model $\mathcal{M}_{\cup}^{\diamond}$, and by Remark $6.1, \mathcal{M}_{\cup}$ is interpolative if and only if $\mathcal{M}_{\cup}^{\diamond}$ is interpolative.

Proposition 9.1. (1) Every formula $\psi(x)$ is T_{\cup}^{*}-equivalent to a finite disjunction of formulas of the form

$$
\exists y \bigwedge_{i \in J} \varphi_{i}(x, y)
$$

where $J \subseteq I$ is finite and $\varphi_{i}(x, y)$ is an L_{i}-formula for all $i \in J$.
(2) If \mathcal{M}_{\cup} is a T_{\cup}^{*}-model, then

$$
T_{\cup}^{*} \cup \bigcup_{i \in I} \operatorname{Ediag}_{L_{i}}(\mathcal{M}) \vDash \operatorname{Ediag}_{L_{\cup}}(\mathcal{M}) .
$$

Proof. For (1), each Morleyized theory T_{i}^{\diamond} has quantifier elimination, hence is modelcomplete, so we can apply Theorem 9.1 to the theory $\left(T_{\cup}^{\diamond}\right)^{*}$ of interpolative T_{\cup}^{\diamond} models. This says $\left(T_{\cup}^{\diamond}\right)^{*}$ is model-complete, and $\psi(x)$ is $\left(T_{\cup}^{\diamond}\right)^{*}$-equivalent to a finite disjunction of formulas of the form $\exists y \bigwedge_{i \in J} \varphi_{i}(x, y)$, where each $\varphi_{i}(x, y)$ is a flat $L_{i}^{\diamond \text {-formula. But since } L_{i}^{\diamond} \text { is }}$ a definitional expansion of L_{i}, each formula $\varphi_{i}(x, y)$ can be translated back to an L_{i}-formula.

For (2), since $\left(T_{\cup}^{\diamond}\right)^{*}$ is model-complete, we have

$$
\left(T_{\cup}^{*}\right)^{\diamond} \cup \operatorname{fdiag}_{L_{\stackrel{\ominus}{\bullet}}}(\mathcal{M}) \vDash \operatorname{Ediag}_{L_{\stackrel{\rightharpoonup}{*}}}(\mathcal{M})
$$

 so the result follows.

We note that Proposition 9.1(2) is simply a restatement of Proposition 6.2(3), which we think of as "relative model-completeness".

We will now establish a sequence of variants on Proposition 9.1, with stronger hypotheses and stronger conclusions.

Proposition 9.2. Assume T_{n} admits a stationary independence relation which satisfies full existence in T_{i} for all i. Then:
(1) Every formula $\psi(x)$ is T_{\cup}^{*}-equivalent to a finite disjunction of formulas of the form

$$
\exists y \bigwedge_{i \in J} \varphi_{i}(x, y)
$$

where $J \subseteq I$ is finite, $\varphi_{i}(x, y)$ is an L_{i}-formula for all $i \in J$, and $\bigwedge_{i \in J} \varphi_{i}(x, y)$ is bounded in y.
(2) If A is an algebraically closed subset of a T_{\cup}^{*}-model M, then

$$
T_{\cup}^{*} \cup \bigcup_{i \in I} \operatorname{Th}_{L_{i}(A)}(\mathcal{M}) \vDash \operatorname{Th}_{L_{\cup}(A)}(\mathcal{M}) .
$$

Proof. Just as in the proof of Proposition 9.1, but this time using the fact that $\left(T_{\stackrel{\rightharpoonup}{ }}^{\diamond}\right)^{*}$ is bcl-complete and applying Corollary 9.1.

It follows from Proposition 9.2 that if T_{n} admits a stationary independence relation which satisfies full existence in T_{i} for all i, then the completions of T_{\cup}^{*} are determined by the L_{i}-types of $\operatorname{acl}_{\cup}(\varnothing)$ for all i.

Proposition 9.3. Assume T_{\cap} admits a stationary independence relation which satisfies full existence in T_{i} for all i. Suppose further that

$$
\operatorname{acl}_{i}(A)=\operatorname{acl}_{\cap}(A) \quad \text { and } \quad \operatorname{Aut}_{L_{\cap}}\left(\operatorname{acl}_{\cap}(A) / A\right)=\operatorname{Aut}_{L_{i}}\left(\operatorname{acl}_{\cap}(A) / A\right)
$$

for all L_{\cup}-substructures A of T_{\cup}^{*}-models and all $i \in I$. Then:
(1) Every formula $\psi(x)$ is T_{\cup}^{*}-equivalent to a finite disjunction of formulas

$$
\exists y \bigwedge_{i \in J} \varphi_{i}(x, y)
$$

where $J \subseteq I$ is finite, $\varphi_{i}(x, y)$ is an L_{i}-formula for all $i \in J$, and $\bigwedge_{i \in J} \varphi_{i}(x, y)$ is bounded in y with bound 1 .
(2) If A is an L_{\cup}-substructure of a T_{\cup}^{*}-model \mathcal{M} then

$$
T_{\cup}^{*} \cup \bigcup_{i \in I} \operatorname{Th}_{L_{i}(A)}(\mathcal{M}) \vDash \operatorname{Th}_{L_{\cup}(A)}(\mathcal{M}) .
$$

Proof. Observing that Morleyization does not affect our hypotheses about acl ${ }_{i}$ and acl_{n}, we find that $\left(T_{\cup}^{\diamond}\right)^{*}$ has quantifier elimination, by Theorem 9.3. This gives us (2) as in the proof of Proposition 9.1.

For (1), note that $\psi(x)$ is $\left(T_{\cup}^{\diamond}\right)^{*}$-equivalent to a quantifier-free formula. The result then follows from Corollary 5.1 and Remark 6.2.

Remark 9.2. As in Corollary 9.2(1), we can replace the hypotheses of Proposition 9.3 with: T_{n} admits a stationary independence relation which satisfies full existence in T_{i} for all i, and for all sets A and all $i \in I, \operatorname{acl}_{i}(A)=\langle A\rangle_{L_{i}}$. The assumption $\operatorname{acl}_{i}(A)=\operatorname{dcl}_{n}(A)$ gives us something stronger, see Remark 9.3 below.

With a slightly strong assumption, we can get true relative quantifier elimination down to L_{i}-formulas in T_{\cup}^{*}.

Proposition 9.4. Assume T_{\cap} admits a stationary independence relation which satisfies full existence in T_{i} for all i. Suppose further that

$$
\operatorname{acl}_{i}(A)=\operatorname{acl}_{\cap}(A) \quad \text { and } \quad \operatorname{Aut}_{L_{\cap}}\left(\operatorname{acl}_{\cap}(A) / A\right)=\operatorname{Aut}_{L_{i}}\left(\operatorname{acl}_{\cap}(A) / A\right)
$$

for all sets A and all $i \in I$. Then:
(1) Every formula is T_{\cup}^{*}-equivalent to a Boolean combination of L_{i}-formulas.
(2) For any subset A of a T_{\cup}^{*}-models \mathcal{M},

$$
T_{\cup}^{*} \cup \bigcup_{i \in I} \operatorname{Th}_{L_{i}(A)}(\mathcal{M}) \vDash \operatorname{Th}_{L \cup(A)}(\mathcal{M}) .
$$

Proof. We first move to a relational language by replacing all function symbols by their graphs. Then we proceed just as in the proof of Proposition 9.3, noting that when L_{\cup}^{\diamond} is relational, a quantifier-free L_{\bullet}^{\diamond}-formula is already a Boolean combination of L_{i}^{\diamond}-formulas.

Remark 9.3. Once again, as in Corollary 9.2(2), we can replace the hypotheses of Proposition 9.4 with: T_{\cap} admits a stationary independence relation which satisfies full existence in T_{i} for all i, and $\operatorname{acl}_{i}(A)=\operatorname{dcl}_{n}(A)$ for all sets A and all $i \in I$. The assumption $\operatorname{acl}_{i}(A)=\langle A\rangle_{L_{i}}$ does not suffice for this, because this condition is lost when moving to a relational language.

9.5. Preservation of stability and NIP

In this section we give applications of some of the technical work above.
Proposition 9.5. Assume the hypotheses of Proposition 9.4. If each T_{i} is stable (NIP), then T_{\cup}^{*} is stable (NIP).

Proof. This follows immediately from Proposition 9.4(1) as stable (NIP) formulas are closed under Boolean combinations.

We can also use Proposition 9.4(2) to count types.
Proposition 9.6. Assume the hypotheses of Proposition 9.4, and suppose that I is finite. If each T_{i} is stable in κ, then T_{\cup}^{*} is stable in κ. As a consequence, if each T_{i} is κ_{0}-stable then T_{\cup}^{*} is \aleph_{0}-stable, and if each T_{i} is superstable, then T_{\cup}^{*} is superstable.

Proof. We consider $S_{x}(A)$, where x is a finite tuple of variables, $A \subseteq \mathcal{M} \vDash T_{\cup}^{*}$, and $|A| \leqslant \kappa$. By Proposition $9.4(2)$, a type in $S_{x}(A)$ is completely determined by its restrictions to L_{i} for all $i \in I$. Since the number of L_{i}-types over A in the variables x is at most κ, we have $\left|S_{x}(A)\right| \leqslant \prod_{i \in I} \kappa=\kappa$, since I is finite.

We do not expect to obtain preservation of stability or NIP without strong restrictions on acl, as in the hypotheses of Proposition 9.4. The proofs of Propositions 9.5 and 9.6 do not apply to other classification-theoretic properties such as simplicity, NSOP_{1}, and NTP_{2}, as these properties are not characterized by counting types, and formulas with these properties are not closed under Boolean combinations in general. However, we can obtain preservation results for some of these properties under more general hypotheses. These results will be contained in future papers, beginning with [53].

Corollary 7.1, Proposition 9.4, the fact that a theory with trivial algebraic closure eliminates \exists^{∞}, and Proposition 9.5, together imply Corollary 9.4.

Corollary 9.4. Suppose acl_{i} is trivial for all $i \in I$. Then T_{\cup}^{*} exists. If $\mathcal{M}_{\cup} \vDash T_{\cup}^{*}$ then every \mathcal{M}_{\cup}-definable set is a Boolean combination of \mathcal{M}_{i}-definable sets for various $i \in I$. If each T_{i} is additionally stable (NIP) then T_{\cup}^{*} is stable (NIP).

The special case of Corollary 9.4 when T_{2} is the theory of dense linear orders is proven in [71, Corollary 1.2].

9.6. Preservation of \aleph_{0}-categoricity

In this section, we do not assume that the interpolative fusion T_{\cup}^{*} exists. Applying the preservation results above, we show that T_{\cup}^{*} exists and is \aleph_{0}-categorical provided that certain hypotheses, including \aleph_{0}-categoricity, on the T_{i} hold. This section is closely related to work of Pillay and Tsuboi [64].

Proposition 9.7. Assume T_{n} admits a stationary independence relation which satisfies full existence in T_{i} for all i. Assume also that all languages have only finitely many sorts. Suppose that each T_{i} is \aleph_{0}-categorical and that there is some $i^{*} \in I$ such that $\operatorname{acl}_{i}(A)=\operatorname{acl}_{\cap}(A)$ for all $i \neq i^{*}$. Then the interpolative fusion exists.

Proof. A T_{\cup}-model \mathcal{M}_{\cup} has the joint consistency property if for every finite $B \subseteq M$ such that $B=\operatorname{acl}_{i^{*}}(B)$ and every family $\left(p_{i}(x)\right)_{i \in J}$ such that J is a finite subset of $I, p_{i}(x)$ is a complete L_{i}-type over B for all $i \in J$, and the p_{i} have a common restriction $p_{\cap}(x)$ to L_{\cap}, then $\bigcup_{i \in I} p_{i}(x)$ is realized in \mathcal{M}_{\cup}.

Note that the joint consistency property is elementary. Indeed, by \aleph_{0}-categoricity, there is an $L_{i^{*}}$-formula $\psi(y)$ expressing the property that the set B enumerated by a tuple b is $\operatorname{acl}_{i^{*}}$-closed. Since B is finite, every complete type $p_{i}(x)$ over B is isolated by a single formula. And the property that the L_{i}-formula $\varphi_{i}(x, b)$ isolates a complete L_{i}-type over B whose restriction to L_{\cap} is isolated by the L_{\cap}-formula $\varphi_{\cap}(x, b)$ is definable by a formula
$\theta_{\varphi_{i}, \varphi_{\mathrm{C}}}(b)$. So the class of T_{\cup}-models with the joint consistency property is axiomatized by T_{\cup} together with sentences of the form

$$
\forall y\left[\left(\psi(y) \wedge \bigwedge_{i \in J} \theta_{\varphi_{i}, \varphi_{n}}(y)\right) \rightarrow \exists x \bigwedge_{i \in J} \varphi_{i}(x, y)\right] .
$$

It remains to show that a structure \mathcal{M}_{\cup} is interpolative if and only if it has the joint consistency property. So suppose \mathcal{M}_{ω} is interpolative, let B and $\left(p_{i}(x)\right)_{i \in J}$ be as in the definition of the joint consistency property, and suppose for contradiction that $\bigcup_{i \in J} p_{i}(x)$ is not realized in \mathcal{M}_{U}. Note that since B is acl $_{i^{*}}$-closed, it is also $\operatorname{acl}_{i^{-}}$-closed for all $i \neq i^{*}$, since $\operatorname{acl}_{i}(B)=\operatorname{acl}_{n}(B) \subseteq \operatorname{acl}_{i^{*}}(B)=B$.

Each $p_{i}(x)$ is isolated by a single L_{i}-formula $\varphi_{i}(x, b)$, and

$$
\mathcal{M}_{\cup} \vDash \neg \exists x \bigwedge_{i \in J} \varphi_{i}(x, b) .
$$

It follows that the φ_{i} are separated by a family of L_{n}-formulas $\left(\psi^{i}\left(x, c_{i}\right)\right)_{i \in J}$. Let $C=B \cup\left\{c_{i} \mid\right.$ $i \in J\}$. By full existence for \downarrow in T_{i}, since B is acl l_{i}-closed, $p_{i}(x)$ has an extension to a type $q_{i}(x)$ over C such that for any realization a_{i} of $q_{i}(x), a \downarrow_{B} C$. By stationarity, the types $q_{i}(x)$ have a common restriction q_{n} to L_{n}. Now for all $i \in J$, since $\varphi_{i}(x, b) \in p_{i}(x), \psi^{i}\left(x, c_{i}\right) \in q_{i}(x)$, and hence $\psi^{i}\left(x, c_{i}\right) \in q_{\cap}(x)$. This is a contradiction, since $\left\{\psi^{i}\left(x, c_{i}\right) \mid i \in J\right\}$ is inconsistent.

Conversely, suppose \mathcal{M}_{\cup} has the joint consistency property. Let $\left(\varphi_{i}\left(x, a_{i}\right)\right)_{i \in J}$ be a family of formulas which are not separated. Let $B=\operatorname{acl}_{i^{*}}\left(\left(a_{i}\right)_{i \in J}\right)$. Since $T_{i^{*}}$ is $\aleph_{0^{\prime}}$-categorical, and there are only finitely many sorts, B is finite. For each $i \in J$, there is an L_{n}-formula $\psi^{i}(x, b)$ such that $\mathcal{M}_{\cup} \vDash \psi^{i}(a, b)$ if and only if $\operatorname{tp}_{L_{n}}(a / B)$ is consistent with $\varphi_{i}\left(x, a_{i}\right)$ (we may take $\psi^{i}(x, b)$ to be the disjunction of formulas isolating each of the finitely many such types). Since the formulas $\psi^{i}(x, b)$ do not separate the formulas $\varphi_{i}\left(x, a_{i}\right)$, there must be some element $a \in M^{x}$ satisfying $\wedge_{i \in J} \psi^{i}(x, b)$. Then $p_{\cap}(x)=\operatorname{tp}_{L_{n}}(a / B)$ is consistent with each $\varphi_{i}\left(x, a_{i}\right)$, so $p_{\cap}(x) \cup\left\{\varphi_{i}\left(x, a_{i}\right)\right\}$ can be extended to a complete L_{i}-type $p_{i}(x)$ over B. By the joint consistency property, there is some element in M^{x} realizing $\bigcup_{i \in J} p_{i}(x)$, and in particular satisfying $\bigwedge_{i \epsilon J} \varphi_{i}\left(x, a_{i}\right)$.

A type-counting argument as in Proposition 9.6 now gives preservation of κ_{0}-categoricity.
Theorem 9.4. Assume the hypotheses of Proposition 9.7, and let T_{*}^{*} be the interpolative fusion. Assume additionally that I is finite. Then every completion of T_{\cup}^{*} is \aleph_{0}-categorical.

Proof. Let \widehat{T} be a completion of T_{*}^{*}. It suffices to show that for any finite tuple of variables x, there are only finitely many L_{\cup}-types over the empty set in the variables x relative to \widehat{T}. Since $\operatorname{acl}_{\cup}=\operatorname{acl}_{i^{*}}$ is uniformly locally finite, there is an upper bound m on the size of $\operatorname{acl}_{\cup}(a)$ for any tuple $a \in M^{x}$ when $M \vDash \widehat{T}$.

By Proposition 9.2, $\operatorname{tp}_{L_{\cup}}\left(\operatorname{acl}_{\cup}(a)\right)$ is determined by $\bigcup_{i \in I} \operatorname{tp}_{L_{i}}\left(\operatorname{acl}_{\cup}(a)\right)$. So the number of possible L_{\cup}-types of a is bounded above by the product over all i of the number of L_{i}-types of m-tuples relative to T_{i}. This is finite, since I is finite and each T_{i} is \aleph_{0}-categorical.

The presentation of the \aleph_{0}-categorical theory of the random graph as an interpolative fusion in Section 7.6 illustrates Theorem 9.4. Indeed, letting T_{1} and T_{2} be as in Section 7.6, T_{n} is the theory of two infinite sets with no extra structure, which is stable with weak elimination of imaginaries, and algebraic closure in T_{2} is trivial and thus agrees with algebraic closure in T_{n}.

We recover the following result of Pillay and Tsuboi.
Corollary 9.5 ([64, Corollary 5]). Assume T_{n} is stable with weak elimination of imaginaries. Let $I=\{1,2\}$, suppose T_{1} and T_{2} are \aleph_{0}-categorical single-sorted theories, and suppose $\operatorname{acl}_{1}(A)=\operatorname{acl}_{\cap}(A)$ for all $A \subseteq \boldsymbol{M}_{1}$. Then T_{\cup} admits an \aleph_{0}-categorical completion .

9.7. Preservation of NSOP_{1}

We fix a completion \widehat{T} of T_{\cup}^{*} and a monster model $\mathcal{M}_{\cup} \vDash \widehat{T}$. We also assume that T_{\cap} is stable with weak elimination of imaginaries, and we will additionally need to assume that T_{n} has 3 -uniqueness.

Let T be a stable theory. Suppose a_{1}, a_{2}, and a_{3} are tuples enumerating algebraically closed sets, which are pairwise forking independent over a common algebraically closed subset A. For $1 \leqslant i<j \leqslant 3$, let $a_{i j}$ be a tuple enumerating $\operatorname{acl}\left(a_{i}, a_{j}\right)$. Then T has 3-uniqueness if $\operatorname{tp}\left(a_{12} a_{13} a_{23}\right)$ is uniquely determined by $\operatorname{tp}\left(a_{12}\right) \cup \operatorname{tp}\left(a_{13}\right) \cup \operatorname{tp}\left(a_{23}\right)$.

Hrushvoski [39] showed that a stable theory has 3-uniqueness if and only if it eliminates generalized imaginaries. Generalized imaginaries correspond to definable groupoids. Ordinary amalgamation over algebraically closed sets in the sense of Proposition 5.3 requires weak elimination of imaginaries in T_{n}. It is therefore natural that independent 3-amalgamation in \widehat{T} (the independence theorem, the main component in showing \widehat{T} is NSOP_{1}) requires elimination of generalized imaginaries in T_{n}.

If \widehat{T} is NSOP_{1}, what relationship does \downarrow^{K} in \mathcal{M}_{\cup} have to \downarrow^{K} in \mathcal{M}_{i} for $i \in I$? Note that $A \downarrow_{M}^{K} B$ implies $\operatorname{acl}_{\cup}(M A) \downarrow_{M}^{K} \operatorname{acl}_{\cup}(M B)$ in \mathcal{M} by Theorem 5.4. Then by Lemma 5.7, we have $\operatorname{acl}_{\cup}(M A) \perp_{M}^{K} \operatorname{acl}_{\cup}(M B)$ in \mathcal{M}_{i} for all i. It is reasonable to hope that Kim forking between $\operatorname{acl}_{\cup}(M A)$ and $\operatorname{acl}_{\cup}(M B)$ in some \mathcal{M}_{i} is the only source of Kim forking between A and B in \mathcal{M}_{\cup}.

For all A, B and M, we declare:

$$
A \underset{M}{\perp} B \Leftrightarrow \operatorname{acl}_{\cup}(M A) \underset{M}{\perp^{K}} \operatorname{acl}_{\cup}(M B) \text { in } \mathcal{M}_{i} \text { for all } i \in I .
$$

We use the axiomatic characterization of Theorem 5.6 to show \widehat{T} is NSOP_{1} and $\downarrow=\downarrow^{K}$.

Theorem 9.5. Suppose that each T_{i} is $N S O P_{1}$ and T_{n} has 3-uniqueness. Then \widehat{T} is $N S O P_{1}$ and $\perp_{M}=\perp_{M}^{K}$ for all $\mathcal{M}<\mathcal{M}_{\cup}$.

Proof. We show \downarrow satisfies the properties listed in Theorem 5.6.
Invariance, existence, monotonicity, symmetry: Clear from the definition, using the corresponding properties of Kim independence in each \mathcal{M}_{i}.

The independence theorem: We are given A, A^{\prime}, B, C and \mathcal{M} such that $\operatorname{tp}_{L_{\cup}}(A / M)=$ $\operatorname{tp}_{L_{\cup}}\left(A^{\prime} / M\right), A \downarrow_{M} B, A^{\prime} \perp_{M} C$, and $B \downarrow_{M} C$. By adding elements to A, A^{\prime}, B, and C, we may assume $A=\operatorname{acl}_{\cup}(M A), A^{\prime}=\operatorname{acl}_{\cup}\left(M A^{\prime \prime}\right), B=\operatorname{acl}_{\cup}(M B)$, and $C=\operatorname{acl}_{\cup}(M C)$. Then by definition of \downarrow, we have, for all $i \in I, \operatorname{tp}_{L_{i}}(A / M)=\operatorname{tp}_{L_{i}}\left(A^{\prime} / M\right), A \downarrow_{M}^{K} B, A^{\prime} \downarrow^{K}{ }_{M} C$, and $B \downarrow_{M}^{K} C$ in \mathcal{M}_{i}.

Let $B^{\prime}=\operatorname{cl}(A B), C^{\prime}=\operatorname{cl}\left(A^{\prime} C\right)$, and $D=\operatorname{cl}(B C)$. Let $f: A \rightarrow A^{\prime}$ be the bijection established by the equality of types $\operatorname{tp}_{L_{\cup}}(A / M)=\operatorname{tp}_{L_{\cup}}\left(A^{\prime} / M\right)$.

For all $\square \in I \cup\{\cap\}$, let Σ_{\square} be the partial L_{\square}-type

$$
\begin{aligned}
& T_{\square} \cup \Delta_{B^{\prime}}^{L_{\square}} \cup \Delta_{C^{\prime}}^{L_{\square}} \cup \Delta_{D}^{L_{\square}} \cup\left\{x_{a}=x_{f(a)} \mid a \in A\right\} \\
& \quad \cup\left\{\neg \delta\left(\bar{x}_{a}, \bar{x}_{d}\right) \mid \bar{a} \in A, \bar{d} \in D, \delta\left(\bar{x}_{a}, \bar{d}\right) \text { Kim divides over } M \text { in } \mathcal{M}_{\square}\right\}
\end{aligned}
$$

In the last part of the definition of Σ_{\square} above, \bar{x}_{a} and \bar{x}_{d} are the variables representing \bar{a} and \bar{d} in the diagrams.

I claim it suffices to show $\bigcup_{i \in I} \Sigma_{i}$ is consistent. Indeed, any model N of $\bigcup_{i \in I} \Sigma_{i}$ is a model of T_{\cup}, and hence embeds in a model M^{\prime} of T_{\cup}^{*}. Since the induced embedding $M \rightarrow M^{\prime}$ is elementary, $M^{\prime} \vDash \widehat{T}$, and we can embed M^{\prime} in \mathcal{M} in a way which maps the elements named by $\left(x_{d}\right)_{d \in D}$ to D (indeed, these elements satisfy $\Delta_{D}^{L_{\cup}}$, and hence the L_{\cup}-type of D in M^{\prime}, since D is closed). Then taking $A^{\prime \prime}$ to be the image of the elements named by $\left(x_{a}\right)_{a \in A}$, we have that $\operatorname{tp}_{L_{\cup}}\left(A^{\prime \prime} B / M\right)=\operatorname{tp}_{L_{\cup}}(A B / M)$, since $\operatorname{cl}\left(A^{\prime \prime} B\right)$ satisfies $\Delta_{B^{\prime}}^{L_{u}}$, and $\operatorname{tp}_{L_{\cup}}\left(A^{\prime \prime} C / M\right)=$ $\operatorname{tp}_{L_{\cup}}\left(A^{\prime} C / M\right)$, since $\operatorname{cl}\left(A^{\prime \prime} C\right)$ satisfies $\Delta_{C^{\prime}}^{L_{U}}$. And finally $A^{\prime \prime} \perp_{M}^{K} D$ in \mathcal{M}_{i} for all $i \in I$, thanks to quantifier-elimination and the definition of Σ_{i}.

By Robinson joint consistency, we just need to show that Σ_{n}, which is equal to $\Sigma_{i} \cap \Sigma_{j}$ for all $i \neq j$, has a completion Σ_{\cap}^{*} which is consistent with each Σ_{i}. Let Σ_{\cap}^{*} be the partial
L_{\cap}-type:

$$
\begin{aligned}
T_{\cap} & \cup \Delta_{B^{\prime}}^{L_{n}} \cup \Delta_{C^{\prime}}^{L_{n}} \cup \Delta_{D}^{L_{n}} \cup\left\{x_{a}=x_{f(a)} \mid a \in A\right\} \\
& \cup\left\{\neg \delta\left(\bar{x}_{a}, \bar{x}_{d}\right) \mid \bar{a} \in A, \bar{d} \in D, \delta\left(\bar{x}_{a}, \bar{d}\right) \text { Kim divides over } M \text { in } \mathcal{M}_{\cap}\right\} \\
& \cup\left\{\neg \delta\left(\bar{x}_{b}, \bar{x}_{c}\right) \mid \bar{b} \in B^{\prime}, \bar{c} \in C^{\prime}, \delta\left(\bar{x}_{b}, \bar{c}\right) \text { forks over } A^{\prime} \text { in } \mathcal{M}_{\cap}\right\} \\
& \cup\left\{\neg \delta\left(\bar{x}_{b}, \bar{x}_{d}\right) \mid \bar{b} \in B^{\prime}, \bar{d} \in D, \delta\left(\bar{x}_{b}, \bar{d}\right) \text { forks over } B \text { in } \mathcal{M}_{\cap}\right\} \\
& \cup\left\{\neg \delta\left(\bar{x}_{c}, \bar{x}_{d}\right) \mid \bar{c} \in C^{\prime}, \bar{d} \in D, \delta\left(\bar{x}_{c}, \bar{d}\right) \text { forks over } C \text { in } \mathcal{M}_{\cap}\right\}
\end{aligned}
$$

First, I claim that Σ_{\cap}^{*} is consistent with Σ_{i} for all i. We begin by applying Theorem 5.7(2) in \mathcal{M}_{i}. This gives us $A^{\prime \prime}$ such that $A^{\prime \prime} \equiv_{M B} A, A^{\prime \prime} \equiv_{M C} A^{\prime}$, and $A^{\prime \prime} \perp^{K}{ }_{M} B C$, and further $B \downarrow_{M A^{\prime \prime}}^{r} C, A^{\prime \prime} \downarrow_{M B}^{r} C$, and $A^{\prime \prime} \downarrow_{M C}^{r} B$.

Naming $B_{i}=\operatorname{acl}_{i}\left(A^{\prime \prime} B\right), C_{i}=\operatorname{acl}_{i}\left(A^{\prime \prime} C\right)$, and $D_{i}=\operatorname{acl}_{i}(B C)$, the instances of \downarrow^{r} mean that $B_{i} \downarrow_{A^{\prime \prime}} C_{i}, B_{i} \downarrow_{B}^{f} D_{i}$, and $C_{i} \downarrow_{C}^{f} D_{i}$ in \mathcal{M}_{n}. We also have that $A^{\prime \prime} \downarrow_{M}^{K} D_{i}$, and B_{i}, C_{i}, and D_{i} satisfy the subsets of $\Delta_{B^{\prime}}^{L_{i}}, \Delta_{C^{\prime}}^{L_{i}}$, and $\Delta_{D}^{L_{i}}$ on the variables which enumerate these sets.

By Theorem 5.7(1), after moving by an automorphism over $M D_{i}$, we can find $D^{\prime \prime} \equiv_{M D_{i}} D$ (so in particular $D^{\prime \prime}$ satisfies $\Delta_{D}^{L_{i}}$) such that $A^{\prime \prime} \perp_{M}^{K} D^{\prime \prime}$ and $A^{\prime \prime} \perp^{r}{ }_{M D_{i}} D^{\prime \prime}$. Since B_{i} and C_{i} are
 for $\mathbb{L}^{f}, B_{i} \downarrow_{B}^{f} D^{\prime \prime}$ and $C_{i} \downarrow_{C}^{f} D^{\prime \prime}$.

Since B_{i} is acl l_{i}-closed, we can find a realization $B^{\prime \prime}$ of $\Delta_{B^{\prime}}^{L_{i}}$ over B_{i} such that $B^{\prime \prime} ل_{B_{i}}^{f} C_{i} D^{\prime \prime}$. In particular, by transitivity of $\downarrow^{f}, B^{\prime \prime} \downarrow_{A^{\prime \prime}}^{f} C_{i}$ and $B^{\prime \prime} \downarrow_{B}^{f} D^{\prime \prime}$.

Similarly, since C_{i} is acl_{i}, closed, we can find a realization $C^{\prime \prime}$ of $\Delta_{C^{\prime}}^{L_{i}}$ over C_{i} such that $C^{\prime \prime} \downarrow_{C_{i}}^{f} B^{\prime \prime} D^{\prime \prime}$. In particular, by transitivity of $\mathbb{L}^{f}, B^{\prime \prime}{\Psi^{f}}_{A^{\prime \prime}} C^{\prime \prime}$ and $C^{\prime \prime} \downarrow_{C}^{f} D^{\prime \prime}$.

All in all, $B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$ satisfies $\Sigma_{i} \cup \Sigma_{n}^{*}$.
Having shown consistency, it remains to show that Σ_{\cap}^{*} is complete. To do this, we will apply 3 -uniqueness twice. Let $B_{\cap}^{\prime}=\operatorname{acl}_{\cap}(A B), C_{\cap}^{\prime}=\operatorname{acl}_{\cap}\left(A^{\prime} C\right)$, and $D_{\cap}=\operatorname{acl}_{\cap}(B C)$. By 3uniqueness, the restriction of Σ_{\cap} to the variables labeling elements of $B_{\cap}^{\prime} \cup C_{\cap}^{\prime} \cup D_{\cap}$ is complete. Now we have to handle the rest of B^{\prime}, C^{\prime}, and D. So suppose we have any realization of Σ_{n}^{*}. We may assume the variables labeling D are interpreted by D, so as above we name by $A^{\prime \prime}$ the interpretation of the variables labeling A, and set $B^{\prime \prime}=\operatorname{cl}\left(A^{\prime \prime} B\right)$ and $C^{\prime \prime}=\operatorname{cl}\left(A^{\prime \prime} C\right)$, and similarly for $B_{\cap}^{\prime \prime}$ and $C_{\cap}^{\prime \prime}$.

Let $E=\operatorname{acl}_{\cap}\left(B_{\cap}^{\prime \prime} C_{\cap}^{\prime \prime} D_{\cap}\right)=\operatorname{acl}_{\cap}\left(A^{\prime \prime} B C\right)$. We will use E as the base algebraically closed set for another application of 3-uniqueness. By the extra non-forking conditions added to Σ_{n}^{*}, we have $B^{\prime \prime} \downarrow_{A^{\prime \prime}}^{f} C^{\prime \prime}, B^{\prime \prime} \downarrow_{B}^{f} D$, and $C^{\prime \prime} \downarrow_{C}^{f} D$. Using base monotonicity on the left and right, we have $B^{\prime \prime} \downarrow_{A^{\prime \prime} B C}^{f} C^{\prime \prime}, B^{\prime \prime} \downarrow_{A^{\prime \prime} B C}^{f} D$, and $C^{\prime \prime} \downarrow_{A^{\prime \prime} B C}^{f} D$, so $B^{\prime \prime} \downarrow_{E}^{f} C^{\prime \prime}, B^{\prime \prime} \downarrow_{E}^{f} D$, and $C^{\prime \prime} \perp_{E}^{f} D$. By stationarity, this information determines $\operatorname{tp}_{L_{n}}\left(B^{\prime \prime} C^{\prime \prime}\right), \operatorname{tp}_{L_{n}}\left(B^{\prime \prime} D\right)$, and $\operatorname{tp}_{L_{n}}\left(C^{\prime \prime} D\right)$ uniquely, and by 3 -uniqueness, these types determine $\operatorname{tp}_{L_{n}}\left(B^{\prime \prime} C^{\prime \prime} D\right)$ uniquely.

Strong finite character: Suppose $A \pm_{M} B$. Then for some $i \in I$, we have $\operatorname{acl}(M A) \pm_{M}^{K} \operatorname{acl}(M B)$ in \boldsymbol{M}_{i}. So there is some $a^{\prime} \in \operatorname{acl}(M A)$ and $b^{\prime} \in \operatorname{acl}(M B)$ such that $a^{\prime} \pm_{M}^{K} b^{\prime}$ in $\boldsymbol{\mathcal { M }}_{i}$. Let $\varphi\left(x^{\prime}, b^{\prime}, m\right)$ be an L_{i}-formula in $\operatorname{tp}_{L_{i}}\left(a^{\prime} / M b^{\prime}\right)$ which Kim divides over M in \mathcal{M}_{i}, let $\psi\left(x^{\prime}, a, m\right)$ be an $L_{U^{-}}$-formula isolating $\operatorname{tp}_{L_{\cup}}\left(a^{\prime} / M A\right)$, and let $\theta\left(y^{\prime}, b, m\right)$ be an $L_{\cup^{-}}$-formula isolating $\operatorname{tp}_{L_{\cup}}\left(b^{\prime} / M B\right)$. Note that by replacing ψ with $\psi\left(x^{\prime}, a, m\right) \wedge\left(\exists \leqslant k x^{\prime} \psi\left(x^{\prime}, a, m\right)\right)$ for some k, we may assume $\psi\left(x^{\prime}, c, m\right)$ has only finitely many realizations for any c.

I claim the following formula $\chi(x, b, m)$ witnesses strong finite character:

$$
\exists x^{\prime} \exists y^{\prime}\left[\varphi\left(x^{\prime}, y^{\prime}, m\right) \wedge \psi\left(x^{\prime}, x, m\right) \wedge \theta\left(y^{\prime}, b, m\right)\right] .
$$

Certainly we have $\chi(x, b, m) \in \operatorname{tp}_{L_{u}}(A / M B)$. Suppose we are given c such that $\mathcal{M} \vDash$ $\chi(c, b, m)$. Then picking witnesses c^{\prime} and $b^{\prime \prime}$ for the existential quantifiers, we have that $c^{\prime} \in \operatorname{acl}_{\cup}(M c)$ (since $\mathcal{M} \vDash \psi\left(c^{\prime}, c, m\right)$) and $b^{\prime \prime} \in \operatorname{acl}_{\cup}(M b)$ (since $\mathcal{M} \vDash \theta\left(b^{\prime \prime}, b, m\right)$). Further, $b^{\prime \prime} \equiv_{M B} b^{\prime}$, so $\varphi\left(x^{\prime}, b^{\prime \prime}, m\right)$ Kim divides over M in \mathcal{M}_{i}. Since $\mathcal{M} \vDash \varphi\left(c^{\prime}, b^{\prime \prime}, m\right)$, we have $c^{\prime} \pm_{M}^{K} b^{\prime \prime}$ in \mathcal{M}_{i}, so $c \pm_{M} b$.

At this point, we can conclude \widehat{T} is NSOP $_{1}$. To get the characterization of \downarrow^{K}, we need to check one more property.

Witnessing: Suppose again $A \pm_{M} B$. We use the same notation as in the proof of strong finite character, and we seek to show that $\chi(x, b, m)$ Kim divides over M in \mathcal{M}.

If not, then using Theorem 5.3, we can find a complete L_{\cup}-type $p(x)$ over $M b$ which contains $\chi(x, b, m)$ but does not Kim divide. Let e realize this type. Then we have $e \perp_{M}^{K} b$ in \mathcal{M}, so by Theorem $5.4, \operatorname{acl}_{\cup}(M e) \downarrow_{M}^{K} \operatorname{acl}_{\cup}(M b)$ in \mathcal{M}. But since $\mathcal{M} \vDash \chi(e, b, m)$, there is some $e^{\prime} \in \operatorname{acl}_{\cup}(M e)$ and some $b^{\prime \prime} \in \operatorname{acl}_{\cup}(M b)$ such that $\mathcal{M} \vDash \varphi\left(e^{\prime}, b^{\prime \prime}, m\right)$. This is a contradiction, since by Lemma 5.7 and the fact that $\operatorname{tp}_{L_{\cup}}\left(b^{\prime \prime} / M\right)=\operatorname{tp}_{L_{\cup}}\left(b^{\prime} / M\right), \varphi\left(x^{\prime}, b^{\prime \prime}, m\right)$ Kim divides over M in \mathcal{M}.

9.8. Preservation of simplicity

Further, we get preservation of simplicity whenever algebraicity in \mathcal{M}_{\cup} agrees with algebraicity in \mathcal{M}_{i} for all i. In other words, a failure of simplicity in the interpolative fusion of simple theories T_{i} always comes from nontrivial interactions between algebraic closures.

Proposition 9.8. Suppose each T_{i} is simple, T_{n} has 3-uniqueness, and for all $i \in I$,

$$
\operatorname{acl}_{i}\left(N \operatorname{acl}_{\cup}(M a)\right)=\operatorname{acl}_{\cup}(N a)
$$

whenever $a \downarrow_{M}^{K} N$ and $M<N<\mathcal{M}_{\cup}$. Then \widehat{T} is simple.
Proof. By Theorem 9.5, \widehat{T} is NSOP_{1}, and we obtain a characterization of Kim independence from the proof. By Theorem 5.5, it suffices to show that \downarrow^{K} satisfies base monotonicity over models in \mathcal{M}_{\cup}.

So fix $M<N<\mathcal{M}_{\cup}$ and $a \downarrow_{M}^{K} N b$. Then, for all $i \in I$, since T_{i} is simple, we have

$$
\begin{aligned}
\operatorname{acl}_{\cup}(M a) \underset{M}{\perp} \operatorname{Lacl}_{\cup}(N b) & \Rightarrow \operatorname{acl}_{\cup}(M a) \underset{M}{\perp^{f}} \operatorname{acl}_{\cup}(N b) \\
& \Rightarrow \operatorname{acl}_{\cup}(M a) \underset{N}{\perp^{f}} \operatorname{acl}_{\cup}(N b) \\
& \Rightarrow \operatorname{acl}_{i}\left(N \operatorname{acl}_{\cup}(M a)\right) \frac{ل_{N}^{f}}{\operatorname{facl}}(N b) \\
& \Rightarrow \operatorname{acl}_{\cup}(N a) \underset{N}{\frac{K}{K}} \operatorname{acl}_{\cup}(N b) .
\end{aligned}
$$

So $a \downarrow_{N}^{K} b$ in \mathcal{M}_{\cup}, as desired.
Remark 9.4. In the statement of Corollary 9.8, we have put the weakest possible hypothesis on the interaction between cl and acl_{i}. In a typical application, we will actually have $\mathrm{cl}=\operatorname{acl}_{i}$ for all $i \in I$.

But it is worth noting that the weaker condition $\operatorname{cl}(M a b)=\operatorname{acl}_{i}(\operatorname{cl}(M a) \operatorname{cl}(M b))$ for all $i \in I$ suffices. This condition essentially says that cl has no binary algebraic dependencies that are not already present in every acl_{i}, and it will allow us to recover the theorem that when T is stable with weak elimination of imaginaries, the theory T_{A} of T with a generic automorphism is simple.

Bibliography

1. Hans Adler, A geometric introduction to forking and thorn-forking, J. Math. Log. 9 (2009), no. 1, 1-20. MR 2665779
2. Matthias Aschenbrenner, Alf Dolich, Deirdre Haskell, Dugald Macpherson, and Sergei Starchenko, Vapnik-Chervonenkis density in some theories without the independence property, II, Notre Dame J. Form. Log. 54 (2013), no. 3-4, 311-363. MR 3091661
\qquad _, Vapnik-Chervonenkis density in some theories without the independence property, I, Trans. Amer. Math. Soc. 368 (2016), no. 8, 5889-5949. MR 3458402
3. James Ax, The elementary theory of finite fields, Ann. of Math. (2) 88 (1968), 239-271. MR 0229613
4. John T. Baldwin and Saharon Shelah, Model companions of $T_{\text {Aut }}$ for stable T, Notre Dame J. Formal Logic 42 (2001), no. 3, 129-142 (2003). MR 2010177
5. Paul T. Bateman, Carl G. Jockusch, and Alan R. Woods, Decidability and undecidability of theories with a predicate for the primes, J. Symbolic Logic 58 (1993), no. 2, 672-687.
6. Neer Bhardwaj and Chieu-Minh Tran, The additive groups of \mathbb{Z} and \mathbb{Q} with predicates for being squarefree, arXiv e-prints (2017), arXiv:1707.00096.
7. Enrico Bombieri and Walter Gubler, Heights in Diophantine geometry, New Mathematical Monographs, vol. 4, Cambridge University Press, Cambridge, 2006. MR 2216774
8. Enrique Casanovas, Simple theories and hyperimaginaries, Lecture Notes in Logic, vol. 44, Association for Symbolic Logic, Chicago, IL; Cambridge Scientific Publishers, Cambridge, 2011.
9. Enrique Casanovas and Rafel Farré, Weak forms of elimination of imaginaries, MLQ Math. Log. Q. 50 (2004), no. 2, 126-140. MR 2037732
10. Z. Chatzidakis and A. Pillay, Generic structures and simple theories, Ann. Pure Appl. Logic 95 (1998), no. 1-3, 71-92. MR 1650667
11. Zoé Chatzidakis, Model theory of finite fields and pseudo-finite fields, Ann. Pure Appl. Logic 88 (1997), no. 2-3, 95-108, Joint AILA-KGS Model Theory Meeting (Florence, 1995). MR 1600887
12. Zoé Chatzidakis and Ehud Hrushovski, Model theory of difference fields, Trans. Amer. Math. Soc. 351 (1999), no. 8, 2997-3071. MR 1652269
13. Gregory L. Cherlin, Leo A. Harrington, and Alistair H. Lachlan, \aleph_{0}-categorical, \aleph_{0}-stable structures, Ann. Pure Appl. Logic 28 (1985), no. 2, 103-135. MR 779159
14. Gregory L. Cherlin and Ehud Hrushovski, Finite structures with few types, Annals of Mathematics Studies, vol. 152, Princeton University Press, Princeton, NJ, 2003. MR 1961194
15. Artem Chernikov, Theories without the tree property of the second kind, Ann. Pure Appl. Logic 165 (2014), no. 2, 695-723.
16. Artem Chernikov, Daniel Palacin, and Kota Takeuchi, On n-dependence, Notre Dame J. Form. Log. 60 (2019), no. 2, 195-214. MR 3952231
17. Artem Chernikov and Nicholas Ramsey, On model-theoretic tree properties, J. Math. Log. (2016), no. 16, 1650009 [41 pages].
18. Gabriel Conant, There are no intermediate structures between the group of integers and Presburger arithmetic, J. Symb. Log. 83 (2018), no. 1, 187-207. MR 3796282
20._._There are no intermediate structures between the group of integes and presburger arithmetic, J. Symb. Log. 83 (2018), no. 1, 187-207. MR 3796282
19. Gabriel Conant and Anand Pillay, Stable groups and expansions of ($\mathbb{Z},+, 0)$, Fund. Math. 242 (2018), no. 3, 267-279. MR 3826645
20. Pablo Cubides Kovacsics, Luck Darnière, and Eva Leenknegt, Topological cell decomposition and dimension theory in P-minimal fields, J. Symb. Log. 82 (2017), no. 1, 347-358. MR 3631291
21. Christian d'Elbée, Generic Expansions by a Reduct, arXiv e-prints (2018), arXiv:1810.11722.
22. \qquad _, A new dp-minimal expansion of the integers, J. Symb. Log. 84 (2019), no. 2, 632-663. MR 3961615
23. Pierre Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. (1980), no. 52, 137-252.
24. Alfred Dolich and John Goodrick, Strong theories of ordered Abelian groups, Fund. Math. 236 (2017), no. 3, 269-296. MR 3600762
25. Alfred Dolich, Chris Miller, and Charles Steinhorn, Structures having o-minimal open core, Trans. Amer. Math. Soc. 362 (2010), no. 3, 1371-1411. MR 2563733
26. \qquad , Extensions of ordered theories by generic predicates, J. Symbolic Logic 78 (2013), no. 2, 369-387. MR 3145186
27. Mirna Džamonja and Saharon Shelah, On \triangleleft^{*}-maximality, Ann. Pure Appl. Logic 125 (2004), no. 1-3, 119-158.
28. Paul C. Eklof and Edward R. Fischer, The elementary theory of abelian groups, Ann. Math. Logic 4 (1972), 115-171. MR 0540003
29. Michèle Giraudet, Gérard Leloup, and François Lucas, First order theory of cyclically ordered groups, Ann. Pure Appl. Logic 169 (2018), no. 9, 896-927. MR 3808400
30. Alexander Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. (1967), no. 32, 361. MR 0238860
31. Francois Guignot, Théorie des modèles des groupes abéliens valués, 2016, Thèse de doctorat dirigée par Delon, Françoise Mathématiques. Logique mathématique Sorbonne Paris Cité.
32. Ayhan Günaydı n, Model theory of fields with multiplicative groups, ProQuest LLC, Ann Arbor, MI, 2008, Thesis (Ph.D.)-University of Illinois at Urbana-Champaign. MR 2712584
33. Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977, Graduate Texts in Mathematics, No. 52. MR 0463157
34. Deirdre Haskell, Ehud Hrushovski, and Dugald Macpherson, Definable sets in algebraically closed valued fields: elimination of imaginaries, J. Reine Angew. Math. 597 (2006), 175-236. MR 2264318
35. Wilfrid Hodges, Model theory, Encyclopedia of mathematics and its applications, vol. 42, Cambridge University Press, 1993.
36. Ehud Hrushovski, The Elementary Theory of the Frobenius Automorphisms, arXiv Mathematics e-prints (2004), math/0406514.
37. Ehud Hrushovski, Groupoids, imaginaries and internal covers, Turkish J. Math. 36 (2012), no. 2, 173198. MR 2912035
38. Ehud Hrushovski and Anand Pillay, Groups definable in local fields and pseudo-finite fields, Israel J. Math. 85 (1994), no. 1-3, 203-262.
39. Franziska Jahnke, Pierre Simon, and Erik Walsberg, Dp-minimal valued fields, J. Symb. Log. 82 (2017), no. 1, 151-165. MR 3631280
40. Will Johnson, On dp-minimal fields, arXiv e-prints (2015), arXiv:1507.02745.
41. William Johnson, Fun with fields, ProQuest LLC, Ann Arbor, MI, 2016, Thesis (Ph.D.)-University of California, Berkeley.
42. Itay Kaplan and Nicholas Ramsey, On Kim-Independence, arXiv e-prints (2017), arXiv:1702.03894.
43. Itay Kaplan and Saharon Shelah, Decidability and classificaton of the theory of integers with primes, J. Symb. Log. 82 (2017), no. 3, 1041-1050. MR 3694340
44. Hirotaka Kikyo and Saharon Shelah, The strict order property and generic automorphisms, J. Symbolic Logic 67 (2002), no. 1, 214-216. MR 1889545
45. Byunghan Kim and Hyeung-Joon Kim, Notions around tree property 1, Ann. Pure Appl. Logic 162 (2011), no. 9, 698-709.
46. Byunghan Kim, Hyeung-Joon Kim, and Lynn Scow, Tree indiscernibilities, revisited, Arch. Math. Logic 53 (2014), no. 1-2, 211-232. MR 3151406
47. Byunghan Kim and A. Pillay, Around stable forking, Fund. Math. 170 (2001), no. 1-2, 107-118, Dedicated to the memory of Jerzy Łoś. MR 1881371
48. Sergei V. Konyagin and Igor E. Shparlinski, Character sums with exponential functions and their applications, Cambridge Tracts in Mathematics, vol. 136, Cambridge University Press, Cambridge, 1999. MR 1725241
49. Emmanuel Kowalski, Exponential sums over definable subsets of finite fields, Israel J. Math. 160 (2007), 219-251. MR 2342497
50. Alex Kruckman and Nicholas Ramsey, Generic expansion and Skolemization in NSOP_{1} theories, Ann. Pure Appl. Logic 169 (2018), no. 8, 755-774. MR 3802224
51. Alex Kruckman, Chieu-Minh Tran, and Erik Walsberg, Interpolative fusions: $N S O P_{1}$, in preparation.
52. \qquad , Interpolative Fusions, arXiv e-prints (2018), arXiv:1811.06108.
53. Friedrich W. Levi, Ordered groups, Proc. Indian Acad. Sci., Sect. A. 16 (1942), 256-263. MR 0007779
54. Angus Macintyre, Generic automorphisms of fields, Ann. Pure Appl. Logic 88 (1997), no. 2-3, 165-180, Joint AILA-KGS Model Theory Meeting (Florence, 1995). MR 1600899
55. Nathanaël Mariaule, The field of p-adic numbers with a predicate for the powers of an integer, J. Symb. Log. 82 (2017), no. 1, 166-182. MR 3631281
56. David Marker, Model theory: an introduction, Graduate texts in mathematics, vol. 217, Springer-Verlag, 2002.
57. Leonid Mirsky, Note on an asymptotic formula connected with r-free integers, Quart. J. Math., Oxford Ser. 18 (1947), 178-182.
58. Rahim Moosa and Thomas Scanlon, Model theory of fields with free operators in characteristic zero, J. Math. Log. 14 (2014), no. 2, 1450009, 43. MR 3304121
59. Nitin Nitsure, Construction of Hilbert and Quot schemes, Fundamental algebraic geometry, Math. Surveys Monogr., vol. 123, Amer. Math. Soc., Providence, RI, 2005, pp. 105-137. MR 2223407
60. Alf Onshuus and Alexander Usvyatsov, On dp-minimality, strong dependence and weight, J. Symbolic Logic 76 (2011), no. 3, 737-758. MR 2849244
61. Marc Perret, Multiplicative character sums and Kummer coverings, Acta Arith. 59 (1991), no. 3, 279290. MR 1133247
62. Anand Pillay and Akito Tsuboi, Amalgamations preserving \aleph_{0}-categoricity, J. Symb. Log. 62 (1997), no. 4, 1070-1074.
63. Mike Prest, Model theory and modules, Handbook of algebra, Vol. 3, Handb. Algebr., vol. 3, Elsevier/North-Holland, Amsterdam, 2003, pp. 227-253. MR 2035097
64. Kenneth Rogers, The Schnirelmann density of the squarefree integers, Proc. Amer. Math. Soc. 15 (1964), 515-516.
65. Igor R. Shafarevich, Basic algebraic geometry. 1, third ed., Springer, Heidelberg, 2013, Varieties in projective space. MR 3100243
66. Saharon Shelah, Simple unstable theories, Ann. Math. Logic 19 (1980), no. 3, 177-203. MR 595012
67. \qquad , Classification theory and the number of nonisomorphic models, second edition ed., Studies in Logic and the Foundations of Mathematics, vol. 92, North-Holland Publishing Co., Amsterdam, 1990.
68. \qquad , Dependent first order theories, continued, Israel J. Math. 173 (2009), 1-60. MR 2570659
69. Saharon Shelah and Pierre Simon, Adding linear orders, J. Symbolic Logic 77 (2012), no. 2, 717-725. MR 2963031
70. Pierre Simon, A guide to NIP theories, Lecture Notes in Logic, vol. 44, Association for Symbolic Logic, Chicago, IL; Cambridge Scientific Publishers, Cambridge, 2015. MR 3560428
71. \qquad , A guide to NIP theories, Lecture Notes in Logic, vol. 44, Association for Symbolic Logic, Chicago, IL; Cambridge Scientific Publishers, Cambridge, 2015. MR 3560428
72. Pierre Simon, Linear orders in NIP structures, arXiv e-prints (2018), arXiv:1807.07949.
73. \qquad , NIP omega-categorical structures: the rank 1 case, arXiv e-prints (2018), arXiv:1807.07102.
74. Pierre Simon and Erik Walsberg, Tame topology over dp-minimal structures, Notre Dame J. Form. Log. 60 (2019), no. 1, 61-76. MR 3911106
75. Elias M. Stein and Rami Shakarchi, Fourier analysis, Princeton Lectures in Analysis, vol. 1, Princeton University Press, Princeton, NJ, 2003, An introduction.
76. Katrin Tent and Martin Ziegler, On the isometry group of the Urysohn space, J. Lond. Math. Soc. (2) 87 (2013), no. 1, 289-303. MR 3022717
77. Chieu-Minh Tran, Tame structures via multiplicative character sums on varieties over finite fields, arXiv e-prints (2017), arXiv:1704.03853.
78. Chieu-Minh Tran and Erik Walsberg, A family of dp-minimal expansions of $(\mathbb{Z} ;+)$, arXiv e-prints (2017), arXiv:1711.04390.
79. Lou van den Dries, Model theory of fields, 1978, PhD Thesis, Utrecht.
80. \qquad , Dimension of definable sets, algebraic boundedness and Henselian fields, Ann. Pure Appl. Logic 45 (1989), no. 2, 189-209, Stability in model theory, II (Trento, 1987). MR 1044124
83._, Dense pairs of o-minimal structures, Fund. Math. 157 (1998), no. 1, 61-78. MR 1623615
81. , Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, vol. 248, Cambridge University Press, Cambridge, 1998. MR 1633348
82. Stoyana D. Želeva, Cyclically ordered groups, Sibirsk. Mat. Ž. 17 (1976), no. 5, 1046-1051, 1197. MR 0422106
83. Frank O. Wagner, Stable groups, London Mathematical Society Lecture Note Series, vol. 240, Cambridge University Press, Cambridge, 1997. MR 1473226
84. André Weil, Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc. 55 (1949), 497-508. MR 29393
85. Volker Weispfenning, Elimination of quantifiers for certain ordered and lattice-ordered abelian groups, Bull. Soc. Math. Belg. Sér. B 33 (1981), no. 1, 131-155. MR 620968
86. Peter M. Winkler, Model-completeness and Skolem expansions, (1975), 408-463. Lecture Notes in Math., Vol. 498. MR 0540029
