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ABSTRACT

With the massive proliferation of datasets in a variety of sectors, data science teams in

these sectors spend vast amounts of time collaboratively constructing, curating, and ana-

lyzing these datasets. Versions of datasets are routinely generated during this data science

process, via various data processing operations like data transformation and cleaning, feature

engineering and normalization, among others. However, no existing systems enable us to

effectively store, track, and query these versioned datasets, leading to massive redundancy in

versioned data storage and making true collaboration and sharing impossible. In this thesis,

we develop solutions for versioned data management for collaborative data analytics.

In the first part of this thesis, we extend a relational database to support versioning

of structured data. Specifically, we build a system, OrpheusDB, on top of a relational

database with a carefully designed data representation and an intelligent partitioning algo-

rithm for fast version control operations. OrpheusDB inherits much of the same benefits of

relational databases, while also compactly storing, keeping track of, and recreating versions

on demand. However, OrpheusDB implicitly makes a few assumptions, namely that: (a)

the SQL assumption: a SQL-like language is the best fit for querying data and versioning

information; (b) the structural assumption: the data is in a relational format with a reg-

ular structure; (c) the from-scratch assumption: users adopt OrpheusDB from the very

beginning of their project and register each data version along with full metadata in the

system. In the second part of this thesis, we remove each of these assumptions, one at

a time. First, we remove the SQL assumption and propose a generalized query language

for querying data along with versioning and provenance information. Second, we remove

the structural assumption and develop solutions for compact storage and fast retrieval of

arbitrary data representations. Finally, we remove the “from-scratch” assumption, by devel-

oping techniques to infer lineage relationships among versions residing in an existing data

repository.
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CHAPTER 1: INTRODUCTION

1.1 BACKGROUND

Thanks to advances in data gathering and collection mechanisms, increasing volumes of

data are available across a variety of sectors. Data science teams in these sectors spend

vast amounts of time collaboratively constructing, curating, and analyzing these datasets.

Typically, the collaboration is facilitated by means of a hosted shared file system that every

team member has access to. When team members want to analyze a particular dataset, they

typically make a private copy of some version of that dataset and then make changes to this

copy in the process of analyzing it, including, but not limited to: adding derived columns,

normalizing data, and removing erroneous values, resulting in a new version. Subsequently,

this new dataset version may be shared with other team members, who may then proceed to

add their own modifications. Overall, hundreds to thousands of versions of the same dataset

may be constructed in this manner, all of which are stored in the same shared file system.

This process of collaboration leads to massive redundancy in the stored datasets and makes

the sharing of the newly constructed dataset versions near impossible. Furthermore, there

is little understanding of the provenance of datasets and the dependencies between them,

leading to additional confusion. Due to these issues, collaborative data science or curation

projects almost always end up with very poor data management and sharing.

Consider a concrete example from a computational biology group in the Brain Institution

of MIT. The group has around 20 to 30 students, postdocs, and researchers, with around

100 terabytes of data shared via a networked file system. Every TB of data costs around

800 dollars per year from a local storage provider for unlimited read and write access. This

amounts to around 100K dollars per year, which is not a small amount for a university

research group. When one of the group members wants to perform analysis, they will first

make a private copy of some version, modify and analyze it, with an ad-hoc name assigned

to each newly produced version like “dataset v1.csv”. These new versions are again stored

back in a folder, which is shared across all of the team members. There are three major

issues with ad-hoc management of data of this form:

• [Massive Redundancy] There is lots of duplication and redundancy, leading to a waste

of storage. As a result, students are periodically asked to clean up the disk because of

space and cost constraints. Furthermore, due to the lack of metadata, students find it

hard to identify which versions are important and which versions can be deleted safely.

• [No True Collaboration] There is no easy way to “merge in” modification from collabo-
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rators or share your newly produced results with others.

• [No Query Capabilities] There are no querying capabilities, allowing members to analyze

version dependencies, metadata, or perform some analysis to compare across versions.

The first issue stems from the system perspective, while the last two issues stem from the

user’s perspective. We can see there is a pressing need for a system to help manage these

versioned datasets. Accordingly, we identify properties for a version management system:

(a) compact storage to reduce storage consumption; (b) efficient versioning capabilities to

enable true collaboration; (c) data manipulation and analytics to support reasoning across

versions.

OrpheusDB for Structured Data. Motivated by these problems, we have built a system,

called OrpheusDB, to help foster collaborative data analysis. OrpheusDB is a full-fledged

management system for effective structured data versioning. In particular, OrpheusDB is

a dataset version control system that “bolts on” versioning capabilities to a traditional rela-

tional database system, thereby gaining the analytics capabilities of the database “for free”,

while the database itself is unaware of the presence of dataset versions. Users can inter-

act with OrpheusDB using git-style version control commands and SQL-like commands,

performing data analytics within a version or across versions as well as reasoning about

provenance or versioning information. Furthermore, we have carefully designed the storage

representation in OrpheusDB for maintaining full data and versioning information, and

developed a partition optimizer for faster version control operations.

Towards General-purpose Data Versioning. However, there are some implicit assump-

tions and constraints in OrpheusDB, due to the fact that OrpheusDB is built as a wrapper

on top of relational databases: (a) SQL assumption: OrpheusDB assumes that a SQL-like

language is the best fit for reasoning about data and versioning information; (b) structural

assumption: OrpheusDB assumes that the data is in a relational format with a regular

structure; (c) from-scratch assumption: OrpheusDB assumes that data science teams use

OrpheusDB from the very beginning of their project and register each dataset version with

OrpheusDB along with complete metadata (such as derivation relationships and author

information). In the second part of this thesis, we relax each of these assumptions and build

general-purpose modules, including a generalized query language, a generalized storage rep-

resentation, and a generalized provenance manager. Specifically, to target assumption (a),

we propose a generalized query language for versioning, data, and provenance, making the

syntax easier to understand and work with compared to SQL, while also providing additional

power. Then, to target assumption (b), we develop a generalized storage representation that

can work with data with varying degrees of structure, including structured, semi-structured,
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and unstructured data. Finally, our ongoing work infers lineage relationships between ver-

sions automatically, when users do not register their dataset version with, and do not provide

appropriate derivation metadata to, a hosted platform like OrpheusDB.

1.2 ORGANIZATION

This thesis consists of two major parts: (a) our relational dataset versioning system,

OrpheusDB; (b) our attempts towards general-purpose versioning by removing various

assumptions made by OrpheusDB. Specifically,

• In the first part, we introduce our system called OrpheusDB, which is built on top

of relational databases, providing “bolt-on” versioning capabilities to the database.

The full paper was published in VLDB’17 [1], and a demo paper was published in

SIGMOD’17 [2].

– We begin with OrpheusDB’s architecture and its query language (Chapter 3).

– We then describe its data model and experimentally verify its effectiveness (Chap-

ter 4).

– We finally introduce its partition optimizer to make version retrieval faster (Chap-

ter 5).

This work was done with Ph.D. student Liqi Xu. I was responsible for the data model

design, the partition optimizer, as well as experimental evaluation.

• In the second part, we remove some of the assumptions made in OrpheusDB, one at

a time.

– We remove the SQL assumption in OrpheusDB, by developing a generalized

query language (Chapter 6). This paper was published in Tapp’15 [3]. This work

was done with Ph.D. student Amit Chavan. I was jointly responsible for the

proposed language design.

– We remove the structural assumption in OrpheusDB, by developing a general-

ized storage representation (Chapter 7). This paper was published in VLDB’15 [4].

This work was done with Ph.D. students Souvik Bhattacherjee and Amit Chavan.

I was responsible for the hardness proofs, the ILP formulation and implementa-

tion, as well as the design of the modified Prim’s algorithm.
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– We remove the “from-scratch” assumption in OrpheusDB, by developing a gen-

eralized provenance manager (Chapter 8). This is still an ongoing project. This

work was done with Ph.D. student Suhail Rehman. I was responsible for infer-

ring the derivation relationships for row-preserving operations and designing the

end-to-end workflow.

We cover overall related work in Chapter 2, and work specific to each project in Chapter 5-8.

Remark 1.1. The notion and terminology for Chapter 3, 4 and 5 will be uniform and are

meant to be read in sequence, while Chapter 6, 7, and 8 can be read each independently

without requiring readers to read Chapter 3-5 first.
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CHAPTER 2: RELATED WORK

We now survey work from multiple areas related to the management of versioned datasets.

Source Version Control. Perhaps the most closely related prior work is source code ver-

sioning systems like Git, Mercurial, and SVN, that are widely used for managing source code

repositories. Despite their popularity, these systems use fairly simple algorithms underneath

that are optimized to work with modest-sized source code files and their on-disk structures

are optimized to work with line-by-line diffs. These systems are known to have significant

limitations when handling large files and/or large numbers of versions [5]. As a result, a

variety of extensions like git-annex [6] and git-bigfiles [7], have been developed to make them

work reasonably well with large files. However, none of these tools support querying across

data versions.

Restricted Dataset Versioning. There have been some open-source projects on ver-

sioning topics. LiquiBase [8] tracks schema evolution as the only applicable modifications

giving rise to new versions: our goal is to capture both the data-level modifications and

schema-level modifications. On the other hand, DBV [9] is focused on recording SQL oper-

ations that give rise to new versions such that these operations can be “replayed” on new

datasets—thus the emphasis is on reuse of workflows rather than on efficient versioning.

Like other recent projects, Dat [10] can be used to share and sync local copies of dataset

across machines, while Mode [11] integrates various analytics tools into a collaborative data

analysis platform. However, neither of the tools are focused on providing advanced querying

and versioning capabilities.

Temporal Databases. There is a rich body of work on time travel (or temporal) databases,

e.g., [12, 13, 14, 15, 16, 17], focusing on data management when the state of the data at a

specific time is important. Temporal databases support a linear clock, or a linear chain of

versions, whereas our work focuses on enabling non-linear histories with git-like branching

and merging common in collaborative data analysis. There has been some work on developing

temporal databases by “bolting-on” capabilities to a traditional database [18], with DB2

[19, 20] and Teradata [21] supporting time-travel in this way. Other systems adopt an “in-

database” approach [22]. For example, the SAP HANA database [23] maintains a Timeline

Index [22] to efficiently support temporal join, aggregation, and time travel. Kaufmann et

al. [24] provide a good summary of the temporal features in databases, while Kulkarni et

al. [25] describe the temporal features in SQL2011.

There has been limited work on branched temporal databases [26, 27], with multiple chains
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of linear evolution as opposed to arbitrary branching and merging. While there has been

some work on developing indexing [28, 29] techniques in that context, these techniques are

specifically tailored for queries that select a specific branch, and a time-window within that

branch, which therefore have no correspondences in our context.

Dataset Version Control. A vision paper on Datahub [30] acknowledges the need for

database systems to support collaborative data analytics—we execute on that vision by

supporting collaborative analytics using a traditional relational database, thereby seamlessly

leveraging the sophisticated analysis capabilities (OrpheusDB as introduced in Chapter 3).

Decibel [31] describes a version-oriented storage engine designed “from the ground up” to

support versioning. Unfortunately, the architecture involves several choices that make it

impossible to support within a traditional relational database without substantial changes

at all layers of the stack. For example, the eventual solution requires the system to log and

query tuple membership on compressed bitmaps, reason about and operate on “delta files”,

and execute new and fairly complex algorithms for even simple operations such as branch

(in our case checkout) or merge (in our case commit). It remains to be seen how this storage

engine can be made to interact with other components, such as the parser, the transaction

manager, and the query optimizer, and all the other benefits that come “for free” with a

relational database.

Delta Encoding. Many prior efforts have looked at the problem of minimizing the total

storage cost for storing a collection of related files. Specifically, Quinlan et al. [32] propose

an archival “deduplication” storage system that identifies duplicate blocks across files and

only stores them once for reducing storage requirements. Zhu et al. [33] present several

optimizations on the basic theme. Douglis et al. [34] present several techniques to identify

pairs of files that could be efficiently stored using delta compression even if there is no

explicit derivation information known about the two files. Ouyang et al. [35] studied the

problem of compressing a large collection of related files by performing a sequence of pairwise

delta compressions. They proposed a suite of text clustering techniques to prune the graph

of all pairwise delta encodings and find the optimal branching (i.e., MCA) that minimizes

the total weight. Burns and Long [36] present a technique for in-place re-construction of

delta-compressed files using a graph-theoretic approach. Similar dictionary-based reference

encoding techniques have been used by [37] to efficiently represent a target web page in terms

of additions/modifications to a small number of reference web pages. Kulkarni et al. [38]

present a more general technique that combines several different techniques to identify similar

blocks among a collection of files, and use delta compression to reduce the total storage cost

(ignoring the recreation costs). We refer the reader to a recent survey [39] for a more
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comprehensive coverage of this line of work. Our goal in this thesis is to not just reduce

storage but also time to retrieve or recreate specific versions.

Incremental View Maintenance. The problem of incremental view maintenance, e.g., [40],

is also related since it implicitly considers the question of storage versus query efficiency,

which is one of the primary concerns in data versioning. However, the considerations and

challenges are very different, making the solutions not applicable to data versioning. Bune-

man et al. [41] introduce a range encoding approach to track the versioning of hierarchical

data in scientific databases, but their method focuses on XML data and is not applicable to

the relational datasets.

Provenance. There has been much prior work [42] on capturing and maintaining the

derivation relationship among data artifacts. In general, these works can be classified into

two categories: invasive vs. post-processing. The invasive approach refers to the adoption of

some management systems to help maintain the provenance information upon each artifact’s

generation. Specifically, ProvDB [43] keeps track of the lineage information by analyzing

user’s shell commands via ingesters, while our proposed OrpheusDB captures the derivation

information by git-style commands. On the other hand, the post-processing approaches do

not explicitly influence end-user’s behavior. The goal is to capture the provenance informa-

tion without enforcing the adoption of some particular system. In particular, Goods [44]

tries to organize and reconnect datasets within Google in a post-processing manner, with a

focus on extracting metadata and provenance information from logs.
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CHAPTER 3: ORPHEUSDB OVERVIEW

OrpheusDB is a dataset version management system that is built on top of standard

relational databases. It inherits much of the same benefits of relational databases, while also

compactly storing, tracking, and recreating versions on demand. OrpheusDB has been

developed as open-source software (orpheus-db.github.io). We now describe fundamental

version-control concepts, followed by the design of OrpheusDB.

3.1 DATASET VERSION CONTROL

The fundamental unit of storage within OrpheusDB is a collaborative versioned dataset

(cvd) to which one or more users can contribute. Each cvd corresponds to a relation and

implicitly contains many versions of that relation. A version is an instance of the relation,

specified by the user and containing a set of records. Versions within a cvd are related

to each other via a version graph—a directed acyclic graph—representing how the versions

were derived from each other: a version in this graph with two or more parents is defined to

be a merged version. Records in a cvd are immutable, i.e., any modifications to any record

attributes result in a new record, and are stored and treated separately within the cvd.

Overall, there is a many-to-many relationship between records and versions: each record

can belong to many versions, and each version can contain many records. Each version

has a unique version id, vid, and each record has its unique record id, rid. The record

ids are used to identify immutable records within the cvd and are not visible to end-users

of OrpheusDB. In addition, the relation corresponding to the cvd may have primary key

attribute(s); this implies that for any version no two records can have the same values for the

primary key attribute(s). However, across versions, this need not be the case. OrpheusDB

can support multiple cvds at a time. However, in order to better convey the core ideas of

OrpheusDB, in the rest of the chapter, we focus our discussion on a single cvd.

3.2 SYSTEM ARCHITECTURE

We implement OrpheusDB as a middleware layer or wrapper between end-users (or ap-

plication programs) and a traditional relational database system—in our case, PostgreSQL.

PostgreSQL is completely unaware of the existence of versioning, as versioning is handled

entirely within the middleware. Figure 3.1 depicts the overall architecture of OrpheusDB.

OrpheusDB consists of six core modules: the query translator is responsible for parsing
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Figure 3.1: OrpheusDB Architecture

the input and translating it into SQL statements understandable by the underlying database

system; the access controller monitors user permissions to various tables and files within Or-

pheusDB; the partition optimizer is responsible for periodically reorganizing and optimizing

the partitions comprising different subsets of dataset versions along with a migration engine

to migrate data from one partitioning scheme to another, and is the focus of Chapter 5;

the record manager is in charge of recording and retrieving information about records in

cvds; the version manager is in charge of recording and retrieving versioning information,

including the rids each version contains as well as the metadata for each version; and the

provenance manager is responsible for the metadata of uncommitted tables or files, such

as their parent version(s) and the creation time. At the backend, a traditional DBMS, we

maintain cvds that consist of versions, along with the records they contain, as well as meta-

data about versions. In addition, the underlying DBMS contains a temporary staging area

consisting of all of the materialized tables that users can directly manipulate via SQL with-

out going through OrpheusDB. Understanding how to best represent and operate on these

cvds within the underlying DBMS is an important challenge—this is the focus of Chapter 4.

3.3 ORPHEUSDB QUERY LANGUAGE

Users interact with OrpheusDB via the command line, using both SQL queries, as well as

git-style version control commands. We also describe an interactive user interface depicting

the version graph, for users to easily explore and operate on dataset versions [45]. To

make modifications to versions, users can either use SQL operations issued to the relational

database that OrpheusDB is built on top of, or can alternatively operate on them using

programming or scripting languages. We begin by describing the version control commands.
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3.3.1 Version control commands

Users can operate on cvds much like they would with source code version control. The

first operation is checkout: this command materializes a specific version of a cvd as a newly

created regular table within a relational database that OrpheusDB is connected to. The

table name is specified within the checkout command, as follows:

checkout [cvd] -v [vid] -t [table name]

Here, the version with id vid is materialized as a new table [table name] within the database,

to which standard SQL statements can be issued, and which can later be added to the cvd

as a new version. The version from which this table was derived (i.e., vid) is referred to as

the parent version for the table.

Instead of materializing one version at a time, users can materialize multiple versions, by

listing multiple vids in the command above, essentially merging multiple versions to give

a single table. When merging, the records in the versions are added to the table in the

precedence order listed after -v: for any record being added, if another record with the

same primary key has already been added, it is omitted from the table. This ensures that

the eventually materialized table also respects the primary key property. There are other

conflict-resolution strategies, such as letting users resolve conflicted records manually; for

simplicity, we use a precedence based approach. Internally, the checkout command records

the versions that this table was derived from (i.e., those listed after -v), along with the table

name. Note that only the user who performed the checkout operation is permitted access

to the materialized table, so they can perform any analysis and modification on this table

without interference from other users, only making these modifications visible when they

use the commit operation, described next.

The commit operation adds a new version to the cvd, by making the local changes made

by the user on their materialized table visible to others. The commit command has the

following format:
commit -t [table name] -m [commit message]

The command does not need to specify the intended cvd since OrpheusDB internally

maintains a mapping between the table name and the original cvd. In addition, since the

versions that the table was derived from originally during checkout are internally known to

OrpheusDB, the table is added to the cvd as a new version with those versions as parent

versions. During the commit operation, OrpheusDB checks the primary key constraint

if PK is specified, and compares the (possibly) modified materialized table to the parent

versions. If any records were added or modified these records are treated as new records and
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added to the cvd. (Recall that records are immutable within a cvd.) An alternative is to

compare the new records with all of the existing records in the cvd to check if any of the

new records have existed in any version in the past, which would take longer to execute. At

the same time, the latter approach would identify records that were deleted then re-added

later. Since we believe that this is not a common case, we opt for the former approach,

which would only lead to modest additional storage at the cost of much less computation

during commit. We call this the no cross-version diff implementation rule. Lastly, if the

schema of the table that is being committed is different from the cvd it derived from, we

alter the cvd to incorporate the new schema; we discuss this in Section 4.3, but for most of

the chapter we consider the static schema case.

In order to support data science workflows, we additionally support the use of checkout

and commit into and from csv (comma separated value) files via slightly different flags: -f for

csv instead of -t. The csv file can be processed in external tools and programming languages

such as Python or R, not requiring that users perform the modifications and analysis using

SQL. However, during commit, the user is expected to also provide a schema file via a -s flag

so that OrpheusDB can make sure that the columns are mapped in the correct manner. An

alternative would be to use schema inference tools, e.g., [46, 47], which could be seamlessly

incorporated if need be. Internally, OrpheusDB also tracks the name of the csv file as

being derived from one or more versions of the cvd, just like it does with the materialized

tables.

In addition to checkout and commit, OrpheusDB also supports other commands, de-

scribed very briefly here: (a) diff: a standard differencing operation that compares two

versions and outputs the records in one but not the other. (b) init: initialize either an

external csv file or a database table as a new cvd in OrpheusDB. (c) create user, config,

whoami: allows users to register, login, and view the current user name. (d) ls, drop: list all

the cvds or drop a particular cvd. (e) optimize: as we will see later, OrpheusDB can ben-

efit from intelligent incremental partitioning schemes (enabling operations to process much

less data). Users can set up the corresponding parameters (e.g., storage threshold, tolerance

factor, described later) via the command line; the OrpheusDB backend will periodically

invoke the partitioning optimizer to improve the versioning performance.

In brief, we now describe how the components in Figure 3.1 work with each other for

the basic checkout and commit commands, once the command is parsed. For checkout, the

query translator generates SQL queries to retrieve records from the relevant versions, which

are then handled and materialized in the temporary staging area by the record manager;

the provenance manager logs the related derivation information and other metadata; and

finally the access controller to grant permissions to the relevant user. On commit, the record
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manager appends new records to the cvd, also performs cleanup by removing the table from

the staging area; the version manager updates the metadata of the newly added version.

3.3.2 SQL commands

OrpheusDB supports the use of SQL commands on cvds via the command line using

the run command, which either takes a SQL script as input or the SQL statement as a string.

Instead of materializing a version (or versions) as a table via the checkout command and

explicitly applying SQL operations on that table, OrpheusDB also allows users to directly

execute SQL queries on a specific version, using special keywords VERSION, OF, and CVD

via syntax

SELECT ... FROM VERSION [vid] OF CVD [cvd], ...

without having to materialize it. For example, in Figure 3.2 scientists can quickly overview a

small number of (e.g., 50) records within the first two versions of the Interaction cvd whose

coexpression attribute is greater than 80 via the following SQL command:

SELECT * FROM VERSION 1, 2 OF CVD Interaction

WHERE coexpression > 80 LIMIT 50;

Further, by using renaming, users can operate directly on multiple versions (each as a

relation) within a single SQL statement, enabling operations such as joins across multiple

versions.

However, listing each version individually as described above may be cumbersome for

some types of queries that users wish to run, e.g., applying an aggregate across a collection

of versions, or identifying versions that satisfy some property. For this, OrpheusDB also

supports constructs that enable users to issue aggregate queries across cvds grouped by

version ids, or select version ids that satisfy certain constraints. The corresponding syntax

can be written as:

SELECT vid, ... FROM CVD [cvd], ... GROUP BY vid, ....

Internally, these constructs are translated into regular SQL queries that can be executed

by the underlying database system. In addition, OrpheusDB provides shortcuts for several

types of queries that operate on the version graph, e.g., listing the descendant or ancestors

of a specific version, or querying the metadata, e.g., identify the last modification (in time)

to the cvd. These operations are accessible via functional primitives that can be included

as predicates within a query: (a) ancestor(vid)/descendant(vid), parent(vid): The function

takes a vid as the input and returns an array of all the ancestors/descendant, or its parent(s)

12



of the vid in the version graph. (b) v diff(vid/ARRAY(vid), vid/ARRAY(vid)): The function

takes two arguments, each of which could be either a vid integer or an array of vids. It

returns records in the data table that exist in the first argument but not in the second

argument. (c) v intersect( ARRAY(vid)): This is an aggregation function which takes an

array of versions as the input and returns records in the data table that exist in all of these

input versions.

Now we have introduced the architecture and query language used in OrpheusDB, next

we will describe how to compactly store the data and versioning information in the underlying

database.
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Figure 3.2: Data models for protein interaction data [48]
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CHAPTER 4: DATA MODELS FOR CVDS

In this chapter, we consider and compare methods to represent and operate on cvds

within a backend relational database, starting with the data within versions, and then the

metadata about versions.

4.1 VERSIONS AND DATA: THE MODELS

A concrete example of data versioning occurs with biologists who operate on shared

datasets, such as a gene annotation dataset [49] or a protein-protein interaction dataset [48],

both of which are rapidly evolving, by periodically checking out versions, performing local

analysis, editing, and cleaning operations, and committing these versions into a branched

network of versions. This network of versions is also often repeatedly explored and queried

for global statistics and differences (e.g., the aggregate count of protein-protein tuples with

confidence in interaction greater than 0.9, for each version) and for versions with specific

properties (e.g., versions with a specific gene annotation record, or versions with “a bulk

delete”, ones with more than 100 tuples deleted from their parents).

To explore alternative storage models, we consider the array-based data models, shown

in Figure 3.2, and compare them to a delta-based data model, which we describe later.

The table(s) in Figure 3.2 displays simplified protein-protein interaction data [48], and has

a composite primary key <protein1, protein2>, along with numerical attributes indicating

sources and strength of interactions: neighborhood represents how frequently the two proteins

occur close to each other in runs of genes, cooccurrence reflects how often the two proteins

co-occur in the species, and coexpression refers to the level to which genes are co-expressed

in the species.

One approach to capture versioning information is to augment the cvd’s relational schema

with an additional versioning attribute. For example, in Figure 3.2(a) <ENSP273047,

ENSP261890, 0, 53, 83> exists in two versions: v3 and v4. (Note that even though <protein1,

protein2> is the primary key, it is only the primary key for any single version and not across

all versions.) There are two records with <ENSP273047, ENSP261890> that have different

values for the other attributes: one with (0, 53, 83) that is present in v3 and v4, and an-

other with (0, 53, 0) that is present in v1. However, this approach implies that we would

need to duplicate each record as many times as the number of versions it is in, leading to

severe storage overhead due to redundancy, as well as inefficiency for several operations,

including checkout and commit. We focus on alternative approaches that are more space
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Command
SQL Translation

with combined-table with Split-by-vlist with Split-by-rlist

CHECKOUT
SELECT * into T’ FROM T

WHERE ARRAY[vi] <@ vlist

SELECT * into T’

FROM dataTable,

(SELECT rid AS rid tmp

FROM versioningTable

WHERE ARRAY[vi] <@ vlist)

AS tmp

WHERE rid = rid tmp

SELECT * into T’

FROM dataTable,

(SELECT unnest(rlist) AS rid tmp

FROM versioningTable

WHERE vid = vi)
AS tmp

WHERE rid = rid tmp

COMMIT
UPDATE T SET vlist=vlist+vj
WHERE rid in

(SELECT rid FROM T’)

UPDATE versioningTable

SET vlist=vlist+vj
WHERE rid in

(SELECT rid FROM T’)

INSERT INTO versioningTable

VALUES (vj,
ARRAY[SELECT rid FROM T’])

Table 4.1: SQL Queries for Checkout and Commit Commands with Different Data Models

efficient and discuss how they can support the two most fundamental operations—commit

and checkout—on a single version at a time. Considerations for multiple version checkout is

similar to that for a single version; our findings generalize to that case as well.

Approach 4.1: The Combined Table Approach. Our first approach of representing

the data and versioning information for a cvd is the combined table approach. As before,

we augment the schema with an additional versioning attribute, but now, the versioning

attribute is of type array and is named vlist (short for version list) as shown in Figure 3.2(b).

For each record the vlist is the ordered list of version ids that the record is present in,

which serves as an inverted index for each record. Returning to our example, there are

two versions of records corresponding to <ENSP273047, ENSP261890>, with coexpression

0 and 83 respectively—these two versions are depicted as the first two records, with an array

corresponding to v1 for the first record, and v3 and v4 for the second.

Even though array is a non-atomic data type, it is commonly supported in many database

systems [50, 51, 52]; thus OrpheusDB can be built with any of these systems as the back-

end database. As our implementation uses PostgreSQL, we focus on this system for the rest

of the discussion, even though similar considerations apply to the rest of the databases listed.

PostgreSQL provides a number of useful functions and operators for manipulating arrays,

including append operations, set operations, value containment operations, and sorting and

counting functions.

For the combined table approach, committing a new version to the cvd is time-consuming

due to the expensive append operation for every record present in the new version. Consider

the scenario where the user checks out version vi into a materialized table T ′ and then

immediately commits it back as a new version vj. The query translator parses the user

commands and generates the corresponding SQL queries for checkout and commit as shown

in Table 4.1. In the checkout statement, the containment operator ‘int[] <@ int[]’ returns true

if the array on the left is contained within the array on the right. When checking out vi into

a materialized table T ′, the array containment operator ‘ARRAY[vi] <@ vlist’ first examines
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whether vi is contained in vlist for each record in cvd, then all records that satisfy that

condition are added to the materialized table T ′. Next, when T ′ is committed back to the

cvd as a new version vj, for each record in the cvd, if it is also present in T ′ (i.e., the WHERE

clause), we append vj to the attribute vlist (i.e., vlist=vlist+vj). In this case, since there are

no new records that are added to the cvd, no new records are added to the combined table.

However, even this process of appending vj to vlist can be expensive especially when the

number of records in vj is large, as we will demonstrate.

Approach 4.2: The Split-by-vlist Approach. Our second approach addresses the lim-

itations of the expensive commit operation for the combined table approach. We store two

tables, keeping the versioning information separate from the data information, as depicted

in Figure 3.2(c)—the data table and the versioning table. The data table contains all of

the original data attributes along with an extra primary key rid, while the versioning table

maintains the mapping between versions and rids. The rid attribute was not needed in the

previous approach since it was not necessary to associate identifiers with the immutable

records. Specifically, the relation primary key— <protein1, protein2> —is not sufficient to

distinguish between multiple copies of the same record. For example, r1 and r5 are two

versions of the same record (i.e., the record with a given <protein1, protein2>). There are

two ways we can store the versioning data. The first approach is to store the rid along with

the vlist, as depicted in Figure 3.2(c.i). We call this approach split-by-vlist. Split-by-vlist

has a similar SQL translation as combined-table for commit, while it incurs the overhead of

joining the data table with the versioning table for checkout. Specifically, we select the rids

that are in the version to be checked out and store it in the table tmp, followed by a join with

the data table. For example, when checking out version v1, tmp will comprise the relevant

rids r1, r2, r3, which are identified by looking at the vlist for each record in the versioning

table and checking if v1 is present, which is then joined with the data table to extract the

appropriate results into the materialized table T ′.

Approach 4.3: The Split-by-rlist Approach. Alternatively, we can organize the ver-

sioning table with a primary key as vid (version id), and another attribute rlist, containing

the array of the records present in that particular version, as in Figure 3.2(c.ii). We call this

approach the split-by-rlist approach. When committing a new version vj from the material-

ized table T ′, we only need to add a single tuple in the versioning table with vid equal to vj,

and rlist equal to the list of record ids in T ′. This eliminates the expensive array appending

operations that are part of the previous two approaches, making the commit command much

more efficient. For the checkout command for version vi, we first extract the record ids asso-

ciated with vi from the versioning table, by applying the unnesting operation: unnest(rlist),
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following which we join the rids with the data table to identify all of the relevant records.

For example, for checking out v1, instead of examining the entire versioning table, we simply

need to examine the tuple corresponding to v1, unnest those rids—r1, r2, r3, followed by a

join.

So far, all our models support convenient rewriting of arbitrary and complex version-

ing queries into SQL queries understood by the backend database; see details in our demo

paper [45]. However, our delta-based model, discussed next, does not support convenient

rewritings for some of the more advanced queries, e.g., “find versions where the total count

of tuples with protein1 as ENSP273047 is greater than 50”: in such cases, delta-based model

essentially needs to recreate all of the versions, and/or perform extensive and expensive com-

putation outside of the database. Thus, even though this model does not support advanced

analytics capabilities “for free”, we include it in our comparison to contrast its performance

to the array-based models.

Approach 4.4: Delta-based Approach. Here, each version records the modifications

(or deltas) from its precedent version(s). Specifically, each version is stored as a separate

table, with an added tombstone boolean attribute indicating the deletion of a record. In

addition, we maintain a precedent metadata table with a primary key vid and an attribute

base indicating from which version vid stores the delta. When committing a new version

vj, a new table stores the delta from its previous version vi. If vj has multiple parents, we

will store vj as the modification from the parent that shares the largest common number

of records with vj. (Storing deltas from multiple parents would make reconstruction of a

version complicated, since we would need to trace back multiple paths in the version graph,

or alternatively materialize each version in the version graph in a top-down manner, merging

versions based on conflict resolution mechanisms. Here, we opt for the simpler solution.) A

new record is then inserted into the metadata table, with vid as vj and base as vi. For the

checkout command for version vi, we trace the version lineage (via the base attribute) all the

way back to the root. If an incoming record has occurred before, it is discarded; otherwise,

if it is marked as “insert”, we insert it into the checkout table T ′.

Approach 4.5: The A-Table-Per-Version Approach. Our final array-based data model

is impractical due to excessive storage, but is useful from a comparison standpoint. In

this approach, we store each version as a separate table. We include a-table-per-version in

our comparison; we do not include the approach in Figure 3.2a, containing a table with

duplicated records, since it would do similarly in terms of storage and commit times to

a-table-per-version, but worse in terms of checkout times.
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Figure 4.1: Comparison Between Different Data Models

4.2 VERSIONS AND DATA: THE COMPARISON

We perform an experimental evaluation between the approaches described in the previous

section on storage size, and commit and checkout time. We focus on the commit and checkout

times since they are the primitive versioning operations on which the other more complex

operations and queries are built on. It is important that these operations are efficient,

because data scientists checkout a version to start working on it immediately, and often

commit a version to have their changes visible to other data scientists who may be waiting

for them.

In our evaluation, we use four versioning benchmark datasets SCI 1M, SCI 2M, SCI 5M and

SCI 8M, each with 1M , 2M , 5M and 8M records respectively, that will be described in detail

in Section 5.5.1. For split-by-vlist, a physical primary key index is built on rid in both the

data table and the versioning table; for split-by-rlist, a physical primary key index is built on

rid in the data table and on vid in the versioning table. When calculating the total storage

size, we count the index size as well. Our experiment involves first checking out the latest

version vi into a materialized table T ′ and then committing T ′ back into the cvd as a new

version vj. We depict the experimental results in Figure 4.1.

Storage. From Figure 4.1(a), we can see that a-table-per-version takes 10× more storage

than the other data models. This is because each record exists on average in 10 versions.

Compared to a-table-per-version and combined-table, split-by-vlist and split-by-rlist dedu-

plicate the common records across versions and therefore have roughly similar storage. In

particular, split-by-vlist and split-by-rlist share the same data table, and thus the difference

can be attributed to the difference in the size of the versioning table. For the delta-based

approach, the storage size is similar to or even slightly smaller than split-by-vlist and split-

by-rlist. This is because our versioning benchmark contains only a few deleted tuples (opting
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instead for updates or inserts); in other cases, where deleted tuples are more prevalent, the

storage in the delta-based approach is worse than split-by-vlist/rlist, since the deleted records

will be repeated. We also remark that the storage size for array-based approaches can be

further reduced by applying compression techniques like range-encoding [41].

Commit. From Figure 4.1(b), we can see that the combined-table and split-by-vlist take

multiple orders of magnitude more time than split-by-rlist for commit. We also notice that

the commit time when using combined-table is almost 104s as the dataset size increases:

when using combined-table, we need to add vj to the attribute vlist for each record in the

cvd that is also present in T ′. Similarly, for split-by-vlist, we need to perform an append

operation for several tuples in the versioning table. On the contrary, when using split-by-

rlist, we only need to add one tuple to the versioning table, thus getting rid of the expensive

array appending operations. A-table-per-version also has higher latency for commit than

split-by-rlist since it needs to insert all the records in T ′ into the cvd. For the delta-based

approach, the commit time is small since the new version vj is exactly the same as its

precedent version vi. It only needs to update the precedent metadata table, and create a

new empty table. The commit time of the delta-based approach is not small in general when

there are extensive modifications to T ′, as illustrated by other experiments (not displayed);

For instance, for a committed version with 250K records of which 30% of the records are

modified, delta-based takes 8.16s, while split-by-rlist takes 4.12s.

Checkout. From Figure 4.1 (c), we can see that split-by-rlist is a bit faster than combined-

table and split-by-vlist for checkout. Not surprisingly, a-table-per-version is the best for this

operation since it simply requires retrieving all the records in a specific table (corresponding

to the desired version). We dive into the query plan for the other data models. Combined-

table requires one full scan over the combined table to check whether each record is in version

vi. On the other hand, split-by-vlist needs to first scan the versioning table to retrieve the

rids in version vi, and then join the rids with the data table. Lastly, split-by-rlist retrieves

the rids in version vi using the primary key index on vid in the versioning table, and then

joins the rids with the data table. For both split-by-vlist and split-by-rlist, we used a hash-

join, which was the most efficient1, where a hash table on rids is first built, followed by

a sequential scan on the data table by probing each record in the hash table. Overall,

combined-table, split-by-vlist, and split-by-rlist all require a full scan on the combined table

or the data table, and even though split-by-rlist introduces the overhead of building a hash

table, it reduces the expensive array operation for containment checking as in combined-

1We also tried alternative join methods—the findings were unchanged; we will discuss this further in Section 5.1. We also
tried using an additional secondary index for vlist for split-by-vlist which reduced the time for checkout but increased the time
for commit even further.
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table and split-by-vlist. For the delta-based approach, the checkout time is large since it

needs to probe into a number of tables, tracing all the way back to the root, remembering

which records were seen.

Takeaways. Overall, considering the space consumption, the commit and checkout time,

plus the fact that delta-based models are inefficient in supporting advanced queries as dis-

cussed in Section 4.1, we claim that split-by-rlist is preferable to the other data models in

supporting versioning within a relational database. Thus, we pick split-by-rlist as our data

model for representing cvds. That said, from Figure 4.1(c), we notice that the checkout

time for split-by-rlist grows with dataset size. For instance, for dataset SCI 8M with 8M

records in the data table, the checkout time is as high as 30 seconds. On the other hand,

a-table-per-version has very low checkout times on all datasets; it only needs to access the

relevant records instead of all records as in split-by-rlist. This motivates the need for the

partition optimizer module in OrpheusDB, which tries to attain the best of both worlds

by adopting a hybrid representation of split-by-rlist and a-table-per-version, described in

Chapter 5.

Remark 4.1. The canonical approach to recording time in temporal databases (see Chap-

ter 2) is via attributes indicating the start and end time, which differs a bit depending on

whether the time is the “transaction time” or the “valid time”. In either case, if one extends

temporal databases to support arrays capturing versions instead of the start and end time,

we will end up as a solution like the one in Figure 3.2b, which as shown severely limits

performance. Thus, the techniques we describe in the chapter on evaluating efficient data

models and partitioning in the next chapter are still relevant and complement this prior

work.

Most work in this area focuses on supporting constructs that do not directly apply to

OrpheusDB, due to the lack of time-oriented notions such as: (a) queries that probe interval

related-properties, such as which tuples were valid in a specific time interval, via range

indexes [53], or queries that roll back to specific points [54]; (b) temporal aggregation [22]

to aggregate some attributes for every time interval granularity, and temporal join [55] to

join tuples if they overlap in time; (c) queries that involve time-related constructs such as

AS OF, OVERLAPS, PRECEDES.

4.3 VERSION DERIVATION METADATA

Version Provenance. As discussed in Section 3.2, the version manager in OrpheusDB

keeps track of the derivation relationships among versions and maintains metadata for each
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version. We store version-level provenance information in a separate table called the meta-

data table; Figure 4.2(a) depicts the metadata table for the example in Figure 3.2. It contains

attributes including version id, parent/child versions, creation time, commit time, a commit

message, and an array of attributes present in the version. Using the data contained in

this table, users can easily query for the provenance of versions and for other metadata.

In addition, using the attribute parents we can obtain each version’s derivation information

and visualize it as a directed acyclic graph that we call a version graph. Each node in the

version graph is a version and each directed edge points from a version to one of its children

version(s). An example is depicted in Figure 4.2(b), where version v2 and v3 are both derived

from version v1, and version v2 and v3 are merged into version v4. We will return to this

concept in Section 5.2.
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Figure 4.2: Metadata Table and Version Graph (Fixed Schema)
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NULL NULL

Figure 4.3: Metadata Table and Attribute Table (Schema Changes)

Schema Changes. During a commit, if the schema of the table being committed is dif-

ferent from the schema of the cvd it was derived from, we update the schema of cvd to

incorporate the changes. More precisely, in OrpheusDB, we maintain an attribute table (as

in Figure 4.3) where each tuple represents an attribute with a unique identifier, along with

the corresponding attribute name and data type; any change of a property of an attribute

results in a new attribute entry in the table. If the data type of any attribute changes,
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we transform the attribute type to a more general data type (e.g., from integer to string

as in Jain et al. [56]), and insert a new tuple into the attribute table with the updated

datatype. All of our array-based models can adapt to changes in the set of attributes: a

simple solution for new attributes is so use the ALTER command to add any new attributes

to the model, assigning NULLs to the records from the previous versions that do not possess

these new attributes. Attribute deletions only require an update in the version metadata

table. To illustrate, we modify the previous example in Figure 4.2 (which showed a static

schema) to a dynamic one. For example, as shown in Figure 4.3, initially version v1 has

four attributes: protein1, protein2, neighborhood and cooccurrence. When a user commits

version v2, with the data type of the cooccurrence attribute (a4) changed from integer to

decimal, within OrpheusDB, we create another attribute (a5) in the attribute table with

data type decimal, log a5 in the metadata table for v2 and alter the cooccurrence attribute

to decimal within the cvd. Moreover, when a new coexpression attribute is added in v3,

we generate a corresponding attribute (a6) in the attribute table, add a6 in the metadata

table for v3, and add the coexpression attribute to the cvd. During the merge, the resulting

version includes all attributes from its parents and contains the more general data type for

conflicting attributes (e.g., attributes in v4). This simple mechanism is similar to the single

pool method proposed in a temporal schema versioning context by De Castro et al. [57].

Compared to the multi pool method where any schema change results in the new version

being stored separately, the single pool method has fewer records with duplicated attributes

and therefore has less storage consumption overall. Even though ALTER TABLE is indeed

a costly operation, due to the partitioning schemes we describe later, we only need to AL-

TER a smaller partition of the cvd rather than a giant cvd, and consequently the cost

of an ALTER operation is substantially mitigated. In Section 5.3.3, we describe how our

partitioning schemes (described next in Chapter 5) can adapt to the single pool mechanism

with comparable guarantees; for ease of exposition, for the rest of this chapter, we focus on

the static schema case, which is still important and challenging. There has been some work

on developing schema versioning schemes [58, 59, 60] and we plan to explore these and other

schema evolution mechanisms (including hybrid single/multi-pool methods) as future work.

Summary. In this chapter, we have illustrated that Split-by-rlist can achieve the best

performance in terms of storage size and commit time. Recall that in addition to the

storage size and commit time, we also consider checkout time in guiding the development of

OrpheusDB. However, even with the optimized data model Split-by-rlist, we still observe

high latency during checkout. In the next chapter, we will propose a partitioning scheme to

further reduce the checkout latency.
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CHAPTER 5: PARTITION OPTIMIZER

Recall that Figure 4.1(c) in Chapter 4 indicated that as the number of records within

a cvd increases, the checkout latency of our data model (split-by-rlist) increases—this is

because the number of “irrelevant” records, i.e., the records that are not present in the

version being checked out, but nevertheless require processing increases. Even with an index

on rid, the checkout latency is still high since records are scattered across the whole data

table, and hundreds of thousands of random accesses are eventually reduced to a full table

scan as we will demonstrate. In this chapter, we introduce the concept of partitioning a cvd

by breaking up the data and versioning tables, in order to reduce the number of irrelevant

records during checkout. We formally define our partitioning problem, demonstrate that this

problem is NP-Hard, and identify a light-weight approximation algorithm. We provide a

convenient table of notation in Table 5.1.

5.1 PROBLEM OVERVIEW

The Partitioning Notion. Let V = {v1, v2, ..., vn} be the n versions and R = {r1, r2, ...,

rm} be the m records in a cvd. We can represent the presence of records in versions using a

version-record bipartite graph G = (V,R,E), where E is the set of edges—an edge between

vi and rj exists if the version vi contains the record rj. The bipartite graph in Figure 5.1(a)

captures the relationships between records and versions in Figure 3.2.
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r1

v2

v3

v4

r2

r3

r4

r5

r6

r7

v1
r1

v2

v3

v4

r2

r3

r4

r5

r6

r7

Ρ1

Ρ2

a. Bipartite Graph b. Illustration of Partitioning 

Figure 5.1: Version-Record Bipartite Graph & Partitioning

The goal of our partitioning problem is to partition G into smaller subgraphs, denoted as

Pk. We let Pk = (Vk,Rk, Ek), where Vk, Rk and Ek represent the set of versions, records

and bipartite graph edges in partition Pk respectively. Note that ∪kEk = E, where E is

the set of edges in the original version-record bipartite graph G. We further constrain each
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Symb. Description Symb. Description

G bipartite graph E bipartite edge set in G

V version set in G n total number of versions

R record set in G m total number of records

vi version i in V rj record j in R

Pk kth partition Vk version set in Pk
Rk record set in Pk Ek bipartite edge set set in Pk
S total storage cost γ storage threshold

Ci checout cost for vi Cavg average checkout cost

G version graph V version set in G
E edge set in G e e = (vi, vj): vi derives vj
T version tree e.w # of common records on e

l(vi) level # of vi in G p(vi) parent version(s) of vi in G
R(vi) record set in vi ` # of recursive levels in Alg 1

Table 5.1: Notations

version in the cvd to exist in only one partition, while each record can be duplicated across

multiple partitions. In this manner, we only need to access one partition when checking

out a version, consequently simplifying the checkout process by reducing the overhead from

accessing multiple partitions. (While we do not consider it in this thesis, in a distributed

setting, it is even more important to ensure that as few partitions are consulted during a

checkout operation.) Thus, our partition problem is equivalent to partitioning V , such that

each partition (Pk) stores all of the records corresponding to all of the versions assigned to

that partition. Figure 5.1(b) illustrates a possible partitioning strategy for Figure 5.1(a).

Partition P1 contains version v1 and v2, while partition P2 contains version v3 and v4. Note

that records r2, r3 and r4 are duplicated in P1 and P2.

Metrics. We consider two criteria while partitioning: the storage cost and the time for

checkout. Recall that the time for commit is fixed and small—see Figure 4.1(b), so we only

focus on checkout.

The overall storage costs involve the cost of storing all of the partitions of the data and the

versioning table. However, we observe that the versioning table simply encodes the bipartite

graph, and as a result, its cost is fixed. Furthermore, since all of the records in the data

table have the same (fixed) number of attributes, so instead of optimizing the actual storage

we will optimize for the number of records in the data table across all the partitions. Thus,

we define the storage cost, S, to be the following:

S =
K∑
k=1

|Rk| (5.1)

Next, we note that the time taken for checking out version vi is proportional to the size of
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the data table in the partition Pk that contains version vi, which in turn is proportional to

the number of records present in that data table partition. We theoretically and empirically

justify this in Section 5.5.5. So we define the checkout cost of a version vi, Ci, to be Ci = |Rk|,
where vi ∈ Vk. The checkout cost, denoted as Cavg, is defined to be the average of Ci, i.e.,

Cavg =
∑

i Ci
n

. While we focus on the average case, which assumes that each version is checked

out with equal frequency—a reasonable assumption when we have no other information about

the workload, our algorithms generalize to the weighted case as described in Section 5.3.2.

(The weighted case can help represent the workload in real world settings, where recent

versions may be checked out more frequently.) On rewriting the expression for Cavg above,

we get:

Cavg =

∑K
k=1 |Vk||Rk|

n
(5.2)

The numerator is simply sum of the number of records in each partition, multiplied by the

number of versions in that partition, across all partitions—this is the cost of checking out

all of the versions, equivalent to
∑n

i=1 Ci—this is the cost of checking out all of the versions.

Formal Problem. Our two metrics S and Cavg interfere with each other: if we want a small

Cavg, then we need more storage, and if we want the storage to be small, then Cavg will be

large. Typically, storage is under our control; thus, our problem can be stated as:

Problem 5.1 (Minimize Checkout Cost). Given a storage threshold γ and a version-record

bipartite graph G = (V,R,E), find a partitioning of G that minimizes Cavg such that S ≤ γ.

We can show that Problem 5.1 is NP-Hard using a reduction from the 3-Partition

problem, whose goal is to decide whether a given set of n integers can be partitioned into n
3

sets with equal sum. 3-Partition is known to be strongly NP-Hard, i.e., it is NP-Hard

even when its numerical parameters are bounded by a polynomial in the length of the input.

Theorem 5.1. Problem 5.1 is NP-hard.

Proof. We reduce the well known NP-hard 3-partition problem to our Problem 5.1.

The 3-partition problem is defined as follows: Given an integer set A = {a1, · · · , an}
where n is divisible by 3, partition A into n

3
sets {A1, A2, Aj · · ·An

3
} such that for any Aj,∑

ai∈Aj
ai = B

n/3
where B =

∑
ai∈A ai.

To reduce 3-partition to our Problem 5.1, we first construct a version-record bipartite

graph G = (V,R,E) (Figure 5.2) that consists of B versions and (B +D) records, where D

is the number of dummy records and can be any positive integer. Specifically:
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• For each integer ai ∈ A:

– Create ai versions {v1
i , v

2
i , · · · , v

ai
i } in V ;

– Create ai records {r1
i , r

2
i , · · · , r

ai
i } in R;

– Connect each vji with rτi in E, where 1 ≤ j ≤ ai and 1 ≤ τ ≤ ai. This forms a

biclique between {v1
i , · · · , v

ai
i } and {r1

i , · · · , r
ai
i }.

• We also create dummy records RD and edges ED:

– RD: create D dummy records RD = {r1
0, r

2
0, · · · , rD0 } in R, where D ≥ 1;

– ED: connect each dummy record with every version v ∈ V .

v1
1

v1
2

r1
1

r1
2

v2
1 r2

1

v6
1

v6
2

v6
3

r6
1

r6
2

r6
3

a1

a2

a6

... ...

r0
1

r0
D

... RD

Figure 5.2: An Example of a Constructed Graph G

As inputs to Problem 5.1, we take the constructed graph G and set storage threshold

γ = n
3
·D +B. We have the following two claims for the optimal solution to Problem 5.1:

Claim 5.1. For each ai, its corresponding versions {v1
i , v

2
i , · · · , v

ai
i } must be in the same

partition.

Claim 5.2. The optimal solution must have n
3

partitions, i.e, K = n
3
.

We prove our first claim by contradiction. For a fixed ai, if {v1
i , v

2
i , · · · , v

ai
i } are in different

partitions, denoted as P ′ = {Pτ1 , Pτ2 , · · · }, we can reduce the average checkout cost while

maintaining the same storage cost by moving all these versions into the same partition

Pk∗ ∈ P ′ with the smallest |Rk∗|. Furthermore, the only common records between vxi and

vyj , where i 6= j, are the dummy records in RD, thus only these dummy records will be

duplicated across different partitions. Consequently, the total storage cost from records
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except the dummy record, i.e., R \ RD, in all partitions is a constant B, regardless of the

partitioning scheme.

Based on the first claim, we have |Rk| = |Vk| + D, ∀k and our optimization objective

function can be represented as follows:

Cavg =
1

B

K∑
k=1

|Vk| × (|Vk|+D) =
1

B
(

K∑
k=1

|Vk|2 +B ·D) (5.3)

Next, we prove the correctness of our second claim. First, we show that keeping the total

storage cost
∑K

k=1 |Rk| ≤ n
3
×D+B is equivalent to keeping the number of partitions K ≤ n

3
.

From our first claim, we know that no record in R \ RD will be duplicated and the total

number of records that corresponds to R \ RD in all of the partitions is B. On the other

hand, each partition Pk must include all dummy records RD, which is of size D. Thus, the

number of partitions K must be no larger than n
3
. Furthermore, we claim that the optimal

solution must have n
3

partitions, i.e., K = n
3
; otherwise, we can easily reduce the checkout

cost by splitting any partition into multiple partitions.

Lastly, we prove that the optimal Cavg equals B/K+D if and only if the decision problem to

3-partition is correct. First, since
∑K

k=1 |Vk| = B, Cavg in Equation 5.3 is minimized when

all |Vk| = B/K,∀k. Returning to the 3-partition problem, if our decision to 3-partition

is true, then we can partition the versions in the constructed graph G accordingly and

Cavg = B/K + D with each |Vk| = B
K

= B
n/3

. Second, if the decision problem is false, then

Cavg must be larger than B/K+D. Otherwise, all |Vk| must be the same and equal to B/K.

Subsequently, we can easily partition A into n
3

sets with equal sum for 3-partition, which

contradicts the assumption that the decision problem is false.

We now clarify one complication between our formalization so far and our implementa-

tion. OrpheusDB uses the no cross-version diff rule: that is, while performing a commit

operation, to minimize computation, OrpheusDB does not compare the committed version

against all of the ancestor versions, instead only comparing it to its parents. Therefore, if

some records are deleted and then re-added later, these records would be assigned different

rids, and are treated as different. As it turns out, Problem 5.1 is still NP-Hard when the

space of instances are those that can be generated when this rule is applied. For the rest of

this chapter, we will use the formalization with the no cross-version diff rule in place, since

that relates more closely to practice.
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5.2 PARTITIONING ALGORITHM

|E|
|V|

|R|

|R| |E|

single partition

n partitions

Cavg

S

Figure 5.3: Extreme Schemes

Given a version-record bipartite graph G =

(V,R,E), there are two extreme cases for partition-

ing. At one extreme, we can minimize the checkout

cost by storing each version in the cvd as one par-

tition; there are in total K = |V | = n partitions,

and the storage cost is S =
∑n

k=1 |Rk| = |E| and

the checkout cost is Cavg = 1
n

∑n
k=1 (|Vk||Rk|) = |E|

|V | .

At another extreme, we can minimize the storage by

storing all versions in one single partition; the storage cost is S = |R| and Cavg = |R|. We

illustrate these schemes in Figure 5.3. We also list them as formal observations below:

Observation 5.1. Given a bipartite graph G = (V,R,E), the checkout cost Cavg is minimized

by storing each version as one separate partition: Cavg = |E|
|V | .

Observation 5.2. Given a bipartite graph G = (V,R,E), the storage cost S is minimized

by storing all versions in a single partition: S = |R|.

Version Graph Concept. Our goal in designing our partitioning algorithm, LyreSplit1,

is to trade-off between these two extremes. Instead of operating on the version-record bipar-

tite graph, which may be very large, LyreSplit operates on the much smaller version graph

instead, which makes it a lot more lightweight. We recall the concept of a version graph from

Section 4.3, and depicted in Figure 4.2. We denote a version graph as G = (V,E), where

each vertex v ∈ V is a version and each edge e ∈ E is a derivation relationship. Note that

V is essentially the same as V in the version-record bipartite graph. An edge from vertex vi

to a vertex vj indicates that vi is a parent of vj; this edge has a weight w(vi, vj) equals the

number of records in common between vi and vj. We use p(vi) to denote the parent versions

of vi. For the special case when there are no merge operations, |p(vi)| ≤ 1, ∀i, and the version

graph is a tree, denoted as T = (V,E). Lastly, we use R(vi) to be the set of all records in

version vi, and l(vi) to be the depth of vi in the version graph G in a topological sort2 of the

graph—the root has depth 1. For example, in Figure 4.2, version v2 has |R(v2)| = 3 since it

has three records, and is at level l(v2) = 2. Further, v2 has a single parent p(v2) = v1, and

shares two records with its parent, i.e., w(v1, v2) = 2. Next, we describe the algorithm for

LyreSplit when the version graph is a tree (i.e., no merge operations). We then naturally

extend our algorithm to other settings, as we will describe next.

1A lyre was the musical instrument of choice for Orpheus.
2In each iteration r, topological sorting algorithm finds vertices V ′ with in-degree equals 0, removes V ′, and updates

in-degree of other vertices. l(vi) = r,∀vi ∈ V ′.
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The Version Tree Case. Our algorithm is based on the following lemma, which intuitively

states that if every version vi shares a large number of records with its parent version, then

the checkout cost is small, and bounded by some factor of |E||V | , where |E||V | is the lower bound

on the optimal checkout cost (from Observation 5.1).

Lemma 5.1. Given a bipartite graph G = (V,R,E), a version tree T = (V,E), and a

parameter δ ≤ 1, if the weight of every edge in E is larger than δ|R|, then the checkout cost

Cavg when all of the versions are in one single partition is less than 1
δ
· |E||V | .

Proof. Consider the nodes of the version tree T level-by-level, starting from the root. That

is, all of a version’s ancestors are considered before it is evaluated. Now, given a version vi,

the number of new records added by vi is R(vi)− w(vi, p(vi)). Thus, we have:

|R| = | ∪|V |i=1 R(vi)|

= R(v1) +
∑

l(vi)=2

(R(vi)− w(vi, p(vi)))

+
∑

l(vi)=3

(R(vi)− w(vi, p(vi))) + · · ·

=⇒ |R| =
|V |∑
i=1

R(vi)−
|V |∑
i=2

(w(vi, p(vi)))

(5.4)

Since each edge weight is larger than δ|R|, i.e., w(vi, p(vi)) > δ|R|,∀2 ≤ i ≤ |V |, we have:

|R| < |E| − δ(|V | − 1)|R| ≤ |E| − δ|V ||R|+ |R| (5.5)

where the last inequality is because δ ≤ 1. Thus, we have |R| < 1
δ
· |E||V | . Since Cavg = |R|

when we have only one partition, the result follows.

Lemma 5.1 indicates that when Cavg ≥ 1
δ
· |E||V | , there must exist some version vj that only

shares a small number of common records with its parent version vi, i.e., w(vi, vj) ≤ δ|R|;
otherwise Cavg < 1

δ
· |E||V | . Intuitively, such an edge (vi, vj) with w(vi, vj) ≤ δ|R| is a potential

edge for splitting since the overlap between vi and vj is small.

LyreSplit Illustration. We describe a version of LyreSplit that accepts as input a

parameter δ, and then recursively applies partitioning until the overall Cavg < 1
δ
· |E||V | ; we

will adapt this to Problem 5.1 later. The pseudocode is provided in Algorithm 5.1, and we

illustrate its execution on an example in Figure 5.4.

As before, we are given a version tree T = (V,E). We start with all of the versions in one

partition. We first check whether |R||V | < |E|
δ

(line 1). If yes, then we terminate; otherwise,

we pick one edge e∗ with weight e∗.w ≤ δ|R| (lines 5–6) to cut in order to split the partition
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Algorithm 5.1: LyreSplit (G, |R|, |V |, |E|, δ)
Input : Version tree G = (V,E) and parameter δ
Output : Partitions {P1,P2, · · · ,PK}

1 if |R| × |V | < |E|
δ then

2 return V
3 end
4 else
5 Ω← {e|e.w ≤ δ × |R|, e ∈ E}
6 e∗ ← PickOneEdgeCut(Ω)
7 Remove e∗ and split G into two parts {G1,G2}
8 Update the number of records, versions and bipartite edges in G1, denoted as |R1|,

|V1| and |E1|
9 Update the number of records, versions and bipartite edges in G2, denoted as |R2|,

|V2| and |E2|
10 P1=LyreSplit (G1, |R1|, |V1|, |E1|, δ)
11 P2=LyreSplit (G2, |R2|, |V2|, |E2|, δ)
12 return {P1,P2}
13 end

into two. According to Lemma 5.1, if |R||V | ≥ |E|
δ

, there must exist some edge whose weight

is no larger than δ|R|. The algorithm does not prescribe a method for picking this edge if

there are multiple; the guarantees hold independent of this method. For instance, we can

pick the edge with the smallest weight; or the one such that after splitting, the difference in

the number of versions in the two partitions is minimized. In our experiments, we use the

latter, and break a tie by selecting the edge that balances the records between two partitions

in addition to the number of versions. In our example in Figure 5.4(a), we first find that

having the entire version tree as a single partition violates the property, and we pick the red

edge to split the version tree T into two partitions—as shown in Figure 5.4(b), we get one

partition P1 with the blue nodes (versions) and another P2 with the red nodes (versions).

After each edge split, we update the number of records, versions and bipartite edges (lines

8–9), and then we recursively call the algorithm on each partition (lines 10–11). In the

example, we terminate for P2 but we split the edge (v2, v4) for P1, and then terminate with

three partitions—Figure 5.4(c). We define ` be the recursion level number. In Figure 5.4 (a)

(b) and (c), ` = 0, ` = 1 and ` = 2 respectively. We will use this notation in the performance

analysis next.

Analysis of δ. Now that we have an algorithm for the δ case, we can simply apply binary

search on δ and obtain the best δ for Problem 5.1. Given a storage budget γ in Problem 5.1,

we can simply perform a binary search on δ and get the best δ as the input for Algorithm 5.1.

This claim is evidenced by the fact that the same sequence of edges are snipped for different
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Figure 5.4: Illustration of LyreSplit (δ = 0.5)

δ. In general, as δ increases, there are more partitions, consequently less checkout cost and

larger storage cost.

• Superset property of δ. Consider two different δ: δ1 and δ2, without loss of generality

we assume δ1 < δ2, and to simplify the analysis we pick the smallest weight as the

splitting edge in each iteration. First we claim that Algorithm 5.1 takes more iterations

when δ = δ2 than δ = δ1. This is because δ1 < δ2 and the termination constraint is

|R||V | < |E|
δ

. Next, we assert that the edges cut when δ = δ1 is a subset of the same

sequence of δ = δ2. This is because in each iteration, the edge with the smallest weight

is cut for both δ1 and δ2, and when δ1 terminates (|R||V | < |E|
δ1

), δ2 may still goes on

since |R||V | ≥ |E|
δ2

. Thus, compared to δ1, δ2 has more splits, larger storage cost, and

less checkout cost.

• Binary search on δ. Initially, the search space for δ is [ |E||R||V | , 1], where each version is

stored in a separate partiton(i.e., δ = 1) and all versions are in the same partition(i.e.,

δ = |E|
|R||V |). We first try δ = 1

2
( |E||R||V | + 1) in Algorithm 5.1 and get the resulting

storage cost S after partitioning. If S < γ, then the search space for δ is reduced to

[1
2
( |E||R||V | + 1), 1]; otherwise, [ |E||R||V | ,

1
2
( |E||R||V | + 1)]. Repeat this process until 0.99γ ≤ S ≤

γ.

Performance Analysis. Overall, the lowest storage cost is |R| and the lowest checkout

cost is |E||V | respectively (as formalized in Observation 5.1 and 5.2). We now analyze the

performance in terms of these quantities: an algorithm has an approximation ratio of (X, Y )

if its storage cost S is no larger than X · R while its checkout cost Cavg is no larger than

Y · |E||V | . We first study the impact of a single split edge.

Lemma 5.2. Given a bipartite graph G = (V,R,E), a version tree T = (V,E) and a

parameter δ, let e∗ ∈ E be the edge that is split in LyreSplit, then after splitting the

storage cost S must be within (1 + δ)|R|.
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Proof. First according to Lemma 5.1, if |R||V | ≥ |E|
δ

, there must exist some edge e∗ = (vi, vj)

whose weight is less than δ|R|, i.e., e∗.w ≤ δ|R|. Then, we remove one such e∗ and split G
into two parts {G1,G2} as depicted in line 7-9 in Algorithm 5.1. The current storage cost

S = |R1| + |R2|. The common records between G1 and G2 is exactly the common records

shared by version vi and vj, i.e., e∗.w. Thus, we have:

|R| = |R1 ∪R2| = |R1|+ |R2| − e∗.w ≥ |R1|+ |R2| − δ|R|

=⇒ S = |R1|+ |R2| ≤ (1 + δ)|R|
(5.6)

Hence proved.

Now, overall, we have:

Theorem 5.2. Given a parameter δ, LyreSplit results in a ((1+δ)`, 1
δ
)-approximation for

partitioning.

Proof. Let us consider all partitions when Algorithm 5.1 terminates at level `. Each partition

(e.g., Figure 5.4(c)) corresponds to a subgraph of the version tree (e.g., Figure 5.4(a)).

According to Lemma 5.1, the total checkout cost Ck in each partition Pk = (Vk,Rk, Ek)
must be smaller than |Ek|

δ
, where |Ek| is the number of bipartite edges in partition Pk. Since∑K

k=1 |Ek| = |E|, we prove that the overall average checkout cost Cavg is
∑
Ck
|V | <

1
δ
· |E||V | .

Next, we consider the storage cost. The analysis is similar to the complexity analysis for

quick sort. Our proof uses a reduction on the recursive level number `. First, when ` = 0,

all versions are stored in a single partition (e.g. Figure 5.4(a)). Thus, the storage cost is |R|.
Next, as the recursive algorithm proceeds, there can be multiple partitions at each recursive

level `. For instance, there are two partitions at level ` = 1 and three partitions at level ` = 2

as shown in Figure 5.4(b) and (c). Assume that there are τ partitions {P1,P2, · · · ,Pτ} at

level ` = α, and the storage cost for these partitions is no bigger than (1 + δ)α · |R|. Then

according to Lemma 5.2, for each partition Pk at level ` = α, after splitting the storage cost

at level (α+ 1) will be no bigger than (1 + δ) times that at level α. Thus, we have the total

storage cost at level (α + 1) must be no bigger than (1 + δ)α+1 · |R|.

Complexity. At each recursive level of Algorithm 5.1, it takes O(n) time for checking the

weight of each edge in the version tree (line 5). The update in line 8–9 can also be done in

O(n) using one pass of tree traversal for each partition. The total time complexity is O(n`),

where ` is the recursion level number when the algorithm terminates.
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5.3 GENERALIZATIONS

We can naturally extend our algorithms for the case where the version graph is a DAG:

in short, we first construct a version tree T̂ based on the original version graph G, then

apply LyreSplit on the constructed version tree T̂. We will also discuss the weighted case,

where the weight can help represent the workload in real world settings, e.g., recent versions

may be checked out more frequently. At last, we will talk about how our algorithm can be

adapted to the scenario with schema change.

5.3.1 Version graph is a DAG

When there are merges between versions, the version graph G = (V,E) is a DAG. We

can simply transform the G to a version tree T̂ and then apply LyreSplit as before.

Specifically, for each vertex vi ∈ V, if there are multiple incoming edges, we retain the edge

with the highest weight and remove all other incoming edges. In other words, for each

merge operation in the version graph G, e.g., where vi is merged with vj to obtain vk, the

corresponding operation in T̂ with the removed edge (vj, vk) is to inherit records only from

one parent vi and (conceptually) create new records in the cvd for all other records in vk

even though some records have exactly the same value as that in vj.
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Figure 5.5: T̂ and Ĝ for G in Figure 4.2

For example, for the version graph G shown in Figure 7.1(a), its version v4 has two parent

versions v2 and v3. Since 3 = w(v2, v4) < w(v3, v4) = 4, we remove edge (v2, v4) from G and

obtain the version tree T̂ in Figure 7.1(b). Moreover, conceptually, we can draw a bipartite

graph Ĝ corresponding to T̂ as shown in Figure 7.1(b) with two duplicated records, i.e.,

{r̂2, r̂4}. That is, v4 in T̂ inherits 4 records from v3 and creates two new records R̂ = {r̂2, r̂4}
even though r̂2 (r̂4) is exactly the same as r2 (r4). Thus, we have 9 records with |R̂| = 2 and

16 bipartite edges in Figure 7.1(b).

Performance analysis. The number of bipartite edges in the bipartite graph Ĝ (corre-

sponding to T̂) is the same as that in G (corresponding to G), i.e., |E|. However, compared
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to G, the number of records in Ĝ is larger, i.e., |R| + |R̂|, where R is the set of records in

the original version-record bipartite graph G and R̂ is the set of duplicated records. Accord-

ing to Theorem 5.2, given δ, LyreSplit provides a partitioning scheme with the checkout

cost within 1
δ
· |E||V | and the storage cost within (1 + δ)`(|R| + |R̂|). We formally state the

performance guarantee in Theorem 5.3. Moreover, this analysis is obtained by treating R̂

as different from R when calculating the storage cost and checkout cost. In post-processing,

we can combine R̂ with R when calculating the real storage cost and checkout cost, making

the real S and Cavg even smaller.

Theorem 5.3. Given a version graph G with merges and a parameter δ, LyreSplit results

in a ( |R|+|R̂||R| (1 + δ)`, 1
δ
)-approximation for partitioning.

5.3.2 Weighted Checkout Cost

In this section, we focus on the weighted checkout cost case, where versions are checked

out with different frequencies.

Problem formulation. Let Cw denote the weighted checkout cost; say version vi is checked

out with probability or frequency fi Then the weighted checkout cost Cw can be represented as

Cw =
∑n

i=1(fi×Ci)∑n
i=1 fi

. With this weighted checkout cost, we can modify the problem formulation

for Problem 5.1 by simply replacing Cavg with Cw.

Proposed Algorithm. Without the loss of generality, we assume that fi for any version

vi is an integer. Given a version tree3 T = (V,E) and the frequency fi for each version vi,

we construct a version tree T′ = (V′,E′) in the following way:

• For each version vi ∈ V:

– V′: Create fi versions {v1
i , v

2
i , · · · , v

fi
i } in V′;

– E′: Connect vji with vj+1
i to form a chain in E′, where 1 ≤ j < fi

• For each edge (vi, vj) ∈ E:

– E′: Connect vfii with v1
j in E′

The basic idea of constructing T′ is to duplicate each version vi ∈ V fi times. Afterwards,

we apply LyreSplit directly on T′ to obtain the partitioning scheme. However, after

partitioning, vji ∈ V′ with the same i may be assigned to different partitions, denoted as P ′.

3if the version graph is a DAG instead, we first transform it into a version tree as discussed in Section 5.3.1.
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Thus, as a post process, we move all vji (1 ≤ j ≤ fi) into the same partition P ∈ P ′ that

has the smallest number of records. Correspondingly, we get a partitioning scheme for V,

i.e., for each vi ∈ V, assign it to the partition where vji ∈ V′ (1 ≤ j ≤ fi) is in.

Performance analysis. At one extreme, when each version is stored in a separate table, the

checkout cost Cw for T is the lowest with each Ci = |R(vi)|, the number of records in version

vi; thus, Cw =
∑n

i=1(fi×|R(vi)|)∑n
i=1 fi

, denoted as ζ. At the other extreme, when all versions are

stored in a single partition, the total storage cost is the smallest, i.e., |R|. In the following,

we study the performance of the extended algorithm in the weighted case, and compare the

storage cost and weighted checkout cost with |R| and ζ respectively.

First, consider the bipartite graph G′ = (V ′, R′, E ′) corresponding to the constructed

version tree T′. The number of versions |V ′| equals
∑n

i=1 fi, since there are fi replications

for each version vi; the number of records |R′| is the same as |R|, since there are no new

records added; the number of bipartite edges |E ′| is
∑n

i=1(
∑fi

j=1 |R(vji )|) =
∑n

i=1(fi×|R(vi)|),
since the number of records in each version vji with the same i is in fact |R(vi)|. Next,

based on Theorem 5.2, the average checkout cost after appyling Algorithm 5.1 is within
1
δ
· |E

′|
|V ′| = 1

δ
·
∑n

i=1(fi×|R(vi)|)∑n
i=1 fi

= 1
δ
·ζ, while the storage cost is within (1+δ)` · |R′| = (1+δ)` · |R|,

where ` is the termination level in Algorithm 5.1. After post-processing, the total storage

cost as well the average checkout cost decreases since we pick the partition with the smallest

number of records for all vji with a fixed i. At last, note that after mapping the partitioning

scheme from T′ to T, the total storage cost and the average (unweighted) checkout cost for

T′ are in fact the total storage cost and the weighted checkout cost for T respectively. Thus,

with the extended algorithm, we achieve the same approximation bound as in Theorem 5.2

with respect to the lowest storage cost and weighted checkout cost, i.e., in the weighted

checkout case, our algorithm also results in ((1 + δ)`, 1
δ
)-approximation for partitioning.
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Figure 5.6: Version Graph G with/without Schema Changes
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Figure 5.7: Checkout Cost Model Validation

5.3.3 Schema Changes

Our algorithm can be adapted to the single-pool setting described in Section 4.3 in Chap-

ter 4 with schema changes. Recall the examples in Figure 4.2 and 4.3, corresponding to the

fixed and dynamic schema settings. Figure 5.6a only maintains the number of records in

each node (version), and the number of common records between two versions for each edge.

In addition, Figure 5.6b also records the number of attributes and common attributes for

each node and edge respectively. For instance, v3 has five attributes and shares four common

attributes with v1.

Given a version graph, let A be the total number of attributes in all versions. For instance,

Figure 5.6b, corresponding to Figure 4.3, has five attributes in total. Without partitioning,

the storage cost and the checkout cost can be represented as S = |A||R| and Cavg = |A||R|
respectively, where |R| is the number of records. Next, let a(vi) and a(vi, vj) denote the

number of attributes in version vi and the number of common attributes between version vi

and vj, respectively. Recall that w(vi, vj) denotes the number of common records between

version vi and vj, disregarding the schema. For instance, if version vj is obtained by deleting

an attribute from vi, then a(vi, vj) = a(vi)− 1 and w(vi, vj) = |R(vi)|.
The high-level idea is similar to LyreSplit: split an edge if its ”weight” is smaller

than some threshold. However, the weight here not only depends on the number of com-
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mon records w(vi, vj), but also the number of common atrributes a(vi, vj). Specifically, if

a(vi, vj) × w(vi, vj) ≤ δ × |A||R|, edge (vi, vj) is considered as a candidate splitting edge4.

Note that when there is no schema change, a(vi, vj) = |A|, and the constraint is reduced

to w(vi, vj) ≤ δ|R| (line 5 in Algorithm 5.1). The remaining algorithm is the same as

Algorithm 5.1.

5.4 INCREMENTAL PARTITIONING

LyreSplit can be explicitly invoked by users or by OrpheusDB when there is a need to

improve performance or a lull in activity. We now describe how the partitioning identified

by LyreSplit is incrementally maintained during the course of normal operation, and how

we reduce the migration time when LyreSplit identifies a new partitioning.

Online Maintenance. When a new version vi is committed, OrpheusDB applies the

same intuition as LyreSplit to determine whether to add vi to an existing partition, or to

create a new partition. This is again a trade-off between the storage cost and the checkout

cost. Compared to creating a new table, adding vi to an existing partition has smaller

storage cost but larger checkout cost. Sharing the same intuition with LyreSplit: if vi has

a large number of common records with one of its parent version vj, we opt to add vi into

the partition Pk where vj is in. This is because the added storage cost is minimized and the

added checkout cost is guaranteed to be small as stated in Lemma 5.1. Essentially, the online

maintenance is performing incremental partitioning in the version graph as new versions are

coming in. Specifically, if w(vi, vj) ≤ δ∗|R| and S < γ, where δ∗ was the splitting parameter

used during the last invocation of LyreSplit, then we create a new version; otherwise, vi

is added to partition Pk. Recall that γ is the storage threshold and |R| is the number of

records currently.

Even with the proposed online maintenance scheme, the checkout cost tends to diverge from

the best checkout cost that LyreSplit can identify under the current constraints. This

is because LyreSplit performs global partitioning using the full version graph as input,

while online maintenance makes small changes to the existing partitioning. To maintain the

checkout performance, OrpheusDB allows for a tolerance factor µ on the current checkout

cost (users can also set µ explicitly). We let Cavg and C∗avg be the current checkout cost and

the best checkout cost identified by LyreSplit respectively. If Cavg > µC∗avg, the migration

engine is triggered, and we reorganize the partitions by migrating data from the old partitions

4If each attribute is of different size, we can simply replace ”the number of attributes” with ”the number of bytes” in the
whole algorithm.
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to the new ones; until then, we perform online maintenance. In general, when µ is small, the

migration engine is invoked more frequently. Next, we discuss how migration is performed.

Migration Approach. Given the existing partitioning P = {P1,P2, . . . ,Pα} and the

new partitioning P ′ = {P ′1,P ′2, ...,P ′β} identified by LyreSplit, we need an algorithm to

efficiently migrate the data from P to P ′ without dropping all existing tables and recreating

the partitions from scratch, which could be very costly. The question asked here is whether

we can make use of the existing tables and only perform some small modifications accordingly.

To do so, OrpheusDB needs to identify, for every P ′i ∈ P ′, the closest partition Pj ∈ P ,

in terms of modification cost, defined as |R′i \ Rj| + |Rj \ R′i|, where R′i \ Rj and Rj \ R′i
are the records needed to be inserted and deleted respectively to transform Pj to P ′i. This

task consists of two main steps: 1) calculate the number of modifications needed for each

partition pair (P ′i,Pj); 2) find the closest partition Pj for each P ′i ∈ P ′. For step one, if

we calculate the modification cost directly based on R′i and Rj, it may be very expensive

especially when the number of records is large. Instead, we first find the common versions in

P ′i and Pj, and then calculate the number of common records based on the version graph G
without probing intoR′i orRj. Next, for step two, we greedily pick the partition pair (P ′i,Pj)
with the smallest modification cost and assign Pj to P ′i. Finally, we perform insertions and

deletions on Pj accordingly to obtain P ′i. Note that if the modification cost is larger than

|R′i|, we would prefer to build partition P ′i from scratch rather than modifying the existing

partition Pk.

5.5 PARTITIONING EVALUATION

While Section 4.2 in Chapter 4 explores the performance of data models, this section

evaluates the impact of partitioning. In Section 5.5.2, we evaluate if LyreSplit can be more

efficient than existing partitioning techniques; in Section 5.5.3, we ask whether versioned

databases strongly benefit from partitioning; and lastly, in Section 5.5.4 we evaluate how

LyreSplit performs for online scenarios.

5.5.1 Experimental Setup

Datasets. We evaluated the performance of LyreSplit using the versioning benchmark

datasets from Maddox et al. [31]. The versioning model used in the benchmark is similar to

git, where a branch is a working copy of a dataset. For simplicity, we can think of branches

as different users’ working copies. We selected the Science (SCI) and Curation (CUR)
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workloads since they are most representative of real-world use cases. The SCI workload

simulates the working patterns of data scientists, who often take copies of an evolving dataset

for isolated data analysis. The version graph here can be visualized as a mainline (i.e., a

single linear version chain) with various branches at different points—both from different

points on the mainline as well as from other already existing branches. Thus, the version

graph is analogous to a tree with branches. The CUR workload simulates the evolution of

a canonical dataset that many individuals are contributing to—these individuals not just

branch from the canonical dataset but also periodically merge their changes back in, resulting

in a DAG of versions. Branches can be created from existing branches, and then merged

back into the parent branch. We varied the following parameters when we generated the

benchmark datasets: the number of branches B, the total number of records |R|, as well

as the number of inserts (or updates) from parent version(s) I. We list our configurations

in Table 5.2. For instance, dataset SCI 1M represents a SCI workload dataset where the

input parameter corresponding to |R| in the dataset generator is set to 1M records. Note

that due to the inherent randomness in the dataset generator, the actual number of records

generated does not perfectly match the value of |R| we input to the generator. Furthermore,

since the version graphs for all CUR * datasets are DAGs (i.e., have multiple merges between

versions), we also list their |R̂|, the number of duplicated records described in Section 5.3.1.

Compared with |R|, |R̂| is about 7 to 10 percent of |R|. In all of our datasets, each record

contains 100 attributes, each of which is a 4-byte integer.

Dataset |V | |R| |E| |B| |I| |R̂|
SCI 1M 1K 944K 11M 100 1000 -
SCI 2M 1K 1.9M 23M 100 2000 -
SCI 5M 1K 4.7M 57M 100 5000 -
SCI 8M 1K 7.6M 91M 100 8000 -

SCI 10M 10K 9.8M 556M 1000 1000 -
CUR 1M 1.1K 966K 31M 100 1000 90K
CUR 5M 1.1K 4.8M 157M 100 5000 0.35M

CUR 10M 11K 9.7M 2.34G 1000 1000 0.9M

Table 5.2: Dataset Description

Setup. We conducted our evaluation on a HP-Z230-SFF workstation with an Intel Xeon

E3-1240 CPU and 16 GB memory running Linux OS (LinuxMint). We built OrpheusDB

as a wrapper written in C++ over PostgreSQL 9.55, where we set the memory for sorting

and hash operations as 1GB (i.e., work mem=1GB) to reduce external memory sorts and joins.

In addition, we set the buffer cache size to be minimal (i.e., shared buffers =128KB) to

5PostgreSQL’s version 9.5 added the feature of dynamically adjusting the number of buckets for hash-join.
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eliminate the effects of caching on performance. In our evaluation, for each dataset, we

randomly sampled 100 versions and used them to get an estimate of the checkout time.

Each experiment was repeated 5 times, with the OS page cache being cleaned before each

run. Due to experimental variance, we discarded the largest and smallest number among

the five trials, and then took the average of the remaining three trials.

Algorithms. We compare LyreSplit against two partitioning algorithms in the NScale

graph partitioning project [61]: the Agglomerative Clustering-based one (Algorithm 4 in [61])

and the KMeans Clustering-based one (Algorithm 5 in [61]), denoted as Agglo and Kmeans

respectively: Kmeans had the best performance, while Agglo is an intuitive method for

clustering versions. After mapping their setting into ours, like LyreSplit, NScale [61]’s

algorithms group versions into different partitions while allowing the duplication of records.

However, the NScale algorithms are tailored for arbitrary graphs, not for bipartite graphs

(as in our case).

We implement Agglo and Kmeans as described. Agglo starts with each version as one

partition and then sorts these partitions based on a shingle-based6 ordering. Then, in each

iteration, each partition is merged with a candidate partition that it shares the largest num-

ber of common shingles with. The candidate partitions have to satisfy two conditions (1)

the number of the common shingles is larger than a threshold τ , which is set via a uniform

sampling-based method, and (2) the number of records in the new partition after merging

is smaller than a constraint BC, a pre-defined maximum number of records per partition.

Furthermore, based on the shingle ordering, NScale proposes that each partition only con-

siders its following l partitions as its merging candidates and l is adjusted dynamically. In

our experiments, initially l is set to 100. To address Problem 5.1 with storage threshold γ,

we conduct a binary search on BC and find the best partitioning scheme under the storage

constraint.

For Kmeans, there are two input parameters: partition capacity BC as in Agglo, and

the number of partitions K. Initially, K random versions are assigned to partitions, the

centroid of which is initialized as the set of records in each partition. Next, we assign the

remaining versions to their nearest centroid based on the number of common records, after

which each centroid is updated to the union of all records in the partition. In subsequent

iterations, each version is moved to a partition, such that after the movement, the total

number of records across partitions is minimized, while respecting the constraint that the

number of records in each partition is no larger than BC. The number of Kmeans iterations

is set to 10. In our experiment, we vary K and set BC to be infinity. We tried other values

6Shingles are calculated as signatures of each partition based on a min-hashing based technique.
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Figure 5.8: Storage Size vs. Checkout Time

for BC; the results are similar to that when BC is infinity. Overall, with an increase of K,

the total storage cost increases and the checkout cost decreases. Again, we use binary search

to find the best K for Kmeans and minimize the checkout cost under the storage constraint

γ for Problem 5.1.

5.5.2 Comparison of Partitioning Algorithms

In these experiments, we consider both datasets where the version graph is a tree, i.e.,

there are no merges (SCI 1M, SCI 5M and SCI 10M), and datasets where the version graph

is a DAG (CUR 1M, CUR 5M and CUR 10M). We first compare the effectiveness of different

partitioning algorithms: LyreSplit, Agglo and Kmeans, in balancing the storage size

and the checkout time. Then, we compare the efficiency of these algorithms by measuring

their running time.

Effectiveness Comparison.

LyreSplit dominates Agglo and Kmeans with respect to the storage size and checkout
time after partitioning, i.e., with the same storage size, LyreSplit’s partitioning scheme
provides a smaller checkout time.

Figure 5.9: Summary of Trade-off between Storage Size and Checkout Time.

In order to trade-off between S and Cavg, we vary δ for LyreSplit, BC for Agglo and
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K for Kmeans to obtain the overall trend between the storage size and the checkout time.

The results are shown in Figure 5.8, where the x-axis depicts the total storage size for the

data table in gigabytes (GB) and the y-axis depicts the average checkout time in seconds for

the 100 randomly selected versions. Recall that for a cvd, its versioning table is of constant

storage size for different partitioning schemes, so we do not include this in the storage size

computation. Each point in Figure 5.8 represents a partitioning scheme obtained by one

algorithm with a specific input parameter value. We terminated the execution of Kmeans

when its running time exceeded 10 hours for each K, which is why there are only two points

with star markers in Figure 5.8(c) and 5.8(f) respectively. The overall trend for Agglo,

Kmeans, and LyreSplit is that with the increase in storage size, the average checkout

time first decreases and then tends to a constant value—the average checkout time when

each version is stored as a separate table, which in fact corresponds to the smallest possible

checkout time. For instance, in Figure 5.8(f) with LyreSplit, the checkout time decreases

from 22s to 4.8s as the storage size increases from 4.5GB to 6.5GB, and then converges at

around 2.9s.

Furthermore, LyreSplit has better performance than the other two algorithms in both

the SCI and CUR datasets in terms of the storage size and the checkout time, as shown

in Figure 5.8. For instance, in Figure 5.8(b), with 2.3GB storage budget, LyreSplit can

provide a partitioning scheme taking 2.9s for checkout on average, while both Kmeans and

Agglo give schemes taking more than 7s. Thus, with equal or lesser storage size, the

partitioning scheme selected by LyreSplit achieves much less checkout time than the ones

proposed by Agglo and Kmeans, especially when the storage budget is small. The reason

is that LyreSplit takes a “global” perspective to partitioning, while Agglo and Kmeans

take a “local” perspective. Specifically, each split in LyreSplit is decided based on the

derivation structure and similarity between various versions, as opposed to greedily merging

partitions with partitions in Agglo, and moving versions between partitions in Kmeans.
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Efficiency Comparison.

When minimizing the checkout time under a storage constraint (Problem 5.1), LyreSplit
is on average 103× faster than Agglo, and more than 105× faster than Kmeans for all
SCI * and CUR * datasets.

Figure 5.11: Summary of Comparison of Running Time of Partitioning Algorithms.

Figure 5.12: Algorithms’ Running Time Comparison (CUR *)

As discussed, given a storage constraint in Problem 5.1, we use binary search to find the

best δ, BC, and K for LyreSplit, Agglo and Kmeans respectively. In this experiment,

we set the storage threshold as γ = 2|R|, and terminate the binary search process when the

resulting storage cost S meets the constraint: 0.99γ ≤ S ≤ γ. Figure 5.10a and 5.12a shows

the total running time during the end-to-end binary search process, while Figure 5.10b and

5.12b shows the running time per binary search iteration. Again, we terminate Kmeans

and Agglo when the running time exceeds 10 hours, thus we cap the running time in

Figure 5.10 and 5.12 at 10 hours. We can see that LyreSplit takes much less time than

Agglo and Kmeans. Consider the largest dataset SCI 10M in Figure 5.10 as an example:

with LyreSplit the entire binary search procedure and each binary search iteration took

0.3s and 53ms respectively; Agglo takes 50 minutes in total; while Kmeans does not even

finish a single iteration in 10 hours.

Overall, LyreSplit is 102× faster than Agglo for SCI 1M, 103× faster for SCI 5M, and

104× faster for SCI 10M respectively (and is 103× faster than Agglo for CUR 1M and CUR 5M

and 105× faster for CUR 10M respectively), and more than 105× faster than Kmeans for

all datasets. This is mainly because LyreSplit only needs to operate on the version graph

while Agglo and Kmeans operate on the version-record bipartite graph, which is much

larger than the version graph. Furthermore, Kmeans can only finish the binary search

process within 10 hours for SCI 1M and CUR 1M. This algorithm is extremely slow due to the

pairwise comparison between each version with each centroid in each iteration, especially

when the number of centroids K is large. Referring back to Figure 5.8(f), the running times
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for the left-most point on the Kmeans line takes 3.6h with K = 5, while the right-most

point takes 8.8h with K = 10. Thus our proposed LyreSplit is much more scalable than

Agglo and Kmeans. Even though Kmeans is closer to LyreSplit in performance (as

seen in the previous experiments), it is impossible to use in practice.

5.5.3 Benefits of Partitioning

With only a 2× increase on the storage, we can achieve a substantial 3×, 10× and 21×
reduction on checkout time for SCI 1M, SCI 5M, and SCI 10M, and 3×, 7× and 9× reduction
for CUR 1M, CUR 5M, and CUR 10M respectively.

Figure 5.13: Summary of Checkout Time Comparison with and without Partitioning.

We now study the impact of partitioning and demonstrate that with a relatively small

increase in storage, the checkout time can be substantially reduced. We conduct two sets

of experiments with the storage threshold as γ = 1.5 × |R| and γ = 2 × |R| respectively,

and compare the average checkout time with and without partitioning. Figure 5.14 and 5.15

illustrate the comparison on checkout time and storage size for SCI * and CUR * respectively.

Each collection of bars in Figure 5.14 and Figure 5.15 corresponds to one dataset. Consider

SCI 5M in Figure 5.14 as an example: the checkout time without partitioning is 16.6s while

the storage size is 2.04GB; when the storage threshold is set to be γ = 2× |R|, the checkout

time after partitioning is 1.71s and the storage size is 3.97GB. As illustrated in Figure 5.14,

with only 2× increase in the storage size, we can achieve 3× reduction on SCI 1M, 10×
reduction on SCI 5M, and 21× reduction on SCI 10M for the average checkout time compared

to that without partitioning. Thus, with partitioning, we can eliminate the time for accessing

irrelevant records. Consequently, the checkout time remains small even for large datasets.

The results shown in Figure 5.15 are similar to those in Figure 5.14: with 2× increase

on the storage size, we can achieve 3× reduction on CUR 1M, 7× reduction on CUR 5M, and

9× reduction on CUR 10M for average checkout time compared to that without partitioning.

However, the reduction in Figure 5.15a is smaller than that in Figure 5.14a. The reason is

the following. We can see that the checkout time without partitioning is similar for SCI and

CUR datasets, but the checkout time after partitioning for CUR dataset is greater than the

corresponding SCI dataset. This is because the average number of records in each version,

i.e., |E||V | , in CUR is around 3 to 4 times greater than that in the corresponding SCI, as depicted

in Table 5.2. Recall that |E||V | is the minimal checkout cost Cavg after partitioning as stated in

Observation 5.1. Thus, the smallest possible checkout time for CUR, which is where the blue

lines with triangle markers (corresponding to LyreSplit) in Figure 5.8(d)(e)(f) converges

to, is typically larger than that for the corresponding SCI in Figure 5.8(a)(b)(c). Overall,
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as demonstrated in Figure 5.14 and 5.15, with a small increase in the storage size, we can

reduce the average checkout time to within a few seconds even when the number of records in

a cvd increases dramatically. Referring back to our motivating experiment in Figure 4.1(c),

we claim that with partitioning the checkout time using split-by-rlist is comparable to that

by a-table-per-version.
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5.5.4 Maintenance and Migration

We now evaluate the performance of OrpheusDB’s partitioning optimizer over the course

of an extended period with many versions being committed to the system. We employ our

SCI 10M dataset, which contains the largest number of versions (i.e. 10k). Here, the versions

are streaming in continuously; as each version commits, we perform online maintenance

based on the mechanism described in Section 5.4. When CavgC∗avg
reaches the tolerance factor µ,

the migration engine is automatically invoked, and starts to perform the migration of data

from the old partitions to the new ones identified by LyreSplit. We first examine how our

online maintenance performs, and how frequently migration is invoked. Next, we test the
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latency of our proposed migration approach. The storage threshold is set to be γ = 1.5|R|
and γ = 2|R| respectively.

Online Maintenance.

With our proposed online maintenance mechanism, the checkout cost Cavg diverges slowly
from the best checkout cost C∗avg identified by LyreSplit. When µ = 1.5, our migration
engine is triggered only 7 and 4 times across a total of 10,000 committed versions when
γ = 1.5|R| and γ = 2|R| respectively.

Figure 5.16: Summary of Online Maintenance Compared to LyreSplit.

As shown in Figure 5.17(a) and 5.19(a), the red line depicts the best checkout cost C∗avg
identified by LyreSplit (note that LyreSplit is lightweight and can be run very quickly

after every commit), while the blue and green lines illustrate the current checkout cost

Cavg with tolerance factor µ = 1.5 and µ = 2, respectively. We can see that with online

maintenance, the checkout cost Cavg (blue and green lines) starts to diverge from C∗avg (red

line). When Cavg
C∗avg

exceeds the tolerance factor µ, the migration engine is invoked, and the

blue and green lines jump back to the red line once migration is complete. With the increase

of µ, the frequency of triggering migration decreases. As depicted in Figure 5.17(a), when

µ = 1.5, migration is triggered 7 times, while it is only triggered 3 times when µ = 2, across

a total of 10000 versions committed. Thus, our proposed online maintenance performs well,

diverging slowly from LyreSplit. This can be explained by the same intuition shared by

the online maintenance scheme and LyreSplit.
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Figure 5.17: Online Partitioning and Migration (γ = 1.5|R|)

Migration Time.

Figure 5.17(b) and 5.19(b) depict the migration time when the migration engine is invoked.

Figure 5.17(b) is in correspondence with Figure 5.17(a) sharing the same x-axis. For instance,
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When µ = 1.05, the migration time with our proposed method is on average 1
10

of that with
naive approach of rebuilding the partitions from scratch when γ = 1.5|R| and γ = 2|R|.
As µ decreases, the migration time with our proposed method decreases.

Figure 5.18: Summary of Comparison of Running Time of Migration
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Figure 5.19: Online Partitioning and Migration (γ = 2|R|)

with µ = 2, when the 5024th version commits, the migration engine is invoked as shown by

the green line in Figure 5.17(a). Correspondingly, the migration takes place, and we record

the migration time with the green circle (µ = 2) in Figure 5.17(b). Hence, there are three

green circles in Figure 5.17(b), corresponding to the three migrations in Figure 5.17(a). Same

are Figure 5.19(a) and Figure 5.19(b).

We now compare our intelligent migration approach from Section 5.4, denoted intell, with

the naive approach of rebuilding partitions from scratch, denoted naive. The points with

upward triangles in Figure 5.17(b) all have µ = 1.05, with the red points representing intell,

and the brown representing naive: we see that intell takes at most 1
3
, and on average 1

10

of the time of naive. For the sake of clarity, we omit the migration times for different µ

using naive, since they roughly fall on the same line as that of µ = 1.05. Next, consider

the migration time with different µ using intell. Overall, as µ decreases, the migration time

decreases. To see this, one can connect the points corresponding to each µ (denoted using

different markers) to form lines in Figure 5.17(b). When µ is smaller, migration takes place

more frequently, due to which the new partitioning scheme identified by LyreSplit is more

similar to the current one, and hence fewer modifications need to be performed. Essentially,

we are amortizing the migration cost across multiple migrations. Similar results can be

found in Figure 5.19 when γ = 2|R|.
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5.5.5 Additional Experiments

Next, we will show some additional experiments we have conducted.

Verification of Checkout Cost Model

In the following, we both analyze and experimentally evaluate the checkout cost model

proposed in Section 5.1. We demonstrate that the checkout cost Ci of a version vi grows

linearly with the number of records in the partition Pk that contains vi, i.e., Ci ∝ |Rk|.
As depicted in the SQL query in Table 4.1 in Chapter 4, the checkout cost is impacted by

the cost of two operations: (a) obtaining the list of records rlist associated with vi; (b) joining

data table with rlist to get all valid records. The cost from part (a) is a constant regardless

of the partitioning scheme we use, and it is small since rlist can be obtained efficiently using

a physical primary key index on vid. Thus, we focus our analysis on the cost from part (b).

We focus on three important types of join operations: hash-join, merge-join and nested-

loop-join. In the following, we evaluate the checkout cost model for all these join algorithms

and provide a detailed analysis. We vary the number of records in the checkout version

(|rlist|) and the number of records in its corresponding partition (|Rk|) in our experiments.

The parameter |Rk| is varied from 1K to 30M and |rlist| is varied from 1K to 1M, where

rlist is a sorted list of randomly sampled rids from Rk. In addition, we have two different

physical layouts for the data table, one clustered on rid and another clustered on its original

relation primary key (PK)— <protein1, protein2> in Figure 3.2. For each of the three

join types, we compare the checkout time (in seconds) vs. the estimated checkout cost (in

millions of records). Note that we build an index on rid in the data table, otherwise, the

nested-loop-join would be very time-consuming since each outer loop requires a full scan on

the inner table. The results are presented in Figure 5.7, where each line is plotted with a

fixed |rlist| (1K, 10K, 100K, and 1M respectively) and varying |Rk|. We now describe the

performance of the individual join algorithms below.

Hash-join. No matter which physical layout is used, the query plan for a hash-join based

approach is to first build a hash table for rlist and then sequentially scan the data table with

each record probing the hash table. By benefiting from the optimized implementation of the

hash-join in PostgreSQL, the cost of probing each rid in the hash table is almost a constant.

With fixed |rlist|, the building phase in hash-join is the same, while the running time in the

probing phase is proportional to |Rk|. Hence, as depicted in Figure 5.7(a) and (d), with a

fixed |rlist|, the running time increases linearly with the growth of |Rk|.

Merge-join. When the data table is clustered on rid, the query plan for a merge-join based

approach is to first sort rlist obtained from the versioning table, then conduct an index scan

using rid index on the data table and merge with the rlist from the versioning table. First,
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since rlist from the versioning table has already been sorted, quicksort can immediately

terminate after the first iteration. Second, since the data table is physically clustered on rid,

an index scan on rid is equivalent to a sequential scan in the data table. Thus, with fixed

|rlist|, the running time grows linearly with the increase of |Rk|, which is experimentally

verified in Figure 5.7(b).

On the other hand, when the data table is clustered on the relation primary key, Post-

greSQL gives different query plans for different |Rk|. When |Rk| is equal to 4M, 6M and

8M, the query plan is the same as the above—sort rlist, conduct an index scan on rid and

merge with rlist. However, since the physical layout is no longer clustered on rid, having an

index scan on rid is equivalent to performing random access |Rk| times into the data table,

which is very time-consuming as illustrated in Figure 5.7(e). For other |Rk| except 4M, 6M

and 8M, the query plan is to first sort rlist from the versioning table, conduct a sequantial

scan on the data table, sort the rids, and then finally merge rids with rlist. Thus, with

fixed |rlist|, the running time is proportional to |Rk|, but greater than the hash-join based

approach due to the overhead of sorting, as shown by the last five points in Figure 5.7(e).

Index-nested-loop-join. No matter which physical layout is used, the query plan for an

index-nested-loop-join based approach is to perform a random I/O in the data table for each

rid in rlist from the versioning table. Consider the scenario where |rlist| is fixed and the

data table is clustered on rid. When |rlist| is much smaller than |Rk|, the running time is

almost the same since each random I/O is a constant and |rlist| is fixed. This is also verified

by the right portion of the blue line (|rlist|=1K) and red line (|rlist|=10K) in Figure 5.7(c).

However, when |rlist| is comparable to |Rk|, the running time is proportional to |Rk| as

illustrated in the green (|rlist|=1M) and yellow (|rlist|=100K) line in Figure 5.7(c). This is

because hundreds of thousands of random I/Os are eventually reduced to a full sequential

scan on the data table when Rk is clustered on rid. Returning to the checkout cost model,

since partitioning algorithms tend to group similar versions together, after partitioning,

|rlist| is very likely to be comparable to |Rk| and thus the checkout time can be quantified

by |Rk|. Furthermore, the yellow line (|rlist|=100K) in Figure 5.7(c) indicates that even

when |rlist|
|Rk|

= 1
300

, random I/Os will still be reduced to a sequential scan, consequently the

running time grows linearly with |Rk|.
However, note that when the data table is not clustered on rid, each random I/O takes

almost constant time as shown in Figure 5.7(f). Since random I/O is more time-consuming

than sequential I/O, the index-nested-loop-join performs much worse than hash-join as shown

in Figure 5.7(d) and (f).

Overall Takeaways. When the data table is clustered on rid, the checkout cost can be
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quantified by |Rk| for hash-join and merge-join based approaches; while for index-nested-

loop-join, the checkout cost can also be quantified by |Rk| when |rlist|
|Rk|

≥ 1
300

, which is

typically the case in the partitions after partitioning especially for latest versions. On the

other hand, when the data table is not clustered on rid, the checkout cost for the hash-join

based approach can still be quantified by |Rk|, while the merge-join and the index-nested-

loop-join based approaches perform worse than that of hash-join for most cases. Overall,

a hash-join based approach has the following advantages:(a) the checkout time using hash-

join does not rely on any index on rid; (b) hash-join based approach has good and stable

performance regardless of the physical layout; (c) the checkout cost using hash-join is easy to

model, laying foundation for further optimization on checkout time. Thus, throughout this

chapter we have focused on hash-join for the checkout command and model the checkout

cost Ci as linear in the number of records |Rk| in the partition that contains vi.
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Figure 5.20: Estimated total Storage Cost vs. Estimated Checkout Cost (SCI *)
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Figure 5.21: Estimated Storage Cost vs. Estimated Checkout Cost (CUR *)

5.6 ADDITIONAL RELATED WORK

In addition to the related work in Chapter 2, there has been a lot of work on graph

partitioning [62, 63, 64, 65], with applications ranging from distributed systems and parallel
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computing, to search engine indexing. The state-of-the-art in this space is NScale [61], which

proposes algorithms to pack subgraphs into the minimum number of partitions while keeping

the computation load balanced across partitions. In our setting, the versions are related to

each other in very specific ways; and by exploiting these properties, our algorithms are able

to beat the NScale ones in terms of performance, while also providing a 103× speedup.

Kumar et al. [66] study workload-aware graph partitioning by performing balanced k-way

cuts on the tuple-query hypergraph for data placement and replication on the cloud; in their

context, however, queries are allowed to touch multiple partitions.

Now we have introduced OrpheusDB, next we will relax the assumptions made in Or-

pheusDB, one at a time, as steps towards general-purpose data versioning. In particular,

we will focus on a generalized query language in the next chapter.
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CHAPTER 6: GENERALIZED QUERY LANGUAGE

In OrpheusDB, we implicitly made the assumption that a SQL-like language is the

best fit for data querying and version reasoning, due to the fact that OrpheusDB is built

on top of relational databases. However, SQL is overall ill-suited to traversing a (version)

graph structure for analysis—one of our key requirements, and further, it has a cumbersome

aggregation syntax that results in unwieldy queries when comparing across versions [67]. In

this chapter, we present an initial design of our generalized query language, called VQuel,

that aims to support such unified querying over both provenance and versioning information,

as well as the intermediate and final results of analyses. VQuel is a version-aware query

language, capable of querying dataset versions, dataset provenance (e.g., which datasets a

given dataset was derived from), and record-level provenance (if available).

6.1 MOTIVATING EXAMPLE

To illustrate the features of our query language, we describe an example collaborative data

analysis scenario, and then present examples of queries we would like to issue:

Example 6.1. Genome assembly of a whole genome sequence dataset is a complex task —

apart from huge computational demands, it is not always known a priori which tools and

settings will work best on the available sequence data for an organism [68]. The process typ-

ically involves testing multiple tools, parameters and approaches to produce the best possible

assembly for downstream analysis. The assemblies are evaluated on a host of metrics (e.g.,

the N50 statistic) and the choice of which assembly is the best one is also not always clear.

One potential sequence of steps might be: Sequenced reads (FastQ files) → Error correction

tools (Quake, Sickle, etc.) → Input analysis, k-mer calculation (KmerGenie) → Assembly

tool (SOAPdenovo, ABySS) → Assembly analysis and selection (QUAST).

A group of researchers may collaboratively try to analyze this data in various ways, building

upon the work done by the others in the team, but also trying out different algorithms or tools.

New data is also likely to be ingested at various points, either as updates/corrections to the

existing data or as results of additional experiments. As one can imagine, the ad hoc nature

of this process and the desire not to lose any intermediate synthesized result means that the

researchers will be left with a large number of datasets and analyses, with large overlaps

between them and complex derivational dependencies. Similar collaborative workflows can be

seen in many other data science application domains.

Before moving forward, we describe our notion of the term “version”. For us, a version
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consists of one or more datasets that are semantically grouped together (in some sense, it

is equivalent to the notion of a “commit” in git/svn). A version, identified by an ID, is

immutable and any update to a version conceptually results in a new version with a different

version ID (note that the physical data structures are not necessarily immutable and we

would typically not want to copy all the data over, but rather maintain differences [69]).

New versions can also be created through the application of transformation programs to

one or more existing versions. The version-level provenance that captures these processes is

maintained as a “version graph”, that we discuss in more detail later.

There is a wide range of queries that may be of interest in such a setting as above. Simple

queries include: (a) identifying versions based on the metadata information (e.g., authors);

(b) identifying versions that were derived (directly or through a chain of derivations) from a

specific outdated version; and (c) finding versions that differ from their predecessor version

by a large number of records. More complex queries include: (d) finding versions where

the data within satisfies certain aggregation conditions; (e) finding the intersection of a set

of versions (representing, e.g., the final synthesized results of different pipelines); and (f)

finding versions that contain any records derived from a specific record in a version. We

note here that a key challenge that we face is identifying a useful set of queries/tasks and

abstracting language features from them, and we hope to engage with a wide variety of users

to accomplish that.

These examples illustrate some of the key requirements for a query language, namely the

ability to:

• Traverse the version graph (i.e., version-level provenance information) and query the

metadata associated with the versions and the derivation/update edges.

• Compare several versions to each other in a flexible manner.

• Run declarative queries over data contained in a version, to the extent allowable by

the structure in the data.

• Query the tuple-level provenance information, when available, in conjunction with the

version-level provenance information.

6.2 PRELIMINARIES

As introduced in Chapter 3, OrpheusDB enables users to keep track of datasets and their

versions, by means of a version graph that encodes derivation relationships among them. As

we discussed earlier, a version refers to a collection of files or relations that are semantically
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grouped together. Figure 6.1(b) shows an example of a few versions along with the version

graph connecting them.

version 

commit_id:String

commit_msg:Text

creation_ts:Date

author:Author

{relation:Relation}

{parent:Version}

{children:Version}

Relation
name:String

{record:Record}

Record

pk:String

X:String

Y:String

Z:String

{version:Version}

Author
name:String

email:String

(a)

Employee Dept.

V1

e1

e2

e3

d1

d2

Employee Dept.

V2

e1

e2

e3

d1

d2

Employee Dept.

V3

e1

e2

e3

d1

d2

(b)

Figure 6.1: (a) Conceptual Data model: the notation “{T}” denotes a set of values of T;
fields in the Records entity can be conceptually thought of as a union of all fields across
records; other fields and entities (for instance Authors) are not shown to keep the discussion
brief; for each entity, entries in the left and right column denote the attribute name and
type respectively. (b) An example version graph where circles denote versions; version
V1 has two Relations, Employee and Department, each having a set of records, {E1, E2,
E3} and {D1, D2} respectively; version V2 adds new records to both the Employee and
Department relations and also adds a new File, Forms.csv. Edge annotations (not shown)
are used to capture information about the derivation process itself, including references to
transformation programs or scripts if needed.

Figure 6.1(a) shows a portion of the conceptual data model that we use to write queries

against. The data model consists of four essential tables: Version, Relation, File, and

Record. Additional tables like Column and Author are required but not essential for the
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purpose of this discussion. The difference between Relation and File is that a relation

has a fixed schema for all its records (recorded in the Column table) while a file has no such

requirement. To that effect, we denote the records in a relation as tuples.

The Version table maintains the information about the different versions in the database,

including the “commit id” (unique across the versions), and various attributes capturing

metadata about the version, such as the creation time and author, as well as “commit msg”

and “creation ts”, representing the commit message and creation time respectively. There

are four set-valued attributes called “relations”, “files”, “parents” and “children”, recording

the relations and files contained in the version, and the direct parents and children in version

graph respectively. The last two refer back to the Version table, whereas the first two refer

to the Relation and File tables respectively. A tuple in the Relation table, in turn, records

the information for a relation including its schema; we view the tuples in the relation as a

set-valued attribute of this table itself — this allows us to locate a relation and then query

on the data inside it as we will see in the next section. The Files table is analogous, but

records information appropriate for an unstructured file. Note that neither of these tables

has a primary key but rather the attributes “name” and “full path” serve as discriminators,

and must be combined with the version “id” to construct primary keys. The “changed”

attribute is a derived (redundant) attribute that indicates whether the relation/file changed

from the parent version, and is very useful for version-oriented queries.

Finally, Record is a virtual table that can be conceptually thought of as a union of all

tuples and records in all relations and files across the versions. The one exception is the

“parents” and “children” attributes, which refer back to the Record table and can be used

to refer to fine-grained provenance information within queries. This table is never directly

referenced in the queries, but is depicted here for completeness. The provenance information

must “obey” the version graph, e.g., in the example shown, records in version V2 can only

have records in version V1 as parents.

We note here that this data model is a high-level conceptual one mainly intended for

ease of querying and aims to maximize data independence. For instance, although the fine-

grained provenance information is conceptually maintained in the Record table here and can

be queried using the “parents” and “children” attributes, the implementation could maintain

that information at schema-level wherever feasible to minimize the storage requirements.

6.3 OVERVIEW OF VQUEL

VQuel is largely a generalization of the Quel language [70] (tuple variables which en-

able iterating over objects at any level of the complex nested data model as described in
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Section 6.3.1. while also introducing certain syntactic conveniences that Quel does not

possess), and combines features from GEM [71] (tuple-reference attributes as described in

Section 6.3.1) and path-based query languages. This means that VQuel is a full-fledged

relational query language, and in addition, it enables the seamless querying of the nested

data model described in the previous section, encoding versioning derivation relationships,

as well as versioning metadata.

VQuel will be illustrated using example queries on the repository shown in Figure 6.1(b),

with certain deviations introduced when necessary. We will introduce the constructs in

VQuel incrementally, starting from those present in Quel to the new ones designed for a

data versioning management setting. For ease of understanding, we first present a version

that is clear and easy to understand, but results in longer queries. In Section 6.3.2 we

describe additional constructs to make the queries concise.

6.3.1 Examples

We begin with some simple VQuel queries. Most of these queries are also straightforward

to write in SQL; the queries that cannot be written in SQL easily begin in Section 6.3.3.

Here, we gradually introduce the constructs of VQuel as a prelude to the more complex

queries combining versioning and data.

Query 6.1. Who is the author of version with id “v01”?

range o f V i s Vers ion

r e t r i e v e V. author . name

where V. id = | | v01 | |

A VQuel query has two elements: iterator setup (range above) and retrieval ( r e t r i e v e

above) of objects satisfying a predicate (where above). Iterators in VQuel are similar to

tuple variables in Quel, but more powerful, in the sense that they can iterate over objects

at any level of our hierarchical data model. They are declared with a statement of the form:

range o f < i t e r a t o r−var i ab l e> i s <set>

The r e t r i e v e statement is used to select the object properties, and is of the form:

r e t r i e v e [ i n to < i t e r a t o r > ] [ unique ]< target−l i s t >

[ where <pred i cate >]

[ s o r t by <a t t r i bu t e> [ asc / desc ] { , <a t t r i bu t e> [ asc / desc ] } ]

The r e t r i e v e statement fetches all the object attributes specified in the target-list for

those objects satisfying the where clause.
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Query 6.2. What commits did Alice make after January 01, 2015?

range o f V i s Vers ion

r e t r i e v e V. a l l

where V. author . name = | | Al i c e | | and V. c r e a t i o n t s >= | | 0 1 / 0 1 / 2 0 1 5 | |

In Queries 6.1 and 6.2, note the use of GEM-style tuple-reference attributes, namely V. author,

and the keyword a l l from Quel. The comparators =, !=, <, <=, > and >= are allowed

in comparisons, and the logical connectives and, or, and not can be used to combine

comparisons.

Multiple iterators can be set up before a retrieval statement, and their respective sets can

be defined as a function of previously declared iterators. The next example illustrates this

idea. The first range clause sets up an iterator V over all the versions. The second range

clause defines an iterator over all relations inside a version.

Query 6.3. List the commit timestamps of versions that contain the Employee relation.

range o f V i s Vers ion

range o f R i s V. Re la t i on s

r e t r i e v e V. commit ts

where R. name = | | Employee | |

Query 6.4. Show the commit history of the Employee relation in reverse chronological order.

range o f V i s Vers ion

range o f R i s V. Re la t i on s

r e t r i e v e V. c r e a t i o n t s , V. author . name , V. commit message

where R. name = | | Employee | | and R. changed = true

s o r t by V. c r e a t i o n t s desc

Similarly, we can set up a range clause over tuples inside a relation. Analogous to a relational

database, the user needs to be familiar with the schema to be able to pose such a query.

Query 6.5. Show the history of the tuple with employee id “e01” from Employee relation.

range o f V i s Vers ion

range o f R i s V. Re la t i on s

range o f E i s R. Tuples

r e t r i e v e E. a l l , V. commit id , V. c r e a t i o n t s

where E. employee id = | | e01 | | and R. name = | | Employee | |
s o r t by V. c r e a t i o n t s
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6.3.2 Syntactic Sweetenings

In this section, we introduce some shorthand constructs to keep the size of the queries

small. These constructs are meant only for brevity, and each of them can be mapped to an

equivalent query without using shorthands.

The first one is analogous to a filter operation over a set declaration: we can use predicates

in the set declaration block of the range statement. For instance, in the following example,

both queries iterate over the same set of versions. Note that the r e t r i e v e in to clause

in (b1) sets up a new iterator V over all the versions satisfying constraints in where clause.

( a1 ) range o f V i s Vers ion ( id = | | v01 | | )

( b1 ) range o f T i s Vers ion

r e t r i e v e in to V (T. a l l )

where T. id = | | v01 | |

The next example shows the principle in action on a query that would otherwise become quite

long. Again, (a2) and (b2) below show identical queries written using the short notation (a)

and their equivalent form (b).

Query 6.6. Find all Employee tuples in version “v01” that are different in version “v02”.

( a2 ) range o f E1 i s Vers ion ( id = | | v01 | | )
. Re l a t i ons (name = | | Employee | | ) . Tuples

range o f E2 i s Vers ion ( id = | | v02 | | )
. Re l a t i ons (name = | | Employee | | ) . Tuples

r e t r i e v e E1 . a l l

where E1 . employee id = E2 . employee id and E1 . a l l != E2 . a l l

( b2 ) range o f V1 i s Vers ion

range o f R1 i s V1 . Re la t i on s

range o f E1 i s R1 . Tuples

range o f V2 i s Vers ion

range o f R2 i s V2 . Re la t i on s

range o f E2 i s R2 . Tuples

r e t r i e v e E1 . a l l

where V1 . id = | | v01 | | and R1 . name= | |Employee | |
and V2 . id = | | v02 | | and R2 . name= | |Employee | |
and E1 . employee id = E2 . employee id and E1 . a l l != E2 . a l l
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6.3.3 Aggregate operators

The aggregate functions sum, avg, count, any, min and max are also provided in VQuel.

Any expression involving components of iterated entity attributes, constants and arithmetic

symbols can be used as the argument of these functions. Due to the nested nature of

iterators, we introduce the a l l version of these operators, i.e. c o u n t a l l , sum al l ,

etc. The general syntax of an aggregate expression is:

agg op ([<agg−a t t r i bu t e>/< i t e r a t o r−var i ab l e >]

[ group by <grouping−a t t r i b u t e s >] [ where <pred i cate > ])

This evaluates the agg op on each group of<agg−a t t r i bu t e> of objects that satisfy

the<pred i cate>. We see two examples next.

Query 6.7. For each version, count the number of relations inside it.

range o f V i s Vers ion

range o f R i s V. Re la t i on s

r e t r i e v e V. id , count (R)

Query 6.8. Find all versions containing precisely 100 Employees with last name “Smith”.

range o f V i s Vers ion

range o f E i s V. Re la t i on s (name = | | Employee | | ) . Tuples

r e t r i e v e V. commit id

where count (E. employee id where E. last name = | | Smith | | ) = 100

In both queries above, the aggregation is performed only over objects at the innermost level

of an iterator expression. In query 6.7, R is an iterator over relations inside a version V, and

count iterates only over the innermost level of this iterator hierarchy, that is, R. Similarly,

in query 6.8, the count expression only iterates over the tuples inside a relation inside a

version.

Notice that the latter query is not very easy to express in vanilla SQL: there is no easy

way to use SQL to retrieve version numbers, which in a traditional non-versioned context

would either be considered as schema-level information, or involve multiple joins depending

on the level of normalization of the schema. VQuel, on the other hand, allows us to set up

the nested iterators that makes such queries very easy to express.

The next two examples show the usage of c o u n t a l l operator. The difference from the

count operator is that all the “parent” iterators are evaluated, instead of only the innermost

iterator, to compute the value of the aggregate. Another way to reason about this behavior is
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that count has an implicit grouping list of attributes in its by clause: query 6.9 is identical

to query 6.8.

Query 6.9. Find all versions containing precisely 100 employees with last name “Smith”.

range o f V i s Vers ion

range o f R i s V. Re la t i on s (name = | | Employee | | )
range o f E i s R. Tuples

r e t r i e v e V. commit id

where c o u n t a l l (E . employee id group by R, V

where E. last name = | | Smith | | ) = 100

Aggregates having a group by clause can also be used in the predicate to restrict the results

of the query. In query 6.9, the result of c o u n t a l l for each group is compared against

100. Query 6.10 gives another example.

Query 6.10. Find all versions containing precisely 100 tuples in all relations put together

inside a version.

range o f V i s Vers ion

range o f R i s V. Re la t i on s

range o f T i s R. Tuples

r e t r i e v e V. a l l

where c o u n t a l l (T group by V) = 100

The next few examples show how we can use aggregate operators across a set of versions to

answer a variety of questions about the data.

Query 6.11. Among a group of versions, find the version containing most tuples that satisfy

a predicate. For instance, which version contains the most number of employees above age

50?

range o f V i s Vers ion

range o f E i s V. Re la t i on s (name = | | Employee | | ) . Tuples

r e t r i e v e in to T (V. id as id , count (E. id where E. age > 50) as c )

r e t r i e v e T. id

where T. c = max(T. c )

Up until now, for an iterator, we have been exploring “down” the hierarchy. We also provide

appropriate functions, depending on the type of iterator, to refer to values of entities “up”

in the hierarchy. In the next query, Vers ion (T) is used to refer to the version attributes

of tuples in T.
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Query 6.12. Which versions are such that the natural join between relations S and T has

more than 100 tuples?

range o f V i s Vers ion

range o f S i s V. Re la t i on s (name = | | S | | ) . Tuples

range o f T i s V. Re la t i on s (name = | |T | | ) . Tuples

r e t r i e v e in to Q(V. id as id ,

c o u n t a l l (S . id group by V

where S . id = T. s i d and Vers ion (S ) . id = Vers ion (T) . id ) as c )

r e t r i e v e Q. id

where Q. c >= 100

6.3.4 Version graph traversal

VQuel has three constructs aimed at traversing the version graph. Each of these operates

on a version at a time, specified over an iterator.

• P(< i n t ege r >): Return the set of ancestor version of this version, until integer num-

ber of hops in the version graph. If the number of hops is not specified, we go till the

first version. Duplicates are removed.

• D(< i n t ege r >): Similar to P( ) except that it returns the descendant/derived ver-

sions.

• N(< i n t ege r >): Similar to P( ) except that it returns the versions that are<i n t ege r>

number of hops away.

The next few queries illustrate these constructs. Notice once again that queries of this type

are not very easy to express in SQL, which does not permit the easy traversal of graphs, or

specification of path queries. The constructs we introduce are reminiscent of constructs in

graph traversal languages [72]; these combined with the rest of the power of VQuel enable

some fairly challenging queries to be expressed rather easily.

Query 6.13. Find all versions within 2 commits of “v01” which have less than 100 employ-

ees.

range o f V i s Vers ion ( id = | | v01 | | )
range o f N i s V.N(2)

range o f E i s N. Re la t i on s (name = | | Employee | | ) . Tuples
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r e t r i e v e N. a l l

where count (E) < 100

Query 6.14. Find all versions where the delta from the previous version is greater than 100

tuples.

range o f V i s Vers ion

range o f P i s V.P(1)

r e t r i e v e unique V. a l l

where abs ( count (V. Re la t i on s . Tuples ) − count (P. Re la t i ons . Tuples ) ) > 100

Query 6.15. For each tuple in Employee relation as of version “v01”, find the parent version

where it first appeared.

range o f V i s Vers ion ( id = | | v01 | | )
range o f E i s V. Re la t i on s (name = | | Employee | | ) . Tuples

range o f P i s V.P( )

range o f PE i s P. Re la t i on s (name = | | Employee | | ) . Tuples

r e t r i e v e E. id , P . id

where E. employee id = PE. employee id and P. commit ts = min (P. commit ts )

6.3.5 Extensions to fine-grained provenance

Finally, in some cases, we may have complete transparency into the operations performed

by data scientists. In such cases, we can record, reason about, and access tuple-level prove-

nance information. Here is an example of a query that can refer to tuple-level provenance:

Query 6.16. For tuples in version “v01” in relation S that satisfy a predicate, say value of

attribute a t t r = x, find all parent tuples that they depend on.

range o f E i s Vers ion ( id = | | v01 | | ) . Re l a t i ons (name = | | S | | ) . Tuples

range o f P i s E. parents

r e t r i e v e E. id , P . id

where E. a t t r = x

Similar queries can be used to “walk up” the derivation path of given tuples, for example,

to identify the origins of specific tuples.

63



6.4 ADDITIONAL RELATED WORK

While there has been some work on temporal query languages [73], these languages do

not apply to our setting since they assume a linear chain of versions — in our case, we could

have an arbitrary branching structure of versions as is common in collaborative data analysis.

Extensions have been proposed to SQL [74] to work with nested relational model which allows

for relation-valued attributes; but overall SQL is ill-suited to traversing a graph structure—

one of our key requirements, and further, it has a cumbersome aggregation syntax that

results in unwieldy queries when comparing across versions [67]. Similarly, while there has

been substantial work on query languages for provenance, ranging from adapting SQL [75],

Prolog [76, 77], SPARQL [78, 79] to specialized languages such as QLP [80, 81], PQL [82],

ProQL [83] ( [84], [85] have additional examples), much of this work centers on well-defined

workflows and tuple-based provenance rather than collaborative settings where multiple users

interact through a derivation graph of versions in an ad hoc manner. Furthermore, query

languages are generally tied to a particular method of recording provenance information,

e.g., semiring annotations [86], COMAD [87], etc., and adapting them to other provenance

data and storage models is often clunky [88]. Finally, we note that although our proposed

language is different from the aforementioned ones, we might be able to build upon some of

their query execution strategies (e.g., [79]) and add user-defined operators to aid in specific

analysis tasks (e.g., [77]). This is, however, ongoing work and is not the focus of this chapter.

To the best of our knowledge, ours is the first query language proposal tailored for an ad

hoc derivation graph of versions of structured records. Our proposal draws from constructs

introduced in the historical Quel [70] and GEM [71] languages, neither of which had a

temporal component.

In this chapter, we removed the SQL assumption and introduced our proposed generalized

query language VQuel. In the next chapter, we will relax the structural assumption and focus

on the generalized storage representation for data at varying degrees of structure.
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CHAPTER 7: COMPACT STORAGE ENGINE FOR DATA VERSIONING

As discussed in Chapter 1, the relative ease of collaborative data science and analysis has

led to a proliferation of many thousands or millions of versions of the same datasets in many

scientific and commercial domains, acquired or constructed at various stages of data analysis

across many users, and often over long periods of time. Managing, storing, and recreating

these dataset versions is a non-trivial task. In this chapter, we study how to compactly

store the versioned datasets irrespective of degree of structure, and at the same time achieve

fast retrieval of versions. The fundamental challenge here is the storage-recreation trade-

off: the more storage we use, the faster it is to recreate or retrieve versions, while the less

storage we use, the slower it is to recreate or retrieve versions. In particular, we study this

trade-off in a principled manner: we formulate six problems under various settings, trading

off these quantities in various ways, demonstrate that most of the problems are intractable,

and propose a suite of inexpensive heuristics drawing from techniques in delay-constrained

scheduling, and spanning tree literature, to solve these problems. We demonstrate, via

extensive experiments, that our proposed heuristics provide efficient solutions in practical

dataset versioning scenarios.

The main contributions of this chapter are given as follows:

• We formally define and analyze the dataset versioning problem and consider several

variations of the problem that trade off storage cost and recreation cost in different

manners, under different assumptions about the differencing mechanisms and recreation

costs (Section 7.2). Table 7.1 summarizes the problems and our results. We show that

most of the variations of this problem are NP-Hard (Section 7.3).

• We provide two light-weight heuristics: one, when there is a constraint on average recre-

ation cost, and one when there is a constraint on maximum recreation cost; we also show

how we can adapt a prior solution for balancing minimum-spanning trees and shortest

path trees for undirected graphs (Section 7.4).

• We have built a prototype system where we implement the proposed algorithms. We

present an extensive experimental evaluation of these algorithms over several synthetic

and real-world workloads demonstrating the effectiveness of our algorithms at handling

large problem sizes (Section 7.5).

Remark 7.1. In this chapter, we do not assume any particular format of the data. Our

proposed algorithm is based on delta-encoding, which is generic and can work with any data

format, including structured, semi-structured, and non-structured data.
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V1

V3V2

V5V4

<10000, 10000>

<10100, 10100> <9700,9700>

<9800,9800> <10120,10120>

<200,200> <1000,3000>

<50,400>
<800,2500>

<200,550>

V1

V3V2

V5V4

<10000, 10000>

<200,200> <1000,3000>

<50,400> <200,550>

V1

V3V2

V5V4

<10000, 10000>

<200,200>

<50,400> <200,550>

<9700,9700>

V1

V3V2

V5V4

<10000, 10000>

<10100, 10100> <9700,9700>

<9800,9800> <10120,10120>

(i) (ii)

(iii) (iv)

Figure 7.1: (i) A version graph over 5 datasets – annotation 〈a, b〉 indicates a storage cost
of a and a recreation cost of b; (ii, iii, iv) three possible storage graphs

7.1 MOTIVATING EXAMPLE

In this chapter, we focus on the problem of trading off storage costs and recreation costs in

a principled fashion. Specifically, the problem we address in this chapter is: given a collection

of datasets as well as (possibly) a directed version graph connecting them, minimize the

overall storage for storing the datasets and the recreation costs for retrieving them. The

two goals conflict with each other — minimizing storage cost typically leads to increased

recreation costs and vice versa. We illustrate this trade-off via an example.

Example 7.1. Figure 7.1(i) displays a version graph, indicating the derivation relationships

among 5 versions. Let V1 be the original dataset. Say there are two teams collaborating

on this dataset: team 1 modifies V1 to derive V2, while team 2 modifies V1 to derive V3.

Then, V2 and V3 are merged and give V5. As presented in Figure 7.1, V1 is associated with

〈10000, 10000〉, indicating that V1’s storage cost and recreation cost are both 10000 when

stored in its entirety (we note that these two are typically measured in different units – see

the second challenge below); the edge (V1 → V3) is annotated with 〈1000, 3000〉, where 1000

is the storage cost for V3 when stored as the modification from V1 (we call this the delta of

V3 from V1) and 3000 is the recreation cost for V3 given V1, i.e, the time taken to recreate

V3 given that V1 has already been recreated.

One naive solution to store these datasets would be to store all of them in their entirety

(Figure 7.1 (ii)). In this case, each version can be retrieved directly but the total storage cost
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is rather large, i.e., 10000+10100+9700+9800+10120 = 49720. At the other extreme, only

one version is stored in its entirety while other versions are stored as modifications or deltas

to that version, as shown in Figure 7.1 (iii). The total storage cost here is much smaller

(10000 + 200 + 1000 + 50 + 200 = 11450), but the recreation cost is large for V2, V3, V4 and

V5. For instance, the path {(V1 → V3 → V5)} needs to be accessed in order to retrieve V5

and the recreation cost is 10000 + 3000 + 550 = 13550 > 10120.

Figure 7.1 (iv) shows an intermediate solution that trades off increased storage for reduced

recreation costs for some version. Here we store versions V1 and V3 in their entirety and

store modifications to other versions. This solution also exhibits higher storage cost than

solution (ii) but lower than (iii), and still results in significantly reduced retrieval costs for

versions V3 and V5 over (ii).

In this chapter, we initiate a formal study of the problem of deciding how to jointly store

a collection of dataset versions with arbitrary structure, provided along with a version or

derivation graph. Aside from being able to handle the scale, both in terms of dataset sizes

and the number of versions, there are several other considerations that make this problem

challenging.

• Different application scenarios and constraints lead to many variations on the basic theme

of balancing storage and recreation cost (see Table 7.1). The variations arise both out

of different ways to reconcile the conflicting optimization goals, as well as because of the

variations in how the differences between versions are stored and how versions are recon-

structed. For example, some mechanisms for constructing differences between versions

lead to symmetric differences (either version can be recreated from the other version) —

we call this the undirected case. The scenario with asymmetric, one-way differences is

referred to as directed case.

• Similarly, the relationship between storage and recreation costs leads to significant vari-

ations across different settings. In some cases the recreation cost is proportional to the

storage cost (e.g., if the system bottleneck lies in the I/O cost or network communica-

tion), but that may not be true when the system bottleneck is CPU computation. This

is especially true for sophisticated differencing mechanisms where a compact derivation

procedure might be known to generate one dataset from another.

• Another critical issue is that computing deltas for all pairs of versions is typically not

feasible. Relying purely on the version graph may not be sufficient and significant re-

dundancies across datasets may be missed.

• Further, in many cases, we may have information about relative access frequencies indi-

cating the relative likelihood of retrieving different datasets. Several baseline algorithms
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Storage Cost Recreation Cost Undirected
Case,
∆ = Φ

Directed
Case,
∆ = Φ

Directed
Case,
∆ 6= Φ

Problem 7.1 minimize {C} Ri <∞, ∀i PTime, Minimum Spanning Tree

Problem 7.2 C <∞ minimize {max{Ri|1 ≤ i ≤ n}} PTime, Shortest Path Tree

Problem 7.3 C ≤ β minimize {
∑n

i=1Ri} NP-hard, NP-hard, LMG
Algorithm

Problem 7.4 C ≤ β minimize {max{Ri|1 ≤ i ≤ n}} LAST
Algorithm†

NP-hard, MP Al-
gorithm

Problem 7.5 minimize {C}
∑n

i=1Ri ≤ θ NP-hard, NP-hard, LMG
Algorithm

Problem 7.6 minimize {C} max{Ri|1 ≤ i ≤ n} ≤ θ LAST
Algorithm†

NP-hard, MP Al-
gorithm

Table 7.1: Problem Variations With Different Constraints, Objectives and Scenarios.

for solving this problem cannot be easily adapted to incorporate such access frequencies.

We note that the problem described thus far is inherently “online” in that new datasets and

versions are typically being created continuously and are being added to the system. In this

chapter, we focus on the static, off-line version of this problem and focus on formally and

completely understanding that version. We plan to address the online version of the problem

in the future.

7.2 PROBLEM OVERVIEW

In this section, we first introduce essential notations and then present the various problem

formulations. We then present a mapping of the basic problem to a graph-theoretic problem,

and also describe an integer linear program to solve the problem optimally.

7.2.1 Essential Notations and Preliminaries

Version Graph. We let V = {Vi}, i = 1, . . . , n be a collection of versions. The derivation

relationships between versions are represented or captured in the form of a version graph:

G(V , E). A directed edge from Vi to Vj in G(V , E) represents that Vj was derived from Vi

(either through an update operation, or through an explicit transformation). Since branching

and merging are permitted in collaborative data analytics, G is a DAG (directed acyclic

graph) instead of a linear chain. For example, Figure 7.1 represents a version graph G,

where V2 and V3 are derived from V1 separately, and then merged to form V5.
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Storage and Recreation. Given a collection of versions V , we need to reason about the

storage cost, i.e., the space required to store the versions, and the recreation cost, i.e., the

time taken to recreate or retrieve the versions. For a version Vi, we can either:

• Store Vi in its entirety: in this case, we denote the storage required to record version Vi

fully by ∆i,i. The recreation cost in this case is the time needed to retrieve this recorded

version; we denote that by Φi,i. A version that is stored in its entirety is said to be

materialized.

• Store a “delta” from Vj: in this case, we do not store Vi fully; we instead store its mod-

ifications from another version Vj. For example, we could record that Vi is just Vj but

with the 50th tuple deleted. We refer to the information needed to construct version Vi

from version Vj as the delta from Vj to Vi. The algorithm giving us the delta is called

a differencing algorithm. The storage cost for recording modifications from Vj, i.e., the

size the delta, is denoted by ∆j,i. The recreation cost is the time needed to recreate the

recorded version given that Vj has been recreated; this is denoted by Φj,i.

Thus the storage and recreation costs can be represented using two matrices ∆ and Φ:

the entries along the diagonal represent the costs for the materialized versions, while the

off-diagonal entries represent the costs for deltas. From this point forward, we focus our

attention on these matrices: they capture all the relevant information about the versions for

managing and retrieving them.

Delta Variants. Notice that by changing the differencing algorithm, we can produce deltas

of various types:

• for text files, UNIX-style diffs, i.e., line-by-line modifications between versions, are com-

monly used;

• we could have a listing of a program, script, SQL query, or command that generates

version Vi from Vj;

• for some types of data, an XOR between the two versions can be an appropriate delta;

and

• for tabular data (e.g., relational tables), recording the differences at the cell level is yet

another type of delta.

Furthermore, the deltas could be stored compressed or uncompressed. The various delta

variants lead to various dimensions of problem that we will describe subsequently.

The reader may be wondering why we need to reason about two matrices ∆ and Φ. In

some cases, the two may be proportional to each other (e.g., if we are using uncompressed

UNIX-style diffs). But in many cases, the storage cost of a delta and the recreation cost

of applying that delta can be very different from each other, especially if the deltas are
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10000 200 3000 -- --

600 10100 -- 400 2500

-- 3200 9700 -- 550

-- -- -- 9800 2500

-- -- -- 2300 10120

10000 200 1000 -- --

500 10100 -- 50 800

-- 1100 9700 -- 200

-- -- -- 9800 900

-- -- -- 800 10120

(i) (ii)(i) ∆ (ii) Φ

Figure 7.2: Matrices corresponding to the example in Figure 1 (with additional entries
revealed beyond the ones given by version graph)

stored in a compressed fashion. Furthermore, while the storage cost is more straightforward

to account for in that it is proportional to the bytes required to store the deltas between

versions, recreation cost is more complicated: it could depend on the network bandwidth (if

versions or deltas are stored remotely), the I/O bandwidth, and the computation costs (e.g.,

if decompression or running of a script is needed).

Example 7.2. Figure 7.2 shows the matrices ∆ and Φ based on version graph in Figure 7.1.

The annotation associated with the edge (Vi, Vj) in Figure 7.1 is essentially 〈∆i,j,Φi,j〉,
whereas the vertex annotation for Vi is 〈∆i,i,Φi,i〉. If there is no edge from Vi to Vj in

the version graph, we have two choices: we can either set the corresponding ∆ and Φ entries

to “−” (unknown) (as shown in the figure), or we can explicitly compute the values of those

entries (by running a differencing algorithm). For instance, ∆3,2 = 1100 and Φ3,2 = 3200

are computed explicitly in the figure (the specific numbers reported here are fictitious and not

the result of running any specific algorithm).

Discussion. Before moving on to formally defining the basic optimization problem, we note

several complications that present unique challenges in this scenario.

• Revealing entries in the matrix: Ideally, we would like to compute all pairwise ∆ and Φ

entries, so that we do not miss any significant redundancies among versions that are far

from each other in the version graph. However when the number of versions, denoted

n, is large, computing all those entries can be very expensive (and typically infeasible),

since this means computing deltas between all pairs of versions. Thus, we must reason

with incomplete ∆ and Φ matrices. Given a version graph G, one option is to restrict our

deltas to correspond to actual edges in the version graph; another option is to restrict

our deltas to be between “close by” versions, with the understanding that versions close

to each other in the version graph are more likely to be similar. Prior work has also
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suggested mechanisms (e.g., based on hashing) to find versions that are close to each

other [34]. We assume that some mechanism to choose which deltas to reveal is provided

to us.

• Multiple “delta” mechanisms: Given a pair of versions (Vi, Vj), there could be many ways

of maintaining a delta between them, with different ∆i,j,Φi,j costs. For example, we

can store a program used to derive Vj from Vi, which could take longer to run (i.e., the

recreation cost is higher) but is more compact (i.e., storage cost is lower), or explicitly

store the UNIX-style diffs between the two versions, with lower recreation costs but

higher storage costs. For simplicity, we pick one delta mechanism: thus the matrices

∆,Φ just have one entry per (i, j) pair. Our techniques also apply to the more general

scenario with small modifications.

• Branches: Both branching and merging are common in collaborative analysis, making

the version graph a directed acyclic graph. In this chapter, we assume each version is

either stored in its entirety or stored as a delta from a single other version, even if it is

derived from two different datasets. Although it may be more efficient to allow a version

to be stored as a delta from two other versions in some cases, representing such a storage

solution requires more complex constructs and both the problems of finding an optimal

storage solution for a given problem instance and retrieving a specific version become

much more complicated. We plan to further study such solutions in future.

Matrix Properties and Problem Dimensions. The storage cost matrix ∆ may be sym-

metric or asymmetric depending on the specific differencing mechanism used for constructing

deltas. For example, the XOR differencing function results in a symmetric ∆ matrix since

the delta from a version Vi to Vj is identical to the delta from Vj to Vi. UNIX-style diffs

where line-by-line modifications are listed can either be two-way (symmetric) or one-way

(asymmetric). The asymmetry may be quite large. For instance, it may be possible to

represent the delta from Vi to Vj using a command like: delete all tuples with age ¿ 60, very

compactly. However, the reverse delta from Vj to Vi is likely to be quite large, since all the

tuples that were deleted from Vi would be a part of that delta. In this chapter, we consider

both these scenarios. We refer to the scenario where ∆ is symmetric and ∆ is asymmetric

as the undirected case and directed case, respectively.

A second issue is the relationship between Φ and ∆. In many scenarios, it may be reason-

able to assume that Φ is proportional to ∆. This is generally true for deltas that contain

detailed line-by-line or cell-by-cell differences. It is also true if the system bottleneck is

network communication or I/O cost. In a large number of cases, however, it may be more

appropriate to treat them as independent quantities with no overt or known relationship.
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For the proportional case, we assume that the proportionality constant is 1 (i.e., Φ = ∆);

the problem statements, algorithms and guarantees are unaffected by having a constant

proportionality factor. The other case is denoted by Φ 6= ∆.

This leads us to identify three distinct cases with significantly diverse properties: (1)

Scenario 7.1: Undirected case, Φ = ∆; (2) Scenario 7.2: Directed case, Φ = ∆; and (3)

Scenario 7.3: Directed case, Φ 6= ∆.

Objective and Optimization Metrics. Given ∆,Φ, our goal is to find a good storage

solution, i.e., we need to decide which versions to materialize and which versions to store as

deltas from other versions. Let P = {(i1, j1), (i2, j2), ...} denote a storage solution. ik = jk

indicates that the version Vik is materialized (i.e., stored explicitly in its entirety), whereas

a pair (ik, jk), ik 6= jk indicates that we store a delta from Vik to Vjk .

We require any solution we consider to be a valid solution, where it is possible to recon-

struct any of the original versions. More formally, P is considered a valid solution if and only

if for every version Vi, there exists a sequence of distinct versions Vl1 , ..., Vlk = Vi such that

(il1 , il1), (il1 , il2), (il2 , il3), ..., (ilk−1
, ilk) are contained in P (in other words, there is a version

Vl1 that can be materialized and can be used to recreate Vi through a chain of deltas).

We can now formally define the optimization goals:

• Total Storage Cost (denoted C): The total storage cost for a solution P is simply the stor-

age cost necessary to store all the materialized versions and the deltas: C =
∑

(i,j)∈P ∆i,j.

• Recreation Cost for Vi (denoted Ri): Let Vl1 , ..., Vlk = Vi denote a sequence that can be

used to reconstruct Vi. The cost of recreating Vi using that sequence is: Φl1,l1 +Φl1,l2 +...+

Φlk−1,lk . The recreation cost for Vi is the minimum of these quantities over all sequences

that can be used to recreate Vi.

Problem Formulations. We now state the problem formulations that we consider in this

chapter, starting with two base cases that represent two extreme points in the spectrum of

possible problems.

Problem 7.1 (Minimizing Storage). Given ∆,Φ, find a valid solution P such that C is

minimized.

Problem 7.2 (Minimizing Recreation). Given ∆,Φ, identify a valid solution P such that

∀i, Ri is minimized.

The above two formulations minimize either the storage cost or the recreation cost, without

worrying about the other. It may appear that the second formulation is not well-defined and

we should instead aim to minimize the average recreation cost across all versions. However,
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the (simple) solution that minimizes average recreation cost also naturally minimizes Ri for

each version.

In the next two formulations, we want to minimize (a) the sum of recreation costs over

all versions (
∑

iRi), (b) the max recreation cost across all versions (maxiRi), under the

constraint that total storage cost C is smaller than some threshold β. These problems are

relevant when the storage budget is limited.

Problem 7.3 (MinSum Recreation). Given ∆,Φ and a threshold β, identify P such that

C ≤ β, and
∑

iRi is minimized.

Problem 7.4 (MinMax Recreation). Given ∆,Φ and a threshold β, identify P such that

C ≤ β, and maxiRi is minimized.

The next two formulations seek to instead minimize the total storage cost C given a

constraint on the sum of recreation costs or max recreation cost. These problems are relevant

when we want to reduce the storage cost, but must satisfy some constraints on the recreation

costs.

Problem 7.5 (Minimizing Storage(Sum Recreation)). Given ∆,Φ and a threshold θ, identify

P such that
∑

iRi ≤ θ, and C is minimized.

Problem 7.6 (Minimizing Storage(Max Recreation)). Given ∆,Φ and a threshold θ, identify

P such that maxiRi ≤ θ, and C is minimized.

7.2.2 Mapping to Graph Formulation

In this section, we’ll map our problem into a graph problem, that will help us to adopt and

modify algorithms from well-studied problems such as minimum spanning tree construction

and delay-constrained scheduling. Given the matrices ∆ and Φ, we can construct a directed,

edge-weighted graph G = (V,E) representing the relationship among different versions as

follows. For each version Vi, we create a vertex Vi in G. In addition, we create a dummy

vertex V0 in G. For each Vi, we add an edge V0 → Vi, and assign its edge-weight as a tuple

〈∆i,i,Φi,i〉. Next, for each ∆i,j 6=∞, we add an edge Vi → Vj with edge-weight 〈∆i,j,Φi,j〉.
The resulting graph G is similar to the original version graph, but with several important

differences. An edge in the version graph indicates a derivation relationship, whereas an

edge in G simply indicates that it is possible to recreate the target version using the source

version and the associated edge delta (in fact, ideally G is a complete graph). Unlike the

version graph, G may contain cycles, and it also contains the special dummy vertex V0.
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V1

V3V2

V5V4

<200,200> <1000,3000>

<50,400> <800,2500> <200,550>

V0

<10000, 10000>

<10100, 10100> <9700,9700>

<9800,9800> <10120,10120>

<800,2300>

<1100,3200>

<900,2500>

<500,600>

Figure 7.3: Graph G

V1

V3V2

V5V4

<200,200>

<9700,9700>

<50,400> <200,550>

V0

<10000, 10000>

Figure 7.4: Storage Graph Gs

Additionally, in the version graph, if a version Vi has multiple in-edges, it is the result of a

user/application merging changes from multiple versions into Vi. However, multiple in-edges

in G capture the multiple choices that we have in recreating Vi from some other versions.

Given graph G = (V,E), the goal of each of our problems is to identify a storage graph

Gs = (Vs, Es), a subset of G, favorably balancing total storage cost and the recreation cost

for each version. Implicitly, we will store all versions and deltas corresponding to edges in

this storage graph. (We explain this in the context of the example below.) We say a storage

graph Gs is feasible for a given problem if (a) each version can be recreated based on the

information contained or stored in Gs, (b) the recreation cost or the total storage cost meets

the constraint listed in each problem.

Example 7.3. Given matrix ∆ and Φ in Figure 7.2(i) and 7.2(ii), the corresponding graph

G is shown in Figure 7.3. Every version is reachable from V0. For example, edge (V0, V1)

is weighted with 〈∆1,1,Φ1,1〉 = 〈10000, 10000〉; edge 〈V3, V5〉 is weighted with 〈∆3,5,Φ3,5〉 =

〈800, 2500〉. Figure 7.4 is a feasible storage graph given G in Figure 7.3, where V1 and V3

are materialized (since the edges from V0 to V1 and V3 are present) while V2, V4 and V5 are

stored as modifications from other versions.

After mapping our problem into a graph setting, we have the following lemma.

Lemma 7.1. The optimal storage graph Gs = (Vs, Es) for all 6 problems listed above must

be a spanning tree T rooted at dummy vertex V0 in graph G.

Proof. Recall that a spanning tree of a graph G(V,E) is a subgraph of G that (i) includes

all vertices of G, (ii) is connected, i.e., every vertex is reachable from every other vertex, and

(iii) has no cycles. Any Gs must satisfy (i) and (ii) in order to ensure that a version Vi can

be recreated from V0 by following the path from V0 to Vi. Conversely, if a subgraph satisfies
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(i) and (ii), it is a valid Gs according to our definition above. Regarding (iii), presence of

a cycle creates redundancy in Gs. Formally, given any subgraph that satisfies (i) and (ii),

we can arbitrarily delete one from each of its cycle until the subgraph is cycle free, while

preserving (i) and (ii).

For Problems 7.1 and 7.2, we have the following observations. A minimum spanning tree

is defined as a spanning tree of smallest weight, where the weight of a tree is the sum of all

its edge weights. A shortest path tree is defined as a spanning tree where the path from

root to each vertex is a shortest path between those two in the original graph: this would

be simply consist of the edges that were explored in an execution of Dijkstra’s shortest path

algorithm.

Lemma 7.2. The optimal storage graph Gs for Problem 7.1 is a minimum spanning tree of

G rooted at V0, considering only weights ∆i,j.

Lemma 7.3. The optimal storage graph Gs for Problem 7.2 is a shortest path tree of G

rooted at V0, considering only weights Φi,j.

7.2.3 ILP Formulation

We present an ILP formulation of the optimization problems described above. Here, we

take Problem 7.6 as an example; other problems are similar. Let xi,j be a binary variable

for each edge (Vi, Vj) ∈ E, indicating whether edge (Vi, Vj) is in the storage graph or not.

Specifically, x0,j = 1 indicates that version Vj is materialized, while xi,j = 1 indicates that

the modification from version i to version j is stored where i 6= 0. Let ri be a continuous

variable for each vertex Vi ∈ V , where r0 = 0; ri captures the recreation cost for version i

(and must be ≤ θ).

minimize Σ(Vi,Vj)∈Exi,j ×∆i,j, subject to:∑
i xi,j = 1,∀j

rj − ri ≥ Φi,j if xi,j = 1

ri ≤ θ, ∀i

(7.1)

Lemma 7.4. Problem 7.6 is equivalent to the optimization problem described above.

Note however that the general form of an ILP does not permit an if-then statement (as

in the second constraint in Equation 7.1 above). Instead, we can transform to the general

form with the aid of a large constant C. Thus, the second constraint in Equation 7.1 can be

expressed as follows:

Φi,j + ri − rj ≤ (1− xi,j)× C (7.2)
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Where C is a “sufficiently large” constant such that no additional constraint is added to the

model. For instance, C here can be set as 2∗θ. On one hand, if xi,j = 1⇒ Φi,j +ri−rj ≤ 0.

On the other hand, if xi,j = 0 ⇒ Φi,j + ri − rj ≤ C. Since C is “sufficiently large”, no

additional constraint is added.

7.3 COMPUTATIONAL COMPLEXITY

In this section, we study the complexity of the problems listed in Table 7.1 under different

application scenarios.

Problem 7.1 and 7.2 Complexity. As discussed in Section 7.2, Problem 7.1 and 7.2

can be solved in polynomial time by directly applying a minimum spanning tree algorithm

(Kruskal’s algorithm or Prim’s algorithm for undirected graphs; Edmonds’ algorithm [89]

for directed graphs) and Dijkstra’s shortest path algorithm respectively. Kruskal’s algorithm

has time complexity O(E log V ), while Prim’s algorithm also has time complexity O(E log V )

when using binary heap for implementing the priority queue, and O(E+V log V ) when using

Fibonacci heap for implementing the priority queue. The running time of Edmonds’ algo-

rithm is O(EV ) and can be reduced to O(E+V log V ) with faster implementation. Similarly,

Dijkstra’s algorithm for constructing the shortest path tree starting from the root has a time

complexity of O(E log V ) via a binary heap-based priority queue implementation and a time

complexity of O(E + V log V ) via Fibonacci heap-based priority queue implementation.

Next, we’ll show that Problem 7.5 and 7.6 are NP-hard even for the special case where

∆ = Φ and Φ is symmetric. This will lead to hardness proofs for the other variants.

Triangle Inequality. The primary challenge that we encounter while demonstrating hard-

ness is that our deltas must obey the triangle inequality: unlike other settings where deltas

need not obey real constraints, since, in our case, deltas represent actual modifications that

can be stored, it must obey additional realistic constraints. This causes severe complications

in proving hardness, often transforming the proofs from very simple to fairly challenging.

Consider the scenario when ∆ = Φ and Φ is symmetric. We take ∆ as an example. The

triangle inequality, can be stated as follows:

|∆p,q −∆q,w| ≤ ∆p,w ≤ ∆p,q + ∆q,w (7.3)

|∆p,p −∆p,q| ≤ ∆q,q ≤ ∆p,p + ∆p,q (7.4)

where p, q, w ∈ V and p 6= q 6= w. The first inequality states that the “delta” between two

versions can not exceed the total “deltas” of any two-hop path with the same starting and
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ending vertex; while the second inequality indicates that the “delta” between two versions

must be bigger than one version’s full storage cost minus another version’s full storage cost.

Since each tuple and modification is recorded explicitly when Φ is symmetric, it is natural

that these two inequalities hold.

s1 s3s2

t2t1 t3 t4 t5

s1 s3s2

t2t1 t3 t4 t5

v0

v1 v2𝛼 𝛼

(𝛽 + 1)𝛼
(𝛽 + 1)𝛼

(𝛽 + 1)𝛼
(𝛽 + 1)𝛼

(𝛽 + 1)𝛼

𝛼

𝛼𝛽

𝛼

𝛼𝛽 𝛼𝛽 𝛼𝛽 𝛼𝛽𝛼𝛽
(𝛽 + 1)𝛼

(𝛽 + 1)𝛼

𝛼𝛽 𝛼𝛽1 1 1

𝛼𝛽

(a) (b)

Figure 7.5: Illustration of Proof of Lemma 7.5

Problem 7.6 Hardness. We now demonstrate hardness.

Lemma 7.5. Problem 7.6 is NP-hard when ∆ = Φ and Φ is symmetric.

Proof. Here we prove NP-hardness using a reduction from the set cover problem. Recall

that in the set cover problem, we are given m sets S = {s1, s2, ..., sm} and n items T =

{t1, t2, ...tn}, where each set si covers some items, and the goal is to pick k sets F ⊂ S such

that ∪{F∈F}F = T while minimizing k.

Given a set cover instance, we now construct an instance of Problem 7.6 that will provide

a solution to the original set cover problem. The threshold we will use in Problem 7.6 will

be (β + 1)α, where β, α are constants that are each greater than 2(m+ n). (This is just to

ensure that they are “large”.) We now construct the graph G(V,E) in the following way;

we display the constructed graph in Figure 7.5. Our vertex set V is as follows:

• ∀si ∈ S, create a vertex si in V.

• ∀ti ∈ T , create a vertex ti in V.

• create an extra vertex v0, two dummy vertices v1, v2 in V .

We add the two dummy vertices simply to ensure that v0 is materialized, as we will see later.

We now define the storage cost for materializing each vertex in V in the following way:

• ∀si ∈ S, the cost is α.

• ∀ti ∈ T , the cost is (β + 1)α.

• for vertex v0, the cost is α.
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• for vertex v1, v2, the cost is (β + 1)α.

(These are the numbers colored blue in the tree of Figure 7.5(b).) As we can see above, we

have set the costs in such a way that the vertex v0 and the vertices corresponding to sets

in S have low materialization cost, while the other vertices have high materialization cost:

this is by design so that we only end up materializing these vertices. Our edge set E is now

as follows.

• we connect vertex v0 to each si with weight 1.

• we connect v0 to both v1 and v2 each with weight βα.

• ∀si ∈ S, we connect si to tj with weight βα when tj ∈ si, where α = |V |.
It is easy to show that our constructed graph G obeys the triangle inequality.

Consider a solution to Problem 7.6 on the constructed graph G. We now demonstrate

that that solution leads to a solution of the original set cover problem. Our proof proceeds

in four key steps:

Step 1: The vertex v0 will be materialized, while v1, v2 will not be materialized. Assume the

contrary—say v0 is not materialized in a solution to Problem 7.6. Then, both v1 and v2

must be materialized, because if they are not, then the recreation cost of v1 and v2 would

be at least α(β + 1) + 1, violating the condition of Problem 7.6. However we can avoid

materializing v1 and v2, instead keep the delta to v0 and materialize v0, maintaining the

recreation cost as is while reducing the storage cost. Thus v0 has to be materialized, while

v1, v2 will not be materialized. (Our reason for introducing v1, v2 is precisely to ensure that

v0 is materialized so that it can provide basis for us to store deltas to the sets si.)

Step 2: None of the ti will be materialized. Say a given ti is materialized in the solution

to Problem 7.6. Then, either we have a set sj where sj is connected to ti in Figure 7.5(a)

also materialized, or not. Let’s consider the former case. In the former case, we can avoid

materializing ti, and instead add the delta from sj to ti, thereby reducing storage cost while

keeping recreation cost fixed. In the latter case, pick any sj such that sj is connected to ti

and is not materialized. Then, we must have the delta from v0 to sj as part of the solution.

Here, we can replace that edge, and materialized ti, with materialized sj, and the delta from

sj to ti: this would reduce the total storage cost while keeping the recreation cost fixed.

Thus, in either case, we can improve the solution if any of the ti are materialized, rendering

the statement false.

Step 3: For each si, either it is materialized, or the edge from v0 to si will be part of the

storage graph. This step is easy to see: since none of the ti are materialized, either each si

has to be materialized, or we must store a delta from v0.

Step 4: The sets si that are materialized correspond to a minimal set cover of the original
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problem. It is easy to see that for each tj we must have an si such that si covers tj, and si

is materialized, in order for the recreation cost constraint to not be violated for tj. Thus,

the materialized si must be a set cover for the original problem. Furthermore, in order for

the storage cost to be as small as possible, as few si as possible must be materialized (this

is the only place we can save cost). Thus, the materialized si also correspond to a minimal

set cover for the original problem.

Thus, minimizing the total storage cost is equivalent to minimizing k in set cover problem.

Note that while the reduction above uses a graph with only some edge weights (i.e.,

recreation costs of the deltas) known, a similar reduction can be derived for a complete

graph with all edge weights known. Here, we simply use the shortest path in the graph

reduction above as the edge weight for the missing edges. In that case, once again, the

storage graph in the solution to Problem 7.6 will be identical to the storage graph described

above.

Problem 7.5 Hardness: We now show that Problem 7.5 is NP-Hard as well. The general

philosophy is similar to the proof in Lemma 7.5, except that we create c dummy vertices

instead of two dummy vertices v1, v2 in Lemma 7.5, where c is sufficiently large—this is to

once again ensure that v0 is materialized.

Lemma 7.6. Problem 7.5 is NP-Hard when ∆ = Φ and Φ is symmetric.
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Figure 7.6: Illustration of Proof of Lemma 7.6

Proof. We prove NP-hardness using a reduction from the set cover problem. Recall that

in the set cover decision problem, we are given m sets S = {s1, s2, ..., sm} and n items
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T = {t1, t2, ...tn}, where each set si covers some items, and given a k, we ask if there a

subset F ⊂ S such that ∪{F∈F}F = T and |F| ≤ k.

Given a set cover instance, we now construct an instance of Problem 7.5 that will provide

a solution to the original set cover decision problem. The corresponding decision problem

for Problem 7.5 is: given threshold α + (β + 1)αn + kα + (m − k)(α + 1) + (α + 1)c in

Problem 7.5, is the minimum total storage cost in the constructed graph G no bigger than

α + kα + (m− k) + αβn+ c.

We now construct the graph G(V,E) in the following way; we display the constructed

graph in Figure 7.6. Our vertex set V is as follows:

• ∀si ∈ S, create a vertex si in V.

• ∀ti ∈ T , create a vertex ti in V.

• create an extra vertex v0, and c dummy vertices {v1, v2, . . . , vc} in V .

We add the c dummy vertices simply to ensure that v0 is materialized, as we will see later.

We now define the storage cost for materializing each vertex in V in the following way:

• ∀si ∈ S, the cost is α.

• ∀ti ∈ T , the cost is (β + 1)α.

• for vertex v0, the cost is α.

• for each vertex in {v1, v2, . . . , vc}, the cost is α + 1.

(These are the numbers colored blue in the tree of Figure 7.6.) As we can see above, we have

set the costs in such a way that the vertex v0 and the vertices corresponding to sets in S

have low materialization cost while the vertices corresponding to T have high materialization

cost: this is by design so that we only end up materializing these vertices. Even though the

costs of the dummy vertices is close to that of v0, si, we will show below that they will not

be materialized either. Our edge set E is now as follows.

• we connect vertex v0 to each si with weight 1.

• we connect v0 to vi, 1 ≤ i ≤ c each with weight 1.

• ∀si ∈ S, we connect si to tj with weight βα when tj ∈ si, where α = |V |.
It is easy to show that our constructed graph G obeys the triangle inequality.

Consider a solution to Problem 7.5 on the constructed graph G. We now demonstrate

that that solution leads to a solution of the original set cover problem. Our proof proceeds

in four key steps:

Step 1: The vertex v0 will be materialized, while vi, 1 ≤ i ≤ c will not be materialized. Let’s

examine the first part of this observation, i.e., that v0 will be materialized. Assume the

contrary. If v0 is not materialized, then at least one vi, 1 ≤ i ≤ c, or one of the si must

be materialized, because if not, then the recreation cost of {v1, v2, . . . , vc} would be at least
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(α+2)c > (α+1)c+α+(β+1)αn+kα+(m−k)(α+1), violating the condition (exceeding

total recreation cost threshold) of Problem 7.5. However we can avoid materializing this

vi (or si), instead keep the delta from vi (or si) to v0 and materialize v0, reducing the

recreation cost and the storage cost. Thus v0 has to be materialized. Furthermore, since v0

is materialized, ∀vi, 1 ≤ i ≤ c will not be materialized and instead we will retain the delta

to v0, reducing the recreation cost and the storage cost. Hence, the first step is complete.

Step 2: None of the ti will be materialized. Say a given ti is materialized in the solution

to Problem 7.5. Then, either we have a set sj where sj is connected to ti in Figure 7.6(a)

also materialized, or not. Let us consider the former case. In the former case, we can avoid

materializing ti, and instead add the delta from sj to ti, thereby reducing storage cost while

keeping recreation cost fixed. In the latter case, pick any sj such that sj is connected to ti

and is not materialized. Then, we must have the delta from v0 to sj as part of the solution.

Here, we can replace that edge, and the materialized ti, with materialized sj, and the delta

from sj to ti: this would reduce the total storage cost while keeping the recreation cost fixed.

Thus, in either case, we can improve the solution if any of the ti are materialized, rendering

the statement false.

Step 3: For each si, either it is materialized, or the edge from v0 to si will be part of the

storage graph. This step is easy to see: since none of the ti are materialized, either each si

has to be materialized, or we must store a delta from v0.

Step 4: If the minimum total storage cost is no bigger than α+kα+ (m−k) +αβn+ c, then

there exists a subset F ⊂ S such that ∪{F∈F}F = T and |F| ≤ k in the original set cover

decision problem, and vice versa. Let’s examine the first part. If the minimum total storage

cost is no bigger than α+kα+(m−k)+αβn+c, then the storage cost for all si ∈ S must be

no bigger than kα+ (m− k) since the storage cost for v0, {v1, v2, . . . , vc} and {t1, t2, . . . , tn}
is α, c and αβn respectively according to Step 1 and 2. This indicates that at most k si ∈ S
is materialized (we let the set of materialized si be M and |M | ≤ k). Next, we prove that

each tj is stored as the modification from the materialized si ∈M . Suppose there exists one

or more tj which is stored as the modification from si ∈ S −M , then the total recreation

cost must be more than α+ ((β+ 1)αn+ 1) + kα+ (m− k)(α+ 1) + (α+ 1)c, which exceeds

the total recreation threshold. Thus, we have each tj ∈ T is stored as the modification from

si ∈M . Let F = M , we can obtain ∪{F∈F}F = T and |F| ≤ k. Thus, If the minimum total

storage cost is no bigger than α+ kα+ (m− k) +αβn+ c, then there exists a subset F ⊂ S

such that ∪{F∈F}F = T and |F| ≤ k in the original set cover decision problem.

Next let’s examine the second part. If there exists a subset F ⊂ S such that ∪{F∈F}F = T

and |F| ≤ k in the original set cover decision problem, then we can materialize each vertex
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si ∈ F as well as the extra vertex v0, connect v0 to {v1, v2, . . . , vc} as well as sj ∈ S − F ,

and connect tj to one si ∈ F . The resulting total storage is α + kα + (m − k) + αβn + c

and the total recreation cost equals to the threshold. Thus, if there exists a subset F ⊂ S

such that ∪{F∈F}F = T and |F| ≤ k in the original set cover decision problem, then the

minimum total storage cost is no bigger than α + kα + (m− k) + αβn+ c.

Thus, the decision problem in Problem 7.5 is equivalent to the decision problem in set

cover problem.

Once again, the problem is still hard if we use a complete graph as opposed to a graph where

only some edge weights are known.

Since Problem 7.4 swaps the constraint and goal compared to Problem 7.6, it is similarly

NP-Hard. (Note that the decision versions of the two problems are in fact identical, and

therefore the proof still applies.) Similarly, Problem 7.3 is also NP-Hard. Now that we have

proved the NP-hard even in the special case where ∆ = Φ and Φ is symmetric, we can

conclude that Problem 7.3, 7.4, 7.5, 7.6, are NP-hard in a more general setting where Φ is

not symmetric and ∆ 6= Φ, as listed in Table 7.1.

Hop-Based Variants. So far, our focus has been on proving hardness for the special case

where ∆ = Φ and ∆ is undirected. We now consider a different kind of special case, where

the recreation cost of all pairs is the same, i.e., Φij = 1 for all i, j, while ∆ 6= Φ, and ∆ is

undirected. In this case, we call the recreation cost as the hop cost, since it is simply the

minimum number of delta operations (or ”hops”) needed to reconstruct Vi.

The reason why we bring up this variant is that this directly corresponds to a special case

of the well-studied d-MinimumSteinerTree problem: Given an undirected graph G = (V,E)

and a subset ω ⊆ V , find a tree with minimum weight, spanning the entire vertex subset

ω while the diameter is bounded by d. The special case of d-MinimumSteinerTree problem

when ω = V , i.e., the minimum spanning tree problem with bounded diameter, directly

corresponds to Problem 7.6 for the hop cost variant we described above. The hardness for

this special case was demonstrated by [90] using a reduction from the SAT problem:

Lemma 7.7. Problem 7.6 is NP-Hard when ∆ 6= Φ and ∆ is symmetric, and Φij = 1 for

all i, j.

Note that this proof crucially uses the fact that ∆ 6= Φ unlike Lemma 7.5 and 7.6; thus

the proofs are incomparable (i.e., one does not subsume the other).

For the hop-based variant, additional results on hardness of approximation are known by

way of the d-MinimumSteinerTree problem [91, 92, 90]:
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Lemma 7.8 ([90]). For any ε > 0, Problem 7.6 has no lnn-ε approximation unless NP ⊂
Dtime(nlog logn).

Since the hop-based variant is a special case of the last column of Table 7.1, this indicates

that Problem 7.6 for the most general case is similarly hard to approximate; we suspect

similar results hold for the other problems as well. It remains to be seen if hardness of

approximation can be demonstrated for the variants in the second and third last columns.

7.4 PROPOSED ALGORITHMS

As discussed in Section 7.2, our different application scenarios lead to different problem

formulations, spanning different constraints and objectives, and different assumptions about

the nature of Φ,∆.

Given that we demonstrated in the previous section that all the problems are NP-Hard,

we focus on developing efficient heuristics. In this section, we present two novel heuristics:

first, in Section 7.4.1, we present LMG, or the Local Move Greedy algorithm, tailored

to the case when there is a bound or objective on the average recreation cost: thus, this

applies to Problems 7.3 and 7.5. Second, in Section 7.4.2, we present MP, or Modified

Prim’s algorithm, tailored to the case when there is a bound or objective on the maximum

recreation cost: thus, this applies to Problems 7.4 and 7.6. We present two variants of the

MP algorithm tailored to two different settings.

Then, we present two algorithms — in Section 7.4.3, we present an approximation al-

gorithm called LAST, and in Section 7.4.4, we present an algorithm called GitH which is

based on Git repack. Both of these are adapted from literature to fit our problems and we

compare these against our algorithms in Section 7.5. Note that LAST does not explicitly

optimize any objectives or constraints in the manner of LMG, MP, or GitH, and thus the

four algorithms are applicable under different settings; LMG and MP are applicable when

there is a bound or constraint on the average or maximum recreation cost, while LAST and

GitH are applicable when a “good enough” solution is needed. Furthermore, note that all

these algorithms apply to both directed and undirected versions of the problems, and to the

symmetric and unsymmetric cases.

7.4.1 Local Move Greedy Algorithm

The LMG algorithm is applicable when we have a bound or constraint on the average

case recreation cost. We focus on the case where there is a constraint on the storage cost
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Figure 7.7: Illustration of Local Move Greedy Heuristic

(Problem 7.3); the case when there is no such constraint (Problem 7.5) can be solved by

repeated iterations and binary search on the previous problem.

Outline. At a high level, the algorithm starts with the Minimum Spanning Tree (MST) as

GS, and then greedily adds edges from the Shortest Path Tree (SPT) that are not present

in GS, while GS respects the bound on storage cost.

Detailed Algorithm. The algorithm starts off with GS equal to the MST. The SPT

naturally contains all the edges corresponding to complete versions. The basic idea of the

algorithm is to replace deltas in GS with versions from the SPT that maximize the following

ratio:

ρ =
reduction in sum of recreation costs

increase in storage cost

This is simply the reduction in total recreation cost per unit addition of weight to the storage

graph GS.

Let ξ consists of edges in the SPT not present in the GS (these precisely correspond to

the versions that are not explicitly stored in the MST, and are instead computed via deltas

in the MST). At each “round”, we pick the edge euv ∈ ξ that maximizes ρ, and replace

previous edge eu′v to v. The reduction in the sum of the recreation costs is computed by

adding up the reductions in recreation costs of all w ∈ GS that are descendants of v in the

storage graph (including v itself). On the other hand, the increase in storage cost is simply

the weight of euv minus the weight of eu′v. This process is repeated as long as the storage

budget is not violated. We explain this with the means of an example.

Example 7.4. Figure 7.7(a) denotes the current GS. Node 0 corresponds to the dummy

node. Now, we are considering replacing edge e14 with edge e04, that is, we are replacing a

84



Algorithm 7.1: Local Move Greedy Heuristic

Input : Minimum Spanning Tree (MST) , Shortest Path Tree (SPT), source vertex V0,
space budget W

Output : A tree T with weight ≤W rooted at V0 with minimal sum of access cost
1 Initialize T as MST.
2 Let d(Vi) be the distance from V0 to Vi in T , and p(Vi) denote the parent of Vi in T. Let

W (T ) denote the storage cost of T .
3 while W (T ) < W do
4 (ρmax, eSPT )← (0, ∅)
5 foreach euv ∈ ξ do
6 compute ρe
7 if ρe > ρmax then
8 (ρmax, ē)← (ρe, euv)
9 end

10 end
11 T ← T \ eu′v ∪ euv; ξ ← ξ \ euv
12 if ξ = ∅ then
13 return T
14 end

15 end

delta to version 4 with version 4 itself. Then, the denominator of ρ is simply ∆04 − ∆14.

And the numerator is the changes in recreation costs of versions 4, 5, and 6 (notice that 5

and 6 were below 4 in the tree.) This is actually simple to compute: it is simply three times

the change in the recreation cost of version 4 (since it affects all versions equally). Thus, we

have the numerator of ρ is simply 3× (Φ01 + Φ14 − Φ04).

Complexity. For a given round, computing ρ for a given edge is O(|V |). This leads

to an overall O(|V |3) complexity, since we have up to |V | rounds, and upto |V | edges in

ξ. However, if we are smart about this computation (by precomputing and maintaining

across all rounds the number of nodes “below” every node), we can reduce the complexity

of computing ρ for a given edge to O(1). This leads to an overall complexity of O(|V |2)

Algorithm 7.1 provides a pseudocode of the described technique.

Access Frequencies. Note that the algorithm can easily take into account access frequen-

cies of different versions and instead optimize for the total weighted recreation cost (weighted

by access frequencies). The algorithm is similar, except that the numerator of ρ will capture

the reduction in weighted recreation cost.
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7.4.2 Modified Prim’s Algorithm

Next, we introduce a heuristic algorithm based on Prim’s algorithm for Minimum Spanning

Trees for Problem 7.6 where the goal is to reduce total storage cost while recreation cost for

each version is within threshold θ; the solution for Problem 7.4 is similar.

Outline. At a high level, the algorithm is a variant of Prim’s algorithm, greedily adding

the version with smallest storage cost and the corresponding edge to form a spanning tree

T . Unlike Prim’s algorithm where the spanning tree simply grows, in this case, even if an

edge is present in T , it could be removed in future iterations. At all stages, the algorithm

maintains the invariant that the recreation cost of all versions in T is bounded within θ.

Detailed Algorithm. At each iteration, the algorithm picks the version Vi with the smallest

storage cost to be added to the tree. Once this version Vi is added, we consider adding

all deltas to all other versions Vj such that their recreation cost through Vi is within the

constraint θ, and the storage cost does not increase. Each version maintains a pair l(Vi) and

d(Vi): l(Vi) denotes the marginal storage cost of Vi, while d(Vi) denotes the total recreation

cost of Vi. At the start, l(Vi) is simply the storage cost of Vi in its entirety.

We now describe the algorithm in detail. Set X represents the current version set of the

current spanning tree T . Initially X = ∅. In each iteration, the version Vi with the smallest

storage cost (l(Vi)) in the priority queue PQ is picked and added into spanning tree T (line

7-8). When Vi is added into T , we need to update the storage cost and recreation cost for

all Vj that are neighbors of Vi. Notice that in Prim’s algorithm, we do not need to consider

neighbors that are already in T . However, in our scenario a better path to such a neighbor

may be found and this may result in an update(line 10-17). For instance, if edge 〈Vi, Vj〉
can make Vj’s storage cost smaller while the recreation cost for Vj does not increase, we can

update p(Vj) = Vi as well as d(Vj), l(Vj) and T . For neighbors Vj 6∈ T (line 19-24), we update

d(Vj), l(Vj),p(Vj) if edge 〈Vi, Vj〉 can make Vj’s storage cost smaller and the recreation cost

for Vj is no bigger than θ. Algorithm 7.2 terminates in |V | iterations since one version is

added into X in each iteration.

Example 7.5. Say we operate on G given by Figure 7.8, and let the threshold θ be 6. Each

version Vi is associated with a pair 〈l(Vi), d(Vi)〉. Initially version V0 is pushed into priority

queue. When V0 is dequeued, each neighbor Vj updates < l(Vj), d(Vj) > as shown in Figure

7.10 (a). Notice that l(Vi), i 6= 0 for all i is simply the storage cost for that version. For

example, when considering edge (V0, V1), l(V1) = 3 and d(V1) = 3 is updated since recreation

cost (if V1 is to be stored in its entirety) is smaller than threshold θ, i.e., 3 < 6. Afterwards,

version V1, V2 and V3 are inserted into the priority queue. Next, we dequeue V1 since l(V1) is
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Figure 7.10: Illustration of Modified Prim’s algorithm in Figure 7.8

smallest among the versions in the priority queue, and add V1 to the spanning tree. We then

update < l(Vj), d(Vj) > for all neighbors of V1, e.g., the recreation cost for version V2 will be

6 and the storage cost will be 2 when considering edge (V1, V2). Since 6 ≤ 6, (l(V2), d(V2)) is

updated to (2, 6) as shown in Figure 7.10 (b); however, < l(V3), d(V3) > will not be updated

since the recreation cost is 3 + 4 > 6 when considering edge (V1, V3). Subsequently, version

V2 is dequeued because it has the lowest l(V2), and is added to the tree, giving Figure 7.10

(b). Subsequently, version V3 are dequeued. When V3 is dequeued from PQ, (l(V2), d(V2)) is

updated. This is because the storage cost for V2 can be updated to 1 and the recreation cost

is still 6 when considering edge (V3, V2), even if V2 is already in T as shown in Figure 7.10

(c). Eventually, we get the final answer in Figure 7.10 (d).

Complexity. The complexity of the algorithm is the same as that of Prim’s algorithm, i.e.,

O(|E| log |V |). Each edge is scanned once and the priority queue need to be updated once

in the worst case.
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Algorithm 7.2: Modified Prim’s Algorithm

Input : Graph G = (V,E), threshold θ
Output : Spanning Tree T = (VT , ET )

1 Let X be the version set of current spanning tree T ; Initially T = ∅, X = ∅;
2 Let p(Vi) be the parent of Vi; l(Vi) denote the storage cost from p(Vi) to Vi, d(Vi) denote

the recreation cost from root V0 to version Vi,
3 Initially ∀i 6= 0, d(V0) = l(V0) = 0, d(Vi) = l(Vi) =∞ ;
4 Enqueue < V0, (l(V0), d(V0)) > into priority queue PQ;
5 (PQ is sorted by l(vi));
6 while PQ 6= ∅ do
7 < Vi, (l(Vi), d(Vi)) >← top(PQ), dequeue(PQ);
8 T = T∪ < Vi, p(Vi) >, X = X ∪ Vi;
9 for Vj ∈ (Vi’s neighbors in G) do

10 if Vj ∈ X then
11 if (Φi,j + d(Vi)) ≤ d(Vj) and ∆i,j ≤ l(Vj) then
12 T = T− < Vj , p(Vj) >;
13 p(Vj) = Vi;
14 T = T∪ < Vj , p(Vj) > d(Vj)← Φi,j + d(Vi);
15 l(Vj)← ∆i,j ;

16 end

17 end
18 else
19 if (Φi,j + d(Vi)) ≤ θ and ∆i,j ≤ l(Vj) then
20 d(Vj)← Φi,j + d(Vi);
21 l(Vj)← ∆i,j ; p(Vj) = Vi;
22 enqueue(or update) < Vj , (l(Vj), d(Vj)) > in PQ;

23 end

24 end

25 end

26 end

7.4.3 LAST Algorithm

Here, we sketch an algorithm from previous work [93] that enables us to find a tree with

a good balance of storage and recreation costs, under the assumptions that ∆ = Φ and Φ is

symmetric.

Outline. The algorithm starts from a minimum spanning tree and does a depth-first traveral

(DFS) over the minimum spanning tree. During the process of DFS, if the recreation cost

for a node exceeds the pre-defined threshold (set up front), then this current path is replaced

with the shortest path to the node.

Detailed Algorithm. As discussed in Section 7.2.2, balancing between recreation cost and

storage cost is equivalent to balancing between the minimum spanning tree and the shortest
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path tree rooted at V0. Khuller et al. [93] studied the problem of balancing minimum

spanning tree and shortest path tree in an undirected graph, where the resulting spanning

tree T has the following properties, given parameter α:

• For each node Vi: the cost of path from V0 to Vi in T is within α times the shortest path

from V0 to Vi in G.

• The total cost of T is within (1 + 2/(α− 1)) times the cost of minimum spanning tree in

G.

Even though Khuller’s algorithm is meant for undirected graphs, it can be applied to the

directed graph case without any comparable guarantees. The pseudocode is listed in Algo-

rithm 7.3.

Let MST denote the minimum spanning tree of graph G and SP (V0, Vi) denote the

shortest path from V0 to Vi in G. The algorithm starts with the MST and then conducts a

depth-first traversal in MST . Each node V keeps track of its path cost from root as well as

its parent, denoted as d(Vi) and p(Vi) respectively. Given the approximation parameter α,

when visiting each node Vi, we first check whether d(Vi) is bigger than α×SP (V0, Vi) where

SP stands for shortest path. If yes, we replace the path to Vi with the shortest path from

root to Vi in G and update d(Vi) as well as p(Vi). In addition, we keep updating d(Vi) and

p(Vi) during depth first traversal as stated in line 4-7 of Algorithm 7.3.

Example 7.6. Figure 7.11 (a) is the minimum spanning tree (MST) rooted at node V0 of G

in Figure 7.9. The approximation threshold α is set to be 2. The algorithm starts with the

MST and conducts a depth-first traversal in the MST from root V0. When visiting node V2,

d(V2) = 3 and the shortest path to node V2 is 3, thus 3 < 2×3. We continue to visit node V2

and V3. When visiting V3, d(V3) = 8 > 2× 3 where 3 is the shortest path to V3 in G. Thus,

d(V3) is set to be 3 and p(V3) is set to be node 0 by replacing with the shortest path 〈V0, V3〉
as shown in Figure 7.11 (b). Afterwards, the back-edge < V3, V1 > is traversed in MST.

Since 3 + 2 < 6, where 3 is the current value of d(V3), 2 is the edge weight of (V3, V1) and

6 is the current value in d(V1), thus d(V1) is updated as 5 and p(V1) is updated as node V3.

At last node V4 is visited, d(V4) is first updated as 7according to line 3-7. Since 7 < 2 × 4,

lines 9-11 are not executed. Figure 7.11 (c) is the resulting spanning tree of the algorithm,

where the recreation cost for each node is under the constraint and the total storage cost is

3 + 3 + 2 + 2 = 10.

Complexity. The complexity of the algorithm is O(|E| log |V |). Given the minimum span-

ning tree and shortest path tree rooted at V0, Algorithm 7.3 is conducted via depth first

traversal on MST. It is easy to show that the complexity for Algorithm 7.3 is O(|V |). The
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Algorithm 7.3: Balance MST and Shortest Path Tree [93]

Input : Graph G = (V,E), MST , SP
Output : Spanning Tree T = (VT , ET )

1 Initialize T as MST . Let d(Vi) be the distance from V0 to Vi in T and p(Vi) be the parent
of Vi in T .

2 while DFS traversal on MST do
3 (Vi, Vj)← the edge currently in traversal;
4 if d(Vj) > d(Vi) + ei,j then
5 d(Vj)← (d(Vi) + ei,j);
6 p(Vj)← Vi;

7 end
8 if d(Vj) > α ∗ SP (V0, Vj) then
9 add shortest path (V0, Vj) into T ;

10 d(Vj)← SP (V0, Vj);
11 p(Vj)← V0;

12 end

13 end
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Figure 7.11: Illustration of LAST on Figure 7.9

time complexity for computing minimum spanning tree and shortest path tree isO(|E| log |V |)
using heap-based priority queue.

7.4.4 Git Heuristic

This heuristic is an adaptation of the current heuristic used by Git and we refer to it as

GitH. GitH uses two parameters: w (window size) and d (max depth). We consider the

versions in an non-increasing order of their sizes. The first version in this ordering is chosen

as the root of the storage graph and has depth 0 (i.e., it is materialized). At all times, we

maintain a sliding window containing at most w versions. For each version Vi after the first
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one, let Vl denote a version in the current window. We compute: ∆′l,i = ∆l,i/(d− dl), where

dl is the depth of Vl (thus deltas with shallow depths are preferred over slightly smaller

deltas with higher depths). We find the version Vj with the lowest value of this quantity

and choose it as Vi’s parent (as long as dj < d). The depth of Vi is then set to dj + 1.

The sliding window is modified to move Vl to the end of the window (so it will stay in the

window longer), Vj is added to the window, and the version at the beginning of the window

is dropped.

Git repack

Git uses delta compression to reduce the amount of storage required to store a large

number of files (objects) that contain duplicated information. However, git’s algorithm for

doing so is not clearly described anywhere. An old discussion with Linus has a sketch of the

algorithm [94]. However there have been several changes to the heuristics used that don’t

appear to be documented anywhere.

The following describes our understanding of the algorithm based on the latest git source

code 1.

Here we focus on “repack”, where the decisions are made for a large group of objects.

However, the same algorithm appears to be used for normal commits as well. Most of the

algorithm code is in file: builtin/pack-objects.c

Step 1: Sort the objects, first by “type”, then by “name hash”, and then by “size” (in the

decreasing order). The comparator is (line 1503):

s t a t i c i n t t y p e s i z e s o r t ( const void ∗ a , const void ∗ b )

Note the name hash is not a true hash; the pack name hash() function (pack-objects.h)

simply creates a number from the last 16 non-white space characters, with the last characters

counting the most (so all files with the same suffix, e.g., .c, will sort together).

Step 2: The next key function is ll find deltas(), which goes over the files in the sorted

order. It maintains a list of W objects (W = window size, default 10) at all times. For

the next object, say O, it finds the delta between O and each of the objects, say B, in the

window; it chooses the the object with the minimum value of: delta(B, O) / (max depth

- depth of B) where max depth is a parameter (default 50), and depth of B refers to the

length of delta chain between a root and B.

The original algorithm appears to have only used de l t a (B, O) to make the decision,

but the “depth bias” (denominator) was added at a later point to prefer slightly larger deltas

with smaller delta chains. The key lines for the above part:

1Cloned from https://github.com/git/git on 5/11/2015, commit id:
8440f74997cf7958c7e8ec853f590828085049b8
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• line 1812 (check each object in the window):

r e t = t r y d e l t a (n , m, max depth , &mem usage ) ;

• lines 1617-1618 (depth bias):

max s ize = ( u i n t 6 4 t ) max s ize ∗ ( max depth − src−>depth )

/ ( max depth − r e f d e p t h + 1 ) ;

• line 1678 (compute delta and compare size):

d e l t a b u f = c r e a t e d e l t a ( src−>index , trg−>data ,

t r g s i z e , &d e l t a s i z e , max s ize ) ;

create delta() returns non-null only if the new delta being tried is smaller than the

current delta (modulo depth bias), specifically, only if the size of the new delta is less

than max size argument. Note: lines 1682-1688 appear redundant given the depth bias

calculations.

Step 3. Originally the window was just the last W objects before the object O under

consideration. However, the current algorithm shuffles the objects in the window based on

the choices made. Specifically, let b1, . . . , bW be the current objects in the window. Let the

object chosen to delta against for O be bi. Then bi would be moved to the end of the list,

so the new list would be: [b1, b2, . . . , bi−1, bi+1, . . . , bW , O, bi]. Then when we move to the

new object after O (say O′), we slide the window and so the new window then would be:

[b2, . . . , bi−1, bi+1, . . . , bW , O, bi, O
′]. Small detail: the list is actually maintained as a circular

buffer so the list doesn’t have to be physically “shifted” (moving bi to the end does involve

a shift though). Relevant code here is lines 1854-1861.

Finally we note that git never considers/computes/stores a delta between two objects of

different types, and it does the above in a multi-threaded fashion, by partitioning the work

among a given number of threads. Each of the threads operates independently of the others.

Complexity. The running time of the heuristic is O(|V | log |V |+w|V |), excluding the time

to construct deltas.

7.5 EXPERIMENTS

We have built a prototype version management system, that will serve as a foundation to

full-fledged data versioning management system. The system provides a subset of Git/SVN-

like interface for dataset versioning. Users interact with the version management system in

a client-server model over HTTP. The server is implemented in Java, and is responsible for
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Dataset DC LC BF LF

Number of versions 100010 100002 986 100

Number of deltas 18086876 2916768 442492 3562

Average version size (MB) 347.65 356.46 0.401 422.79

MCA-Storage Cost (GB) 1265.34 982.27 0.0250 2.2402

MCA-Sum Recreation Cost (GB) 11506437.83 29934960.95 0.9648 47.6046

MCA-Max Recreation Cost (GB) 257.6 717.5 0.0063 0.5998

SPT-Storage Cost (GB) 33953.84 34811.14 0.3854 41.2881

SPT-Sum Recreation Cost (GB) 33953.84 34811.14 0.3854 41.2881

SPT-Max Recreation Cost (GB) 0.524 0.55 0.0063 0.5091
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Figure 7.12: Dataset properties and distribution of delta sizes (each delta size scaled by the
average version size in the dataset).

storing the version history of the repository as well as the actual files in them. The client is

implemented in Python and provides functionality to create (commit) and check out versions

of datasets, and create and merge branches. Note that, unlike traditional VCS which make

a best effort to perform automatic merges, in our system we let the user perform the merge

and notify the system by creating a version with more than one parent.

Implementation. In the following sections, we present an extensive evaluation of our

designed algorithms using a combination of synthetic and derived real-world datasets. Apart

from implementing the algorithms described above, LMG and LAST require both SPT and

MST as input. For both directed and undirected graphs, we use Dijkstra’s algorithm to find

the single-source shortest path tree (SPT). We use Prim’s algorithm to find the minimum

spanning tree for undirected graphs. For directed graphs, we use an implementation [95]

of the Edmonds’ algorithm [89] for computing the min-cost arborescence (MCA). We ran

all our experiments on a 2.2GHz Intel Xeon CPU E5-2430 server with 64GB of memory,

running 64-bit Red Hat Enterprise Linux 6.5.
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7.5.1 Datasets

We use four data sets: two synthetic and two derived from real-world source code reposito-

ries. Although there are many publicly available source code repositories with large numbers

of commits (e.g., in GitHub), those repositories typically contain fairly small (source code)

files, and further the changes between versions tend to be localized and are typically very

small; we expect dataset versions generated during collaborative data analysis to contain

much larger datasets and to exhibit large changes between versions. We were unable to find

any realistic workloads of that kind.

Hence, we generated realistic dataset versioning workloads as follows. First, we wrote a

synthetic version generator suite, driven by a small set of parameters, that is able to generate

a variety of version histories and corresponding datasets. Second, we created two real-world

datasets using publicly available forks of popular repositories on GitHub. We describe each

of the two below.

Synthetic Datasets: Our synthetic dataset generation suite takes a two-step approach to

generate a dataset that we sketch below. The first step is to generate a version graph with

the desired structure, controlled by the following parameters:

• number of commits, i.e., the total number of versions.

• branch interval and probability, the number of consecutive versions after which a

branch can be created, and probability of creating a branch.

• branch limit, the maximum number of branches from any point in the version history.

We choose a number in [1, branch limit] uniformly at random when we decide to create

branches.

• branch length, the maximum number of commits in any branch. The actual length is

a uniformly chosen integer between 1 and branch length.

Once a version graph is generated, the second step is to generate the appropriate versions

and compute the deltas. The files in our synthetic dataset are ordered CSV files (containing

tabular data) and we use deltas based on UNIX-style diffs. The previous step also annotates

each edge (u, v) in the version graph with edit commands that can be used to produce v from

u. Edit commands are a combination of one of the following six instructions – add/delete a

set of consecutive rows, add/remove a column, and modify a subset of rows/columns.

Using this, we generated two synthetic datasets (Figure 7.12):

• Densely Connected (DC): This dataset is based on a “flat” version history, i.e.,

number of branches is high, they occur often and have short lengths. For each version in

this data set, we compute the delta with all versions in a 10-hop distance in the version

graph to populate additional entries in ∆ and Φ.
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• Linear Chain (LC): This dataset is based on a “mostly-linear” version history, i.e.,

number of branches is low, they occur after large intervals and have longer lengths. For

each version in this data set, we compute the delta with all versions within a 25-hop

distance in the version graph to populate ∆ and Φ.

Real-world datasets: We use 986 forks of the Twitter Bootstrap repository and 100 forks

of the Linux repository, to derive our real-world workloads. For each repository, we checkout

the latest version in each fork and concatenate all files in it (by traversing the directory

structure in lexicographic order). Thereafter, we compute deltas between all pairs of versions

in a repository, provided the size difference between the versions under consideration is less

than a threshold. We set this threshold to 100KB for the Twitter Bootstrap repository and

10MB for the Linux repository. This gives us two real-world datasets, Bootstrap Forks (BF)

and Linux Forks (LF), with properties shown in Figure 7.12.

7.5.2 Comparison with SVN and Git

We begin with evaluating the performance of two popular version control systems, SVN

(v1.8.8) and Git (v1.7.1), using the LF dataset. We create an FSFS-type repository in

SVN, which is more space efficient than a Berkeley DB-based repository [96]. We then

import the entire LF dataset into the repository in a single commit. The amount of space

occupied by the db/revs/ directory is around 8.5GB and it takes around 48 minutes to

complete the import. We contrast this with the naive approach of applying a gzip on the

files which results in total compressed storage of 10.2GB. In case of Git, we add and commit

the files in the repository and then run a git repack -a -d --depth=50 --window=50 on

the repository2. The size of the Git pack file is 202 MB although the repack consumes 55GB

memory and takes 114 minutes (for higher window sizes, Git fails to complete the repack as

it runs out of memory).

In comparison, the solution found by the MCA algorithm occupies 516MB of compressed

storage (2.24GB when uncompressed) when using UNIX diff for computing the deltas. To

make a fair comparison with Git, we use xdiff from the LibXDiff library [99] for computing

the deltas, which forms the basis of Git’s delta computing routine. Using xdiff brings

down the total storage cost to just 159 MB. The total time taken is around 102 minutes; this

includes the time taken to compute the deltas and then to find the MCA for the corresponding

graph.

The main reason behind SVN’s poor performance is its use of “skip-deltas” to ensure

2Unlike git repack, svnadmin pack has a negligible effect on the storage cost as it primarily aims to
reduce disk seeks and per-version disk usage penalty by concatenating files into a single “pack” [97, 98].
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Figure 7.13: Directed case, comparing the storage costs and total recreation costs
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Figure 7.14: Directed case, comparing the storage costs and maximum recreation costs

that at most O(log n) deltas are needed for reconstructing any version [100]; that tends to

lead it to repeatedly store redundant delta information as a result of which the total space

requirement increases significantly. The heuristic used by Git is much better than SVN

(Section 7.4.4). However as we show later (Fig. 7.13), our implementation of that heuristic

(GitH) required more storage than LMG for guaranteeing similar recreation costs.

7.5.3 Experimental Results

Directed Graphs. We begin with a comprehensive evaluation of the three algorithms,

LMG, MP, and LAST, on directed datasets. Given that all of these algorithms have pa-

rameters that can be used to trade off the storage cost and the total recreation cost, we

compare them by plotting the different solutions they are able to find for the different values

of their respective input parameters. Figure 7.13(a–d) show four such plots; we run each of

the algorithms with a range of different values for its input parameter and plot the storage

cost and the total (sum) recreation cost for each of the solutions found. We also show the

minimum possible values for these two costs: the vertical dashed red line indicates the min-
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Figure 7.15: Results for the undirected case, comparing the storage costs and total recreation
costs (a–c) or maximum recreation costs (d)

imum storage cost required for storing the versions in the dataset as found by MCA, and

the horizontal one indicates the minimum total recreation cost as found by SPT (equal to

the sum of all version sizes).

The first key observation we make is that, the total recreation cost decreases drastically

by allowing a small increase in the storage budget over MCA. For example, for the DC

dataset, the sum recreation cost for MCA is over 11 PB (see Table 7.12) as compared to

just 34TB for the SPT solution (which is the minimum possible). As we can see from

Figure 7.13(a), a space budget of 1.1× the MCA storage cost reduces the sum of recreation

cost by three orders of magnitude. Similar trends can be observed for the remaining datasets

and across all the algorithms. We observe that LMG results in the best tradeoff between the

sum of recreation cost and storage cost with LAST performing fairly closely. An important

takeaway here, especially given the amount of prior work that has focused purely on storage

cost minimization (Chapter 2), is that: it is possible to construct balanced trees where the

sum of recreation costs can be reduced and brought close to that of SPT while using only a

fraction of the space that SPT needs.

We also ran GitH heuristic on the all the four datasets with varying window and depth

settings. For BF, we ran the algorithm with four different window sizes (50, 25, 20, 10)

for a fixed depth 10 and provided the GitH algorithm with all the deltas that it requested.

For all other datasets, we ran GitH with an infinite window size but restricted it to choose

from deltas that were available to the other algorithms (i.e., only deltas with sizes below a

threshold); as we can see, the solutions found by GitH exhibited very good total recreation

cost, but required significantly higher storage than other algorithms. This is not surprising

given that GitH is a greedy heuristic that makes choices in a somewhat arbitrary order.

In Figures 7.14(a–b), we plot the maximum recreation costs instead of the sum of recre-

ation costs across all versions for two of the datasets (the other two datasets exhibited similar

behavior). The MP algorithm found the best solutions here for all datasets, and we also
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Figure 7.16: Taking workload into account leads to better solutions

observed that LMG and LAST both show plateaus for some datasets where the maximum

recreation cost did not change when the storage budget was increased. This is not surprising

given that the basic MP algorithm tries to optimize for the storage cost given a bound on

the maximum recreation cost, whereas both LMG and LAST focus on minimization of the

storage cost and one version with high recreation cost is unlikely to affect that significantly.

Undirected Graphs. We test the three algorithms on the undirected versions of three

of the datasets (Figure 7.15). For DC and LC, undirected deltas between pairs of versions

were obtained by concatenating the two directional deltas; for the BF dataset, we use UNIX

diff itself to produce undirected deltas. Here again we observe that LMG consistently

outperforms the other algorithms in terms of finding a good balance between the storage

cost and the sum of recreation costs. MP again shows the best results when trying to balance

the maximum recreation cost and the total storage cost. Similar results were observed for

other datasets but are omitted due to space limitations.

Workload-aware Sum of Recreation Cost Optimization. In many cases, we may be

able to estimate access frequencies for the various versions (from historical access patterns),

and if available, we may want to take those into account when constructing the storage graph.

The LMG algorithm can be easily adapted to take such information into account, whereas

it is not clear how to adapt either LAST or MP in a similar fashion. In this experiment, we

use LMG to compute a storage graph such that the sum of recreation costs is minimal given

a space budget, while taking workload information into account. The worload here assigns

a frequency of access to each version in the repository using a Zipfian distribution (with

exponent 2); real-world access frequencies are known to follow such distributions. Given

the workload information, the algorithm should find a storage graph that has the sum of

recreation cost less than the index when the workload information is not taken into account

(i.e., all versions are assumed to be accessed equally frequently). Figure 7.16 shows the

results for this experiment. As we can see, for the DC dataset, taking into account the
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Figure 7.17: Running times of LMG

access frequencies during optimization led to much better solutions than ignoring the access

frequencies. On the other hand, for the LF dataset, we did not observe a large difference.

Running Times. Here we evaluate the running times of the LMG algorithm. Recall that

LMG takes MST (or MCA) and SPT as inputs. In Fig. 7.17, we report the total running

time as well as the time taken by LMG itself. We generated a set of version graphs as

subsets of the graphs for LC and DC datasets as follows: for a given number of versions n,

we randomly choose a node and traverse the graph starting at that node in breadth-first

manner till we construct a subgraph with n versions. We generate 5 such subgraphs for

increasing values of n and report the average running time for LMG; the storage budget for

LMG is set to three times of the space required by the MST (all our reported experiments

with LMG use less storage budget than that). The time taken by LMG on DC dataset is

more than LC for the same number of versions; this is because DC has lower delta values

than LC (see Fig. 7.12) and thus requires more edges from SPT to satisfy the storage budget.

On the other hand, MP takes between 1 to 8 seconds on those datasets, when the recreation

cost is set to maximum. Similar to LMG, LAST requires the MST/MCA and SPT as inputs;

however the running time of LAST itself is linear and it takes less than 1 second in all cases.

Finally the time taken by GitH on LC and DC datasets, on varying window sizes range from

35 seconds (window = 1000) to a little more than 120 minutes (window = 100000); note

that, this excludes the time for constructing the deltas.

In summary, although LMG is inherently a more expensive algorithm than MP or LAST,

it runs in reasonable time on large input sizes; we note that all of these times are likely to

be dwarfed by the time it takes to construct deltas even for moderately-sized datasets.

Comparison with ILP solutions. Finally, we compare the quality of the solutions found

by MP with the optimal solution found using the Gurobi Optimizer for Problem 7.6. We

use the ILP formulation from Section 7.2.3 with constraint on the maximum recreation cost

(θ), and compare the optimal storage cost with that of the MP algorithm (which resulted
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Storage Cost (GB)

v15 θ 0.20 0.21 0.22 0.23 0.24

ILP 0.36 0.36 0.22 0.22 0.22

MP 0.36 0.36 0.23 0.23 0.23

v25 θ 0.63 0.66 0.69 0.72 0.75

ILP 2.39 1.95 1.50 1.18 1.06

MP 2.88 2.13 1.7 1.18 1.18

v50 θ 0.30 0.34 0.41 0.54 0.68

ILP 1.43 1.10 0.83 0.66 0.60

MP 1.59 1.45 1.06 0.91 0.82

Table 7.2: Comparing ILP and MP solutions for small datasets, given a bound on max
recreation cost, θ (in GB)

in solutions with lowest maximum recreation costs in our evaluation). We use our synthetic

dataset generation suite to generate three small datasets, with 15, 25 and 50 versions denoted

by v15, v25 and v50 respectively and compute deltas between all pairs of versions. Table 7.2

reports the results of this experiment, across five θ values. The ILP turned out to be very

difficult to solve, even for the very small problem sizes, and in many cases, the optimizer did

not finish and the reported numbers are the best solutions found by it.

As we can see, the solutions found by MP are quite close to the ILP solutions for the

small problem sizes for which we could get any solutions out of the optimizer. However,

extrapolating from the (admittedly limited) data points, we expect that on large problem

sizes, MP may be significantly worse than optimal for some variations on the problems (we

note that the optimization problem formulations involving max recreation cost are likely

to turn out to be harder than the formulations that focus on the average recreation cost).

Development of better heuristics and approximation algorithms with provable guarantees

for the various problems that we introduce are rich areas for further research.

7.6 ADDITIONAL RELATED WORK

We now cover additional related work we didn’t cover in Chapter 2.

Diff Mechanism. There is much prior work on compactly encoding differences between two

files or strings in order to reduce communication or storage costs. In addition to standard

utilities like UNIX diff, many sophisticated techniques have been proposed for computing

differences or edit sequences between two files (e.g., xdelta [101], vdelta [102], vcdiff [103],

zdelta [104]). That work is largely orthogonal and complementary to our work.
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Archiving. Buneman et al. [41] proposed an archiving technique where all versions of the

data are merged into one hierarchy. An element appearing in multiple versions is stored

only once along with a timestamp. This technique of storing versions is in contrast with

techniques where retrieval of certain versions may require undoing the changes (unrolling

the deltas). The hierarchical data and the resulting archive is represented in XML format

which enables use of XML tools such as an XML compressor for compressing the archive. It

was not, however, a full-fledged version control system representing an arbitrarily graph of

versions; rather it focused on algorithms for compactly encoding a linear chain of versions.

Snapshot Queries. Snapshot queries have recently also been studied in the context of

array databases [105, 106] and graph databases [107]. Seering et al. [106] considered the

problem of storing an arbitrary tree of versions in the context of scientific databases; their

proposed techniques are based on finding a minimum spanning tree (as we discussed earlier,

that solution represents one extreme in the spectrum of solutions that needs to be consid-

ered). They also proposed several heuristics for choosing which versions to materialize

given the distribution of access frequencies to historical versions. Several databases support

“time travel” features (e.g., Oracle Flashback, Postgres [108]). However, those do not allow

for branching trees of versions. [109] articulates a similar vision to data versioning manage-

ment; however, they do not propose formalisms or algorithms to solve the underlying data

management challenges. In addition, the schema of tables encoded with Flashback cannot

change.

In this chapter, we introduced a generalized storage engine for efficient data versioning

balancing storage and recreation. In the next chapter, we will relax our final assumption,

the “from-scratch” assumption, and focus on lineage inference for dataset versions residing

in an existing data repository.
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CHAPTER 8: GENERALIZED PROVENANCE MANAGER

Another assumption made in OrpheusDB is that data science teams use OrpheusDB

from the very beginning of their project and always register their dataset with complete

metadata with the system. In particular, the provenance manager in OrpheusDB is re-

sponsible for recording the metadata during commits by users. However, in practice, little

or no metadata is captured upon each version’s generation. In this chapter, we remove the

“from-scratch” assumption, and infer the provenance information using a post-processing

approach when no such derivation information is available. Specifically, we focus on reverse-

engineering the lineage information, based solely on the dataset content. Our goal is to infer

the so-called lineage graph among all the versioned datasets, where each node in the lineage

graph corresponds to a version and each edge corresponds to the derivation relationship

between two versions.

The main contributions of this chapter are given as follows:

• We formally define and analyze the lineage inference problem and propose an end-to-end

workflow, titled Relic, to infer the lineage graph, i.e., the derivation relationship among

all versions within a working repository (Section 8.2 and 8.3).

• We develop a fine-grained delta metric called cell-level delta, and demonstrate that we

can capture the derivation edges effectively via cell-level delta together with the minimum

description length (MDL) principle (Section 8.4).

• In order to explain the derivation relationship along with each inferred edge, we define

an instruction set at the row- and column-level and propose an algorithm to provide a

structural explanation using these instructions (Section 8.5).

• In addition to effectiveness, we also work on improving the efficiency of our end-to-end

workflow. We propose to employ sketch techniques along with some greedy algorithm to

reduce the runtime (Section 8.6).

• We conduct experiments on both synthetic and real workflows, demonstrating the effec-

tiveness and efficiency of Relic. (Section 8.8).

8.1 MOTIVATING EXAMPLE

The impact of data science has been felt across all domains and industries as organizations

scramble to find ways to integrate “big data” within their operations. Data scientists often

deal with raw data that require several stages of data preparation and feature engineering be-

fore it can be used in data analytics or machine learning pipelines. It is typical for scientists
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to use trial-and-error to refine the outcomes of preparation tasks, such as transformation and

feature selection, generating multiple data artifacts as a result [110]. However, in practice,

little or no lineage information is recorded upon each artifact’s generation, hindering future

developmental insights and potentially limiting the processes of dataset sharing and discov-

ery, or even the reproducibility of analytical results [43]. It is often desirable to reconstruct

a human-interpretable lineage for such various versions. As demonstrated in a user study

from prior work [111], detecting the relationship among datasets can enable users to recall

transformations from one dataset version to another, and subsequently help users identify

the best dataset for a given task.
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Figure 8.1: Illustration of Lineage Graph

Example 8.1 (Lineage Graph). Figure 8.1(a) depicts a real data science workflow for flight

delay prediction published in Azure AI gallery [112]. Initially, v1 is a dataset with flight

information, v9 is a dataset with weather information, and v11 is a dataset with holiday

information. The machine learning task here is to predict flight delay. The stored datasets

v2, v10, and v12 are derived from v1, v9, and v11 respectively by performing some feature

engineering operations, while v3 and v4 are obtained by joining the derived flight dataset v2

with the weather dataset v10 and the holiday dataset v12 respectively. Lastly, v3 (resp. v4) is

split into training and testing dataset, i.e., v5 and v6 (resp. v7 and v8).

As revealed in Example 8.1, a real workflow written by some data scientist, feature engi-

neering and data quality play a critical role in the performance of a machine learning task.

Consequently, machine learning practitioners spend a vast amount of time in data curation,

transformation, and feature engineering. Typically, data scientists would materialize the

derived dataset at each preprocessing stage before feeding data into the machine learning
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pipeline. The reasons are two-fold: first, the data preparation platform is typically differ-

ent from the machine learning platform, e.g., Flume in C++ vs. TensorFlow in Python;

second, materialization can help eliminate duplicate data preprocessing computations that

are common to different machine learning pipelines, such as those exploring various hyper-

parameters. As a result, different versions are generated as illustrated in Example 8.1 and

are scattered across the repository with little lineage information associated with it. Hence,

there is no easy way for users to retrospectively understand the evolution of the repository

or the project, which motivates our goal of inferring the lineage graph for a set of versions

within a working repository. Figure 8.1(b) depicts one possible inferred lineage graph.

Related work. Even though systems like OrpheusDB (Chapter 3-5) and ProvDB [43]

can help explicitly capture the derivation relationship across versions, they have substantial

barriers to adoption—due to which, most data scientists are manipulating data in a quick-

and-dirty manner. Thus, there is still a pressing need for post-processing approaches to infer

the relationships among artifacts in a working directory, shared repository, or even data lake.

ReConnect [111] attempts to discover the relationship for a given dataset pair. It first

defines a space of relevant relationships, generates the conditions for each relationship based

on row and column statistics, and then suggests a relationship for a given dataset pair by

examining the conditions. Since the statistics may not be sufficient in determining the re-

lationship, ReConnect asks the user to select a candidate relationship for validation. In

order to identify the relationship between all possible pairs in a large collection of datasets,

Abdussalam et al. [113] further propose a system, entitled ReDiscover, to automate the

relationship discovery process without involving user input. ReDiscover first computes col-

umn statistics and then feeds them into machine learning models to predict the relationship.

However, both ReConnect and ReDiscover only consider a limited relationship set, i.e., con-

tainment, augmentation, complementation, template, and incompatible. In practice, the

relationship is usually much more complicated. For instance, a dataset may evolve from

another dataset with some old tuples deleted and some new tuples added. In this scenario,

ReConnect fails to identify the relationship as it does not exactly correspond to any of the

defined relationships—a combination of augmentation and containment.

Another line of work [114, 115, 116, 117] focuses on reverse-engineering SQL queries per-

formed to transform one artifact to another. However, we argue that modern data analytics

are usually performed across a variety of platforms, tools, and languages. Besides SQL

queries, manual edits, scripts, and programs can also be involved in data curation, transfor-

mation, and feature engineering. Thus, SQL may not be a good fit in representing the data

difference. In addition, inferring a concise SQL query itself is a very hard problem [118].
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We may end up complicating the problem further if we formulate the delta between two

artifacts as SQL queries. Furthermore, existing work focuses on a single pair of datasets.

Instead, we aim to summarize the relationship among a collection of datasets, which poses

scalability challenges since it involves all possible dataset pairs.

Challenges. In this chapter, we explore the problem of inferring the lineage among a

collection of datasets under the worst-case scenario, i.e., when relying exclusively on artifact

dumps, with little or no metadata available. However, it is not easy to recover the lineage

graph both in terms of effectiveness and efficiency. Specifically, the challenges center around

(a) how to ensure the quality of the inferred lineage graph; (b) how to infer the lineage

graph in an efficient manner. In order to obtain a high-quality lineage graph, we develop

an end-to-end workflow called Relic, with a carefully designed delta metric and structural

explanation associated with each inferred edge for better user interpretation of the changes.

Furthermore, when users intend to retrospectively explore the repository, it is desirable for

Relic to return the inferred lineage graph in a timely manner. To tackle the efficiency issue,

we propose to employ sketch-based techniques for inferring the lineage graph. In this way,

Relic enables users to quickly explore the lineage of different versions generated during

different stages of data preprocessing.

8.2 PROBLEM DEFINITION

The problem studied in this chapter is the following: given a working repository with a

collection of datasets, infer the derivation relationship among these datasets purely based

on the content in each dataset. Here, the working repository can be a single user’s project

directory or a shared repository among team collaborators. Let G = (V,E) be the real

“true” lineage graph, where each v ∈ V is an artifact1 and each e = (vi, vj) ∈ E means that

vj is derived from vi. Our goal is to derive an inferred lineage graph G′ = (V,E ′), such that

E ′ and E have a large set similarity. Ideally, E ′ would be exactly the same as E. In the

following, we will clarify some of our design choices for this problem, including our focused

operation space along each derivation edge, the space of inferred lineage graphs, as well as

the quality measure for the inferred lineage graph G′.

Operation Space. A new dataset version can be derived from a base version in vari-

ous ways, including manual cell-level edits, declarative data manipulation via SQL queries,

and general transformations via imperative programs. We envision Relic to work with

general transformation operations instead of any DML-specific ones. Similar to previous

1We use version, artifact, and dataset interchangeably.
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work [119], we also classify operations into three categories, i.e., one-to-one, one-to-many,

and many-to-one mappings, based on the record mappings between the base version and

the derived version. Notably, most transformations belong to one-to-one mapping category,

e.g., sampling, cell-edit, or feature normalization. We call these operations point-preserving

operations, and are the main focus of this chapter. For other operations such as natural join,

aggregate, we will discuss how to handle them in the extension section (Section 8.7).

Directed vs. Undirected. It is easy to see that the real lineage graph G is a directed

acyclic graph (DAG). However, we remark that for any edge e = (vi, vj) ∈ E, there always

exists a corresponding backward edge ê = (vj, vi) and it is often difficult to differentiate

between the forward and backward edge (i.e., e and ê) during retrospective lineage inference.

For instance, say vi is derived from vj by adding some new features in the real lineage graph.

However, it is also acceptable to infer that vj is derived from vi by applying feature selection

operations. Thus, we opt to construct an undirected lineage graph G′ with an annotated

explanation along with each direction.

Quality Measure on G′. As discussed above, the inferred lineage graph G′ is undirected.

Assume that we have the ground truth, i.e., the real lineage graph G. To compare G′ with

G, we first convert G into an undirected graph and then compute the Jaccard set similarity

between E and E ′, where each e ∈ E or e′ ∈ E ′ is an undirected edge. Specifically, we can

use θG′ = |E∩E′|
|E∪E′| as the quality measure for the inferred lineage graph G′. The larger θG′ is,

the more similar G′ is to G and the higher quality G′ is.

We now formally define the lineage inference problem in Problem 8.1.

Problem 8.1 (Lineage Inference). Given a collection of tabular dataset versions V , infer

the lineage graph G′ = (V,E ′) based on the content of each dataset v ∈ V , maximizing θG′.

8.3 END-TO-END WORKFLOW

In order to infer the lineage graph G′ purely based on the contents in each version v ∈ V ,

we propose an end-to-end workflow, called Relic, consisting of four steps: (a) profiling; (b)

pre-clustering; (c) edge inference; and (d) structural explanation, as depicted in Figure 8.2.

Profiling serves as a building block for the following steps. Based on the requirement in

step (c), different profiling operators can be applied to each version v ∈ V . For instance, we

can apply primary key detection and schema matching in step (a). We will elaborate more

in Section 8.4. After profiling, we can conduct pre-clustering based on some heuristic rules

such as primary key or schema-based grouping. Step (b) can help constrain the search space

for the inferred lineage graph. The core part within this end-to-end workflow is step (c),
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where we propose to infer the lineage graph by adopting the minimum description length

principle and using our carefully designed delta metric between versions. Last but not least,

we provide a structural explanation along with each edge using instructions at the row and

column granularity. Step (d) enables better user interpretation. Next, we will dive into each

step in detail.

(a) Profiling (b) Pre-clustering (c) Edge Inference (d) Structural Explanation

PK Detection

Schema
Matching

PK-based

Schema-based

MDL Principle

Cell-level
Delta

Row & Column
Level Instructions

Exact & Greedy
Algorithm

Sketch

Figure 8.2: End-to-End Workflow of Relic

Profiling. For each version v ∈ V , we can identify its primary key or unique key, providing

row-to-row correspondence across versions. In addition, we can perform schema matching

across versions. Note that we can plug in any existing profiling operators in this step.

• Column-to-column correspondence. Many algorithms [120] have been proposed to ad-

dress the schema matching problem, either by exploiting the information from the

schema (e.g., column name and column type) or content. In particular, we implement

schema matching solely based on the column name and column type. That is, when

both the column name and column type are the same, we claim that these two columns

are matched.

• Row-to-row correspondence. There is existing work [121] on identifying all possible

primary keys (PK) for each dataset. One natural method is to examine the uniqueness

for every single column or combined columns—if the ratio between the cardinality and

the size is above some threshold, e.g., 0.9 in our implementation, we say this column

set forms a primary key. In our implementation, we perform PK detection on a small

sampled dataset and constrain the number of columns in the PK to be no larger than

three. If there exists no PK, Relic falls back to a bipartite matching problem as

discussed in the extension section (Section 8.7).

Pre-clustering. The search space for an inferred lineage graph is huge. As a first step, we

can incorporate some domain knowledge to pre-cluster the datasets based on some heuristic

rules, and narrow down the search space. For instance, we can first pre-cluster different

versions based on their primary key, infer the lineage graph within each cluster, and then
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connect across clusters. The reason behind pre-clustering datasets with the same PK is

that if two versions have different PKs, they cannot be derived from each other via point-

preserving operations. Recall that point-preserving operations are the operations with one-

to-one mappings from the base version to the derived version as discussed in Section 8.2.

Alternatively, we can also pre-cluster versions based on the schema. The assumption is that

content modification happens more often than schema changes. Similar to that in Step (a),

other pre-clustering mechanisms can also be plugged into our workflow.

Edge Inference. This is the most crucial step in Relic. Essentially, the goal of lineage

inference is to identify the derivation edges and include them in the lineage graph. Thus, we

first need a mechanism to describe and quantify the relationship between each version pair.

Afterwards, we need to develop a mechanism for selecting edges as our inferred derivation

edges E ′. To address the first challenge, we propose a cell-based delta metric to quantify

the differences between version pairs. For the second challenge, our intuition is based on the

minimum description length (MDL) principle by Occam’s Razer: a connected lineage graph

with a smaller delta score is more likely to capture the derivation relationship correctly. We

will discuss the details in Section 8.4.

Structural Explanation. In addition to the delta score for each selected edge E ′, it is

desirable to also present users with the derivation operations for better interpretation. On

one hand, Relic targets general transformations instead of any DML (data manipulation

language, e.g., SQL) specific derivation operations. This indicates that our inferred deriva-

tion operations must be general enough to capture all kinds of different transformations.

On the other hand, existing work [118] has demonstrated that it is computationally hard

to reverse engineer SQL statements even in a restricted operator space. Thus, we propose

a general but simple instruction space with INSERT, DELETE, and UPDATE operators with

COLUMN, ROW operands. We will dive into the structural explanation step in Section 8.5.

8.4 EDGES INFERENCE

Given a set of artifacts V , our goal is to construct a lineage graph G′ connecting these

artifacts. Alternatively, we can frame the lineage inference problem as an edge selection

problem – which edges among all pairwise edges should be selected in the inferred lineage

graph G′ = (V,E ′). As a first step, we should “profile” all pairwise edges (vi, vj), where

vi, vj ∈ V . By profiling, we aim to describe the relationship for each version pair vi and vj.

Specifically, we propose a cell-level delta metric and compute the delta for all version pairs.

Next, we select the edges based on the minimum description length principle.
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8.4.1 All Pair Delta Computation

For each version pair vi and vj, we would like to describe the derivation relationship

between them. Practically, a new dataset version can be derived from the base version

in various ways such as manual cell-level edits, DML like SQL, and imperative programs.

However, post-facts inference of these types of changes are not always apparent and might

be even indistinguishable. For example, an analyst engaged in the process of data cleaning

might manually correct certain values of a field in a table, or might encode the changes in

a single SQL query that updates the values of a field based on some matching predicates.

This action could be encoded as individual cell-level changes, or as a single SQL statement.

Thus, instead of reverse-engineering the original transformation commands, we propose to

represent the derivation relationship in a general and natural form that can cover various

transformation approaches. In particular, we use the content difference between vi and vj at

the cell level, titled cell-level delta, to describe this relationship and measure the difference

between two versions.

Cell-level Delta Metric. A tabular dataset consists of rows and columns, where each

row and column are formed by grouping cells horizontally or vertically. For this discussion,

we assume that we have obtained column-to-column correspondence and row-to-row corre-

spondence across dataset versions as described in the profiling step (a) in Section 8.3. A

cell is the smallest unit of compound in such 2-dimensional tabular dataset. Thus, we can

represent the delta by looking at the modified cells from dataset vi to vj. Each cell ci is

uniquely identified by the triple <rowID, columnID, value>, where rowID and columnID

is the consolidated row ID and column ID after Step (a) respectively, and value is what is

inside this cell. Let Ci be the set of cells in dataset vi. As shown in Figure 8.3(b), cell

<r2, a1, val> refers to the cell located in r2 and a1 of dataset vi in Figure 8.3(a). The blue

cells in Figure 8.3(a) are the common cells between vi and vj. The cell-level similarity is

defined as the Jaccard similarity between Ci and Cj, while the cell-level delta δc(vi, vj) is

defined as the complement of the cell-level similarity. Formally, we can compute δc(vi, vj)

as in Equation 8.1, where |Ci ∩ Cj| is the number of common cells between vi and vj and

|Ci ∪ Cj| is the number of total cells in vi and vj.

δc(vi, vj) = 1− |Ci ∩ Cj |
|Ci ∪ Cj |

(8.1)

Computing cell-level deltas are straight-forward. Given two versions vi and vj, we first

build a hash table with all cells in vi, and then probe cells in vj using the built hash table.

Thus, the time complexity for computing the cell-level delta is O(|vi| + |vj|), where |vi| is
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the number of cells in vi, i.e., |Ci|.
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Figure 8.3: Cell-level Delta

Justification of Cell-level Delta. Next, we will analytically justify why the cell-level delta

is chosen as the delta metric to represent the derivation relationship between two versions.

• General. Cell-level delta is able to express the content difference generated by any

general transformations, ranging from manual edits, SQL queries, to programs.

• Intuitive. Cell-level delta is intuitive to understand and easy to calculate.

• Informative. Since a cell is the finest unit in a tabular dataset, cell-level delta can

capture all content changes generated by any point-preserving operations2 without

information loss.

On the other hand, if we measure the delta at the column-level by treating each column

as a set of values [122, 123], it will be difficult to differentiate versions with similar column

domains, thus incurring information loss. For instance, if we apply SAMPLING on the base

version, the derived version is likely to share the same domain as the base version for columns

with low cardinality. As a result, these two versions are indistinguishable from each other

in terms of the column-level delta. In Section 8.8, we also experimentally show that a cell-

level delta can achieve better performance in reverse-engineering the lineage graph than

column-level delta.

8.4.2 Edge Selection

After computing cell-level delta for all version pairs, the next step is to select edges E ′

to be included in the inferred lineage graph G′. One naive way is to set a threshold on

δc(vi, vj) and include all edges that have small delta scores in E ′. However, there exists some

derivation operations with very small δc(vi, vj). Using a naive threshold-based approach

2We handle non-point-preserving operations in the post-processing step as discussed in Section 8.7
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cannot capture such derivation edges. As a concrete example, SAMPLING and FEATURE

SELECTION typically have small delta scores. Instead, we propose to adopt the minimum

description length (MDL) principle. The high-level idea is that versions are likely to be

derived from versions with similar content and the lineage graph G should have small overall

edit distance (i.e., the sum of delta scores) along all edges.

If the lineage graph G is a tree, Problem 8.1 is equivalent to finding the minimum spanning

tree based on the MDL principle. Note that such simple tree-based lineage cases are quite

common in practice, since most point-preserving operators involve only one base dataset

except UNION. When we generalize to the lineage graph case, we can first construct a lineage

tree in G and then identify missing edges during post-processing. That is, for versions v ∈ V
with multiple in-coming edges, as a first step Relic will only identify one base version and

leave the others for post-processing.

Lemma 8.1 (Minimum Spanning Tree). Following the MDL principle, lineage inference is

equivalent to finding the minimum spanning tree in a complete graph with node set V , where

each edge weight is quantified by the cell-level delta.

Remark 8.1. If there are multiple clusters after the pre-clustering step (b) in Section 8.3,

we can first construct a minimum spanning tree within each cluster; next we treat each

cluster as a supernode and construct a minimum spanning tree connecting these supernodes.

Furthermore, if any edge is with delta score equalling one (or larger than some user-defined

threshold), we exclude that edge from our inferred lineage graph G′.

8.5 STRUCTURAL EXPLANATION

When presenting the inferred lineage graph G′ to the user, it is preferable to not just

provide the cell-level delta score, but also some explanations along with each edge. How-

ever, cell-level instructions can be very verbose due to the fine-grained nature of cells. For

instance, “deleting a feature” would correspond to a bunch of “cell deletion”, when using

cell-level instructions. Instead, we propose to move to a higher level of abstraction and

describe the derivation at the granularity of row and column. We call this structural expla-

nation. On the one hand, structural explanation is more succinct and can help reveal some

structural or semantic differences between the two datasets. On the other hand, finding the

appropriate structural explanation is not as easy as computing cell-level delta. However,

compared to expressing the derivation in SQL [124], our proposed structural explanation is

more computationally tractable [118].
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Structural Explanation. Specifically, from our standpoint, a structural explanation is

informally defined to be a sequence of operations that can derive vj from vi and has the

smallest number of operations, where the operation space is {ADD, UPDATE, DELETE} ×
{COLUMN, ROW}, i.e., the Cartesian product of the operators and operands. As we can

see, the represented operators, i.e., {ADD, UPDATE, DELETE}, are very simple, intuitive, and

interpretable. This is analogous to the concept of “edit distance” in string matching. These

operations are general enough to capture the differences from any manual edits, data manip-

ulation language operations (DML), or programs. Furthermore, such operators are easy to

understand and convey the modification semantics at a high level. In the following, we addi-

tionally argue that this designed operation space is very suitable for data science workload.

During an iterative data science process, one dataset is evolved from another by applying

a combination of data transformation and feature engineering operators. Our column-wise

operations, i.e., {(ADD, UPDATE, DELETE) COLUMN}, can represent most feature engineer-

ing processes including feature augmentation, encoding, normalization, and selection; while

the row-wise operations, i.e., {(ADD, UPDATE, DELETE) ROW}, can represent most data

transformation processes including cleaning, sampling, outlier removal, and imputation.
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Figure 8.4: Structural Explanation in Figure 8.3

Deriving a structural explanation is not as straightforward as deriving a cell level delta, due

to the mix of both column and row operations. Naively, we can represent the delta using

only row operations, or using only column operations. However, such explanations may

not have the smallest number of operations. Next, we will formally define the structural

explanation ∆R. Since ADD and DELETE operations can be uniquely derived from the row-

to-row and column-to-column mappings for each dataset pair, we focus on minimizing the

UPDATE operations. As a result, we can simply consider two datasets vi and vj with the

same set of global column and row IDs. Let M(vi, vj) be the indicator matrix representing

changes between vi and vj, where Mr,c(vi, vj) = 1 if the cell located in row ID r and column

ID c is the same in vi and vj, otherwise Mr,c(vi, vj) = 0. Next, let Ru and Au be the selected
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records and attributes in the UPDATE operations. Due to the imbalance between the number

of rows and columns, we further allow different weights for the row and column operations,

denoted by wr and wc respectively. We formalize the structural explanation discover problem

as Problem 8.2. Our goal is to find Ru and Au such that the weighted sum of the update

operations is minimized, as shown in Equation 8.2. The constraint in Equation 8.2 ensures

that vj can be derived from vi with the sequence of UPDATE operations on Ru and Au.

Problem 8.2 (Structural Explanation). Identify rows Ru and columns Au such that vj can

be derived from vi with commands {UPDATE Columns Au and Rows Ru} and the weighted sum

is minimized. Mathmatically,

δu(vi, vj) = min
Ru,Au

(
∑
r∈Ru

wr +
∑
c∈Au

wc)

s.t. Mr,c(vi, vj) = 1 ∀r 6∈ Ru, c 6∈ Au
(8.2)

Exact Algorithm. Recall that in Equation 8.2, Ru and Au are the selected records and

attributes in the UPDATE operation. Correspondingly, we denote the unmodified rows and

columns as R̄u and Āu, i.e., R̄u = R \ Ru and Āu = A \ Au, where R and A denote the

common records and columns in vi and vj, respectively. Replace Ru and Au with R − R̄u

and A− Āu in Equation 8.2, we can then obtain the equivalent optimization formulation in

Equation 8.3, where the first term (
∑

r∈R wr +
∑

c∈Awc) is a constant.

δu(vi, vj) = (
∑
r∈R

wr +
∑
c∈A

wc)− max
R̄u,Āu

(
∑
r∈R̄u

wr +
∑
c∈Āu

wc)

s.t. Mr,c(vi, vj) = 1 ∀r ∈ R̄u, c ∈ Āu
(8.3)

Essentially, the problem in Equation 8.3 is to find the row set R̄u and column set Āu with

the largest weight, i.e., (
∑

r∈R̄u
wr +

∑
c∈Āu

wc), under the constraint that each entry in the

common rectangle, defined by the row set R̄u and column set Āu, has value Mr,c = 1. We

term this problem as largest common rectangle w.r.t. weighted perimeter, LCRP for short.

And we use |LCRP (vi, vj)| to denote the weighted sum of the selected rows and columns in

LCRP problem. Hence, we can rewrite Equation 8.3 into Equation 8.4

δu(vi, vj) = (
∑
r∈R

wr +
∑
c∈A

wc)− |LCRP (vi, vj)| (8.4)

Let us illustrate LCRP by continuing the example in Figure 8.3, where wc = wr = 1. First,

Figure 8.5(a) is the indicator matrix M for vi and vj in Figure 8.3(a). The common rows be-

tween vi and vj are R = {r2, r3, r4, r5}, and the common columns are A = {a1, a2, a3, a4, a5}.
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As depicted in Figure 8.5(c), the selected row set R̄u = {r2, r4, r5} and column set Āu =

{a1, a3, r5} form a common rectangle between vi and vj, i.e., Mr,c = 1,∀r ∈ R̄u, c ∈ Āu,

and have the largest weighted sum. Thus, Figure 8.5(c) is the LCRP for Figure 8.3(a) with

|LCRP (vi, vj)| = 6.
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Figure 8.5: Indicator Matrix and Bipartite Graph in Figure 8.3

Next, we show that LCRP problem is equivalent to maximum node biclique (MNB) prob-

lem in the corresponding bipartite graph. First, we map the indicator matrixM to a bipartite

graph G = (V1,V2, E), where each row and column correspond to a vertex in V1 and V2 re-

spectively. When Mr,c = 1, there is an edge connecting the corresponding two vertices in

V1 and V2. Figure 8.5(b) is the bipartite graph corresponding to the indicator matrix in

Figure 8.5(a). We can see that each common rectangle with all 1s in the indicator matrix

M corresponds to a biclique (blue edges) in the bipartite graph G, and |LCRP (vi, vj)| is

the same as the weighted node sum in the corresponding biclique. Note that the common

rectangle does not require the selected rows or columns to be with continuous IDs, i.e., row

and column reordering are allowed in M .

Lemma 8.2 (Maximum node biclique (MNB)). Problem 8.2 is equivalent to the maximum

node biclique (MNB) problem.

Furthermore, MNB problem is known to be equivalent to the maximum independent set

problem in a complemented bipartite graph [125], which can be solved using standard s-t

min-cut algorithms [126]. The Ford-Fulkerson algorithm [127] can be used to solve the max-

flow problem, and hence min-cut problem based on the max-flow min-cut theorem. In the

worst case, the Ford-Fulkerson algorithm takes O(M × f), where M is the number of edges

in the bipartite graph and f is the value of maximal flow.

Lemma 8.3 (Min-cut max-flow Algorithm). Problem 8.2 can be solved using existing min-

cut max-flow algorithms, e.g., Ford-Fulkerson algorithm in polynomial time.
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8.6 ACCELERATING THE WORKFLOW

In the previous sections, we have introduced our proposed workflow Relic. Next, we

will discuss how to make this end-to-end workflow faster. First, let us take a look at the

execution in each step of the workflow.

• Step (a). First, for schema matching, since we only operate at the schema level (column

name and type) without looking into the detailed content, the execution can be very

fast. As for primary key detection, since we conduct the detection on a sampled dataset

with a small size, the running time is essentially negligible.

• Step (b). Pre-clustering is based on metadata such as primary key and schema simi-

larity. Thus, step (b) can be completed quickly.

• Step (c). This step consists of two parts: the all pair delta computation and edge selec-

tion. All pair delta computation is an obvious bottleneck since it involves comparing

the contents for each version pair.

• Step (d). After obtaining the inferred lineage graph G′, we aim to provide structural

explanation for each edge e′ ∈ E ′ using the algorithm described in Section 8.5. This

can also be time-consuming due to the expensive max-flow algorithm.

As discussed above, the running time in Step (a) and (b) is negligible. Step (c) involves

delta computation for all version pairs, which is quadratic in the number of versions. This

step is often the runtime bottleneck for the end-to-end workflow. In particular, if the memory

is insufficient to hold all the versions, the I/O access would be time-consuming due to loading

(and evicting) data to (from) memory. Thus, we propose to employ existing sketch-based

techniques to compute deltas for all version pairs using a smaller footprint. In this way,

we are able to hold all versions’ sketches in memory, eliminating the expensive I/O time.

Compared to Step (c), the runtime in Step (d) is linear in the number of versions. However,

deriving a structural explanation is more expensive than calculating cell-level delta. Even

though the structural explanation problem can be solved using existing max-flow algorithms,

it can be quite expensive in many scenarios. To reduce the runtime, we propose a greedy

algorithm with a small time complexity.

Employing Sketching for Step (c). Sketching is a powerful technique for rapidly approx-

imating various statistics (e.g., Jaccard Similarity, Cardinality) [128]. Instead of answering

these statistical queries over the original large datasets, we can instead work on sketches

that are much smaller, resulting in faster query responses, with a potential loss of accuracy.
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Different sketch techniques have been developed in the recent past, e.g., frequency-based

sketches [128] and sketches for distinct value queries [128]. In this section, we will discuss

how to use an existing sketch technique, i.e., minhash [129], for appropriate cell-level delta

estimation.

As discussed in Section 8.4, given a version vi, we can decompose it into its cell set

Ci. Then, computing cell-level delta for each version pair vi and vj can be essentially

transformed to calculating the jaccard similarity between Ci and Cj. Set similarity has

been well studied, and minhash is a well-known sketch for approximating Jaccard similarity

JS(Ci, Cj) =
|Ci∩Cj |
|Ci∪Cj | . Given a hash function3 hk and a set Ci, the minhash is defined as

hk(Ci) = minc∈Ci
hk(c). An important property of minhash is that the probability that

the minhash function produces the same value for Ci and Cj equals the Jaccard simi-

larity between Ci and Cj, i.e., Pr(hk(Ci) = hk(Cj)) = JS(Ci, Cj). Based on this prop-

erty, we can construct a minhash sketch of size n for each set Ci, represented by a vector

[h1(Ci), h2(Ci), · · · , hK(Ci)], where each hk is a hash function. The Jaccard similarity can

thus be estimated as described in Equation 8.5.

ĴS(Ci, Cj) =

∑K
k=1 1(hk(Ci) = hk(Cj))

n
(8.5)

However, applying K hash function to each cell is prohibitive, especially when K is large.

BottomK sketch [130] is one technique that has been proposed to tackle this issue, where

only one hash function is applied to all cells Ci and the cells with the smallest K hash values

are selected as the sketch Si. We can subsequently estimate the Jaccard similarity using

JS(Si, Sj) in the sketch space.

Greedy Algorithm for Step (d). We can transform Problem 8.2 into a set cover problem,

where each column c (or row r) corresponds to a set with its respective weight wc (or wr) with

this set containing all modified cells in this column (or row). The task is to select sets such

that the union of these sets covers all modified cells. In each iteration, we can greedily select

the set that covers the largest fraction of modified elements. Such a greedy algorithm leads

to a 2-approximation to the exact solution, while the running time is (m+n) log(m+n)+Γ,

where (m + n) is the number of rows and columns and Γ is the number of modified cells.

Compared to the exact solution, the greedy algorithm is, in general, less expensive.

3We assume each hash function is corresponding to a random permutation of rows.

116



8.7 EXTENSIONS

In previous sections, we have talked about how Relic works under certain assumptions.

Even though these assumptions hold in most scenarios, in the following we will discuss how

to handle the lineage inference problem when relaxing these assumptions.

Row-to-Row Mapping. In Step (a) of Relic, we propose to perform Primary Key de-

tection to obtain row-ro-row mappings across versions. When there exists no PK in each

version, we can fall back to other row mapping approaches. Specifically, given two versions

vi and vj, we first construct a bipartite graph with all records in vi on one side and all

records in vj on the other side. The edge weight between node rk(vi) and node rl(vj) is the

number of common cells between these two records, where rk(vi) and rl(vj) refer to record

rk in vi and record rl in vj, respectively. The row-to-row mapping problem between vi and

vj is essentially a maximum bipartite matching problem in the constructed bipartite graph.

This method can handle all general cases, but is much more expensive compared to simple

PK detection.

Non-Point-preserving Operations. Even though most transformation operations fall

into the category of point-preserving ones, where there is a one-to-one correspondence be-

tween rows, there exist two common non-point-preserving operations, i.e., natural join and

aggregates. There is existing work [131] aiming to infer join relationships between input and

output tables. The high-level idea is that there are (fuzzy) column containment relation-

ships between the join inputs and output. Thus, we can infer the derivation edge with join

operators using this column containment [132] property.

8.8 PRELIMINARY EXPERIMENTAL EVALUATION

We experimentally evaluate our proposed end-to-end workflow Relic in terms of both

effectiveness and efficiency. In the following, we will study how Relic performs in recon-

structing the true lineage graph, followed by the running time comparison with and without

using sketching.

8.8.1 Effectiveness of Relic

Dataset. We examined a large number of Jupyter notebooks and extracted the most fre-

quently used operators in Pandas data processing package [133] – ASSIGN, ILOC, NLARGEST,

NSMALLEST, SAMPLE, SORT INDEX, SORT VALUE, DROP COLUMNS, DROP ROWS,
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|V | 10 10 10 20 20 20 40 40 40 80 80 80

α 1 2 3 1 2 3 1 2 3 1 2 3

Relic-β 0.86 0.97 0.97 0.81 0.93 0.96 0.81 0.94 0.91 0.80 0.91 0.90

baseline-β 0.80 0.73 0.82 0.75 0.81 0.85 0.74 0.83 0.73 0.72 0.82 0.81

Relic-θ 0.78 0.94 0.94 0.70 0.87 0.92 0.69 0.90 0.83 0.65 0.75 0.81

baseline-θ 0.71 0.60 0.72 0.62 0.70 0.75 0.60 0.72 0.58 0.59 0.70 0.69

Table 8.1: Effectiveness of the Inferred Lineage Graph

ADD ROWS. We then implemented a synthetic dataset generator using these operators.

When deriving a new dataset version, we first randomly select a base version and apply

a sequence of operations on this base version. The number of operations before each ma-

terialization is a user-defined parameter α. The initial dataset had 10000 records and 20

columns.

Baseline. As discussed in Section 8.4, an alternative delta metric is a column-level one as

described in an existing paper [122]. This approach works as follows: given two versions vi

and vj, we first calculate the Jaccard similarity for each corresponding column in vi and vj,

then sum up the Jaccard similarities across all such column pairs and divide it by the total

number of columns in Ai ∪ Aj, where Ai corresponds to the columns in vi. We replace our

cell-level delta with this aggregated column-wise delta, and use it as our baseline.

Measure. As discussed in Section 8.2, we can measure the quality of G′ using the Jaccard

similarity θG′ between E and E ′. Alternatively, since both Relic and the baseline return

a minimum spanning tree with the same edge size, we can also measure the quality of G′ by

looking at the percentage of common edges between E ′ and E, i.e., βG′ = |E∩E′|
|E| .

For each configuration in Table 8.1, we randomly generate 10 synthetic repositories with

|V | versions. We report the average score for Relic and baseline in terms of both β and

θ as discussed above. First, we observe that Relic can recover the lineage graph effectively

with an average of β around 0.9, indicating that 90 percent of the derivation edges are

recovered. This is a very promising result. Furthermore, we can see that Relic outperforms

baseline for all configurations. This is mainly because baseline can only capture the

derivation difference for some operations, but not all. Last but not least, both Relic and

baseline perform worse when α = 1 compared to α = 2 and 3. The reason is that the

versions tend to be very similar and indistinguishable if we materialize the derived version

after a single operation. For instance, with operation SORT INDEX and SORT VALUE, the

base version and the derived version are essentially the same and essentially distinguishable.
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trial1 trial2 trial3 trial4 trial5 trial6 trial7 trial8 trial9 trial10

v40-k100 γ 2.12 2.57 1.94 2.02 2.47 1.15 2.65 2.63 4.91 2.15

v40-k100 β 0.79 0.92 0.82 0.74 0.79 0.74 0.82 0.64 0.79 0.77

v40-k400 γ 0.62 2.52 3.37 3.73 0.80 2.32 3.13 3.84 0.83 1.06

v40-k400 β 0.77 0.77 0.77 0.82 0.77 0.90 0.72 0.85 0.87 0.87

Table 8.2: Effectiveness and Efficiency Comparison With/Without Sketch

8.8.2 Efficiency of Relic

Next, we will illustrate how sketch techniques affect Relic in terms of both efficiency

and effectiveness. We run experiments with and without the BottomK sketch on synthetic

datasets with 10000 records and 20 columns in the base version, and 40 versions for 10 trials.

We measure the speedup ratio γ between Relic without sketch and with sketch along with

β for the inferred lineage graph using the sketch, and report the numbers in Table 8.2. For

instance, v40-k100 means that there are 40 versions in total, and the sketch size K is 100.

On average, Relic with sketch size K = 100 achieves 2.5× speedup and β is 0.78; when

K = 400 Relic achieves 2.2× speedup and β is 0.81 on average. First, we can see that

the inferred lineage graph with the sketch has a slightly worse performance for β in terms

of the number of common edges with G. However, an average β of around 0.8 is not bad in

practice. We also note that in some scenarios Relic with sketch even has slower running

time compared to Relic without using the sketch. This is because using sketch typically

incurs overhead in hashing each cell, and the average size of all versions can be similar to

the sketch size.

Our preliminary experiments indicate the promise of the end-to-end Relic workflow in

lineage inference. As next steps, we aim to conduct more experiments while varying the

number of versions, records, and sketch size. In addition, we plan to explore some real

workflows to evaluate the fine-grained behavior of Relic via real case studies.
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CHAPTER 9: CONCLUSION AND FUTURE WORK

In this thesis, we developed OrpheusDB for effective structured data versioning, and

relaxed certain assumptions, one at a time, made in OrpheusDB, as a step towards general-

purpose versioning. In the following, we will discuss some deficiencies in our work and

potential future directions.

Query Optimization. In both OrpheusDB (Chapter 3-5) and the generalized storage

engine (Chapter 7), we studied the problem of balancing the storage size and the checkout

latency. Even though checkout is a fundamental and important operation, it remains to be

seen what are the other operations or queries that are most useful for end-users and how to

further optimize for these queries. As readers may remember, in Chapter 3 and 6, we do list

some potentially useful queries that can help users reason across versions. However, those

queries are mostly envisioned or summarized from informal conversations, biased towards

a database audience instead of real end-users. Conduct an extensive survey among data

scientists to learn the most frequently asked queries when reasoning across versions would

be invaluable. With that information in hand, we can then work on reducing the latency for

those queries, e.g., via physical layout design and query optimization.

Diff Primitives. OrpheusDB can support Diff operators, i.e., contrasting one version

from the other. However, our current diffing mechanism is very simplistic. Specifically, we

identify new and deleted records by examining the two given datasets—a record is deemed

to be unmodified only when it exists in both datasets. As a result, a “column normalization”

transformation would be interpreted as “deleting all records from the original dataset and

inserting all normalized records into the new dataset”, which simply does not make any

sense. As readers may have noticed, we can potentially improve this Diff command by

incorporating the structural explanation as discussed in Chapter 8. However, the underlying

question still remains, given two datasets, how should we define the meaning of diff? It

seems that different diffing primitives can be meaningful for different scenarios and there is

no universal diffing mechanism. Here are a few options:

• [Distributional diff] A common practice during machine learning model serving is

to validate each column’s distribution alignment with the training data. This is to

detect data drift and thus avoid model performance degradation. In such scenarios,

distribution-wise differences between the training and serving dataset are desired.

• [Row Diff] Say a dataset is generated from some upstream group of individuals, and

say the upstream group decides to relax some of their filter conditions pipeline, re-
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sulting in a new dataset version. To analyze the impact from this upstream group,

the downstream group would like to understand how the additional data included in

the new dataset version looks like. Thus, in this scenario, a summarized row-wise

difference is a suitable one.

A natural next step would be to interview various stakeholders, summarize the commonly

desired diffing primitives, and provide an efficient diff toolkit catering to users. After all,

diff is indeed the most fundamental operation when reasoning between versions.

Towards a Unified System for Data, Code, and Model Versioning. In this thesis, we

focused on effective data versioning. However, during the iterative data science workflow, not

only does data change across different versions, but also code and models. Additionally, there

are strong dependencies between the data, code, and models. Specifically, the data along with

code produces a machine learning model. When the model performance is not satisfactory,

data scientists would likely to incorporate more data, try different data preprocessing and

feature engineering operators, or seek other machine learning algorithms. This would result

in a new data version as well as a new code version, which consequently generates a new

model. This is a laborious process via trial-and-error and such versioned artifacts are poorly

managed in the wild. As a consequence, it is difficult to recall which combinations of

data input and machine learning configurations have been tried; to reason about the model

performance’s relationship with data and code; to study whether the fact that a particular

data slice’s performance has degraded is due to the incorporation of more data in this slice

or the introduction of a different machine learning algorithm. Thus, there is a pressing need

for a system to help manage the versioned data, code, and model in a unified manner.

To build such a system, we first need to study the issues data scientists encounter in

dealing with various versions of data, code, and models. With these needs in mind, we can

then build a unified system for managing data, code, and model. Another thing to keep in

mind is that users are reluctant to change their behavior, and thus we need to find a method

that is most non-intrusive for users.

121



REFERENCES

[1] S. Huang, L. Xu, J. Liu, A. J. Elmore, and A. Parameswaran, “Orpheus db: bolt-on
versioning for relational databases,” Proceedings of the VLDB Endowment, vol. 10,
no. 10, pp. 1130–1141, 2017.

[2] L. Xu, S. Huang, S. Hui, A. J. Elmore, and A. Parameswaran, “Orpheusdb: A
lightweight approach to relational dataset versioning,” in Proceedings of the 2017 ACM
International Conference on Management of Data. ACM, 2017, pp. 1655–1658.

[3] A. Chavan et al., “Towards a unified query language for provenance and versioning,”
in TaPP, 2015.

[4] S. Bhattacherjee et al., “Principles of dataset versioning: Exploring the recreation/s-
torage tradeoff,” VLDB, vol. 8, no. 12, pp. 1346–1357, 2015.

[5] http://comments.gmane.org/gmane.comp.version-control.git/189776.

[6] https://git-annex.branchable.com/.

[7] http://caca.zoy.org/wiki/git-bigfiles.

[8] “Liquibase,” http://www.liquibase.org/.

[9] “dbv,” https://dbv.vizuina.com/.

[10] “Dat,” http://datproject.org/.

[11] “Mode,” https://about.modeanalytics.com/.

[12] I. Ahn et al., “Performance evaluation of a temporal database management system,”
in ACM SIGMOD Record, vol. 15, no. 2. ACM, 1986, pp. 96–107.

[13] R. Snodgrass and I. Ahn, “A taxonomy of time databases,” ACM Sigmod Record,
vol. 14, no. 4, pp. 236–246, 1985.

[14] R. T. Snodgrass et al., “Tsql2 language specification,” Sigmod Record, vol. 23, no. 1,
pp. 65–86, 1994.

[15] C. S. Jensen and R. T. Snodgrass, “Temporal data management,” IEEE Transactions
on Knowledge and Data Engineering, vol. 11, no. 1, pp. 36–44, 1999.

[16] G. Ozsoyoglu et al., “Temporal and real-time databases: A survey,” TKDE, vol. 7,
no. 4.

[17] A. U. Tansel et al., Temporal databases: theory, design, and implementation.
Benjamin-Cummings Publishing Co., Inc., 1993.

[18] K. Torp, C. S. Jensen, and R. T. Snodgrass, “Stratum approaches to temporal dbms
implementation,” in IDEAS’98. IEEE, 1998, pp. 4–13.

122



[19] C. X. Chen, J. Kong, and C. Zaniolo, “Design and implementation of a temporal
extension of sql,” in Data Engineering, 2003, pp. 689–691.

[20] C. M. Saracco, M. Nicola, and L. Gandhi, “A matter of time: Temporal data manage-
ment in db2 for z,” IBM Corporation, New York, 2010.

[21] M. Al-Kateb et al., “Temporal query processing in teradata,” in EDBT’13.

[22] M. Kaufmann et al., “Timeline index: A unified data structure for processing queries
on temporal data in sap hana,” in SIGMOD 2013, pp. 1173–1184.

[23] F. Färber, N. May, W. Lehner, P. Große, I. Müller, H. Rauhe, and J. Dees, “The sap
hana database–an architecture overview.” IEEE Data Eng. Bull., vol. 35, no. 1, pp.
28–33, 2012.

[24] M. Kaufmann et al., “Benchmarking bitemporal database systems: Ready for the
future or stuck in the past?” in EDBT, 2014, pp. 738–749.

[25] K. Kulkarni and J.-E. Michels, “Temporal features in sql: 2011,” ACM Sigmod Record,
vol. 41, no. 3, pp. 34–43, 2012.

[26] G. M. Landau et al., “Historical queries along multiple lines of time evolution,” The
VLDB Journal, vol. 4, no. 4, pp. 703–726, 1995.

[27] B. J. Salzberg and D. B. Lomet, Branched and Temporal Index Structures. College
of Computer Science, Northeastern University, 1995.

[28] S. Lanka and E. Mays, Fully persistent B+-trees. ACM, 1991, vol. 20, no. 2.

[29] L. Jiang, B. Salzberg, D. B. Lomet, and M. B. Garćıa, “The bt-tree: A branched and
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