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ABSTRACT 

Soybean growers must balance multiple, sometimes competing, economic and 

environmental objectives when deciding what level of tillage intensity is appropriate for a given 

field.  Research has shown that decreasing soil disturbance can reduce the cost of soybean 

production, but the effects of conservation tillage on the soil environment and soybean 

performance are elusively site-specific, making precise tillage recommendations difficult.  

Moreover, grower decision-making regarding tillage intensity is a socio-psychological process 

whereby an individual’s attitude, beliefs, and social status augment their capacity for rational 

utility maximization.  This study aims to illuminate how soybean growers in the State of 

Michigan select tillage technologies, and the effect of conservation tillage on key measures of 

agroecological performance in the field.  Building on existing work in behavioral economics, 

human ecology, agricultural engineering, agronomy and soil science, it asks:  What factors 

influence Michigan soybean growers’ selection of tillage technologies, and how do selected 

tillage technologies interact with variation in management history and the extant biophysical 

environment to affect soybean yield and soil organic carbon as integrated measures of 

agroecological function? 

In the context of three local ‘learning communities’ facilitated by Extension, thirty-five 

Michigan soybean growers were surveyed and on-farm observations of crop, soil and 

environmental variables collected from one hundred and thirty-three of their commercial 

soybean fields over a period of two growing seasons.  Analysis of this large biophysical and 

social data set using a combination of behavioral, mixed and structural modeling demonstrated 

that the effects of a particular tillage system on soybean yield and soil carbon are indeed site-

specific at the sub-field level, and that grower selection of tillage technologies is influenced by 
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both economic and social factors.  These results indicate that adapting tillage technologies to the 

environmental and social context in which they will be applied is critical to realizing the full 

potential of conservation tillage and its positive contributions to agricultural sustainability.  On 

this basis, it is recommended that outreach promoting conservation tillage in Michigan target 

resource limited, experienced soybean growers with loose social network ties, and farms growing 

soybeans on poor quality soils in warmers areas of the State. 
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CHAPTER 1:  LITERATURE REVIEW 

 

 

1.1 SOYBEAN PRODUCTION IN THE STATE OF MICHIGAN 

 

Soybean (Glycine max) was domesticated in China and has been cultivated there since at 

least the eleventh century BC (Hymowitz, 1970).  The crop was first introduced to North 

America in 1765 by Samuel Bowen near Savannah, Georgia, and was adopted by many farmers 

in the Eastern Corn Belt and South Central U.S. during the early twentieth century (Hymowitz 

and Shurtleff, 2005).  Today, soybean is primarily cultivated between 35 ̊ and 45 ̊ N latitude, 

making the U.S. State of Michigan a somewhat marginal production environment at the northern 

extent of the crop’s adapted range (41.5 ̊ - 45.5 ̊ N latitude in the Lower Peninsula) (Hymowitz, 

1970).  The exact year of soybean’s introduction to Michigan is unclear, but the United States 

Department of Agriculture reported that 3,238 ha were planted in 1924, the first year that 

soybean acreage was recorded for the state.  Henry Ford was an early promoter of soybeans in 

Michigan, conducting extensive research and outreach on the crop as a source of protein and oil 

for industrial uses during the 1930s and 40s (Smith, n.d.).   

Soybean acreage has increased steadily in Michigan since the 1930s, and Michigan 

currently ranks 13th among soybean producing states.  Michigan farmers planted around 931,000 

hectares of soybean in 2018, which represented approximately 2.6% of the total U.S. soybean 

crop that year (USDA-NASS, 2018).  Soybeans are commonly grown in rotation with corn, 

wheat, hay or specialty crops on a wide range of soils in the state.  Michigan growers produced a 

state record mean soybean yield of 3.4 t/ha in 2016 (USDA-NASS, 2018).  Since 1976, the 

Michigan Soybean Promotion Committee has directed the soybean checkoff program in 

Michigan, which levees 0.5% of the value of soybeans sold to support research and outreach 
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benefitting the soybean industry, including a grant program that partially funded the research 

reported in this dissertation. 

 

1.2 TILLAGE DEFINITIONS AND MEASUREMENT 

 

Tillage is defined as mechanical modification of soil for the enhancement of crop 

production (ASAE, 2005).  Tillage tools modify soil through a wide range of physical forces 

such as cutting, fracturing, milling, beating and inversion that alter soil structure.  Tillage is 

usually motivated by the need for amendment incorporation, seedbed preparation, weed control, 

or residue management in field crop production, and specific tillage tools have been designed for 

each of these purposes.  Yet according to Wander and Gruver (2008), 

 

 “The outcome of soil:tool interactions varies with respect to both the 

characteristics of the tillage operation (i.e. action, depth and width of disturbance, 

timing) and the characteristics of the soil that is being tilled (i.e. texture, structure, 

moisture, plasticity)”.   

 

In other words, physical and biochemical processes in soil and resulting plant growth are not 

influenced directly by the tillage tool used, but instead indirectly by the soil environment created  

using (or not using) tillage (Carter, 1994; Havlin et al., 1990).  A single tillage technology is 

capable of producing differing soil environments depending on how it interacts with extant soil 

and environmental conditions (Soane and Pidgeon, 1975).   

Tillage systems are commonly categorized by the intensity of soil disturbance within four 

categories of no-till, conservation tillage, reduced tillage and conventional (a.k.a. intensive) 

tillage (ASAE, 2005).  Tillage intensity has traditionally been judged based on the amount of 
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crop residue remaining after all tillage and planting operations have been completed in a given 

cropping cycle, with < 15% residue cover defining conventional tillage, 15-30% reduced tillage, 

30-70% conservation tillage, and >70% no-till (ASAE, 2005; Baker, 2004).  However, residue 

yield and quality differences between crops contribute to error in such measurements, and there 

is a recognized need to further standardize tillage system definitions and measurement in the 

scientific community (Derpsch et al., 2011, 2014).  A more direct method of quantifying soil 

disturbance called the Soil Tillage Intensity Rating (STIR) formula was developed as part of the 

Natural Resource Conservation Service Revised Universal Soil Loss Equation Version 2 (NRCS 

RUSLE2) model (USDA-NRCS, 2008, 2016; Widman, 2004).  This formula assigns each tillage 

tool/operation a unique intensity coefficient and categorizes tillage systems based on their 

cumulative STIR score.  According to Claassen et al. (2018), STIR more accurately characterizes 

tillage intensity as compared to residue cover methods, as it is a direct, continuous and 

cumulative measure. 

 

 

1.3 TILLAGE AND SOIL PROPERTIES 

 

Reducing soil disturbance in annual cropping systems has been recommended since the 

1940s as a means of conserving the natural capital of soil and enhancing its ability to provide 

ecosystem services (Dominati et al., 2010; Faulkner, 1943; Whiteside and Smith, 1941).  

However, subsequent research has found the relationship between tillage intensity and soil 

properties to be elusively site specific, based on unique soil:tool interactions as discussed above 

(Baker et al., 2007; Derpsch et al., 2014).  In some environments, conservation tillage appears to 

be capable of sequestering carbon in soils and generating improvements in physical, chemical 

and biological functioning important for crop production, such as enhanced aggregation, water 
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holding capacity, microbial activity and nutrient cycling (Alvarez, 2005; Blanco-Canqui et al., 

2013; Syswerda & Robertson, 2014).  In other cases reducing soil disturbance appears to have a 

neutral or opposite effect on these critical processes (Abdalla et al., 2013; Govaerts et al., 2009; 

Lal, 2018; VandenBygaart, 2016).   

The effect of tillage on important soil properties is largely dependent on how disturbance 

interacts with baseline environmental factors such as soil type and texture (Needelman et al., 

1999), moisture (Cook and Trlica, 2016; Toliver et al., 2012) and temperature (Schimel et al, 

1994).  These same parameters also set limits on the extent of tillage effects, as in the 

phenomenon of carbon saturation in soils where additional C inputs and reduced disturbance fail 

to increase soil carbon levels above a certain threshold (Stewart et al., 2007). 

The frequency and length of time that a particular tillage practice is maintained on a field 

further influences how soil properties and crops respond.  Research suggests that the positive 

effects of conservation tillage and no-till on soil properties may require 4+ years to accrue 

(Rhoton, 2000).  Similarly, crop yields respond most positively to multiple consecutive years of 

reduced soil disturbance (Pittlekow et al, 2015).  Some studies suggest that even infrequent 

tillage can compromise gains in soil carbon and improvements in soil structure realized under 

long-term no-till (Grandy et al., 2006; Grandy and Robertson, 2006).   

However, not all effects of reduced tillage are positive, with increased soil compaction, 

residue accumulation and pest pressure being common concerns (Vanhie et al., 2015).  In some 

cases, periodic or low intensity tillage used strategically within a crop rotation may benefit crop 

production or environmental quality by addressing these limitations without compromising long-

term soil health (Conant et al., 2007; Crawford et al., 2015; Quincke et al., 2007).  Measurements 
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of tillage intensity must therefore account for not only soil:tool interactions, but also patterns of 

disturbance across multiple years to accurately estimate effects of tillage.   

  

1.4 TILLAGE AND SOYBEAN YIELD 

 

Soybean is generally well adapted to conservation tillage and no-till production, with 

yields equivalent to conventional tillage on a global and national basis (DeFelice et al., 2006; 

Pittelkow et al., 2015).  Producer adoption data indicates that no-till was in use on approximately 

39% of U.S. soybean acreage by 2012, with another 31% managed using some form of 

conservation tillage other than no-till that year, outpacing conservation tillage adoption in corn, 

wheat and cotton (Claassen et al, 2018; Wade et al., 2015).   

Yet, research has demonstrated that reduced tillage systems can compromise 

establishment and yield of soybean in cooler climates of the Upper Midwest, especially on 

poorly drained soils and where large amounts of crop residue are present at planting (DeFelice et 

al., 2006; Vanhie et al., 2015).  In a regional meta-analysis of 43 soybean tillage experiments, 

DeFelice et al. (2006) found average yield penalties of 2.4-6.4% associated with no-till in the 

region.  This may partially explain why growers in the Upper Midwest have lagged behind other 

regions of the U.S. in conservation tillage adoption (USDA-NASS, 2018, Wade et al., 2015).  

Only 60% of soybeans grown in the State of Michigan are planted using conservation tillage 

(including no-till), which is about 14% below the national average and roughly 37% below 

leading conservation tillage states like Kansas and Nebraska (Claassen et al, 2018; Wade et al., 

2015).  

Realizing the full potential of conservation tillage in states like Michigan will therefore 

require improved understanding of, and ability to predict, the outcome of soil:tool interactions 
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with fine spatial resolution.  Scientists made early attempts to classify soils by their adaptability 

to conservation tillage, based on texture, structure and drainage, but those efforts were limited in 

scope and uncertainty remains regarding which taxonomic characteristics should be included in 

classification models for accurate and efficient estimation of tillage response in a specific 

cropping system (Cannell et al., 1978,1994; Cosper, 1983).   

Recent meta-analyses have begun to delineate where conservation tillage may be more or 

less advisable for Midwest soybean growers (DeFelice et al., 2006; Ogle et al., 2012; Pittelkow 

et al., 2015, Toliver et al., 2012).  DeFelice et al. (2006) and Toliver et al. (2012) found that the 

yield penalties for no-till soybean were more likely at high latitudes in the northern tier of U.S. 

states and increased on poorly drained soils, but could be mitigated to some extent by crop 

rotation.  Pittelkow et al. (2015) found that no-till reduced legume yields in humid environments, 

but crop rotation and maintaining continuous no-till for at least three years eliminated that risk.  

Ogle et al. (2012) found that soybean yields decreased on hydric soils under no-till, but also saw 

a benefit from maintaining no-till for multiple years.   

Still, the limited number of published tillage trials has necessitated low spatial resolution 

for such meta-analyses, which lends little support to tillage decision-making at the field to sub-

field scale.  Long-term tillage system comparisons in the Upper Midwest offer more detailed 

insight into the mechanisms behind unique soil physical and biological changes induced by 

conservation tillage, but their results can only be reliably extended to similar management 

systems and micro-environments (Dick et al., 1991; Pederson and Lauer, 2003; Robertson et al., 

2014). 
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1.5 TILLAGE DECISION-MAKING 

 

Neoclassical economic theory suggests that human beings make choices that are expected 

to maximize utility, or the decision-maker’s well-being (Edwards-Jones, 2006).  Financial gain is 

often assumed to represent utility, and thus farmers are frequently represented as rational profit 

maximizers (Feder and Umali, 1993).  From this theoretical position, economists have developed 

complex models of farmer decision-making that have significant power to predict decisions with 

strong business or financial components (Edwards-Jones, 2006; Feder and Umali, 1993).  

However, there is evidence that many farmers have developed a “post-productivist” self-identity, 

and other factors beyond financial status influence farming utility (Burton and Wilson, 2006).  

Therefore, many economic models break down when attempting to predict systems-level 

decisions where anticipated changes in utility are only partially related to finances.   

Many factors, less quantifiable than finances, such as health, happiness, and morality can 

contribute to conceptions of human well-being.  In addition, the rationality of human choice is 

augmented in several ways.  Rationality could perhaps be better described as subjective or 

“bounded” rationality (Simon, 1990).  Human choice occurs under uncertainty.  Decisions are 

based upon limited information formulated into beliefs about the available options, which may 

be more or less correct.  Because humans must base decisions on such limited information and 

because our analytic powers are also limited we tend to take short-cuts (Gintis, 2009). 

First in any decision process, several possible choices are discarded in unconscious, or 

preattentive, processing based on assumptions regarding the system at hand.  For example, a 

soybean grower may discard the idea of no-till if residue or manure management are their 

primary objective in tillage decision-making.  Secondly, we develop and apply heuristic rules to 

guide decision-making under uncertainty, often based on past experience or referring to what the 
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neighbors have chosen (Gintis, 2009).  Decision-making does not take place in exclusive space 

where only the decision-maker and options resound. Decision-makers gather information not 

only from their own experience but also from the experiences of those around them, in a process 

termed social learning (Bandura, 1986). Social relationships also evoke cultural norms that may 

lead an individual to make seemingly irrational decisions (Gintis, 2009).  

Many studies have sought to explain differences in producer adoption of conservation 

technologies (Knowler & Bradshaw, 2007; Reimer et al., 2012), and conservation tillage 

specifically (Bultena & Hoiberg, 1983; D’Emden et al., 2006, 2008; Rahm & Huffman, 1984; 

Wade et al., 2016).  Efforts to account for farmers’ tillage decision-making have largely been 

based on correlations between individual demographic, farm structure or socio-psychological 

variables and tillage behavior, frequently represented as discrete binary adoption of a practice 

like conservation tillage.  Limitations of this approach are many.  For example, tillage intensity 

often varies between crops or fields on an individual farm, and along a spectrum of soil 

disturbance intensity (ASAE, 2005; Morris et al., 2010).  This means that individual farmers 

cannot be easily classified as adopters/nonadopters of any one tillage system with confidence.   

Furthermore, few consistent socio-psychological and economic drivers of tillage behavior 

have been identified in the literature (Knowler & Bradshaw, 2006).  Access to and quality of 

information, financial capacity, and being connected to agency or local networks of farmers 

appear to be among the more important factors explaining conservation tillage adoption, but 

findings differ among individual studies and agroecological systems (Baumgart-Getz et al., 

2012).  Burton (2004) argued that advances in socio-psychological theory, particularly the 

Theory of Planned Behavior (TPB) should be applied to behavioral studies in agriculture in order 

to more accurately represent the complex decision-making processes of farmers.   
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The TPB suggests that individual beliefs about a behavior or practice determine 

behavioral intention, which drives actual behavior within the limits of external controls like 

capital or environmental conditions (Ajzen, 1991; Ajzen and Driver, 1992).  The intention of a 

farmer to engage in a behavior is determined by i) the degree to which this behavior is evaluated 

positively or negatively by the farmer (attitude), ii) the feeling of social pressure from others to 

perform or not perform the behavior (subjective norm) and iii) the subjective beliefs about the 

ease or difficulty of successfully performing the behavior (perceived behavioral control).  The 

TPB has recently been applied to studies of CT adoption among farmers, demonstrating 

significant differences in calculated behavioral intention between adopters and non-adopters of 

reduced and non-inversion tillage (Bijttebier et al., 2018; Wauters et al., 2010).  However, the 

TPB has not yet been applied to understanding farmers’ tillage behavior along a more realistic 

continuous spectrum of tillage intensity.  
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CHAPTER 2:  SOCIAL AND ECONOMIC DETERMINENTS OF TILLAGE 

BEHAVIOR AMONG MICHIGAN SOYBEAN PRODUCERS 

 

2.1 INTRODUCTION 

Reducing soil disturbance in annual cropping systems has long been recommended as a 

means of conserving the natural capital of soil and enhancing its ability to provide ecosystem 

services (Dominati et al., 2010; Faulkner, 1943; Syswerda & Robertson, 2014; Whiteside and 

Smith, 1941).  Conservation tillage (CT) has been associated with sequestration of carbon in 

soils and improvements in physical, chemical and biological functioning important for crop 

production (Alvarez, 2005; Blanco-Canqui et al., 2013).  Today, increasing soil health on arable 

land is also invoked as a potential solution to some of humanity’s greatest challenges, including 

global food security and climate change (Lal, 2004).  Farmers have adopted conservation tillage 

(CT) technologies, including no-till, on 51% of U.S. cropland in an effort to lower their cost of 

production (Weersink et al., 1992) and simultaneously realize the benefits of improved soil 

health (USDA-NASS, 2018).   

However, adoption of CT has been inconsistent, with implementation differing vastly 

across cropping systems and geographic regions.  For example, CT was in use on approximately 

70% of U.S. soybean acreage by 2012, making it the leading CT crop nationwide as compared to 

corn (~65%), wheat (~62%) and cotton (~40%) (Claassen et al, 2018).  Some regions of the U.S. 

have almost completely converted soybean acres to CT.  In a cluster of south central states 

known as the Prairie Gateway, CT is used on over 95% of soybean acres (Claassen et al, 2018).  

Despite long-term experiments in the Upper Midwest highlighting success with CT (e.g. 

Robertson et al., 2014), only 60% of soybeans grown in the region are planted using CT, which 
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is about 14% below the national average and roughly 37% below leading CT states like Kansas 

and Nebraska (Claassen et al, 2018; Wade et al., 2014).  

Many studies have sought to explain such differences in producer adoption of 

conservation technologies (Knowler & Bradshaw, 2007; Reimer et al., 2012), and CT 

specifically (Bultena & Hoiberg, 1983; D’Emden et al., 2006, 2008; Rahm & Huffman, 1984; 

Wade et al., 2016).  Neoclassical economic theory suggests that people seek to maximize their 

own well-being or utility (Edwards-Jones, 2006).  Financial gain is often assumed to represent an 

increase in utility, so farmers are frequently represented as rational profit maximizers (Feder and 

Umali, 1993).  From this rationale, limited adoption of no-till in the Upper Midwest might easily 

be dismissed.  Reduced tillage systems can compromise establishment and decrease yields of 

soybean by 2.4-6.4% at higher latitudes, which may in-turn reduce net profitability (DeFelice et 

al., 2006; Vanhie et al., 2015).  

Yet, there is evidence that most farmers have developed a “post-productivist” self-

identity (Burton and Wilson, 2006), and the rationality of farmer decision-making is augmented 

in several ways.  Rationality could perhaps be better described as “bounded” rationality (Simon, 

1990) constructed using limited information (Gintis, 2009) within influential social networks.  

Efforts to account for farmers’ perspectives in tillage decision-making have largely been based 

on correlations between individual demographic, farm system or socio-psychological variables 

and tillage behavior, frequently represented as discrete binary adoption of a practice like CT.  

Limitations of this approach are many.  For example, tillage intensity often varies between crops 

or fields on an individual farm, and along a spectrum of soil disturbance intensity (ASAE, 2005; 

Morris et al., 2010).  This means that individual farmers cannot be easily classified as 

adopters/nonadopters of CT with confidence.  Furthermore, few consistent socio-psychological 
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and economic drivers of tillage behavior have been identified in the literature (Knowler & 

Bradshaw, 2006).  Access to and quality of information, financial capacity, and being connected 

to agency or local networks of farmers appear to be among the more important factors explaining 

CT adoption, but findings differ among individual studies and agroecological systems 

(Baumgart-Getz et al., 2012). 

Burton (2004) argued that advances in socio-psychological theory, particularly the 

Theory of Planned Behavior (TPB) should be applied to behavioral studies in agriculture in order 

to more accurately represent the complex decision-making processes of farmers.  The TPB 

suggests that individual beliefs about a behavior or practice determine behavioral intention, 

which drives actual behavior within the limits of external controls like capital or environmental 

conditions (Ajzen, 1991; Ajzen and Driver, 1992).  The intention of a farmer to engage in a 

behavior is determined by i) the degree to which this behavior is evaluated positively or 

negatively by the farmer (attitude), ii) the feeling of social pressure from others to perform or not 

perform the behavior (subjective norm) and iii) the subjective beliefs about the ease or difficulty 

of successfully performing the behavior (perceived behavioral control) (Figure 2.1).  The TPB 

has recently been applied to studies of CT adoption among farmers, demonstrating significant 

differences in calculated behavioral intention between adopters and non-adopters of reduced and 

non-inversion tillage (Bijttebier et al., 2018; Wauters et al., 2010).  However, the TPB has not 

yet been applied to understanding farmers’ tillage behavior along a more realistic continuous 

spectrum of tillage intensity.  

In addition to the influence of attitude, subjective norms and perceived control captured 

by the TPB, there is increasing evidence that social connections within local networks influence 

farmer behavior, including their tillage practices (Baumgart-Getz et al., 2012; Ramirez, 2013; 
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Tessema et al., 2016).  Farmers exhibit a strong preference for accessing information through 

personal experience and the experiences of other farmers (Eckert and Bell, 2006).  Social 

interaction and information sharing among farmers in rural communities generates social capital 

that can influence individual behavior (Falk & Kilpatrick, 2000).  Ingram (2010) noted that 

farmer experimentation with reduced tillage is enhanced and validated by social learning within 

communities of practice.  Baumgart-Getz et al. (2012) found that interaction with neighboring 

farms and public agency personnel is positively correlated with adoption of best management 

practices like CT, while Tessema et al. (2016) showed that neighbor effect is a significant 

determinant of CT adoption. 

Recognizing the combined influence of economic, socio-psychological and social 

network variables on tillage behavior, we sought to understand tillage intensity among Michigan 

soybean producers through application of the TPB and social network analysis.  Our aim was to 

test the hypothesis that tillage intensity among this community is significantly influenced by 

farmers’ subjective beliefs about CT technologies, which are partially dependent on their status 

within a farmer network.  Using farmer survey data, we demonstrate that a continuous measure 

of tillage intensity can be accurately explained by modeling behavioral intention using a 

modified version of the TPB updated to include measures of social network centrality and 

engagement. 

The remainder of the article is organized as follows.  We first discuss our study area and 

sampling methodology targeting a constrained sample of Michigan soybean producers organized 

into three network groups.  We then review analysis of the survey data using mixed models and 

social network mapping guided by the TPB and social network theory.  This is followed by an 
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outline of our study results and discussion of their contribution to the state of knowledge 

regarding the social aspects farmer behavior. 

 

2.2 MATERIALS AND METHODS 

2.2.1 Study Area and Sample 

Our study focused on Michigan soybean producers participating in an on-farm 

observational tillage study coordinated by Michigan State University Extension (MSUE), known 

as the Jumpstarting Michigan Soybean Production Project (aka ‘Jumpstart Project’).  We 

recruited 33 commercial soybean growers in the spring of 2016, plus an additional two growers 

in 2017 to adjust for attrition.  Participants farmed in one of three geographic target areas in the 

Lower Peninsula of Michigan, which we refer to here as the Northeast, Central and Southwest 

regions (Figure 2.2).  Each target region included soybean fields distributed across 2-4 Michigan 

counties, and was associated with a local MSUE field crops educator on our research team.  Most 

of the participating growers were recruited through, and had previously collaborated with, 

MSUE or other public agencies like Conservation Districts, which was likely a source of bias in 

our sample.  However, this sampling approach also allowed us to test our hypothesis about the 

effects of established social networks on tillage behavior. 

Each grower in the study supplied to our sampling population 1-3 fields planted to 

soybean in 2016, and 1-3 more in 2017.  Fields were identified as “Good” or “Bad” as a form of 

sample stratification based on growers’ experiential knowledge of historic soybean performance 

on-site.  Six years of tillage history information was collected for each field using an initial 

written survey, including tillage tools used and number of passes (Appendix B).  Cumulative 

tillage intensity was quantified for each field using a simplified version of the Soil Tillage 
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Intensity Rating (STIR) formula from the NRCS RUSLE2 model (USDA-NRCS, 2008, 2016; 

Widman, 2004).  This formula assigns each tillage tool/operation a unique intensity coefficient 

and categorizes tillage systems based on their cumulative STIR score (Table 2.1).  According to 

Claassen et al. (2018), STIR more accurately characterizes tillage intensity than residue cover 

methods used historically to categorize fields as conventional, conservation tillage or no-till.  

STIR coefficients were averaged across tool type because detailed information like the working 

depth of tillage tools was not available.  Tillage intensity was thus calculated as STIR = Avg. 

Tillage Tool Coefficient * Number of Passes Reported.  Resulting long-term STIR values ranged 

from 0 - 851.50. 

 

2.2.2 Survey Design and Administration 

A second survey instrument was designed to measure important demographic and socio-

psychological variables, as well as network relationships among our farmer participants 

(Appendix B).  The survey was customized for each of the three study regions (Northeast, 

Central, and Southwest) and began with a series of questions asking how well respondents knew 

each of the other growers in their region on a scale from 1 (Not at all) to 5 (Extremely well) to 

permit social network mapping.  Respondents were also asked to rate the tillage intensity of other 

growers in their region on a scale from 1 (least intensive) to 5 (most intensive) as an objective 

measure of their knowledge of other growers’ production practices.   

The questionnaire continued to elicit responses to several Likert items related to the TPB 

on a scale from 1 (strongly disagree/extremely unlikely) to 7 (strongly agree/extremely likely).  

This included a) six questions measuring agreement with statements on various risks and benefits 

associated with reduced tillage in the literature to estimate respondents’ attitude toward CT (e.g. 



23 
 

Further reducing tillage will…decrease the cost of soybean production); b) nine questions 

measuring agreement with statements on various barriers to CT adoption to estimate perceived 

behavioral control (e.g. How much do you agree or disagree that the following limits your ability 

to further reduce tillage on your farm? - Soil type constraints); c) seven questions measuring 

agreement with statements on various referents’ opinion of CT (e.g. Do you believe that the 

following people/organizations agree-disagree that reduced tillage is a recommended practice for 

soybean production? - Jumpstart farmers within my region); and d) seven questions measuring 

respondents’ inclination to follow the advice of the same referents, which were used to weight 

items C serving as an estimate of subjective norms regarding CT (e.g. If one of these parties 

were to recommend that you further reduce tillage for soybean production, how likely would it 

be that you would take their advice? - Jumpstart farmers within my region).  Finally, respondents 

were asked to provide information on economic and demographic factors that might influence 

tillage intensity including their gender, age, education, annual household income, ethnicity, 

percentage of farm acres dedicated to soybeans, years of farming experience, percentage of 

owned vs. rented land, estimate dollars per acre spent on soil preparation and planting, whether 

or not a successor has been identified for the farm, and also their frequency of engagement with 

MSUE, the Jumpstart Project participants, and the Michigan Soybean Promotion Committee.   

The survey was administered online via the Qualtrics software platform in March – May 

of 2018 targeting all 35 soybean growers participating in the Jumpstart project.  An initial 

invitation to participate was made at regional grower meetings.  Reminder emails were sent two 

weeks after each meeting.  Growers that did not respond after an additional two weeks were 

contacted by phone with a follow-up request to complete the survey.  This resulted in twenty-

seven completed surveys, a 77% response rate.  The twenty-seven responding growers included 
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eight from the Northeast region, nine from the Central region and ten from the Southwest region 

who farmed a total of 98 fields in our on-farm sample, each with a different tillage history, which 

was treated as the effective sample size for analysis. 

 

2.2.3 Statistical Analysis 

Reliability of the TPB measurement scales for attitude, perceived behavioral control and 

subjective norm was assessed using Cronbach’s alpha (Cronbach, 1951).  Reliability was judged 

sufficient (threshold of alpha > 0.70) in all but our attitude scale.  In that case, removal of one 

survey item measuring agreement with the statement that “Further reducing tillage will increase 

pest (weed, insect, or disease) pressure in soybeans” was required to increase alpha above the 

threshold.  One attitude item gauging the effect of reducing tillage intensity on soybean yield had 

to be inversely coded to account for negative wording in the survey tool (“Further reducing 

tillage will decrease soybean yields”). 

Respondents’ attitude, subjective norm and perceived behavioral control were then calculated 

as the mean of the related survey items to equally weight their potential influence on behavioral 

intention.  Behavioral Intention (BI) was then calculated as: 

 

(1) (BI) = 𝑋̅𝑎i  + 𝑋̅((𝑠j ∗ 𝑡j)/7) - 𝑋̅𝑐k , 

 

where 𝑋̅𝑎i  is the mean of survey items related to attitude, 𝑋̅((𝑠j ∗ 𝑡j)/7) is the mean of 

individual referent scores multiplied by reported trust in those referents and divided by seven, 

and 𝑋̅𝑐k is the mean of individual control items.  The mean of control items was subtracted from 
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the sum of attitude and subjective norm scores because our survey questionnaire framed them as 

barriers to reducing tillage with higher scores indicating greater barriers to adoption. 

Linear mixed effects modeling (LME) was then applied to explain tillage intensity as a function 

of fixed behavioral intention, economic and demographic variables found to be significantly 

correlated with tillage behavior.  Mathematically, our model can be identified as: 

 

(2) Tillage Intensityij = β0j – β1BIij + β2χij + … + βpχij  + µj + ɛij 

 

Our models included a nested random effects structure consisting of [region [field]] to 

account for our non-random sampling approach.  LME models have several advantages over 

ordinary least squares regression models, particularly the ability to account for the inter-

dependency common in on-farm observational data through the inclusion of nested random 

effects (Burger et al., 2012; Coe, 2002).  This is accomplished by estimating parameters of a 

model of the covariance structure of the error, then using them to estimate the remaining 

parameters of the model with known variance.  In this case, it allowed random shifts to the 

model intercept for each field within a region to account for differences in field history, like crop 

rotation, and also differences across regional social networks.  Multi-model selection and 

inference was performed with a restricted maximum likelihood approach in the nlme package of 

R v3.5.3 (Pinheiro and Bates, 2004; R Development Core Team, 2019).     

Social network mapping and analysis was performed using the igraph package of R 

v3.5.3 (R Development Core Team, 2019).  Individual network maps were created for each of 

the three study regions by visualizing growers who indicated knowing one another as vertices 

(nodes) connected by edges (lines).  Arrows were used to indicate the direction of relationships 
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and edge thickness was weighted by how well one grower indicated knowing the other.  Vertices 

were color coded according to growers’ categorical tillage systems based on mean tillage 

intensity across all their fields.  Network centrality scores were calculated for each grower, 

including hub, authority and degree scores.  A grower’s hub score measures the number of 

outward connections a grower indicated having in their network divided by the total number of 

possible outward connections.  Authority score measures the number of inward connections a 

grower had based on others claiming to know them divided by the total possible, and degree 

scores are the sum of a grower’s hub and authority score, measuring their total number of 

connections in the network. Network layout was based on Fruchterman-Reingold association 

index, which places nodes that share more connections in common closer together (Fruchterman 

& Reingold, 1991). 

Finally, measures of network centrality and engagement were incorporated into a 

modified calculation of behavioral intention to determine if we could improve upon the 

traditional TPB model and its ability to predict tillage behavior.  This was accomplished by 

multiplying a grower’s hub score by seven, to make it equivalent to the other TPB model 

variables ranging from 1 to 7, then multiplying that value by a categorical rating of a grower’s 

frequency of engagement with their social network through the Jumpstart project adjusted for 

scale, such that: 

 

(3) Network connectivity = (7(HUB))*ENG/5 

 

where HUB equals a growers hub score and ENG equals a categorical measure of network 

engagement frequency from 1 (never) to 5 (once a week).  Because network connectivity proved 
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to be positively correlated with tillage intensity in our analysis, a grower’s calculated 

connectivity score was subtracted from their original behavioral intention value to generate a 

new network weighted behavioral intention score (BInet).  This modified BI value was 

subsequently used to predict tillage intensity in a new iteration of our final LME model.  

 

2.3 RESULTS 

Our sample was found to be representative of tillage practices for soybean across the state 

of Michigan and nationally, in that growers reported using CT on 64% of soybean fields during 

the study period (annual STIR 0-80 with no primary inversion tillage) and on 70% of study fields 

long-term (6 year cumulative STIR 0-480 with no primary inversion tillage).  Average 

respondent ratings of TPB items are shown in Table 2.2.  Agreement with attitude related items 

was much more pronounced than measures of subjective norms and behavioral controls.  This 

suggests that respondents generally perceived significant advantages associated with reducing 

soil disturbance (positive attitude), but did not feel that farm system variables (behavioral 

controls) or social norms had much influence on their ability or willingness to reduce tillage 

intensity.  Among the most agreed with attitude statements were the propositions that reducing 

tillage will reduce labor, reduce erosion and increase soil health.  Potential barriers to CT 

adoption were generally rated low, although weather and climate, machinery availability and 

cost, crop rotation and manure management were noted as possible constraints by some. 

Referents viewed as most supportive of CT and trustworthy included MSU, other farmers 

participating in the Jumpstart project and the MI Soybean promotion committee. 

Calculated behavioral intention (BI) scores not including our social network modification 

ranged from 3.61 to 12.51 and were negatively correlated with total tillage intensity as expected 
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(Pearson’s r = -0.271, P = 0.003).  A base LME model including BI as a single fixed effect and 

[region[field]] as nested random effects was significant (F1,96 = 7.97, P = 0.006), and explained a 

moderate amount of the variation in tillage intensity with a marginal R2 (R2m, fixed effects only) 

of 0.069 and conditional R2 (R2c, fixed and random effects) of 0.89.  Economic and demographic 

variables that were significantly correlated with tillage intensity on a pairwise basis were then 

added to generate a global LME model explaining tillage intensity including farmer age, years of 

farming experience, attainment of a graduate degree, percentage of the farm planted to soybeans 

and annual household income.  In this global model, BI (F1,84 = 11.98, P = 0.0008), income (F6,84 

= 5.20, P = 0.0001) and years of experience (F1,84 = 23.95, P < 0.0001) were significantly 

correlated with tillage intensity, while age, attainment of a graduate degree and percentage of the 

farm planted to soybeans were not.  A final reduced LME model including BI, income and 

farming experience was a significant improvement over the base model according to the 

likelihood ratio test and AIC, and explained a large proportion of the variation in tillage intensity 

(R2m = 0.31, R2c = 0.92) (Table 2.3). 

Social network mapping generated three unique visualizations representing the Northeast, 

Central and Southwest regions (Figure 2.4).  Overall network diameter for the Northeast region 

was 2, edge density was 0.82 and reciprocity was 0.91, suggesting that the Northeast growers 

were part of a close-knit network.  Network diameter for the Central region was also 2, but edge 

density was 0.69 and reciprocity was 0.84, indicating that growers in this region were slightly 

less well connected.  The Southwest region had the widest and least connected network with a 

diameter of 3, edge density of only 0.51 and reciprocity of 0.83.   

Of the three available measures of network centrality (hub, authority and degree scores), 

hub score showed the strongest pairwise correlation with tillage intensity.  Hub score was 
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therefore combined with our categorical measure for frequency of engagement with other 

Jumpstart growers using the formula above to calculate a social network connectivity score for 

each grower.  Because our analysis showed that this new measurement of network connectivity 

was positively correlated with tillage intensity (Pearson’s r = 0.42, P < 0.0001) network 

connectivity was subtracted from our original BI values, generating new BInet scores ranging 

from -0.22 to 11.27.  BInet was more strongly correlated with tillage intensity than our original 

measure of BI (Pearson’s r = -0.36, P = 0.0002).  Replace BI with BInet in our reduced LME 

model improved the model significantly, reducing both the AIC and Log likelihood, and 

increasing the proportion of variation explained by the fixed effects (R2m = 0.35, R2c = 0.93).  

Table 2.3 compares our three successive LME models.  

 

2.4 DISCUSSION 

Our results support the hypothesis that the tillage behavior of Michigan soybean growers 

is influenced by a combination of social psychological, economic and control variables in line 

with the TPB.  We also demonstrated that the TPB might be improved by incorporating measures 

of social network connectivity into the calculation of behavioral intention.  While this analysis 

represents patterns of behavior among a small constrained sample of farmers, the patterns that 

emerged in our models are largely consistent with past research conducted at much larger scales 

(e.g. Baumgart-Getz et al., 2012). 

The significant negative relationship between intention to reduce tillage intensity and 

tillage intensity behavior suggests that our items measuring farmers’ attitudes, subjective norms, 

and perceived behavioral control over their tillage practice were robust.  The positive 

relationship between household income and tillage intensity is supported by the literature in one 
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sense because CT is recognized as a cost saving measure, which may not be necessary for 

growers with more disposable income (Weersink et al., 1992).  However, income and capital are 

also frequently positively associated with adoption of conservation best practices, which seems 

to contradict our findings (Baumgart-Getz et al., 2012).  Nevertheless, the role of financial 

capital as a strong external control on farmer behavior is widely recognized and was apparent in 

our study. 

Farmer experience has shown inconsistent effects on adoption of conservation practices 

and CT specifically (Baumgart-Getz et al., 2012; Knowler & Bradshaw, 2006).  On one hand, 

farmers experience often covaries with age, which suggests that older and more experienced 

farmers may have less time for, or interest in, innovation including adoption of new conservation 

practices.  However, more experienced farmers may also be more skilled, well established, or 

face less risk when testing new practices, all which could encourage adoption of something like 

CT (Ingram, 2010).  Our analysis showed a negative correlation between years of experience and 

tillage intensity, supporting the later conclusion. 

The negative relationship between network connectivity and CT observed on our study 

contradicts past research showing that engagement in social networks, particularly those 

including like-minded experts or conservation practitioners, can facilitate CT adoption 

(Baumgart-Getz et al., 2012; Ingram, 2010; Ramirez, 2013; Tessema et al., 2016).  We sought 

grower input to assist in interpreting this finding, which raised an intriguing point.  Growers 

shared the perspective that being well-connected and visible in their network may at times 

increase the risk of innovation.  For example, one grower who was also a former extension agent 

and quite prominent in his community told a story of trying no-till, which resulted in a crop 
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failure due to uncontrolled weed pressure.  He commented that he would never try no-till again 

because of the negative reaction from neighbors regarding his poor crop. 

Innovation resistance, associated with network connectivity in this case, is an under 

studied phenomenon due to the strong pro-adoption bias present in most technology adoption 

research (Ram, 1987; Rogers, 2010).  Many farmers demonstrate particularly risk-averse 

decision-making.  Risk perceptions are socially constructed, which suggests that the strength of 

one’s affiliation with a particular social network could easily influence risk perceptions 

(Wilkinson, 2001).  Related to risk aversion is what Gintis (2009) called “time-inconsistency” in 

decision making, which can also bolster innovation resistance.  Farmers tend to discount long-

term risks, like soil degradation, and instead maximize short-term utility, as in tillage for weed 

control (Doohan et al. 2010).  Performance uncertainty and perceived risk can further contribute 

to innovation resistance, and "major" or "discontinuous" innovations like CT threaten greater 

disruption of routine behavior, generating higher levels of perceived risk (Marra et al., 2003; 

Ram, 1987).  A previous study showed that economic risk aversion among farmers was 

associated with delayed adoption of no-till in Michigan (Krause and Black, 1995).  Weaker 

network ties may reduce the social risk of failure and are sometimes associated with greater 

capacity for creativity and innovation (Perry-Smith & Shalley, 2003).   

 

2.5 CONCLUSION 

Improved understanding of the many variables that influence farmers’ tillage decisions 

can be used to target extension outreach for greater efficacy.  Our study suggests that farmers 

with greater household income, more farming experience and weaker social network 

connectivity may be more likely to adopt CT technologies.  In addition to these factors, 
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accounting for farmers’ subjective perspectives on the efficacy of CT (attitude), opinion of others 

regarding CT (subjective norm) and barriers to CT adoption is critical for the future success of 

outreach encouraging CT adoption. 

 

 

2.6 TABLES AND FIGURES 

 

 

 

Table 2.1.  An example of STIR coefficients associated with particular tillage practices in the 

RUSLE2 model, adapted from USDA-NRCS, 2008. 
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Attitude 

Mean 

Reduce 

cost 

Reduce 

labor 

Reduce 

erosion 

Reduce 

soybean 

yield 

Increase 

soil health 
    

5.60 5.85 6.26 6.15 3.78 5.96     

Control 

Mean 
Soil type Manure Equipment Weather 

Growing 

season 

length 

Labor 

Avail. 

Crop 

rotation 

Financial 

capital 
Knowledge 

2.21 2.33 2.35 2.48 2.48 2.04 2.11 2.37 2.04 1.73 

Subjective 

Norm 

Mean 

Jumpstart 

farmers 

Other 

farmers 

Michigan 

State Univ. 
Agribusiness Landlords 

General 

public 

MI 

Soybean 

Promotion 

Committee 

  

3.57 4.07 3.22 4.60 3.53 3.20 2.51 3.82   

 

Table 2.2.  Mean grower responses to TPB items on a scale from 1 (strongly disagree) to 7 

(strongly agree) that reducing tillage intensity a) will…, b) is constrained by…, and c) is 

recommended by…  Attitude item “increase pests” was removed to improve index reliability and 

“reduce soybean yield” was reverse coded.  Behavioral control items were framed as potential 

barriers to adoption of conservation tillage. 

 

 

 
 

Figure 2.1. Representation of Ajzen's (1991) Theory of Planned Behavior. Adapted from Eagly 

and Chaiken (1993, p. 187). 
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Figure 2.2. A map of Michigan showing study soybean field (S) locations on the farms in 

Northeast, Central and Southwest Lower Michigan. 
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Figure 2.3. Social network maps of the Northeast (a), Central (b) and Southwest regional networks.  Vertex color represents mean 

tillage intensity where red = no-till, gold = conservation tillage and grey = conventional tillage.  Vertex size is weighted by authority 

score, and edge thickness is weighted by the reported strength of relationships.  Network layout is based on the Fruchterman-Reingold 

association index.     
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Table 2.3. Comparison of three LME models explaining tillage intensity as a function of 

behavioral intention (Model 1), behavioral intention plus income and years of experience (Model 

2), and behavioral intention network plus income and year of experience (Model 3).  

 

 

2.7 REFERENCES 

Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision 

Processes, 50(2), 179–211. 

Ajzen, I., & Driver, B. L. (1992). Contingent value measurement: On the nature and meaning of 

willingness to pay. Journal of Consumer Psychology, 1(4), 297–316. 



37 
 

Alvarez, R. (2005). A review of nitrogen fertilizer and conservation tillage effects on soil organic 

carbon storage. Soil Use and Management, 21(1), 38–52. 

ASAE. (2005). Terminology and Definitions for Soil Tillage and Soil-Tool Relationships 

American Society of Agricultural Engineers. ASAE, EP291.3(FEB2005). Retrieved from 

https://prod.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs144p2_053410.pdf 

Baumgart-Getz, A., Prokopy, L. S., & Floress, K. (2012). Why farmers adopt best management 

practice in the United States: A meta-analysis of the adoption literature. Journal of 

Environmental Management, 96(1), 17–25. 

Bijttebier, J., Ruysschaert, G., Hijbeek, R., Werner, M., Pronk, A. A., Zavattaro, L., … 

Marchand, F. (2018). Adoption of non-inversion tillage across Europe: Use of a behavioural 

approach in understanding decision making of farmers. Land Use Policy, 78, 460–471. 

Blanco-Canqui, H., Shapiro, C. A., Wortmann, C. S., Drijber, R. A., Mamo, M., Shaver, T. M., 

& Ferguson, R. B. (2013). Soil organic carbon: The value to soil properties. Journal of Soil 

and Water Conservation , 68(5), 129A-134A. https://doi.org/10.2489/jswc.68.5.129A 

Bultena, G. L., & Hoiberg, E. O. (1983). Factors affecting farmers’ adoption of conservation 

tillage. Journal of Soil and Water Conservation, 38(3), 281–284. 

Bürger, J., de Mol, F., & Gerowitt, B. (2012). Influence of cropping system factors on pesticide 

use intensity–A multivariate analysis of on-farm data in North East Germany. European 

Journal of Agronomy, 40, 54–63. 



38 
 

Burton, R. J. F. (2004). Reconceptualising the ‘behavioural approach’in agricultural studies: a 

socio-psychological perspective. Journal of Rural Studies, 20(3), 359–371. 

Burton, R. J. F., & Wilson, G. A. (2006). Injecting social psychology theory into 

conceptualisations of agricultural agency: towards a post-productivist farmer self-identity? 

Journal of Rural Studies, 22(1), 95–115. 

Cannell, R. Q., & Hawes, J. D. (1994). Trends in tillage practices in relation to sustainable crop 

production with special reference to temperate climates. Soil and Tillage Research, 30(2–4), 

245–282. 

Claassen, R., Bowman, M., Mcfadden, J., Smith, D., & Wallander, S. (2018). Tillage Intensity 

and Conservation Cropping in the United States United States Department of Agriculture. 

EIBN-197(197). Retrieved from www.ers.usda.gov 

Coe, R. (2002). Analyzing ranking and rating data from participatory on-farm trials. Quantitative 

Analysis of Data from Participatory Methods in Plant Breeding, 44–65. 

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 

16(3), 297–334. 

D’Emden, F. H., Llewellyn, R. S., & Burton, M. P. (2008). Factors influencing adoption of 

conservation tillage in Australian cropping regions. Australian Journal of Agricultural and 

Resource Economics, 52(2), 169–182. 

DeFelice, M. S., Carter, P. R., & Mitchell, S. B. (2006). Influence of tillage on corn and soybean 

yield in the United States and Canada. Crop Management, 5(1). 



39 
 

D’Emden, F. H., Llewellyn, R. S., & Burton, M. P. (2006). Adoption of conservation tillage in 

Australian cropping regions: an application of duration analysis. Technological Forecasting 

and Social Change, 73(6), 630–647. 

Dominati, E., Patterson, M., & Mackay, A. (2010). A framework for classifying and quantifying 

the natural capital and ecosystem services of soils. Ecological Economics, 69(9), 1858–

1868. https://doi.org/10.1016/J.ECOLECON.2010.05.002 

Doohan, D., Wilson, R., Canales, E., & Parker, J. (2010). Investigating the human dimension of 

weed management: new tools of the trade. Weed Science, 58(4), 503–510. 

Eckert, E., & Bell, A. (2006). Continuity and change: Themes of mental model development 

among small-scale farmers. Journal of Extension, 44(1), 1FEA2. 

Edwards-Jones, G. (2006). Modelling farmer decision-making: concepts, progress and 

challenges. Animal Science, 82(6), 783–790. 

Falk, I., & Kilpatrick, S. (2000). What is social capital? A study of interaction in a rural 

community. Sociologia Ruralis, 40(1), 87–110. 

Faulkner, E. H. (1943). Plowman’s folly (Vol. 56). LWW. 

Feder, G., & Umali, D. L. (1993). The adoption of agricultural innovations: a review. 

Technological Forecasting and Social Change, 43(3–4), 215–239. 



40 
 

Fruchterman, T. M., & Reingold, E. M. (1991). Graph drawing by force‐directed placement. 

Software: Practice and Experience, 21(11), 1129–1164. https://doi.org/10.1007/978-3-319-

64471-4_31 

Gintis, H. (2011). The Bounds of Reason: Game Theory and the Unification of the Social 

Sciences. In Princeton University Press (Vol. 78). https://doi.org/10.1111/j.1468-

0335.2011.00882.x 

Ingram, J. (2010). Technical and social dimensions of farmer learning: an analysis of the 

emergence of reduced tillage systems in England. Journal of Sustainable Agriculture, 34(2), 

183–201. 

Joao, A. R. B., Luzardo, F., & Vanderson, T. X. (2015). An interdisciplinary framework to study 

farmers decisions on adoption of innovation: Insights from Expected Utility Theory and 

Theory of Planned Behavior. African Journal of Agricultural Research, 10(29), 2814–2825. 

https://doi.org/10.5897/AJAR2015.9650 

Knowler, D., & Bradshaw, B. (2007). Farmers’ adoption of conservation agriculture: A review 

and synthesis of recent research. Food Policy, 32(1), 25–48. 

Krause, M. A., & Black, J. R. (1995). Optimal adoption strategies for no-till technology in 

Michigan. Review of Agricultural Economics, 299–310. 

Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food security. 

Science, 304(5677), 1623–1627. 



41 
 

Marra, M., Pannell, D. J., & Ghadim, A. A. (2003). The economics of risk, uncertainty and 

learning in the adoption of new agricultural technologies: where are we on the learning 

curve? Agricultural Systems, 75(2–3), 215–234. 

Morris, N. L., Miller, P. C. H., Orson, J. H., & Froud-Williams, R. J. (2010). The adoption of 

non-inversion tillage systems in the United Kingdom and the agronomic impact on soil, 

crops and the environment—A review. Soil and Tillage Research, 108(1–2), 1–15. 

Perry-Smith, J. E., & Shalley, C. E. (2003). The social side of creativity: A static and dynamic 

social network perspective. Academy of Management Review, 28(1), 89–106. 

Philip Robertson, G., Gross, K. L., Hamilton, S. K., Landis, D. A., Schmidt, T. M., Snapp, S. S., 

& Swinton, S. M. (2014). Farming for ecosystem services: An ecological approach to 

production agriculture. BioScience, 64(5), 404–415. 

Pinheiro, J., & Bates, D. (2002). Mixed-Effect Models in S and S-plus. In Journal of The 

American Statistical Association - J AMER STATIST ASSN (Vol. 96). 

https://doi.org/10.1007/978-1-4419-0318-1 

Rahm, M. R., & Huffman, W. E. (1984). The adoption of reduced tillage: the role of human 

capital and other variables. American Journal of Agricultural Economics, 66(4), 405–413. 

Ram, S. (1987). A model of innovation resistance. ACR North American Advances. 

Ramirez, A. (2013). The influence of social networks on agricultural technology adoption. 

Procedia-Social and Behavioral Sciences, 79, 101–116. 



42 
 

Reimer, A. P., Thompson, A. W., & Prokopy, L. S. (2012). The multi-dimensional nature of 

environmental attitudes among farmers in Indiana: implications for conservation adoption. 

Agriculture and Human Values, 29(1), 29–40. 

Rogers, E. M. (2010). Diffusion of innvations. In IGI Global. https://doi.org/10.4018/978-1-

60566-038-7.ch005 

Simon, H. (1990). Reason in human affairs. Stanford University Press. Stanford, CA. 

Syswerda, S. P., & Robertson, G. P. (2014). Ecosystem services along a management gradient in 

Michigan (USA) cropping systems. Agriculture, Ecosystems & Environment, 189, 28–35. 

https://doi.org/10.1016/J.AGEE.2014.03.006 

Tessema, Y. M., Asafu-Adjaye, J., Kassie, M., & Mallawaarachchi, T. (2016). Do neighbours 

matter in technology adoption? The case of conservation tillage in northwest Ethiopia. 

African Journal of Agricultural and Resource Economics, 11(311-2016–5659), 211. 

U.S. Department of Agriculture, N.A.S.S. (2018). 2017 Census of Agriculture. 

U.S. Department of Agriculture, N.R.C.S. (2008). Soil Tillage Intensity Rating (STIR). 

U.S. Department of Agriculture, N.R.C.S. (2016). Conservation Practice Standard Code 345: 

Residue and tillage management, reduced tillage. 

Vanhie, M., Deen, W., Lauzon, J. D., & Hooker, D. C. (2015). Effect of increasing levels of 

maize (Zea mays L.) residue on no-till soybean (Glycine max Merr.) in Northern production 

regions: A review. Soil and Tillage Research, 150, 201–210. 



43 
 

Wade, T., Claassen, R., & Wallander, S. (2015). Conservation-Practice Adoption Rates Vary 

Widely by Crop and Region. United States Department of Agriculture Economic Research 

Service, EIB-147(147), 40. Retrieved from 

https://www.ers.usda.gov/webdocs/publications/44027/56332_eib147.pdf?v=42403 

Wade, T., Kurkalova, L., & Secchi, S. (2016). Modeling field-level conservation tillage adoption 

with aggregate choice data. Journal of Agricultural and Resource Economics, 41(2), 266–

285. Retrieved from http://www.waeaonline.org/UserFiles/file/JAREMay20166Wade266-

285.pdf 

Wauters, E., Bielders, C., Poesen, J., Govers, G., & Mathijs, E. (2010). Adoption of soil 

conservation practices in Belgium: an examination of the theory of planned behaviour in the 

agri-environmental domain. Land Use Policy, 27(1), 86–94. 

Weersink, A., Walker, M., Swanton, C., & Shaw, J. (1992). Economic comparison of alternative 

tillage systems under risk. Canadian Journal of Agricultural Economics/Revue Canadienne 

d’agroeconomie, 40(2), 199–217. 

Whiteside, E. P., & Smith, R. S. (1941). Soil changes associated with tillage and cropping in 

humid areas of the United States. 

Widman, N. (2004). RUSLE2 - Instructions & User Guide. USDA-Natural Resources 

Conservation Service, Columbus OH. 

Wilkinson, I. (2001). Social theories of risk perception: At once indispensable and insufficient. 

Current Sociology, 49(1), 1–22. 



44 
 

CHAPTER 3:  A TEMPERATURE DEPENDENT YIELD PENALITY FOR 

NO-TILL SOYBEANS IN MICHIGAN 

 

3.1 INTRODUCTION 

Many U.S. soybean producers have adopted conservation tillage technologies over the 

last 30 years in an effort to lower their cost of production (Weersink et al., 1992) and 

simultaneously realize the benefits of improved soil health (Alvarez, 2005; Blanco-Canqui et al., 

2013; Hammerbeck et al. 2012; Syswerda and Robertson, 2014).  Soybean is generally well 

adapted to conservation tillage and no-till production, with yields equivalent to conventional 

tillage on a global and national basis (DeFelice et al., 2006; Pittelkow et al., 2015).  Producer 

adoption data indicates that no-till was in use on approximately 39% of U.S. soybean acreage by 

2012, with another 31% managed using some form of conservation tillage other than no-till that 

year, outpacing conservation tillage adoption in corn, wheat and cotton (Claassen et al, 2018; 

Wade et al., 2015).   

However, accumulating research and farmer experience have demonstrated that reduced 

tillage systems can compromise establishment and yield of soybean in cooler climates of the 

Upper Midwest, especially on poorly drained soils and where large amounts of crop residue are 

present at planting (DeFelice et al., 2006; Vanhie et al., 2015).  In a regional meta-analysis of 43 

soybean tillage experiments, DeFelice et al. (2006) found average yield penalties of 2.4-6.4% 

associated with no-till in the region.  This may partially explain why growers in the Upper 

Midwest have lagged behind other regions of the U.S. in conservation tillage adoption (USDA-

NASS, 2018, Wade et al., 2015).  Only 60% of soybeans grown in states like Michigan are 

planted using conservation tillage (including no-till), which is about 14% below the national 
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average and roughly 37% below leading conservation tillage states like Kansas and Nebraska 

(Claassen et al, 2018; Wade et al., 2015). In some Midwest States, growers that had adopted 

conservation tillage are now reverting from the practice, increasing soil disturbance on their 

farms to close perceived soybean yield gaps and also address new challenges like herbicide 

resistant weeds (Jussaume & Ervin, 2016; Reicosky et al., 2011; USDA ARMS, 2012; Vanhie et 

al., 2015).  

Such geographic variability in conservation tillage adoption and outcomes might be 

expected, as research has demonstrated that biochemical processes in soil and resulting plant 

growth are influenced not by the tillage tool used, but by the soil environment created (Carter, 

1994; Havlin et al., 1990).  A single tillage tool is capable of producing differing soil 

environments depending on how it interacts with extant soil and environmental conditions 

(Soane and Pidgeon, 1975).  Two of the primary effects of soil disturbance are warming and 

drying, which can create very different soil environments that are more or less favorable for crop 

growth depending on baseline moisture and temperature prior to tillage.  This highlights the site-

specific nature of tillage outcomes and suggests that tillage technologies must be further adapted 

to the environment(s) and cropping systems of the Upper Midwest to optimize profitability and 

sustainability (Lal, 2015; Luo & Sun, 2010; Venterea et al., 2006).   

Scientists made early attempts to classify soils by their adaptability to conservation 

tillage, based on texture, structure and drainage, but those efforts were limited in scope and 

uncertainty remains regarding which taxonomic characteristics should be included in 

classification models for accurate and efficient estimation of tillage response in a specific 

cropping system (Cannell et al., 1978,1994; Cosper, 1983).  Recent meta-analyses have begun to 

delineate where conservation tillage may be more or less advisable for Midwest soybean growers 
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(DeFelice et al., 2006; Ogle et al., 2012; Pittelkow et al., 2015, Toliver et al., 2012).  DeFelice et 

al. (2006) and Toliver et al. (2012) found that the yield penalties for no-till soybean were more 

likely at high latitudes in the northern tier of U.S. states and increased on poorly drained soils, 

but could be mitigated to some extent by crop rotation.  Pittelkow et al. (2015) found that no-till 

reduced legume yields in humid environments, but crop rotation and maintaining continuous no-

till for at least three years eliminated that risk.  Ogle et al. (2012) found that soybean yields 

decreased on hydric soils under no-till, but also saw a benefit from maintaining no-till for 

multiple years.  Still, the limited number of published tillage trials has necessitated low spatial 

resolution for such meta-analyses, which lends little support to tillage decision-making at the 

field to sub-field scale.  Long-term tillage system comparisons in the Upper Midwest offer more 

detailed insight into the mechanisms behind unique soil physical and biological changes induced 

by conservation tillage, but we posit that their results can only be reliably extended to similar 

management systems and micro-environments (Dick et al., 1991; Pederson and Lauer, 2003; 

Robertson et al., 2014).   

Realizing the full potential of conservation tillage in a state like Michigan will therefore 

depend on advancing our understanding of, and ability to predict, what level of tillage intensity is 

optimal across gradients of several interrelated environmental variables.  This requires 

documentation of both long-term management history and current sub-field variability in 

environmental conditions and crop response across a large geographic area.  On-farm 

participatory research has been used successfully to address similar questions about site-specific 

management X environment interactions in agriculture by leveraging commercial farms to 

capture the necessary data and also facilitating iterative co-learning among farmers and 

researchers through direct interaction (Drinkwater, 2002; Snapp & DeDecker, in-press).   
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Recognizing the opportunity to improve conservation tillage adoption and outcomes in 

the Upper Midwest and similar environments, we sought to compare soybean yield under 

different long-term tillage regimes in the State of Michigan and identify key environmental 

factors that affect soybean yield under no-till in Michigan. Our aim was to test the hypotheses 1) 

conservation tillage is associated with lower soybean yields, and 2) that the relationship between 

tillage intensity and soybean yield is context dependent at the sub-field level, based on the site-

specific interaction of tillage and soil properties.  Using on-farm observations and producer 

management data, we demonstrate that no-till does generally result in lower soybean yields in 

Michigan, and this negative effect on yield can be mitigated by either increasing soil disturbance 

or by targeted application of no-till in warmer locations, on low organic matter soils, and in 

delayed planting scenarios. 

 

3.2 MATERIALS AND METHODS 

3.2.1 Experimental Design 

Michigan farmers plant nearly 931,000 ha of soybean (2.6% of U.S. soybean crop) in 

rotation with corn, wheat, and sometimes hay or specialty crops.  Soybeans are grown on a wide 

range of Alfisols and Spodosols, primarily in the state’s Lower Peninsula from 41.5 - 45.5 

degrees N latitude using the entire breadth of commercially available tillage/no-till tools.  We 

therefore assumed that on-farm tillage outcomes, based on soil-tool interactions, would be highly 

variable.  To account for this diversity, we conducted an observational study on a sample of 

commercial soybean fields in Michigan during the 2016-17 cropping years.  Field history data 

was collected using a grower survey.  Long-term tillage intensity was thus quantified and fields 

categorized by tillage system (no-till, conservation, conventional).  Direct observations of 
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multiple plant, soil and weather covariates were made at the sub-field level.  Data reduction and 

mining techniques were subsequently applied to identify important environmental and 

management variables associated with differences in soybean yield in no-till systems. 

We recruited 33 commercial soybean growers in the spring of 2016, plus an additional 

two growers in 2017 to adjust for attrition.  Participants farmed in one of three geographic target 

areas in the Lower Peninsula of Michigan, which we refer to here as the Northeast, Central and 

Southwest regions (Figure 2.2).  Each target region included fields distributed across 2-4 

Michigan counties, and was associated with a local MSU Extension field crops educator on our 

research team.  Most of the growers had previously collaborated with MSU Extension or other 

public agencies like Conservation Districts, which was likely a source of bias in our sample.   

Each grower in the study supplied to our sampling population 1-3 fields planted to 

soybean in 2016, and 1-3 more in 2017.  Fields were identified as “Good” or “Bad” as a form of 

sample stratification based on growers’ experiential knowledge of historic soybean performance 

on-site.  Six years of management history information was collected for each field using a 

written survey (Appendix B).  Field histories included crop rotation, tillage tools and number of 

passes, plant date, variety, row spacing and seeding rate information, as well as a binary (Y/N) 

record of irrigation, cover crop and manure use.   

To account for intra-field variation, fields were sub-divided by predominant soil types 

into ≤ 3 zones, each at least 0.81 ha in size.  Soil zones nested within fields were considered our 

experimental unit (n=273), and three 3.35 M2 quadrats were randomly established in each soil 

zone shortly after soybean planting to replicate crop observations.  Soil penetration resistance at 

0-15 cm and 15-45 cm deep, ¼ m2 residue cover images and zone-wide aggregate soil samples 

(20-30 1.27 cm diameter cores ~20 cm deep) were collected within one week after planting.  At 
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maturity, soybean plants were clipped from sampling quadrats and grain threshed using a 

research scale bundle thresher.  Grain weight, moisture and test weight were recorded at harvest.   

Soil samples were stored at 4 ̊ C, sieved through a 6mm sieve and divided into three 

subsamples.  One batch of soil subsamples was dried at 35  ̊ C, pulverized to fine powder with a 

shatterbox mill 8515 (SPEX) and analyzed for total organic carbon by dry combustion in a 

CHNS analyzer at A & L Great Lakes Lab to gauge baseline soil health status (Nelson and 

Sommers, 1996).  Cornell University Soil Health Lab analyzed a second batch of subsamples to 

quantify surface texture in an effort to confirm a priori soil classifications and also quantify 

inherent differences in site potential (Kettler et al., 2001).  We analyzed the final batch of soil 

subsamples for permanganate oxidizable carbon (POXC) (Culman et al., 2012), potentially 

mineralizable nitrogen (PMN) (Drinkwater et al., 1996; Gugino et al., 2009), and carbon 

mineralization (Franzluebbers et al., 1996, 2000) to measure the short-term effects of soil 

disturbance on C and N cycling. 

Short-term (fall-spring of soybean year) and long-term (six-year cumulative) tillage 

intensity was quantified for each experimental unit using a simplified version of the STIR 

formula from the NRCS RUSLE2 model (USDA-NRCS, 2008, 2016; Widman, 2004).  This 

formula assigns each tillage tool/operation a unique intensity coefficient and categorizes tillage 

systems based on their cumulative STIR score.  According to Claassen et al. (2018), STIR more 

accurately characterizes the continuous spectrum of tillage intensity than residue cover methods 

used historically to categorize tillage systems.  STIR coefficients were averaged across tool type 

because detailed information like the working depth of tillage tools was not available.  Tillage 

intensity was thus calculated as STIR = Avg. Tillage Tool Coefficient * Number of Passes 

Reported.  Resulting short-term STIR values ranged from 0 -120.69 and long-term STIR values 
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ranged from 0 - 851.50.  Fields were further classified into one of three categorical tillage 

systems based on their long-term STIR value.  The U.S. Dept. of Agriculture Natural Resource 

Conservation Service (USDA-NRCS) classifies conservation tillage as an annual STIR score < 

80 with no primary inversion tillage (USDA-NRCS, 2016).  We therefore classified fields with 

long-term STIR values < 30 as no-till, fields with STIR values 30 – 480 and no primary 

inversion tillage as Conservation Tillage, and fields with primary inversion tillage or STIR 

values > 480 were classified as Conventional Tillage (USDA-NRCS, 2008, 2016; Widman, 

2004).   

Our analysis focused on yield gap, rather than raw yield, as the dependent variable to 

account for differences in soybean yield potential based on environment, soybean genetics, etc. 

across the state and between tillage systems.  Soybean yield gap was calculated in two ways for 

each observation; yield gap (YG) as the percent difference between zone yield and farmer 

attainable yield potential within each region (highest observed zone yield within each region) for 

the purpose of comparisons across tillage systems, and yield gap-tillage (YGT) as the percent 

difference between zone yield and farmer attainable yield potential within each tillage system by 

region (highest observed zone yield within each tillage system, by region) for the purpose of 

comparisons within tillage systems (Rattalino Edreira, et al., 2017; van Ittersum et al., 2013).  

The maximum yield numbers used to calculate yield gap were observed in dryland culture, and 

should therefore be interpreted as a water limited yield potential, except in the case of the 

Southwest Region where irrigation capacity was nearly ubiquitous.   
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3.2.2 Statistical Analysis 

Statistical analyses were conducted within RStudio: Integrated Development 

Environment for R (RStudio, Inc., 2016).  Hierarchical linear mixed effects (LME) models were 

developed first to explain YG as a function of tillage system statewide.  The models included 

tillage system as the sole fixed effect, plus a nested random effects structure consisting of [year 

[field [zone]]] to account for our observational study design (R Development Core Team, 2019).  

LME models have several advantages over ordinary least squares regression models, particularly 

the ability to account for the inter-dependency common in on-farm observational data through 

the inclusion of nested random effects (Burger et al., 2012; Coe, 2002).  This is accomplished by 

estimating parameters of a model of the covariance structure of the error, then using them to 

estimate the remaining parameters of the model with known variance.  In this case, it allowed 

random shifts to the model intercept for each [year [field [zone]]] to account for baseline 

differences in soybean yield potential due to soil quality, weather variability or management 

history other than tillage.  Multi-model selection and inference was performed with a restricted 

maximum likelihood approach in the nlme package of R v3.5.3 (Pinheiro and Bates, 2004).  

Principal Components Analysis (PCA) was then used to model covariances and reduce 

dimensionality in our large set of potential independent variables that could interact with no-till 

to influence soybean yield (Yeater & Villamil, 2018).  Twenty normalized location (latitude and 

longitude), soil (percent sand, silt and clay, aggregate stability, surface and subsurface resistance, 

available water capacity, percent organic matter, total and labile organic carbon, total organic 

nitrogen P, K, Mg, Ca and Cation exchange capacity) and weather (precipitation and growing 

degree day accumulation) variables were included in the analysis.  Normalization was achieved 

by first centering the data, subtracting variable means from each observation.  Then scaling was 
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applied by dividing each centered observation by the variable’s standard deviation.  PCA 

generated a set of twenty linearly uncorrelated principal components ordered by the proportion 

of variance in the original datasets that they each explained.  Principal components (PCs) can be 

considered as latent variables (conceptual; represented as factors), demonstrating the interaction 

of important covariates and nature of their combined influence on a dependent variable.  This 

was useful in our case to address significant collinearity among our many independent variables, 

which is common in soils and ecology data (Harrison et al., 2018).   

In an effort to understand the influence of our environmental PCs on yield gap, no-till 

cases were first sorted by yield gap (YGT) to identify those in the upper vs. lower terciles as 

examples of the least and most successful no-till cases in a given region.  Logistic regression was 

then applied to measure the probability of cases being in the upper vs. lower tercile of yield gap 

based upon PC values and complementary management practices (Peng et al., 2002).  Principal 

components were selected for inclusion in the logistic regression models based on their 

relationship to the binary response variable (upper/lower tercile of yield gap) using a forward 

stepwise method and conditional likelihood-ratio tests to select between nested models (Aguilera 

et al., 2006).  This method emphasizes the relationship between PCs and the dependent variable 

in model development, whereas it is otherwise common to use only the first few PCs that explain 

a large proportion of the variance in a dataset, independent of the dependent variable of interest.   

First, the correlation between individual PCs and binary yield gap was tested using single 

logistic models and likelihood-ratio tests comparing their performance to the null model.  PCs 

significantly correlated with yield gap were subsequently added to a multiple logistic regression 

model in a stepwise fashion until further additions failed to improve the model.  The same 

approach was used to further expand our multiple logistic regression model by adding 
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complementary management variables that might interact with environmental conditions 

(represented by PCs) to better explain binary yield gap (rotational diversity, previous crop, soil 

residue cover, planting date, planting population, row spacing, and seed treatment).  A final 

model that minimized residual deviance and AIC was selected for no-till systems, including two 

PCs and one complimentary management variable.  Heavily weighted independent variables 

were extracted from each of the PCs included in our model, and partial correlations between the 

independent variables and YGT were calculated to understand their individual contributions to 

yield gap in Michigan no-till systems.   

 

3.3  RESULTS 

3.3.1 Sample Description 

The 136 soybean fields in our original sample ranged from 2.06-52.53 ha in size (16.46 

ha avg.) and captured 2,238.36 total hectares, or approximately 0.12% of Michigan’s soybean 

crop in a given year. Each field contained 1-3 primary soil types (2.00 avg.), which were 

managed homogeneously at the field scale by producers using a range of long-term no-till 

(17.36%), conservation (56.23%) and conventional (26.41%) tillage practices, as defined above.  

Short-term tillage practices (disturbance in the fall-spring prior to soybean planting) in our 

sample reflected trends reported elsewhere for the Midwest, with 45.66% of soybeans no-till 

planted into undisturbed soil, 13.96% following low intensity conservation tillage, and 40.38% 

planted following a two or three pass conventional tillage system (USDA-NASS, 2018; Wade et 

al., 2014).  This contrast suggested that short-term tillage practices used for soybean are not 

necessarily indicative of average tillage intensity across a crop rotation at longer time intervals, 
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which led us to believe that our cumulative STIR metric would be a more relevant independent 

variable when considering the effect of tillage on the soil environment and soybean yield.   

 

3.3.2 Weather and Yield Trends 

The 2016 and 2017 growing seasons were somewhat abnormal in Michigan.  This was 

evident in the state’s mean soybean yields for those years, and also in mean soybean yields 

across our sample.  Michigan farmers produced a record average soybean yield of 3.40 t/ha 

statewide in 2016, and yields averaged 3.42 t/ha in our sample.  Planting was delayed slightly by 

wet spring weather that year, but soybeans were still planted by May 22nd on average.  Growing 

degree day (GDD base 10 ̊ C) accumulation was well above normal during the 2016 growing 

season, which paired with below normal precipitation May-July, caused drought stress in 

soybeans statewide.  Drought stress persisted in the Northeast region through harvest in 2016, 

and the crop suffered from the 7.5-10 cm precipitation deficit.  However, timely rainfall in the 

Southern Lower Peninsula during August rescued the crop there, resulting in mostly excellent 

yields for growers in our Central and Southwest regions. 

Conversely, Michigan’s average soybean yield was only 2.86 t/ha in 2017, or 2.95 t/ha in 

our sample.  2017 soybean yields tied 2014 as the lowest statewide average since 2009.  Planting 

occurred three days earlier than 2016 on average (May 19th).  GDD accumulation was near 

normal statewide, but dry weather once again plagued the Central and Southwest Regions.  

Drought stress worsened there as the season progressed, and like the Northeast Region in 2016, 

many parts of the Central and Southwest Regions were 7.5-10 cm below normal rainfall at 

harvest time.  This led to soybean yields that were 0.87 t/ha less than 2017 on average across the 

Southern Lower Peninsula.  Conditions in the Northeast Region were quite the opposite during 
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2017, with 2.5-5 cm above normal precipitation May-Aug. and more hours of rainfall than usual.  

White mold was widespread in the crop due to the persistent moisture, but soybean yields in our 

Northeast region were near to slightly above average in 2017.  

      

3.3.3 Statewide Tillage Performance  

Tillage system classification by long-term tillage intensity (STIR) identified 44 no-till 

cases with a mean tillage intensity of zero, yield of 2.69 t/ha and yield gap (YG) of 47.16% 

(5.86-83.59%), 149 conservation tillage cases with a mean tillage intensity of 203.42, yield of 

3.26 t/ha and yield gap of 38.01% (0-73.07%), and 69 conventional tillage cases with a mean 

tillage intensity of 516.99, yield of 3.44 t/ha and yield gap of 38.02% (13.57-69.42%).  The most 

parsimonious linear mixed effects model explaining yield gap (YG) as a function of tillage 

system showed a significant difference between no-till and tilled systems, with conservation 

tillage and conventional tillage reducing yield gap by 7.79% and 8.17% respectively as 

compared with no-till (F2,125 = 2.39, P=0.096) (Figure 3.1).  This result is only slightly higher 

than previous estimates of yield gap for no-till in the Upper Midwest documented in the 

literature (DeFelice et al., 2006), and supports a general recommendation of using moderate 

intensity conservation tillage practices to maximize soybean yield in Michigan.  Mean yield gap 

for no-till was near 50% in both 2016 and 2017, and tillage was most effective at reducing yield 

gap when yield potential was higher overall in 2016.  The marginal R2 for our final LME model 

(R2m, fixed effects only) was 0.03, and the overall conditional R2 for the model (R2c, fixed and 

random effects) was 0.95.   

Despite this result, we recognized that a blanket recommendation of conservation tillage 

for soybeans in Michigan would be an oversimplification, ignoring the fact that no-till has 
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produced competitive soybean yields in previous Michigan studies (Robertson et al., 2014) and 

also some of the individual cases in our sample.  Furthermore, no-till may offer important 

economic and soil conservation benefits independent of yield effects (Dominati et al., 2010; 

Syswerda & Robertson, 2014).  These points encouraged us to parse out management by 

environment interactions to identify where no-till systems may be more or less successful in 

Michigan.  This process began with isolation of no-till cases in our sample and removal of cases 

in the middle tercile of yield gap for no-till systems, which left 29 cases with a mean tillage 

intensity of zero, yield of 2.71 t/ha and yield gap of 47.32% (0-83.58%). 

 

3.3.4 No-till Performance across Environments 

Principal components analysis of the remaining no-till soybean cases, followed by multi-

model selection from a candidate pool of logistic regression analyses, initially identified three 

PCs (1, 2 and 16) that were significant predictors of case membership in either the upper or 

lower tercile of yield gap.  PCs 1 and 2 together explained 63.83% of the variance in our no-till 

data set, with PC 16 adding only 0.083% more.  PC 16 was also redundant in its representation 

of soil texture, AWC and GDD accumulation, similar to PC 2.  For these reasons, PCs 1 and 2 

were selected for inclusion in our multiple logistic regression model (Table 3.1).  A variable 

loading threshold of 0.28 was used to identify influential variables comprising each PC in an 

effort to understand which location, soil and weather factors are most important for no-till 

performance in Michigan.  

PC1 was representative of soil carbon and moisture status, and positively correlated with 

yield gap (Z=2.01, P=0.04).  Significant loading was observed from soil organic matter 

concentration, cation exchange capacity (CEC), calcium, labile (POXC) and total organic 
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carbon, as well as precipitation.  Loadings were positive for all of these variables, except 

precipitation, suggesting that higher soil organic matter and carbon levels are associated with 

greater yield gaps under no-till production.  Precipitation was conversely associated with lower 

yield gaps, which might be expected in dry years, such as those experienced in most of Michigan 

during our study.   

PC2 was largely representative of soil texture and temperature, and negatively correlated 

with yield gap (Z=-2.62, P=0.009).  Significant loading was observed from soil texture (percent 

sand, silt and clay), AWC, site latitude and GDD accumulation.  Loadings were positive for 

percent silt, clay, AWC and GDD accumulation, suggesting that fine textured, wet soils and 

warmer locations may result in lower yield gaps for no-till soybeans.  Loadings were negative for 

latitude and percent sand in soils, indicating that yield gaps in no-till increase at high latitudes 

and on coarse textured soils.   

  Only one management variable, planting date (DOY), significantly improved the 

predictive power of our logistic regression model.  Plant date was negatively correlated with 

yield gap, suggesting that delayed planting might interact with environmental conditions to 

improve soybean yield in a no-till system.  Our final model including PCs 1, 2 and planting date 

had a residual deviance of 19.63 on 25 degrees of freedom and AIC of 27.63, achieving 89.66% 

correct classification of cases as being from the upper vs. lower tercile of yield gap in no-till 

systems (Table 3.2).   

Figure 3.2 demonstrates how PC 1, PC 2 and plant date interacted to influence the 

probability of case membership in either the upper (1) or lower tercile (0) of yield gap for no-till.  

At the earliest plant dates, only sites with relatively low soil carbon (PC1), fine texture or high 

temperature (PC2) had a lower probability of being in the upper tercile of yield gap (high no-till 
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yields).  At median plant dates, either a relatively low value for PC 1 or a high value for PC 2 

could significantly decrease the probability of a significant yield penalty for no-till soybean.  At 

the latest plant dates, most no-till cases yielded competitively, regardless of soil characteristics. 

Partial correlation of key independent variables in our logistic regression model were 

calculated to futher examine covariance relationships among the variables highlighted by PCA 

(Table 3.3).  GDD accumulation was negatively correlated with yield gap when controlling for 

both plant date and soil quality (texture and carbon represented here by CEC).  Plant date (DOY) 

was also negativly correlated with yield gap when controlling for soil quality and GDD 

accumulation, although the relationship was weaker and less significant (b=-0.21, P=0.18).  Soil 

quality, represented here by soil CEC, had no discernable relationship with yield gap 

independent of GDD accumulation and plant date.  However, there was significant correlation 

between both GDD acumulation and CEC, and also GDD and plant date, showing that soils 

tended to be of lower quality in warmer locations and that no-till planting occurred earlier in 

warmer locations, which could be expected.  These results suggest that yield gap in no-till 

systems was primarily driven by temperature in our study, with no-till performing better in 

warmer locations. 

 

3.4 DISCUSSION 

Our objective was to examine how tillage intensity interacts with environmental 

conditions to affect soybean yield in the State of Michigan, and we hypothesized that this 

relationship would be site-specific at the sub-field level.  Our finding that no-till is generally 

associated with yield reductions for soybean across the state is supported by previous research, 

as is our result suggesting that the performance of no-till is site-specific based on the interaction 
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of temperature, soil quality and plant date (DeFelice et al., 2006; Ogle et al., 2012; Pittelkow et 

al., 2015, Toliver et al., 2012).  Yield of no-till soybeans decreased significantly under low air 

and soil temperatures at high latitudes, consistent with other studies in the Upper Midwest 

(DeFelice et al., 2006; Vanhie et al., 2015).  Tillage can help to warm soil prior to planting, 

which may be important for timely planting, stand establishment and rapid early growth in 

soybeans, all of which can ultimately affect yield (Malhi and O'Sullivan, 1990; Moraru and 

Rusu, 2012, Shen et al., 2018).   

The positive association between fine soil texture, higher water holding capacity and no-

till yields in our PCA and logistic regression analysis was somewhat unexpected based on 

previous research showing poor performance of no-till on clay soils that tend to stay wet 

(Cannell et al., 1978; Cosper, 1983; DeFelice et al., 2006; Ogle et al., 2012, West et al., 1996; 

Yin and Al-Kaisi, 2004).  However, this result aligns with other research showing significant 

year to year variation in the effect of soil type, where no-till can benefit soybeans through 

improved soil moisture retention in a dry year, but lead to yield reductions in wet years, 

particularly on soils with inherently poor drainage (Cook and Trlica, 2016; Toliver et al., 2012). 

Two of three geographic regions in our study, Central and Southwest, were abnormally 

dry in both 2016 and 2017.  The Northeast region was abnormally dry in 2016 and wet in 2017.  

Overall, one would expect fine soil texture and greater water holding capacity to benefit soybean 

growth in such dry conditions.  In contrast, the increased water holding capacity commonly 

associated with reduced tillage systems did not produce an overall yield advantage for no-till, 

even in these abnormally dry years.  No-till yields were more stable than yields in tilled systems 

across the two years of our study, albeit significantly lower.  Irrigation and artificial drainage are 

two factors that may confound our understanding of the relationship between soil texture, 
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moisture and no-till in this study.  29 of the 133 soybean fields in this study (21.8%) were 

irrigated, all of them located in the Southwest region on naturally well drained soils.  We failed 

to collect information on artificial drainage at our study sites.  However, Sugg (2007) reported 

that Branch County in our Southwest region has 4-8% of the total county area with subsurface 

drainage, while Clinton County in our Central region has subsurface drainage in 17-27% of the 

total county area.  All other counties in our study area were reported to have only 0-3% of their 

total area under subsurface drainage 

Our most surprising result was the negative association between soil organic carbon 

(SOC) and no-till performance in our PCA and logistic regression analysis, which was consistent 

across site-years.  Other attempts to categorize soils based on adaptability to no-till have focused 

on soil texture rather than SOC (Cannell et al., 1978,1994; Cosper, 1983).  SOC is generally 

associated with improvements in physical, chemical and biological functioning of soils important 

for crop production, with high SOC levels increasing crop yields (Alvarez, 2005; Blanco-Canqui 

et al., 2013).  Based on the partial correlations in Table 3.3, our opposite finding of lower 

soybean yields in no-till systems with high SOC may have been an artifact of the relationship 

between temperature (GDD accumulation, latitude) and soil quality in our data set, where soils at 

high latitudes tended to have more carbon.  Accumulation and decomposition of SOC are driven 

by C inputs and placement, temperature, moisture and structural dynamics in soils (Derpsch et 

al., 2014; Lal, 2018).  The rate of SOC turnover has been linked to soil processes that are 

important for crop yield, such as nitrogen mineralization (Franzluebbers et al., 1995; Vanhie et 

al., 2015; Watts et al., 2010).   

Schimel et al. (1994) showed that SOC storage capacity and turnover times are greater in 

locations with lower mean temperature, such as Northern Michigan.  Changes in soil physical 
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properties induced by tillage may have a reduced effect on SOC where cool temperatures limit 

microbial degradation of newly exposed SOC (Franzluebbers & Arshad, 1996; Roberts and 

Chan, 1990; Trumbore et al., 1996).  Tillage may therefore be an important tool for improving 

crop yields by increasing soil temperature and thus enhancing SOC cycling in cooler regions of 

Michigan (Franzluebbers et al., 1995; Trumbore et al., 1996).  In our Northeast region, CT with a 

mean long-term STIR score of 208, or 35 annually (equivalent to one pass with a disc), was all 

that was required to significantly reduce soybean yield gap.  Despite this moderate level of 

disturbance, CT soils in the Northeast averaged 1.64% SOC compared to 1.60% in long-term no-

till fields. 

Finally, our finding that delayed planting may off-set environmental risks to improve no-

till soybean yields was intriguing.  Across all tillage systems, delayed planting tends to reduce 

soybean yield regardless of environment, although this negative effect may be slightly less 

pronounced in the Midwest vs. the southern U.S. (Egli and Cornelius, 2009).  While the idea that 

delayed planting may help to overcome temperature limitations in no-till is supported by our 

analysis, most other research has failed to demonstrate significant interactions between tillage 

system and plant date directly influencing soybean yield in such a way that might support a 

recommendation of delaying planting in no-till systems (Elmore, 1990; Lueschen et al., 1992; 

Oplinger and Philbrook, 1992; Perez-Bidegain et al., 2007).  However, the influence of planting 

date on stand establishment, with later planting improving stand in no-till systems, is widely 

accepted (Oplinger and Philbrook, 1992; Vyn et al., 1998).  Therefore, it is likely that the 

positive effect of delayed planting on yield under no-till in our logistic regression model was 

related to improved stand establishment.  This conclusion is supported by the positive correlation 
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of plant date (DOY) and stand establishment in our no-till sample, showing that delayed planting 

had a positive effect on stand establishment in no-till systems (P=0.065). 

 

3.5 CONCLUSION 

In summary, our study found a general yield penalty for no-till soybeans in Michigan, 

which persisted even after a mimimun of six years without disturbance.  No-till performed 

especially poorly in cool environments at high latitudes and on high organic matter soils.  

Contrary to previous research, fine soil texture and high water holding capacity improved no-till 

soybean yield in our study, likely because our observations were made in abnormally dry years.  

Delayed planting helped to buffer environmental risks facing no-till soybeans, likely by allowing 

soil to warm-up, which improved stand establishment.  

These results suggest that long-term no-till may not be advisable for maximizing soybean 

yield in Michigan, and certainly should not be implemented in the coldest areas of the state.  Of 

course, the 7.79% and 8.17% yield increase associated with conservation and conventional 

tillage respectively in our study must be weighed against the added costs of labor, machinery, 

and fuel assocaited with tillage.  A survey of custom farming rates administered by MSU 

Extension found that tillage operations cost $21.99-$51.65 per hectare including machine, power 

unit and labor costs, depending on the tool used (Stein and Battel, 2018).  Using an average 

soybean yield of 3.36 t/ha, an 8% yield increase achieved through conservation tillage translates 

to a 0.269 t/ha (4 bu/a) difference.  Assuming a soybean price of $331 per tonne, this yield 

increase would generate $89.04 per hectare, which more than covers the cost of conservation 

tillage.  Growers must also consider the enviromental risk of degrading long-term soil health 

with tillage, which we address for this data set in Chapter 4. 



63 
 

It is important to note that only moderately intensive or intermittent tillage was necessary 

to significantly reduce mean soybean yield gap across all environments in our analysis.  Finding 

the least costly conservation tillage options may be a strategy to maximize profitability in 

Michgian soybean systems, even if tillage occurs at a different point in the crop rotation (i.e. 

tilling soybean residue prior to corn planting).  In the warmest areas of the Southern Lower 

Peninsula, and on poor quality soils, long-term no-till is likely a competitive option for balancing 

profitability and soil conservation objectives.  

 

3.6 TABLES AND FIGURES 

 

 

 

Figure 3.1. Yield gap by tillage system (a), and tillage system within year (b), showing 

significantly lower yield gaps associated with Conservation Tillage (CT) and Conventional 

Tillage (CVT) as compared to No-till (NT). 

a. b. 
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Table 3.1. Principal components one and two showing significant variable loadings (>2.8) in 

bold and shaded. 

 

 

 

Table 3.2. Logistic regression model showing the significant effect of PC 1, PC 2 and plant date 

on the probability of no-till cases being in the upper tercile of yield gap (YGT) 
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Figure 3.2. Logistic regression curves showing the interaction of PC 1, PC 2 and plant date day 

of year (DOY) influencing the probability of a significant yield gap in no-till soybeans across 

Michigan. 

 

 

 

 

Table 3.3. Partial correlations of variables highlighted by PCA and logistic regression as 

important for predicting yield gap in no-till soybeans.  R12,34 represents the partial correlation of 

Variable 1 and Variable 2 controlling for Variable 3 and 4.  Asterisks indicate relationships with 

P < 0.05 (*), 0.01 (**) and 0.001 (***). 
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CHAPTER 4:  THE INDIRECT INFLUENCE OF TILLAGE ON SOIL ORGANIC 

CARBON IN MICHIGAN SOYBEAN SYSTEMS 

 

4.1  INTRODUCTION 

Reducing soil disturbance in annual cropping systems has long been recommended as a 

means of sequestering carbon in soils to increase their natural capital and ability to provide 

ecosystem services (Dominati et al., 2010; Faulkner, 1943; Syswerda & Robertson, 2014; 

Whiteside and Smith, 1941).  Today, conservation tillage (CT) is often claimed to increase 

carbon in soils categorically (Lal et al., 2004) and increasing soil organic carbon (SOC) on arable 

land is invoked as a potential solution to some of humanity’s greatest challenges, including 

global food security and climate change (Lal, 2004).  Farmers have adopted conservation tillage 

(CT) technologies, including no-till, on 51% of U.S. cropland based on these claims, seeking to 

lower their cost of production (Weersink et al., 1992) and simultaneously realize the benefits of 

accruing SOC (Blanco-Canqui et al., 2013; USDA-NASS, 2018). 

However, research has shown the relationship between tillage intensity and SOC 

dynamics to be inconsistent and site specific (Baker et al., 2007; Derpsch et al., 2014).  In some 

environments, CT is capable of reducing CO2 efflux and increasing SOC stocks, while in other 

cases CT appears to have a neutral or opposite effect on these processes (Abdalla et al., 2013; 

Govaerts et al., 2009; Lal, 2018; VandenBygaart, 2016).  The effect of CT on crop yields is also 

site-specific, with CT producing equal or higher yields relative to conventional tillage in certain 

environments and cropping systems, but significantly less in others (DeFelice et al., 2006; 

Pittelkow et al., 2015a; 2015b).  Aside from the economic implications of yield differences, the 

effect of CT on crop productivity and biomass yield can indirectly influence SOC outcomes, 
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which further complicates assessments of CT as a soil carbon stewardship practice (Lal, 2015; 

Venterea et al., 2006). 

Observed variability in SOC outcomes related to CT is not surprising.  It has been 

demonstrated that biochemical processes in soil and resulting plant growth are influenced not by 

the tillage tool used, but by the soil environment created (Carter, 1994; Havlin et al., 1990).  A 

single tillage tool is capable of producing differing soil environments depending on how it 

interacts with extant soil and environmental conditions (Soane and Pidgeon, 1975).  For 

example, there is growing evidence that tillage and soil texture interact to influence aggregation, 

which can alter SOC cycling in agricultural fields (Beare et al., 1994).  It only follows that CT 

technologies must be adapted to specific environments and cropping systems, or may not be 

appropriate at all in some cases, when maximizing SOC accumulation is the stated objective 

(Lai, 1989; Lal, 2015; Luo & Sun, 2010; Venterea et al., 2006). 

Although soybean occupied nearly 36.1 M hectares of U.S. cropland in 2017, with CT in 

use on approximately 70% of that acreage (more than any other crop), limited information is 

available regarding how specific environmental conditions influence the effect of CT on SOC in 

soybean production systems (Claassen et al., 2018; USDA-NASS, 2018).  Some studies have 

concluded that CT may not significantly increase SOC in soybean systems due to lower biomass 

yield and rapid decomposition of soybean residues relative to other crops like corn (Havlin et al., 

1990; Huggins et al., 2007; West & Post, 2002).  For example, Havlin et al. (1990) found that 

no-till did not increase SOC in a soybean-soybean rotation, but did increase SOC by 5% in a 

sorghum-soybean rotation and by 14% in a sorghum-sorghum rotation.  Conversely, other 

studies have found that differences in below ground net primary productivity, the timing and 

level of root turnover/exudates, tendency to foster the formation of soil aggregates, and changes 
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in microbial communities associated with legumes can help to increase SOC (Drinkwater et al., 

1998; Puget & Drinkwater, 2001).  Soil physical properties like texture, moisture and 

temperature are likely important mediating factors in this relationship, and may explain the 

divergent results of research on the topic.  Fine textured, wet and cool soils have greater capacity 

to physically and chemically protect SOC from mineralization when disturbed (Balesdent et al., 

2000; Needleman et al., 1999, Wander and Bollero, 1999).  

Michigan farmers plant nearly 931,000 hectares of soybean on a wide range of sand - 

silty clay loam soils using the entire breadth of commercially available tillage/no-till tools 

(USDA-NASS, 2018).  Soybean production in the state occurs along a gradient from farms in the 

southern Lower Peninsula that closely resemble intensive corn-soybean systems of the U.S. Corn 

Belt, to more extensive systems in the marginal environment of Northern Michigan where a short 

growing season limits soybean yield potential and encourages greater cropping systems diversity.  

In this study, we sought to understand the influence of tillage intensity on SOC status in 

Michigan soybeans by quantifying how unique biophysical environments interact with farmer 

tillage practices to mediate SOC dynamics.  Our aim was to test the hypothesis that the 

relationship between tillage intensity and SOC is context dependent, based on the site-specific 

interaction of tillage and soil physical properties.   

 

4.2 MATERIALS AND METHODS 

4.2.1 Experimental Design 

Research investigating the influence of tillage intensity on SOC must explicitly document how 

tillage practices interact with soil biophysical factors to generate robust recommendations (e.g. 

Huggins et al., 2007).  One approach to achieving this involves intensive, long-term 
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experimentation under controlled conditions at a small number of locations (Syswerda & 

Robertson, 2014; Shrestha et al., 2015).  However, the results of such studies may only be 

reliably applied to similar environments, which limits their relevance and impact.  Another 

approach gaining popularity uses extensive sets of on-farm observations to capture real-world 

variability in tillage intensity and site conditions, then applies multivariate statistical techniques 

to quantify the interaction of important variables (Blanco-Canqui & Lal, 2008; Wander and 

Bollero, 1999; Xu et al., 2016).  This serves to elucidate systems level relationships, which can 

be subsequently tested under controlled conditions for verification purposes (Drinkwater, 2002).  

We assumed that on-farm tillage outcomes, based on soil-tool interactions, would be 

highly variable in Michigan.  To account for this diversity, we conducted an observational study 

on a sample of commercial soybean fields during the 2016-17 cropping years.  We recruited 33 

Michigan soybean growers in the spring of 2016, plus an additional two growers in 2017 to 

adjust for attrition.  Each grower in the study supplied to our sampling population 1-3 fields 

planted to soybean in 2016, and 1-3 more in 2017.  Fields were identified as “Good” or “Bad” as 

a form of sample stratification based on growers’ experiential knowledge of historic soybean 

performance on-site.  To account for intra-field variation, fields were sub-divided by 

predominant soil types into ≤ 3 zones, each at least two acres in size.  Soil zones nested within 

fields were considered our experimental unit (n=261).   

Fifteen soil penetration resistance measurements at 0-15 cm and 15-46 cm in depth and 

aggregate soil samples (20-30 1.27 cm cores, 20 cm deep) were collected randomly within each 

experimental unit within one week after planting.  Cumulative growing degree days (GDD, base 

10 C) between planting and harvest were obtained for each field from the nearest MSU or 
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NOAA weather station to account for local temperature differences.  Soil samples were stored at 

4 ̊ C, sieved through a 6mm sieve and divided into three subsamples.   

One batch of soil subsamples was dried at 35  ̊ C, pulverized to fine powder with a 

shatterbox mill 8515 (SPEX) and analyzed for total organic carbon by dry combustion in a 

CHNS analyzer at A & L Great Lakes Lab (Nelson and Sommers, 1996).  Cornell University 

Soil Health Lab analyzed a second batch of subsamples to quantify surface texture (Kettler et al., 

2001) and wet aggregate stability (Moebius-Clune et al., 2011).  We analyzed the final batch of 

soil subsamples for permanganate oxidizable carbon (POXC) (Culman et al., 2012). Briefly, 2.5 

g of air-dried soil was shaken with KMnO4 for exactly 2 min at 240 oscillations per minute on 

an oscillating shaker. After allowing to settle exactly 10 min, 0.5 mL of the supernatant were 

transferred, diluted and an aliquot loaded into a 96-well plate containing a set of replicated 

internal standards, a soil standard and laboratory reference samples. Sample absorbance was read 

at 550 nm with a SpectraMax M5 microplate reader using SoftMax Pro software (Version 5.4.1, 

Molecular devices, Sunnyvale, CA). 

Six years of tillage history information was collected for each field from the primary 

operator using a written survey instrument approved by the Michigan State University and 

University of Illinois Institutional Review Boards, including tillage tools used and the number of 

passes made (Appendix B).  Cumulative tillage intensity was quantified at the field scale using a 

simplified version of the Soil Tillage Intensity Rating (STIR) formula from the NRCS RUSLE2 

model (USDA-NRCS, 2008, 2016; Widman, 2004).  This formula assigns each tillage 

tool/operation a unique intensity coefficient and categorizes tillage systems based on their 

cumulative STIR score.  According to Claassen et al. (2018), STIR offers a more accurate 

continuous measure of tillage intensity than residue cover methods used historically, mainly 
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because residue cover after planting is dependent on residue yield and quality from the 

proceeding crop.  In this case, STIR coefficients were averaged across tool type because detailed 

information like the working depth of tillage tools was not available.  Tillage intensity was thus 

calculated as STIR = Avg. Tillage Tool Coefficient * Number of Passes Reported.  Resulting 

long-term STIR values ranged from 0 - 851.50. 

 

4.2.2 Statistical Analysis 

Our approach to analyzing this dataset involved a three step process designed to answer 

our question about the relationship between tillage intensity and SOC in Michigan soybean 

systems, while also accounting for the variation and error inherent in our on-farm observations.  

We began with hierarchical linear mixed effects (LME) modeling as a means of investigating 

linear correlation between the variables of interest (Pinheiro and Bates, 2004).  Our second step 

involved integrating principal components analysis (PCA) and LME models to control for 

covariation among independent soil variables (Yeater & Villamil, 2018).  Lastly, we used 

structural equation modeling (SEM) to map the patterns of variation and covariation in our 

dataset at the statewide and sub-state level while incorporating latent soil factors (Smith et al., 

2014).  Statistical analyses were conducted within RStudio: Integrated Development 

Environment for R (RStudio, Inc., 2019).   

LME models were developed to explain total and labile SOC as a function of fixed 

effects including tillage intensity (STIR), soil physical properties, GDD and their interaction 

terms.  The models also included a nested random effects structure consisting of [year [field 

[zone]]] to account for our observational study design (R Development Core Team, 2019).  LME 

models have several advantages over OLS regression models, particularly the ability to account 
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for the inter-dependency common in on-farm observational data through the inclusion of nested 

random effects (Burger et al., 2012; Coe, 2002).  This is accomplished by estimating parameters 

of a model of the covariance structure of the error, then using them to estimate the remaining 

parameters of the model with known variance.  In this case, it allowed random shifts to the 

model intercept for each soil zone within a field to account for baseline differences in SOC due 

to inherent soil quality.  One drawback of LME models is their sensitivity to collinearity among 

independent variables, which is common in soils data (Harrison et al., 2018).  To account for 

this, we applied PCA to transform our soil physical variables into a set of linearly uncorrelated 

principal components, then developed a second set of LME models using principal component 

(PC) values as independent variables along with tillage intensity and GDD to explain SOC.  In 

both cases, whether using the raw soils data or principal components, multi-model selection and 

inference was performed with a restricted maximum likelihood approach in the nlme package of 

R v3.5.3 (Pinheiro and Bates, 2004). 

    We then modelled covariance and regression relationships among tillage, soil and 

weather variables using SEM.  SEM is a multivariate statistical modelling method that is 

descended from path analysis; in that, it explicitly considers the covariance and variance 

relationships (causal pathways) among variables in a multiple regression.  It extends upon the 

path analysis frame-work by including latent (conceptual; represented as factors) variables, in 

addition to manifest (directly measured) variables (Smith et al., 2014).  By accounting for 

covariance relationships among the exogenous variables in the model, in addition to their 

relationships to the dependent variable of interest, SEMs allow the analyst to weigh the relative 

importance of indirect and direct causal pathways between independent and dependent variables.  

Candidate SEMs included both latent (conceptual factors) and manifest (directly measured) 
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variables for some soil physical properties, but only manifest variables for tillage intensity and 

GDD.  Model selection to identify the most parsimonious models was based on goodness of fit 

between the modelled and observed covariance matrices when adjusted for sample size (χ2 / df < 

5), maximization of incremental fit indices (TLI and CFI), and minimization of model residuals 

(RMSEA and RSMR) (Hooper et al., 2008).  To further investigate the mediating effect of 

temperature on the relationship between tillage and labile SOC, we also developed separate SEM 

models for each of the three sub-state regions in our study (Northeast, Central and Southwest 

Michigan).  SEM models were implemented in the lavaan package of R v3.5.3. (R Development 

Core Team, 2019).   

 

4.3 RESULTS 

Model selection indicated that the most parsimonious linear mixed effects model for 

explaining sub field-scale variation in total SOC contained only main effects for tillage intensity, 

soil percent silt plus clay, wet aggregate stability, surface resistance and growing degree day 

accumulation (Table 4.1a).  Percent silt plus clay (F1,122 = 22.66, P < 0.0001), aggregate stability 

(F1,122 = 12.89, P = 0.0005), surface resistance (F1,122 = -4.63, P < 0.0001) and growing degree 

day accumulation (F1,122 = 8.19, P = 0.005), but not tillage intensity (F1,122 = 3.58, P = 0.06), 

showed significant main effects on total SOC.  Total SOC ranged from 0.31% to 4.73%, and was 

higher on soils with high clay, high aggregate stability, low surface penetration resistance, and 

also in cool locations.  The overall marginal R2 for the total SOC model (R2m, fixed effects only) 

was 0.26, and the overall conditional R2 for the model (R2c, fixed and random effects) was 0.99.  

Model selection indicated that the most parsimonious linear mixed effects model for 

explaining sub field-scale variation in labile SOC (POXC) also contained main effects for tillage 
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intensity, soil percent silt plus clay, wet aggregate stability, surface resistance and growing 

degree day accumulation (Table 4.1b).  Percent silt plus clay (F1,122 = 20.13, P < 0.0001), 

aggregate stability (F1,122 = 12.61, P = 0.0005), surface resistance (F1,122  = 6.98, P = 0.009), 

growing degree day accumulation (F1,122 = 17.21, P = 0.0001), and tillage intensity (F1,122 = 6.02, 

P = 0.016), showed significant main effects on labile SOC.  Labile SOC ranged from 123.52 to 

1136.76 mg C kg-1, and like total SOC was higher on soils with more clay, greater aggregate 

stability, lower surface penetration resistance, and in cooler locations.  Unlike total SOC, labile 

SOC was loosely correlated with tillage intensity, decreasing as tillage intensity increased.  R2m 

for the labile SOC model was 0.22, and R2c was 0.94. 

Our initial analysis indicated pairwise correlations between soil physical variables 

ranging from r = -0.114 (surface resistance and aggregate stability) to r = 0.180 (silt plus clay 

and surface resistance), which can be problematic because those predictors explain some of the 

same variance in the response variable, and their effects cannot be estimated independently 

(Harrison et al., 2018).  PCA was therefore applied as a means of controlling covariation 

between our soil physical variables, including percent sand, silt and clay, wet aggregate stability, 

surface resistance and subsurface resistance.  The first wo PCs together explained 74.4% of the 

variance in our data set.  A loading threshold of 0.45 was used to identify important variables 

contributing to each PC.  PC1 captured soil texture, including significant loadings for percent 

sand, silt and clay.  PC2 showed significant loadings for the remaining soil variables, making it 

representative of soil aggregation and structure (Table 4.2). 

We incorporated PC1 and PC2 as linearly uncorrelated independent variables in a new set 

of LME models explaining total and labile SOC (Table 4.3).  Model selection indicated that the 

most parsimonious linear mixed effects model for explaining sub field-scale variation in total 



82 
 

SOC contained only main effects for PC1, PC2, tillage intensity and growing degree day 

accumulation.  PC1 (soil texture) (F1,123 = 40.39, P < 0.001) and growing degree day 

accumulation (F1,123 = 11.55, P < 0.001), but not PC2 (soil structure) (F1,123  = 0.39, P = 0.53) or 

tillage intensity (F1,122 = 1.83, P = 0.18), showed significant main effects on total SOC.  R2m for 

the total SOC model was 0.18, and R2c was 0.99.  Similarly, model selection indicated that the 

most parsimonious linear mixed effects model for explaining sub field-scale variation in labile 

SOC also contained only main effects for tillage intensity, PC1, PC2 and growing degree day 

accumulation.  PC1 (soil texture) (F1,123  = 26.96, P < 0.0001), growing degree day accumulation 

(F1,123 = 20.19, P < 0.0001), and tillage intensity (F1,122 = 4.33, P < 0.039) showed significant 

main effects on labile SOC, but PC2 (soil structure) (F1,123 = 0.44, P = 0.51)  did not.  R2m for 

the labile SOC model was 0.19, and R2c was 0.94. 

While tillage intensity did have a marginally significant relationship with labile SOC, 

results of our LME analysis suggest that SOC is highly variable across sites in Michigan, and 

that SOC is more strongly associated with soil physical properties, particularly texture and 

temperature, than tillage intensity.  Although the importance of soil physical properties for 

predicting SOC is well supported in the literature (Burke et al., 1989; Rasmussen et al., 2018), 

our inability to identify significant interactions effects between tillage intensity and soil physical 

properties in either the LME or PCA-LME models encouraged us to investigate whether SEM 

might provide a more complete picture of the variance-covariance structure in our data set, and 

thus further illuminate the relationship between tillage intensity and SOC in Michigan soybean 

systems.   

The most parsimonious SEM models for both total and labile SOC included tillage 

intensity, GDD and soil aggregate stability as manifest variables, as well as latent variables 
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representing fine soil texture measured as percent silt and clay, and soil hardness measured as 

surface and subsurface penetration resistance (Figures 4.1 and 4.2).  Our SEM models explained 

a modest, but significant, amount of the statewide variation in total (22%) and labile SOC (25%).  

GDD accumulation had a substantial negative association with SOC levels in both models, 

reflecting the temperature dependence of SOC cycling based on changes in microbial activity 

(Roberts and Chan, 1990; Trumbore et al., 1996).  Aggregate stability had a highly significant 

positive association with both total and labile SOC, highlighting how SOC can be physically 

protected from microbial degradation within soil macroaggregates (Buyanovsky et al., 1994; 

Kravchenko et al., 2015).  Fine soil texture had a significant positive association with total SOC, 

but its association with labile SOC was non-significant, which aligns with the documented ability 

of silt and clay to protect processed SOC through physical and chemical stabilization 

respectively (Buyanovsky et al., 1994).   

The relationship between soil hardness and SOC was strongly negative in both SEMs.  

Soil hardness (penetration resistance) is usually correlated with bulk density and/or doughtiness 

(Vaz et al., 2001).  Dense, compacted soils have less pore space to accommodate air, water and 

biology, while dry soils simply lack water to support microbial communities and plant growth.  

Both of these conditions can limit plant biomass production and carbon sequestration in soils 

(Brevik et al., 2002).  Soil hardness also showed significant covariation with soil texture and 

aggregate stability in our models, where fine texture decreased penetration resistance and stable 

aggregates increased soil resistance.    

Tillage intensity did not have a significant direct association with either total or labile 

SOC.  Rather, the association of tillage with SOC was indirect and mediated by interactions with 

the soil physical variables in our models including texture, hardness and temperature.  Tillage 
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intensity covaried with fine soil texture, but we assume that this relationship represented fewer 

opportunities for tillage on fine textured soils based on moisture differences rather than an effect 

of tillage on soil texture.  Greater tillage intensity was associated with hard soils, which were in 

turn relatively low in SOC.  Tillage intensity also positively covaried with GDD in our SEM 

models, which could be interpreted in two ways.  On one hand, a warmer or longer growing 

season offers more opportunities for tillage operations.  If GDD is alternatively assumed to be a 

proxy for soil temperature, tillage is known to increase soil temperature, which can hasten SOC 

degradation (Trumbore et al., 1996).     

 

4.4 DISCUSSION   

   We sought to understand the influence of tillage intensity on SOC status in Michigan 

soybean production systems and hypothesized that the relationship between tillage intensity and 

SOC is context dependent, based on the site-specific interaction of tillage and soil physical 

properties.  Our LME models were only able to detect a marginally significant effect of tillage 

intensity on labile SOC and did not support our hypothesis of tillage by soil type interactions, 

suggesting that SOC content was largely driven by differences in soil texture and temperature 

across the sites in our sample.  However, our SEM results indicate that the relationship between 

tillage intensity and SOC in Michigan soybeans is indeed significant, though mediated by 

edaphic and climatic factors including soil texture, structure and temperature.  

Soil texture, aggregation and hardness were the most significant drivers of SOC in our 

analysis, and the effect of tillage on SOC occurred through interaction with these soil physical 

properties (Figure 4.3).  Where soils have capacity for physical and chemical protection of SOC 

due to fine texture and well developed aggregation, SOC levels tend to be high (Balesdent et al., 
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2000; Buyanovsky et al., 1994; Kravchenko et al., 2015).  This has been shown in a long-term 

experiment in Michigan, with a soybean-corn rotation sequence, where practices associated with 

~20% gain in soil aggregation showed similar accrual in SOC over a decade (Mpeketula and 

Snapp, 2019).   

The effect of increasing tillage intensity on SOC is also soil texture and structure 

dependent, with some studies finding that fine textured soils tend to lose more SOC when 

disturbed relative to coarse soils (Arshad et al., 1999; Franzluebber and Arshad, 1996), and other 

research suggesting that texture may influence C stratification in disturbed soils, but not overall 

SOC content (Needelman et al., 1999).  SOC increased linearly with silt plus clay content in our 

soil samples, but the difference in SOC between conventional and no-till systems was similar 

across soil types (~29%).  Yet, this may have been an artifact of our sample containing mostly 

coarse textured soils.  Mechanical disturbance can reduce soil density temporarily, but also 

destabilizes soil structure, which can contribute to compaction and hardness long-term 

(McGarry, 2003).  As noted above, compacted soils resulting from intensive tillage are often low 

in SOC.   

Temperature had a significant negative association with SOC in our study, with our 

Northeast region showing a greater capacity to accrue and maintain SOC relative to the Central 

and Southwest regions (Figure 4.4).  Changes in soil physical properties induced by tillage may 

have a limited effect on SOC where cool temperatures limit microbial degradation of newly 

exposed SOC (Roberts and Chan, 1990; Trumbore et al., 1996).  Roberts and Chan (1990) found 

that lowering soil temperature to 10 ̊ C reduced CO2 efflux following soil disturbance in a 

simulation study, resulting in a nonsignificant difference in C loss between their disturbed and 

control samples.  Franzluebbers and Arshad, (1996) found tillage treatments had little effect on 
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SOC in Northern Alberta and British Colombia where cold temperatures and aridity limited SOC 

turnover.  Similarly, there are examples of conventionally tilled high latitude sites in our sample 

that rank in the top tercile of labile POXC statewide, likely due in part to the lower average 

temperature at those locations, which can commonly be below 10 ̊ C when tillage operations are 

completed in late fall or early spring.   

Shimel et al. (1994) quantified the effect of soil texture, temperature and residue quality 

on SOC content and turnover time on a global scale.  They determined that natural variation in 

each of these parameters could result in an approximate difference of 1,000-2,000 g m-2, or 

~40%, in SOC, which is at least equivalent to the 30-40% difference in SOC observed between 

different tillage systems in the literature and in our study.  They also noted that the effect of 

texture differences on SOC was accentuated in cool environments, with cool temperatures 

doubling the difference in SOC residence time across the range of soil textures.  This could help 

to explain the prominent relationship between soil texture and SOC in our analysis of Michigan 

soybean systems where cool temperatures may be an important limiting factor in SOC dynamics.     

Limitations of our study design include 1) single post “treatment” measurements of soil 

properties with no baseline SOC data, 2) the limited amount of time accounted for by our 

management history data, six years, and 3) the lack of direct accounting for soil moisture, 

temperature or carbon inputs in the form of plant biomass, manure, etc.  Our on-farm 

observational study design unfortunately precluded any baseline measurements of soil properties.  

While it could be argued that the six years of tillage history captured is our study may not be 

enough time to accumulate appreciable differences in total SOC, labile POXC is known to be 

more sensitive to management within timeframes similar to what we captured in this study, 

indicating that our models of labile SOC should be reliable (Culman et al., 2012).  We attempted 
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to use available data on the number of manure applications over the six-year survey period, 

single year soybean yields and crop residue cover as estimations of carbon inputs that may 

interact with tillage intensity to influence SOC in our models.  However, none of these candidate 

variables showed any consistent relationship with the other model parameters.   

 

4.5 CONCLUSION    

While many studies have supported the assertion that limiting soil disturbance can reduce 

or reverse SOC loss, the universal value of CT as a SOC stewardship practice is often 

oversimplified and overstated (Baker et al., 2007; VandenBygaart, 2016).  The agroecological 

context within which CT is applied ultimately influences SOC outcomes.  Therefore, improved 

understanding of how tillage intensity interacts with unique soil environments and cropping 

systems is necessary to permit more precise application of CT technologies.  This is especially 

true where adoption of CT may involve trade-offs, such as reduced crop yields, in pursuit of 

sequestering SOC to enhance soil health or mitigate climate change (Lal, 2015; Pittlekow et al, 

2015b; Venterea et al., 2006).  

This study is unique in that it provides quantitative systems-level insights into the 

relationship between tillage and SOC under on-farm conditions.  While the results are not 

absolutely definitive, they highlight important relationships with relevance to real world 

agricultural systems, and are complementary to conventional factorial experiments and long-term 

studies using simulated/representative agroecosystems.  (Drinkwater, 2002; Kravchenko et al., 

2017).  For example, our finding that temperature may mediate the effect of tillage on SOC could 

not be easily observed in a single location experiment, regardless of how long it was maintained.  
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Yet, it is apparent that this knowledge is critical to improving the relevance and accuracy of 

tillage recommendations across differing environments, even within a single state. 

Based on our results, efforts to increase SOC in Michigan soybean systems should focus 

on CT practices that limit degradation of soil macroaggregates and overall structure to protect 

extant SOC, while also maintaining soybean and rotational crop yields to maximize C inputs to 

soil.  Sites in Michigan that are cooler and fine textured soils likely have greater capacity to 

accrue and protect SOC, and may be prone to yield reductions when managed under CT.  For 

this reason, moderately intensive conservation tillage may be advisable in those environments to 

optimize SOC management.  However, in southern Michigan, or on coarse textured soils, no-till 

would likely be necessary to maintain or increase SOC in soybean production systems.  

 

4.6 TABLES AND FIGURES 

 

 

Table 4.1. Linear mixed effects models including raw soil physical variables to explain total and 

labile soil organic carbon. 
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Table 4.2.  Principal components analysis results showing significant loadings (bold text and 

highlighted) for soil texture variables in PC1 and structure variables in PC2. 

 

 

 

 

 

 

Table 4.3. Linear mixed effects models including principal components to explain soil organic 

carbon 
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Figure 4.1. Structural equation model explaining total soil organic carbon.  Asterisks indicate 

relationships with P < 0.05 (*), 0.01 (**) and 0.001 (***). 

 

 

 

Figure 4.2. Structural equation model explaining labile soil organic carbon.  Asterisks indicate 

relationships with P < 0.05 (*), 0.01 (**) and 0.001 (***). 
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Figure 4.3. Labile soil organic carbon by tillage intensity and soil percent clay in Michigan 

 

 

 

 
Figure 4.4. Labile soil organic carbon by tillage intensity and growing degree days (GDD) 
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CHAPTER 5:  GENERAL CONCLUSION 

 

 

We sought to understand how soybean growers in the State of Michigan select tillage 

technologies, and the effect of conservation tillage on key measures of agroecological 

performance in the field.  The results reported here support our hypotheses that grower tillage 

behavior is socially motivated, and that tillage effects on soybean yield and soil carbon are site 

specific at the field to sub-field level.  Our study offers two primary contributions to the 

literature including a) advances in application of integrated, quantitative methods to answer a 

systems-level question using observational on-farm data, b) documentation of site-specific tillage 

X environment interactions across both environmental and spatial gradients that can be used to 

inform precision tillage recommendations in Michigan soybeans.   

Previous field research has frequently tested tillage systems as a prescribed suite of 

representative operations applied in a handful of site-years.  This approach fails to account for 

the context dependency and cumulative effects of mechanical soil disturbance over time.  Long-

term tillage studies can capture system-level effects, but are often still constrained to a few 

locations that may not be representative of agroecological conditions elsewhere.  Meta analyses 

are able to identify trends in tillage effects across environments, but the low spatial density of 

past independent experiments and methodological differences in how tillage treatments are 

applied, what covariates are measured, and how outcomes are measured make comparisons 

difficult.  In addition, tillage intensity is too often discussed in value-laden, categorical terms in 

outreach and education on the subject, ignoring the diversity and dynamic nature of tillage 

systems used by commercial farmers.   

These traditional limitations have resulted in a body of tillage research and education that 

offers little specific guidance for growers regarding how to target tillage and thus achieve 
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production and soil conservation objectives within the context of unique farm systems.  Directly 

quantifying tillage intensity and tillage effects on working farms over extended periods of time, 

as accomplished in this study, is critical to improving both clarity and consistency in tillage 

research and the reliability of extension tillage recommendations.  We demonstrated here a suite 

of multivariate statistical tools that permit robust analysis of the noisy data resulting from on-

farm observations.  Data reduction and mining techniques can be used to effectively map the 

complex web of interactions between important variables in these agroecosystems.  Methods like 

linear mixed effects and structural equation modeling make the dependencies common in on-

farm data explicit, and effectively leverage covariation rather than treating it as a liability.  

Furthermore, using participatory research approaches to collect on-farm data enhances 

social learning and the relevance of research outcomes for both researchers and farmers by 

adapting research questions, methods, analysis and interpretation to real world problems.  Place-

based and spatially explicit on-farm methods help research embrace and quantify the variability 

that farmers face every day.  Generating new knowledge in the context of grower networks can 

help researchers account for the way that social relationships, risk and trust influence tillage or 

other agricultural practices.  In this way, participatory on-farm research may provide a model for 

shoring-up trust in science and ensuring relevance in extension work by rooting agriculture 

research and extension directly in the needs of communities and their unique capacities for 

learning and adaptation. 

Our results indicate that adapting tillage technologies to the environmental and social 

context in which they will be applied is necessary to help growers realize the full potential of 

conservation tillage and its positive contributions to agricultural sustainability.  We found that 

growers’ tillage decision-making is driven by a combination of socio-psychological and 
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economic factors, with social networks setting the stage for tillage behavior by delineating what 

practices are recommended and accepted within a particular community.  On this basis, we 

recommend that outreach promoting conservation tillage in Michigan target resource limited, 

experienced soybean growers with loose social network ties that may soften the social risk of 

innovation.  Recruiting these specific audiences may prove challenging, but extension 

programming can certainly highlight the cost-saving and technical aspects of a fine-tuned 

conservation tillage system to better reach potential adopters. 

Previous research has produced contradictory results regarding the implications of 

various tillage systems for soybean yield.  These inconsistencies can be explained by the 

limitations common to tillage research noted above.  Using a novel research approach, we found 

that long-term no-till was associated with significantly higher yield gaps in Michigan soybeans, 

but only moderate or intermittent soil disturbance was necessary to improve soybean yields.  No-

till performed best in the relatively warm climate of southern Michigan and on low organic 

matter soils.  Our results suggest that increasing soil disturbance (i.e. conservation or zone 

tillage) in northern Michigan, and on high organic matter soils, may help to maximize soybean 

yield and profitability with minimal risk to soil health.   

An important next step is to empirically verify the relationships we highlight in a 

controlled experiment(s) specifically designed for this purpose.  Still, this work provides much 

needed preliminary guidance for extension workers and others offering tillage recommendations 

to growers in Michigan.  It serves to refute the overly simplistic message that reducing soil 

disturbance is equally feasible for all growers, and will always result in healthier soil and 

healthier crops regardless of context.  While not entirely definitive, we have identified important 

interactions and potential mechanisms that can help practitioners better predict where 
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conservation tillage is more likely to be adopted and also enhance agricultural sustainability.  In 

that way, it brings us one step closer to a future where tillage intensity can be targeted with the 

same precision that fertilizer and pesticide applications are today, enhancing outcomes for 

growers and society at large. 
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APPENDIX A:  IRB LETTERS 
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APPENDIX B:  SURVEY INSTRUMENTS 

TillageNetworks 
 

 

Start of Block: Intro 

 

Thank you for participating in this study.  The following contains information about the study and 

your rights as a research participant.     Project Title: Tillage Networks: Farmer Perceptions and 

Peer Groups Driving Tillage Decisions 

   

 Investigators:  Trey Malone, Ph.D., Michigan State University, and James DeDecker, Michigan 

State University Extension 

   

 Purpose: This is a web-based survey designed to track preferences and sentiments regarding 

tillage practices for soybean production.      Procedures: Proceeding with the following web-

based survey indicates your consent to participate in this study.   There are 24 questions asking 

about possible motivations and constraints that influence your tillage system.  The survey will 

take about 15 minutes to complete.  

   

 Risks of Participation:  The risks associated with this study are minimal. The risks are not 

greater than those ordinarily encountered in daily life. Moreover, you may stop the survey at any 

time. 

   

 Benefits: Your completion of this survey will assist researchers in developing evidence-based 

tillage recommendations that may improve productivity, profitability and sustainability for 

Michigan soybean growers.     Confidentiality:  The data will be stored by the principal 

investigators.  Although the data will be saved for future research, the information obtained from 

it will only be released in analytical summaries in which no individual's answers can be identified 

or linked to said individual.  

 Contacts:  If you have any questions or concerns about this project, please contact Dr. Trey 

Malone, tmalone@msu.edu. 

   

 Participant Rights:  Your participation in this research is voluntary.  You may discontinue the 

survey at any time without reprisal or penalty.       Consent:  I have read and fully understand the 

consent form.  I understand that my participation is voluntary.  By clicking below, I am indicating 

that I freely and voluntarily agree to participate in this study.  I also acknowledge that I am at 

least 18 years of age. 

   

 The project investigators recommend that you print a copy of this consent page for your records 

before you begin.    

 



108 
 

End of Block: Intro 
 

Start of Block: Sort 

 

Q 1. In which region of Michigan do you farm? 

o Central  (1)  

o Southwest  (2)  

o Northeast  (3)  
 

End of Block: Sort 
 

Start of Block: SW 
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Q 2.1. How well do you know each of the following growers? 

 
Extremely 

well (1) 
Very well 

(2) 
Moderately 

well (3) 
Slightly (4) 

Not at all 
(5) 

Click here if 
this is you 

(6) 

Max Benne 
(1)  o  o  o  o  o  o  

Dave Girton 
(2)  o  o  o  o  o  o  

Wally 
Hekter (3)  o  o  o  o  o  o  

Jerry Jones 
(4)  o  o  o  o  o  o  

Sam Korn 
(5)  o  o  o  o  o  o  

Tom Krull 
(6)  o  o  o  o  o  o  

Darin LaBar 
(7)  o  o  o  o  o  o  

Henry and 
Ricardo 
Miller (8)  o  o  o  o  o  o  

Dave 
Mumby (9)  o  o  o  o  o  o  

Larry 
Walton (10)  o  o  o  o  o  o  
Herb Miller 

(11)  o  o  o  o  o  o  
 

 

 

Page Break  
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Q 2.2. On a scale of one to five where one is the least intensive and five is the most intensive, 

how would you categorize tillage practices used by each of the following growers? 

 1 (1) 2 (2) 3 (3) 4 (4) 5 (5) 

Max Benne (1)  o  o  o  o  o  
Dave Girton 

(2)  o  o  o  o  o  
Wally Hekter 

(3)  o  o  o  o  o  
Jerry Jones (4)  o  o  o  o  o  
Sam Korn (5)  o  o  o  o  o  
Tom Krull (6)  o  o  o  o  o  
Darin LaBar 

(7)  o  o  o  o  o  
Henry and 

Ricardo Miller 
(8)  o  o  o  o  o  

Dave Mumby 
(9)  o  o  o  o  o  

Larry Walton 
(10)  o  o  o  o  o  

Herb Miller 
(11)  o  o  o  o  o  

 

 

End of Block: SW 
 

Start of Block: NE 
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Q 3.1. How well do you know each of the following growers? 

 
Extremely 

well (1) 
Very well 

(2) 
Moderately 

well (3) 
Slightly (4) 

Not at all 
(5) 

Click here if 
this is you 

(6) 

Todd 
Ableidinger 

(1)  o  o  o  o  o  o  
Mike Brandt 

(2)  o  o  o  o  o  o  
James 

Delekta (3)  o  o  o  o  o  o  
Robert Erke 

(4)  o  o  o  o  o  o  
Noel 

Hardies (5)  o  o  o  o  o  o  
Tyler Idalski 

(6)  o  o  o  o  o  o  
Julian 

Pilarski (7)  o  o  o  o  o  o  
Waylon 

Smolinski 
(8)  o  o  o  o  o  o  

Christopher 
Tulgestka 

(9)  o  o  o  o  o  o  
Clifford Wilk 

(10)  o  o  o  o  o  o  
Gerard 

Wozniak 
(11)  o  o  o  o  o  o  

Jason 
Pilarski (12)  o  o  o  o  o  o  

John 
Chappa (13)  o  o  o  o  o  o  

Ed 
Ciarkowski 

(14)  o  o  o  o  o  o  
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Q 3.2. On a scale of one to five where one is the least intensive and five is the most intensive, 

how would you categorize tillage practices used by each of the following growers? 

 1 (1) 2 (2) 3 (3) 4 (4) 5 (5) 

Todd 
Ableidinger (1)  o  o  o  o  o  

Mike Brandt 
(2)  o  o  o  o  o  

James Delekta 
(3)  o  o  o  o  o  

Robert Erke 
(4)  o  o  o  o  o  

Noel Hardies 
(5)  o  o  o  o  o  

Tyler Idalski 
(6)  o  o  o  o  o  

Julian Pilarski 
(7)  o  o  o  o  o  

Waylon 
Smolinski (8)  o  o  o  o  o  
Christopher 

Tulgestka (9)  o  o  o  o  o  
Clifford Wilk 

(10)  o  o  o  o  o  
Gerard 

Wozniak (11)  o  o  o  o  o  
Jason Pilarski 

(12)  o  o  o  o  o  
John Chappa 

(13)  o  o  o  o  o  
Ed Ciarkowski 

(14)  o  o  o  o  o  
 

 

End of Block: NE 
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Start of Block: Central 

 

Q 4.1. How well do you know each of the following growers? 

 
Extremely 

well (1) 
Very well 

(2) 
Moderately 

well (3) 
Slightly (4) 

Not at all 
(5) 

Click here if 
this is you 

(6) 

Dan 
Fedewa (1)  o  o  o  o  o  o  

Bob 
Feldpausch 

(2)  o  o  o  o  o  o  
David Motz 

(3)  o  o  o  o  o  o  
Robert 

Reese (4)  o  o  o  o  o  o  
David 

Seeger (5)  o  o  o  o  o  o  
Donald 

Sisung (6)  o  o  o  o  o  o  
Lee Thelen 

(7)  o  o  o  o  o  o  
Paul Upright 

(8)  o  o  o  o  o  o  
Joe 

Woodruff (9)  o  o  o  o  o  o  
Pat Zeeb 

(10)  o  o  o  o  o  o  
 

 

 

Page Break  
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Q 4.2. On a scale of one to five where one is the least intensive and five is the most intensive, 

how would you categorize tillage practices used by each of the following growers? 

 1 (1) 2 (2) 3 (3) 4 (4) 5 (5) 

Dan Fedewa 
(1)  o  o  o  o  o  
Bob 

Feldpausch (2)  o  o  o  o  o  
David Motz (3)  o  o  o  o  o  
Robert Reese 

(4)  o  o  o  o  o  
David Seeger 

(5)  o  o  o  o  o  
Donald Sisung 

(6)  o  o  o  o  o  
Lee Thelen (7)  o  o  o  o  o  
Paul Upright 

(8)  o  o  o  o  o  
Joe Woodruff 

(9)  o  o  o  o  o  
Pat Zeeb (10)  o  o  o  o  o  

 

 

End of Block: Central 
 

Start of Block: Tillage_Perceptions 
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Q 5. How much do you agree or disagree with the following statements.  Further reducing tillage 

on my farm would... 

 
Strongly 
agree (1) 

Agree (2) 
Somewhat 
agree (3) 

Neither 
agree nor 
disagree 

(4) 

Somewhat 
disagree 

(5) 

Disagree 
(6) 

Strongly 
disagree 

(7) 

Decrease 
the cost of 
soybean 

production 
(1)  

o  o  o  o  o  o  o  

Decrease 
labor 

needs for 
soybean 

production 
(2)  

o  o  o  o  o  o  o  

Decrease 
soil 

erosion (3)  o  o  o  o  o  o  o  
Decrease 
soybean 
yields (4)  o  o  o  o  o  o  o  
Increase 

soil health 
(5)  o  o  o  o  o  o  o  

Increase 
pest 

(weed, 
insect, or 
disease) 
pressure 

in 
soybeans 

(6)  

o  o  o  o  o  o  o  
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Q 6. How much do you agree or disagree that the following limits your ability to further reduce 

tillage on your farm? 

 
A great deal 

(1) 
A lot (2) 

A moderate 
amount (3) 

A little (4) None at all (5) 

Soil type 
constraints (1)  o  o  o  o  o  

Manure 
management 
constraints (2)  o  o  o  o  o  

Machinery 
availability and 

cost (3)  o  o  o  o  o  
Weather and 

climate 
constraints (4)  o  o  o  o  o  

Growing 
season length 

(5)  o  o  o  o  o  
Labor 

availability (6)  o  o  o  o  o  
Crop rotation 
constraints (7)  o  o  o  o  o  

Limited 
financial 

resources (8)  o  o  o  o  o  
Limited 

technical 
knowledge (9)  o  o  o  o  o  
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Q 7. Do you believe that the following people/organizations agree-disagree that reduced tillage 

is a recommended practice for soybean production? 

 
Strongly 
agree (1) 

Agree 
(2) 

Somewhat 
agree (3) 

Neither 
agree nor 
disagree 

(4) 

Somewhat 
disagree 

(5) 

Disagree 
(6) 

Strongly 
disagree 

(7) 

Jumpstart 
farmers 

within my 
region (1)  

o  o  o  o  o  o  o  
Other 

farmers 
generally (2)  o  o  o  o  o  o  o  

MSU 
Extension (3)  o  o  o  o  o  o  o  
Agribusiness 
professionals 

I work with 
(4)  

o  o  o  o  o  o  o  

My landlords 
(5)  o  o  o  o  o  o  o  

The general 
public (6)  o  o  o  o  o  o  o  
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Q 8. If one of these parties were to recommend that you further reduce tillage for soybean 

production, how likely would it be that you would take their advice? 

 
Extremel
y likely 

(1) 

Moderatel
y likely (2) 

Slightl
y likely 

(3) 

Neithe
r likely 

nor 
unlikel
y (4) 

Slightl
y 

unlikel
y (5) 

Moderatel
y unlikely 

(6) 

Extremel
y unlikely 

(7) 

Not 
possible

; I am 
already 
100% 
no-till 

(8) 

Jumpstart 
farmers 

within my 
region (1)  

o  o  o  o  o  o  o  o  
Other 

farmers 
generally (2)  o  o  o  o  o  o  o  o  

MSU 
Extension 

(3)  o  o  o  o  o  o  o  o  
Agribusines

s 
professional
s I work with 

(4)  

o  o  o  o  o  o  o  o  

My 
landlords (5)  o  o  o  o  o  o  o  o  
The general 

public (6)  o  o  o  o  o  o  o  o  
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Q 9. Please share your thoughts on tillage practices for soybean production in the space 

provided. 

________________________________________________________________ 
 

End of Block: Tillage_Perceptions 
 

Start of Block: Demographics 

 

We would now like to ask you a few questions about yourself. 

 

Q 10. What is your gender? 

o Male  (1)  

o Female  (2)  

o Other  (3)  
 

 

 

Q 11. What is your current age? 

o 18-24  (1)  

o 25-34  (2)  

o 35-44  (3)  

o 45-54  (4)  

o 55-64  (5)  

o 65 or older  (6)  
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Q 12. Have you obtained a Bachelor’s degree from a university or college? 

o Yes  (1)  

o No  (2)  
 

 

 

Q 13. Have you obtained a graduate degree such as an M.S., M.A., M.B.A., Ph.D., M.D., 

D.D.S., or J.D.? 

o Yes  (1)  

o No  (2)  
 

 

 

Q 14. What was your approximate annual household income before taxes in 2017? 

o Less than $20,000  (1)  

o $20,000 to $39,999  (2)  

o $40,000 to $59,999  (3)  

o $60,000 to $79,999  (4)  

o $80,000 to $99,999  (5)  

o $100,000 to $119,999  (6)  

o $120,000 to $139,999  (7)  

o $140,000 to $159,999  (8)  

o $160,000 or more  (9)  
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Q 15. What race or ethnicity do you consider yourself? 

o White  (1)  

o Black or African American  (2)  

o Hispanic  (3)  

o American Indian  (4)  

o Asian  (5)  

o Native Hawaiian or Other Pacific Islander  (6)  

o Other  (7)  

o Prefer not to indicate  (8)  
 

 

 

Q 16. On what percentage of your farm acreage do you grow soybeans? 

 0 10 20 30 40 50 60 70 80 90 100 
 

Percent of Soybeans (1) 

 

 

 

 

 

Q 17. How many years of farming experience do you have? 

 0 7 14 21 28 35 42 49 56 63 70 
 

Years experience (1) 

 

 

 

 

 
 

Q 18. What is your ratio of owned to rented land?  The percent must total 100%. 

Percent owned : _______  (1) 

Percent rented : _______  (2) 

Total : ________  
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Q 19. Please estimate the dollars per acre you spend on soil prep and planting for soybeans? 

________________________________________________________________ 
 

 

 

Q 20. Do you have a successor identified for your farm? 

o Definitely yes  (1)  

o Probably yes  (2)  

o Might or might not  (3)  

o Probably not  (4)  

o Definitely not  (5)  
 

 

 

Q 21. Do you apply a significant amount of manure on your farm? 

o Yes  (1)  

o No  (2)  
 

 

Q 22. Do you feel you have enough labor available? 

o Definitely yes  (1)  

o Probably yes  (2)  

o Might or might not  (3)  

o Probably not  (4)  

o Definitely not  (5)  
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Q 23. How often have you been engaged with the following groups over the last two years? 

 
Once a 

week (1) 
Once a 

month (2) 

Once every 
six months 

(3) 

Once a year 
(4) 

Less than 
once a year 

(5) 
Never (6) 

MSU 
Extention 

(1)  o  o  o  o  o  o  
MSU 

Jumpstart 
Project (2)  o  o  o  o  o  o  
Michigan 
Soybean 

Promotion 
Committee 

(3)  

o  o  o  o  o  o  

 

 

 

Page Break  

 

Q 24. Thank you for completing this survey.  We would like to give you a pocket knife as a token 

of our appreciation.  Please choose which logo you would like to have placed on the knife. 

o MSU Extension  (1)  

o Michigan Soybean Promotion Committee  (2)  
 

End of Block: Demographics 
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Dear Jumpstart Collaborator: 
This is a friendly reminder to please respond to our survey at your earliest 
convenience.  The Jumpstarting Michigan Soybean Production project is designed to 
improve our understanding of current tillage and other related management practices 
(i.e. crop rotation, residue shredding or chopping, cover crops, etc.) with direct 
implications for soybean stand establishment, yield and soil health. Participation is 
voluntary, however our goal is to collect field-specific information about inputs, 
management practices and crop performance from 60-100 fields per year to be able to 
generate meaningful results (more fields will produce better recommendations).  Please 
complete the enclosed survey to provide all of the requested information 2010-
2016 for your two fields that were planted to soybeans in 2016 and included in the 
Jumpstart study, one with a history of high crop yields (good) and the other low 
yielding (bad). Do your best to complete the entire survey as accurately as possible, 
particularly those questions regarding your tillage practices.  The information you 
provide will be kept confidential, combined with information from other producers and 
used to develop decision support tools for field specific tillage recommendations.  There 
are no known risks associated with participating in this study.   
Contact James DeDecker, MSU Extension educator by phone at 989-225-3221 or by 
email at dedecke5@msu.edu if you have any questions.  Please return the completed 
form as soon as possible to James DeDecker at dedecke5@msu.edu or 106 E. 
Huron Ave., Suite C; Rogers City, MI 49779.    
Thank You! 

Survey Form Explanation and Recommendations 
 Producer name and mailing address: Please provide this information as it will 

be enable us to follow-up in years 2 and 3. Your information will be kept 

confidential. 

 Crop: Please indicate the cash crop and any cover crops grown that year, or 

“fallow” as appropriate. 

 Field location: This information is essential to retrieving soil and weather data 

for your fields. The options for providing field locations are provided below: 

o Legal land description with the field boundaries identified in the diagram 

o GPS coordinates for the center of each field 

o Provide the county, nearest intersection and indicate the field location 

relative to the intersection 

 Dryland or irrigated and field size: Indicate if irrigation was run in the field that 

year. Please indicate the total number of acres in each field. 

 Inches of irrigation water: Please indicate the total amount of irrigation water 

applied to the field each year. 

 Planting date: Do not include fields where planting was not completed within a 

couple of days. 

 Variety name (company and variety name): Please try to provide this 

information if possible. At a minimum, please list the maturity group. 

 Seeding rate: Please list the actual seeding rate in seeds dropped per acre. 

mailto:dedecke5@msu.edu
mailto:dedecke5@msu.edu
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 Row spacing: Please indicate your row spacing for each crop/year. For twin 

rows, list the distance between the two twin rows first and then the distance 

between the center of the twin rows and the adjacent set of twin rows. For 

example: 7.5” twins, 30” centers.  

 Seed treatment: Please indicate yes or no. If a seed treatment was applied, 

please be as specific as possible. If you don’t remember the specific product(s), 

contact your seed supplier. If you can’t provide product names, please list the 

categories (insecticide I, fungicide F, nematicide N or Rhizobia inoculant R). 

 Any (non-starter) fertilizer applied after the prior crop (rate and timing): Do 

not report starter fertilizer here. Only report nutrients applied after harvesting the 

previous crop. Please report the pounds per acre of the actual nutrients (N, S, 

Zn, Mn, Mg, B, K2O and P2O5 not the fertilizer. For example, if you applied 150 

lbs. of 0-0-60 per acre, please report 90 lbs. of actual K2O per acre. Please 

report the date of all nutrient applications. 

 Any starter fertilizer (yes/no) and nutrients applied: If a starter was applied, 

please indicate placement (2x2 or in-furrow) and nutrients applied. Application 

rates are not required. 

 Lime (L) and Manure (M) and timing: Only report lime and manure applications 

made after harvesting the previous crop. Please indicate the year and month for 

any lime and manure applications. Application rates are optional.   

 Herbicide Program (pre-emergence or post-emergence or both): Please 

indicate application timing (pre, post or both). Product names and application 

rates are not needed. 

 Any in-season fungicide (F) and/or insecticide (I) (yes/no): Please indicate if 

a foliar fungicide (F), foliar insecticide (I) or both was applied. Product names and 

rates are not necessary. 

 Soybean Cyst Nematodes (SCN yes/no or I don’t know): Only answer “Yes” 

or “No” if the field has been tested for SCN. If the field has not been tested for 

SCN, please answer “I don’t know”.  

 Any significant yield loss due to other factors (insects, diseases, weeds, 

frost, hail, flooding, and lodging): Please report yield losses due to any of 

these problems only if the problem occurred in at least 1/3 of the area in the field 

and the yield loss exceeded 5%.   

 Average crop yield: Please indicate the average yield for each year adjusted for 

moisture. 

 Tillage after crop, before next crop: Indicate any tillage that occurred between 

harvest of the current crop and planting of the next crop.  If your specific tillage 

practice is not listed on the form, please write your practice on the form.  Please 

list the number of passes, month and year for all tillage operations. 

 Residue left, harvested or grazed: Please indicate if crop residue was left on 

the field, harvested or grazed.      
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