
c© 2019 Chuhang Zou



3D SCENE AND OBJECT PARSING FROM A SINGLE IMAGE

BY

CHUHANG ZOU

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2019

Urbana, Illinois

Doctoral Committee:

Associate Professor Derek Hoiem, Chair
Professor David Forsyth
Assistant Professor Alexander Schwing
Dr. Alex Colburn, Amazon



ABSTRACT

The term 3D parsing refers to the process of segmenting and labeling the 3D space into expres-
sive categories of voxels, point clouds or surfaces. Humans can effortlessly perceive the 3D scene
and the unseen part of an object from a single image with a limited field of view. In the same sense,
a robot that is designed to execute a few human-like actions should be able to infer the 3D visual
world, from a single snapshot of a 2D sensor such as a camera, or a 2.5D sensor such as a Kinect
depth equipment. In this thesis, we focus on 3D scene and object parsing from a single image,
aiming to produce a 3D parse that is able to support applications like robotics and navigation.

Our goal is to produce an expressive 3D parse : e.g. , what is it, where is it, how can humans
move and interact with it. Inferring such a 3D parse from a single image is not trivial. The
main challenges are: the unknown separation of layout surfaces and objects; the high degree of
occlusions and the diverse classes of objects in the cluttered scene; how to represent 3D object
geometry in a way that can be predicted from noisy or partial observations, and can help assist
reasoning like contact, support and extent. In this thesis, we put forward the hypothesis and prove
in experiments, that a data-driven approach is able to directly produce a complete 3D recovery
from 2D partial observations. Moreover, we show that by imposing constraints of 3D patterns and
priors into the learned model ( e.g. , layout surfaces are flat and orthogonal to adjacent surfaces,
support height can reveal the full extent of an occluded object, 2D complete silhouettes can guide
reconstructions beyond partial foreground occlusions, and a shape can be decomposed into a set
of simple parts), we are able to obtain a more accurate reconstruction of the scene and a structural
representation of the object.

We present our approaches at different levels of detail, from a rough layout level to a more
complex scene level and finally to the most detailed object level. We start by estimating the 3D
room layout from a single RGB image, proposing an approach that generalizes across panoramas
and perspective images, cuboid layouts and more general layouts (e.g. , “L”-shape room). We then
make use of an additional depth image, explore at the scene level to recover the complete 3D scene
with layouts and all objects jointly. At the object level, we propose to recover each 3D object with
robustness to possible partial foreground occlusions. Finally, we represent each 3D object as a 3D
composite of sets of primitives, recurrently parsing each shape into primitives given a single depth
view. We demonstrate the efficacy of each proposed approach with extensive experiments both
quantitatively and qualitatively on public datasets.
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CHAPTER 1: INTRODUCTION

1.1 OVERVIEW

Humans are able to perceive the 3D world from a single view. When we see a photo of the
Vermeer’s music lesson in Figure 1.1, we know the 3D location of layouts such as walls, ceiling
and floor, as well as the 3D shape of objects such as piano and painting. We can infer the spatial
relationship between layouts and objects, e.g. , the piano is on the floor, near the back wall. We
can also infer the 3D occupancy and free space inside the room. We are able to reason about the
complete 3D shape of layouts and objects even they are partially occluded, e.g. , we know the
complete shape of the piano, as shown in Figure 1.1, although the piano is partially occluded by
the woman in front.

2D photo: Vermeer’s music lesson 3D perception

Figure 1.1: Illustrations. Humans can effortlessly understand the 3D scene from a 2D photo, and
are able to infer the unseen parts of objects. Images are adopted from [1].

This inspires us to build up a vision system that is able to understand the 3D world from a
single image, which is highly desirable in the scenarios of robotics and navigation. For example,
in Figure 1.2, the cute robot is instructed to help pick up the wine glass in the messy kitchen. The
limited free space in the kitchen prevents the robot from a complete 3D scan of the scene, and
the robot would rather choose to rely on the 3D inference from a limited field of view, e.g. , a
single snapshot of the kitchen. In response to the request, as illustrated in Figure 1.3, the robot
first localizes the position of the wine glass in the kitchen, estimates free space in front and moves
towards it, finds the handle of the wine glass and poses a correct hand gesture to pick it up. Those
successive actions require the robot to be able to infer the physical shapes of objects, surfaces, and
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Yes Sir!

Hey robot can 
you help pick up 
the wine glass?

Figure 1.2: The cute robot is instructed to help pick up the wine glass on the counter in the messy
kitchen.

the scene layout extent from sensors. Moreover, the robot should be able to understand what is in
the scene and what could be done, and produce an expressive 3D parse that could support reasoning
like support (e.g. , this table supports that mug) and interactions with humans or robots (e.g. , this
is the chair seat that humans can sit on).

In this thesis, we aim to design a vision system that is able to infer the 3D visual world, from a
single snapshot of a 2D sensor such as a camera, or a 2.5D sensor such as a Kinect depth equip-
ment. However, inferring such a 3D parse from a single image is not always trivial. Generally, we
face challenges in three folds: (1) how to infer the 3D room extent when the separation of layout
surfaces and objects is unknown; (2) how to parse out the diverse set of objects, given the high
degree of occlusions in cluttered scene; (3) how to represent 3D object geometry in a way that can
be predicted from noisy or partial observations, and can help assist reasoning like contact, support
and extent.

Instead of solving the whole task in one time, we explore the task at different levels of details,
as shown in Figure 1.4. We start from the layout level to a more complex scene level and finally
to the most detailed object level. At layout level, in order to infer the full extent of the scene,
we estimate the 3D room layout and separate it from the foreground objects. Then, at the scene
level, we jointly parse out the 3D extent of all objects and layouts in the scene, to localize every
object and reason free space inside. At the object level, we reconstruct a complete 3D shape with
robustness to possible partial foreground occlusions. Moreover, we further parse the object into
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The wine glass is on 
the counter occluded 

by cups  

Free space to walk 
towards the wine 

glass  

The handle to hold 
the wine glass  

Figure 1.3: To pick up the wine glass, given a single image, the robot needs to localize the wine
glass occluded by plates and cups on the counter, identify free space in front and move towards
the counter, then find the glass handle to pick it up. Those successive actions require 3D scene and
object parsing from a single image.

structural and compact representations (primitives) to support the functional interactions such as
grasping and manipulation. We propose, at each level, an approach with proved efficacy based on
extensive experiments both qualitatively and quantitatively on public datasets.

1.2 CONTRIBUTIONS

We present contributions of our approaches of 3D scene and object parsing at different levels of
details: the layout level, the scene level and the object level. Details are as follows.

3D scene layout from a single RGB image. The first problem to be solved in 3D scene parsing
is to estimate the 3D extent of background room layout: what’s the scope of the scene? How high
is the ceiling? How far are the walls? In 1999, Coughlan and Yuille [5] summarized the indoor
scene statistics as “Manhattan world” assumptions: scenes were built on a Cartesian grid, as in
indoor all walls are at right angles to each other and perpendicular to the floor. This representation
makes up the loss of 3D geometry due to occlusions from objects in the scene, and is sparse and
compact in representation that can speed up the reconstruction process. We propose LayoutNet [6],
a more general RGB image to Manhattan layout algorithm that is suitable for both perspective and
panoramic images. Our system compares well in speed and accuracy for panoramic images and
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Layout level Scene level Object level

Figure 1.4: Three levels of details of 3D scene and object parsing from a single image. At layout
level (left), we aim to parse out 3D layouts of wall, ceiling and floor to understand the full extent
of the scene. At a more complex scene level (middle), we aim to have a complete 3D parse of all
objects and the layouts in the scene, in order to localize objects and infer free space. At the most
detailed object level (right), we aim to recover a complete 3D parse of objects with robustness
to possible foreground occlusions, and decompose each object into a structural and functional
representation for applications like robot grasping and manipulations. Images are adopted from [2,
3, 4]

achieves the second best (at the time of writing) for perspective images, while also being the fastest.
We demonstrate gains from using precomputed vanishing point cues, geometric constraints, and
post-process optimization, indicating that deep network approaches still benefit from explicit geo-
metric cues and constraints. We also show that adding an objective to directly regress 3D layout
parameters leads to better predictions of the boundaries and corners that are used to solve for the
final predicted layout. Moreover, we extend the annotations for the Stanford 2D-3D dataset [7],
providing room layout annotations that can be used in future work. Experiments on three evalua-
tion metrics and two dataset show that these differences improve results. We further show notable
improvements upon LayoutNet, noted as LayoutNet v2, by using better image feature encoder,
refined training details and gradient ascent based post refinement step (Chapter 3). Our LayoutNet
v2 achieves the state-of-the-art for cuboid room layout estimation.

Complete 3D scene parsing from a single RGBD image. Our next step is to jointly recover 3D
objects and room layouts in the scene. We aim to parse both the visible and occluded portions of
the scene and all observable objects, producing a complete 3D parse. Such a scene interpretation
is useful for navigation and free space reasoning, but difficult to produce due to the well-known
challenge of segmentation, the high degree of occlusion, and the diversity of objects in indoor
scenes. We choose to work with RGBD images so that we can focus on designing and inferring
a useful representation, without immediately struggling with the added difficulty of interpreting
geometry of visible surfaces. We model the extent of objects with CAD-like 3D shapes and the
layout of orthogonal walls as planar surfaces that conform to a Manhattan structure. To obtain
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a dataset suitable for our experiments, we refine the NYUd v2 dataset with detailed 3D shape
annotations for all the objects in each image. The labeling achieves a better representation of
both ground truth object shape and whole scene depth. We propose an approach to recover a 3D
model of room layout and objects from an RGBD image, arguably producing the most detailed and
complete 3D scene parses to date [8]. We take a data-driven approach, generating sets of potential
object regions, matching to regions in training images, and transferring and aligning associated 3D
models while encouraging fit to observations and overall consistency. We also investigate impact
of support estimation on scene parsing. We hypothesize, and confirm in experiments, that support
height information will help most for interpreting occluded objects because the full extent of an
occluded object can be inferred from support height (Chapter 4).

Robust 3D object reconstruction beyond occlusion. One major challenge in 3D object recon-
struction is to infer the complete shape geometry from partial foreground occlusion. Occlusion
frequently occurs in natural scenes: e.g. , we often see an image of a sofa occluded by a table
in front and a dining table partially occluded by a vase on top. Key challenges are the unknown
existence and extent of an occluding region from limited view point. We propose a method to
reconstruct the complete 3D shape of an object (represented by a set of point clouds) from a single
RGB image, with robustness to occlusion. First, we propose a framework that predicts 3D point
clouds from a single RGB image. We demonstrate performance gains by using a 2D re-projection
loss on multiple synthetic views and a surface-based point cloud refinement step. Our approach
achieves the state-of-the-art. We then extend our approach by predicting complete silhouettes for
robustness to occlusion in real scenes. We propose a silhouette completion network that achieves
the state-of-the-art. We show improvements for reconstruction of non-occluded and partially oc-
cluded objects. Experiments demonstrate the efficacy of our approach both quantitatively and
qualitatively on a real scene dataset (Chapter 5).

Primitive-based 3D Object Parsing. We explore the structural and functional representation
of 3D objects, in order to support applications such as robot grasping and manipulation. Inspired
by the nature of human perception of 3D shapes as a collection of simple parts, we explore such
an abstract shape representation based on primitives. Compared with the common voxel-based
representation, primitives are much more compact in parameterization and are holistic in simpli-
fying the reasoning about properties like stability and connectedness. One of the challenges of
primitive-based 3D object modeling is to accommodate variable number of primitives within the
object class they are trained for. We propose 3D-PRNN [9]: a generative recurrent neural network
that reconstructs 3D shapes as sequences of primitives given a single depth image. We also pro-
pose an efficient method to fit primitives from point clouds based on Gaussian-fields and energy
minimization. Our primitive representation provides enough training samples for 3D-PRNN in 3D
reconstruction (Chapter 6).
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1.3 DISSERTATION OUTLINE

We present our literature review of 3D scene and object parsing from a single image in Chapter 2.
We introduce in Chapter 3, 4, 5 and 6 our propsoed approaches. Chapter 3 presents LayoutNet,
a convolution neural network based method that predicts room layout from a single image that
generalizes across panoramas and perspective images, cuboid layouts and more general layouts
(e.g. , L-shape room). We also improve upon LayoutNet and present LayoutNet v2 with notable
performance boost. Chapter 4 presents our approach of complete scene parsing from an RGBD
image. Chapter 5 presents our solution to reconstruct 3D object with robustness to possible partial
foreground occlusion. Chapter 6 presents 3D-PRNN, a generative recurrent neural network that
parses an object as a composition of primitives to infer its structural and functional characteristics.
Finally, in Chapter 7, we come to our conclusions and discuss a few directions of future work.
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CHAPTER 2: LITERATURE REVIEW

2.1 SINGLE IMAGE 3D RECONSTRUCTION

In 1963, Larry Roberts defended his Ph.D. thesis at MIT to extract 3D information from 2D line
drawings [10]. Roberts put forward the “Blocks World” (polyhedra) hypothesis to model the 3D
structure of objects and scenes. For decades, based on the blocks world assumption, researchers
have proposed various methods to improve the performance of single image 3D reconstruction.

In 1999, Coughlan and Yuille [5] summarized the indoor scene statistics as “Manhattan world”
assumptions: scenes were built on a Cartesian grid, as in indoor all walls are at right angles to each
other and perpendicular to the floor. This representation makes up the loss of 3D geometry due to
occlusions from objects in the scene, and is sparse and compact in representation that can speed up
the reconstruction process. Manhattan world assumptions have inspired researchers to perceive the
3D indoor scene as a “box world”: both layouts and objects can be abstracted as oriented cuboids,
inferring the rough 3D shape as well as the accurate 3D location and pose of objects and layouts,
as shown in Figure 2.1. This can be applied for the task of 3D object detection [11], 3D scene
reconstruction [12, 13, 14], and inferring of the free space and occupancy in the 3D scene [15, 16].

(a) (b)

Figure 2.1: Illustration of (a) utilizing the Manhattan world assumptions to estimate scene orien-
tations and (b) the “box in the box” concept of 3D scene and object parsing from a single image.
Images are adopted from [5, 13, 11].

More recent approaches continue to follow the concept of the “Manhattan world” assumptions
and the “Blocks World” hypothesis, and attempt to solve 3D scene and object parsing from a
single image at three different levels of details: layout level, scene level and object level. We
discuss related work at each level of detail as follows.
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2.2 3D LAYOUT FROM A SINGLE IMAGE

Single-view room layout estimation has been an active topic of research for the past decades.
Delage et al. [17] fit floor/wall boundaries in a perspective image taken by a level camera to create
a 3D model under “Manhattan world” assumptions [5]. A special case is the cuboid model, in
which four walls, ceiling, and floor enclose the room. Lee et al. [18] produce Orientation Maps,
generate layout hypotheses based on detected line segments, and select a best-fitting layout from
among them. Hedau et al. [15] recover cuboid layouts by solving for three vanishing points,
sampling layouts consistent with those vanishing points, and selecting the best layout based on
edge and Geometric Context [19] consistencies. Subsequent works follow a similar approach,
with improvements to layout generation [12, 20, 21], features for scoring layouts [20, 21], and
incorporation of object hypotheses [11, 22, 23, 24, 25] or other context. The most recent methods
train deep network features to classify pixels into layout surfaces like walls and ceiling [26, 27],
boundaries [28], corners [29], or a combination [30].

(a) (b)

(c)

Figure 2.2: 3D geometric cues for single image layout reconstruction: (a) line (boundary)
cues [28]; (b) corner cues [29]; (c) Manhattan layout assumptions (special case as a cuboid) for a
single panorama [31]. Images are adopted from the cited paper.

Nearly all of these works aim to produce cuboid-shaped layouts from perspective RGB images.
A few works also operate on panoramic images [31, 32, 33] or RGBD images [34, 14, 35, 36].
Methods also exist to recover axis-aligned, piecewise-planar models of interiors from large collec-
tions of images [37, 38] or laser scans [39], benefiting from more complete scene information with
fewer occlusion. Rent3D [40] takes advantage of a known floor plan.
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2.3 3D SCENE PARSING FROM A SINGLE IMAGE

The term 3D scene parsing refers to the process of recovering the layout and shape of surfaces
and objects in a scene. 3D scene parsing from a single image is a foundational problem in com-
puter vision. One major challenge is to cope with the huge diversity of layouts and objects under
heavy occlusion, due to the complexity of natural scenes. Previous approaches utilize contextual
relations and physical constraints to recover cuboid representations of layouts and objects from
a single RGB image [25, 41, 42, 43], or from a single RGBD image [44]. However, cuboids do
not provide good shape approximations to chairs, tables, sofas, and many other common objects.
Therefore, researchers proposed approaches to fit CAD-like models to depicted objects. Song and
Xiao [45] search for chairs, beds, toilets, sofas, and tables by sliding 3D windows and enumerating
all possible poses. Song et al.then extend the method to detect a larger variety of classes [46] with
CNN-based approach and interprets semantic voxel representations from a single depth map [47].
Izadinia et al. [27] infer the CAD models of layouts pieces and objects via render-and-match.
Huang et al. [48] further improve the performance by involving latent human context – affordance
and the functionality of the arrangement of the room.

(a)

(c) (d)

(b)

Figure 2.3: Approaches for 3D scene parsing from a single image: cuboid layouts and objects
recovery from (a) a single RGBD image [42] or (b) a single RGB image [43]; using CAD-like or
mesh models to fit 3D objects and layouts from a single image [27, 48] as in (c) and (d). Images
are adopted from the cited papers.

In addition, object height priors have shown to be crucial geometric cues for better object de-
tection [49, 50, 51, 45, 52, 53]. Deng et al. [54] apply height above ground to distinguish objects.
Guo and Hoiem [55] localize the height and full extent of support surfaces from one RGBD image.
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2.4 3D OBJECT PARSING

Many robotics and graphics applications require 3D shape interpretations from sensory data.
For example, picking up a cup or moving a chair all rely on at least a vague idea of object position,
shape, contact and connectedness. This can be attempted given an RGB image [56, 57, 58, 59, 60,
61, 62, 63, 64], a depth image [65, 66, 67, 68] or both [52, 69, 70]. Recent approaches mainly
either focus on part- and object-based retrieval from large repositories [27, 71, 52, 66, 63, 72, 73],
deformations from meshes [74, 75, 56] or a direct voxelized volumetric prediction via convolu-
tion neural networks [57, 61, 76, 64]. A better model fitting includes part deformation [77] and
symmetry [78]. Wu et al.present preliminary results on automatic shape completion from depth by
classifying hidden voxels with a deep network [67]. Wu et al.reconstruct shapes based on predicted
skeletons [57].

Seeing beyond occlusions. Occlusions have long been an obstacle in both single-view and
multi-view reconstruction. Solutions have been proposed to recover portions of surfaces from
single views, e.g. with synthetic apertures [79, 80], or to otherwise improve robustness of matching
and completion functions from multiple views [81, 82, 83]. Other work decompose a scene into
layered depth maps from RGBD [36] or video [84] and then seek to complete the occluded portions
of the maps. But errors in layered segmentation can severely degrade the recovery of the occluded
region. Learning-based approaches [85, 86, 87] have posed recovery from occlusion as a 2D
semantic segmentation completion task. Ehsani et al. [86] propose to complete the silhouette and
color/texture of an occluded object.

Point clouds based 3D object representations. We explore 3D shape representations as a set
of point clouds, which is flexible and easy to transform. Qi et al. [88] propose a novel deep net
architecture suitable for consuming unordered point sets in 3D; Fan et al. [89] propose to generate
point clouds from a single RGB image using generative models. More recent approaches improve
point set reconstruction performance by learning representative latent features [90] or by imposing
constraints of geometric appearance in multiple views [91].

Primitive-based 3D object representations. We also explore shape representations as aggre-
gations of primitives that has the benefit for lower computational and storage cost. Biederman,
in the early 1980s, popularized the idea of representing shapes as a collection of components or
primitives called “geons” [94], and early computer vision algorithms attempted to recover object-
centered 3D volumetric primitives from single images [95]. have long been popular in psychol-
ogy [94], interactive graphics [96] or shape completion from point clouds [97, 98, 99]. In the case
that shapes often have canonical parts like planes or boxes and efficient solution for large data is
required, primitives are used in reconstructions of urban and architectural scenes [100, 101, 102,
103].
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(a)

(c) (d)

(b)

Figure 2.4: 3D object parsing and object representations: Given an RGB image, approaches ex-
plore to recover the complete shape represented by (a) 3D voxels [92], (b) a 3D mesh [56] or (c)
3D surfaces [59]; objects can also be decomposed into primitives (oriented cuboids) from a 3D
volume as in (d) [93]. Images are adopted from the cited papers.

2.5 RELATION TO OUR WORK

We discuss the relationship between the previous approaches and our work at three levels of
details: layout level, scene level and object level.

2.5.1 Layout level

At the layout level, our work is most similar in goal to PanoContext [31] and in approach to
RoomNet [29]. PanoContext extends the frameworks designed for perspective images to panora-
mas, estimating vanishing points, generating hypotheses, and scoring hypotheses according to Ori-
entation Maps, Geometric Context, and object hypotheses. To compute these features, PanoCon-
text first projects the panoramic image into multiple overlapping perspective images, and then
combines the feature maps back into a panoramic image. Our approach is more direct: after align-
ing the panoramic image based on vanishing points, our system uses a deep network to predict
boundaries and corners directly on the panoramic image. In this regard, we are similar to Room-
Net, which uses a deep network to directly predict layout corners in perspective images, as well
as a label that indicates which corners are visible. Our method differs from RoomNet in several
ways. Our method applies to panoramic images. Our method also differs in the alignment step
(RoomNet performs none) and in our multitask prediction of boundaries, corners, and 3D cuboid
parameters. Our final inference is constrained to produce a Manhattan 3D layout. RoomNet uses
an RNN to refine 2D corner position predictions, but those predictions might not be consistent
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with any 3D cuboid layout. Our experiments show that all of these differences improve results.
More generally, we propose the first method, to our knowledge, that applies to both perspective

and panoramic images. We also show that our method extends easily to non-cuboid Manhattan
layouts. Thus, our method is arguably the most general and effective approach to date for indoor
layout estimation from a single RGB image. Moreover, our approach simplifies reconstruction by
estimating layout directly on a single RGB equirectangular panorama: our final output is a sparse
and compact planar Manhattan layout parameterized by each wall’s distance to camera, height,
and the layout rotation.

2.5.2 Scene level

The most related work that recovers complete models from scene is proposed by Zhang et

al. [31], where they predict 3D bounding boxes of the room and all major objects inside, together
with their semantic categories from an RGB 360◦ full-view panorama. Different from Zhang et

al.: we interpret whole-room 3D context with detailed 3D shapes and layout planes; our input is a
single image, which has limited field of view; and we make use of depth information, which eases
the difficulty of interpreting geometry of visible surfaces.

Different from the existing methods that try to recover detailed shape for cuboid layouts and
the main furniture in the scene, our approach finds a detailed shape for any object and layout in
the scene from a single RGBD image. Our approach is efficient and light-weight compared with
ScanNet [104], which utilizes RGB-D video dataset to annotate instance-level semantic segmen-
tations, since our model operates on single images instead of videos. Moreover, our detailed shape
prediction can be utilized as an refining tool for existing dataset with 3D bounding box ground
truth.

Our approach also relates to parsing [105, 106] of RGBD images and generation of object-like
regions [107, 108, 109]. We propose to generate object-like regions and retrieve their related 3D
shape via region transfer, which is inspired by the SuperParsing method of Tighe and Lazebnik
[110]. Similar ideas have also been used in other modalities: Karsch et al. [111] transfer depth,
Guo and Hoiem [112] transfer polygons of background regions, Yamaguchi et al. [113] transfer
clothing items. Exemplar-based 3D modeling is also employed by Satkin and Hebert [114] to
transfer 3D geometry and object labels from entire scenes.

2.5.3 Object level

One major challenge in 3D object parsing is to infer the complete 3D shape with robustness to
partial foreground occlusions. Most of the approaches of 3D object parsing from a single image
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are applied to non-occluded objects with clean backgrounds and no occlusions, which may prevent
their application to natural images. Sun et al. [115] conduct experiments on real images from
Pix3D, a large-scale dataset with aligned ground-truth 3D shapes, but do not consider the problem
of occlusion. We are concerned with predicting shape of objects in natural scenes, which may be
partly occluded. Our approach improves the state-of-the-art for object point set generation, and is
extended to reconstruct beyond occlusion with the guidance of completed silhouettes. That is, We
go further to try to predict the complete 3D shape of the occluded object.

Another major challenge in 3D object parsing is to have a functional and structural represen-
tation of objects for applications such as robot grasping. Recently, more compact and parametric
representations in the form of template objects [57], and set of cuboid primitives [93] have been
introduced. These representations, however, require non trivial effort to accommodate variable
number of configurations within the object class they are trained for. This is mainly because
of their single feed-forward design, which implicitly forces the prediction of a discrete number
of variables at the same time. Different from previous approaches, we propose to sequentially
generates primitives. Our approach is inspired by Graves’ work [116] to sequentially generate
parameterized handwriting strokes and the PixelRNN approach [117] to model natural images as
sequentially generated pixels. To produce parameterized 3D primitives (oriented cuboids), we
customize the RNN to encode explicit geometric constraints of symmetry and rotation. For ex-
ample, separately predicting whether a primitive should rotate along each axis and by how much
improves results over more simply predicting rotation values, since many objects consist of several
(unrotated) cuboids.

13



CHAPTER 3: MANHATTAN ROOM LAYOUT FROM A SINGLE RGB IMAGE

LayoutNet

Figure 3.1: Illustration. Our LayoutNet predicts a
non-cuboid room layout from a single panorama under
equirectangular projection.

The first problem to be solved in 3D
scene parsing is to estimate the extent of
room layout: whats the scope of the room?
How high is the ceiling? How far are the
walls? In this chapter, we propose an al-
gorithm to predict room layout from a sin-
gle image that generalizes across panora-
mas and perspective images, cuboid lay-
outs and more general layouts (e.g. , “L”-
shape room). Our method operates di-
rectly on the panoramic image, rather than
decomposing into perspective images as
do recent works. Our network architec-
ture is similar to that of RoomNet [29], but
we show improvements due to aligning
the image based on vanishing points, pre-
dicting multiple layout elements (corners,
boundaries, size and translation), and fit-
ting a constrained Manhattan layout to the
resulting predictions. Our method com-
pares well in speed and accuracy to other existing work on panoramas, achieves among the best
accuracy for perspective images, and can handle both cuboid-shaped and more general Manhattan
layouts.

3.1 INTRODUCTION

Estimating the 3D layout of a room from one image is an important goal, with applications
such as robotics and augmented reality. The room layout specifies the positions, orientations,
and heights of the walls, relative to the camera center. The layout can be represented as a set of
projected corner positions or boundaries, or as a 3D mesh. Existing works apply to special cases of
the problem, such as predicting cuboid-shaped layouts from perspective images or from panoramic
images.

We present LayoutNet, a deep convolution neural network that estimates the 3D layout of an
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Figure 3.2: Overview. Our LayoutNet follows the encoder-decoder strategy. The network input is
a concatenation of a single RGB panorama and Manhattan line map. The network jointly predicts
layout boundaries and corner positions. The 3D layout parameter loss encourages predictions that
maximize accuracy. The final prediction is a Manhattan constrained layout reconstruction.

indoor scene from a single perspective or panoramic image (Figure. 3.1). Our method compares
well in speed and accuracy on panoramas and is among the best on perspective images. Our
method also generalizes to non-cuboid Manhattan layouts, such as “L”-shaped rooms.

Our LayoutNet approach operates in three steps (Figure 3.2). First, our system analyzes the
vanishing points and aligns the image to be level with the floor (Chapter 3.2.1). This alignment
ensures that wall-wall boundaries are vertical lines and substantially reduces error according to our
experiments. In the second step, corner (layout junctions) and boundary probability maps are pre-
dicted directly on the image using a CNN with an encoder-decoder structure and skip connections
(Chapter 3.2.2). Corners and boundaries each provide a complete representation of room layout.
We find that jointly predicting them in a single network leads to better estimation. Finally, the 3D
layout parameters are optimized to fit the predicted corners and boundaries (Cfhapter 3.3). The
final 3D layout loss from our optimization process is difficult to back-propagate through the net-
work, but direct regression of the 3D parameters during training serves as an effective substitute,
encouraging predictions that maximize accuracy of the end result.

3.2 APPROACH

3.2.1 Panoramic image alignment

Given the input as a panorama that covers a 360◦ horizontal field of view, we first align the image
by estimating the floor plane direction under spherical projection, rotate the scene, and re-project it
to the 2D equirectangular projection. Similar to Zhang et al.’s approach [31], we extract long line
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segments using the Line Segment Detector (LSD) [118] in each overlapped perspective view, then
compute the vanishing points using the Hough Transform. This alignment step eases our network
training. The detected candidate Manhattan line segments also provide additional input features
that improve the performance, as shown in Chapter 3.5.

3.2.2 Network design

An overview of the LayoutNet network is illustrated in Figure 3.2. The network follows an
encoder-decoder strategy.

Deep panorama encoder. The input is a 6-channel feature map: the concatenation of single
RGB panorama with resolution of 512 × 1024 (or 512 × 512 for perspective images) and the
Manhattan line feature map lying on three orthogonal vanishing directions using the alignment
method in Chapter 3.2.1. The encoder contains 7 convolution layers with kernel size of 3×3. Each
convolution is followed by a ReLU operation and a max pooling layer with the down-sampling
factor of 2. The first convolution contains 32 features, and we double size after each convolution.
This deep structure ensures a better feature learning from high resolution images and help ease
the decoding step. We tried Batch Normalization after each convolution layer but observe lower
accuracy. We also explored an alternative structure that applies a separate encoder for the input
image and the Manhattan lines, but observe no increase in performance compared with our current
simpler design.

2D layout decoder The decoder consists of two branches as shown in Figure 3.2. The top
branch, the layout boundary map (mE) predictor, decodes the bottleneck feature into the 2D
feature map with the same resolution as the input. mE is a 3-channel probability prediction of
wall-wall, ceiling-wall and wall-floor boundary on the panorama, for both visible and occluded
boundaries. The boundary predictor contains 7 layers of nearest neighbor up-sampling operation,
each followed by a convolution layer with kernel size of 3 × 3, and the feature size is halved
through layers from 2048. The final layer is a Sigmoid operation. We add skip connections to each
convolution layer following the spirit of the U-Net structure [119], in order to prevent shifting of
predictions results from the up-sampling step. The lower branch, the 2D layout corner map (mC)
predictor, follows the same structure as the boundary map predictor and additionally receives skip
connections from the top branch for each convolution layer. This stems from the intuition that lay-
out boundaries imply corner positions, especially for the case when a corner is occluded. We show
in our experiments (Chapter 3.5) that the joint prediction helps improve the accuracy of the both
maps, leading to a better 3D reconstruction result. We experimented with fully convolutional lay-
ers [120] instead of the up-sampling plus convolutions structure, but observed worse performance
with checkerboard artifacts.
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3D layout regressor The function to map from 2D corners and boundaries to 3D layout param-
eters is simple mathematically, but difficult to learn. So we train a regressor for 3D layout param-
eters with the purpose of producing better corners and boundaries, rather than for its own sake.
As shown in Figure 3.2, the 3D regressor gets as input the concatenation of the two predicted 2D
maps and predicts the parameters of the 3D layout. We parameterize the layout with 6 parameters,
assuming the ground plane is aligned on the x− z axis: width sw, length sl, height sh, translation
T = (tx, tz) and rotation rθ on the x − z plane. The regressor follows an encoder structure with
7 layers of convolution with kernel size 3 × 3, each followed by a ReLU operation and a max
pooling layer with the down sampling factor of 2. The convolution feature size doubles through
layers from the input 4 feature channel. The next four fully-connected layers have sizes of 1024,
256, 64, and 6, with ReLU in between. The output 1 × 6 feature vector d = {sw, sl, sh, tx, tz, rθ}
is our predicted 3D cuboid parameter. Note that the regressor outputs the parameters of the 3D
layout that can be projected back to the 2D image, presenting an end-to-end prediction approach.
We observed that the 3D regressor is not accurate (with corner error of 3.36% in the PanoContext
dataset compared with other results in Table 3.1), but including it in the loss objective tends to
slightly improve the predictions of the network. The direct 3D regressor fails due to the fact that
small position shifts in 2D can have a large difference in the 3D shape, making the network hard
to train.

Loss function. The overall loss function of the network is:

L(mE,mC ,d) = −α
1

n

∑
p∈mE

(
p̂ log p+ (1− p̂) log(1− p)

)
− β 1

n

∑
q∈mC

(
q̂ log q + (1− q̂) log(1− q)

)
+ τ‖d− d̂‖2 (3.1)

Here mE is the probability that each image pixel is on the boundary between two walls; mC is the
probability that each image pixel is on a corner; d are the regressed cuboid parameters which have
ground truth d̂; p and q are pixel probabilities of edge and corner with ground truth values of p̂ and
q̂, respectively. The loss is the summation over the binary cross entropy error of the predicted pixel
probability in mE and mC compared with ground truth, plus the Euclidean distance of regressed
3D cuboid parameters d to the ground truth d̂. Note that the RoomNet approach [29] uses L2 loss
for corner prediction. We discuss the performance using two different losses in Chapter 3.5. α, β
and τ are the weights for each loss term. In our experiment, we set α = β = 1 and τ = 0.01.

Training details. Our LayoutNet predicts pixel probabilities for corners and boundaries and
regresses the 3D layout parameters. We find that joint training from a randomly initialized net-
work sometimes fails to converge. Instead, we train each sub-network separately and then jointly
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train them together. For the 2D layout prediction network, we first train on the layout boundary
prediction task to initialize the parameters of the network. For the 3D layout regressor, we first
train the network with ground truth layout boundaries and corners as input, and then connect it
with the 2D layout decoder and train the whole network end-to-end.

The input Manhattan line map is a 3 channel 0-1 tensor. We normalize each of the 3D cuboid
parameter into zero mean and standard deviation across training samples. We use ADAM [121] to
update network parameters with a learning rate of e−4, α = 0.95 and ε = e−6. The batch size for
training the 2D layout prediction network is 5 and changes to 20 for training the 3D regressor. The
whole end-to-end training uses a batch size of 20.

Ground truth smoothing. Our target 2D boundary and corner map is a binary map with a
thin curve or point on the image. This makes training more difficult. For example, if the network
predicts the corner position slightly off the ground truth, a huge penalty will be incurred. Instead,
we dilate the ground truth boundary and corner map with a factor of 4 and then smooth the image
with a Gaussian kernel of 20× 20. Note that even after smoothing, the target image still contains
9̃5% zero values, so we re-weight the back propagated gradients of the background pixels by
multiplying with 0.2.

Data augmentation. We use horizontal rotation, left-right flipping and luminance change to
augment the training samples. The horizontal rotation varies from 0o − 360o. The luminance
varies with γ values between 0.5-2. For perspective images, we apply ±10◦ rotation on the image
plane.

Algorithm 3.1 3D layout optimization
1: Given panorama I , layout corner prediction mC , and boundary prediction mE;
2: Initialize 3D layout L0 based on Eq. 3.2;
3: Ebest = Score(L0) by Eq. 3.3, Lbest = L0;
4: for i = 1 :wallNum do
5: Sample candidate layouts Li by varying wall position wi in 3D, fix other wall positions;
6: for j = 1 : |Li| do
7: Sample candidate Layouts Lij by varying floor and ceiling position in 3D;
8: Rank the best scored Layout LB ∈ {Lij} based on Eq. 3.3;
9: if Ebest < Score(LB) then

10: Ebest = Score(LB), Lbest = LB;
11: Update wi from Lbest, fix it for following sampling

return Lbest
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3.3 MANHATTAN LAYOUT OPTIMIZATION

The initial 2D corner predictions are obtained from the corner probability maps that our network
outputs. First, the responses are summed across rows, to get a summed response for each column.
Then, local maxima are found in the column responses, with distance between local maxima of
at least 20 pixels. Finally, the two largest peaks are found along the selected columns. These
2D corners might not satisfy Manhattan constraints, so we perform optimization to refine the
estimates.

Given the predicted corner positions, we can directly recover the camera position and 3D layout,
up to a scale and translation, by assuming that bottom corners are on the same ground plane and
that the top corners are directly above the bottom ones. We can further constrain the layout shape
to be Manhattan, so that intersecting walls are perpendicular, e.g. , like a cuboid or “L”-shape in
a top-down view. For panoramic images, the Manhattan constraints can be easily incorporated,
by utilizing the characteristic that the columns of the panorama correspond to rotation angles
of the camera. We parameterize the layout coordinates in the top-down view as a vector of 2D
points Lv = {v1 = (0, 0),v2 = (x1, y1), . . . ,vN = (xN , yN)}. v1 resolves the translation
ambiguity, and |v1 − v2| = 1 sets the scale. Because the layout is assumed to be Manhattan,
neighboring vertices will share one coordinate value: y1 = y0 = 0, x2 = x1, y3 = y2 . . ., reducing
the number of free parameters to N − 2. We denote the camera position as vc = {xc, yc}, where
0 ≤ xc ≤ max{xN , xN ∈ Lv} and 0 ≤ yc ≤ max{yN , yN ∈ Lv} since the camera position is
within the layout extent. We recover the camera position vc = {xc, yc} and Lv by minimizing the
following energy function inspired by Farin et al. [122]:

E(Lv,vc) =
∑
i,j

‖β(vi,vj)− α(vi,vj)‖2, i = j − 1, 0 ≤ i ≤ N − 1 (3.2)

Where vi,vj are a pair of neighboring vertices, and β(vi,vj) = arccos
vi−vc·vj−vc

‖vi−vc‖‖vj−vc‖ is the rota-
tion angle between vi and vj centered at the camera vc in top-down view. α(vi,vj) denotes the
horizontal distance (number of pixels) between vi and vj projected on the panorama (visualized
as a pair of vertical axis aligned corners on the same wall-wall boundary) under rectangular pro-
jection, divided by the overall length of the panorama. The energy function is derived from the
observation that the length (horizontal dimension) of the panorama is equal to the summation of
the rotation angles of the camera between all neighboring wall-wall boundaries in top-down view,
resulting in a total of 360 degrees. Note that the L2 minimization in Eq. 3.2 also applies to general
Manhattan layouts with N > 3. We use L-BFGS [123] to solve for Eq. 3.2 efficiently.

We initialize the ceiling level as the average (mean) of 3D upper-corner heights, and then opti-
mize for a better fitting room layout, relying on both corner and boundary information using the
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following score to evaluate 3D layout candidate L:

Score(L) =wjunc
∑
lc∈C

logPcorner(lc) + wceil
∑
le∈Le

max
pe∈le

(
logPceil(pe)

)
+ wfloor

∑
lf∈Lf

max
pf∈lf

(
logPfloor(pf )

)
(3.3)

where C denotes the 2D projected corner positions of L. The cardinality of L is #walls×2. We
connect the nearby corners on the image to obtain Le which is the set of projected wall-ceiling
boundaries, and Lf is the set of projected wall-floor boundaries (each with cardinality of #walls).
Pcorner(·) denotes the pixel-wise probability value on the predicted mC . Pceil(·) and Pfloor(·) denote
the probability on mE . The 2nd and 3rd term take the maximum value of the pixel’s log likelihood
response in each boundary le ∈ Le and lf ∈ Lf . wjunc, wceil andwfloor are the term weights, we set
to 1.0, 0.5 and 1.0 respectively using grid search. This weighting conforms with the observation
that wall-floor corners are often occluded, and the predicted boundaries could help improve the
layout reconstruction. We find that adding wall-wall boundaries in the scoring function helps less,
since the vertical pairs of predicted corners already reveals the wall-wall boundaries information.

Directly optimizing Eq. 3.3 is computationally expensive, since we penalize on 2D projections
but not direct 3D properties. In this case, we instead sample candidate layout shapes and select the
best scoring result based on Eq. 3.3. We use line search to prune the candidate numbers to speed
up the optimization. Algorithm 3.1 demonstrates the procedure. In each step, we sample candidate
layouts by shifting one of the wall position within ±%10 of its distance to the camera center.
Each candidate’s ceiling and floor level is then optimized based on the same sampling strategy and
scored based on Eq. 3.3. Once we find the best scored layout by moving one of the walls, we fix
this wall position, move to the next wall and perform the sampling again. We start from the least
confident wall based on our boundary predictions. In total, ∼ 1000 layout candidates are sampled.
The optimization step spends less then 30 sec for each image and produces better 3D layouts as
demonstrated in Chapter 3.5.

3.4 EXTENSIONS

With small modifications, our network, originally designed to predict cuboid layouts from
panoramas, can also predict more general Manhattan layouts from panoramas and cuboid-layouts
from perspective images.

General Manhattan layouts. To enable more general layouts, we include training examples
that have more than four walls visible (e.g. , “L”-shaped rooms), which applies to about 10% of
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examples. We then determine whether to generate four or six walls by thresholding the score of the
sixth strongest wall-wall boundary. Specifically, the average probability along the sixth strongest
column of the corner map is at least 0.05. In other words, if there is evidence for more than four
walls, our system generates additional walls; otherwise it generates four. Since the available test
sets do not have many examples with more than four walls, we show qualitative results with our
additional captured samples in Chapter 3.5.2.

Note that there will be multiple solutions given non-cuboid layout when solving Eq. 3.2. We
experimented with predicting a concave/convex label as part of the corner map prediction to obtain
single solution, but observed degraded 2D prediction. We thus enumerate all possible shapes (e.g. ,
for room with six walls, there will be six variations) and choose the one with the best score. We
found this heuristic search to be efficient as it searches in a small discrete set. We do not train with
the 3D parameter regressor for the non-cuboid layout.

Perspective images. When predicting on perspective images, we skip the alignment and opti-
mization steps, instead directly predicting corners and boundaries on the image. We also do not use
the 3D regressor branch. The network predicts a 3-channel boundary layout map with ceiling-wall,
wall-wall and wall-floor boundaries, and the corner map has eight channels for each possible cor-
ner. Since perspective images have smaller fields of view and the number of visible corners varies,
we add a small decoding branch that predicts the room layout type, similar to RoomNet [29]. The
predictor has 4 fully-connected (fc) layers with 1024, 256, 64 and 11 nodes, with ReLU operations
in between. The predicted layout type then determines which corners are detected, and the cor-
ners are localized as the most probable positions in the corner maps. We use cross entropy loss to
jointly train the layout boundary and corner predictors. To ease training, similar to the procedure in
Chapter 3.2.2, we first train the boundary/corner predictors, and then add the type predictor branch
and train all components together.

3.5 EXPERIMENT

We implement our LayoutNet with Torch and test on a single NVIDIA Titan X GPU. The layout
optimization is implemented with Matlab R2015a and is performed on Linux machine with Intel
Xeon 3.5G Hz in CPU mode.

We demonstrate the effectiveness of our approach on the following tasks: (1) predict 3D cuboid
layout from a single panorama, (2) estimate 3D non-cuboid Manhattan layout from a single panorama,
and (3) estimate layout from a single perspective image. We train only on the training split of each
public dataset and tune the hyper-parameters on the validation set. We report results on the test
set. Our final corner/boundary prediction from the LayoutNet is averaged over results with input
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Figure 3.3: Qualitative results (randomly sampled) for cuboid layout prediction on PanoCon-
text dataset. We show both our method’s performance (even columns) and the state-of-the-
art [31] (odd columns). Each image consists predicted layout from given method (orange lines)
and ground truth layout (green lines).

of the original panoramas/images and the left-right flipped ones.

3.5.1 Cuboid layout for panorama

We evaluate our approach on three standard metrics: (1) 3D intersection over union (IoU),
calculated between our predicted 3D layout and the ground truth and averaged across all images;
(2) Corner error, theL2 distance between predicted room corner and the ground truth, normalized
by the image diagonal and averaged across all images; (3) Pixel error, the pixel-wise accuracy
between the layout and the ground truth, averaged across all images.

We perform our method using the same hyper-parameter on the following two datasets.
PanoContext dataset The PanoContext dataset [31] contains 500 annotated cuboid layouts of

indoor environments such as bedrooms and living rooms. Since there is no existing validation set,
we carefully split 10% validation images from the training samples so that similar rooms do not
appear in the training split. Table 3.1 shows the quantitative comparison of our method, denoted
as “ours full (corner+boundary+3D)”, compared with the state-of-the-art cuboid layout estima-
tion by Zhang et al. [31], denoted as “PanoContext”. Note that PanoContext incorporates object
detection as a factor for layout estimation. Our LayoutNet directly recovers layouts and outper-
forms the state-of-the-art on all the three metrics. Figure 3.3 shows the qualitative comparison.
Our approach presents better localization of layout boundaries, especially for a better estimate on
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Method 3D IoU (%)
Corner

error (%)
Pixel

error (%)
PanoContext [31] 67.23 1.60 4.55

ours (corner) 73.16 1.08 4.10
ours (corner+boundary) 73.26 1.07 3.31

ours full (corner+boundary+3D) 74.48 1.06 3.34
ours w/o alignment 69.91 1.44 4.39

ours w/o cuboid constraint 72.56 1.12 3.39
ours w/o layout optimization 73.25 1.08 3.37

ours w/ L2 loss 73.55 1.12 3.43
ours full w/ Stnfd. 2D-3D data 75.12 1.02 3.18

Table 3.1: Quantitative results on cuboid layout estimation from panorama using PanoContext
dataset [31]. We compare the PanoContext method, and include an ablation analysis on a variety
of configurations of our method. Bold numbers indicate the best performance when training on
PanoContext data.

Method 3D IoU (%)
Corner

error (%)
Pixel

error (%)
ours (corner) 72.50 1.27 3.44

ours (corner+boundary) 75.26 1.03 2.68
ours full (corner+boundary+3D) 75.39 1.01 2.70

ours w/o alignment 68.56 1.56 3.70
ours w/o cuboid constraint 74.13 1.08 2.87

ours w/o layout optimization 74.47 1.07 2.92
ours w/ L2 loss 76.33 1.04 2.70

ours full w/ PanoContext data 77.51 0.92 2.42

Table 3.2: Evaluation on our labeled Stanford 2D-3D annotation dataset. We evaluate our Layout-
Net approach with various configurations for ablation study. Bold numbers indicate best perfor-
mance when training only on Stanford 2D-3D training set.

occluded boundaries, and is much faster in time as shown in Table 3.3.
Our labeled Stanford 2D-3D annotation dataset The dataset contains 1413 equirectangular

RGB panorama collected in 6 large-scale indoor environment including office and classrooms and
open space like corridors. Since the dataset does not contain applicable layout annotations, we
extend the annotations with carefully labeled 3D cuboid shape layout, providing 571 RGB panora-
mas with room layout annotations. We evaluate our LayoutNet quantitatively in Table 3.2 and
qualitatively in Figure 3.4. Although the Stanford 2D-3D annotation dataset is more challenging
with smaller vertical field of view (FOV) and more occlusions on the wall-floor boundaries, our
LayoutNet recovers the 3D layouts well.

Ablation study. We show, in Table 3.1 and Table 3.2, the performance given the different con-
figurations of our approach: (1) with only room corner prediction, denoted as “ours (corner)”;
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PanoContext Ours PanoContext Ours

PanoContext Ours PanoContext Ours

Figure 3.4: Qualitative results (randomly sampled) for cuboid layout prediction on the Stan-
ford 2D-3D annotation dataset. This dataset is more challenging than the PanoContext dataset,
due to a smaller vertical field of view and more occlusion. We show our method’s predicted lay-
out (orange lines) compared with the ground truth layout (green lines).

Method Average CPU time (s)
PanoContext [31] > 300

ours full (corner+boundary+3D) 44.73
ours w/o alignment 31.00

ours w/o cuboid constraint 13.75
ours w/o layout optimization 14.23

Table 3.3: Average CPU time for each method. We evaluate the methods on the PanoContext
dataset [31] using Matlab on Linux machine with an Intel Xeon 3.5G Hz (6 cores).

(2) joint prediction of corner and boundary, denoted as “ours (corner+boundary)”; (3) our full ap-
proach with 3D layout loss, denoted as “ours full (corner+boundary+3D)”; (4) our full approach
trained on a combined dataset; (5) our full approach without alignment step; (6) our full approach
without cuboid constraint; (7) our full approach without layout optimization step; and 8) our full
approach using L2 loss for boundary/corner prediction instead of cross entropy loss. Our exper-
iments show that the full approach that incorporates all configurations performs better across all
the metrics. Using cross entropy loss appears to have a better performance than using L2. Train-
ing with 3D regressor has a small impact, which is the part of the reason we do not use it for
perspective images. Table 3.3 shows the average runtimes for different configurations.

Comparison to other approaches: We compare with Yang et al. [32] based on their depth dis-
tribution metric. We directly run our full cuboid layout prediction (deep net trained on PanoContext
+ optimization) on 88 indoor panoramas collected by Yang et al..
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Method L2 dist cosine dist

Yang et al. [32] 27.02 4.27
Ours 18.51 5.85

Table 3.4: Depth distribution error compared
with Yang et al. [32].

As shown in Table 3.4, our approach outper-
forms Yang et al. in L2 distance and is slightly
worse in cosine distance. Another approach,
Pano2CAD [33], has not made their source code
available and has no evaluation on layout, mak-
ing direct comparison difficult. For time con-
sumption, Yang et al. report to be less than
1 minute, Pano2CAD takes 30s to process one
room. One forward pass of LayoutNet takes 39ms. In CPU mode (w/o parallel for loop) us-
ing Matlab R2015a, our cuboid constraint takes 0.52s, alignment 13.73s, and layout optimization
30.5s.

3.5.2 Non-cuboid layout for panorama

Figure 3.5: Qualitative results for non-cuboid
layout prediction. We show our method’s pre-
dicted layout (orange lines). Best viewed in
color.

Figure 3.5 shows qualitative results of our
approach to reconstruct non-cuboid Manhattan
layouts from single panorama. Due to the lim-
ited number of non-cuboid room layouts in the
existing datasets, we captured several images
using a Ricoh Theta-S 360◦ camera. Our ap-
proach is able to predict 3D room layouts with
complex shape that are difficult for existing
methods.

3.5.3 Perspective images

We use the same experimental setting as in
[26, 29]. We train our modified approach to
jointly predict room type on the training split
of the LSUN layout estimation challenge. We
do not train on the validation split. Our method
takes 39ms (25 FPS) to process a perspective image, faster than the 52ms (19 FPS) of RoomNet
basic [29] or 168ms (6 FPS) of RoomNet recurrent, under the same hardware configuration. More-
over, our method is generalized across both panorama and perspective images, and can predict both
cuboid shape and non-cuboid shape room from single panorama.

Table 3.5 shows our performance compared with the state-of-the-art on Hedau’s dataset [15].
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Figure 3.6: Qualitative results for perspective images. We show the input RGB image, our
predicted boundary/corner map and the final estimated layout (orange lines) compared with ground
truth (green lines). Best viewed in color.

Method Pixel Error (%)
Schwing et al. [12] 12.8
Del Pero et al. [24] 12.7
Dasgupta et al. [26] 9.73

LayoutNet (ours) 9.69
RoomNet recurrent 3-iter [29] 8.36

Table 3.5: Performance on Hedau dataset [15]. We show the top 5 results, LayoutNet ranks second
to RoomNet recurrent 3-iter in Pixel Error (%).

Our method ranks second among the methods. Table 3.6 shows our performance compared with
the state-of-the-art on the LSUN dataset. Our method ranks second in Keypoint Error (%) and
ranks third in Pixel Error (%). We also report results of the RoomNet basic approach [29] that
does not apply recurrent refinement, which is closer in design to our approach. The lower ac-
curacy in pixel error mainly results from our simplified room keypoint representation. Different
from RoomNet [29] that assumes all keypoints are distinguished across different room types, our
LayoutNet directly predicts the 8 keypoints, and selects among them based on the room type to
produce the final prediction. Moreover, we do not apply layout optimization step as explained in
this chapter that incorporate predicted boundary probability to the perspective image task. Fig-
ure 3.6 shows qualitative results on the LSUN validation split. Failure cases include room type
prediction error (last row, right column) and heavy occlusion from limited field of view (last row,
left column).
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Method Keypoint Error (%) Pixel Error (%)
Hedau et al. [15] 15.48 24.23
Mallya et al. [28] 11.02 16.71

Dasgupta et al. [26] 8.20 10.63
LayoutNet (ours) 7.63 11.96

RoomNet recurrent 3-iter [29] 6.30 9.86
RoomNet basic [29] 6.95 10.46

Table 3.6: Performance on LSUN dataset. LayoutNet ranks second comparing with RoomNet
recurrent 3-iter in Keypoint Error (%) and ranks third in Pixel Error (%). We also report the
RoomNet basic approach that does not apply recurrent refinement step, which is closer in design
to our approach.

3.6 LAYOUTNET V2

So far, we’ve discussed our LayoutNet approach that combines neural network based pixel-
wise predictions and a post optimization step to produced Manhattan layouts. More recent ap-
proaches [124, 125, 126] for single 360 panorama 3D layout reconstruction also build upon this
framework, and all show promising results.

In this section, we show our own improvements over the original LayoutNet in three folds: (1)
a better image encoder to capture room corners and boundaries; (2) refined implementation details
that incorporate new data augmentations like random stretching [126] and (3) a more efficient
gradient ascent based optimization instead of sampling based optimization. We call the improved
version “LayoutNet v2”, which, at the time of writing, achieves the state-of-the-art.

3.6.1 Improvements upon LayoutNet

ResNet based network architecture. Instead of using a vanilla convolution and up-sampling
based image encoder as in the original LayoutNet, we use ResNet [127] as our image encoder. The
decoder remains as a two-branch architecture that jointly produces a corner map and a boundary
map of the same resolution as the input RGB image. Both two branch consist 5 up-sampling
layers, each with a convolution layer (kernel size 3×3) and a ReLU operation afterwards. We also
add the same skip links as the original LayoutNet architecture. We exclude the 3D box parameter
regressor branch as we observed no significant performance changes, but the training time was
increased.

Refined implementation details. We experiment with ResNet-18, ResNet-34 and ResNet-50
image encoders respectively. The encoder outputs a bottleneck feature size of 1024. We use
pre-trained ResNet on ImageNet to initialize the encoder. During training, we use the same opti-
mization method and hyper-parameters like learning rate as the original LayoutNet. The training
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Method 3D IoU (%)
Corner

error (%)
Pixel

error (%)
LayoutNet 75.12 1.02 3.18

LayoutNet v2 (ResNet-18) 84.13 0.65 1.92
LayoutNet v2 (ResNet-34) 85.02 0.63 1.79
LayoutNet v2 (ResNet-50) 82.44 0.75 2.22

Table 3.7: Quantitative results on cuboid layout estimation from a single 360 panorama using
PanoContext dataset [31]. All methods are trained with extra data from Stnfd. 2D-3D dataset. We
show our LayoutNet v2 performance with three ResNet encoders respectively.

scheme differs slightly: we first train the layout boundary prediction branch, then fix the weights
of boundary branch and train the corner prediction branch, and finally we train the whole network
end-to-end. We slightly decrease the dilation factor to 3 for ground truth smoothing, making the
ground truth corner/boundary pixel be the peak response after a Gaussian smooth of σ = 20.
Despite the data augmentations used in the original LayoutNet, we change image intensity with a
minimum intensity ranges between 0-127 and a fixed maximum intensity of 255. We also add color
jittering to each RGB channel independently by multiplying a factor ranges in 0.8-1.2. Moreover,
we perform random stretching introduced by Sun et al. [126] with stretching factors kx = 1 and
kz = 2. Each augmentation parameter is uniformly and randomly sampled from the defined range.
To avoid the unstable learning of the batch normalization layer in ResNet encoder due to smaller
batch size, we freeze the parameters of the batch normalization layer when training end-to-end.

Gradient ascent optimization. Our original LayoutNet’s post optimization step (Chapter 3.3)
is sampling based, with is time consuming and is constrained to the pre-defined sampling space.
We instead use stochastic gradient ascent [128] to search for local optimum of the cost function 1.
Moreover, we use the revised Equ. 3.3 that computes the average response across layout lines
instead of the maximum response.

Score(L) = wjunc
1

|C|
∑
lc∈C

Pcorner(lc) + wceil
1

|Le|
∑
le∈Le

Pceil(le) + wfloor
1

|Lf |
∑
lf∈Lf

Pfloor(lf ) (3.4)

We set wjunc = wceil = wfloor = 1.

3.6.2 Experiment

To verify the efficacy of our proposed LayoutNet v2, we (1) first conduct ablation study to verify
the performance improvement of each modification to the original LayoutNet, then (2) compare

1We use the SGD based optimization implemented by Sun (with different loss term weights):
https://github.com/sunset1995/pytorch-layoutnet
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Method 3D IoU (%)
Corner

error (%)
Pixel

error (%)
LayoutNet v2 (ResNet-34) 85.02 0.63 1.79

- random stretching 83.97 0.65 1.92
- freeze bn layer 83.98 0.7 2.01
- gradient ascent 83.60 0.73 2.12

Table 3.8: Quantitative results on cuboid layout estimation from a single 360 panorama using
PanoContext dataset [31]. All methods are trained with extra data from Stnfd. 2D-3D dataset.
We show our LayoutNet v2 performance with the best performed ResNet-34 encoder, comparing
with different training configurations. “-random stretching” stands for training without random
stretching data augmentation, “-freeze bn layer” stands for not freezing batch normalization layer
when training end-to-end, “-gradient ascent” stands for using original LayoutNet’s gradient

our LayoutNet v2 with other state-of-the-art.
Ablation study. Different from LayoutNet, our LayoutNet v2 uses ResNet as encoder. Since

there are several ResNet variations: ResNet-18, ResNet-34, ResNet-50 and ResNet-101, we com-
pare the performance with different ResNet encoder in Table 3.7. We train each network with
a maximum batch size using a single GPU of 12 GB: 8 for ResNet-18/34 and 4 for ResNet-50
when training each branch respectively, and 4 for ResNet-18/34 and 2 for ResNet-50 when train-
ing end-to-end. In Table 3.7 we can see that with ResNet-34 LayoutNet v2 performs better than
networks with ResNet-18 or 50. This demonstrates the importance of a denser encoder (ResNet-
18 v.s. ResNet-34), and the importance of a larger batch size to train the batch normalization
layer (ResNet-34 v.s. ResNet-50). We do not include the performance of ResNet-101, as the
network size is too large to have a reasonable batch size when training on a single GPU of 12
GB, producing similar results as using ResNet-50 as encoder. Note that the performance drop for
denser encoder is due to the GPU memory limitation, it’s reasonable to hypothesis that given a
GPU of larger memory or applying parallel computing of batch normalization layer can resolve
this problem and produce better results than ResNet-34.

Another ablation study is the modifications of network training details as mentioned in Chap-
ter 3.6.1. We show in Table 3.8 quantitative comparison when excluding each of the modification.
As we can see, using gradient ascent to as post optimization contributes the most for the per-
formance boost, while adding random stretching data augmentation contributes the less. Freezing
batch normalization layout when training end-to-end can avoid unstable training of this layer when
batch size is small. Including all modifications together produces the best performance and out-
performs others in a large margin.

Qualitative comparison with LayoutNet. We show in Figure 3.7 and Figure 3.8 the qualitative
results of our LayoutNet v2 comparing with our original LayoutNet approach on the two datasets
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Figure 3.7: Qualitative results for cuboid layout estimation on the PanoContext dataset. We com-
pare on the performance between LayoutNet (odd column) and LayoutNet v2 (even column). Each
method’s prediction is marked with orange lines and the ground truth is marked with green lines.
Our LayoutNet v2 shows better performance than our original LayoutNet, especially when layout
boundaries are highly occluded.

respectively. LayoutNet v2 can better estimation the layout boundaries and corners, especially
when the boundaries are highly occluded.

Comparison with state-of-the-art. We compare our LayoutNet v2 with the original LayoutNet
and other state-of-the-art on PanoContext dataset and Stanford 2D-3D respectively in Table 3.9
and 3.10. We report the best performed LayoutNet v2 with ResNet-34. HorizonNet [126] uses
ResNet-50 as encoder with an RNN-based refinement branch. DuLa-Net [125] performs pixel-
wise semantic predictions and is based on ResNet-18. For fair comparison, we report DuLa-Net’s
best performed network using ResNet-34 (DuLa-Net also suffers performance drop with ResNet-
50). On both PanoContext and Stanford 2D-3D dataset, LayoutNet v2 outperforms the original
LayoutNet. Our LayoutNet v2 achieves the state-of-the-art on PanoContext dataset, outperforming
the second best HorizonNet with a large margin on all three metrics. On Stanford 2D-3D dataset,
LayoutNet v2 outperforms HorizonNet on 3D IoU and just slightly falls behind DuLa-Net. We
also rank the second for corner error and pixel error in a close margin comparing with HorizonNet.
In general, LayoutNet v2 on cuboid layout estimation achieves the state-of-the-art.

We show in Table 3.11 the comparison of time consumption of each state-of-the-art: LayoutNet,
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Figure 3.8: Qualitative results for cuboid layout estimation on the Stanford 2D-3D annotaiton
dataset. We compare on the performance between LayoutNet (odd column) and LayoutNet
v2 (even column). Each method’s prediction is marked with orange lines and the ground truth
is marked with green lines. Our LayoutNet v2 shows better performance than our original Layout-
Net, especially when layout boundaries are highly occluded. Not that in the bottom right example,
the ground truth has error annotation at the end of the corridor. Both two methods tend to predict
the true end, and LayoutNet v2 is more accurate.

Method 3D IoU (%)
Corner

error (%)
Pixel

error (%)
LayoutNet 75.12 1.02 3.18

DuLa-Net [125] 81.45 0.90 2.73
HorizonNet [126] 84.23 0.69 1.90

LayoutNet v2 85.02 0.63 1.79

Table 3.9: Quantitative results on cuboid layout estimation from a single 360 panorama using
PanoContext dataset [31]. All methods are trained with extra data from Stnfd. 2D-3D dataset. We
show our LayoutNet v2 performance with three ResNet encoders respectively, comparing with the
original LayoutNet and the other state-of-the-art.
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Method 3D IoU (%)
Corner

error (%)
Pixel

error (%)
LayoutNet 77.51 0.92 2.42

DuLa-Net [125] 84.32 0.74 2.55
HorizonNet [126] 83.51 0.62 1.97

LayoutNet v2 84.17 0.71 2.04

Table 3.10: Quantitative results on cuboid layout estimation from a single 360 panorama using
Stanford 2D-3D dataset [7]. All methods are trained with extra data from PanoContext dataset.
We show our LayoutNet v2 performance with three ResNet encoders respectively, comparing with
the original LayoutNet and the other state-of-the-art.

Method Optimization average CPU time (s) Network average GPU time (ms)
LayoutNet 44.73 39

DuLa-Net [125] 0.022 35
HorizonNet [126] 0.012 50

LayoutNet v2 1.222 30

Table 3.11: Time consumption comparison.

DuLa-Net, HorizonNet and LayoutNet v2. We report the time consumption of LayoutNet v2 with
ResNet-34 encoder. We report the time consumption of HorizonNet with RNN, and note that
HorizonNet without RNN only costs 8ms for network prediction, but produces less accurate result
comparing with other approaches. We compare on a single forward pass of the network and the
post-process optimization step. Our LayoutNet v2 is the fastest for network prediction.

3.7 CONCLUSION

In this chapter, we propose LayoutNet, an algorithm that predicts room layout from a single
panorama or perspective image. Our approach relaxes the commonly assumed cuboid layout lim-
itation and works well with non-cuboid layouts (e.g. , “L”-shape room). We demonstrate how
pre-aligning based on vanishing points and Manhattan constraints substantially improve the quan-
titative results. Our method operates directly on panoramic images (rather than decomposing into
perspective images) and is among the state-of-the-art for the perspective image task. Future work
includes extending to handle arbitrary room layouts, incorporating object detection for better esti-
mating room shapes, and recovering a complete 3D indoor model recovered from single images.
We further show improvements with a better encoder and a gradient ascent based post optimization
step (named as LayoutNet v2), achieving on par performance comparing with the state-of-the-art.
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CHAPTER 4: COMPLETE 3D SCENE PARSING FROM A SINGLE RGBD IMAGE

Input Image Annotated 3D Model (two views)

Figure 4.1: Our goal is to recover a 3D model (right) from
a single RGBD image (left), consisting of the position, ori-
entation, and extent of layout surfaces and objects.

We’ve described our approach to
estimate the 3D layout from a single
image (Chapter 3). Our next step is
to jointly infer all 3D objects and lay-
outs in the scene (figure 4.1). One
major goal of vision is to infer physi-
cal models of objects, surfaces, and
their layout from sensors. In this
chapter, we aim to interpret indoor
scenes from one RGBD image. Our
representation encodes the layout of orthogonal walls and the extent of objects, modeled with
CAD-like 3D shapes. We parse both the visible and occluded portions of the scene and all observ-
able objects, producing a complete 3D parse. Such a scene interpretation is useful for robotics
and visual reasoning, but difficult to produce due to the well-known challenge of segmentation,
the high degree of occlusion, and the diversity of objects in indoor scenes. We take a data-driven
approach, generating sets of potential object regions, matching to regions in training images, and
transferring and aligning associated 3D models while encouraging fit to observations and spatial
consistency. We use support inference to aid interpretation and propose a retrieval scheme that uses
convolutional neural networks (CNNs) to classify regions and retrieve objects with similar shapes.
We demonstrate the performance of our method on our newly annotated NYUd v2 dataset [129]
with detailed 3D shapes.

4.1 INTRODUCTION

This chapter introduces our approach to recover complete 3D models of indoor objects and
layout surfaces from an RGBD (RGB+Depth) image (Figure 6.1). Recovering 3D models from
images is highly challenging due to three ambiguities: the loss of depth information when points
are projected onto an image; the loss of full 3D geometry due to occlusion; and the unknown sep-
arability of objects and surfaces. In this chapter, we choose to work with RGBD images, rather
than RGB images, so that we can focus on designing and inferring a useful representation, without
immediately struggling with the added difficulty of interpreting geometry of visible surfaces. Even
so, ambiguities due to occlusion and unknown separability of nearby objects make 3D reconstruc-
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Figure 4.2: Overview of our approach. Given an input RGB-D (left), we propose possible layouts
and object regions. We predict each object proposal’s support height and class by our support and
classification CNNs. We then retrieve a similar object shape, by using our shape retrieval CNNs to
match the object region to the most similar region in the training set and transferring and aligning
associated 3D models to the input depth image. The subset of proposed objects and layouts are
then optimally selected based on consistency with observed depth, coverage, and constraints on
occupied space. We show an example result (upper-right) and ground truth annotations (lower-
right).

tion impossible in the abstract. If we see a book on a table, we observe only part of the book’s and
table’s surfaces. How do we know their full shape, or even that the book is not just a bump on the
table? Or how do we know that a sofa does not occlude a hole in the wall or floor? We don’t. But
we expect rooms to be enclosed, typically by orthogonal walls and horizontal surfaces, and we can
guess the extent of the objects based on experience with similar objects. Our goal is to provide
computers with this same interpretive ability.

Scene representation. We aim to infer a 3D geometric model that encodes the position and
extent of layout surfaces, such as walls and floor, and objects such as tables, chairs, mugs, and
televisions. In the long term, we hope to augment this geometric model with relations (e.g. , this
table supports that mug) and attributes (e.g. , this is a cup that can serve as a container for small
objects and can be grasped this way).

Our approach. We propose an approach to recover a 3D model of room layout and objects
from an RGBD image. A major challenge is how to cope with the huge diversity of layouts
and objects. Rather than restricting to a parametric model and a few detectable object classes,
as in previous single-view reconstruction work, our models represent every layout surface and
object with a 3D mesh that approximates the original depth image under projection. We take
a data-driven approach that proposes a set of potential object regions, matches each region to a
similar region in training images, and transfers and aligns the associated labeled 3D models while
encouraging their agreement with observations. During the matching step, we use CNNs to retrieve
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objects of similar class and shape and further incorporate support estimation to aid interpretation.
We hypothesize, and confirm in experiments, that support height information will help most for
interpreting occluded objects because the full extent of an occluded object can be inferred from
support height. The subset of proposed 3D objects and layouts that best represent the overall
scene is then selected by our optimization method based on consistency with observed depth,
coverage, and constraints on occupied space. The flexibility of our models is enabled through
our approach (Figure 4.2) to propose a large number of likely layout surfaces and objects and then
compose a complete scene out of a subset of those proposals while accounting for occlusion, image
appearance, depth, and layout consistency.

Detailed 3D labeling. Our approach requires a dataset with labeled 3D shape for region match-
ing, shape retrieval, and evaluation. We make use of the NYUd v2 dataset [129] which consists of
1449 indoor scene RGBD images, with each image segmented and labeled with object instances
and categories. Each segmented object also has a corresponding annotated 3D model, provided
by Guo and Hoiem [55]. The 3D labeling provides ground truth 3D scene representation with
layout surfaces as 3D planar regions, furniture as CAD exemplars, and other objects as coarser
polygonal shapes. However, the polygonal shapes are too coarse to enable comparison of object
shapes. Therefore, we extend the labeling by Guo and Hoiem with more detailed 3D annotations
in the object scale. Annotations are labeled automatically and are adjusted manually as described
in Chapter 4.2. We evaluate our method on our newly annotated groundtruth. We measure success
according to accuracy of depth prediction of complete layout surfaces, voxel occupancy accuracy
and semantic segmentation performance.

In contrast to multiview 3D reconstruction methods, our approach recovers complete models
from a limited viewpoint, attempting to use priors and recognition to infer occluded geometry,
and parses the scene into individual objects and surfaces, instead of points, voxels, or contiguous
meshes. Thus, in some sense, we provide a bridge between the goals of interpretation from single-
view and quantitative accuracy from multiview methods.

This chapter presents an extension of our previous work [35] that predicts full 3D scene parsing
from an RGBD image. Our main new contributions are the refinement of the NYUd v2 dataset with
detailed 3D shape annotations, the use of CNNs to classify regions and retrieve object models with
similar shapes to a region, and use of support inference to aid region classification. We also provide
more detailed discussion and conduct more extensive experiments, demonstrating qualitative and
quantitative improvement.
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Figure 4.3: Samples of our detail 3D annotation in NYUd v2 dataset.We show from the left
column to the right with different levels (larger to smaller) of relative depth error improvements
compared with Guo and Hoiem[55]. Our annotations are much detailed in object shape scale.

4.2 DETAILED 3D ANNOTATIONS FOR INDOOR SCENES

We conduct our experiments on the NYUdv2 dataset [129], which provides complete 3D label-
ing of both objects and layouts of 1449 RGB-D indoor images. Each object and layout has a 2D
segment labeling and a corresponding annotated 3D model, provided by Guo and Hoiem [55]. The
3D annotations use 30 models to represent 6 categories of furniture that are most common and
use extruded polygons to label all other objects. These models provide a good approximation of
object extent but are often poor representations of object shape, as shown in Fig 4.3. Therefore, we
extend the NYUd v2 dataset by replacing the extruded polygons with CAD models collected from
ShapeNet [130] and ModelNet [67]. To align name-space between datasets, we manually map all
model class labels to the 633-class 3D object labels in NYUd v2 dataset. The shape retrieval and
alignment process is performed automatically and then adjusted manually, as follows.

Coarse alignment. For each ground truth 2D region ri in the NYUd v2 dataset, we retrieve
model set M = {Mi} from our collected models that have the same class label as ri. We also
include the region’s original coarse 3D annotation by Guo and Hoiem [55] in the model set M , so
that we can preserve the original labeling if no provided CAD models are better fit in depth. We
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initialize each Mi’s 3D location as the world coordinate center of the 3D annotation labeled by
Guo and Hoiem. We resize Mi to have the same height as the 3D annotation.

Fine alignment. Next, we align each retrieved 3D object model Mi to fit the available depth
map of the corresponding 2D region ri in the target scene. The initial alignment is often not in
the correct scale and orientation; e.g. , a region of a left-facing chair often resembles a right-facing
chair and needs to be rotated. We found that using Iterative Closest Point to solve for all parameters
did not yield good results. Instead, we enumerate 16 equally-spaced orientations from -180 to 180
from top-down view and allows 2 minor scale revision ratio as {1.0, 0.9}. We perform ICP to
solve for translation initialized using scale and rotation, and pick the best ICP result based on the
following cost function:

FittingCost(Mi, Ti) =Cdepth
∑

j∈ri∩s(Mi,Ti)

|Id(j)− d̂(j;Mi, Ti)|+
∑

j∈ri∩¬s(Mi,Ti)

Cmissing

+ Cocc
∑

j∈¬ri∩s(Mi,Ti)

max(d̂(j;Mi, Ti)− Id(j), 0) (4.1)

where Ti represents scale, rotation, and translation, s(.) is the mask of the rendered aligned
object, Id(j) denotes the observed depth at pixel j and d̂(j) means the rendered depth at j. The
first term encourages depth similarity to the ground truth RGBD region. The second penalizes
pixels in the proposed region that are not rendered. We loosely allow the rendered object depth
in the scene to be further away than the sensor depth. This is because depth map only gives the
depth of the closest object, not all objects, due to possible occlusion. We do not want to penalize
predicting a larger depth than is observed in the scene. The third term penalizes pixels in the
rendered model that are closer than the observed depth image (so the model does not stick out into
space known to be empty).

Based on the fitting cost of Eq. 4.1, our algorithm picks the model Mi with the best translation,
orientation, and scale Ti. The fitting scales Ti along different dimensions are the same. This helps
simplify the search procedure for the alignment. We found that the large variety of CAD models
in the ShapeNet dataset already provide enough shape candidates to select from, in regardless of
the scales along the three dimensions of each shape.

We set the term weights Cdepth, Cmissing, Cocc as 1.0, 0.9, 0.5 using grid search in the validation
set. The search criteria is to find the set of term weights that minimize both the rendered depth
difference to the ground truth depth and the rendered 2D segmentation difference to the ground
truth 2D region annotation. For original 3D polygonal labeling, we fix Mi and use equation 1 to
search for the best fitting scale and translation that minimize the cost. For efficiency, we first obtain

37



the top 5 models based on the fitting cost, each maximized only over the 16 initial orientations
before ICP. For each of these models, we then solve for the best translation Ti for each scale and
rotation based on Eq. 4.1 and finally select the aligned model with the lowest fitting cost.

Figure 4.4: Cumulative relative depth error of our
detailed 3D annotations and the 3D annotations
by Guo and Hoiem [55] in NYUd v2 dataset.

Post-processing. Automatic fitting may fail
due to high occlusion or missing depth val-
ues. We manually conduct a post-processing
check and refine bad-fitting models. Using
a GUI, an annotator checks the automatically
produced shape for each region. If the re-
sult is not satisfactory, the annotator compares
to other top model fits, and if none of those
are good matches, then the fitting optimiza-
tion based on Eq. 4.1 is applied to the origi-
nal polygonal 3D labeling. This helps to en-
sure that our detailed shape annotations are a
strict improvement over the original course an-
notations. In total, we fit 3792 different CAD
models to the object regions and through man-
ual checking observe failures in only 10% of
cases for automatic fitting. These failures are
manually corrected.

Validation. Figure 4.4 reports the cumulative relative error of the rendered depth of our detailed
3D annotations compared with ground truth depth in NYUd v2 dataset. The relative error rD is
computed as:

rD =
1

|SI |
∑
I∈SI

∑
p∈I

|dp − d̂p|
dp

(4.2)

where SI = {I1, I2, . . . , IN} is all the RGBD images in the dataset; p represents a pixel in each
image I; dp is the ground truth depth of pixel p from sensor; and d̂p is the rendered depth of the 3D
label annotation at pixel p. For comparison, we report the rD of the 3D annotations by Guo and
Hoiem [55]. Our annotations have more points with low relative depth error, and achieve a better
modeling of depth for each image.
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4.3 APPROACH

Given an RGBD image as input, we aim to find a set of layout and object models that fit RGB
and depth observations and provide a likely explanation for the unobserved portion of the scene.
Our resulting 3D parse is consistent with the observation and reasonable in 3D. We formulate this
as:

{M, θ} = argmin(AppearanceCost(IRGBD,M, θ) + DepthCost(ID,M, θ)

+ ModelCost(M, θ)) (4.3)

IRGBD is the RGB-D image; ID is the depth image alone; M is a set of candidate 3D layout
surfaces and object models; and θ is the set of parameters for each surface/object model, including
translation, rotation, scaling, and whether each candidate model is included. AppearanceCost en-
courages that object models should match underlying region appearance, rendered objects should
cover pixels that look like objects (versus layout surfaces), and different objects should have ev-
idence from different pixels. DepthCost encourages similarity between the rendered scene and
observed depth image. ModelCost penalizes intersection of 3D object models.

We propose to tackle this complex optimization problem in stages (Figure 4.2): (1) propose can-
didate layout surfaces and objects; (2) retrieve 3D models of the proposed candidate and improve
the transformation of each surface/object model to the depth image; (3) choose a subset of models
that best explains the scene. Layout elements (wall, floor, and ceiling surfaces) are proposed by
scanning for planes that match observed depth points and pixel labels and then finding boundaries
and holes. Parsing 3D objects is particularly difficult. We propose an exemplar-based approach,
matching regions in the input RGBD image to regions in the training set, and transferring and
aligning corresponding 3D models (Chapter 4.3.2). We then choose a subset of objects and layout
surfaces that minimizes the depth, appearance, and model costs using a specialized search (Chap-
ter 4.3.3). Despite the challenges of matching an optimization, we experimentally find that our
approach produces results from automatic regions that are nearly as good as those produced from
ground truth regions, even though using ground truth regions greatly simplifies the matching and
selection process.

4.3.1 RGBD image pre-processing and shape proposals

We conduct the same pre-porcessing step and the layout proposal step as the one used in Guo et

al. [35]. To produce object candidate regions, we use the method for RGBD images by Gupta et

al. [131] and extract top ranked 2000 region proposals for each image. Our experiments show that
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this region retrieval is more effective than the method based on Prims algorithm [109] used in our
previous work [35]. Likely object categories and 3D shapes are then assigned to each candidate
region.

4.3.2 CNN-based shape retrieval

We train and use CNN networks to predict the object category and support height of each region,
as shown in Figure 4.5 and Figure 4.6. The support height is used as a feature for the object
classification. We also train and use a CNN with a Siamese network design to find the most
similar 3D shape of a training object, based on region and depth features.
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Figure 4.5: The CNN for predicting a candidate object’s support height. We perform ReLU be-
tween the convolutional layer and the max pooling layer. Local response normalization is per-
formed before the first fully connected (FC) layer. We add dropout with 0.5 before each FC layer
during training.

Support height prediction. We predict support height for each object with the aim of better
predicting class and position. As shown in Figure 4.5, our support height prediction network
jointly predicts the candidate support height probability and the support type: whether the object
is supported from below or behind. We first find candidate support heights using the method of
Guo and Hoiem [55] and use the network to estimate the probability of each candidate being the
correct height. The support type prediction and the candidate support height probability prediction
share the same convolution structure and the first two fully connected layers. Our network input
consists two features: crops of 1) the depth maps and height maps of the region proposal and 2)
the depth maps and height maps of the region that extends from the bottom of the region proposal
to the estimated floor position. The former feature helps infer support type through its shape
and the latter helps infer the support height through the vertical change in texture and depth. We
found that having those two inputs together performs better for both suport height and support type
predictions. To create the input feature vector, we subtract the candidate support height from the
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height cropped images, re-size all four crops to 32× 32 patches, and concatenate channel-wise.
In the test set, we identify the closest candidate support height with 92% accuracy, with an

average distance error of 0.18m. As a feature for classification, we use the support height relative
to the camera height, which leads to slightly better performance than using support height relative
to the estimated ground. This is because dataset images are taken from consistent heights but
estimated ground height may be mistaken.
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Figure 4.6: The CNNs for region classification (left) and
similar shape retrieval (right). We perform ReLU and
dropout with 0.5 after the first FC layer for both of the net-
works during training.

Categorization. Our classifica-
tion network gets input of the region
proposal’s support height and type,
along with CNN features from both
RGB and depth. The network pre-
dicts the probability for each class
as shown in Figure 4.6. To model
the various classes of shapes in in-
door scene, we classify the regions
into the 78 most common classes,
which have at least 10 training sam-
ples. Less common objects are clas-
sified as “other prop”, “other furni-
ture” and “other structure” based on
rules by Silberman et al. [129]. In ad-
dition, we identify a region proposal
that is not representative for an ob-
ject shape (e.g. , a piece of chair leg
region when the whole chair region is
visible) as a “bad region” class. This
leads to our 78 + 3 + 1 = 82-class classifier. The input support height and type are directly pre-
dicted by our support height prediction network. To create our classification features, we copy
the two predicted support values 100 times each (a useful trick to reduce sensitivity to local op-
tima for important low-dimensional features) and concatenate them to the region proposal’s RGB
and HHA features from Gupta et al. [131] in both the 2D bounding box and masked region as
in [132]. Experiments show that using the predicted support type and the support height improves
the classification accuracy by about 1%, with larger improvement for occluded objects.

Shape candidate retrieval. Using a Siamese network (Figure 4.6), we learn a region-to-region
similarity measure that predicts 3D shape similarity of the corresponding objects. The network
embeds the RGB and HHA features used in our classification network into a space where cosine
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distance correlates to shape similarity, as in [133]. In training, we use surface-to-surface dis-
tance [66], the normalized point cloud distance between the densely sampled points on each of
the 3D meshes, as the ground truth similarity. The surface-to-surface distance is calculated from
two centered complete 3D shapes complete 3D meshes, and thus no self-occlusion shall be consid-
ered during ground-truth computation. We train the network to penalize errors in shape similarity
orderings. Each region pair’s shape similarity score is compared with the next pair’s among the
randomly sampled batch in the current epoch and penalized only if the ordering disagrees with the
ground truth similarity. We attempted sharing embedding weights with the classification network
but observed a 1% drop in classification performance. We also found predicted class probability
to be unhelpful for predicting shape similarity.

Candidate region selection. We apply the above retrieval scheme to each of the 2000 region
proposals in each image, obtaining shape similarity rank compared with all the training samples
and 81-object class and non-object class probability for each region proposal. In order to reduce
the number of retrieved candidates before the scene interpretation in Chapter 4.3.3, we first reduce
the number of region proposals using non-maximal suppression based on non-object class proba-
bility and threshold on the non-object class probability. We set the threshold to obtain 190 region
proposals for each image, on average. We select the two most probable classes for each remaining
region proposal and select five most similar shapes for each class, leading to ten shape candidates
for each region proposal.

Then, we further refine these ten retrieved shapes. We align each shape candidate to the target
scene by translating the model using the offset between the depth point mass centers of the region
proposal and the retrieved region. We then perform ICP and use a similar method to that described
in Section. 4.2 to speed up the process. We use a grid of initial values for rotation and scale and pick
the best one for each shape based on the fitting energy in Eq. 4.1. We set the term weight: Cmissing
as 0.6, Cdepth as 1.0, Cocc as 0.9 based on a grid search on the validation set. The overall selection
costs on average 3.7 seconds for each object. We tried using the estimated support height for each
region proposal for aligning the related 3D shape models but observed a worse performance in
the scene composition result. This is because a relatively small error in object’s support height
estimation can cause a larger error in fitting.

Finally, we select the two most promising shape candidates based on the following energy func-
tion,

El(mi) =wfEfitting(mi, ti) + wc logP (ci|ri) + wb logP (bi|ri) (4.4)

Efitting is the fitting energy defined in Eq. 4.1 that we used for alignment. P (ci|ri) and P (bi|ri)
are the softmax class probability and the non-object class probability output by our classification
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network for the regon proposal ri. We normalize P (ci|ri) to sum to 1, in order not to penalize the
non-object class twice in the energy function. We set the term weights wf = 1.0, wc = −1500,
wb = 1300 using a grid search. Note that Efitting is on the scale of the number of pixels in the
region.

Training details. We first find meta-parameters on the validation set after training classifiers
on the training set. Then, we retrain on both training and validation in order to report results on
the test set. We train our networks with the region proposals that have the highest (and at least
0.5) 2D intersection-over-union (IoU) with each ground truth region in the train set. We train
the support height prediction network with the ground truth support type for the region proposal
and set the ground truth support height as the closest support height candidate that is within 0.15

meters from the related 3D annotation’s bottom. For training regions that are supported from
behind, we do not penalize the support height estimation, since our support height candidates are
for vertical support. For training the classification network, we also include the non-object class
region proposals that have < 0.3 IoU with the ground truth regions. We randomly sample the
same number of the non-object regions as the total number of the object regions during training.
To avoid unbalanced weights for different classes, we sample from the dataset the same number of
training regions for each class in each epoch. When training the shape similarity network, we use
the ground truth detailed CAD annotation obtained from Chapter 4.2. When conducting the shape
candidate retrieval, the pool of 3D CAD models is the detailed annotation from the training split
of the NYUd v2 dataset. We translate each 3D model to origin and re-size to 200 × 200 × 200-
voxel cuboid before computing the surface-to-surface distance. We use ADAM [134] to train each
network with the hyper-parameter of β1 = 0.9, β2 = 0.999. The learning rate for each network is:
support height prediction 0.0008, classification 0.003 and Siamese network 0.0001.

4.3.3 Scene composition

Finally, given a set of candidate objects from Chapter 4.3.2 and layout plane candidates by
Guo et al. [35], we need to choose a subset that closely reproduces the original depth image when
rendered, adhere to pixel predictions of object occupancy, and correspond to minimally overlap-
ping 2D regions and 3D aligned models. Instead of fitting each model to the depth map separately,
we integrate the object and layout proposals together, optimize on proposals and compose a com-
plete scene. The models M = {Mi} and their alignment T = {Ti} are fixed. The remaining
parameters are y with yi ∈ {0, 1} indicating whether each layout or object model is part of the
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scene. We choose y to minimize Equation 4.5:

selectionCost(y) =
∑
j

clip(| log2
d̂(j;M,T,y)

Id(j)
| − log2(1.03), [0 1])

+
∑
j

|isObject(j;M,T,y)− Pobject(j; IRGBD)|

+
∑
j

max(
∑
i

yiri(j)− 1, 0) +
∑
i,k>i

yiykoverlap3d(Mi, Ti,Mk, Tk) (4.5)

Here j represents the rendered pixel for each candidate shape. d̂ renders object models selected
by y. The first term minimizes error between rendered model and observed depth. We use log
space so that the error matters more for close object. We subtract log2(1.03) and clip at 0 to
1 because errors less than 3% of depth are within noise range, and we want to improve only
reduction of depth if the predicted and observed depth is within a factor of 2. The second term
encourages rendered object and layout pixels to match the probability of object map (Pobject) of
each image based on [129]. ri(j) is whether pixel j belongs to the model Mi rendered in 2D.
The function isObject(j) = 1 identifies that a pixel corresponds to an object, rather than a layout
model. The third term penalizes choosing object models that correspond to overlapping region
proposals (each selected object should have evidence from different pixels). The second and third
term, combined with region retrieval, account for the appearance cost between the scene model
and observations. The fourth term penalizes 3D overlap of pairs of aligned models, to encourage
scene consistency. To improve efficiency of this terms’ computation, we approximate the object
occupancy by rendering the closest and furthest points of the object at each pixel. We assume
that all pixels between are occupied, and penalize using 3D overlap – the length of the range of
overlapping occupied depth, summed over each pixel.

The depth rendering and consistency terms of Equation 4.5 involve high-order dependencies,
leading to a hard binary problem. We initialize y = 0 and estimate the solution in three steps.
First, we perform greedy search to minimize depth error (minimize selectionCost while weighting
first term by a factor of 10) by iteratively adding the next candidate that maximizes selectionCost
gain. Then, this solution is used to initialize a hill-climbing search on selectionCost (experiments
indicated insignificant benefit to weighting terms). The hill-climbing search iteratively adds (yi =
1) or removes (yi = 0), where i indicates the candidate model that results in the greatest cost
reduction, until no change yields further improvement. Finally, for all layout proposals and a
subset of object proposals that are not yet selected, our algorithm tries adding the proposed model
and removing all models whose renderings overlap and keeps the change if the cost is reduced. In
experiments, we found this search procedure to outperform a variety of other attempted methods
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including general integer programming algorithms and relaxations.

4.4 EXPERIMENT

The Overall performance is evaluated on the final complete 3D scene prediction for objects and
layouts using the ground truth detailed 3D annotation (in Chapter 4.4.2). We compare our current
approach to our previous approach (Guo et al. [35]). For some measures, we also compute the
performance of the detailed 3D ground truth annotations as an upper bound. We investigate the
effectiveness of the design choices in each of the main steps: region proposal, classification and
shape retrieval, and scene composition. We also investigate the effects of incorporating support
inference. To avoid overfitting to the NYUv2 dataset, we train our approach on the standard
training split, tune all the parameters on the validation split and report results on the test split.

Improving on Guo et al. [35]. Our current approach improves on our previous work (“Guo et
al.”) in two aspects. First, we use region proposals from Gupta et al. [131] (“MCG”) instead
of the region proposals generated by randomized Prims algorithm [109]. In Guo et al.’s method,
region proposals are generated by first starting with an oversegmentation and boundary strengths
by Silberman et al. [129]. A neighborhood graph is then created, with superpixels as nodes and
boundary strength as the weight connecting adjacent superpixels. Finally, the randomized Prims
algorithm is applied on the graph to obtain a set of region proposals. The seed region of the Prims
algorithm is sampled according to the objectness of the segment, so that the segments that are
confident layout are never sampled as seeds. Size constraints and merging threshold are used to
produce a more diverse set of segmentations. Regions that are near-duplicates of other regions
are suppressed to make the set of proposals more compact. For each image, 100 candidate region
proposals are generated. Second, our method considers both object category and shape similarity
for retrieval, while Guo et al.use only object category as a proxy for object similarity. Guo et

al.apply canonical-correlation analysis (CCA) to find embeddings of visual features that improve
retrieval [135]. CCA finds pairs of linear projections of the two views αTX and βTZ that are
maximally correlated. Here X = {xi} are the feature vectors of the regions. In experiments,
Guo et al.use the combination of 3D features and RGBD-SIFT, which were found to provide better
performance than pre-trained CNN features. Z = {zi} are the label matrix, which contains the
one-hot indicator vectors of the object category labels of the corresponding region. The similarity
weight matrix is then computed as W = ααT , which is used to parametrize the distance metric:

distW (xi, xj) =
√

(xi − xj)TW (xi − xj) (4.6)

In the experiments for Guo et al., the top 3 object models nearest to each region proposal according
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to distW are retrieved.
Detailed ground truth labeling as an upper bound. We include the evaluation of our de-

tailed ground truth annotation for the pixel-wise measures in Chapter 4.2, denoted by “3D ground
truth”. Note that even the “3D ground truth” sometimes does not achieve high accuracy, because
rendered models may not follow image boundaries and some small objects are not modeled in
annotations.

Comparison with Deep Sliding Shapes [46] (“DSS”). We compare our approach with DSS,
the state-of-the-art amodal 3D object detector in RGBD images. Given single RGBD image, DSS
predicts multiple (around 300 after NMS) overlapping tight 3D bounding boxes and a confidence
score for each object class. Each object class is predicted independently, therefore there is no con-
straint on 3D overlap between them. The evaluation criteria is the mean average precision (mAP)
for each class. Different from DSS, our approach aims at producing an exact reconstruction of
scene composed by all coherent objects and layouts with detailed CAD representation, while pe-
nalizing on object 3D overlap to ensure consistency. We evaluate on final scene composition
performance to match observed RGB and depth. Though our approach have different goal, met-
rics and optimization strategy compared with DSS, we can still convert the results to each other’s
format and compare.

Comparison with Semantic Scene Completion [47] (“SSCNet”). We compare our approach
with the scene-level approach SSCNet, which is the state-of-the-art semantic scene completion
method from single depth image. SSCNet predicts occupancy in a voxel space of 60 × 36 × 60

within the view frustum of the scene. Each predicted voxel is assigned to either one of the 3 layout
labels (wall, ceiling, floor) or one of the 8 common furniture classes (e.g. , bed, chair, table). Both
SSCNet and our approach predict semantic labeling of the observed scene. Different from SSCNet,
our framework utilizes RGB information in addition to observed depth. Our approach finds a
mesh-based representation for any object and layout in the scene, compared with SSCNet which
produces a limited number of classes under the voxel-based representation and is not flexible in
rendering the scene with a higher resolution. For comparison, we align and voxelize our predicted
3D scene model to the same configurations as SSCNet and evaluate on their metric.

4.4.1 Performance measures

We evaluate our 3D scene completion approach on our newly annotated NYUd v2 dataset. We
use both 2D and 3D quantitative measures to evaluate different aspects of our solutions: (1) in-
stance segmentation and semantic segmentation performance induced by rendering; (2) label/depth
accuracy of predicted layout surfaces; (3) voxel accuracy of occupied space and free space. Among
these, the depth accuracy of predicted layout surfaces and voxel accuracy of object occupancy are

46



the most direct evaluations of our 3D model accuracy. The instance segmentation and seman-
tic segmentation indicates accuracy of object localization and classification. Where possible, we
compare on these measures to prior work and sensible baselines.

For the comparison with DSS, we directly use DSS’s 3D bounding box prediction on the 654
test images of the NYUd v2 dataset. We use our detailed annotated ground truth to compare on
our metrics. Since DSS has no layout prediction, we only compare on the 19 classes that DSS
concerns. We use the following three metrics for parsing objects: 3D voxel object occupancy, 2D
semantic segmentation and instance segmentation. Note that DSS produces multiple overlapping
predictions with confidence. We first filter out detections with score lower than 0.5 in each image.
We then apply NMS with an IoU threshold of 0 for each class separately to obtain non-overlapping
top ranked 3D boxes. DSS has no 2D segmentation mask for each detection, we thus project the
3D box on the 2D image to get the predicted object segmentation and depth. We ignore the layouts
and other object classes in both our 3D/2D predictions and the ground truth. On the other hand,
to compare on DSS’s amodal 3D object detection metric [45], we extract a tight 3D bounding box
around each of our predicted detailed shape and set the confidence of each box to 1. We also
compare with the result of Sliding Shapes by Song et al. [45]. Sliding Shapes predicts detailed
shapes, while the DSS approach only predicts 3D bounding boxes. Same as [45] and [46], we
evaluate on the ground truth of five main furniture on the test set which is the intersection of
NYUd v2 and the Sliding Shapes test set.

For the comparison with SSCNet, we evaluate on SSCNet’s metric given the input of the kinect
depth map and RGB observations on the test split of the NYUd v2 dataset. Since our predicted
complete scene model is aligned with the camera coordinate, we first align our predictions to the
world coordinate given groundtruth floor plane. We then voxelize the scene into 60 × 36 × 60

voxel grids to obtain the same resolution as in SSCNet and then compare. We map our 84-class
semantic labeling to the 11-class used in SSCNet. We then evaluate on two metrics [47]: (1) scene
completion with precision, recall and voxel-level IoU; (2) semantic scene completion with voxel-
level IoU. Though our method is not optimized for voxel-based evaluation, we can still compare
and evaluate to validate our approach on the scene-level 3D parsing performance.

4.4.2 Evaluation of scene composition

Qualitative results. We show representative examples of predicted 3D scenes in Figures 4.7
and 4.9 of our approach, 3D ground truth, and Guo et al.’s method. Compared with the ground
truth annotation, our method produces a similar layout parsing and a reasonable prediction and
localization of main furniture in the scene. Compared with our previous approach of Guo et al.,
our method performs better, which results from the better region classification and shape estimation
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Figure 4.7: Qualitative results on scene composition with automatic region proposals. We ran-
domly sample images from the top 25% (first four rows), medium 50% (row 6-9) and worst 25%
(last four rows) based on 84-class semantic segmentation accuracy.
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Figure 4.8: Qualitative results on SUN-RGBD dataset. Our method is able to estimate accurate
3D layout and the 3D occupancy of main furniture.

Method
Mean coverage Mean coverage

weighted unweighted
[35] 48.12 29.75

MCG+CCA 50.43 32.91
Ours w/o support 50.43 34.34

Ours 50.23 33.92
Ours w/ GT support 50.52 34.32
Ours w/ GT-region 52.39 35.61

Detailed ground truth labeling 65.42 49.15

Table 4.1: Results of 84-class instance segmen-
tation on both automatic region proposals and
ground truth regions.

Method
Objects+Layouts

avg class avg instance avg pixel
[35] 6.96 30.39 43.85

MCG + CCA 8.04 32.56 46.17
Ours w/o support 10.51 32.45 45.94

Ours 10.77 32.90 46.25
Ours w/ GT support 11.28 33.71 47.46
Ours w/ GT-region 16.63 37.61 54.86

Detailed ground truth labeling 67.85 77.53 85.78

Table 4.2: Results of 84-class semantic segmen-
tation on both automatic region proposals and
ground truth regions.

capability that will be analyzed in the ablation study Chapter 4.4.5.
To demonstrate the generalization capability to other dataset, we show qualitative results on the

SUN-RGBD dataset [136] in Figure 4.8. Since SUN-RGBD dataset does not have detailed shape
annotations to train on, we directly use our model trained on NYUd v2 dataset. Our method is
able to obtain the accurate 3D parse of layouts and the main furniture like beds, shelves and desks.
Errors mainly come from region proposal classification failure and missing small objects from the
region proposal step, due to the domain difference between the two datasets.

84-class instance segmentation. We can infer region labels by projecting the 3D scene models
to the 2D images. Though instance segmentation neglects the evaluation of 3D localization of
shapes and layout, which is the main purpose of our method, it can be a reasonable evaluation of
object localization and classification. We evaluate the 84-class instance segmentation (81 object
classes and 3 layout classes: wall, ceiling, floor) on the inferred region labels of our scene com-
position result. The evaluation follows the protocol in RMRC [137] that computes the coverage
of ground truth regions, weighted or unweighted by area, for each image. The average coverage
across all images is reported in Table 4.1. We see improvements, compared with Guo et al., due
to both classification method (CNN vs. CCA) and region proposal method (MCG vs. Prim’s).
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Figure 4.9: Qualitative results on scene composition given ground truth 2D labeling as region
proposals. We randomly sample images from the top 25% (first two rows), medium 50% (row 3-4)
and worst 25% (last two rows) based on 84-class semantic segmentation accuracy.

Also, it is interesting to see that using ground truth regions does not dramatically improve results,
indicating that the region proposal and scene composition methods are highly effective.

84-class semantic segmentation. Semantic segmentation is evaluated by the percent of pixels
that are correctly classified, either averaged across pixels (“avg pixel”), instances (“avg instance”),
or classes (“avg class”), as reported in Table 4.2. The average across pixels tends to be highest,
since the most common and largest objects are more likely to be correctly labeled. Again, our
approach outperforms Guo et al.due to improved region proposals and classification. Support
prediction also helps here. We also compute the 40-class semantic segmentation to compared with
the state-of-the-art [138]: 18.3 average class / 33.8 average instance / 47.7 average pixel vs. their
34.0/49.5/65.4. Since our method projects 3D models of classified regions onto the images, it may
not adhere to image boundaries as well as a direct semantic segmentation method and also may
have more difficulty with small objects.

Layout estimation. In Table 4.3, we evaluate accuracy of labeling background surfaces into
“left wall”, “right wall”, “front wall”, “ceiling”, and “floor”. Ground truth is obtained by rendering
the 3D annotation of layout surfaces, and our prediction is obtained by rendering our predicted
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Method
Layout Pixel Error

overall occluded visible
NYU Parser [129] 34.6 50.0 5.2

[35] 10.9 14.0 4.8
Ours 10.6 13.6 4.8

Table 4.3: Pixel labeling error for layout sur-
faces with 5 categories (full dataset, 654 image).

Method
Layout Pixel Error

overall occluded visible
[139] 10.0 13.0 5.9
[35] 5.4 7.6 2.3
Ours 5.1 7.2 2.0

Table 4.4: Results of pixel labeling error with
5 categories (on intersection of test subsets in
[129] and [139], 47 images).

layout surfaces. The labels of “openings” (e.g. , windows that are cut out of walls) are assigned
based on the observed depth and surface normal. We compare with the RGBD region classifier of
Silberman et al. [129] on the full test set. As expected, we outperform significantly on occluded
surfaces (13.6% vs. 50.0% error) but also outperform on visible surfaces (4.8% vs. 5.2% error),
which is due to the benefit of a structured scene model. Our method outperforms Guo et al.’s
method on occluded surfaces, which means the layout estimation take benefits from the better
object interpretation during the scene composition step. We also compare with Zhang et al. [139]
who estimate box-like layout from RGBD images on the intersection of their test set with the
standard test set (Table. 4.4. These images are easier than average, and our method outperforms
substantially, cutting the error nearly in half (5.1% vs. 10.0%).

Method
Layout Depth Error

overall visible occluded

Sensor 0.517 0.059 0.739
[35] 0.166 0.074 0.204
Ours 0.150 0.074 0.181

Table 4.5: Depth error for visible and occluded
portions of layouts. Sensor error is the differ-
ence between the input depth image and anno-
tated layout.

We evaluate layout depth prediction, the ren-
dered depth of the room without foreground ob-
jects (Table 4.5). Error is the difference in depth
from the ground truth layout annotation. On vis-
ible portions of layout surfaces, the error of our
prediction is very close to that of the sensor, with
the difference within the sensor noise range. On
occluded surfaces, the sensor is inaccurate (be-
cause it measures the foreground depth, rather
than that of the background surface), and the
average depth error of our method is only 0.15
meters, which is quite good considering that the
sensor noise is conservatively 0.03*depth.

Occupancy and Free space Evaluation. We evaluate our scene prediction performance based
on voxel prediction. The voxel representation has advantages of being computable from various
volumetric representations, viewpoint-invariant, and usable for models constructed from multiple
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Method
Occupancy, visible space

precision recall precision-ε recall-ε
Bbox 0.423 0.463 0.669 0.734

Guo et al. [35] 0.415 0.346 0.645 0.581
Ours 0.376 0.356 0.621 0.643

Ours w/ GT-region 0.473 0.352 0.729 0.603

Table 4.6: Results of predicted object occu-
pied voxel precision/recall, compared with fit-
ting bounding boxes to ground truth regions
(Bbox). All are calculated in the visible space.

Method
Occupancy, occluded space

precision recall precision-ε recall-ε
Bbox 0.492 0.293 0.751 0.556

Guo et al. [35] 0.473 0.352 0.729 0.603
Ours 0.483 0.400 0.739 0.709

Ours w/ GT-region 0.552 0.421 0.812 0.680

Table 4.7: Results of predicted object occu-
pied voxel precision/recall, compared with fit-
ting bounding boxes to ground truth regions
(Bbox). All are calculated in the occluded
space.

Method
Free space, visible space
precision recall

Sensor 1.000 0.988
Guo et al. [35] 0.998 0.995

Ours 0.998 0.995
Ours w/ GT-region 0.998 0.996

Table 4.8: Results of free space voxel estima-
tion. Unoccupied voxel precision/recall using
our method, given ground truth segmentation
(GT-region) or only automatic region propos-
als. A baseline of free space inferred from depth
point (Sensor) is compared. All are calculated
in the visible space.

Method
Free space, occluded space
precision recall

Sensor – 0.000
Guo et al. [35] 0.732 0.606

Ours 0.732 0.611
Ours w/ GT-region 0.748 0.646

Table 4.9: Results of free space voxel estima-
tion. Unoccupied voxel precision/recall using
our method, given ground truth segmentation
(GT-region) or only automatic region propos-
als. A baseline of free space inferred from depth
point (Sensor) is compared. All are calculated
in the occluded space.

views (as opposed to depth- or pixel-based evaluations). The scope of the evaluation is the space
surrounded by annotated layout surfaces. Voxels that are out of view or behind solid ground truth
walls are not evaluated. We render objects separately and convert them into a solid voxel map.
The occupied space is the union of all the voxels from all objects and layouts; free space is the
complement of the set of occupied voxels.

Our voxel representation is constructed on a fine grid with 0.03m resolution to allow inspection
of shape details of the 3D model objects we use. For detailed investigation, We evaluate voxel
occupancy and freespace prediction performance in the visible space and the occluded space re-
spectively. Table 4.6 and Table 4.7 present the voxel occupancy precision and recall in the two
space; Table 4.8 and Table 4.9 present the voxel free precision and recall in the two space.

There is inherent annotation and sensor noise in our data, which is often much greater than
0.03m. Objects, when they are small, of nontrivial shape, or simply far away, result in very poor
voxel accuracy, even though they agree with the input image. Therefore, we perform evaluation
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Method
Voxel occupancy Semantic segmentation Instance segmentation

precision recall precision-ε recall-ε avg class avg instance avg pixel
Mean coverage

weighted
Mean coverage

unweighted
DSS [46] 0.318 0.585 0.572 0.667 22.92 29.52 41.45 27.36 18.21

Ours 0.381 0.275 0.642 0.490 24.72 27.57 33.64 33.75 25.57

Table 4.10: Comparison with Deep Sliding Shapes (DSS) [46]. We evaluate voxel occupancy (our
metric), semantic segmentation, and instance segmentation metric based on the predicted 19 object
classes defined in DSS.

Method
Scene completion Semantic scene completion

precision recall IoU ceiling floor wall window chair bed sofa table tvs furniture objects avg
SSCNet 57.0 94.5 55.1 15.1 94.7 24.4 0 12.6 32.1 35 13 7.8 27.1 10.1 24.7

Ours 69.9 63.0 49.4 19.4 68.2 21.0 16.5 10.7 43.1 22.2 0.7 4.3 23.0 15.3 22.8

Table 4.11: Comparison with Semantic Scene Completion (SSCNet) [47]. We follow the metric
used by SSCNet and evaluate on the NYUd v2 test split with kinect depth map.

with a tolerance, proportional to the depth of the voxel, for which we use ε = 0.05 ∗ depth, based
on the sensor resolution of Kinect. Specifically, an occupied voxel within ε of a ground truth voxel
is considered to be correct (for precision) and to have recalled that ground truth voxel.

We compare with two simple baselines. For free space, the simple baseline is the observed

free space from depth sensor. The free space from observed depth predicts 100% of the visible
free space but recalls none of the free space that is occluded. Our approach performs similarly
to the Guo et al.variation in visible space, and has better recall than Guo et al.in occluded space.
For occupancy, our baseline generates bounding boxes based on ground truth segmentations with
10% outlier rejection. We outperform this baseline, whether using ground truth segmentations
or automatic region proposals to generate the model. We also perform similarly to the Guo et

al.variation in visible space, while largely outperform Guo et al.in occluded space. Also, note that
precision is higher than recall, which means it is more common to miss objects than to generate
false ones. It’s also worth noting that except the bounding box baseline, performance in occluded
space outperforms performance in visible space. This is because occluded space are often occupied
by larger solid furniture, and the occupancy prediction becomes easier than estimating the fine
detail of visible object surfaces.

4.4.3 Comparison with Deep Sliding Shape

We show in Table 4.10 the comparison between our approach and the DSS method. Our ap-
proach demonstrates better precision of voxel occupancy, average class semantic segmentation
and both instance segmentation metrics, indicating a better shape representation based on CAD
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model over bounding box. DSS shows better recall in object voxel occupancy, which is benefited
from their 3D local search regime for each object in the whole scene. The better recall of predicted
3D objects also lead to their better performance in the average pixel accuracy and average instance
accuracy of semantic segmentation.

Method bed toilet sofa table chair

Sliding Shapes [45] 33.5 67.3 33.8 34.5 29
DSS [46] 84.7 89.9 55.4 70.5 61.1

Ours 36.9 36.1 14.12 4.81 3.1

Table 4.12: 3D Amodal object detection in NYUd
v2 dataset. We evaluate on the mAP (%) as defined
on [45]

We compare our performance on 3D ob-
ject detection metrics in Table 4.12. Al-
though 3D object detection is not our di-
rect goal, our 3D detection on bed class
is better than Sliding Shapes. We observe
that our lower mAP for chair, sofa and ta-
ble is due to three factors: 1) the failing
of distinguishing between similar object
classes: e.g. , we predict on desk shape
which is in ground truth a table, and we
confuse between sofa and chair (with arms
like sofa shape); 2) 3D localization error, which is especially for toilet case; 3) our method is con-
strained to produce objects that do not overlap, even with classes outside the five main furniture.

4.4.4 Comparison with Semantic Scene Completion Network

We show in Table 4.11 the comparison between our approach and the SSCNet method. For
scene completion, our approach outperforms SSCNet in precision, which benefits from our detailed
shape modeling for both objects and layout. SSCNet shows better performance in recall, due
to their voxel-level prediction from observed occupancy space. Our lower recall also leads to
our slightly lower performance in voxel-level occupancy IoU than SSCNet. For semantic scene
completion, our predictions on ceiling, window, bed and other object classes outperform SSCNet.
Our average voxel-level IoU is less than 2% lower than SSCNet. Errors mainly come from objects
like table with fewer observed depth points to fit object and shape classification confusion like
tv (classified as other objects) and sofa (classified as bed or chair) class.

4.4.5 Ablation study

Region proposals. In Tables 4.1 and 4.2, we see the impact of changing the region proposal
method from Guo et al.’s Prim’s based algorithm to Gupta et al.’s [131] Multiscale Combinatorial
Grouping (MCG). The “MCG + CCA” method is Guo et al.with only a substitution of the region
proposal method and improves over “Guo et al.” in each case. We can also see that using ground
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Method
avg class accuracy (%) avg 3D IoU avg surface distance (m)
top 1 top 2 top 3 top 1 top 2 top 3 top 1 top 2 top 3

Guo et al. [35] 11.97 16.36 19.65 0.134 0.177 0.200 0.033 0.029 0.027
Ours 41.56 54.47 62.07 0.191 0.231 0.249 0.026 0.024 0.023

Table 4.13: Quantitative evaluation for our retrieval method compared with Guo et al.’s method.

Method
avg per

class
avg

precision
avg over
instance picture chair cabinet pillow bottle books paper table box window door sofa bag lamp clothes

w/o support height 43.7± 0.3 37.7 ± 0.1 40.8± 0.3 57.5 46.1 39.5 66.5 55.6 30.0 40.7 36.7 10.6 61.4 54.9 63.0 14.9 64.6 25.3
w/ support height 44.7± 0.3 39.7±0.1 42.7±0.2 57.5 53.1 44.35 69.0 54.9 33.5 43.5 39.5 14.1 62.4 57.8 65.9 15.1 65.9 26.9

Table 4.14: 81-class classification accuracy on ground truth 2D regions in the test set. We
compare on: our classification network with/without estimating support height. We compute the
average accuracy for each class, average precision based on the predicted probability and the accu-
racy averaged over instances. The classification networks are trained and evaluated 10 times and
the means and standard deviations (reflecting variation due to randomness in learning) are reported.
15 common object class results are also listed. Bold numbers signify better performance.

truth regions improves performance over automatic region proposals, but the improvement is less
than we had expected, which indicates that our region proposal and scene composition steps are
effective.

Retrieval. We evaluate our candidate shape retrieval method compared with Guo et al.’s re-
trieval method, as shown in table 4.13. To isolate from the influence of errors in other steps like
region proposals generation or scene composition, we assume that the ground truth regions are
given (and the candidate selection in Chapter 4.3.2 for the CNN-based method is not performed).
We evaluate topN retrieved class accuracy and topN retrieved shape similarity, based on the shape
intersection over union (IoU) and the surface-to-surface distance [66]. In our experiment, we set
N ∈ {1, 2, 3}. To isolate from rotation ambiguity in shape similarity measurement, we rotate
each retrieved object to find the best shape similarity score with the ground truth 3D shape. Our
CNN-based retrieval method outperforms the Guo et al.’s CCA method under all the evaluation
criteria.

We can indirectly measure the effectiveness of our scene composition by comparing “Ours”
to “GT-Region” (use the best fitting 3D object model and class for each ground truth 2D region).
For semantic segmentation, occupancy (Table 4.6 and 4.7), and free space (Table 4.8 and 4.9,
we see a relatively small improvement by using ground truth regions. Qualititatively as well, our
automatic region proposal and scene composition produce similarly good results to those produced
using ground truth regions. Although the region proposal method is far from perfect, our scene
composition step appears to be effective at keeping the good region proposals and discarding the
others.
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Figure 4.10: Semantic segmentation accuracy of each class w/ support minus accuracy w/o support
accuracy with automatic region proposals

Occlusion Ratio < 0.5 > 0.5

w/ support height 45.8 38.5
w/o support height 44.2 35.7

Table 4.15: Classification accuracy for ground
truth regions under different occlusion ratios in
test set

Support height prediction. We first examine
the effect of predicting support height in region
categorization. In table 4.14, we report the re-
gion classification accuracy of our classification
network given or without the support prediction
on the ground truth 2D regions in the test set.
Overall, incorporating support height prediction
improves the classification results. For certain
classes, objects often appear on the same height
(e.g. , chair, desk, rug) have better classification accuracy given object’s height, while objects that
can appear on several heights (e.g. , picture) do not have this benefit. Table 4.15 shows the per-
instance classification accuracy under different occlusion ratios of the ground truth regions in the
test set. The occlusion ratio is computed from the observed 2D region over the 2D projection
of the ground truth 3D label. The improvement in the classification accuracy is larger for highly
occluded area, which agrees with our hypothesis that estimating object’s support height will help
classify occluded regions.

As an ablation study of the effect of incorporating support inference in the overall scene compo-
sition performance, in Table 4.1 and Table 4.2, we report our result with or without support height
prediction and using the ground truth support height as the upper bound for including support rea-
soning. As we can see, incorporating support improves the semantic segmentation performance
by about 1%. Figure 4.10 shows the effect of applying support reasoning on semantic segmen-
tation accuracy of each class. Classes that are often at a certain height: toilet, printer, lamp, etc.
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will have benefits from support height information. Classes that might appear in several levels
of height: mask, pixture, light won’t gain benefits from this. Using ground truth support height
generally leads to a larger benefit than estimated support height, as expected.

4.5 DISCUSSIONS

We discuss the performance of our framework and the contributions of each of the component.
Our framework follows three steps: region proposal, classification and shape retrieval, and scene
composition. Each step solves for a loosely separate sub-problem, but are all closely related to pro-
duce a compact result for the complete 3D scene parsing task. For in-depth investigation of each of
the component, as in the ablation study in Chapter 4.4.5, we perform experiments and analyze the
effectiveness of the design choices in each step. For the region proposal step, we see improvements
on applying the state-of-the-art RGBD region proposal method by Gupta et al. [131] instead of our
previous Prim’s based method. We observe less difference in overall performance if we use ground
truth regions in our framework, which indicates the downstream step’s robustness to errors from
region proposals. For the retrieval step, our use of CNNs to classify and retrieve similar shapes
outperforms our previous simpler CCA-based retrieval approach. We validate our hypothesis that
estimating support height of objects can lead to better classification to improve retrieval, espe-
cially for occluded objects. The heavy occlusion characteristic of indoor scene makes the region
classification harder, and accumulates errors to the retrieval step. To resolves the retrieval errors,
we incorporate the scene composition step with combinatorial optimization to select a subset of
shape candidates that fits the observation and scene regularity like no 3D overlap between shapes.
We combine greedy search and a hill-climbing method to efficiently solve the hard optimization
problem which outperforms a variety of other attempted methods including general integer pro-
gramming algorithms and relaxations. Note that possible improvements for the framework exists,
as we will discuss in the following paragraphs.

Common errors made by our approach include splitting large objects into small ones, completely
missing small objects, difficulty with highly occluded objects such as chairs. Based on the previous
discussions, we see the major sources of error of our framework are: 1) region classification error
and 2) shape fitting error. Errors mainly result from the heavy occlusion from objects in indoor
scene. Fewer errors accumulate in the shape retrieval step, referring to the comparison between
Table 4.14 and 4.13. The method does not seem to be very sensitive to the region proposal method,
based on the comparison in Table 4.1, 4.2, 4.6 and 4.7. In fact, we were surprised to find that
results from automatic region proposals are often comparable to those from ground truth regions.
In part, this is because the later fitting and optimization steps are effective at discarding bad regions
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and retaining good ones.
We see many interesting directions for future work: 1) modeling object context such as chairs

tend to be near/under tables, relative pose among objects and the layouts; 2) modeling self-
similarity, e.g. , most chairs within one room will look similar to each other; 3) incorporating
semantic constraints. For example, SSCNet by Song et al. [47] employs neural network to per-
form semantic completion from single depth image. For further improvement, our system can
incorporate the semantic completion from Song et al.to generate candidate region proposals and
add semantic constraint for scene composition in Chapter 4.3.3.

4.6 CONCLUSION

In this chapter, we proposed an approach to predict a complete 3D scene model of individual
objects and surfaces from a single RGBD image. Our representation encodes the layout of walls as
3D planes and all interpretable objects as 3D mesh models, parsing both the visible and occluded
portion of the scene. We take a data-driven approach, generating sets of potential object regions,
matching to regions in training images, and transferring and aligning associated 3D models while
encouraging fit to observations and spatial consistency. We incorporate support inference to aid
interpretation and propose a retrieval scheme that uses CNNs to classify regions and find objects
with similar shapes. We demonstrate the performance of our method on our newly annotated
NYUd v2 dataset with detailed 3D shapes. Compared with our earlier work (Guo et al. [35]), we
demonstrate improvements due to better region proposals and use of CNNs to classify and retrieve
similar shapes. We also show that our results from automatic region proposals are nearly as good
as from ground truth regions, demonstrating the effectiveness of our scene composition and, more
generally, of finding a scene hypothesis that is consistent in semantics and geometry. We also
showed that estimating support height of objects can lead to better classification, especially for
occluded objects.
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CHAPTER 5: SILHOUETTE GROUNDED POINT CLOUD RECONSTRUCTION
BEYOND OCCLUSION

Silhouette Completion

Reconstruction with 
Complete Silhouette

Occluded Object and 
Visible Segment

Reconstruction without 
Silhouette Guidance

Object Detection and Segmentation

Figure 5.1: Illustration. The person sitting on
the sofa blocks much of the sofa from view,
causing errors in existing shape prediction meth-
ods. We propose improvements to shape pre-
diction, including the prediction and completion
of the object silhouette as an intermediate step,
and demonstrate more accurate reconstruction of
both occluded and non-occluded objects. Best
viewed in color.

One major challenge in 3D object recon-
struction is to infer the complete shape ge-
ometry from partial foreground occlusion. In
this chapter, we propose a method to recon-
struct the complete 3D shape of an object
from a single RGB image, with robustness
to occlusion. Given the image and a silhou-
ette of the visible region, our approach com-
pletes the silhouette of the occluded region
and then generates a point cloud. We improve
state-of-the-art for 3D shape prediction with a
2D re-projection loss from multiple synthetic
views and a surface-based smoothing and re-
finement step. We further show improvements
for reconstruction of non-occluded and par-
tially occluded objects by providing the pre-
dicted complete silhouette as guidance. Ex-
periments demonstrate the efficiency of our ap-
proach both quantitatively and qualitatively on
a real scene dataset.

5.1 INTRODUCTION

3D reconstruction from 2D images has many
applications in robotics and augmented reality.
One major challenge is to infer the complete
shape of a partially occluded object. Occlusion
frequently occurs in natural scenes: e.g. we often see an image of a sofa occluded by a table in
front and a dining table partially occluded by a vase on top. Even multi-view approaches [81,
82, 83] may fail to recover complete shape, since occlusions may block most views of the object.
Single-view learning-based methods [85, 86, 87] have approached seeing beyond occlusion as a
2D semantic segmentation completion task, but complete 3D shape recovery adds the challenges
of predicting 3D shape from a 2D image and being robust to the unknown existence and extent of
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Silhouette Completion Network

ResNet-50

Point Cloud Refinement

2⨉2 Up-sampling  
Grid

Sh
ar

ed
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LP

Viewer-centered Novel View

Point Cloud Reconstruction Network
RGB Image

Visible Silhouette

Complete 
Silhouette

Figure 5.2: Approach. Our approach is composed of three steps. In the first step, the silhouette
completion network takes an RGB image and the visible silhouette as input, and predict the object’s
complete silhouette beyond occlusion. In the second step, given the RGB image and the predicted
complete silhouette, the reconstruction network predicts point clouds in viewer-centered coordi-
nates. Finally, we perform a post refinement step to produce smooth and uniformly distributed
point clouds. Best viewed in color.

an occluding region.
In this chapter, our goal is to reconstruct a complete 3D shape from a single RGB image, in

a way that is robust to occlusions. We follow a data-driven approach, using convolution neural
networks (CNNs) to encode shape-relevant features and decode them into an object point cloud.
To simplify the shape prediction, we split the task into: (1) determining the visible region of the
object; (2) predicting a completed silhouette (filling in any occluded regions); and (3) predicting
the object 3D point cloud based on the silhouette and RGB image (Figure 5.1). We reconstruct
the object in a viewer-centered manner, inferring both object shape and pose. We show that,
provided with ground truth silhouettes, shape prediction achieves nearly the same performance for
occluded objects as non-occluded objects. We obtain the visible portion of the silhouette using
Mask-RCNN [127] and then predict the completed silhouette using an auto-encoder. Using the
predicted silhouette as part of shape prediction also yields large improvements for both occluded
and non-occluded objects, indicating that providing an explicit foreground/background separation
for the object in RGB images is helpful.

Our reconstruction represents a 3D shape as a set of point clouds, which is flexible and easy
to transform. Our method follows an encoder-decoder strategy, and we demonstrate performance
gains using a 2D re-projection loss from multiple synthetic views and a surface-based post refine-
ment step, achieving state-of-the-art. Our silhouette guidance approach is related to shape from
silhouette [140, 141, 142], but our silhouette guidance is part of a learning approach rather than
explicit constraint.

60



5.2 SILHOUETTE GROUNDED POINT CLOUD RECONSTRUCTION

Direct point set prediction from a single image is challenging due to the unknown camera view-
point or object pose and large intraclass variations in shape. This requires a careful design choice
on the network architecture. We aim to have an encoder that can capture object pose and shape
from a single image, and a decoder that is flexible in producing unordered, dense point clouds.

In this section, we introduce our network architecture, the training scheme including a 2D re-
projection loss on multiple synthetic views to improve performance (Chapter 5.2.1). We then
introduce a post-refinement step via surface-based fitting (Chapter 5.2.2) to produce smooth and
uniformly distributed point sets.

5.2.1 Point cloud reconstruction network

Our network architecture is illustrated in Figure 5.2. The network predicts 3D point clouds in
viewer-centered coordinates. The encoder is based on ResNet-50 [127] to better capture object
shape and pose feature. The decoder follows a coarse-to-fine multi-stage generation scheme in
order to efficiently predict dense points with limited memory. Our decoder follows the design
of PCN [143]. The coarse predictor predicts N = 1024 sparse points. The refinement branch
produces 4N finer points, by learning a 2 × 2 up-sampling surface grid centered on each coarse
point via local folding operation. We experimented with a higher up-sampling rate (e.g. 9, 16) as
PCN but observed repetitive patterns across all surface patches, missing local shape details. We
also experienced with a fully convolutional encoder instead and observed that performance drops.
Note that our network is able to generate a denser prediction with another up-sampling branch
on top, but we find that the current structure best balances accuracy and training/inference speed.
Our approach does not require features from partial points like PCN, and we observe an on-par
performance with PSG [89], a state-of-the-art method in point set generation, even without the
refinement step we introduce in the next section (see experiments in Chapter 5.4.1).

Loss function. We consider the training loss in 3D space using the bi-directional Chamfer
distance. Given predicted point clouds p̂ ∈ P̂ and the ground truth p ∈ P , we have:

Lrec = dChamfer(P, P̂ ) =
1

|P |
∑
p∈P

min
p̂∈P̂
‖p− p̂‖22 +

1

|P̂ |

∑
p̂∈P̂

min
p∈P
‖p− p̂‖22 (5.1)
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To further boost the performance, we propose a 2D reprojection loss on point sets as follow:

Lproj = d(Proj (P ),Proj (P̂ )) =
1

|P |
∑
p∈P

min
p̂∈P̂
‖K[R t]p−K[R t]p̂‖22 (5.2)

Projection on 
y-z plane

x

z

y

Projection on 
x-z plane

Projection on 
x-y plane

Figure 5.3: Illustration of our multi-view 2D re-
projection loss.

Where Proj (·) is a 2D projection operation
from 3D space, with 3D rotation R and trans-
lation t in world coordinates and a known cam-
era intrinsic K. Since our reconstruction is
viewer-centered, we can simply set R = I, t =

0 assuming projections on the image plane.
Our 2D reprojection loss is a one-directional
Chamfer distance; we only penalize the sum
of minimum distance to projected predictions
for each projected ground truth point. This is
because the Chamfer distance on another di-
rection tends to be redundant, when the pre-
dicted points are projected inside the ground
truth region, resulting in zero gradient and can-
not enforce the predictions to form the same
2D distributions as the ground truth. Although
we project points instead of surfaces or voxel
occupancy, producing non-continuous 2D seg-
ments, our 2D re-projection loss is computational efficient and shows promising improvements in
experiment, and we find that fitting a surface to these points is effective.

We can extend Eq. 5.2 to project 3D points based on multiple synthetic views: e.g. projection on
x, y or z plane in world coordinates, as illustrated in Figure 5.3. In this case we can simply change
the rotation matrix R based on each configurations. We found that projections on 3 views (x-
y,y-z,x-z plane) are sufficient to learn a better 3D shape prior. Our 2D reprojection loss does not
require additional rendered 2D silhouette ground truth of known view points, which makes the
training possible on the dataset where the 3D ground truth is available.

When being projected on the image plane (same as y-z plane in world coordinates), the ground
truth is a subset of the ground truth silhouette. We thus use 2D points sampled from the ground
truth segmentation mask s ∈ S instead of projecting ground truth 3D points p:

Lsilhouette =
1

|P |
∑
s∈S

min
p̂∈P̂
‖s−K[R t]p̂‖22 (5.3)
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The overall loss function is shown below:

L = wrecLrec + wsilhouetteLsilhouette + wprojLproj (5.4)

which is the weighted summation over the 3D Chamfer loss and the 2D reprojection losses. Here
Lsilhouette is the 2D reprojection loss on the image plane, and Lproj is the projection on x, z planes.
Note that our network produces point clouds of coarse and fine resolutions, but we only penalize
on the finest output, which helps ease training and have better performance.

Input Image Network Output FSSR + Smoothing Re-sampling

Figure 5.4: Surface-based point clouds refine-
ment. We show from left to right: input RGB
image, network prediction, FSSR surface fitting
and smoothing and the re-sampled point clouds
on the surfaces. Each sample consists the same
number of points and we visualize each predicted
shape in a novel view for better illustration. Our
refinement step is able to produce smooth and
uniformly distributed point sets. Best viewed in
color.

Implementation details. Our network gets
as input a 224 × 224 image with pixel values
normalized to [0, 1]. The bottleneck feature
size is 1024. The coarse decoder consists two
fc layers, with feature size of 1024 and 3072
and ReLU in between. We set the surface grid
for point up-sampling to be zero-centered and
side length of 0.1. We observed the importance
of using pre-trained weights from ImageNet to
initialize the ResNet encoder, and found that a
stage-wise training scheme leads to faster con-
vergence and easier training: first train to pre-
dict coarse point cloud, fix the trained layers,
then train the up-sampling header, and finally
train the whole network end-to-end. We use
ADAM [134] to update network parameters
with a learning rate of 1e−4 and ε = 1e−6 and
batch size 32. We set wrec = 1, wsilhouette =

1e−8 and wproj = 1e−9 in Eq. 5.4 based on grid
search in the validation set.

Data augmentation. We augment the train-
ing samples by gamma correction with γ be-
tween 0.5-2. We re-scale image intensity with a
minimum intensity ranges between 0-127 and a
fixed maximum intensity of 255. We add color
jittering to each RGB channel independently by multiplying a factor ranges in 0.8-1.2. Each aug-
mentation parameter is uniformly and randomly sampled from the defined range.
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5.2.2 Surface-based point clouds refinement

One important 3D shape property is the smooth and continuous shape surfaces, especially for
thin structures like chair legs and light stands. To impose this property, we perform a post-
refinement step (Figure 5.4), fit surfaces from dense points, smooth surfaces and uniformly re-
sample points from the surfaces again. Our surface fitting method is based on Floating Scale Sur-
face Reconstruction (FSSR) [144], which is a state-of-the-art surface-based reconstruction from
dense point clouds. FSSR requires additional per-point normal factor and a scale value for implicit
surface range. We obtain point-wise normal by plane fitting on 6 neareast neighbors, set per-point
scale as the average distance to the two closest points. We found that this local surface fitting can
help preserve shape details. A mesh cleaning step goes after FSSR to remove small and redundant
patches. We also experimented with Poisson surface reconstruction [145]), but FSSR produces a
better surface in our case.

Smoothing. Given the fitted surfaces, we apply implicit integration method [146] for smoothing.
We use curvature flow as the smoothing operator with 5 iterations (efficient enough in experiment).
We then uniformly sample point clouds based on Poisson disc sampling to get our optimized point
clouds.

Our surface fitting, smoothing, and resampling enables production of evenly distributed points
that can model thin structures and smooth surfaces, but the predicted shape may not be closed, pre-
venting volumetric-based evaluation. Also, small and disconnected sections of points that model
details may be lost, and points that are incorrectly joined into mesh surfaces may increase errors
in some regions. Overall, though, this surface-based refinement step improves the performance
(large gain in earth-mover’s distance with a small cost to Chamfer distance).

5.3 RECONSTRUCTION OF OCCLUDED OBJECTS

So far, our proposed point cloud reconstruction approach does not consider foreground occlu-
sions, such as a table in front of a sofa, or a person or pillows on the sofa. Standard approaches
do not handle occlusions well since the model does not know whether or where an object is oc-
cluded. Starting with an RGB image and an initial silhouette of the visible region, we present a 2D
silhouette completion approach to produce object’s complete silhouette. We show that prediction
based on the true completed silhouette greatly improves shape prediction and brings performance
on occluded objects close to non-occluded; using predicted silhouettes also improves performance
in general, with completed silhouettes slightly outperforming predicted silhouettes of the visible
portion.
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5.3.1 Silhouette completion network

We assume a detected object and its RGB image crop I and the segmentation of the visible
region Sv. Those can be acquired by recent approaches like Mask-RCNN [127]. Our silhouette
completion network (Figure 5.2) predicts the complete 2D silhouette Sf of the object based on Sv.
The network follows an encoder-decoder strategy, gets as input the concatenation of I and Sv, and
predicts Sf with the same resolution as Sv. The encoder is a modified ResNet-50 and the decoder
consists 5 up-sampling layers, producing a single channel silhouette. Intuitively, when occlusion
occurs, we want the network to complete silhouette, and when no occlusion occurs, we want the
network to predict the original segmentation. We found that adding skip connections can obtain
this property. We concatenate the feature after the i − th conv layer of the encoder to the input
feature layer of the (6− i)− th decoder layer. We observed that adding skip links to all the conv
layers helps ease training and produces better results.

Implementation details. For each input I and Sv, we resize them to 224× 224 with the aspect
ratio preserved and white pixel padded. The value of I is re-scaled to [0, 1] and Sv is a binary
map with 1 indicating the object. For the encoder, we remove the top fc layer and the average
pooling layer of a pre-trained ResNet on ImageNet and get a bottleneck feature of 7 × 7. The
decoder applies nearest neighbor up-sampling with a scale factor of 2, followed by a convolution
layer (kernel size 3 × 3, stride 1) and ReLU. The decoder feature sizes are 2048, 1024, 512, 256,
64 and 1 respectively, with a Sigmoid operation on top. We train the network using binary cross
entropy loss between the prediction and the ground truth complete silhouette. We optimize the
network through ADAM [134] with a learning rate of 1e−4 and ε = 1e−6 and batch size 32. Our
final prediction is a binary mask thresholded by 0.5. To account for the truncation of the full object
due to the unknown extent of occluded region behind, we expand the bounding box around each
object by 0.3 on each side.

Data augmentation. For each training sample, we perform random cropping on the input im-
age. We crop with a uniformly and randomly sampled ratio ranges between [0.2, 0.4] on each side
of the input image. Other augmentations include left-right flipping with 50% probability and ran-
dom rotation uniformly sampled within ±5 degrees on the image plane. We also perform image
gamma correction, intensity changes and color jittering as in Chapter 5.2.1.

5.3.2 Silhouette grounded reconstruction

Given the predicted complete silhouette Sf , we modify our point cloud reconstruction network
to be robust to occlusion. We concatenate Sf as an additional input channel to the input RGB image
I . We found this modification can effectively guide reconstruction for both partially occluded and
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non-occluded objects. We show in experiments the importance of using silhouette comparing with
the approach with no segmentation guidance at all. To ease training, we first train our network
with the task of single image reconstruction without occlusion (as in Chapter 5.2.1), then fine-tune
our trained network on synthetic images with occlusion as described below.

Synthetic occlusion dataset. Since there is no large-scale 3D dataset of rendered 2D object
image with occlusion and the complete silhouette ground truth available, we propose to generate
a synthetic occlusion dataset. Instead of off-line rendering samples which is time consuming and
has limited variety of occlusion, we propose a “cut-and-paste” strategy to create random occlusion.
Starting with a set of pre-rendered 2D images without occlusion and known ground truth silhou-
ettes, for each input training sample, we cut out the object from another randomly selected image
from the dataset, paste and overlay the object on the training sample. To be more specific, we paste
around the region defined by [(h0 − h′, w0 − w′), (h1 + h′, w1 + w′)], where [(h0, w0), (h1, w1)]

denotes the top left and bottom right position of the bounding box around the training object im-
age. h′, w′ are the height and width of the pasted new object segment considered as foreground
occlusion.

We exclude samples with occlusion over 50% of the object region to ease training. We perform
“cut-and-paste” with 50% probability in training and further add randomly sampled real-scene
background with 50% probability. The training samples are then applied with the same data aug-
mentation as in Chapter 5.2.1. We penalize the network on the ground truth complete 3D point
clouds and the 2D re-projection loss assuming full shape 2D re-projection. We use the ground
truth visible and complete silhouettes to train the network.

5.4 EXPERIMENT

We evaluate our approach on (1) single image 3D reconstruction; and (2) the robustness to
occlusion with silhouette guidance, both quantitatively and qualitatively. Our network achieves
the sate-of-the-art for point cloud prediction. We discuss in ablation study the performance gains
with our proposed surface-based refinement step and the 2D re-projection loss. To evaluate the
robustness to occlusion, we compare on the performance using occluded objects and non-occluded
objects, analyze and discuss the effects with different configurations: with ground truth complete
silhouettes, with our predicted complete silhouettes, with pedicted visible silhouettes and without
silhouette guidance.

We implement our network using PyTorch, train and test on a single NVIDIA Titan X GPU with
12GB memory. A single forward pass of the network takes 12.7 ms. The point cloud refinement
step is C++ based and takes less than 1s on a Linux machine with Intel Xeon 3.5G Hz in CPU
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mode. Code and data will be available upon acceptance.

5.4.1 Single image 3D reconstruction

Figure 5.5: Sample point cloud reconstruction
results on ShapeNet dataset. Each from left
to right: input RGB image, reconstruction in
viewer-centered coordinates and a novel view of
the predicted 3D shape. Our approach is able
to reconstruct the thin structures and to model
smooth and continuous surfaces. Best viewed in
color.

We evaluate our approach on ShapeNet [147],
which is the standard dataset to compare with
the state-of-the-art. Since ShapeNet objects are
non-occluded, we train our network without
silhouette guidance.

We train and test our network following
the official train-test split defined by Choy et

al. [64]. The dataset consists objects from
13 classes and each has 24 randomly se-
lected views rendered in 2D. We carefully split
out 10% shapes from each class in the train
split to form the validation set. The viewer-
centered point clouds ground truth is generated
by Wang et al. [56].

We consider the following two standard met-
rics:

1. Chamfer distance (CD), defined in
Eq. 5.1.

2. Earch mover’s distance (EMD). defined
as:

dEMD(P, P̂ ) = min
φ:P→P̂

1

|P |
∑
p∈P

‖p− φ(p)‖

(5.5)

where φ : P → P̂ denotes a bi-jection that minimizes the average distance between corre-
sponding points. Since φ is expensive in computation, we follow the approximation solution
as in Fan et al. [89].

We show in Figure 5.5 sample qualitative results by our approach on ShapeNet. We report
in Table 5.1 our quantitative comparison with the state-of-the-art viewer-centered reconstruction
approaches. PSG [89] generates point clouds and Pixel2Mesh [56] produces meshes. We sample
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Category
CD EMD

PSG Pixel2Mesh Ours PSG Pixel2Mesh Ours
plane 0.430 0.477 0.386 0.396 0.579 0.527
bench 0.629 0.624 0.436 1.113 0.965 0.815

cabinet 0.439 0.381 0.373 2.986 2.563 2.147
car 0.333 0.268 0.308 1.747 1.297 1.306

chair 0.645 0.610 0.606 1.946 1.399 1.257
monitor 0.722 0.755 0.501 1.891 1.536 1.314

lamp 1.193 1.295 0.969 1.222 1.314 1.007
speaker 0.756 0.739 0.632 3.490 2.951 2.441
firearm 0.423 0.453 0.463 0.397 0.667 0.572
couch 0.549 0.490 0.439 2.207 1.642 1.536
table 0.517 0.498 0.589 2.121 1.480 1.340

cellphone 0.438 0.421 0.332 1.019 0.724 0.674
watercraft 0.633 0.670 0.478 0.945 0.814 0.730

mean 0.593 0.591 0.501 1.653 1.380 1.205

Table 5.1: Viewer-centered single image shape reconstruction performance compared with the
state-of-the-art on ShapeNet. We report both the Chamfer distance (left) and the Earch mover’s
distance (right). Our approach outperforms PSG [89] and Pixel2Mesh [56] on both the metrics.

2466 points as in Pixel2Mesh for evaluation. Our approach out-performs the two methods on both
metrics.

Ablation study. We show in Table 5.2 our performance on ShapeNet with different configu-
rations: without both surface-based refinement step and 2D reprojection loss, without refinement
step only, without 2D reprojection loss only and our full approach. We observe the improvement
with 2D reprojection loss on both CD and EMD. The improvement with 2D loss is less significant
when we have the surface-based refinement step, showing the refinement step mitigates some prob-
lems with point cloud quality that are otherwise remedied by training with the reprojection loss.
The refinement step increases Chamfer distance, mainly due to the smoothed out small and sparse
point pieces that model the thin and complex shape structure like railings or handles (Figure 5.5,
1st row, 2nd column), and the enhanced error point predictions by connecting sparse point sets
(Figure 5.5, 3rd row, 2nd column). It’s also worth noting that, even without the post-refinement
step, our approach achieves better CD than PSG and a slightly worse EMD, proving the superiority
of our network architecture.

Comparison with object-centered approach. We show in Table 5.3 our comparison with the
state-of-the-art object-centered point cloud reconstruction approach: 3D-LMNet [90] on ShapeNet.
We follow the evaluation procedure as in 3D-LMNet, sample 1024 points and re-scale our predic-
tion (and ground truth) to be zero-centered and unit length of 1, and perform ICP to fit to the
ground truth. Although our approach targets on a harder task of both shape prediction and view
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Method CD EMD
Ours w/o surface refine & w/o 2D proj loss 0.398 1.784

Ours w/o surface refine 0.389 1.660
Ours w/o 2D proj loss 0.502 1.220

Ours w/ silhouette 0.512 1.214
Ours Full 0.501 1.205

Table 5.2: Ablation study. We evaluate our performance on ShapeNet for both Chamfer distance
and Earth mover’s distance with different configurations: without both surface refinement and 2D
reprojection loss, without surface refinement only, without 2D reprojection loss only and our full
approach. Our full approach seeks for a balanced performance under both two metrics.

Method CD EMD
3D-LMNet 5.40 7.00

Ours 5.54 5.93

Table 5.3: Comparison with the state-of-the-art object-centered point cloud reconstruction ap-
proach on ShapeNet, reported in both Chamfer distance and Earth mover’s distance. Although our
method is trained on a harder viewer-centered prediction, our method achieves much better EMD
and slightly worse CD.

point estimation, we achieve a much better EMD and only a slightly worse CD. Note that the re-
ported CD and EMD are of different scales compared with that reported in the comparison with
Pixel2Mesh, this is because 3D-LMNet takes a squared value of each CD distance.

Silhouette guidance. Although all of the objects are fully visible with a plain background in
ShapeNet, we evaluate the impact of the silhouette guidance on ShapeNet object shape predic-
tion. Since ShapeNet images [64] use white background and have no foreground occlusion, we
obtain silhouettes for both training and testing with image intensity < 1 (given image value ranges
between [0, 1]). We show in Table 5.2 the performance with silhouette guidance. The overall
performance drops slightly. This is because input images with white background provide enough
evidence for the network to capture object’s shape feature, and additional silhouette guidance will
confuse the network due to the ambiguity of similar silhouettes from quite different shapes.

5.4.2 Reconstruction of occluded objects

We show: (1) our silhouette completion network performance compared with the state-of-the-
art; and (2) the reconstruction robustness to occlusions with silhouette guidance.

Silhouette completion. Since there’s no real dataset with 2D ground truth of complete seg-
mentation beyond occlusion, we train our network on the synthetic DYCE dataset introduced by
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Method Full Visible Occluded
SeGAN [86] 76.4 63.9 27.6

Ours (ResNet-18) 82.8 82.9 33.9
Ours (ResNet-50) 84.3 83.4 36.2

Table 5.4: Object silhouette completion performance compared with the state-of-the-art
SeGAN [86] on DYCE dataset. We report the 2D IoU compared with ground truth visible, oc-
cluded and full region. We evaluate our approach with two configurations: ResNet-18 based en-
coder (same as SeGAN) and ResNet-50 based encoder. Both settings outperform SeGAN on all
metrics.

Ehsani et al. [86]. The dataset contains segmentation mask for both visible and occluded region in
photo-realistic indoor scenes. We tune the network parameters using the official train-val split and
test our performance on the test set.

We show in Table 5.4 the comparison with the state-of-the-art silhouette completion approach
SeGAN [86] on DYCE. We evaluate the 2D IoU between the predicted complete silhouette and
the ground truth. For detailed comparison, we consider the IoU on the visible potion, the invisible
portion and the full silhouette. Both SeGAN and our approach use ground truth visible 2D silhou-
ette as input for training and testing. We report the performance of our approach with ResNet-18
and ResNet-50 encoder respectively. SeGAN uses ResNet-18 encoder, our approach with ResNet-
18 outperforms SeGAN, due to our skip connection design to preserve the visible region and the
up-sampling decoder to predict better region beyond occlusion. Since using ResNet-50 as encoder
shows a better performance, we use the network with ResNet-50 encoder to generate complete
silhouettes for the downstream reconstruction task.

To evaluate performance on real scenes, we directly test our trained approach on the challenging
Pix3D dataset
[115]. Pix3D contains real images of objects (either occluded or non-occluded) with aligned 3D
shape ground truth and a label of occluded or not. We test on the categories that co-occur in both
Pix3D and ShapeNet: sofa, chair and table. We use Mask-RCNN to detect and obtain the visible
silhouette of the object in each image and perform completion upon the detections. We obtain
valid detections with correctly detected object class and a bounding box IoU > 0.5 compared with
the ground truth. Table 5.5 reports our performance on three object classes. We use the projected
object mask as the ground truth complete silhouette. Our approach achieves a better performance
than the Mask-RCNN baseline (detects visible region). Training with ground truth visible silhou-
ettes can have better performance than training with detected silhouettes from Mask-RCNN. This
is because it’s hard to correct much if the input visible silhouettes are error predicted. For the
sofa class the visible silhouettes are good and our approach has larger margin of improvements,
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Input Image &
Visible Seg Recon. w/ GT Full Seg Pred Full Seg Recon. w/ Visible SegRecon. w/ Pred Full Seg

Recon. 
w/o SegGT Full Seg

Figure 5.6: Qualitative performance on Pix3D dataset. We show in each row from left to right:
input RGB image with predicted visible silhouette by Mask-RCNN (contoured with red), ground
truth full silhouette, reconstruction guided by ground truth silhouette in two views (viewer-centered
and a novel view), our predicted complete silhouette, reconstruction guided by predicted com-
plete silhouette, reconstruction guided by visible silhouette from Mask-RCNN and reconstruction
without silhouette guidance. The first row shows an non-occluded object, and other rows show
occluded objects. In row two, The error prediction with ground truth silhouette is due to the rail-
ings on the chair back that confuses the network that sees it as a lounge chair. Overall, guided
by ground truth silhouettes, our approach shows performance that is nearly as good for occluded
as for non-occluded objects. Using the predicted silhouettes shows large improvements for both
occluded and non-occluded objects. Using the visible silhouettes will fail on predicting occluded
portion since it does not know the 3D shape behind. Without silhouette guidance the network
meets the most difficulties. Best viewed in color.
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Input Image &
Visible Seg Recon. w/ GT Full Seg Pred Full Seg Recon. w/ Visible SegRecon. w/ Pred Full Seg

Recon. 
w/o SegGT Full Seg

Figure 5.7: More qualitative results of occluded objects from Pix3D dataset. We show in each row
from left to right: input RGB image with predicted visible silhouette by Mask-RCNN (contoured
with red), ground truth full silhouette, reconstruction guided by ground truth silhouette in two
views (viewer-centered and a novel view), our predicted complete silhouette, reconstruction guided
by predicted complete silhouette, reconstruction guided by visible silhouette from Mask-RCNN
and reconstruction without silhouette guidance. Best viewed in color.
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Method
Occluded Non-occluded

sofa chair table sofa chair table
Mask-RCNN 84.34 59.05 58.32 91.99 69.96 64.90

Ours train w/ pred vis seg 85.24 56.95 58.33 91.24 68.55 65.83
Ours train w/ GT vis seg 87.58 59.61 58.34 92.02 69.88 64.46

Table 5.5: Object silhouette completion performance on Pix3D dataset. We report 2D IoU on the
ground truth full silhouette of occluded and non-occluded objects. We compare with the Mask-
RCNN baseline (detects visible region). We report our approach with two different training set-
tings: trained with predicted visible silhouette from Mask-RCNN as input and trained with ground
truth visible silhouette as input.

Method
CD EMD

sofa chair table sofa chair table
Ours w/o seg 15.54 17.96 24.35 16.63 16.51 22.56

Ours w/ pred vis seg 9.15 13.20 17.96 9.29 13.40 17.81
Ours w/ pred full seg 9.07 13.13 18.36 9.26 13.20 17.81
Ours w/ gt full seg 8.27 10.16 11.36 8.11 10.48 11.44

Table 5.6: Reconstruction of occluded objects on Pix3D dataset. We compare our approach with
four different configurations: prediction without silhouette guidance, prediction with predicted
visible silhouette from Mask-RCNN, prediction with our predicted full silhouette and prediction
with ground truth complete silhouette.

and can even refine the silhouettes of non-occluded objects. Table class has the worse performed
input visible silhouettes and meets the lowest improvement margin. The input visible silhouettes’
quality also impose effects on the downstream reconstruction task.

Robustness to occlusion. To train the network, we construct a synthetic occlusion dataset (Chap-
ter 5.3.2) based on ShapeNet and add real background from LSUN dataset. We then test our
approach on Pix3D dataset.

For evaluation, we use the ground truth point cloud provided by Mandikal et al. [90]. Each
ground truth shape has uniformly sampled 1024 points. Since Pix3D evaluates on object-centered
reconstruction, while our approach is viewer-centered, we rotate each ground truth shape to have
the viewer-centered orientation w.r.t. camera. For evaluation we re-scale both ground truth and our
prediction to be zero-centered and unit-length, then perform ICP with translation only. In this case
our reported performance can also reflect the performance of view-point estimation. We follow the
officially provided evaluation metrics of Chamfer Distance and Earth mover’s distance by Sun et

al. [115].
We show in Figure 5.6 and Figure 5.7 our qualitative performance. Table 5.6 and Table 5.7

summarizes the quantitative performance on three object classes for occluded objects and non-
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Method
CD EMD

sofa chair table sofa chair table
Ours w/o seg 12.62 16.00 20.66 13.19 15.44 19.93

Ours w/ pred vis seg 8.75 11.35 15.56 8.67 11.83 15.75
Ours w/ pred full seg 8.75 10.91 15.72 8.81 11.34 15.66
Ours w/ gt full seg 8.24 9.21 10.50 8.28 9.66 11.43

Table 5.7: Reconstruction of non-occluded objects on Pix3D. We compare our approach with four
different configurations: prediction without silhouette guidance, prediction with predicted visible
silhouette from Mask-RCNN, prediction with our predicted full silhouette and prediction with
ground truth complete silhouette.

occluded objects respectively. We analyze the performance with four configurations: with ground
truth complete silhouette, with our predicted complete silhouette, with predicted visible silhouette
from Mask-RCNN and without silhouette guidance. We train the network having predicted visible
silhouette as input with the ground truth visible silhouette generated from ShapeNet. We train the
network having no silhouette guidance with RGB images as input only. All configurations use the
same training settings and training losses. Using ground truth complete silhouette can make the
network be robust to occlusion. Without silhouette guidance, the network meets a lot difficulties
because it does not know whether or where an object is occluded and what to reconstruct. With
the guidance of predicted complete silhouette, our approach is able to narrow down the perfor-
mance gap between occluded and non-occluded objects, and slightly outperforms the approach
with predicted visible silhouettes.

5.5 CONCLUSION

In this chapter, we propose a method to reconstruct the complete 3D shape of an object from a
single RGB image, with robustness to occlusion. Our point cloud reconstruction approach achieves
the state-of-the-art with the major improvement by the surface-based refinement step. We show
that, when provided with input ground truth silhouettes, the shape prediction performance is nearly
as good for occluded as for non-occluded objects. Using the predicted silhouette also yields large
improvements for both occluded and non-occluded objects, indicating that providing an explicit
foreground/background separation for the object in RGB images is helpful.
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CHAPTER 6: GENERATING SHAPE PRIMITIVES WITH RECURRENT NEURAL
NETWORKS

Input depth image

3D-PRNN

Multiple 
generations

Figure 6.1: A step-by-step primitive-based shape genera-
tion by 3D-PRNN. As an illustration, given single depth
image, we sequentially predicts sets of primitives that form
the shape. Each time we randomly sample one primitive
from a set and generate the next set of primitives condi-
tioning on the current sample. Better view in color.

In this chapter, we explore the
structural and abstract representation
of 3D objects to support applications
like robot grasping and manipula-
tion. The success of various applica-
tions including robotics, digital con-
tent creation, and visualization de-
mand a structured and abstract repre-
sentation of the 3D world from lim-
ited sensor data. Inspired by the
nature of human perception of 3D
shapes as a collection of simple parts,
we explore such an abstract shape
representation based on primitives.
Given a single depth image of an ob-
ject, we present 3D-PRNN, a gen-
erative recurrent neural network that
synthesizes multiple plausible shapes
composed of a set of primitives. Our
generative model encodes symme-
try characteristics of common man-
made objects, preserves long-range
structural coherence, and describes objects of varying complexity with a compact representation.
We also propose a method based on Gaussian Fields to generate a large scale dataset of primitive-
based shape representations to train our network. We evaluate our approach on a wide range of
examples and show that it outperforms nearest-neighbor based shape retrieval methods and is on-
par with voxel-based generative models while using a significantly reduced parameter space.

6.1 INTRODUCTION

Many robotics and graphics applications require 3D interpretations of sensory data. For exam-
ple, picking up a cup, moving a chair, predicting whether a stack of blocks will fall, or looking
for keys on a messy desk all rely on at least a vague idea of object position, shape, contact and
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Figure 6.2: 3D-PRNN overview. We illustrate the method on the task of single depth shape
completion. The network starts from encoding the input depth image into a feature vector, which
is then sent to the “recurrent generator” consisting stacks of Long Short-Term Memory (LSTM)
and a Mixture Density Network (MDN). At each time step, the network predicts a set of primi-
tives conditioned on both the depth feature and the previously sampled single primitive. The final
reconstruction result and ground truth are shown on the right.

connectedness. A major challenge is how to represent 3D object geometry in a way that (1) can
be predicted from noisy or partial observations; and (2) is useful for reasoning about contact,
support, extent, and so on. Recent efforts often focus on voxelized volumetric representations
(e.g. , [61, 67, 62, 64]). Instead, we propose to represent objects with 3D primitives (oriented 3D
rectangles, i.e. cuboids). Compared with voxels, the primitives are much more compact, for exam-
ple 45-D for 5 primitives parameterized by scale-rotation-translation vs 32,256-D for a 32x32x32
voxel grid. Also, primitives are holistic — representing an object with a few parts greatly simplifies
reasoning about stability, connectedness, and other important properties. Primitive-based 3D ob-
ject representations have long been popular in psychology (e.g. , “geons” by Biederman [94]) and
interactive graphics (e.g. , “Teddy” [96]), but they are less commonly employed in modern com-
puter vision due to the challenges of learning and predicting models that consist of an arbitrary
number of parameterized components.

Our goal is to learn 3D primitive representations of objects from unannotated 3D meshes. We
follow an encoder-decoder strategy, inspired by recent work [116, 117], using a recursive neural
network (RNN) to encode an implicit shape representation and then sequentially generate primi-
tives to approximate the shape as shown in Figure 6.1. One challenge in training such a primitive
generation network is acquiring ground truth data for primitive-based shape representations. To
address this challenge, we propose an efficient method based on Gaussian Fields and energy mini-
mization [148] to iteratively parse shapes into primitive components. We optimize a differentiable
loss function using robust techniques (L-BFGS[123]). We use this (unsupervised) optimization
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process to create the primitive ground truth, solving for a set of primitives that approximates each
3D mesh in a collection. The RNN can then be trained to generate new primitive-based shapes that
are representative of an object class’ distribution or to complete an object’s shape given a partial
observation such as a depth image or point cloud.

To model shapes, we propose 3D-PRNN, an RNN-based generative model that predicts context-
sensitive sequences of primitives in object-centric coordinates, as shown in Figure 3.2. To predict
shape from depth, the network is trained jointly with the single depth image and a sequence of
primitives configurations (shape, translation and rotation) that form the complete shape. During
testing, the network gets input of a depth map and sequentially predicts primitives (ending with a
stop signal) to reconstruct the shape. Our generative RNN architecture is based on a Long Short-
Term Memory (LSTM) and a Mixture Density Network (MDN).

We evaluate our proposed generative model by comparing with baselines and the state-of-the-art
methods. We show that, even though our method has less degrees of freedom in representation,
it achieves comparable accuracy with voxel based reconstruction methods. We also show that
encoding further symmetry and rotation axis constraints in our network significantly boosts per-
formance.

6.2 FITTING PRIMITIVES FROM POINT CLOUDS

One challenge in training our 3D-PRNN primitive generation network is the lack of large scale
ground truth primitive based shape reconstruction data. We propose an efficient method to gener-
ate such data. Given a point cloud representation of a shape, our approach finds the most plausible
primitives to fit in a sequential manner, e.g. , given a table, the algorithm might identify the prim-
itive that fits to the top surface first and then the legs successively. We use rectangular cuboids as
primitives which provide a plausible abstraction for most man-made objects. Our method proposes
a fast parsing solution to decompose shapes with varying complexity into a set of such primitives.

6.2.1 Primitive Fitness Energy

We formulate the successive fitting of primitives as an energy minimization scheme. While
primitive fitting at each step resembles the method of Iterative Closest Point (ICP) [149], we have
additional challenges. ICP ensures accurate registration when provided with a good initialization,
but in our case we have no prior knowledge about the number and the rough shape of the primitives.
Moreover, we need to solve the more challenging partial matching problem since each primitive
matches only part of the shape, which we do not know in advance.
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We represent the shape of each primitive with scale parameters S = [sx, sy, sz], which denotes
the scale of a unit cube along three orthogonal axes. The position and orientation of the primitive
are represented by translation, T = [tx, ty, tz], and Euler angles, θ = [θx, θy, θz], respectively. Thus
the primitive is parameterized by x = [sx, sy, sz, tx, ty, tz, θx, θy, θz]. Furthermore, we assume a
fixed sampling of the unit cube into a set of points, P = {pm}m=1,...,M . Given a point cloud repre-
sentation of a shape, Q = {qn}n=1,...,N , our goal is to find the set of primitives X = {xt}t=1,2,3,...

that best fit the shape. We employ the idea of Gaussian Force Fields [148] and Truncated Signed
Distance Function (TSDF) [150] to formulate the following continuously differentiable energy
function which is convex in a large neighborhood of the parameters:

Ep = −
∑
m,n

Vpmin

(
exp

(
− ‖R(θ)Spm + T − qn‖2

σ2

)
, ξ

)
(6.1)

Figure 6.3: Sample primitive fitting result. We
show our primitive fitting results on chairs, tables
and nightstands. We overlay our fitted primitives
on the sampled 3D point clouds of each shape.

where R(θ) is the rotation matrix, ξ is the
truncation parameter (ξ = 0.9 in our exper-
iments) and Vp denotes the volumetric-wise
sampling ratio that is calculated as the vol-
ume of primitive P over its number of sam-
pled points M . Vp helps avoid local minimum
that results in a too small or too large primi-
tive. Our formulation represents the error as
a smooth sum of Gaussian kernels, where far
away point pairs are penalized less to account
for partial matching.

The energy function given in Eq. 6.1 is sensi-
tive to the parameter σ. A larger σ will encour-
age fitting of large primitives while allowing
larger distances between matched point pairs.
In order to prefer tighter fitting primitives, we
introduce the concept of negative shape, Q−,
which is represented as a set of points sampled
in the non-occupied space inside the bounding
box of a shape. We update our energy function
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as:

Ew = E+
P − αE

−
P , (6.2)

where E+
P is the fitting energy between the shape and the primitive and E−P is the fitting en-

ergy between the negative shape and the primitive. Given point samples, both E+
P and E−P are

computed as in Eq. 6.1. α denotes the relative weighting of these two terms and is defined as
α = max

(
min(10, |Q|/|Q−| × 5), 0.1

)
.

6.2.2 Optimization

Figure 6.4: Failure cases. Main causes are :
too complex shape details to be represented by
primitive blocks (left), The smoothing property
of Gaussian force fields is not good at describ-
ing small hollow shape (middle), small cluster of
point clouds are easily missed through our ran-
domized search scheme (middel and right).

Given the energy formulation described in
the previous section, we perform primitive fit-
ting in a sequential manner. During each it-
eration, we randomly initialize 10 primitives,
optimize Eq. 6.2 for each of these primitives
and add the best fitting primitive to our prim-
itive collection. We then remove the points in
Q that are fit by the selected primitive and it-
erate. We stop once all the points in Q are fit
by a primitive. We optimize Eq. 6.2 in an iter-
ative manner. We first fix θ and solve for S and
T , we then fix S and T and solve for θ. In our
experiments this optimization converges in 5 it-
erations and we use the L-BFGS toolbox [151]
at each optimization step. We summarize this
process with the pseudo-code given in Alg. 6.2.

Simplification with symmetry. We utilize the symmetry characteristics of man-made shapes to
further speed up the primitive parsing procedure. We use axis-aligned 3D objects where symmetric
objects have a common global symmetry plane. We compare the geometry on the two sides of this
plane to decide whether an object is symmetric or not. Once we obtain a primitive that lies on one
side of the symmetry plane, we automatically generate the symmetric primitive on the other side
of the plane.

Refinement. At each step, we fit primitives with a relatively larger Gaussian field (σ = 2 in
Eq. 6.1) for fast convergence and easier optimization. We then refine the fitting with a finer energy
space (σ = 0.5) to match the primitive to the detailed shape of the object. While our random
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Algorithm 6.2 Primitive fitting
1: Given shape point clouds Q and empty primitive set X;
2: β = 0.97|Q|, t = 0;
3: while |Q| < β or i <maxPrimNum do
4: Ebest = Inf;
5: for i = 1 :maxRandNum do
6: θ = [0, 0, 0], random initialize S, T , j = 0;
7: while δ < 0.01 or j <maxIter do
8: fix θ, solve S, T → S∗, T ∗ by Eq .6.1;
9: fix S∗, T ∗, update θ → θ∗ by Eq .6.1, calculate Ew(S∗, T ∗, θ∗) by Eq .6.1;

10: if Ew < Ebest then
11: Ebest = Ew, xbest = [S∗, T ∗, θ∗];
12: δ = ‖[S, T, θ]− [S∗, T ∗, θ∗]‖2, S = S∗, T = T ∗p , k = k + 1;

13: xt = xbest, add xt to X , t = t + 1; Remove fitted points from Q and add to non-occupied
space Q−
return X

search scheme enables a fast parsing method, errors may accumulate in the final set of primitives.
To avoid such problems, we perform a post-refinement step. We refine the parameters of a single
primitive xt while fixing the other parameters. We use the parameters of xt obtained from the
initial fitting as initialization. We define the energy terms in Eq. 6.2 with respect to the points
that are fit by xt and the points that are not fit by any primitive yet. We note that this sequential
refinement is similar to back propagation used to train neural networks. In our experiments, we
perform the refinement each time we fit 3 new primitives.

6.3 3D-PRNN: 3D PRIMITIVE RECURRENT NEURAL NETWORKS

Generating primitive-based 3D shapes is a challenging task due to the complex multi-modal
distribution of shapes and the unconstrained number of primitives required to model such complex
shapes. We propose 3D-PRNN, a generative recurrent neural network to accomplish this task.
3D-PRNN can be trained to generate novel shapes both randomly and by conditioning on partial
shape observations such as a single depth map.

6.3.1 Network architecture

An overview of the 3D-PRNN network is illustrated in Figure 3.2. The network gets as input a
single depth image and sequentially predicts primitives to form a 3D shape. For each primitive, the
network predicts its shape (height, length, width), position (i.e. translation), and orientation (i.e.
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rotation). Additionally, at each step, a binary end of generation signal is predicted which indicates
no more primitive should be generated.

7⨉7 Conv, stride 2

LeakyRelu (0.1)

5⨉5 Conv, stride 2

LeakyRelu (0.1)

3⨉3 Conv, stride 2

LeakyRelu (0.1)

FC (64)

FC (32)

Max Pooling 
(2⨉2)

Max Pooling 
(2⨉2)

Input depth   (64⨉64)

(a) Encoder architecture (b) LSTMs architecture
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Figure 6.5: Detailed architectures of (a) the depth map encoder and
(b) the primitive recurrent generator unit in 3D-PRNN. See the ar-
chitecture descriptions in Section 4.1.

Depth map encoder. Each
input depth map, I , is first
resized to be 64 × 64 in
dimension with values in
the range [0, 1] (we set the
value of background re-
gions to 0). I is passed
to an encoder which con-
sists of stacks of convolu-
tional and LeakyRelu [152]
layers as shown in Fig-
ure 6.5 (a): the first layer
has 32 kernels of size
7 × 7 and stride 2, with
a LeakyRelu layer of 0.1

slope in the negative part.
The second layer consists
of 64 kernels of size 5 × 5

(stride 2), followed by the
same setting of LeakyRelu
and a max pooling layer. The third layer has 128 kernels of size 3 × 3 (stride 2) followed by
LeakyRelu and max pooling. The next two fully-connected layers has neurons of 64 and 32. The
output 1 × 32 feature vector d is then sent to the recurrent generator to predict a sequence of
primitives.

Recurrent generator. We apply the Long Short-Term Memory (LSTM) unit inside the re-
current generator, which is shown to be better at alleviating the vanishing or exploding gradient
problems [153] when training RNNs. The architectural design is shown in Figure 6.5 (b). The
prediction unit consists of L layers of recurrently connected hidden layers (we set L = 3, which
is found to be sufficient to model the complex primitive distributions) that encode both the depth
feature d and the previously predicted primitive xt−1 and then computes the output vector, yt. yt is
used to parametrize a predictive distribution Pr(xt|yt) over the next possible primitive xt. The hid-
den layer activations are computed by iterating over the following equations in the range t = [1, T ]
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and l = [2, L]:

zlt = W l
xxt−1 +W l

hh
l
t−1 +W l

ch
l−1
t +W l

dd (6.3)

[ilt, f
l
t , o

l
t] = σ(zlt) (6.4)

glt = tanh(zlt) (6.5)

clt = f ltc
l
t−1 + iltg

l
t (6.6)

hlt = olt tanh(c
l
t) (6.7)

where zlt capsules the input features in the l-th layer (when l = 1, there is no hidden value propa-
gated from the previous layers and thus z1t = W 1

xxt+W
1
hh

1
t−1+W

1
c d), ht and ct denote the hidden

and cell states, whereas W l
x,W

l
h,W

l
c ,W

l
d denote the linear weight matrix (we omit the bias term

for brevity), it, ft, ot, gt are respectively the input, forget, output, and context gates, which have
the same dimension as the hidden states (size of 400). σ is the logistic sigmoid function and tanh

is the hyperbolic tangent function.
At each time step t, the distribution of the next primitive is predicted as yt = Wy[h

1
t , h

2
t , ..., h

L
t ],

where we perform a linear transformation on the concatenation of all the hidden values. This
concatenation is similar in spirit to using skip connections [154, 127], which is shown to help
training and mitigate the vanishing gradient problem. In a similar fashion, we also pass the depth
feature d to all the hidden layers. We will explain latter how the primitive configuration xt is
sampled from a distribution predicted from yt.

We predict parameters of one axis per time conditioned on the previous axis. We model this
joint distribution of parameter on each axis xsi = [si, ti] (where i indicates one of the 3 axes of
space) as a mixture of Gaussians conditioned on previous axis with K mixture components:

(
{πkt , µkt , σkt , ρkt }Kk=1, et

)
= f(yt), (6.8)

where πt, µt, σt and ρt are the weight, mean, standard deviation, and correlation of each mixture
component respectively, predicted from a fully connected layer f(yt). Note that ei is the binary
stopping sign indicating whether the current primitive is the final one and it helps with predicting a
variable-length sequence of primitives. In our experiments we set K = 20. We randomly sample a
single instance xsi = [si, ti, ei] ∈ R×R× {0, 1} drawn from the distribution f(yt). The sequence
xt represents the parameters in the following order: xsx → xsy → xsz for the shape translation
configuration on x, y, z axis of the first primitive and the stopping sign.

This is essentially a mixture density network (MDN) [155] on top of the LSTM output and its
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loss is defined:

Ls(x) =
T∑
t=1

− log
(∑

k

πktN(xt+1|µkt , σkt , ρkt )
)

− I
(
(xt+1)3 = 1

)
log et − I

(
(xt+1)3 6= 1

)
log(1− et) (6.9)

The MDN is trained by maximizing the log likelihood of ground truth primitive parameters in each
time step, where we calculate gradients explicitly for backpropagation as shown by Graves [116].
We found this stepwise supervised training works well and avoids sequential sampling used in
[93, 156].

Figure 6.6: Training performance comparison on validation
set of synthetic depth map from ModelNet. Both the mixture
density loss and the rotation MSE loss are averaged by sequence
length. The rotation values are normalized and values can have
ranges around 13, compared with the < 1 MSE loss. Our mix-
ture density estimation and rotation value estimation performs
better by enforcing loss on predicting rotation axis.

Geometric constraints. An-
other challenge in predicting
primitive-based shape is to model
rotation, given that the rotation
axis is sensitive to slight change
in rotation values under Euler
angles. We found that by jointly
predicting the rotation axis xa

and the rotation value xr, both
the rotation prediction performs
better and the overall primitive
distribution modeling get alle-
viated as shown in Figure 6.6,
quantitative experiments are in
Chapter 6.4.3. The rotation
axis (xa) is predicted by a three-
layered fully connected network
g(yt) with size 64,32 and 1 and
sigmoid function as shown in
fig. 6.5. The rotation value (xr) is predicted by a separate three-layered fully connected network
g∗(yt) with size 64, 32 and 1 and a Tanh(·) function.
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6.3.2 Loss function

The overall sequence loss of our network is:

L(x) = Ls(x
s) + Lr(x

r) + La(x
a), (6.10)

Lr(x) =
∑
t

‖xrt − x̂rt‖2 (6.11)

La(x) =
∑
t

‖xat − x̂at ‖2 (6.12)

Ls(x) is defined in Eq. 6.9. Lr(x) is a mean square loss between predicted, xrt , and target, x̂rt ,
rotation. La(x) is the mean square loss between the predicted, xat , and ground truth, x̂at , rotation
axis.

6.4 EXPERIMENTS AND DISCUSSIONS

We show quantitative results on automatic shape synthesis. We quantitatively evaluate our 3D-
PRNN in two tests: 1) 3D reconstruction on synthetic depth maps and 2) using real depth maps as
input.

We train our 3D-PRNN on ModelNet [67] categories: 889 chairs, 392 tables and 200 night-
stands. We employ the provided another 100 testing samples from each class for evaluation. We
train a single network with all shapes classes jointly. In all experiments, to avoid overfitting, we
hold out 15% of the training samples, which are then used to choose the number of training epochs.
We then retrain the network using the entire training set. Since a single network is trained to en-
code all three classes, when predicting shape from depth images, for example, there is an implicit
class prediction as well.

6.4.1 Implementation

We implement 3D-PRNN network using Torch. We train our network on primitive-based shape
configurations generated as described in Chapter 6.2. The parameters of each primitive (i.e. shape,
translation and rotation) are normalized to have zero mean and standard deviation. We observe
that the order of the primitives generated by the method described in Chapter 6.2 involves too
much randomness that makes training hard. Instead, we pre-sort the primitives based on the height
of each shape center in a decreasing fashion. This simple sorting strategy significantly boosts
the training performance. Additionally, our network is trained only on one side of the symmetric
shapes to shorten the sequence length and speed up the training process. To train with the gen-
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erative mechanism, we use simple random sampling technique. We use ADAM [157] to update
network parameters with a learning rate of 0.001, α = 0.95, and ε = e−6. We train the network
with batch size 380 and 50 on the synthetic data and on the real data respectively.

At test time, the network takes a single depth map and sequentially generates primitives until a
stop sign is predicted. To initialize the first RNN feature x, we perform a nearest neighbor query
based on the encoded feature of the depth map to retrieve the most similar shape in the training set
and use the configuration on its first primitive.

Figure 6.7: Shape synthesis result. We show
various random sampled shapes by our 3D-
PRNN. The network is trained and tested without
context input. The coloring indicates the predic-
tion order. Better view in color.

Sampling. Note that an unexpected sample
that is far from the mean of the distribution
will cause accumulated error to the following
predictions, during testing each time we sam-
ple from the first two most possible mixture
component, in training we still perform ran-
dom sampling on all mixture components. This
strategy improves stability of our network per-
formance in synthetic data case. In the real
data case, we found that applying random sam-
pling among all mixture components during
both training and testing time can produce suc-
cessive reasonable shapes. This is due to the
fact that the ground truth shapes in real data
are of simple structures that is easier to model
by the network.

6.4.2 Shape synthesis

3D-PRNN can be trained to generate new
primitive-based shapes. Figure 6.7 shows our
randomly generated shapes synthesized from
all three shape classes. We initialize the first RNN feature x with a random sampled primitive
configuration from the training set. Since the first feature corresponds to “width”, “translation in
x-axis”, and “rotation on x-axis” of the primitive, formally this initialization process is defined
as drawing a sample from a discrete uniform distribution of these parameters where the discrete
samples are constructed from the training examples. The figure shows that 3D-PRNN can learn to
generate representative samples from multiple classes and sometimes creates hybrids from multi-
ple classes.
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chair table night stand
GT prim 0.473 0.533 0.657

NN Baseline 0.269 0.220 0.256
Wu et al. [67] (mean) 0.253 0.250 0.295

3D-PRNN 0.245 0.188 0.204
3D-PRNN + rot loss 0.238 0.263 0.266

Table 6.1: 3D IoU evaluation in synthetic
depth map in ModelNet. We explore two set-
tings of 3D-PRNN w/ or w/o rotation axis con-
strains, and compare it with ground truth prim-
itive and the nearest neighbor baseline. We
also compare with the Wu et al. [67] deep net-
work voxel generation method.

chair table night stand
GT prim 0.049 0.044 0.044

NN baseline 0.075 0.089 0.100
Wu et al. [67] (mean) 0.045 0.035 0.057

3D-PRNN 0.074 0.080 0.104
3D-PRNN + rot loss 0.074 0.078 0.092

Table 6.2: Surface-to-surface distance evalua-
tion in synthetic depth map in ModelNet. We
explore two settings of 3D-PRNN w/ or w/o
rotation axis constrains, and compare it with
ground truth primitive and the nearest neigh-
bor baseline.

6.4.3 Shape reconstruction from single depth view

Synthetic data. We project synthetic depth maps from training meshes. For both training and
testing, we perform rejection-sampling on a unit sphere for 5 views, bounded within 20 degrees
of the equator. The complete 3D shape is then predicted using a single depth map as input to 3D-
PRNN. Our model can generate a sampling of complete shapes that match the input depth, as well
as the most likely configuration, determined as the mean of the Gaussian from the most probable
mixture. We report 3D intersection over union (IoU) and surface-to-surface distance [66] of the
most likely predicted shape to the ground truth mesh. To compute IoU, the ground truth mesh is
voxelized to 30 x 30 x 30 resolution, and IoU is calculated based on whether the voxel centers fall
inside the predicted primitives or not. Surface-to-surface distance is computed using 5,000 points
sampled on the primitive and ground truth surfaces, and the distance is normalized by the diameter
of a sphere tightly fit to the ground truth mesh (e.g. , 0.05 is 5% of object maximum dimension).

We show qualitative results in Figure 6.8. Tables 6.1 and 6.2 show our quantitative results. “GT
prim” is the ground truth primitive representation generated by our parsing optimization method
during training. This serves as an upper bound on performance by our method, corresponding
to how well the primitive model can fit the true meshes. “NN Baseline” is the nearest neigh-
bor retrieval of shape in training set based on the embedded depth feature from our network. By
enforcing rotation axis constraints (“3D-PRNN + rot loss”), our 3D-PRNN achieves better per-
formance, which conforms with the learning curve as shown in Figure 6.6. Though both nearest
neighbor and 3D-PRNN are based on the trained encoding, 3D-PRNN outperforms NN Baseline
for table and nightstand, likely because it is able to generate a greater diversity of shapes from
limited training data. We compare with the voxel-based reconstruction of Wu et al. [67], training
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Figure 6.8: Sample reconstruction from synthetic data from ShapeNet. We show the input
depth map, with the most probable shape reconstruction from 3D-PRNN, and three successive
random sampling results, compared with our ground truth primitive representation. Better view in
color.
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Figure 6.9: Sample reconstruction from real depth map in NYUdv2. We show the input depth
map, with the most probable shape reconstruction from 3D-PRNN, and two successive random
sampling results, compared with our ground truth primitive representation. Better view in color
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class chair table night stand
GT prim 0.543 0.435 0.892

NN baseline +ft 0.171 0.078 0.286
NN baseline 0.145 0.076 0.262

3D-PRNN +ft 0.158 0.075 0.081
3D-PRNN 0.138 0.052 0.086

Table 6.3: 3D IoU evaluation in real depth
map in NYUd v2. We explore two settings
of 3D-PRNN w/ (+ft) or w/o fine-tuning,
and compare it with ground truth primitive
and the nearest neighbor baseline.

class chair table night stand
GT prim 0.037 0.048 0.020

NN baseline+ft 0.118 0.176 0.162
NN baseline 0.101 0.164 0.160
3D-PRNN+ft 0.112 0.168 0.192

3D-PRNN 0.110 0.181 0.194

Table 6.4: Surface-to-surface distance eval-
uation in real depth map in NYUd v2. We
explore two settings of 3D-PRNN w/ (+ft)
or w/o fine-tuning, and compare it with
ground truth primitive and the nearest neigh-
bor baseline.

and testing their method on the same data using publicly available code. Since Wu et al.generate
randomized results, we measure the average result over ten runs. Our method performs similarly
to Wu et al. [67] on the IoU measure. Wu et al.performs better on surface distance, which is less
sensitive to alignment but more sensitive to details in structures. The performance of our ground
truth primitives confirms that much of our reduced performance in surface distance is due to using
a coarser abstraction (which though not preserving surface detail has other benefits, as discussed
in introduction).

Real data (NYU Depth V2). We also test our model on NYU Depth V2 dataset [129] which is
much harder than synthetic due to limited training data and the fact that depth images of objects
are in lower resolution, noisy, and often occluded conditions. We employ the ground truth data
labelled by Guo and Hoiem [158], where 30 models are manually selected to represent 6 categories
of common furniture: chair, table, desk, bed, bookshelf and sofa. We fine-tune our network that
was trained on synthetic data using the training set of NYU Depth V2. We report results on
test set based on the same evaluation metric as the synthetic test shown in Table 6.3 and 6.4.
Since nightstand is less common in the training set and often occluded depth regions may be
similar to those for tables, the network often predicts primitives in the shapes of tables or chairs
for nightstands, resulting in worse performance for that class. Sample qualitative results are shown
in Figure 6.9.

6.5 CONCLUSION

In this chapter, we present 3D-PRNN, a generative recurrent neural network that uses recur-
ring primitive based abstractions for shape synthesis. 3D-PRNN models complex shapes with a
low parametric model, which advantages such as being capable of modeling shapes with fewer
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training examples available, and a large intra- and inter-class variance. Evaluations on synthetic
and real depth map reconstruction tasks show that results comparable to higher degree of freedom
representations can be achieved with our method. Future explorations include allowing various
primitive configurations beyond cuboids (i.e. cylinders or spheres), encoding explicit joints and
spatial relationship between primitives.
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CHAPTER 7: CONCLUSION AND FUTURE WORK

7.1 SUMMARY

In this thesis, we focus on 3D scene and object parsing from a single image. Our goal is to
have an expressive 3D parse that is able to support applications such as robotics and navigation.
To achieve this goal, we proposed approaches at three different levels of details. We start from the
layout level to a more complex scene level and finally to the detailed object level. At layout level,
in Chapter 3, we estimate the 3D room layout from a single RGB image. We propose LayoutNet,
an approach that predicts room layout from a single image that generalizes across panoramas and
perspective images, cuboid layouts and more general layouts (e.g. , “L”-shape room). We further
improve upon LayoutNet by using a better image feature encoder, refined training details and a
gradient ascent based post refinement step (named as LayoutNet v2). Next, in Chapter 4, at scene
level, we make use of an additional depth image to explore a data-driven approach that recovers the
complete 3D parse of all layouts and objects in the scene. Our approach generates sets of potential
shapes, transfers and aligns associated 3D models while encouraging fit to observations and spatial
consistency. At object level, in Chapter 5, we propose to recover the complete 3D geometry of an
object with robustness to possible partial foreground occlusions, by completing the silhouette of
the occluded region and then estimating the complete shape. Finally, in Chapter 6, we represent
each shape as a 3D composite of a set of primitives, recurrently parsing each shape into primitives
from a single depth view. We demonstrate the efficacy of each proposed approach with extensive
experiments both quantitatively and qualitatively on public datasets.

7.2 FUTURE WORK

Our proposed approaches only make a small step toward an ideal 3D scene and object parsing.
That is, much remains to be done: (1) for precise robot gesturing, a more detailed 3D object repre-
sentation beyond oriented cuboid is needed; (2) for a free indoor navigation, a complete recovery
of the 3D scene from multiple view is preferred; (3) for precise object localization, reasoning like
object support and contact is needed to make up missing reconstruction due to occlusions or limited
field of view; (4) to better assist humans, we need to learn to infer human-object and human-scene
interactions. We discuss in details the above four directions of future work as follows.

Detailed shape modeling via structured representations. Besides the abstract primitive based
3D shape representation, many recent approaches try to build up finer structured shape represen-
tations like superquadrics [159] or implicit surfaces [160]. However, those templates are still
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too abstract to preserve detailed shape properties. On the other hand, various approaches seek
to represent 3D surfaces as the continuous decision boundary of a deep neural network classi-
fier [161, 162], while treating a shape as a compact object rather than a composite of meaningful
parts. Therefore, one future direction of our research is to investigate a part-based shape repre-
sentation that is precise in surface modeling and can reasonably depict connectedness between
parts.

Figure 7.1: Illustrations of how occlusions (red arrow) and sensor errors (red circle) affect ob-
ject localization and pose estimation. Left is a single RGB image, right is a complete 3D scene
parsing of all objects and layouts, given a single RGBD image and the ground truth 2D semantic
segmentation. However, we still have a wrong pose estimation of the outlet on the right wall due
to missing depth values, and the wine bottles on the counter are hard to be precisely localized due
to foreground occlusions.

Support reasoning for better 3D scene parsing. Object localization and pose estimation often
meets obstacles due to occlusions and sensor error. As in Fig 7.1, the outlet on the wall has a
wrong pose estimation due to the missing depth values from a Kinect sensor. The bottom extent of
the wine bottles (red arrow) are unknown due to foreground occlusions. In this case, if we could
incorporate reasoning like object support and contact, we can have a better 3D parse: the outlet
should be supported by the right wall, and the bottom of the wine bottles should touch the counter
top to be physically stable.

From single-view to multi-view 3D scene and object parsing. Information from a single im-
age is limited: humans tend to walk around the scene to understand the free space around and
to better localize a certain object. This requires a complete 3D parse from multiple view points.
One compelling direction is to incorporate single-view 3D parsing into multi-view reconstruction
approaches like SLAM [163] or SFM [164]. Recently, Phalak et al. [165] has shown promising
results by fusing single image reconstructions from multiple perspective images to estimate a com-
plete 3D floor plan. While challenges still exist: e.g. , how to sort out reliable reconstructions from
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each image and discard unknown error predictions.
Modeling human-object and human-scene interactions. Another important aspect of 3D

scene and object parsing is to interpret the interactions with humans: how can we move and interact
with the cup on the desk? Where can we place the cup so that it’s convenient for humans to pick
it up? Moreover, we want to know if the inferred human-object and human-scene interactions
can further improve the interpretations of both humans (e.g. , pose and shape) and the scene (more
accurate 3D reconstruction). The modeling of the interactions is hard, due to the non-rigid property
of human shapes, the large variations of poses interacted with the scene and the complexity of the
3D scene itself due to clutters of objects. One feasible solution is to use parametric models to
represent both humans and the scene. The interactions can then be formulated as a function with
constraints: e.g. , the fingers should surround the handle of the cup.

7.3 CONCLUSION

In this dissertation, we have taken a step toward 3D scene and object parsing from a single
image. We hope that our investigations can inspire researchers to develop more advanced 3D
scene and object parsing approaches, in the context of better 3D reconstruction beyond occlusion
and sensor limitation, and moreover, perceiving human interactions with the scene.

In conclusion, we put forward the hypothesis and prove in experiments, that a data-driven ap-
proach is able to directly produce a complete 3D recovery from 2D partial observations. Moreover,
we show that by imposing constraints of 3D patterns and priors into the learned model (e.g., layout
surfaces are flat and orthogonal to each other, support height can infer the full extent of an occluded
object, 2D complete silhouettes can guide reconstructions beyond partial foreground occlusions,
and shapes can be decomposed into sets of primitives), we are able to obtain more accurate recon-
struction of the scene and a structural representation of the object.
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