
 

 

 

 

 

SURROGATE MODELS FOR THE DESIGN AND CONTROL OF SOFT MECHANICAL 

SYSTEMS 

 

 

 

 

 

 

 

BY 

 

SREE SHANKAR SATHEESH BABU 

 

 

 

 

 

 

 

DISSERTATION 

 

Submitted in partial fulfillment of the requirements 

for the degree of Doctor of Philosophy in Systems and Entrepreneurial Engineering 

in the Graduate College of the 

University of Illinois at Urbana-Champaign, 2019 

 

 

 

Urbana, Illinois 

 

 

 

Doctoral Committee: 

  

 Assistant Professor Girish Krishnan, Chair 

 Professor Thenkurussi Kesavadas 

 Associate Professor Ramavarapu S Sreenivas 

 Assistant Professor Aimy Wissa 

 

 



ii 

 

ABSTRACT 

Soft mechanical systems constitute stretchable skins, tissue-like appendages, fibers and fluids, and 

utilize material deformation to transmit forces or motion to perform a mechanical task. These 

systems may possess infinite degrees of freedom with finite modes of actuation and sensing, and 

this creates challenges in modeling, design and controls. This thesis explores the use of surrogate 

models to approximate the complex physics between the inputs and outputs of a soft mechanical 

system composed of a ubiquitous soft building block known as Fiber Reinforced Elastomeric 

Enclosures (FREEs). Towards this the thesis is divided into two parts, with the first part 

investigating reduced order models for design and the other part investigating reinforcement 

learning (RL) framework for controls. 

The reduced order models for design is motivated by the need for repeated quick and accurate 

evaluation of the system performance. Two mechanics-based models are investigated: (a) A 

Pseudo Rigid Body model (PRB) with lumped spring and link elements, and (b) a Homogenized 

Strain Induced (HIS) model that can be implemented in a finite element framework. The 

parameters of the two models are fit either directly with experiments on FREE prototypes or with 

a high fidelity robust finite element model. These models capture fundamental insights on design 

by isolating a fundamental dyad building block of contracting FREEs that can be configured to 

either obtain large stroke (displacement) or large force. Furthermore, the thesis proposes a novel 

building block-based design framework where soft FREE actuators are systematically integrated 

in a compliant system to yield a given motion requirement. The design process is deemed useful 

in shape morphing adaptive structures such as airfoils, soft skins, and wearable devices for the 

upper extremities.  
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 Soft robotic systems such as manipulators are challenging to control because of their flexibility, 

ability to undergo large spatial deformations that are dependent on the external load. The second 

part of this work focuses on the control of a unique soft continuum arm known as the BR2 

manipulator using reinforcement learning (RL). The BR2 manipulator has a unique parallel 

architecture with a combined bending mode and torsional modes, and its inherent asymmetric 

nature precludes well defined analytical models to capture its forward kinematics. Two RL-based 

frameworks are evaluated on the BR2 manipulator and their efficacy in carrying out position 

control using simple state feedback is reported in this work. The results highlight external load 

invariance of the learnt control policies which is a significant factor for deformable continuum 

arms for applications involving pick and place operations. The manipulator is deemed useful in 

berry harvesting and other agricultural applications. 
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CHAPTER 1: INTRODUCTION 

Fiber-Reinforced Elastomeric Enclosures (FREEs) are hollow cylinders reinforced by a network 

of two families of fibers (α and β respectively) as shown in Figure 1(a) [1], [2]. When pressurized 

with fluids, FREEs enable different motion patterns such as bending, extension, rotation, and spiral 

motion depending on the relative fiber orientations. In this work, we limit our attention to a specific 

class of FREEs that have symmetric fiber angles (α = - β), and thus contract in length upon 

actuation as shown in Figure 1(b-c). Known as McKibben pneumatic muscles, they have been used 

as biomimetic actuators in robotics for over two decades.  

 

Figure 1: (a) Constituents of FREEs, and (b) undeformed (c) deformed configuration of 

contracting FREEs and (d) pennate arrangement of FREEs 

The motivation of this work stems from the need to analyze systems of soft elements 

interconnected in complex architectures that leverages increased performance benefits realized by 

the topology of the network. For example, Figure 1(d) shows several FREEs arranged in a dyadic 

or pennate configuration like the fiber strands in a muscle. The net actuation stroke is more than 

five times the stroke of a single FREE, implying large possible amplifications or gear ratios that 

can result from planar or spatial topological connections. The resulting performance benefits are 
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due to the FREEs acting as both actuators that contract, and structural members that bend or flex 

to ensure overall system compatibility. While several models exist to capture the axial contracting 

actuation of FREEs [3], [4] few models take into account their bending behavior due to transverse 

loads or moments. Trivedi and Rahn [5], [6] treat the bending of extending FREEs as Cosserat 

rods [7] with linear elastic material properties, and decouple actuation forces from the bending 

mechanics. Walker et al. [8] introduced discrete or lumped approaches to model continuum arms. 

However, these models are accurate only when the systems of FREEs are co-axial as in continuum 

manipulators and cannot be directly extended to a system of FREEs in a planar or spatial network. 

Furthermore, these models do not take into account the changes in geometry (area of cross-section 

and elastic properties) that result due to internal pressurization of contracting FREEs. 

 

Figure 2: Deformation modes available to a BR2 soft manipulator. (a) Home position at zero 

pressure, (b) Bending FREE pressurized and (c) Bending and rotating FREE pressurized 

The second part of this work focuses on the control of a unique soft continuum arm known as the 

BR2 manipulator [9], [10] using reinforcement learning. The BR2 has a completely parallel 

architecture from an asymmetric combination of FREEs that bend and rotate simultaneously, the 

combination of which yields a spatial deformation pattern as shown in Figure 2. The advantage of 

this architecture is its ability to bend spatially to avoid obstacles and use its whole arm towards 

grasping long and slender objects by spirally deforming around them, while still maintaining a 
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parallel architecture. Control of soft continuum arms have been widely explored through both 

model based and model free methods [11]. Traditional control methods are founded on first-

principles based on mathematical models and use of analytical equations to capture the exact 

behavior within bounding assumptions [12]–[14]. Mathematical models achieve great accuracy 

and stability if the assumptions made while deriving their governing equations remain valid. The 

realm of model free methods is dominated by machine learning techniques. Both supervised and 

reinforcement learning have been used to address control problems of varying levels of difficulty. 

Supervised learning has been used to fit artificial functions that maps inputs to outputs for 

estimating inverse kinematics and dynamics of robots in settings such as neuro-adaptive model-

reference adaptive control. In the context of soft robots, frameworks such as feed forward neural 

nets, and more recently recurrent neural nets [11] have been used to characterize dynamic 

properties of different soft manipulators. While using neural networks makes the process of 

modeling simple, it is subject to issues like over-fitting and requires a good evaluation mechanism 

to guarantee stability of the control policy. This makes the process of training each robot different 

as the input-output mapping may vary for different prototypes. The same issue arises if the robots 

are subjected to external loads, which have been shown to impact the workspace of the BR2 

manipulator. Towards addressing the complexities addressed above this works presents the use of 

simplified surrogate models for the design, analysis and control of mechanisms derived from soft 

elements. 

1.1 Problem Statements 

Drawing inspiration from the need for suitable frameworks for the design, analysis and control of 

soft mechanical systems, the objectives of this work is stated as 
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1. The use of surrogate modeling techniques to accurately capture force-deformation 

characteristics of systems of Fiber Reinforced Elastomeric Enclosures (FREEs), and 

2. To adapt principles of reinforcement learning for the generalized position control of an 

asymmetric soft spatial continuum arm termed as the BR2 manipulator.   

A surrogate model is a compact analytic model that approximates the multivariate input/output 

behavior of complex systems using a limited set of computationally expensive simulations. Three 

steps involved in creating a robust surrogate model are: (1) Selecting samples from experiments, 

(2) Constructing a suitable model with appropriate number of parameters to capture non-linearities 

effectively and (3) Optimizing and appraising the model for accuracy. This work explores the use 

of surrogate models to approximate the complex physics between the inputs and outputs of soft 

systems. To develop a suitable surrogate model for design and analysis of FREE-based systems 

the following steps are followed: (1) creation of a robust and experimentally validated high-fidelity 

finite element model which is then used to gather sample data points, (2) proposing surrogate 

formulations for capturing non-linear responses of FREEs. This work focuses on two such 

formulations, and (3) fitting and validation of the surrogate parameters. The surrogate formulations 

must be scalable to large networks of FREEs and adaptable in simulation-based optimization 

frameworks. We use artificial neural networks (NN) to as a suitable surrogate formulation to 

capture the complex kinetostatic behavior of the BR2 manipulator. As before three steps are 

followed to obtain a robust surrogate model: (1) collection of sample data from analytical 

simulation or physical prototype, (2) tuning the weights of the NN to effectively map inputs and 

outputs of the BR2 and (3) validation of NN for random inputs. The application of NN to capture 

transition kinetostatics during position control of the BR2 is done using principles from 

reinforcement learning and not traditional supervised learning. 
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1.2 Related Work 

Reduced Order Models: While several models exist to capture the axial contracting actuation of 

FREEs [15]–[19] few models take into account their bending behavior due to transverse loads or 

moments. Trivedi and Rahn [20], [21] treat the bending of extending FREEs as Cosserat rods [7] 

with linear elastic material properties, and decouple actuation forces from the bending mechanics. 

Walker et al. [22], [23] introduced discrete or lumped approaches to model continuum arms. 

However, these models are accurate only when the systems of FREEs are co-axial as in continuum 

manipulators [24], and cannot be directly extended to a system of FREEs in a planar or spatial 

network. Furthermore, these models do not take into account the changes in geometry (area of 

cross-section and elastic properties) that result due to internal pressurization of contracting FREEs. 

We exploit a reduced order model developed for simulating large deflections in planar compliant 

beams known as Pseudo-Rigid-Body (PRB) model [25]–[27]. The term reduced-order is 

applicable in the context that in place of solving partial or ordinary differential equations to obtain 

deformation characteristics, the presented approach utilizes a non-linear algebraic formulation to 

capture the same behavior. Hence, there is a reduction in order of complexity as compared to 

models derived using continuum mechanics.  In a 3D setting, designing such systems can be a 

challenge as high-fidelity modeling and analysis tools, although accurate, can become 

computationally intensive. A preliminary study conducted by the authors to assess the increase in 

computation time as reported by a commercial FEA solver (ABAQUS) for soft fiber reinforced 

bending actuators [19] indicates a nonlinear trend that quickly becomes computationally 

intractable with more soft elements (Figure 3 (c)). One of the greatest challenges in analysis of 

soft robotic actuators is effective characterization of its nonlinear material properties that serve as 

inputs to mechanics-based models. For example, Cosserat rod models [28]–[30] model the large 
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deformation curvature space of slender continuum robots, but its accuracy is dependent on the 

material characterization and actuation models [31]. In the authors' earlier work we proposed a 

lumped pseudo-rigid body model to capture the bending behavior of contracting PAMs [32], and 

established that the stiffness of the PAM changes with its internal pressurization or actuation. 

Similar coupling between stiffness and actuation have been studied for applications as reported by 

[33]–[35].  From Figure 3 it can be observed that PRB models are more accurate and have lower 

computation time, however their analysis is restricted to planar mechanisms.  

 

Figure 3: Preliminary study on increase in analysis time with number of FREEPAMs. (a) Material 

estimation and Mooney-Rivlin fit over repeated trials for latex used to manufacture FREEPAMs. 

(b)FEA rendering of FREEPAM subjected to transverse loading during parameter estimation of 

reduced-order models. (c) Variation in computation time as function of mechanism complexity and 

(d) Variation in fitting error for the two reduced-order models being investigated as a function of 

FREEPAM aspect ratio and actuation pressure. 
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In contrast, the Homogenized Strain Induced Model (HSIM) has higher computation time and 

lower accuracy but better suited for analyzing more complex spatial mechanisms in conjunction 

with commercially available CAD packages. 

Architectured Systems: Networked systems are highly prevalent in nature and more commonly 

used in engineered structures and are made from deliberate arrangements of building blocks [36]. 

They are often associated with increased strength, reduced material usage and in certain cases yield 

non-intuitive deformation modes. Examples include, negative Poisson's ratio [37] and negative 

thermal expansion coefficients [38] that can be achieved using conventional materials tailored to 

a specific arrangement at the microscopic level. In the domain of structures that deform passively, 

nature presents several examples of actuators that serve as simple building blocks bundled together 

in a networked architecture to perform varying functions. A prime example in this regard are 

skeletal muscles of animals of which there are two types: “Fusiform” muscles, which generate 

greater contraction but lower forces, and are characterized by linearly arranged fibers and 

“Pennate” muscles that generate greater forces at lower strokes, and possess fibers that approach 

their central tendon obliquely [39][40]. By leveraging the geometric arrangement of these 

myofibers, muscle performance can be effectively tuned to either provide large forces or large 

stroke. In the engineering realm and actively actuated networks, Nawroj and Dollar [41], [42] used 

planar meshes of conventional linear motors and flexible connectors to morph surfaces into any 

desired shape. Similar concepts have also been demonstrated in the MEMS scale with electrostatic 

actuators [43]. Earlier research on shape morphing active compliant mechanisms with embedded 

actuation [44][45], adaptive grippers [46][47], and 3D tensegrity mechanisms capable of gait 

generation [48][49] also exhibit an architecture of active elements. Figure 4 details two systems 

that have been analyzed and designed using the models described in this thesis. The soft 



8 

 

components are approximated using reduced-order models and incorporated into existing analysis 

frameworks to generate design that are tailored to meet specific requirements. The use of such 

reduced-order models remains effective in spatial (sleeve) and planar (shape morphing 

mechanism) settings. 

 

Figure 4: Design and analysis of soft mechanical systems. (a) Soft sleeve with displacement 

amplification properties and (b) a shape morphing mechanism with embedded actuation. 

Learning-Based Control: There are several challenges in design of soft continuum arms that 

manifest as trade-offs in their performance attributes. For example, in continuum arms, achieving 

large workspace and dexterity may require serial combination of several building blocks or 

actuators that effectively reduces compactness, energy efficiency, and leads to bulky structures 

that are difficult to control. These were evident in OctArm [20], [24], one of the earliest soft and 

continuum manipulators which consisted of several serial modules of spatially bending segments.  

While multiple serial modules were required to obtain dexterity, large workspace and whole arm 

manipulations, this leads to excessive bulky designs whose achievable static workspace was 

attenuated due to gravity. Most continuum manipulators are slated to have a better dynamic 

workspace, but this may be unsuitable for applications that involve manipulation and may reduce 

safety during interaction. Some novel designs propose using stiffness modulating building blocks 
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that utilize granular jamming to improve the load bearing ability of the manipulator in the 

deformed configuration [50], [51]. Controlling SCAs is challenging because of their infinite 

degrees of freedom and the availability of limited sensing avenues. Most existing control strategies 

can be broadly divided into three categories: (i) classical model based methods, (ii) model based 

learning methods, and (iii) model free learning methods [52]. Classical model based controls 

traditionally build on accurate analytical expressions for forward kinematics and rapid evaluations 

of inverse kinematics [53]. In the context of SCAs, these approaches are bounded by certain 

assumptions. Primary among them is the constant curvature assumption that enables such a control 

schemes to be adapted for SCAs albeit with greater inaccuracies when accounting for factor that 

violate the assumption (Ex: external loads that distort the deformation geometry). Model based 

learning methods circumvent analytical formulations for forward kinematics by fitting an 

experimental data-driven Artificial Neural Network (ANN). However, obtaining the inverse 

kinematics directly from a model offers challenges including discontinuity of the work space [54], 

stability of points lying outside the reachable workspace and load dependencies of learned policies. 

Thuruthel et al. [55] adopted a differential inverse kinematics approach using spatially localized 

exploration that addressed some of these limitations. In a more recent effort, Thuruthel et al. [11] 

presented a framework that learns the optimal policies in a dynamic closed loop setting operating 

on a learnt ANN forward model. While these methods are simple, effective, and easier to train 

with very few data points their performance on more complex SCAs with elements of discontinuity 

in workspace and complex interplay between soft members (due to contact) remains to be 

explored. Model free learning approaches requires large data sets for training but exhibit better 

optimal asymptotic performance [56]. Reinforcement learning (RL), and specifically the model-

free Q-learning approach has been explored previously [57], [58] for static position control and 
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the studies were limited to planar manipulation tasks with discretized actions available to the 

system. Prior work [59] has also been done on  adopted model-free Q learning method towards 

modeling multiple objectives using a multi-agent framework. A continuous alternative for model-

free reinforcement learning based controls has been proposed using deep deterministic policy 

gradients (DDPG) [60], which can potentially scale well for systems with larger state-action 

spaces. To the authors' best knowledge this method has not been implemented in soft continuum 

manipulators due the large data sets required to train the model. The requisite sample sizes are 

often large enough to render this approach impractical to be directly used on a prototype. While 

training on a simulated model is possible, effectively transferring the model to the prototype under 

realistic, load bearing conditions with disturbance has not been investigated. Figure 5 showcases 

the learning-based framework explored in this work. The soft robot is trained in a rough simulation 

and the learned control policy is then deployed in a prototype in conjunction with state feedback 

from a motion capture system and the efficacy of the approach is validated in term of path tracking 

accuracy in the presence of external tip loading. 

 

Figure 5: Learning-based framework for training in simulation and deploying in prototype 
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This thesis presents the incorporation of surrogate model into the analysis of soft mechanical 

systems to enable design ideation, analysis and control. In this regard the presented work is 

categorized as follows. Chapter 2 introduces the concept of surrogate/ reduced-order models and 

presents results form an in-depth analysis of two models and their applicability in the analysis of 

soft mechanical systems. Chapter 3 details the utility of the surrogate models for designing and 

analyzing systems of soft actuators arranged in architectures. This chapter also delves into the 

advantages of using architectures to leverage superior performance characteristics link stroke and 

force amplification. Chapter 4 explore the use of learning-based control in the context of soft robots 

and their robustness to environmental uncertainty. The learned control policy is validated in 

simulation and a prototype. Lastly, Chapter 5 enumerates the contributions made in this work and 

highlights a future path along which certain aspects of the work maybe extended.     
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CHAPTER 2: SURROGATE MODELS FOR SOFT ACTUATORS 

The innate complexity of traditional continuum-based models makes the analysis of complex soft 

mechanical system with several soft elements intractable. Towards addressing this topic, this 

chapter presents an in-depth investigation into two reduced order models that have low fidelity, 

reduced computation time and easily scalable for systems of interconnected FREEs. This first 

model termed as the Pseudo-Rigid Body (PRB) Model was developed for analyzing compliant 

mechanisms and currently extended to analysis of FREEs and the second model termed as the 

Homogenized Strain Induced Model (HSIM) is a newly introduced model incorporating principles 

of nonlinear spatial beam deformation in conjunction with temperature gradients to accurately 

capture stroke-force properties of FREEs. 

2.1 The Pseudo-Rigid Body (PRB) Model 

The PRB model of length L selected in this investigation comprises of two linear and torsional 

springs connected to a rigid segment (Figure 6). The PRB model is described by four parameters: 

torsional spring stiffness (Kth), (2) linear spring stiffness (Kex), (3) length of rigid segment as a 

fraction of undeformed FREE length (g) and (4) actuation force acting on the linear springs (fa). 

The torsional springs behave like revolute joints and capture stiffness associated with the ending 

behavior of the FREEs. The linear springs are assumed to have an undeformed length of lo and 

models the stiffness associated with axial length changes. The actuation of FREEs result from the 

internal pressurization leading to contraction in length. This is modeled as an actuation force acting 

on the linear spring stiffness. A similar model was presented in [32] with differences primarily in 

the placement of the linear and torsional springs. Experimentally this model is proved to be more 

accurate in capturing the curvilinear deformation profiles of the FREE. 
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Figure 6: Serial link PRB Model with two torsional springs (revolute joints) and linear springs 

(prismatic joints) 

We are interested in the tip position of the FREE as a function of internal actuation loads and 

transverse bending loads. The tip position is determined using forward kinematic equations (Eq. 

(1)) of the PRB model, and is a function of the joint angles, linear spring displacement and 

actuation force. 

𝑥𝑡𝑖𝑝 = (𝑙𝑜 + 𝛿𝑙) + 𝛾𝐿𝑐𝑜𝑠(𝜃1) + (𝑙𝑜 + 𝛿𝑙)𝑐𝑜𝑠(𝜃1 + 𝜃2)

𝑦𝑡𝑖𝑝 = 𝛾𝐿𝑠𝑖𝑛(𝜃1) + (𝑙𝑜 + 𝛿𝑙)𝑠𝑖𝑛(𝜃1 + 𝜃2)

𝜃 = 𝜃1 + 𝜃2

     (1) 

θ1 and θ2 are the angular deflections at the joints and dl is the linear spring deflections. The joint 

deflections are calculated using energy equivalence (Eq. (2)). 

𝜏=JT
F            (2) 

where the joint torques, t = (Kthθ1;Kthθ2;2Kexδl+2fa) is related to the tip loads, Ftip = (Fx, Fy, Mz) 

by the Jacobian of the PRB model, J. The Jacobian can be obtained by differentiating the terms of 

Eq. (1) [61]. To fit this PRB model for the FREE, we need to understand its axial and transverse 
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bending behavior. These can be obtained either experimentally or using Finite Element Analysis 

(FEA) [19]. While obtaining experimental data for different FREE sizes and shapes is tedious, we 

rely on fitting the PRB model on the FEA data. Towards this, we establish the accuracy of the FEA 

results by comparing it with experiments conducted on select FREEs. Details of the experimental 

testing method are explained in APPENDIX. 

2.1.1 Fitting the PRB Model 

In this section, we detail the steps used to validate the PRB models by comparing them with FE 

simulations. The PRB model parameters will be fit such that the difference between the tip 

deflection of the FREE evaluated from modeling and FE simulation is minimized. In our 

implementation, we use a multi-start gradient-based interior point search optimization routine 

(implemented in MATLAB R2016a) to optimally fit the PRB model parameters. An L2-norm 

based error function is minimized subjected to constraints that ensure the physical realizability of 

the PRB model. The fitting algorithm is run for a total of 27 times for every applied pressure, fiber 

angle and slenderness ratio.  

𝑚𝑖𝑛  𝑓(𝛾, 𝐾𝑡ℎ, 𝐾𝑒𝑥) = 𝐸𝑟𝑟
𝑠𝑡.  0.1 ≤ 𝛾 ≤ 0.85
0 ≤ 𝐾𝑡ℎ ≤ 10
0 ≤ 𝐾𝑒𝑥 ≤ 10

         (3) 

Where 

𝐸𝑟𝑟 = √
∑𝑁𝑖=0 (𝑥𝑡𝑖𝑝𝑖

−𝑥𝑡𝑖𝑝𝑖
𝑠𝑖𝑚)2+(𝑦𝑡𝑖𝑝𝑖

−𝑦𝑡𝑖𝑝𝑖
𝑠𝑖𝑚)2

𝑁
       (4) 

𝑥𝑡𝑖𝑝𝑖 and 𝑦𝑡𝑖𝑝𝑖 are the 𝑥 and 𝑦 coordinates of the tip position for 𝑖𝑡ℎ load and 𝑁 is the number of 

loads applied. The goodness of fit as a measure of the error function is tabulated in Table 1. When 

loaded the FREEs experience a maximum deflection in the range of 0 − 45  𝑚𝑚 along the 𝑥-axis 
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and 0 − 95  𝑚𝑚 along the 𝑦-axis. The residuals indicate that the PRB models perform well in 

capturing the axial and bending behaviors of FREEs over varying FREE parameters. 

Table 1: PRB Model Fit Residuals (mm) 

𝝀 𝑷𝒂  (𝒑𝒔𝒊) 𝜶 = 𝟐𝟓𝒐 𝜶 = 𝟑𝟎𝒐 𝜶 = 𝟒𝟎𝒐 

6 20 0.33 0.88 0.39 

17.5 0.30 0.87 0.73 

15.0 0.27 0.23 0.38 

8.5 20 1.05 0.58 1.38 

17.5 0.25 0.74 1.46 

15.0 0.43 1.12 1.57 

10 20 0.95 0.27 1.56 

17.5 0.66 0.49 0.97 

15.0 0.21 0.57 1.87 

 

2.1.2 Effect of Elastic Properties on Model Parameters 

The purpose of using the PRB model approach is to capture the deformation behavior (both axial 

and transverse) of FREEs using a lower order simpler model within acceptable error bounds. Since 

a FREE is an inflatable, its elastic properties are a function of the (i) actuation pressure, (ii) fiber 

angle 𝛼, and (iii) length to diameter ratio 𝜆. 

1. Dependence on actuation pressure: The spring constants 𝐾𝑒𝑥 and 𝐾𝑡ℎ is in general expected 

to increase with actuation pressure 𝑃𝑎. Figure 7 captures the increase in the stiffness values 

as a function of pressure in the range of testing pressures (15 − 20 𝑝𝑠𝑖). Furthermore, the 

kinematic parameter 𝛾 decides the fraction of the FREE length that deforms as a rigid 
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body. With actuation, the center of compliance of FREEs are pushed towards the ends due 

to the necking of the cross sections. The necking effect results due to constraining the ends 

from radial expansion resulting in a curvilinear deformation profile [3], [62]. The 

dependence of 𝛾 on actuation pressure is plotted in Figure 7, and is shown to be relatively 

invariant with applied pressure. 

2. Dependence on fiber angle: The variation of the axial stiffness Kex as a function of the 

fiber angle is well documented in previous research [63]. In general, smaller fiber angles 

have larger axial and bending stiffness because of the resistance it poses against increase 

or decrease in FREE length due to contraction. This increase in stiffness is observed in 

Figure 7, but is more amplified in the axial stiffness Kex. Furthermore, the kinematic 

parameter γ depends on the increase in radius of the FREE. It is well known that FREEs 

with smaller fiber angles lead to a larger radial bulge upon pressurization as shown in 

Figure 8, thus leading to an increase in γ. Figure 7 clearly demonstrates the increase of γ 

as fiber angle decrease. A noticeable anomaly is observed for slenderness ratio λ=6 where 

α = 30∘ has a lower value of γ than α = 40∘. This could be attributed to dominant shearing 

effects present during bending that is common for short thick beams. 

3. Dependence on length to diameter ratio: FREEs considered in this paper are slender 

cylinders that behave like elastic beams upon pressurization. Like beams, FREEs undergo 

bending under the action of transverse loads or bending moments. The bending stiffness 

of beams under the Euler-Bernoulli assumption decreases nonlinearly with increase in λ. 

We expect similar dependence of FREE stiffness on slenderness ratio. In Figure 7, it is 

seen that the values of the stiffness is smaller for larger slenderness ratio, keeping fiber 

angle is important to note that preliminary studies indicate that unlike 𝐾𝑡ℎ and 𝐾𝑒𝑥 the 



17 

 

effect of 𝛾 (within a certain range) on overall accuracy is minimal. and pressure the same. 

The kinematic parameter γ remains relatively constant with changing λ with the exception 

being very short beams with dominant shearing effects. It is important to note that preliminary 

studies indicate that unlike 𝐾𝑡ℎ and 𝐾𝑒𝑥 the effect of 𝛾 (within a certain range) son overall accuracy 

is minimal.  

 

 

Figure 7: Variation in 𝐾𝑡ℎ, 𝐾𝑒𝑥 and γ with FREE parameters. Dotted lines represent linear trends. 

 

  

 

Figure 8: Radial bulge for FREEs with different fiber angles demonstrating the necking effect. 

Blue: Unpressurized and Red: Pressurized FREE profile 
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2.1.3 Parametric Model Fitting 

Linear and quadratic regression models are proposed to capture the dependencies of the PRB 

parameters on actuation pressure, fiber angle and slenderness ratio as shown below in Eq. (5). 

Here, we assume that the number of fibers, external diameter, and wall thickness of the FREEs are 

assumed to be constant.  

  

𝛾 = 𝑎0 + 𝑎1𝜆 + 𝑎2𝛼 + 𝑎3𝑃𝑎 + 𝑎4𝜆
2 + 𝑎5𝛼

2 + 𝑎6𝑃𝑎
2

𝐾𝑡ℎ = 𝑏0 + 𝑏1𝜆 + 𝑏2𝛼 + 𝑏3𝑃𝑎 + 𝑏4𝜆
2 + 𝑏5𝛼

2 + 𝑏6𝑃𝑎
2

𝐾𝑒𝑥 = 𝑐0 + 𝑐1𝜆 + 𝑐2𝛼 + 𝑐3𝑃𝑎 + 𝑐4𝜆
2 + 𝑐5𝛼

2 + 𝑐6𝑃𝑎
2

     (5) 

The linear model will use the first three coefficients while the nonlinear model will use all six 

coefficients. The best fit model is selected for the PRB model parameters based on the Akaike’s 

Information Criterion (AIC). AIC provides a measure of model quality with the most accurate 

model having the smallest AIC value. The AIC values for first and second order models for the 

three parameters are tabulated in Table 2. 

The AIC value for 𝐾𝑡ℎ is smaller for a linear model indicating a better fit that accurately captures 

the parametric behavior. However, the AIC values for 𝛾 and 𝐾𝑒𝑥 was observed to be smaller for a 

quadratic model indicating a more non-linear trend that requires second order terms to capture the 

parametric behavior.The parameters obtained from Eq. (3) are used to fit the nonlinear models 

defined in Eq. (5). The coefficient obtained from this fit are tabulated in Table 3. The goodness of 

fit can be determined by plotting the standardized residual plot of the data. As a rule of thumb, a 

good model present a symmetric distribution of standardized residuals centered on zero and is 

bounded to within ±2 as seen in Figure 9. 
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Table 2: AIC-based model selection 

AIC Model Order=1 Model Order=2 

𝛾 -88.24 -93.43 

𝐾𝑡ℎ -4.16 -1.33 

𝐾𝑒𝑥 17.81 9.22 

 

Table 3: Parametric Model Coefficients 

 𝒊 = 𝟎 𝒊 = 𝟏 𝒊 = 𝟐 𝒊 = 𝟑 𝒊 = 𝟒 𝒊 = 𝟓 𝒊 = 𝟔 

𝜸  (𝒂𝒊) 1.5937 0.10667 -0.075852 -0.022 -0.0044444 0.0010519 0.00062222 

𝑲𝒕𝒉  (𝒃𝒊) 5.4016 -0.072562 -0.12284 0.079778 − − − 

𝑲𝒆𝒙  (𝒄𝒊) 20.854 -0.82746 -0.70704 -0.061333 0.031074 0.0083259 0.0032 

 

 

Figure 9: Standardized residuals for model fits 
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To demonstrate the efficacy of the model we need to assess its capability to generalize to FREEs 

defined within or outside the manifold from which the data was collected. We consider two 

configurations and mean tip position errors between the PRB model and FEM simulations for this 

study. The results are tabulated in Table 4.  

Table 4: Generalization error 

Time PRB Model Parameters Tip Position Error (𝒎𝒎) 

𝜆 = 8.5,𝛼 = 35𝑜,𝑃 = 15 psi 𝛾 = 0.65, 𝐾𝑡ℎ = 1.68, 𝐾𝑒𝑥 = 2.64 1.46 

𝜆 = 8.5, 𝛼 = 45𝑜, 𝑃 = 22.5 psi 𝛾 = 0.61, 𝐾𝑡ℎ = 1.05, 𝐾𝑒𝑥 = 2.70 3.40 

 

It can be observed that the model error for an interpolated FREE is less than that of an extrapolated 

FREE. This indicates that by collecting data points uniformly or using techniques like Latin 

hypercube sampling (LHS) one can approximate the deformation characteristics of FREEs within 

that manifold with great degree of accuracy thereby circumventing the need for expensive 

simulations. This can become useful while creating conceptual designs having soft elements like 

FREEs. 

2.2 The Homogenized Strain Induced Model (HSIM) 

As explained before, Fiber Reinforced Elastomeric Enclosure Pneumatic Artificial Muscles or 

FREEPAMs are soft pneumatic actuators consisting of an inner bladder made from a hyper-elastic 

material and an outer layer of inextensible fibers constraining radial deformation. Both ends of 

FREEPAMs are capped to allow internal pressurization, which can cause contraction, elongation, 

bending, rotating or twisting depending on the angles of the inextensible fibers [62], [64], [65]. In 

this investigation, we are concerned with characterizing a contracting FREEPAM actuator, also 

referred to as the FREEPAM. When pressurized, the FREEPAM contracts, and simultaneously 
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undergoes radial expansion. This radial bulge tapers towards the ends as the FREEPAMs ends are 

fixed.   

 

Figure 10: HSIM model morphology. (a) FEA rendering of deformed FREEPAM constrained at 

both ends. Pressurized FREEPAMs have two sections. The conical tip sections with non-zero taper 

and a middle cylindrical section with zero taper. (b) Configuration of HSIM analog to actuated 

FREEPAMs with a homogenized Young's modulus (E) and geometrical parameters R1, R2, t and 

contraction coefficient α. 

To capture this deformed shape, the FREEPAM is modeled as a three-section Euler Bernoulli 

beam as shown in Figure 10, which include Section 1: Conical with a positive taper (l1), Section 

2: Cylindrical with no taper (l2-l1) and Section 3: Conical with negative taper(L-l2). From Elastica 

theory, the bending of beams subjected to a concentrated tip load can be expressed as follows: 

𝑦″

[1+(𝑦′)2]
3
2

= −
𝑀𝑥

𝐸𝑜𝐼𝑜𝑓(𝑥)𝑔(𝑥)
         (6) 

where Mx is the moment induced at intermediate sections, Eo, Io are the Young's modulus and area 

moment of inertia at the tip and g(x), f(x) are the variations of E, I along the length of the beam. 

For a FREEPAM having constant Young's Modulus E, g(x)=1 and f(x) is derived as follows. For 

tapered sections, the variation in FREEPAM diameter is expressed as  
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𝑑(𝑙) = 𝑑𝑜[1 + 휁𝑙𝑜], 휁 =

{
 
 

 
 
𝑛−1

𝑙1
, 0 ≤ 𝑥 < 𝑙1

𝑛−1

𝑙0
, 𝑙1 ≤ 𝑥 < 𝑙2

1−𝑛

𝑙3
, 𝑙2 ≤ 𝑥 < 𝐿

       (7) 

𝑙𝑜 = ∫ √(1 + 𝑦′(𝑥)2)𝑑𝑥
𝑥

0
         (8) 

where lo is the arc length of the section at a horizontal distance, x, from the tip, L is the total length 

of the beam, do is the tip diameter and n is the taper.  Consequently, area moment of the FREEPAM 

approximation as a function of beam length can be defined by:  

𝐼(𝑙) = 𝐼0𝑓(𝑥) = 𝐼0[1 + 휁𝑙0]
4         (9) 

Substituting Equation 9 in Equation 6, we obtain an exact nonlinear differentiable equation. The 

solution to Equation 8 becomes complex and requires good initial estimates of parameters to solve 

using iterative techniques. By approximating the tapered conical sections with cylindrical sections, 

Eq. (9) simplifies to Eq. (10). 

𝑓(𝑥) = {

𝑑𝑒𝑓𝑓, 0 ≤ 𝑥 < 𝑙1
𝑛𝑑𝑒𝑓𝑓, 𝑙1 ≤ 𝑥 < 𝑙2
𝑑𝑒𝑓𝑓, 𝑙2 ≤ 𝑥 < 𝐿

         (10) 

Thus, the nonlinear differential equation from Eq. (6) is simplified using a step variation in its 

cross section and can be solved iteratively using a nonlinear solver. The quality of solutions using 

this approximation depends on the quality of the estimates of the effective diameters of the three 

sections. 

2.2.1 Model Parameters 

The “Homogenized Strain Induced Model” (HSIM) has the following features: 
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• HSIM is used to approximate the kinetostatic stroke-force deformation characteristics of 

contracting FREEPAMs within some reasonable aspect ratio (length/diameter) bounds. 

• HSIM is a data driven model, whose parameters are characterized from high fidelity finite 

element analysis models sampled at specified operating points.  

• HSIM presents a homogenized version of a FREEPAM in terms of material properties and 

geometric characteristics.  

• HSIM emulates internal strain generated during actuation using thermal equivalents. 

Drawing parallels from actual deformed FREEPAM morphology, the HSIM has three sections, 

each capturing deformation effects unique to a region along the length of the FREEPAM. HSIM 

is characterized by the following tunable parameters: 

• Geometry (t, R1, R2): Each section is assumed to be an annulus with a constant thickness t 

which is set to the thickness of the elastomer body of the FREEPAM. R1, R2 are the external 

radii of the two sections (first and third sections are assumed the same). R1 represents an 

effective radius for capturing the effects of the conical end sections and R2 is the effective 

radius of the cylindrical section described in section 2.1. Following the convention used in 

[66] and other related work, in our implementation the conical sections are assumed to have 

a length equal to the un-deformed diameter of the FREEPAM. A more involved surrogate 

model could have the section lengths included as tunable parameters.  

• Effective Young's Modulus (E): The homogenized surrogate model is assumed to be made 

of a surrogate material having Young's Modulus, E. The surrogate material effectively 

captures the combined material effects of the hyper-elastic elastomer and inextensible 

fibers embedded within the elastomer. Different Young's Modulus values could be used 

for the conical and cylindrical sections to more accurately model nonlinear effects 



24 

 

associated with conical ends where localized shearing occurs during FREEPAM 

deformation.  

• Thermal Contraction Coefficient, α: The surrogate material is assumed to have a tunable 

thermal contraction coefficient, α, that serves to induce strain that mimics the contraction 

of pressurized FREEPAMs. The conical sections have α = 0 and the cylindrical section has 

α < 0. When exposed to a temperature gradient (which is equal in magnitude to the applied 

internal pressure) the surrogate material contracts and generates a reaction force akin to 

blocked forces generated by FREEPAMs. Furthermore, having a single tunable parameter 

α simplifies the application of strain during global deformation analysis of networks of 

FREEPAMs and compliant constraints. 

2.2.2 Data Collection 

As described in Section 2.1, a high fidelity FEA (ABAQUS) simulation is used as the baseline for 

data collection. However, this could be substituted with experimental data from prototypes as an 

alternate. Each FREEPAM is initially pressurized and subjected to axial and bending tests by 

applying relevant tip loads and recording corresponding tip deflections. A python script in 

ABAQUS is used to extract and store relevant data. Collection of data is automated and can be 

performed for multiple actuation pressures within the same simulation. Data is collected for an 

actuation pressure ranging from 0.0689 MPa to 0.1724 Mpa (10-25 psi) in intervals of 0.0244 Mpa 

(5.0 psi). The lower limit of the interval corresponds to the minimum pressure at which this 

FREEPAM stops kinking when subjected to tip loads and the upper limit corresponds to the 

maximum actuation pressure at which the FREEPAM stops producing axial stroke. The 

temperature gradient analog (ΔT) for the operating range is thus set to 10-25 deg. 
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2.2.3 Optimization Framework 

Within a network, interconnected FREEPAMs are subjected to two forms of loading: (1) Internal 

pressurization that leads to radial expansion, axial contraction and generation of force at the tip 

and (2) External tip loads that induced axial and transverse deflections. The tunable parameters of 

the HSIM work in tandem to capture the deformation modes associated with these two forms of 

loads. We adopt an optimization-based framework to obtain the best estimates of the HSIM 

parameters. The optimization framework (Figure 11) is detailed as follows: 

• Optimization 1: The stroke generated by FREEPAMs are captured by α in the HSIM. 

Consequently, for a given input actuation pressure, α can be determined using a line search 

optimization. From elastica theory linear thermal expansion/contraction is defined as Δl = 

αΔT (l2-l1), where Δl is the stroke generated and ΔT is the temperature gradient applied to 

a HSIM of length L. The temperature gradient is equal to the actuation pressure. Α obtained 

from the above expression serves as a good initial guess for line search.  

• Optimization 2: Axial and bending stiffness of FREEPAMs are a function of geometry and 

effective E of the material. Data from the axial and bending tests are used to optimize R1, 

R2 and E of the HSIM and a RMSE objective function (Eq. (11)) is adopted.  

𝐸𝑟𝑟 = √
∑ (𝑥𝑡𝑖𝑝𝑖−𝑥𝑡𝑖𝑝𝑖

𝐹𝐸𝐴)2+(𝑦𝑡𝑖𝑝𝑖−𝑦𝑡𝑖𝑝𝑖
𝐹𝐸𝐴)2+(𝜃𝑡𝑖𝑝𝑖−𝜃𝑡𝑖𝑝𝑖

𝐹𝐸𝐴)2𝑁
𝑖=1

𝑁
    (11) 

Where 𝑥𝑡𝑖𝑝𝑖 , 𝑦𝑡𝑖𝑝𝑖 , 𝜃𝑡𝑖𝑝𝑖 are the x, y coordinates and slope of the tip for ith tip load and N is the 

number of data points. A Nelder-Mead simplex method is used to obtain the local optimum. The 

base geometry of the FREEPAM is used to initialize R1, R2 for optimization while E is initialized 

as 1 Mpa obtained from preliminary studies. To reduce sensitivity to initial guess, each of the three 
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components of the objective function are scaled suitably. The optimization framework outputs the 

HSIM parameters as a function of temperature gradient (or pressure). 

 

Figure 11: Estimation of HSIM parameters using an optimization framework. Estimated 

parameters correspond to local minima of optimization objective function. Consequently, there 

exists a one-to-many mapping between a FREEPAM and its HSIM. 

2.2.4 Parametric Variation and Error Analysis 

In this section we detail the efficacy of the HSIM in capturing the deformation characteristics of 

FREEPAMs. The results from the analysis is shown in Figure 12. Figure 12(a) describes the 

variation in the HSIM parameters with ΔT. The stiffness and stroke generated by FREEs increase 

with increase actuation pressure. Consequently, we observe an increase in E. α is observed to 

decrease as the generated axial stroke saturates with increase in ΔT. Lastly, the increase in R1, R2 

is in accordance with the radial bulging of FREEPAMs at higher pressures. Figure 12 (b-d) details 

the error obtained from the HSIM for axial, bending deflections and tip slope. The HSIM reports 

errors of 0.8±0.18 mm for a maximum average axial stroke of 17.9 mm (4.4 %), 1.8±0.65 mm for 

a maximum average bending deflection of 73.6 mm (2.4 %) and 1.9±0.6 deg for a maximum 
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average slope of 55.3 deg (3.3 %) for a FREEPAM of aspect ratio 10. Figure 12 (b-d) also details 

the errors reported by FREEPAMs of different aspect ratios (6-14) using HSIM parameters tuned 

for a FREEPAM of aspect ratio of 10. It can be observed that the errors remain in the same order 

of magnitude and bounded for most configurations. For extreme configurations (14 ≤ aspect ratio 

and ΔT ≤ 15) the error increases. In such cases, the tip loads induce greater moments on less stiff 

FREEPAMs thereby leading to localized kinking (configurations shown in black are 

configurations where FEA fails to converge). Therefore, the HSIM demonstrates length 

independence for cases where FREEPAMs do not undergo kinking when subjected to external 

loads. 

 

 

Figure 12: HSIM performance analysis (a) Variation of HSIM parameters. As the temperature 

gradient increases, the HSIM expands radially while keeping the thickness relatively unchanged. 

The stiffness of the HSIM also increases with temperature gradient while α decreases. Note: α 

reported has been scaled by 1e3. (b-d) Absolute error reported between FEA and HSIM for axial, 

bending deflections and tip slope for FREEPAMs with varying aspect ratios. Error is reported in 

mm and degrees. 
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CHAPTER 3: DESIGN AND ANALYSIS OF SOFT COMPLIANT SYSTEMS 

This chapter details the utility of reduced-order models in analyzing systems of FREEs. The 

reduced-order models are analyzed in two paradigms: (1) As an ideation tool to explore conceptual 

soft architectures with superior global stroke-force properties and (2) As a synthesis tool to 

generate specific designs to meet prescribed requirements. Both paradigms are validated using 

simulations and using experimental prototypes. The analysis of mechanisms also serves as a 

quantitative comparison between the two reduced-order models studied in Chapter 2. From Figure 

3 it can be observed that the PRBM has better accuracy and lower computation time making it the 

ideal candidate for analyzing planar mechanisms. However, its generalization for spatial 

mechanism analysis is non-trivial and encoding complex non-intuitive arrangements of FREEs can 

quickly become intractable. In this regard the HSIM proves useful. HSIM in conjunction with 

commercially available FEA solvers can be quickly used to encode complex spatial geometries 

and has a computation time orders of magnitude less than conventional FEA. 

3.1 Investigation into Pennate Inspired Architectural Building Block 

Pennation (derived from Latin “penna” meaning feather) refers to the arrangement of structural 

members resembling the veins and rachis of a bird feather. The presence of pennate structures is 

prolific in nature ranging from internal structure of algae to feathers of birds to arrangement of 

fibers and tendons in skeletal muscles of animals. The advantage of this arrangement is that more 

fibers can be bundled together in a compact volume enabling higher force generating capabilities 

[67]. The angle at which the fibers are inclined is termed as the ``pennate angle". The implications 

of the pennate angle are significant for describing the force-stroke generating capabilities of a 

pennate structure. Towards capturing relevant trends, a pennate dyadic building block is analyzed 

as follows. 
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A pennate building block (PBB) in its simplest form consists of two force generating elements 

coupled at one end and anchored to a fixed ground at the other ends (Figure 13a). FREEs act as 

force generating members that mimic the effects of muscle fibers. These are similar in operating 

principle to McKibben muscles or pneumatic artificial muscles. The PBB enables transverse stroke 

generation due to constraints imposed on the FREEs during pneumatic actuation. The ratio of the 

transverse strain of the PBB to the axial strain of constituents FREEs is termed as the 

“Architectural-Gear-Ratio" (AGR). The functional dependency of the AGR with the pennation 

angle θ) was documented by the authors in [32]. The AGR was found to initially increase and then 

decrease with increase in the pennation angle θ. The maximum values of AGR was also found to 

be dependent on the type of joints between different elements. A configuration with pin joints was 

found to have a larger AGR compared to one with fixed joints. Intuitively, this arises because of 

variation in stiffness of the two types of joints. The type of joints being used would depend on the 

application and ease of manufacturability. Lastly, the AGR also affects the force generating 

capability of a PBB. Lower pennation angles enable larger force generation as compared to larger 

pennation angles. For a PBB with pin joints and pennation angle θ the net transverse force is given 

by the following equations 

𝑓𝑎 = 𝜋𝑃{
𝐷𝑜
2

4
(3𝑐𝑜𝑠2𝜙 − 1) + [𝐷𝑜𝑡(2𝑠𝑖𝑛𝜙 −

1

𝑠𝑖𝑛𝜙
) − 𝑡2]}     (12) 

𝐹𝑛𝑒𝑡 = 2𝑓𝑎𝑐𝑜𝑠𝜃          (13) 

where fa is the actuation force developed by a FREE for a given input pressure P, 𝜙 is the 

symmetric fiber angle, Do is the outer diameter of the FREE, and t is the thickness of the FREE. 

By leveraging θ effectively we can tailor the force-deformation behavior of a PBB from a 

displacement amplification mechanism to one that favors force generation. 
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Figure 13: (a) Soft equivalent of a bipennate structure having a pennation angle θ. FREEs 

characterized by fiber angles (φ1, φ2) are used to generate contraction forces. When pressurized, 

transverse stroke is achieved through FREE contraction and subsequent bending, (b) Analysis of 

the variable architectural gear ratios (AGR) displayed by the dyadic structure for different θ [32]. 

The effectiveness of the PBB is highlighted when it is combined in different orientations to build 

architectures. Global properties of architectures are heavily influenced by the properties and 

relative alignment of the unit cells. In this section we analyze the effects of orientation and 

constraints on the global force-deformation characteristics of architectures.  

Figure 14 (a, b) shows two possible arrangements of the PBB termed as conventional and inverted 

pennation. The conventional pennate structure comprises of two stages that are aligned 

symmetrically with each end node connected to the corresponding node of the previous layer.  The 

resultant net force enacted by the system is a linear combination of the force generated by each 

stage. However, the net AGR remains equal to the AGR of each stage. The inverted pennate 

structure has two stages with the second stage being a mirror of the first stage. The two stages are 

constrained at two ends with one end left floating. The resulting displacement can be determined 

by free-body mechanics (Figure 14b). 
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Figure 14: (a) Conventional pennation that enforces a constant AGR with amplification of net 

force as a function of number of layers, (b) Inverted pennation that causes an amplification of net 

displacement as a function of number of layers while keeping net force and (c-e) Variations of 

possible architectures obtained by combining the two forms of the PBB. 

Each FREE is approximated as a linear spring subjected to an actuation for fa and with a linear 

stiffness k. This assumption remains valid from results reported in [32]. We assume no bending to 

occur as the joints are pinned. Applying force balance along the direction of stroke at points 1 and 

2, we obtain the following equations: 

𝑓𝑎𝑠𝑖𝑛𝛼2 − 𝑘(𝑥2 − 𝑥1)𝑠𝑖𝑛𝛼2 − 𝑓𝑎𝑠𝑖𝑛𝛼1 + 𝑘𝑥1𝑠𝑖𝑛𝛼1  = 0     (14) 

−𝑓𝑎 + 𝑘(𝑥2 − 𝑥1) = 0         (15) 

For α1= α2, we obtain x2 = 2x1. Therefore, the net AGR is a function of the number of layers in the 

network while the net force equals the force exerted by each stage. For a network with n rows and 
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m columns (Figure 14 (c-e)), the global characteristics are tabulated in Table 5. Note: For the same 

design space the effective number of rows for a hybrid network n’ is less than that for the inverted 

pennate network. The performance of architectures also depends on the positioning of constraints. 

A planar architecture with no constraints would force each PBB to contract along both x and y axes 

uniformly. This would cause the network to shrink. To obtain ARG > 1, the anchor points in the 

PBB are constrained to prevent deflections along x axis which forces the network to deform by a 

greater magnitude along y axis. For symmetrical networks this corresponds to rigidly fixing the 

left and right edges of the network. For asymmetric networks care needs to be taken to ensure 

proper constraining to get effective displacements on the global scale. To highlight the importance 

of orientation and constraints two prototypes are presented and experimentally validated in the 

following sections. 

Table 5: AGR and Fnet for different networks 

Configuration AGRnet Fnet 

Conventional 1 nm 

Inverted n m 

Hybrid n’ 2m 

 

3.2 Case Studies 

This section details the effectiveness of surrogate models in capturing the quasi-static behavior of 

applications that incorporate FREPAMs as part of their structural makeup and drive mechanism. 

The first case study presents the design and analysis of a compliant gripper actuated by a dyad 

configuration of FREEs. Analysis of the dyad structure is presented in [32]  and the salient features 

of such an arrangement are as follows. As shown in Figure 15 it is observed that the stroke generated 
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increases with the pennation angle up to a threshold value (of x ≈ 22o) and then decreases. 

Concurrently, the actuation force generated at B increases nonlinearly with pennate angle and 

reaches a maximum value at x = 90 o. The studies concluded that the dyad topology of FREEs can 

be used effectively as building blocks for soft robots, as it can modulate between high stroke-low 

force and low stroke-large force scenarios by varying the pennate angle.  The gripper body 

comprises of two slender 3D printed ABS beams, and a driving mechanism is composed of dyad 

FREEs inclined at a desired pennate angle (q). Analysis of the entire gripper involves modeling 

both the FREEs and the ABS beams using the PRB parameters. The PRB model for the beam uses 

two torsional springs, but with a rigid member instead of a linear spring implying large axial 

stiffness, and no actuation force implying passive deformation.  The kinematic analysis involves 

using a symmetric half of the gripper is considered, which is further bifurcated into two loops 1 

and 2 as shown in Figure 13 leading to end points A and B. The bifurcation is required because 

the FREE and the ABS gripper constitute a parallel mechanism, which are analyzed independently. 

We formulate the kinematic loop closure equations [68] to obtain the co-ordinates of points A and 

B as a function of internal deflection parameters. The coordinates can then be expressed as a 

nonlinear function of the PRB angles using forward kinematics. 

𝑥 = 𝑓(𝑞)           (16) 

𝛿𝑥 = 𝐽𝛿(𝑞)           (17) 

where x = (xA;yA;xB;yB), q = (q1;q2;dl;q3;q4;q5;q6) and J is the jacobian matrix. The first three 

parameters characterized the deformation of the FREE, while the last four characterize the 

deformation of the beam.  

Virtual Work Formulation: The virtual work equation is written for both loops separately with the 

external forces acting in loop 1 are FxA to constraint point A along y-direction, and reaction Fy 
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exerted by the ABS members to resist downward deformation. Similarly, the external forces acting 

in loop 2 are FxB exerted to constraint point B along y-direction, and a downward force Fy felt by 

the ABS members that seek to pull point B downward. We note that the force Fy is an internal 

force and thus acts in the opposite direction for both loops. 

 

 

Figure 15: (a) Prototype, (b) PRB model of two-stage pennate arrangement showing the deformed 

configuration when FREEs are pressurized, and Study of variation in (c) transverse stroke and (d) force 

generated with pennate angle for fixed actuation pressure 

Numerical Solution: The virtual work equations are numerically solved along with the following 

kinematic constraints that equate the displacements of points A and B. 
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𝑥𝐴 − 𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0 

𝑥𝐵 − 𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0 

𝑦𝐴 − 𝑦𝐵 = 0            (18) 

 

 

 

Figure 16: (a) Compliant Gripper prototype, (b) PRB model for the gripper. Variation of (c) stroke and (d) 

force of compliant gripper with pennation angle. 

Results from this analysis is shown in Figure 16. We first determine the optimum pennate angle 

that leads to maximum stroke. We observe that the stroke is maximum at around x = 30o. To 

validate the analysis, a prototype was constructed with x = 30o. Each half of the gripper is 

comprised of two beams made from ABS plus plastic (E=2200 MPa). Bending characteristics of 

the beams are captured using the same PRB model approximation from FEA. Next, we compare 
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the deformed coordinates of the gripper tip from PRB model and experiment. Experimental results 

presented a maximum error of 1.85 mm and 1.08 mm along the x and y axis respectively.  

The second case study presents a soft rotary motor concept. The presence of rotary servomotors is 

almost ubiquitous in modern day industries. Lightweight motors with large load torque are 

particularly attractive for aerospace applications like deployment mechanisms used in solar arrays 

and antenna drives. In this section, we design a rotary motor to maximize its angular displacement 

by optimal placement of the FREEs. The proposed concept is shown in Figure 17. The design 

comprises of a central rotor assembly that is connected to four symmetrically distributed FREEs. 

The FREEs act as actuating members and when pressurized they bend and provide torque and 

angular displacement (θm) at the rotor. Furthermore, the angular displacement is a function of the 

pennation angle (α) at which the FREEs are connected to the rotor. Each FREE connected to the 

rotor has four joint variables q = (q1; q2; dl; q3) and two forces F = (Fx; Fy) working to keep the 

tip position of the floating link fixed. Four constraints are obtained from the virtual work 

formulation and the remaining two from Eq. 19. The rotor angle is calculated as: θm=90 – (θ1+ θ2+ 

θ3). 

𝑥𝑖𝑛𝑖𝑡 − 𝑥𝑓𝑖𝑛𝑎𝑙 = 0 

𝑦𝑖𝑛𝑖𝑡 − 𝑦𝑓𝑖𝑛𝑎𝑙 = 0           (19) 

Figure 18 illustrates the effect of pennation angle on the angular displacement. It is observed that 

the angular displacement increases with increase in pennation angle and then decreases beyond a 

threshold. The maximum value of θm is 48o for 휁 = 27o at Pa = 20 psi. Figure 18 also shows a 

comparison between results obtained from analysis and experiments for two pennation angles, 휁 

=0o, 30o. It can be observed that the error is greater at lower pressures (< 15psi). In addition to 

inaccuracies present in any prototype due to geometrical faults, this error can be attributed to the 

configuration being present outside the testing manifold from which data was collected. As 
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reported earlier, the error for such points is usually larger compared to interpolated points within 

the test manifold. However, at higher pressures these errors reduce as the operating configuration 

transitions to within the test manifold. 

 

Figure 17: Soft rotary motor concept: (a) Prototype of the rotary motor, and (b) analysis model 

of the rotary motor with one FREE. 

 

Figure 18: Performance characteristics of the soft rotary motor: (a) Variation of the maximum 

angular rotation with pennate angle and pressure, and (b) angular rotation as a function of 

applied pressure for two pennate angles. 
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Figure 19 details the prototypes created for the second validation study. Each prototype comprises 

of six FREEPAMs that have been joined at a specific pennate angle (θ=60o for prototype 1 and θ 

=45o for prototype 2). The FREEPAMs are made from latex with a fiber angle of 30o. The joints 

between member FREEPAMs are kept fixed and does not allow rotation. Without constraints the 

base FREEPAM structure would contract both longitudinally and radially when pressurized. 

Therefore, placement of constraints becomes important. The first prototype is designed to amplify 

linear stroke and to achieve this the radial deflection must be constrained. The constraints are 

enforced by compliant beams placed in the interior of the soft helix shell, which ensures no radial 

deformations. The second prototype is designed to enable radial compression, and this is achieved 

by fixing both ends of the helix shell to ensure no axial deformation occurs. 

 

Figure 19: CAD rendering of prototype pennate networks (left) and corresponding experimental 

setups (right). Both prototypes are made from latex and can be structures made by arranging unit 

cells (highlighted) in a cylindrical fashion. Prototype 1 has a pennation angle = 60 deg and 

represents a stroke amplification mechanism. Radial deformation is constrained using 3D printed 

constraints embedded within the network. Prototype 2 has a pennation angle = 45 deg and 

represents a compression sleeve. Longitudinal deformation is constrained using external supports. 
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Each prototype can be assumed to be made from smaller unit cell FREEPAMs highlighted in 

Figure 19. The parameters for the corresponding HSIM for a unit cell FREEPAM are shown in 

Figure 20(c). It can be observed that the parametric variation is markedly different from that of the 

silicone FREEPAMs. Increase in stiffness with temperature gradient is capture by R1 while the 

other parameters remain constant. The unit cell FREEPAMs are thinner than the silicone 

FREEPAMs which makes activation pressure (pressure that induces stiffness) lower. Any increase 

in stiffness with increase in pressure is captured by an increasing R1 as shown in  Figure 20c.  

Using this HSIM model the pennate inspired architectures were modeled in ABAQUS (Figure 

20d). Figure 20(e-h) details the results from the HSIM analysis and experiments. The axial 

displacement and blocked force of prototype 1 is presented in Figure 20(e). The prototype has an 

effective length of 110 mm and can generate a maximum blocked force of 29.33 N in tension and 

a maximum axial contraction of 30 mm (27.2 % contraction) when actuated at 30 psi (206.8 kPa). 

In comparison, a single contracting linear FREEPAM with an effective height of 115 mm tested 

in the same experiment only exhibits a maximum stroke of 10 mm at 30 psi (206.8 kPa), less than 

10 % of its total length. The amplification of the linear stroke utilizing the pennate structure 

improves the actuation performance of miniaturized FREEPAMs. Prior work in this context has 

indicated that the force-stroke performance of FREEPAMs degrade rapidly with miniaturization 

[69]. This makes miniaturized FREEPAMs unsuitable for practical applications if arranged 

empirically without special considerations. However, by arranging them in a deliberate manner as 

in the case with the pennate structures, miniaturized FREEPAMs can be deployed effectively. The 

HSIM model can capture the deformation and force characteristics of prototype 1 effectively and 

reports an error of 1.24±1.45 mm (≈ 4.1 % error) for axial stroke and 3.99±1.92 N (≈ 13.6 % error) 

for blocked force. Prototype 2 reports an error of 1.49±1.01 mm (≈14.6 % error) in radial 
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compressive stroke and 4.27±4.35 N (≈ 6.8 % error) in net compressive force. Errors can be 

attributed to material property estimation during initial data collection from a high fidelity FEA 

simulation, the variation in the fiber angles of the constituent FREEPAMs of the prototypes and 

friction in the pinned joints of the test rig. 

 

 

Figure 20: (a-b) Deformed configurations of prototype 1 (longitudinal) and prototype 2 (radial). 

(c) HSIM parametric variations with temperature gradient. Note: Results indicate a linear trend 

within the operating actuation input range for latex FREEPAMs. (d) Deformed configurations 

from FEA. (e-h) Comparison of stroke and force obtained from experiments and HSIM for both 

prototypes. 

3.3 Surrogate Models as applied to Design Ideation 

HSIM introduced in Section 2.2 can be used as a conceptual design tool for soft robots, where 

designers can sketch different FREE architectures and quickly evaluate potential solutions. 

Pneumatically actuated soft robots generate spatial motions due to constrained inflation of 

elastomeric chambers. The constraints are induced through strain limiting layers with higher 
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stiffness than the elastomers. Thus, we envisage soft mechanisms as a network architecture of 

FREEPAMs and strain limiting constraints. The strain limiting constraints are considered as 

compliant beams that can take axial and compressive loads. We believe this tool will form the 

basis of formulating guidelines to systematically design soft mechanisms as a combination of 

FREEPAMs and constraint members in the future. 

The first example shown in Figure 21 is a tip-tilt stage driven by six FREEPAMs of length 130 

mm.  

 

 

Figure 21: (a) HSIM analysis of soft tip-tilt platform concept. (b) Variation in stiffness of the 

platform and (c) Variation in maximum stroke and tilt angle as a function of inclination angle (β). 

Note: βc is the inclination angle corresponding to maximum axial 

The FREEPAMs are connected to the rigid stage by using fixed joints for this analysis. By 

differentially actuating the FREEPAMs, the rigid stage is capable of different modes of 

deformation, such as axial translation and bending and constitute a 3 degrees of freedom system.  

The FREEPAMs are limited to operate between 10.0-20.0 psi (0.069-0.014 MPa). The rigid stage 

translates axially when all the FREEPAMs are actuated to the same pressure and tilts when the 

actuation pressures differ. The platform is capable of a maximum axial stroke of ~ 44 mm and a 
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tilt angle of ~ 12 deg. The axial deformation trend is in agreement with results reported by the 

authors in [32]. The next parameter of importance for the stable operation of the stage is its 

stiffness, or its ability to resist external loads. Figure 21(b) shows that the stiffness of the stage 

depends on the inclination angle, β, where a decrease was reported for β ≤ βc and an increase 

thereafter. The indicates an indirect relation between stiffness and axial stroke generated by the 

FREEPAMS. In Figure 22, we present more examples of spatial soft mechanisms obtained using 

three dimensional combinations pennate building blocks. These designs were validated using the 

HSIM model in ABAQUS. 

• Soft Compliant Bending Member: Design 1 shown in Figure 21(a) represents a concept of 

a bending mechanism with possible applications in designing a gripping finger. HSIM is 

used to design the cross section of a finger such that on when actuated the finger bends and 

curls around the object like pneunets [70]. The gripper comprises of two sections that 

generate differential stiffness when the network is actuated. The compliant section consists 

of six PBBs arranged to generate large axial (downward) stroke. The stiffer section 

(highlighted) has compliant beams running along its length from the ground up and the 

three and a half PBBs in this section are oriented to generate no axial stroke. The interaction 

between the two sections induce a moment at the tip of the gripper which forces the overall 

network to bend. For a predefined actuation pressure, the curvature of bending remains a 

function of the number of PBBs in each section and the stiffness of the struts. The gripper 

has an effective length of 528 mm and the tip displaces 295 mm along the x-axis and 79 

mm along the y-axis and produces a total blocked gripping force of ~ 26 N. 

• Shape Morphing Wheel: Design 2 shown in Figure 21(b) represents a concept for a soft 

shape morphing wheel that could have potential applications in space exploration 
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specifically planetary rovers. Shape morphing becomes important as it can be used to 

modulate the area of contact with the terrain thereby adjusting amount of traction. A larger 

surface area is suited for sandy/soft terrain while rougher/harder terrain requires lower 

traction. The presented design is radially symmetrical with a central axle mount. The 

surface of the wheel has two type of control points: (1) load bearing points and (2) 

maximum deflection points. The load bearing points are connected to the axle mount 

through struts while the maximum deflection points are incorporated into PBBs. The soft 

wheel is designed to operate in two conditions: (1) When unactuated the wheel conforms 

to a triangle with very low stiffness. In effect, this configuration mimics a soft outer track 

supported on an internal stiffer skeleton thereby increasing the area of contact with any 

surface. (2) When actuated the wheel conforms to a stiffer hexagonal configuration that 

has a radius equal to the incircle of the unactuated configuration. The area of contact is 

reduced which reduces rolling resistance for harder terrain. The unactuated wheel has a 

radius of 420 mm and actuated configuration has a radius of 280 mm. Assuming constant 

thickness, the line of contact reduces from 485 mm to 314 mm (35.3 % reduction). The 

design is evaluated for its load bearing capability in the actuated configuration. An axle 

load of 20 N acting downwards does not displace axle mount when the load bearing points 

are in contact with the ground and displaces axle mount by 95 mm when the maximum 

deflection points are in contact with the ground. When unactuated and loaded, the 

FREEPAMs undergo kinking making analysis unstable and beyond the scope of this 

framework. 

• Spiral Gripper: Design 3 shown in Figure 22(c) represents a concept for a scaled up spiral 

gripper suited for grasping and manipulating long slender objects in low gravity 



44 

 

environments like space or marine environments. The spiral gripper has a modular design 

with unit cells stacked along the axis of the gripper and incrementally offset at an angle. 

The gripper has 36-unit cells each of which is incrementally offset by 10 deg. Each unit 

cell comprises of eight FREEPAMs that are joined at one end and mounted on rigid circular 

rings on the other end. The FREEPAMs configuration is skewed such that one half of the 

FREEPAMs are positioned at a steeper angle (60 deg) than the other half (30 deg). The 

rigid rings are also connected by means two parallel compliant beams that bend and two 

compliant dyads that compress. On actuation the FREEPAMs induce a moment on the 

upper stage and causes upper ring to tilt. The HSIM reports a tilt of ~ 9.5 deg. The combined 

effect of localized bending of each unit cell and the angular offset between consecutive 

unit cells manifests as a global spiral motion that wraps around a body parallel to the 

undeformed gripper axis. The curvature of the spiral is a function of the bending of each 

unit cell and angular offset between unit cells. 
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Figure 22: Exploration of design concepts based on soft compliant architectures. (a) A scaled up 

soft gripping finger that bends when actuated. FREEPAMs generate required force and stroke 

while the compliant constraints transmit compressive loads and are used to change local stiffness 

of the structure based on orientation. (b) Shape morphing wheel comprising of a compliant skeletal 

structure with load bearing spokes emanating from a central axle mount. FREEPAMs are 

embedded to maximize stroke and force at select regions. The wheel is designed to function in hard 

and soft terrains. (c) Spiral gripper made from unit cells stacked and offsetted about the 

longitudinal axis. The unit cell bends locally due to differential stiffness and this manifests as a 

global spiral motion. Such grippers are suited for grasping long slender bodies like an elephant's 

trunk 
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3.4 Surrogate Models as applied to Design Synthesis 

Efforts to integrate actuation and transmission gained significant attention from the compliant 

mechanism community, where embedding actuators in a network of compliant members was 

sought. To understand the performance benefits of embedding actuators within the mechanism 

topology, consider the example of a compliant inverter shown in Figure 23(a), where the force and 

displacement of the contracting actuator at the input is inverted at the output. While the actuator 

type can be generic, we consider a soft Pneumatic Artificial Muscle (PAMs) [71] in this example 

because of its inherent flexibility. As with most actuators, the force produced depends on the 

pressure and the diameter, while the net stroke depends on the length. In the first case of Figure 

23(a), the entire actuator length (Leff) is lumped at the input and the measured force-deflection plot 

of the system is denoted in Figure 23(c) (red squares). In Figure 23(b), certain compliant members 

are replaced by the actuators and the resulting stroke of the system (blue lines in Figure 23(c)) has 

increased, while keeping the forces constant. Thus, strategically embedding flexible or soft 

actuators within the compliant topology may increase output stroke by reducing the net passive 

stiffness, while still maintaining the kinematic leverage and output forces.    

The presented approach involves first following the previously established guidelines to design 

compliant mechanisms and then replacing certain compliant members with contracting actuators. 

This can be a complex process because identifying the exact members to be replaced without 

changing the kinematic behavior is non-intuitive. An overview of the load flow framework to 

design compliant mechanisms is presented and then systematically formalize design guidelines to 

embed actuators. 
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Figure 23: Benefits of distributed actuation versus concentrated actuation at input in a compliant 

mechanism. (a) An inverter mechanism with an actuator mounted at the input compared against 

(b) distributed actuation schemes where transmitters are replaced according to certain design 

guidelines. (c) Effectiveness of the modified mechanism is analyzed to assess if requirements are 

met. Mechanisms with embedded actuators are observed to generate larger strokes compared to 

the base mechanism being driven by an actuator of the same volume at the input. 

3.4.1 Load Flow Visualization 

Load flow is vector field of fictitious forces that flow through the mechanism geometry from input 

to output. These fictitious forces called “transferred loads” can be quantified using the compliance 

matrices that relate forces and displacement between any two points in the topology as detailed in 

[72], [73]. Load flow enables functional characterization of the mechanism geometry into 

transmitters and constraints. A member with a predominantly axial load flow is called a 

transmitter, while a member with transverse load flow and moment components can be called a 

constraint. This framework can be used to analyze a mechanism by decomposing it into building 

blocks of transmitter-constraint sets. The decomposition of a compliant mechanism topology based 
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on load flow into transmitters and constraints can be inverted for conceptual design synthesis. This 

was demonstrated for the design of compliant metamaterials and spatial - compliant and shape 

morphing mechanisms in [74]. 

3.4.2 Actuator Model 

While the presented framework is applicable to both extending and contracting actuators, the 

presented study is limited to contracting actuators - specifically contracting Fiber-Reinforced 

Pneumatic Artificial Muscles (FRPAMs). FRPAMs are a class of pneumatic actuators that are 

composed of a soft elastomer shell reinforced by inextensible fibers that govern the mode of 

deformation. In this work, FRPAM deformation is captured using HSIM approximation. Each 

FRPAM is characterized for a specific actuation pressure and analysis is carried out to match the 

axial and bending stiffness of the FRPAM with that of a nonlinear beam. Data for FRPAM 

deformation is obtained using FEA. For the presented analysis, FRPAMs with a fiber angle, α = 

30o and pressurized to 172.369 kPa is used to generate a blocked force of approximately 55 N. 

3.4.3 Design Guidelines 

The embedding of actuators within a compliant mechanism requires the designer to adhere to 

certain guidelines that enables the correct selection of replacement members. The guidelines are 

formalized as shown in Figure 24 and detailed below:  

1. Perform load flow analysis on the base compliant mechanism to identify constraints and 

transmitters. 

2. Construct connectivity graph for the mechanism and identify transmitters in tension that 

can be replaced using contracting actuators. Transmitters in compression are replaced 

when using extending actuators. 
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3.  Ground the input and incrementally replace transmitters in tension with actuators till 

requirements are met.   

Auxiliary guidelines: 

• Transmitters with load flow that are not predominantly axial, when replaced, may 

negatively impact the performance of the mechanism. 

• For mechanisms with multiple paths between the input and output, replacement occurs 

concurrently along each path starting from the input and terminating at the output. 

• To ensure that the deformation geometry is maximally preserved when embedding 

actuators, a member along a path is replaced only if concurrent members can be replaced 

in each path simultaneously. 

To clarify consider Figure 24(b), which presents a connectivity graph for a compliant mechanism 

with transmitters in tension identified in red and the node number indicating the depth of the node 

within the mechanism. The mechanism has four paths connecting the input to the output and a 

depth of three levels. From the auxiliary guidelines replacement of transmitters in tension starts at 

level 1 and proceeds to level 2 along each of the available paths. This corresponds to a total 

replacement of five members with FRPAMs (Input→1, 1→2). However, level 3 members are not 

replaced as all connecting members cannot be replaced owing to two members being under 

compression (2→3). Therefore, the replacement stops at this level. 
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Figure 24: Design framework presented in this work. The process starts with (a) load flow analysis 

of the base mechanism to identify transmitters and constraints. (b) A connectivity graph is used to 

identify potential replacement members along each path starting at the input and terminating at 

the output. (c) Transmitters are replaced according to design guided lines. 

3.4.4 Design Examples 

The first example illustrated is an inverting compliant mechanism. The first step is to perform the 

load flow analysis on the base mechanism to identify the transmitters and constraints. We then 

construct a connectivity graph from the input to the output. From the load flow visualization and 

the connectivity graph shown in  Figure 25(a), we can identify feasible transmitters i.e., 

transmitters in tension to be replaced with contracting actuators. The final step is to ground the 

input of the mechanism and replace the transmitters in tension with actuators. In this example, we 

identify three transmitters (T1, T2, T3) with two of them T1, T2 being in tension. We replace the 

transmitter T1 with a FRPAM actuator and obtain an output displacement of 26.8 mm. We then 

replace the next transmitter T2 with a FRPAM actuator and obtain an increased output 

displacement of 29.5 mm shown in Figure 25(a). The simulations are performed in a commercial 
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finite element software ABAQUS. It can be observed that the mechanical performance of the 

mechanism has been improved with incremental replacement of transmitters with FRPAMs. Note: 

It is important for the designer to check for any instabilities caused by the replacement of the 

transmitters. For example, if the base mechanism is not sufficiently stiff, direct replacement of a 

transmitter with a FRPAM might lead to buckling instability which can potentially place 

constraints on the force-displacement relationships of the mechanism.    

 

Figure 25: Simulation results. Symmetric half of (a) an inverting and (b) gripping mechanism with 

embedded FRPAMs. Incremental replacement of transmitters with FRPAMs increases tip 

displacement at the cost of increased complexity. 

The second example illustrated is a compliant gripper. The load flow visualization and the 

connectivity graph are shown in Figure 25(b). As per the guidelines, we identify the feasible 

transmitters. In this example, there are four transmitters in the load path from input to output. We 
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observe that T1 is in tension, while T2 is in compression and T3, T4 in tension. We ground the input 

and the transmitters are replaced incrementally in steps. Simulations are performed after each 

replacement and obtain output displacements of 27.7 mm, 66.1 mm and 229.3 mm corresponding 

to replacement of T1, T1-T3 and T1-T3-T4 respectively shown in Figure (b). 

 

Figure 26: Simulation results for a shape morphing mechanism. Replacing the first level of 

transmitters generates the desired shape at the output. However, replacement of the remaining 

members to increase deflection results in a distorted output (highlighted). The second level of 

replacement violates auxiliary guideline 3. 

To demonstrate the efficacy of the design framework for single-input multiple-output systems, a 

shape morphing example is presented and shown in Figure 26. The design requirement of the 

mechanism is to achieve a sinusoidal shape at the output. The load flow analysis is performed, and 

a connectivity graph is constructed. We observe three parallel load paths from input to each of the 

outputs. From the load flow visualization, we can identify that each load path from input to output 

has two transmitters: T1-T2 from input to output 1, T3-T4 from input to output 2, T5-T6 from input 

to output 3. From connectivity graph, we can also classify each of the transmitters to be either in 

tension or compression i.e., T1, T2, T3, T5 are in tension and T4 is in compression. The mechanism 

has a two-level depth and as per the design guidelines the input is grounded. Since, the first level 

has all the transmitters of parallel load paths in tension, they can be replaced simultaneously 
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according to auxiliary guidelines 2-3. Transmitters T1-T3-T5 are replaced and the simulations 

validate the performance of the mechanism. The second level of the mechanism has two 

transmitters in tension and one transmitter in compression and hence the second level of 

replacement violates auxiliary guideline 3. To showcase the validity of auxiliary guideline 3, the 

two transmitters in second level are replaced with actuators and we observe that the output shape 

of the mechanism is distorted as shown in Figure 26.  

The design framework can also be extended to spatial mechanisms as illustrated using a three-

dimensional (3d) gripper in Figure 27. The 3d gripper is constructed using two different 

mechanisms shown in Figure 27(a). Mechanism-1 converts linear translation to rotation (or couple) 

and mechanism-2 converts the rotation (or couple) into gripping motion (twist). Using these two 

mechanisms in conjunction, we construct a conceptual 3d gripper shown in Figure 27(b). 

Mechanism-2 is radially patterned on top of the mechanism-1 such that the input translation 

activates the rotation of the rigid ring and consequently the output twist of the mechanism-2 to 

achieve a gripping motion shown in Figure 27(c). The radially patterned mechanism-$2$ members 

twist to create a reduced circumferential space that can be used for gripping. As per the design 

guidelines, load flow analysis has been performed on each of the mechanisms shown in Figure 

27(a) and feasible transmitters are identified. Mechanism-1 has two parallel load paths and two-

level depth. All the transmitter members in this mechanism are in tension. 
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Figure 27: Simulation results for a 3D gripper. (a) Mechanism 1 converts a linear input stroke 

into an intermediate couple and mechanism 2 converts the intermediate couple into a twist at the 

output (b) Gripper morphology: The gripper comprises of two mechanisms connected by a rigid 

ring (c) FEA of the gripper showing reduction in circumference of the gripping head under 

actuation. (d) Gripper with embedded FRPAMs generating a twist at the gripping head. Note: 

Replacement of the second level with FRPAMs results in a minor improvement in output deflection 

due to small lengths of the second level FRPAMs. 

The transmitters are replaced incrementally at both the levels with actuators and simulations are 

performed to compute the difference in the circumferential radius 𝛿r. The replacement at first level 

gives a δr of 5.2 mm and replacement at both levels (first and second level) gives a δr of 5.4 mm. 

The improvement in the δr with replacement at both levels is minor due to the smaller lengths of 
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the transmitters at level 2. Smaller lengths correspond to smaller strokes and consequently smaller 

output deflections. From observing the load flow in mechanism-2, the load flow is not 

predominantly axial in the transmitters. This violates the auxiliary guideline 1 and hence, the 

transmitters in the mechanism-2 are not replaced with FRPAMs.   

 

Figure 28: (a) Experimental prototype consisting of two FRPAMs embedded in an inverting 

compliant mechanism. (b) Deformation at 53.08 kPa (7.7 psi) and (c) Variation in output 

deflection with actuation pressure. 

The efficacy of the design framework is also demonstrated from an experimental study on a 

prototype mechanism. For our analysis, we replicate the compliant inverter mechanism from 

Figure 23. The base mechanism is created using stainless steel wires of diameter 1 mm and 
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FRPAMs having an outer diameter of 13 mm and thickness of 2 mm. The joints are bonded using 

epoxy putty to obtain fixed joints as shown in Figure 28. The mechanism with embedded actuators 

is pressurized and the displacements at the output displacements are recorded. Figure 28(a, b) show 

the prototype before and after actuation. The variation of the output deflection with actuation 

pressures is plotted and shown in Figure 28(c). We can observe that the output deflection increases 

with the actuation pressures and at higher pressures, the variation in the output deflection is 

minimal. 

3.4.5 Design Synthesis 

Study on variation of tip force and stroke with morphology: This study explains the variation in 

the force exerted at the inverter tip and the stroke generated by the overall mechanism.  The 

problem is formulated as a multi-objective optimization problem with conflicting objectives and 

hence it is required that a suitable pareto front is generated to study the effects of mechanism 

morphology on the objectives. A Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [75] 

multi-objective routine is used in conjunction with ABAQUS FEA solver to generate the pareto 

frontier and HSIM is used to approximate the behavior of the embedded actuator. The pareto 

frontier corresponds to maximizing both the objectives simultaneously. The optimization is run 

for a population size of 100 for 3000 generations. The population is initialized based on empirically 

defined parameters. The design search space is limited by incorporating the following constraints: 

1. Domain Size: The overall size of the mechanism (bounding box encompassing the mechanism) is 

limited to a user defined value. In our analysis, the domain size (length of each side of the bounding 

box) is varied in three steps: 180 mm, 270 mm and 360 mm. 

2. Length of each compliant member is limited to a value between 10 mm and 270 mm. 

3. Length of the FREE is limited to a value between 45 mm and 180 mm. This range corresponds to 

the range for which the HSIM has been validated (See Section 2.2.4). 
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4. The compliant members for this analysis are assumed to be steel wires having a diameter of 1.5 

mm and Youngs Modulus, E = 2e5 MPa. 

In this study, we report the effects that variation in domain size and morphological complexity 

have on the overall pareto frontier of the mechanism.  Figure 29(a) presents the variation of the 

pareto front with size. Each pareto front presents 100 different geometries that have a combined 

objective value that is equal to the rest but are individually skewed to one of the objectives 

contingent on its location on the pareto frontier. We observe that as the domain size increases the 

pareto frontier is pushed further down indicating increased performance in terms of tip 

displacement and reaction force. This can be attributed to the design framework having access to 

more design morphologies and access to longer structural members as the design domain increases. 

FIGURE(b) showcases two extreme designs that are skewed to maximizing tip deflection and tip 

force. 

 

Figure 29: (a) Variation in stroke-force characteristics of inverter mechanisms with domain size. 

(b) Example configurations of a stroke and force amplification inverter mechanism located at the 

extremities of the pareto frontier. 
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The second study explores the effects of increasing the complexity of base mechanism. While the 

prior study had two compliant and one soft member (3-member), the more complex design 

morphology 3 compliant and 2 soft members (5-member). Figure 30 shows the variation in the 

pareto frontier for both morphologies with increasing effective FREE length while keeping the 

domain size constant. It can be observed that in each case the simpler morphology performs better 

especially with regard to tip deflection. This is a departure from results reported in [76] where 5-

member topologies provided greater output displacement albeit with greater induced stresses. For 

soft compliant mechanisms with embedded actuators, distributing the actuation can affect 

performance due to two reasons: (1) Reduction in the net deflection exerted on the mechanism. 

The 5-member designs are in effect a serial arrangement of two 3-member designs each with a 

shortened embedded FREE. As the line of action of these FREEs are not aligned, the effective 

deflection of the overall mechanism will be less than that of 3-member designs. (2) Within a 

constrained domain having more members reduces the length of each constituent member. This 

affects the displacement amplification capability of certain design morphologies.   

 

Figure 30: Variation in stroke-force characteristics of inverter mechanisms with morphological 

complexity and effective FREE length. 
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Synthesis of soft compliant shape morphing designs: This study presents results pertaining to the 

design of soft complaint mechanisms tailored for meeting specific deformation profiles. The 

design space morphology for the analysis is as follows: (1) We use three 3-member mechanisms 

arranged in parallel, each strongly influencing the displacement and forces at their respective 

control points. (2) The deformation of the control points is coupled making the design problem 

non-trivial. (3) The overall mechanism is constrained to a domain size of 540 mm and members 

should have an angular spacing of at least 10o.  A covariance matrix adaptation evolution strategy 

(CMA-ES)[77] is used to minimize the error between the mechanism deformation profile and the 

target deformation profile at the control points. Each design is initiated with a population size of 

100 and the optimization is run for 1000 iterations. The results from the analysis are shown in 

Figure 31. Results for three deformation profiles evolving from the same base configuration but 

with different objectives are presented: (1) Concave Hull: Each mechanism exerts a varying degree 

of downward pulling force at each control point to obtain the desired deflection.  Furthermore, the 

length of the embedded FREEs are varied to ensure no excess distorting force is applied at the 

output. An error of 2.92 mm is reported between the optimized profile and target profile. (2) 

Convex Hull: Exerting a pushing force derived from embedded actuators that produce a pulling 

force becomes non-trivial. In this example. Each mechanism evolves into an inverter thereby 

generating pushing forces. Each mechanism converges onto a similar morphology and scales in 

length to accommodate for greater output deflection requirements (left to right). An error of 4.72 

mm is reported between the optimized profile and target profile. (3) Sinusoidal Hull: To generate 

a sinusoidal shape the control points must alternate between pulled down and pushed up while 

overcoming the forces exerted by the neighboring mechanisms.  The final mechanism is a 
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combination of pull down and inverting mechanisms. An error of 4.37 mm is reported between the 

optimized profile and target profile. 

 

 

Figure 31: Design synthesis of planar soft compliant mechanisms. Each design evolves from 

identical initial solutions but with different objectives driving the evolution. Depending on the 

requirement the mechanism attached to each control point evolves into a pulling or pushing/ 

inverter mechanism. 

 

Figure 32: (a) Undeformed and (b) Deformed configurations of the planar shape morphing 

mechanism. The parameters of the mechanism are tabulated in  

To validate the efficacy of the framework a prototype of third example design (sinusoidal hull) 

was fabricated as shown in Figure 32. The prototype is constructed to smaller scale with the 

lengths of the members being scaled and the angles remaining unchanged. As can be seen from 

Figure 32(b) the output takes on a sinusoidal shape albeit scaled in magnitude as compared to the 
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original design. A comparison between results obtained from simulation and experiments is 

reported in Table 7.    

Table 6: Shape morphing geometry parameters 

Parameter Value 

l1 64 mm 

l2 90 mm 

l3 135 mm 

θ1 91 deg  

θ2 131 deg 

θ3 220 deg 

l4 20 mm 

l5 73 mm 

l6 60 mm 

θ4 126 deg 

θ5 105 deg 

θ6 131 deg 

l7 140 mm 

l8 95 mm 

l9 75 mm 

θ7 142 deg 

θ8 4 deg 

θ9 84 deg 
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Table 7: Displacement analysis for shape morphing mechanism 

Control Point Simulation (mm) Experiment (mm) 

A -13 -13 

B 1 0 

C 18 17 
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CHAPTER 4: MODEL-FREE CONTROL OF A SOFT ROBOT 

The BR2 manipulator presented in [9], is a continuum robotic arm made from combining soft 

actuators namely Fiber Reinforced Elastomeric Enclosures (FREEs). FREEs are made of a hollow 

cylindrical tube reinforced with inextensible fibers wrapped in a helical shape on its outer surface. 

The tube is made of hyper-elastic materials such as latex rubber or silicone, thereby generating 

large strain. The angles at which the fibers are wrapped on the FREE determine its deformation 

behavior upon being pressurized. Depending on number of fibers and their relative angles, FREEs 

can generate contraction, extension, rotation, bending, or a combination of these motions. For 

information regarding the fabrication of FREEs, refer to [62]. As the name suggests, the BR2 has 

one bending and two rotating actuators that work in tandem to achieve complex 3D spatial motions. 

Figure 33 shows a pressurized BR2 and half its workspace. The work space is symmetric about the 

robot sagittal plane.  

 

Figure 33: Half-workspace of the BR2 manipulator. Manifold corresponds to the tip positions at 

different pressures. Inset: MDP formulation of the control problem. 
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The workspace takes the form of a convex hull that is narrower at the bottom and widens at the 

top with localized shearing occurring intermittently. The two modes of actuation are coupled and 

this manifests as a non-linear response of the BR2 end effector position to the FREE pressure inputs 

at different actuation ranges. For example, the rotational sweep of the manipulator at lower bending 

pressures is much smaller than at higher bending pressures.   

4.1 Markov Decision Process Formulation 

Towards developing a robust control strategy that can account for nonlinearities inherent in soft 

mechanical systems the following definitions are presented. The use of reinforcement learning on 

a robotic system requires it to be abstracted and represented as a Markov Decision Process (MDP). 

An MDP is characterized by states (s), actions (a) and rewards (r). Assuming the simplest form of 

representation, the BR2 manipulator is abstracted as follows: 

1. State (s): States are defined as the position of continuum arm with respect to the target. The 

workspace around manipulator's tip is discretized into a 3D grid with a resolution of 0.01 

m. The discretized grid is centered on the target location to which the tip is directed to 

move. Therefore, the state of the BR2 at any given pressure is a 3D vector describing the 

relative distance between the manipulator tip and target location and the current actuation 

pressures.   

2. Action (a): Each of three FREEs in the BR2 is capable of being pressurized and 

depressurized. However, as the workspace is symmetric about the manipulator sagittal 

plane, only one half of the BR2 workspace is considered, which corresponds to the use of 

the bending and one rotating FREE. Any movement in the other half of the workspace can 

be achieved by implementing the same actions for the second rotating FREE. The system 
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can produce 12 actions corresponding to different magnitudes of pressurization and 

depressurization. The actions for the bending FREE are: ±3.45, ±6.89, ±13.79 kPa and for 

the rotating FREE are ±6.89, ±13.79 and ±27.57 kPa. This enables the system to choose an 

optimal sequence of action to reach the target in the fewest possible steps in a robust 

manner. 

3. Reward (r): The reward quantifies the effect an action has on the manipulator's tip position 

about the target. A reward system with an inductive bias is used to speed up the learning 

process. In our implementation, we use the L2 norm between the current tip position and 

target position to determine the reward and any action bringing the manipulator closer to 

the target returns a higher reward than an action moving it away from the target. The reward 

structure is described as follows: 

𝑟 =  {

−2 + 𝑒𝑟𝑟𝑝𝑟𝑒𝑣 − 𝑒𝑟𝑟𝑐𝑢𝑟𝑟 + 휁

−100, 𝑃 >  𝑃𝑚𝑎𝑥
100,  𝑒𝑟𝑟𝑐𝑢𝑟𝑟 ≤  휀

       (20) 

The reward is structured to penalize every transition made by the system, forcing it to learn 

the most optimal path to the target. 휁 is a tunable parameter used to penalize transitions in 

regions where the system becomes unstable. In this implementation, 휁 corresponds to an 

offset from the boundaries of the workspace. By biasing the system to avoid the trajectories 

along the boundaries, the policy generated becomes more robust to the warping of the 

workspace, a common occurrence for the BR2 arm under external loading. Furthermore, 

the reward structure also penalizes any action that forces the pressure in the actuators to 

exceed the prescribed limits. This prevents the system from getting stuck at the outer 

boundaries of the workspace where any additional pressurization does not change the 
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position of the manipulator. The system is rewarded a large positive value when a target is 

reached within a threshold 휀.  

4.2 Deep-Q Learning (DQN) Framework 

Q-Learning is a model-free reinforcement learning (RL) technique that can identify an optimal 

action-selection policy for a given finite MDP. It is grounded on learning an action-value function 

which gives the expected utility for a given action when the system is at a state. A policy, Π, is a 

rule that the agent follows in selecting actions, given the state it is in. The value iteration update 

of the Q function follows the Bellman equation and is gives as: 

𝑄𝑡(𝑠𝑡, 𝑎𝑡) = 𝑄𝑡(𝑠𝑡, 𝑎𝑡) +  𝛼(𝑟𝑡 + 𝛾 𝑚𝑎𝑥𝑎 𝑄(𝑠𝑡+1, 𝑎) − 𝑄𝑡(𝑠𝑡, 𝑎𝑡))    (21) 

where 𝑠𝑡 is the state of the system at time 𝑎𝑡the action it has taken to reach the new state 𝑠𝑡+1, 𝑟𝑡 

is the reward for taking action 𝑎𝑡, α is the learning rate, and γ is the discount factor. To account 

for large dimensionality, neural nets (NNs) are used to approximate the Q-functions and such 

frameworks are called Deep Q-Learning (DQN) networks [78]. In effect, the NN accepts states as 

inputs and outputs the quality associated with available actions that the system can perform and 

consequently, an action resulting in a larger value is considered superior. The loss function for a 

given state action pair is defined as the difference between the output obtained from the NN and 

the value obtained from the target Q-function (Q’). The optimal policy is given by the following 

equation. 

𝛱(𝑠) = 𝑚𝑎𝑥𝑎  𝑄′(𝑠, 𝑎)          (22) 
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4.3 DQN: Testing and Results 

The strengths of an RL-based control system are twofold: (1) The system learns to choose an 

optimal sequence of actions and hence an optimal path to reach the target and (2) The system is 

robust to external disturbances. In this section we validate the system for its general efficacy in 

position control and robustness to disturbances through experiments in simulation and on a 

prototype of the BR2 continuum arm.  The prototype BR2 has a length of 0.31 m with maximum 

operating pressures of 172.36 kPa in bending and 193.05 kPa in rotation. We use a DQN with 3 

hidden layers having 512 nodes and tanh activation functions. An ε-greedy action selection 

strategy (ε= 0.1) is used while training. To expedite training, we use the model developed in [10] 

to train the system on a simulation. The simulation is based on a Cosserat rod formulation [5], with 

the elasticity and precurvature parameters fit with experimental results [79]. It is important to note 

that the simulation is used as a data generator for one-time data collection and the same could be 

done on a prototype in an automated manner. An Adam stochastic gradient optimizer (learning 

rate α = 0.002) with mean-squared-error as the objective function is used to train the NN. In each 

episode, a tuple of points is randomly selected from the training dataset and the system is trained 

to transition between the two points using the ε-greedy policy. The episode is terminated in one of 

three ways: (1) the position error is below the threshold value, (2) number of steps exceed 

allowable limit and (3) the manipulator pressure exceeds the maximum rated pressure. The system 

is trained for 5000 episodes before evaluation. During evaluation, a greedy policy is used to select 

the best actions from the learned Q function to transition between states. 
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Figure 34: Path taken (shown in red) by system for two sample trajectories (1→2→3→4→5) 

Figure 34 shows the path taken by the system for two sample trajectories with five waypoints each 

when the learned policy is evaluated. The first trajectory emphasizes on reaching extremal points 

that are more unlikely to be sampled during training while the second trajectory forces the system 

to sweep through the workspace laterally. While the position error for all the waypoints are within 

prescribed limits (0.01 m), two important observations can be made: (1) When transitioning 

between waypoints, the system takes larger strides initially and switches to smaller stride as it gets 

closer to the target. If the separation between the waypoints is small, the system only uses smaller 

strides. As seen in Figure 35, this ensures that fewer transitions are made while making sure that 

the target is not overshot. (2) When a target is located at the edges of the reachable workspace the 

system learns to avoid taking actions that would exceed the prescribed pressure limits thereby 

preventing it from getting stuck at a local minimum. In effect, the system learns the boundaries of 

the reachable workspace.   
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Figure 35: Effect of adaptive steps during transitions. Blue: Fixed steps and Red: Adaptive steps 

Unlike conventional rigid manipulators, soft manipulators experience attenuation in their 

reachable workspace when loaded. Figure 36 illustrates this effect where the work space is 

observed to translate and distort (or shear) when a tip load is applied. To validate the robustness 

of the learned policy against such external loads we ran experiments with the BR2 loaded at the 

tip. This draws parallels from traditional pick and place tasks in robotic manipulation. We ran 

experiments to evaluate the ability to generalize of the learned RL policy to different end loads. 

the system is trained with no external load and the learned RL policy is evaluated on different 

external loads. To obtain statistically significant results, 10,000 random trajectories from the 

reachable work spaces corresponding to the different tip loads are sampled and classified as being 

successful or unsuccessful. The threshold for success corresponds to a position error < 0.015 m 

(approximately radius of the end effector). Table 8 specifies the effect of four loads (6g, 9g, 12g, 

and 18g) on the accuracy of the system by detailing the number of unsuccessful attempts and the 

margin of error for each attempt. For reference the manipulator weighs 30g. The accuracy is 

observed to decrease (from 97.3% to 94.6%) with increase in tip load and this is directly correlated 
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to the extent by which the workspace warps. For a load of 18g the number of trajectories with an 

error > 0.03 m (approximately diameter of the end effector) increases rapidly and hence this region 

can be considered the limit above which the system may fail to perform effectively. 

 

Figure 36: Effect of external loading on the effective reachable workspace of the BR2manipulator  

Table 8: Effect of external loads on control policy accuracy 

Loads (g) 

 

# Trajectories 

Error ≤ 1.5 cm 1.5 cm < Error ≤ 3.0 cm 3.0 cm < Error 

0 9730 249 21 

6 9719 260 21 

9 9588 367 45 

12 9592 343 65 

18 9460 376 164 
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To validate the results with a physical prototype of the BR2 the setup shown in Figure 37 is used. 

The BR2 is connected to a pneumatic pressure source which is controlled using a pressure regulator 

(SMC ITV0050-2UN). A LabVIEW interface integrated with a myRIO-1900 (National 

Instruments) controls the input voltage to the pressure regulator and hence the configuration of the 

BR2. The tip position is captured using a 3D digitizer from MicroScribe.  

 

Figure 37: Validation of the system on the BR2 prototype 

A single trajectory having four waypoints is analyzed for three loading cases. The trajectory as 

reported in the simulation is replicated on the prototype with no feedback and therefore we expect 

the observed errors to be of the same order of magnitude as those reported in [80]. Two important 

observations highlighted in the purview of this test are: (1)  The variation in input pressure 

required by the BR2 to reach the same waypoints for different loads and (2) The effectiveness of 

the system in attempting to reach points in the unreachable workspace. 

Table 9 compares the errors obtained from the simulation and experiments. The errors from the 

simulation indicate a robust system reaching the waypoints with a mean error of 0.48 cm 

(approximately 15% of the arm diameter) having a standard deviation of 0.41 cm in the reachable 

workspace. Results from the prototype are subject to factors like pre-curvature at zero input 

pressures and hysteresis during cycles of pressurization and depressurization. We report a mean 

error of 3.05 cm having a standard deviation of 0.97 cm for points in the reachable workspace. 



72 

 

This aligns with the errors reported in [80] between simulation and experimental results. To 

compare the error associated with points in the unreachable workspace, the corresponding nearest 

point in the reachable workspace for each point is used as a reference to calculate the error 

Table 9: System validation against BR2 prototype. Unreachable points are indicated using *  

Waypoint  1 2 3 4 

 Load 

(g) 

Pressure 

(kPa) 

Error 

(cm) 

Pressure 

(kPa) 

Error 

(cm) 

Pressure 

(kPa) 

Error 

(cm) 

Pressure 

(kPa) 

Error 

(cm) 

Simulation 0 48.26,55.15 0.0 151.68,0 0.0 158.58,103.42 0.0 124.1,124.1 0.0 

6 55.15,34.47 0.37 158.58,0 0.98 158.58,75.84 1.05 131.0,103.42 0.63 

9 55.15,34.47 0.92 158.58,0 *i 162.03,62.05 *ii 134.45,96.52 0.74 

12 62.05,34.47 0.25 165.47,0 *iii 165.47,62.05 *iv 134.45,89.63 0.87 

Experiment 0 48.26,55.15 3.35 151.68,0 1.20 158.58,103.42 1.62 124.1,124.1 2.98 

6 55.15,34.47 3.46 158.58,0 2.84 158.58,75.84 4.87 131.0,103.42 3.87 

9 55.15,34.47 2.72 158.58,0 *i 162.03,62.05 *i 134.45,96.52 3.68 

12 62.05,34.47 3.01 165.47,0 *iii 165.47,62.05 *iii 134.45,89.63 3.05 

 

Table 10: Error comparison for unreachable points in experiments with BR2 prototype  

Points i ii iii iv 

Distance to closest point in reachable 

workspace (cm) 

1.65 1.31 2.18 1.65 

Distance to BR2 tip position from 

simulation (cm) 

1.65 1.60 2.48 1.79 

Distance to BR2 tip position from prototype 

(cm) 

2.10 4.29 0.90 3.05 
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. The results are tabulated in Table 9. For simplicity the unreachable points are labeled (i-iv) from 

Table 10. The points are tracked robustly in simulation with the maximum variation in error of 

0.31 cm (approximately 10% of the arm diameter). In case of the prototype, the maximum variation 

is 2.98 cm (approximately the arm diameter). 

4.4 Deep Deterministic Policy Gradient (DDPG) 

As highlighted in the previous sections, the BR2 traces a highly nonlinear workspace with variable 

stiffness characteristics as a function of pressure input and tip orientation. To improve 

manipulability, the BR2 is mounted on a swiveling base making it a more dexterous and redundant 

system. Furthermore, the swiveling BR2 operates in a discontinuous workspace, where a direct 

path connecting two arbitrary points in the workspace is not always feasible. The accumulated 

effects of nonlinearity, redundancy and discontinuity makes the swiveling BR2 a complex system 

to control with existing model-based methods. Towards establishing an effective control scheme, 

we propose using a model-free approach for tip position control. It is important to note that for the 

control scheme explored in this work, the forward model is used as proxy for the physical prototype 

to enable rapid collection of data. As the controller being designed is not derived analytically from 

the forward model our approach is model-free. We outline the following requirements from the 

proposed control scheme: 

1. Effectively perform multi-point tracking 

2.  Exhibit load invariant policies within bounds. Bounds are determined by degree of 

workspace attenuation. 

3. Control policy should be stable for points in the unreachable workspace and discontinuous 

regions of the workspace. 

4. Control policy should be effectively deployed in a physical prototype. 
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In this work, a model-free reinforcement learning (RL) technique suited for continuous actions is 

adopted. Assuming the simplest form of representation, the swiveling BR2 manipulator is 

abstracted as follows: 

1. State (s): The state, s ∈ R6 encodes the error of the tip position and the actuation inputs. s 

= [δx, δy, δz, Pb, Pr, Pθ], where the first three components describe the position error with 

respect to a target and the last three components are the bending, rotating and swiveling 

inputs.     

2. Action ($a$): Each component of the swiveling BR2 is capable of continuous actions, the 

bounds on which are, ±31.2 kPa in bending, ±96.5 kPa in rotating and ± 60o in swiveling.  

3. Reward (r): The reward quantifies the effect an action has on the manipulator's tip position 

about the target. A reward system with an inductive bias is used to speed up the learning 

process. The reward structure is described as follows: 

𝑟 =  {

−2 + 𝑒𝑟𝑟𝑝𝑟𝑒𝑣 − 𝑒𝑟𝑟𝑐𝑢𝑟𝑟
−2 + 𝑒𝑟𝑟𝑐𝑢𝑟𝑟 , 𝑃 > 𝑃𝑚𝑎𝑥  || 𝑖𝑡𝑒𝑟 > 𝑖𝑡𝑒𝑟𝑚𝑎𝑥

100,  𝑒𝑟𝑟𝑐𝑢𝑟𝑟 ≤  휀
    (23) 

The reward is structured to penalize every transition made by the system, forcing it to learn 

the most optimal path to the target. The system is rewarded a large positive value when a 

target has been reached within a threshold (휀 = 1.5 cm).  

DDPG is a well-established model-free RL approach suited for continuous control applications. 

Our implementation of DDPG uses an actor-critic formulation to enable generation of complex 

and robust policies. The “actor” network accepts the current state of the BR2 as input and generates 

a continuous action as the output while the “critic” network evaluates the quality of the state-actor 

tuple. The aim of the RL framework is to maximize the Q-values obtained from the critic network 

as a function of the weights of the actor network. We adopt a framework using experience replay 
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and soft updates to ensure robustness and stability during the learning process [60]. The critic 

network is updated using Equation 21 and the actor uses gradients obtained from the 

“Deterministic Policy Gradient” theorem [81]. The gradient from Equation 24 is used to train actor 

network using a stochastic gradient ascent approach. 

𝛻𝜃𝑄 =  𝑬 [𝛻𝜃𝜇(𝑠|𝜃) 𝛻𝑎𝑄(𝑠, 𝑎 = 𝜇(𝑠)|𝑤) ]       (24) 

where w and 𝜃 are the weights of the critic and actor networks, 𝜇 is the actor policy and a is the 

action output from the actor network. The efficacy of RL-based control strategies depends on the 

ability of the robotic agent to explore the state-action space effectively during training. Exploration 

is carried out by incorporating noise into the control actions dictated by the actor network. We use 

an “Orienstein-Uhlenbeck” process (Equation 25) to generate noise. The magnitude of the noise is 

directly proportional to the size of the step taken by the agent. Consequently, larger action would 

incur greater noise thereby increasing the chances of the agent becoming unstable (exceeding max 

input levels or overshooting the target). Therefore, while the reward formulation promotes taking 

larger actions, the exploration noise favors taking smaller actions. The authors believe that the 

combined effects of these two factors enables the agent to take moderate steps that converge to the 

target effectively. 

𝛿𝑎 =  𝜑(휁 − 𝑎) +  𝜎𝛮(0,1)         (25) 

4.5 DDPG: Testing and Results 

The DDPG framework is trained using an actor and critic network each having two hidden layers 

with 500 neurons each. The outputs for the actor are bounded between -1 and +1 using $tanh$ 

activation functions. An Adam optimizer is used to train the network using backpropagation with 

a learning rate of 2e-5 for the actor and 1e-4 for the critic network. The soft update parameter is 

set to 1e-2 and the framework is trained for 50000 episodes. The framework is validated on three 
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curves: (i) Horizontal line, (ii) Circle and (iii) Viviani's Curve. Figure 38 illustrates the curves and 

the configurations of the manipulator during path tracking. Figure 38 also details the variation in 

the input to the BR2 as a function of waypoints. The oscillations in the inputs are indicative of the 

complexity of the curve being tracked. Lastly, the tip position error is bounded to ≤ 3.0 cm 

(approximately tip diameter of the BR2). A more rigorous error analysis is detailed in the following 

paragraph. 

Effect of Loading: As mentioned previously, tip loading can have significant impact on the 

reachable workspace of the BR2 manipulator. Therefore, it becomes important to validate any 

control strategy's effectiveness in the presence of external loads. Towards establishing an upper 

bound on the load that our control strategy can adapt to, the following study is conducted. The 

manipulator is loaded at the tip with a point load and the path tracking task executed. The BR2 

weighs ≈ 30g and we choose three loads (3g, 6g and 9g) corresponding to 10%, 20% and 30% of 

the body weight to assess the efficacy of the control policy. The loads are also chosen to maximize 

the reachability of the waypoints of the test curves being tracked for the prescribed actuation limits. 

It can be observed that the error for varying loads remains bounded and displays similar trends that 

are characterized by valleys and peaks as shown in Figure 39. The peak errors correspond to points 

that fall outside the reachable workspace. Table 11 details the error statistics for the study. Note: 

Certain configurations (shown in red) in the loaded conditions could not be solved as the boundary 

value formulation was unable to converge to a feasible solution. However, as seen later, the control 

framework can compensate for such irregularities and perform effectively even for such 

configurations. 
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Figure 38: (a) Validation curves for assessing the performance of control policy. (b) Variation in 

inputs for line (black), circle (red) and Viviani’s curve(magenta). The swiveling BR2 modulates 

three inputs to reduce position error for each waypoint. Oscillations in the inputs are indicative 

of the complexity of the task for the manipulator.  All curves lie in the reachable workspace. The 

following error statistics are reported for each curve: 0.83±0.30cm for horizontal line, 

0.71±0.21cm for circle and 0.93±0.57cm for Viviani’s curve. 



78 

 

 

Figure 39: Variation in tip position error for the three test curves for different tip loads. The trend 

indicates an adaptable policy that can account for loads as high as 9g. Trends in the error 

variations are accompanied by peaks (highlighted) which correspond to points that lie outside the 

reachable workspace. Points shown in red correspond to configurations that did not converge to 

a solution. At higher loads (> 9g) the manipulator is not able to effectively navigate the workspace 

for the prescribed actuator input limits. 

Table 11: Error statistics for effect of external loads. Error is reported in cm.  

Curves 3g 6g 9g 

Line 0.82±0.22 0.79±0.34 0.76±0.42 

Circle 0.82±0.22 1.23±0.72 1.84±2.34 

Viviani’s Curve 1.34±1.04 1.40±0.95 1.37±0.89 

     

Effect of Reachability: In this study we analyze the systems capability to handle points in the 

unreachable workspace. While a simple inverse kinematics formulation would potentially return 

infeasible solutions in such cases, an RL-based system is able to overcome these limitations. 200 

random target points are sampled from the reachable workspace and perturbed such that they 

become unreachable. The points are perturbed along the vector connecting the point to the origin. 
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The maximum perturbation corresponds to a magnitude of 8 cm. The performance of the system 

is measured as a difference between the closest the BR2 gets to the target and the closest point in 

the reachable workspace. Figure 40 details the results from this study. In most instances, (76%) 

the system can obtain errors smaller than the induced perturbation by finding better manipulator 

configurations. In certain configuration the error remains larger and this has been found to occur 

in extreme configurations. 

 

Figure 40: Variation in position error due to induced perturbation. The average perturbation is 

3.9±2.3 cm and the average reported system error is 2.6±2.7 cm. 

Effect of Workspace Discontinuity: In this study, when training in simulation we intentionally 

create a discontinuity in the BR2 workspace by limiting the swiveling base rotation to ±600 as 

shown in Figure 41. The discontinuity makes navigating the workspace challenging. Traversing to 

a target point would necessitate taking large steps using more complex policies and the use of 

spatially localized exploration techniques and trajectory optimization for path tracking may prove 

ineffective in such scenarios [82]. In Figure 41, three trials consisting of two points that lie on 

either side of the discontinuity are chosen and the BR2 is instructed to move between them. With 
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the inclusion of input pressures in the state and extensive bootstrapping of the workspace during 

training the DDPG framework learns to navigate around the discontinuity towards the target.      

 

Figure 41: Three paths taken by the BR2 when moving from points in regions 1→2→3. The points 

are separated by a discontinuity that the manipulator cannot navigate across. The paths taken 

demonstrate the DDPG's capability to account for discontinuities in a manipulator’s workspace. 

‘+’ target waypoints, ‘∙’ intermediate waypoints chosen by the system. 

4.6 Experimental Results and Bias Mitigation Using Feedback 

We hypothesize that a learned control policy, tuned in simulation for path tracking, can perform 

to the same degree of accuracy in a physical prototype (as in simulation) by incorporating state 

feedback. Towards studying the effect of feedback, path tracking experiments were conducted and 

compared in both open loop and closed loop settings. As seen in Figure 42, eight VICON T40 

motion capture cameras are used to capture the tip position of the BR2. Transferring a control 

policy from a simulation to prototype will result in position errors due to biases from two sources: 

(1) Static inaccuracies, that arises from factors including precurvature of the actuators, hysteresis 

and varying control resolution between simulation and prototype and (2) Kinematic inaccuracies 

during path tracking due to non-commutative nature of the actuation. The non-commutativity 
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makes transitioning between two pressure states P1 and P2 path dependent, where the final position 

of the BR2 at P2 depends on P1 due to varying initial stiffness. The combined error from these 

sources manifests as large position errors which is reported in Figure 43 when an open loop scheme 

is implemented. To overcome these effects, the manipulator is incorporated into a feedback system 

and the bias mitigation can be observed in  Figure 43 and Table 12. Figure 43 (d) illustrates the 

trend in the number of transitions as reported during the studies. We observe convergence to 

minimum error more quickly in simulations compared to experiments. For experiments, the loaded 

configurations take more iterations when compared to configurations with no load. This can be 

attributed to the system compensating for additional tip deformations (due to tip load) that could 

not be accounted for during training. Finally, the number of iterations also increases with the 

complexity of the curve being tracked. 

 

 

Figure 42: Experimental setup for feedback control deployed on the BR2 manipulator. BR2 tip 

position is tracked using a VICON motion capture system using eight VICON T40 cameras. 
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Figure 43: Effect of feedback on tracking error for (a) Line, (b) Circle and (c) Viviani's curve for 

unloaded and loaded conditions. The feedback errors are observed to be bounded for all points 

within the reachable workspace while points outside the reachable workspace have larger errors. 

(d) Variation in the average number of iterations for different curves in simulation and 

experiments. Note: The maximum number of iterations is set to 15 for each waypoint. 

     

    Table 12: Error statistics for effect of external loads. Error is reported in cm.  

Curves Open loop 

(No load) 

Closed loop 

(No load) 

Closed loop 

(9g) 

Line 3.45±1.02 1.01±0.49 1.10±0.58 

Circle 5.77±2.08 1.21±0.61 1.13±0.51 

Viviani’s Curve 4.81±2.23 1.32±0.97 1.91±1.47 
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CHAPTER 5: CONCLUSION 

Purpose: The thesis deals with two important facets in the research of soft mechanical systems, 

namely design and controls. Soft systems deform as a continuum and cannot be mechanically 

modeled as a system with finite degrees of freedom. The resulting conundrum has created a gap, 

where traditional design and control techniques are deemed unsuitable for soft systems. This thesis 

aims to bridge the gap, allowing the use of conventional design methods that have resulted from 

over a century’s worth of research in kinematics in designing novel embodiments of soft 

mechanisms. The bridge is enabled by reduced order models that can capture the deformation 

behavior of a specialized, yet ubiquitous soft actuator building block known as fiber reinforced 

elastomeric enclosures (FREEs). Likewise, in the realm of controls, classical model-based controls 

are less suitable for soft systems as it requires the estimation of all the states associated with the 

large number of degrees of freedom. This thesis, for the first time demonstrates the efficacy of 

model-free Reinforcement Learning (RL) methods for the control of a unique soft manipulator. 

Importance: The importance of this thesis is that soft system designers have an arsenal of reduced 

order models and design techniques to systematically generate feasible solutions. Furthermore, the 

thesis provides control engineers with a possible framework to implement model-free learning-

based control techniques of soft robots that can be robust to external disturbances. 

Impact: The thesis primarily impacts the design and deployment of soft robots. The soft 

mechanical systems considered in this thesis are the structural embodiments of soft robots. This is 

especially relevant in soft biologically inspired robots where the performance of muscle-like 

actuators cannot be tailored for a given requirement using rigid transmission components (such as 

gears or belts and pulleys). In such a scenario, the thesis proposes a spatial topology of actuators 
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that can be designed to tune the stroke and force from the system. Specifically, the obtained designs 

are impactful in soft wearable active exoskeletons that could enhance the upper-limb mobility of 

healthy and disabled humans. The control techniques presented in the thesis are specifically 

relevant for soft continuum manipulators for use in agricultural applications such as berry 

harvesting, imaging and weeding, with additional impact in manufacturing and human-computer 

interaction. 

5.1 Contribution 

The thesis makes distinct contributions to the model-based design and model-free control of soft 

mechanical systems.  

5.1.1 Contribution in Design 

 

Traditionally, analysis of soft self-actuating mechanisms is challenging because of the nonlinearity 

due to large deformations and hyper-elastic material properties. These result in a set of coupled 

partial differential equations that are typically solved using computationally expensive Finite 

Element packages. Furthermore, there is a dearth of a systematic synthesis framework for soft 

mechanical systems. The thesis makes an attempt to address these issues in the design of soft 

robotics through the following contributions. 

1. The thesis aims to formulate a lumped Pseudo-Rigid Body (PRB) model to analyze a 

specific soft building block known as Fiber Reinforced Elastomeric Enclosures (FREEs). 

We lay out an elaborate framework to fit the model parameters such that the transverse 

deflection can be captured with less than 10-15% accuracy. Using the PRB model, a 

mechanism composed of a planar combination of FREEs can be analyzed quickly, as they 

reduce to finding roots for a set of nonlinear polynomial equations. Perhaps the most 
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important advantage of the PRB model is the ability to quickly evaluate design concepts 

and incorporate it within an optimization framework. 

2. The thesis proposes a second reduced order model termed as the Homogenized Strain 

Induced Model (HSIM) that can capture the force-stroke deformation characteristics of 

FREEPAMs at varying pressures is analyzed. The model is data driven and its validity is 

verified in simulation and an error analysis reports a maximum error of 4.4% when 

compared to high fidelity FEA simulations.  

3. The thesis investigates a prospective design method for soft mechanisms by systematically 

combining a fundamental building block known as pennate building block (PBB). Similar 

to human muscles the PBB was found to amplify stroke of actuation based on configuring 

the pennate angle between the contracting actuators. Several mechanisms were obtained 

by systematically combining PBBs including a planar gripper, motor, spatial compression 

sleeve, cylindrical contracting member. These mechanisms were analyzed for their 

deformation and forces using HSIM, PRBM and prototyped to validate accuracy.  

4. Lastly, the thesis investigates a systematic design methodology of compliant systems with 

a combination of active and passive members. The design framework begins with 

conceptual topology synthesis based on load-flow visualization and culminates with 

optimization-based design refinement. A planar shape-morphing airfoil example was 

designed using this method. 

5.1.2 Contribution in Controls 

 

The second focus of this thesis showcases the use of deep reinforcement learning (RL) as a viable 

approach for generalized position control for a novel pneumatic continuum arm known as the BR2 
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that deforms by combining spatial bending and torsion. The contributions can be summarized as 

follows: 

1. Through a valid training and testing scheme, the efficacy of RL based approach has been 

attested to for two RL frameworks: Deep Q-Learning and Deep Deterministic Policy 

Gradients.  

2. Both systems exhibit two important features, which are (a) its ability to choose appropriate 

actions to reduce the number of transitions and (b) its considerable robustness to external 

loads including self-weight. The system is also validated for its ability to reach the best 

possible configuration in cases where the target lies in the unreachable work space. The 

results clearly indicate that reinforcement learning can emerge as a viable technique for 

learning control policies for complex continuum manipulators which are otherwise hard to 

model and control using methods based on first principles alone.  

3. The thesis also explores incorporating the system with sensors to create a framework with 

real time feedback of the BR2's tip position. Closed loop control, coupled with online policy 

adaptation based on state feedback, significantly improves the overall training time of such 

soft systems. 

5.2 Future Work 

While this thesis has fundamental contributions in the design and control of soft mechanical 

systems, it sets the stage for future developments in the field which can be highlighted as follows: 

(1) The reduced order models for design were investigated for static quasistatic conditions alone. 

While this gives preliminary insight, there is a need to extend the models to incorporate dynamics. 

The lumped PRB and the continuum HSI models proposed in this thesis will then have additional 
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parameters that capture inertia of the manipulator. This warrants more experiments to characterize 

and validate the model. 

(2) The reinforcement learning framework for controls was also formulated for quasistatic 

conditions. However, most manipulators have a very different, and often larger dynamic 

workspace, which can be exploited to good use in practical applications. Extension of the RL 

scheme to incorporate dynamics is envisaged as future work. Additionally, this work potentially 

establishes a baseline for exploring other RL paradigms that offer alternate modes of control like 

stiffness/ force control and obstacle avoidance. It can also provide a good case study for emerging 

work in simulation-to-real learning and transfer learning paradigms, such as Target Apprentice 

based Transfer Learning or Meta Learning. 

 (3) The thesis showcased and tested several designs that constitute periodic arrangement of 

actuator dyads to tailor the stroke and force output. However, the design methodology must be 

extended to creating aperiodic combinations of actuators that can yield more complex deformation 

profiles. A preliminary example was illustrated in the form of shape morphing wheel shown in 

Figure 22 , but no systematic design methodology for these requirements were proposed. Future 

work entails a design methodology for active metamaterials periodic/aperiodic building blocks 

that yield a given performance requirement.  
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APPENDIX: DATA COLLECTION 

This section details the experiments conducted to determine the bending behavior of FREEs, which 

in turn is used to validate the FE model used for data collection. Three categories FREEs with 

different fiber angles α= (25o,30 o,40 o) were fabricated. Under each category, three FREEs with 

lengths l= (78, 110.5, 130) mm, radius r= 13 mm, and denoted by slenderness ratio (ratio of FREE 

length to diameter) 𝜆= (6,8.5,10) were fabricated and subject to three actuation pressures, Pa= 

(15,17.5,20) psi, along with transverse bending loads. The experimental setup is shown in Figure 

44: Bending test setup. FREEs are constrained at one end and the other end is subjected to a planar 

transverse end load and the FREE's tip deflection is recorded. Excessive loading is avoided to 

ensure that no part of the FREE undergoes buckling or kinking. To account for hysteresis each 

data point is recorded as the mean of multiple trials. This study is used to validate the FEM model, 

which can then be used as a suitable surrogate for experimental data collection with reasonable 

confidence. The axial parameters of the FREE such as the actuation force fa on the linear springs 

have already been verified by the authors' previous publications [83] and other researchers [66] 

[63].  

 

Figure 44: Bending test setup  
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Results of the comparison between experiments and FEA for 𝜆 = (6,8.5,10) are tabulated in Table 

13. Each observation corresponds to the mean error between experimental and simulated tip 

position for three transverse loads, divided by the tip displacement obtained from experiments. 

The relatively large errors can be explained as follows. When FREEs are subjected to small loads 

the tip deflections are also relatively small. In such cases, even a small deviation (~2 mm) 

compounded by the resolution of readings from experiments (±2 mm) can reflect as large errors. 

An example in this regard would be the FREE, 𝜆 =6, α=25o, Pa=15 psi subjected to a transverse 

load of 0.098 N. We observe (xexp, yexp) = (16,1) and (xfem , yfem)=(13.1,2.16) which translates to 

an error of 19.48 % . Another important observation is the reduction in error with increase in 𝜆. 

This occurs because for the same transverse load, the tip deflection increases with 𝜆, thereby 

reducing the percent error. 

Table 13: FEM Model Error (%) 

λ Pa α = 25o α = 30o α = 40o 

6 20 15.12 17.88 17.23 

17.5 13.14 17.26 17.96 

15.0 17.7 17.38 12.84 

8.5 20 8.52 7.95 9.91 

17.5 10.77 11.03 8.33 

15.0 13.45 9.03 6.77 

10 20 2.45 8.01 7.84 

17.5 5.88 6.21 4.75 

15.0 6.86 10.20 6.92 
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