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ABSTRACT

Critical infrastructure systems are vital to all nations, and incapacitating such systems

can result in devastating impact on the general public. Therefore, it is essential to protect

such systems from malicious threats. Today, the increasing interconnectedness of critical

infrastructure systems has greatly improved system efficiency at the cost of a larger attack

surface. In recent years, we have seen cyber-attack campaigns in addition to physical attacks

on various critical infrastructure systems around the world. Thus it is important to protect

such systems from adversarial physical and cyber threats.

In this dissertation, we propose to protect critical infrastructure systems by (1) assessing

the safety of the system and (2) detecting malicious physical threats on the system by using

models that integrate the cyber, physical, and human domains. We support our dissertation

statement by applying our contributions to a railway system case study.

First, we perform a security analysis to identify malicious threats and suggest potential

detection mechanisms to strengthen the system defense. We define a general ontology that

represents cyber-physical system components and relationships among them, and cyber and

physical actions by a human actor. We model a railway station using concepts from that

ontology, and feed the model into the ADVISE tool to automatically generate an attack

execution graph. We analyze that attack execution graph and show that the addition of

a potential defense system for physical movement is an effective mechanism for improving

system security.

We then conduct a safety analysis to identify potential cyber attacks on the railway

signaling system that would violate system safety. To do so, we use networks of timed

automata to model the cyber-physical control feedback loop that drives system service. We

develop a set of transformations on state automata that represent combinations of cyber

actions of a human actor. Then, we perform model checking to identify the cyber attack

scenarios that would compromise system safety. We demonstrate that while certain safety

countermeasures can mitigate attacks by outsider adversaries, attacks by insider adversaries

would still succeed. Reapplication of our security analysis with the addition of the cyber-

attack vectors that we discovered shows that adversaries prefer to use physical and social

means to gain access to the railway station and attack the system.

Thus, to strengthen the physical security of the system, we develop defense systems that

detect suspicious physical movement by human actors in a railway station. We identify ab-

normal movement behavior by comparing sequences of movement to historic normal move-
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ment models. In doing so, we first build models of normal movement behavior by using

historic building access control logs. Then, in real-time, we screen physical accesses and

check for deviations in users’ behavior from the normal movement behavior model. If we

find any, we flag those physical accesses as suspicious. We show that our detection approach

is able to flag suspicious behavior with increasing likelihood as the malicious movement

sequence increases.

We then develop approaches to identify tailgating in building access control logs by using

physical constraints about human movement and space occupancy. This work was motivated

by the observation that adversaries may thwart building access control systems by physical

and social means, e.g., by “tailgating,” or following closely behind, an authorized person.

We use cyber and physical data sources to build models of the physical locations of people.

Then, we flag tailgating instances when the physical constraints on human movement and

space occupancy are violated. We show that our detection approach is able to identify

certain tailgating scenarios and that the addition of other data sources, such as physical

data sources, allows us to build a more complete model of physical location.

Finally, we reapply our security analysis with the addition of defense systems. The results

of our analysis show that the inclusion of the defense systems incentivizes adversaries to

expend more effort and time to launch a cyber-attack campaign instead of attempting to

gain access to the railway station. Therefore, our defense systems help to strengthen the

overall security posture of the system.

In conclusion, we identify several cyber and physical attack scenarios that would affect sys-

tem safety, and we develop physical defense systems that demonstrably increase the system’s

security posture. Thus, in this dissertation, we present an integration of security analysis,

safety analysis, and system defense that uses cyber, physical, and socio-technical models to

protect critical infrastructure systems.
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CHAPTER 1: INTRODUCTION

Critical infrastructure systems such as power grids, water treatment facilities, and trans-

portation systems are vital to the public welfare of a nation. Incapacitating such systems

would result in devastating impacts on the safety and well-being of the general public, and

critical infrastructure protection programs are therefore in place to protect such systems

from both non-malicious and malicious threats [1]. While non-malicious threats result in

random, accidental failures, malicious threats are targeted towards causing large system fail-

ures. Thus, in this dissertation, we focus on protecting critical infrastructure systems from

malicious threats.

Today, a lot of critical infrastructure systems are becoming increasingly interconnected.

By interconnecting devices in those systems, we improve the system’s efficiency, but at the

expense of an increased attack surface. In addition to physical attacks, malicious adver-

saries are now able to launch cyber-attack campaigns that result in real-world consequences,

impacting citizen welfare. For example, the Stuxnet worm that infected multiple nuclear

power facilities in Iran resulted in the failure of many uranium-enriching centrifuges [2]. In

2015, the cyber attack on the Ukranian power grid caused a major disruption in electrical

supply to customers for hours [3]. As those examples show, it is of the utmost importance to

protect the safety of such critical infrastructure systems from adversarial threats that span

both the cyber and physical domains.

1.1 CYBER-PHYSICAL SYSTEMS CHARACTERISTICS

Cyber-physical systems, of which critical infrastructure systems are an important subcate-

gory, consist of sensors and actuators that are connected together using network equipment.

These systems are unlike other typical networked systems, e.g., enterprise networks, for

which a significant body of research has been conducted for decades. Thus, in more recent

years, a lot of effort has been put into researching security mechanisms and enforcing them

in cyber-physical systems for the sake of protecting such systems.

The operation of critical infrastructure cyber-physical systems is fundamentally different

from that of other networked systems, since the services provided by critical systems impact

people’s physical lives (e.g., by transporting commuters, powering consumers’ homes through

the power grid, and supplying clean water to residences). Efficiency, continuous service, and

timeliness are therefore important features for cyber-physical systems to maintain. Thus,

safety and security measures that are to be built in must not affect the continuing operation
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Figure 1.1: The three different domains of the system cyber-physical-human model. The
human domain is shown by the User icon, which acts on the two other domains.

of a system.

We can see cyber-physical systems as encompassing three different domains: cyber, phys-

ical, and human, as shown in Figure 1.1. The arrows in that diagram show the interactions

between the cyber and physical domain, as well as the human and system (cyber and phys-

ical) domain. In the following paragraphs, we describe those interactions in terms of the

cyber-physical and socio-technical domains.

Cyber-Physical Domain. In cyber-physical systems, service is driven by physical pro-

cesses and control feedback loops. Thus, system behavior is defined in terms of the physical

operation of devices, whereas in other enterprise systems, user behavior drives system oper-

ation.

Specifically, the transmission of data and control commands over the cyber space affects

the operation of the physical processes. In turn, the data transmitted in the cyber space

originate in measurements of the physical processes by sensors. That complex control feed-

back loop ties the cyber and physical domains of the system closely together to provide

system service. The interactions among heterogeneous types of devices also imply that a

slight disruption in the operation of devices in the system can cause a cascade of events

that affect system service. Thus, the attack surface of the system spans a wide variety of

devices. The system also receives external stimuli from human actors, and thus we examine

the socio-technical domain of the system next.

Socio-Technical Domain. The capabilities and roles of the human actors in cyber-

physical systems are more diversified than in traditional enterprise systems. While the

human actors in enterprise systems predominantly interact with the cyber domain of the

system, a human actor in a cyber-physical system interacts with both the physical and

cyber domains of the system.
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In particular, a human actor can control network hosts, including their software, data,

and network packets. A human actor can also interact with the physical equipment directly

within the buildings in which it is housed and affect the physical processes. Because of the

control feedback loop that links the physical and cyber domains of the system, both the

physical and cyber actions have a rippling effect on those two domains, which can lead to

major impacts on system operation. Thus, both the physical and cyber actions of the human

actors are possible malicious threat vectors that can adversely affect the system operation

and safety.

1.2 PROTECTING CYBER-PHYSICAL SYSTEMS

It is therefore important to understand how the physical state and the cyber state of the

system are intertwined together, with the effects in one domain affecting the other because

of the actions of human users. A cohesive approach to protecting cyber-physical systems

then involves a close scrutiny of the cyber-physical and socio-technical domains. In this

dissertation, we present a way to protect critical infrastructure systems by (1) assessing the

safety of the system and (2) detecting malicious threats on the system.

1.2.1 System Assessment

Just as for other systems, such as enterprise and cloud systems, it is important to conduct

an assessment of a critical infrastructure system to understand how it performs under ma-

licious and non-malicious faults. However, critical infrastructure systems are unique in that

system safety is of paramount importance. Safety is the “freedom from those conditions that

can cause death, injury, occupational illness, damage to or loss of equipment or property,

or damage to the environment” [4]. An unsafe critical infrastructure system can result in

catastrophic physical effects in the real world, and therefore, it is important to analyze and

protect such systems.

In particular, system administrators need to ensure that this system remains safe under

malicious and non-malicious actions. To prove that the system is safe, models of the system

are built and theoretically verified for compliance with the safety property.

Safety analysis has traditionally been focused on proving the correctness of physical pro-

cesses and control under non-malicious faults. With the evolution of critical infrastructure

systems to include cyber control and communication, safety analysis has changed to include

proving of the correctness of software and application data under non-malicious faults. In
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other words, safety analysis needs to take into account the cyber processes that affect the

physical system.

With the larger attack surface of the cyber-physical system, malicious threats are also

rapidly increasing in importance for system safety. Many researchers, domain experts, and

government bodies have thus identified the need for cyber security in safety-critical sys-

tems [5, 6] and have proposed different approaches for merging safety analysis and security

analysis [7–9]. It is essential to integrate security knowledge about malicious behavior into

safety analysis to account for malicious faults or threats. The results of performing a safety

analysis of a system under malicious threats can then inform the system administrator as to

the sequence of malicious actions that will force the system into an unsafe state.

To understand what system defenses can be put into place to detect malicious actions,

a security analysis is needed on top of the safety analysis. A security analysis models the

adversary’s decision-making process and allows the system administrator to compare the

differing actions an adversary might take when different system defenses are in place. Thus,

the system administrator will be able to decide what system defenses should be installed to

protect the safety of the system.

Security analysis has traditionally focused on malicious attacks in the cyber domain of the

system, which includes the networks and hosts. However, in cyber-physical systems, attacks

on the physical domain of the system can have propagating effects on the cyber domain of

the system and aid cyber-based attacks.

Therefore, it is important to consider the actions of a malicious attacker on both the cyber

and physical processes and communications in conducting a safety and security analysis of

a critical infrastructure system.

1.2.2 Malicious Threat Detection

In addition to conducting an analysis of the system design, it is important to implement de-

tection mechanisms in the system to sieve out potential malicious threats that have bypassed

the security and safety perimeter. Most of the existing detection mechanisms presented in

research publications and implemented in tools can be grouped into three main categories:

misuse-based, behavior-based, and specification-based [10,11].

Both misuse-based and behavior-based detection mechanisms are common to other tra-

ditional networked systems. Misuse-based mechanisms model known bad system states,

whereas behavior-based mechanisms model system states that are statistically deemed nor-

mal. While misuse-based detection mechanisms are unable to detect unknown bad system

states, behavior-based mechanisms are able to detect bad system states that are outside
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the statistically normal model. However, behavior-based mechanisms suffer from high false

positive rates, since the derived model relies on a training set of normal data.

All of those detection mechanisms typically utilize data from host machines and network

connections to identify threats to the system. In other words, the detection mechanisms

focus on threats involving the cyber domain of the system. However, they do not take into

account the physical behavior of the system and the effect of human actors’ actions on the

system.

The third class of detection mechanisms, those that are specification-based, is more tai-

lored to cyber-physical systems. Since the operation of cyber-physical systems is driven by

physical processes and control feedback loops, we can construct well-defined models of a

system’s behavior based on laws of physics. Deviations from the model would then be con-

sidered potential malicious behavior, since they could directly affect the system operation.

Unlike behavior-based mechanisms that sift through data logs to model a system’s normal

behavior, specification-based mechanisms derive models from formal specifications of the

system that represent legitimate system operation. Therefore, specification-based mecha-

nisms complement behavior-based mechanisms by catching the effects of malicious actions

that appear in the system.

1.3 CYBER, PHYSICAL, AND SOCIO-TECHNICAL MODELS FOR SYSTEM
PROTECTION

In the previous section, we described the different domains of cyber-physical systems,

particularly, critical infrastructure systems. We showed that the interactions among those

domains drive system operation, and thus are essential to consider in system assessment and

malicious threat detection.

Therefore, in this dissertation, we propose to use models of the cyber-physical relationships

among system components, and socio-technical interactions between the user and the critical

infrastructure system, to protect the system.

A model helps to structure expert knowledge about a given system in a way that enables

algorithms to automatically explore the consequences of certain behavior. It also aids the

system practitioner in providing a more intuitive view of the system state for further analysis.

While most models developed for critical infrastructure systems focus on representing either

cyber control and communication or physical processes, we propose the need for models that

represent a combination of the cyber, physical, and human domains of the system.

As shown and discussed by various members of the research community [12], it is imper-

ative to analyze not just one domain of the system (cyber, physical, or human) but also the
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interactions among them in the system. By considering those cross-domain interactions, we

gain a more comprehensive understanding of the system behavior.

More precisely, it is important to understand the interactions among the entities in the

system so that we can understand how the effect of an action performed on one entity can

manifest across the system’s physical and cyber domains, thus affecting system operation.

Thus, we model the system as a collection of topologically interconnected components in

which the connections represent physical, cyber, cyber-physical, or socio-technical relations.

Specifically, we model both the cyber network and physical equipment states of the system,

as well as the interactions among those states. We also model a malicious human actor

that physically moves around a building and accesses the equipment within it, and tampers

with network messages in the system. We model those physical and cyber actions of the

human actor on top of the existing system model to analyze the impact of those actions.

By building a model of the system and its human actors, we can formally reason about the

cyber-physical interactions among human actors and the system.

In this dissertation, we will illustrate our modeling approach on a critical infrastructure

system, namely the railway transportation system that we describe below.

1.4 CRITICAL INFRASTRUCTURE CASE STUDY

While we intend for our work presented in this dissertation to apply to general critical

infrastructure systems, we focus on transportation systems so as to provide concrete results

and insights. In addition, the selected system possesses properties that are similar to those

of other critical infrastructure systems and, thus, are a good representative set.

Transportation systems are part of a nation’s critical infrastructure systems. Ranging

from railway systems to bus networks, these transportation systems aim to move people or

objects across geographical space. In particular, we consider a railway transit system, which

is an important component of a nation’s transportation system.

Over the years, railway systems have started to integrate cyber technologies and infras-

tructure to improve system efficiency. Although the quality of system service has increased

as a result, the dependence on cyber infrastructure also increases the system’s susceptibility

to attacks. For example, in August 2016, there was a five-day series of service disruptions

due to intermittent signal interference in our studied railway system. When it reappeared

again in November 2016, data scientists traced the issue back to the failure of signaling hard-

ware on a single train [13–15]. The failure interrupted signaling communications on other

trains that were close to that train, triggering safety features to activate emergency braking.
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Although the signal interference was not the result of an attack, the incident showcased how

the failure of one cyber component can affect an entire system.

The impact of an attack on a railway system can be severe, ranging from loss of service and

station blackouts to derailment. For example, a Polish teenager once rewired a remote control

to communicate with wireless switch junctions in a railway system, causing derailment of a

train and injury of twelve people [16]. Since the track was accessible to the public, the attack

was easily performed. The potential loss of revenue and human life is motivating the pursuit

of greater physical and cyber security for such systems. In particular, the insider threat is of

the utmost importance, as illustrated by a 2006 case in which two traffic engineers hacked

into a Los Angeles signal system, causing a major traffic disruption [17].

The railway system is a distributed system with cyber controllers and sensors that auto-

mate the movement of physical trains over a railway line. System efficiency can be measured

by route capacity, the number of trains that can be driven on the rail lines while maintaining

safety conditions, which is determined by an acceptable distance between trains, or headway.

The signaling system involves detecting the location of trains and communicating this

information back to nearby trains to inform decisions about train movement. Historically,

the location of trains was detected using track circuit signaling. Track circuits, which are

electrical devices located intermittently at fixed-block intervals on the rail tracks, were used

to detect the presence of a train on the rail segment. That information was then relayed

to the train via electromagnetic signals. Thus, the route capacity was restricted by the

fixed-block configuration that could only relay discrete locations based on the position of

the track circuits.

Over the years, the signaling system has evolved from track circuit signaling to Commu-

nication-Based Train Control (CBTC) systems, which allow for continuous monitoring of

a train’s location. Information is transmitted via radio signals instead of electromagnetic

signals, allowing for richer and larger amounts of data to be transferred. Processing units on

the trainborne system use the transmitted location information from beacons installed on

the track in tandem with other sensor data to calculate the exact location of the train. So

the moving block configuration of CBTC systems removes the restriction of the fixed-block

configuration, thus allowing trains to be closer to each other. Therefore, route capacity has

vastly improved because of the decrease in headways while maintaining safety conditions.

Many other subsystems of the railway system, such as the traction power and environ-

mental systems, are also increasingly automated. Aided by networked communications, a

centralized control center can monitor and control those mechanical devices in real-time.

The data collected by the control center are also visualized and presented to the system

staff members, allowing them to control the system remotely. The inherent complexity of
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the system increases the difficulty of system analyses because the change in behavior of one

component can cause a cascade of events, leading to consequences in the real world. For ex-

ample, a malfunction of the water pumping system in the studied railway system caused the

tunnels to be flooded with water, resulting in a close to 21-hour service disruption [18, 19].

Thus, targeting of subsystems that are not directly related to train movement can have an

impact on system service. Therefore, in our dissertation, we build a model of the system

and its users so that we can formally reason about the cyber-physical interactions among

devices and the humans acting upon them.

1.5 DISSERTATION CONTRIBUTIONS

The general contribution of our dissertation is the combination of heterogeneous data to

build a comprehensive understanding of system state that facilitates system design analysis

and dynamic security solutions. Specifically, our dissertation statement is the following:

The protection of critical cyber-physical infrastructure systems against malicious

human-initiated cyber and physical actions can be achieved by a novel integration

of security analysis, safety analysis, and system defense that uses cyber, physical,

and socio-technical models.

Our specific contributions in this dissertation are the following:

• We introduced a novel ontology describing the cyber and physical system components

of the system, and the effects of cyber and physical actions made by a human actor,

for automatic generation of attack graphs.

• We developed a set of strategic transformations on state automaton models that rep-

resent the cyber actions of a human adversary on a cyber-physical system in order to

verify safety properties.

• We conducted the first large-scale analysis of human movement in an indoor setting

for detection of malicious physical movements.

• We performed the first real-life study of identification of tailgating through use of cyber

data collected by building access control systems and physical sign-in log data collected

from railway stations.

The dissertation is divided into two main components: system assessment of safety and

security properties (Chapters 2 and 3), and cyber-physical threat detection (Chapters 4

and 5).
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Security Analysis: In Chapter 2, we discuss a security analysis of railway stations that we

conducted using an automatically generated attack execution graph, which is a variant

of an attack graph. We define a general ontology that represents knowledge about the

cyber and physical components in a system, the relationships among them, and the

effects of cyber and physical actions made by a human actor. We developed a model

of the railway station by using concepts from the ontology, and input that model into

the ADVISE [20] tool to generate an attack execution graph. The results of a security

analysis of the attack execution graph suggest potential defense mechanisms that can

be put into place. In particular, our analysis shows that identification of malicious

physical movement is an effective mechanism for securing a system.

Safety Analysis: In Chapter 3, we discuss a safety analysis of a railway system that we

conducted using a state automaton model that represents both the cyber and physical

states of the system. We defined a set of transformations on the state automaton

model to represent the cyber actions taken by an human adversary actor. Then we

built a state automaton model of the railway signaling system and used model-checking

techniques on that model to verify the safety property of the system under different

sets of adversary capabilities. The results of that safety analysis inform us about the

potential threat vectors and the effects on system safety. We also evaluated several

safety countermeasures to determine how much they alleviate the potential threats.

Finally, by enhancing our ADVISE model of the railway station from Chapter 2 to

include the potential threat vectors uncovered in Chapter 3, we analyze which of the

threat vectors are likely to be exploited. The results of that analysis suggest that

adversaries are incentivized to use physical and social means rather than cyber means

to attack a system.

Physical Threat Detection: In Chapters 4 and 5, we analyze the physical movement be-

havior of the human actors in a system to detect potentially anomalous movement that

could signify precursor behavior, such as physical reconnaissance or physical intrusions

by insiders.

In Chapter 4, we develop socio-technical models that represent normal patterns of

movement behavior of human actors through a building. We built those models based

on historic cyber data collected from building access control systems. Then, we used

those models to screen physical card accesses in real-time to detect anomalous move-

ment patterns that might indicate malicious intent. We evaluated our approach by

injecting random movement sequences into a real-life physical card access dataset and
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found that our approach can detect abnormal movement with increasing accuracy as

the length of the abnormal movement sequence increases.

In Chapter 5, we address the limitations of using cyber data collected from socio-

technical systems, i.e., building access control systems, for analyses. Specifically, we

show from cross-examinations with other physical data sources and an observation

study of real-life movement behavior that the social phenomenon of tailgating (i.e.,

following closely behind an authorized person) is not detected by building access control

systems. We developed several approaches to infer tailgating from physical card access

data by using physical constraints about human movement. We modeled the physical

location of human actors in the system and updated that model for every event in the

physical card access data. In addition, we leveraged physical data sources collected

from the railway system to obtain a more accurate model of the physical location and

space occupancy. Our results show that we can identify certain scenarios of tailgating

behavior by using physical constraints and physical data sources to complement cyber

data.

In Chapter 5, we also analyze how our real-time approach from Chapter 4 and post-

incident analyses from Chapter 5 affect the adversary’s choices in attacking a system.

We describe an enhancement of our ADVISE model from Chapter 3 that includes the

detection probabilities of our approaches. The results of our analysis suggest that

adversaries prefer to launch cyber campaigns against a system in a manner that avoids

detection by the defender, despite the amount of time and effort required. In other

words, our physical threat detection approaches incentivized the adversary to shift to

a more costly, time-consuming attack strategy. Thus, our physical threat detection

approaches are useful in increasing the level of security of a system.

Finally, we conclude the dissertation in Chapter 6 with a discussion of the generality of

our approach, lessons learned in the course of our research, and avenues of future work to

explore.
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CHAPTER 2: CYBER-PHYSICAL SYSTEM ASSESSMENT: SECURITY
RISK ANALYSIS

System administrators often conduct security risk analyses of their cyber-physical systems

to determine which components of the system are at risk of being targeted by an adversary

and decide what system defenses should be installed to mitigate such risks. Most security

risk analyses have focused on modeling the cyber domain of such systems by enumerating the

possible attacks that could be used to compromise the system and cause a cascading impact in

the physical world. However, physical attacks that target devices in cyber-physical systems

are just as concerning. The Metcalf power station sniper attack [21, 22], where gunmen

shot the transformers in a power station, is a prime example of such a physical attack.

Further, physical attacks coupled with synchronized cyber efforts are commonly overlooked

by security risk analyses. In this chapter, we focus on modeling of physical attacks and their

consequences, and apply our approach to a railway station case study to provide insights

into the security of the system.

2.1 BACKGROUND AND MOTIVATION

In a recent survey related to industrial control systems [23], only 20% of respondents

said that they had “sufficient visibility into their organization’s attack surface.” That is an

unacceptable situation; system practitioners need a sound, scientific approach they can use

to evaluate the attack surfaces of their systems. For systems that are already operational,

red-teaming or penetration tests are an expensive but potentially useful option. For systems

that are in the design phase, system practitioners often rely on construction of attack graphs

that describe the possible ways an adversary could attack the system.

We propose to use the ADversary VIew Security Evaluation (ADVISE) meta modeling

approach [24], which uses a variant of attack graphs to perform a formal, repeatable, and

auditable analysis of system designs. Attack graphs are used to analyze a system by enu-

merating all the possible attack steps that an adversary could take to achieve a goal [25,26].

However, traditional attack graphs do not evaluate useful probabilistic metrics like the most

common attack vector for a given adversary, expected time to complete an attack, and ex-

pected cost to the defender. The ADVISE approach builds a richer attack graph, termed

an attack execution graph (AEG), which models additional details about attacks in order to

facilitate a more comprehensive and quantitative analysis of an adversary’s attack path.

The process of building such attack graphs, however, requires a lot of manual effort by an

expert practitioner. The practitioner needs to enumerate the possible attack steps for each
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Figure 2.1: The general modeling approach. The numbered bubbles represent the order in
which we describe the different inputs to the ADVISE Meta tool.

system component and connect those attack steps together. To reduce the practitioner’s

effort, the ADVISE meta modeling approach separates the knowledge of the system from

knowledge of the attack steps, allowing the actual construction of the attack execution graph

to be automated.

The ADVISE meta modeling approach relies on an ontology that represents a high-level

system model that uses familiar atomic elements and semantic relationships among them.

The ontology serves as a knowledge base that describes the system entities and the definitions

of attacks. Unlike vulnerability databases, ontologies allow practitioners to automatically

derive where and how attacks may be applicable to a given system. The ontology allows

the practitioner to specify attack steps just once during the construction of the ontology;

subsequently, the only changes that a practitioner needs to make are updates to the system

model. The attack graph is automatically generated through reasoning on the system model

instance that is based on the ontology [24].

The central component of our approach uses the ADVISE Meta tool, which takes in a
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number of user-specified inputs, and outputs an AEG. Figure 2.1 illustrates that process.

In this chapter, we describe how we constructed an ontology that models (1) the cyber-

physical system entities and relationships, and (2) the attack steps that can be performed

on those entities. This ontology is the first step towards a formal definition of a library of

physical attacks that can be reused by other system case studies. Next, we discuss how we

constructed a system instance diagram that describes a specific case study in terms of the

types of entities and relationships that are present in the cyber-physical architecture of the

studied system. Those types of entities and relationships are given by the ontology. We

used the ADVISE Meta tool to reason on that system instance diagram and automatically

generate an AEG [20,27] that leads to the user-specified goals. We also specified information

about the threat models and quantitative metrics that we want to calculate. Given that

information, the tool simulates an adversary’s decision-making by using a discrete-event,

game-theory-based algorithm and outputs the calculated metrics and the chosen attack path.

We have applied our modeling approach to a case study of a railway station. In particular,

we have evaluated the effects of physical attacks on a railway transit system. We specified

different threat models and used the ADVISE meta model tool to simulate the different

adversaries’ decision-making processes. Here, we analyze the attack paths that are output

from the tool to obtain insights regarding the system security. From the simulation results,

we also identify (1) which adversaries pose the biggest threat to the system, (2) which attacks

are most likely to happen, and (3) what additional defenses should be deployed to identify

and prevent certain attacks.

2.2 ONTOLOGY: SYSTEM MODEL

The ontology consists of two components: (1) a representation of cyber-physical systems,

and (2) a library of attack steps that apply to that representation. We first start with a

general conceptual understanding of the systems that we want to model; that will then drive

the creation of classes and relations in the ontology.

Conceptually, we describe the system in terms of three non-disjoint domains: physical,

cyber, and information. We distinguish among the three domains because they represent

the levels at which human cognition perceives information [28]. The physical domain consists

of devices and spaces. Devices are located in spaces. The cyber domain consists of hosts and

the network topology. Correspondingly, the hosts are devices (physical domain) that contain

control software that transmits and receives digital data, and the network topology consists

of cables connecting hosts that allow the transmission of bits. Lastly, the information domain

consists of digital data such as control data and logs. Those digital assets are represented
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as bits of information. By describing the system using the three domains, we can define

actions (attack steps) that affect the system at different levels of abstraction. We can also

drill down into low-level details about the effects of those actions.

We have translated our general conceptual understanding into the ontology, which is shown

graphically in Figure 2.2. The ontology defines component classes and kinds of relations that

are definable between instances of the classes. The component classes use inheritance to

describe specialization of types. The ontology’s inheritance allows us to automatically infer

information regarding child classes through deductive reasoning. More specifically, child

classes inherit relationships and properties (attacks) from their parent classes [29].

The ontology describes the entities and their relationships across the thee domains: phys-

ical, cyber, and information. We translated the two types of entities in the physical domain,

device and space, into the parent classes Device and Space, respectively. The class Space
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is further divided into two child classes, Room and Non-room (e.g., corridors). Compared

to a Non-room, a Room houses more critical kinds of assets and is typically the destination

of adversaries.

We define a class Asset that represents both the physical and cyber entities in the system

that a practitioner seeks to defend. In particular, the class Asset has child classes Device

and DigitalAsset.

The class Device also has child classes that represent the specialized capability of a device.

The ProgrammableDevice child class contains software that can control the behavior of

other assets (e.g., a host with SCADA software or a PLC); this class represents the cyber

hosts. The SpaceDividerDevice child class represents an asset that can divide two spaces

(e.g., a roller shutter or door). The class DigitalAsset represents the information domain.

It has a child class Data, which is further divided into the two child classes ControlData

and Log.1

There are two different relations between Space instances based on how a person can

move between the spaces. If a card reader is installed on the door bordering the two spaces,

a person needs to have possession of an access card in order to move from one space to the

other, and the person’s movement is also logged by the system. The loggedAccess relationship

from a Space to a Space captures that situation. Otherwise, if no card reader is present,

a person can move without restriction between the two spaces with no access card, and

the relation is called unloggedAccess. If there is a SpaceDividerDevice separating the two

Space instances, then a third relation, unloggedDividerAccess, from the two Space instances

to the SpaceDividerDevice is used. The Space class is also related to the Device class.

Specifically, a Space contains Devices.

There are a few relations between Devices, based on their functionality. In particular,

a ProgrammableDevice controls other Devices programmatically. For example, a host

machine with the proper control software can send commands to the Programmable Logic

Controllers (PLCs) that it controls, and the PLCs in turn control the devices. Depending

on the type of device, the results of controlling a device will affect the power, temperature,

or movement of other devices. Specifically, an Asset affectsPower or affectsTemperature

of another Asset. In addition to controlling other assets, a ProgrammableDevice also

controlsMovementToken of a Space by adding or removing permissions of an access card to

access that space.

The ProgrammableDevice also has networkConnections with other ProgrammableDe-

vices in the cyber domain. In addition, a ProgrammableDevice has DigitalAssets on

1There can be other subclasses of DigitalAsset, for example, to distinguish between data and software
programs. However, we leave that classification for future work.
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it whose values may affect the running of the system devices.

Finally, we define a Subsystem attribute for both Devices and Spaces. This attribute

identifies the subsystem to which a device or space belongs, and thus allows us to restrict

access to the physical device or space. We also define state variables for Devices that

represent the Power, Temperature, and controlSetting of the device. Adversary actions will

affect the values of those state variables.

2.3 ONTOLOGY: ATTACK STEPS

The ontology consists of generic attack steps that can be applied to the classes. By

defining a library of attack steps, we use the ontology to reason on a system instance diagram

and automatically enumerate which attack steps can be applied to the system entities. In

particular, we use the ontology’s multiple inheritance feature to derive all the entities that

are vulnerable to a specific attack.

We can illustrate the multiple inheritance feature with a small example. In our ontology

in Figure 2.2, we can define an attack A that is applicable to any physical device. We model

that by attaching A to the class Device. From the inheritance structure, that implies that

A is applicable to all subclasses of Device, including ProgrammableDevice (or cyber

hosts). That simplifies the job of creating an attack graph, since the practitioner does not

need to recall that a host is also a Device and thus susceptible to attacks on physical devices.

The ontology thus allows us to generate a complete AEG with respect to the defined attack

steps, removing the chance for manual human error.

In Table 2.1, we define attack steps that can be applied at the level of abstraction cor-

responding to each of the three domains that we defined earlier. The preconditions and

postconditions associated with each attack step are listed in Table 2.2.

Some of the attack steps (Overheat, PowerOff, AffectsPower, and AffectsTemper-

ature) are not actual attacks performed by an adversary, but instead model the physical

consequences of certain actions.

In particular, when the temperature of a device is not properly controlled and increases

to a high value, the Overheat attack step is triggered. The result of that step is that power

to the device is cut, i.e., the state variable power is set to a value of zero. When the power

to a device is cut, the PowerOff attack step is triggered; that removes the controlSetting

of the device, since it is no longer able to control other devices that may depend on it.

The effect of controlling a device and changing its controlSetting is then reflected in the

other devices under that device’s influence. Specifically, if a device d1 affectsPower of

another device d2, then changing the controlSetting of d1 will trigger the AffectsPower
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attack step, which then changes the power state variable of the affected device d2. Similarly,

the AffectsTemperature attack step propagates changes to the temperature of the affected

device.

Table 2.1: List of attack steps defined in ontology.

Domain Attack Step Ontology Class

Physical

Move Space
Damage Device

DirectControl Device
Overheat Device
PowerOff Device

AffectsPower Device
AffectsTemperature Device

Cyber
Login ProgrammableDevice

RemoteControl Device
NetworkMove ProgrammableDevice

Information
DelMovementToken Data
AddMovementToken Data

Physical Domain: In the physical domain, there are three different types of attack steps.

Move represents an adversary’s movement from one Space to another. If the access is logged

(i.e., the loggedaccess relation connects the two spaces), the attack step will succeed only

if the adversary possesses an access card with the appropriate permission (represented by

the appropriate Space X access element, where X corresponds to the Subsystem attribute

of the space). The access will, however, be detected. If the access is unlogged (i.e., the

unloggedaccess relation connects the two spaces), the attack step always succeeds, because

the adversary can move between the two spaces without restriction, and this attack is not

detected.

An adversary can also perform an Action on a device. There are two main types of ac-

tions: Damage and DirectControl. Both are associated with the Device class. Damage

involves physical destruction of the device. The result of the Damage attack step is that the

power to the device is lost. DirectControl requires the adversary to have physical access

to the cabinet housing the physical device in order to manually control the settings of the

device. The result of the attack step DirectControl changes the controlSetting associated

with the device. Depending on the type of device (e.g., breaker, lights), the effect of changing

the controlSetting can range from turning the device off to controlling the device to achieve

a specific setting (e.g., dimming the lights by 30%).
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Table 2.2: Preconditions and postconditions associated with attack steps

Attack Step Precondition Postcondition

Move
Access: Space X
Space: PhysicalPresence

Space: PhysicalPresence
Access: AssetAccess

Damage Access: AssetAccess Device: Power
DirectControl Access: AssetAccess Device: controlSetting

Overheat Device: Temperature Device: Power
PowerOff Device: Power Device: controlSetting

AffectsPower Device: controlSetting Device: Power
AffectsTemperature Device: controlSetting Device: Temperature

Login
Access: AssetAccess
Access: Access X

Access: RemoteToken
ProgrammableDevice: software

RemoteControl
Access: RemoteToken
Access: Access X
ProgrammableDevice: software

Device: controlSetting

NetworkMove
Access: Access X
ProgrammableDevice: software

ProgrammableDevice: software

DelMovementToken
Access: Access X
ProgrammableDevice: software

Access: Space X

AddMovementToken
Access: Access X
ProgrammableDevice: software

Access: Space X

Cyber Domain: In the cyber domain, there are two possible attack steps: Login and

RemoteControl. The Login action is associated only with the ProgrammableDevice

class, whereas the RemoteControl action is associated with the parent Device class. Much

like DirectControl, RemoteControl changes the controlSetting associated with the device

by using the control software on a ProgrammableDevice to manipulate the settings of

the device. An adversary can also Login into a ProgrammableDevice. The result of the

Login attack step is that the adversary is allowed to gain access to the control software. If the

ProgrammableDevice has networkConnections to other ProgrammableDevices, the

adversary can perform the NetworkMove attack step to gain access to the other networked

hosts. Depending on the system role that is used to perform the Login action (which

are represented by the appropriate Asset X access element, where X corresponds to the

Subsystem attribute of the device), the adversary can then perform the RemoteControl

action for devices that the adversary has permission to control

Information Domain: In the information domain, we consider two more specific attack

steps that are tailored to the case study. In particular, they involve either removing per-

missions from or adding them to the adversary’s arsenal. These attack steps are associated
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with the Data class. If an adversary gains access to the BAC server, he or she can use the

RemoveMovementToken attack step to remove all access card permissions (all Space X

access elements, where X is any of the three subsystems) and locks the roller shutters so that

people are unable to move into or out of the station. The AddMovementToken attack

step grants an adversary all access card permissions and thus allows him or her to move

through all rooms in the station.

2.4 CASE STUDY: RAILWAY STATION

In this section, we describe the case study of the railway transit system that we study in

this dissertation. Physical security is an important concern for critical infrastructure systems

such as industrial control facilities. In this chapter, we focus on the physical security of a

railway station. The railway station is a single building with one or more railway lines

running through it. The railway system we studied is located underground, and the railway

lines are housed in a tunnel. We will reuse this particular railway station in Chapters 4

and 5.

The railway station contains many rooms that house the equipment necessary for running

the station and its portion of the railway track. Each room serves a specific function, and

there are multiple rooms that share the same function. These rooms are not accessible to

the general public. Staff members possess access cards that have been granted permissions

by the Building Access Control (BAC) server, thus allowing them to move through parts of

the station according to their system role (e.g., maintenance staff, station operator).

The devices control the movement of trains (e.g., signaling, traction power) and people

(e.g., escalators, roller shutters). Other devices control the environment of the station and

track (e.g., fan, water chiller). The environment of a space also affects the functioning of

devices and movement of people. For example, high temperatures can cause a device to

overheat and trip, or cause a fire that will result in evacuation of commuters.

2.4.1 System Instance Diagram

We constructed a system instance diagram that represents our railway station case study.

The system architecture and the relations among the devices are modeled using the con-

structs we defined in our ontology. We chose the following set of representative rooms:

• PSC: Houses cyber hosts that station operators use to monitor and control the devices

in the station.
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• Server Room: Houses the Programmable Logic Controllers (PLCs) that control the

operation of other devices, and the Building Access Control (BAC) server that manages

accesses to the doors and roller shutters.

• Traction Power (Power Room): Houses the equipment that controls the power to

the track.

• Signaling (Signal Room): Houses the servers that communicate with trains on the

track to control their movement as they pull into and leave the station.

• Water Chiller (Environment Control Room): Houses equipment that controls

the temperature in the station.

The system instance diagram is depicted in Figures 2.3 and 2.4. The layout of the station

and the devices within the rooms is shown in Figure 2.3, and the relationships among the

devices are shown in Figure 2.4.

2.5 ADVERSARY PROFILES AND GOALS

We now define the adversary profiles and their goals. The two main assets that an adver-

sary would target are the trains and the commuters within a station. For example, affecting

the movement of trains includes delaying trains to affect service revenue, and acceleration of

trains to endanger human lives. Targeting the movement of people can cause mass evacua-

tion and chaos, which can lead to significant injuries caused by a panicking crowd. Affecting

the system environment might consist of creating fire or smoke within the station or tunnel.

Within the same threat model, we can define different types of adversary profiles based

on their skills, their system access, and their preferences for remaining undetected. Each

attack step requires some preconditions to be satisfied before it can be attempted, e.g., the

adversary’s skill in an activity, or the adversary’s access permissions to a system component.

So depending on the adversary profile, some of the attack steps that we defined earlier can

or cannot be attempted. We now define different types of adversaries who differ in system

access and skill level.

The accesses that an adversary may have are (1) permissions to perform the Move attack

step to enter a Space, and (2) permissions to perform the DirectControl, RemoteCon-

trol, Login, or NetworkMove attack steps to control an Asset. We define three types of

adversary profiles: an Outsider adversary with skills to break door access locks, a Privi-

legedInsider adversary who has gained access to all types of legitimate access cards, and

an Insider adversary. Table 2.3 shows the accesses that those adversaries possess.
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We define four goals that the adversary wants to achieve: (1) stopping train movement

(TrainStop), (2) locking the station exits (LockExits), (3) controlling the temperature in

the station (TempCtrlOff), and (4) controlling the trains’ movements (TrainCollision).

The first goal halts the movement of trains (Train) and thus disrupts system service.

More specifically, it is represented by either switching the value of the power state variable

of the Track Device from 1 (On) to 0 (Off), or switching the value of the power state

variable of the Signals Server Device from 1 (On) to 0 (Off). The second goal affects

the commuters’ movements (BAC Server).2 The third goal affects the station’s environment

(Temp Control) and is represented by switching the value of the temperature state variable

of the Temp Control Device from 1 (On) to 0 (Off). Finally, the fourth goal affects system

safety (Train) and can result in train collisions or derailment. It is represented by switching

the value of the controlSetting state variable of the Train Device from 1 (On) to 0 (Off).

2.6 EXPERIMENT SETUP

We input our system instance diagram and adversary models into the ADVISE Meta

tool, which used our defined ontology to reason on the inputs needed to generate an AEG.

Figure 2.5 shows the generated AEG, and Figure 2.6 shows a portion of the AEG for an

Asset. We describe the parameters of the model and discuss the results in the following

subsections.

We used the tool to simulate the actions taken by an adversary profile and calculated

metric values for that set of actions. The metrics we defined are (1) the total cost of

performing attacks, (2) the number of attack steps needed to accomplish a goal, and (3) the

fraction of attack steps that are likely to be detected. Those metrics describe the different

trade-offs that an adversary will make when attacking the system. We analyzed the resulting

metric values to obtain insights regarding (1) the possible sequence of actions taken by an

adversary, (2) the assets that require further protection, (3) the user actions that require

further monitoring, and (4) the set of adversaries that pose the highest risk to the system’s

security.

For each attack step, we defined (1) how much it costs the adversary to attempt the attack

step and (2) the probability that the attack step will be detected by a defender. Those

settings will impact the adversary’s decision-making process when he or she is choosing

among different attack paths.

The cost of an attack step is quantified in terms of the expert knowledge and physical effort

2Although these access elements refer to the adversary’s access, we assume that removal of those elements
would also remove the access of all other (benign) employees too.
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Figure 2.5: The full attack execution graph.

Table 2.4: The cost incurred by an adversary and the detection probability of each attack
step. If the adversary has physical access to a device, damaging that device has a cost of 3;
otherwise, damaging that device has a cost of 10.
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Cost 1 3 or 10 8 7 3 5 5
Detection Prob 0 1 0 0 0 1 1

required to execute the attack. The cost is a relative score that is an integer from the range of

1 to 10, where 1 represents the least effort and 10 represents the most effort. The probability

that an attack will be detected by a defender is a floating value that ranges from 0 to 1. We

assume that as a preliminary defense, the defender can monitor the devices through CCTV

cameras in the rooms, and can monitor the state of the commuters by direct observation.

Based on our understanding of the system and possible attacks as well as discussions with
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Figure 2.6: A snippet of the attack execution graph for an asset.

our railway system collaborators, we set the parameters as shown in Table 2.4.

We assigned the lowest cost to the Move action step, followed by Login. Moving through

the spaces has the lowest cost, followed by logging into an asset or damaging an asset to

which the adversary has physical access. After logging in, an adversary can remotely control

devices. Doing so requires knowledge of how to operate the control software through the

Human Machine Interface (HMI) (which abstracts out the details of the physical controls)

of the host, so the cost of the RemoteControl action is higher than that of Login. On

the other hand, directly controlling the asset (DirectControl) requires more knowledge
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than remotely controlling the asset, since the adversary needs to know which component to

control. Permissions-related attacks (AddMovement,RemoveMovement) also require

intimate knowledge about the building’s layout and permission rights, so their costs are

moderately high. Finally, the Damage attack has the highest cost if the adversary does

not have physical access to the asset, because of the physical effort required to penetrate

the industrial cabinet and access the asset within. On the other hand, if the adversary

has physical access to the asset, the Damage attack has a much lower cost, because the

adversary can use his or her bare hands to disconnect the wires connecting the asset to the

system infrastructure.

Damage and permissions-related attacks will always be detected, because the effect of the

attack is obviously malicious. The DirectControl, Move, Login, and RemoteControl

attacks will not be detected, because the action can be mistaken for a typical maintenance

routine. Finally, the Move, Login, and RemoteControl actions are logged and associated

with the credentials in possession of the attacker (where the credentials could be stolen,

forged, or the adversary’s own identity). However, since we assume that the defender does

not actively scan through the collected logs for malicious activity, the probability of detecting

the attack is 0. In the next subsection, we will introduce a defense mechanism that alerts the

defender when suspicious movement is detected, and we then adjust the detection probability

of the Move action accordingly.

2.7 RESULTS OF SECURITY ANALYSIS

In this section, we present the results of our simulations and discuss the insights garnered

from the results, identifying areas in the system that require additional defenses. Table 2.5

shows the resulting metrics for each adversary profile (with the exception of the Privi-

legedInsider).

Attack Paths From the simulation results, we find that all adversaries, except the access

control staff, can achieve the TrainStop goal by damaging or controlling devices in the

rooms. The TempCtrlOff goal is achievable by all the adversaries except the power, signals,

and access control staff, whose access to the system is more specialized or limited. Similarly,

the LockExits goal is achievable by all adversaries except the power and signals staff.

Finally, the TrainCollision goal is achievable only by the station operator, server, and

signals staff, because the attack requires specific control of the signals server.

We can see from the simulation results that although the building access control system

allows staff to move only into rooms within their job roles, staff are still capable of affecting
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Table 2.5: Calculated metrics for each adversary profile. The different possible attack steps
(excluding actions that represent physical consequences) are listed.

Cost Detect
Attack
Path

Length
Attack Steps Goals

Outsider 12 or 13 3 or 4 7–16
Damage: PB 2, 4, or 5,

Temp Control, Power
System, Signals Server

TrainStop
TempCtrlOff

LockExits

Cleaner 12 or 13 1 7–16
Damage: PB 2, 4, or 5,

Temp Control, Power
System, Signals Server

TrainStop
TempCtrlOff

LockExits

Station
Op

12 or 13 0 or 1 7–16

Damage: PB 2, 4, or 5,
Temp Control, Power
System, Signals Server

Login: Host
ControlSoftware: PLC
RemoteControl: Power
System, Temp Control,

Signals Server

TrainStop
TempCtrlOff

LockExits
TrainCollision

Env
Ctrl

5 or 10 0 or 1 8–15

Damage: PB 2,
Temp Control

DirectControl: PB 2,
Temp Control

TrainStop
TempCtrlOff

Server 11 or 13 0 7–9

DirectControl: PB 3
Login: PLC

RemoteControl: Power
System, Temp Control,

Signals Server

TrainStop
TempCtrlOff

LockExits
TrainCollision

Power 6 or 11 0 or 1 7–9

Damage: PB 4,
Power System

DirectControl: PB 4,
Power System

TrainStop

Signals 6 or 11 0 or 1 7–9

Damage: PB 5,
Signals Server

DirectControl: PB 5,
Signals Server

TrainStop
TrainCollision

Access
Ctrl

6 or 11 0 or 1 7–9
Damage: PB 3

DirectControl: BAC
Server

LockExits

devices in different rooms to achieve their goals. In particular, the environment control

staff can cut power to the track despite not having access to the power room or the server
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room that controls the device logic. That attack path could easily have been missed by

a human analyst who did not consider the physical consequences of changing a device’s

temperature. Thus, it is important not to overlook noncritical staff members or assume

that a malicious action will remain contained within a room. The effects of a noncritical

staff member’s actions, however, take much longer to propagate through the system than

those of other adversaries, so the practitioner has more time to catch the attack before the

adversary’s goal is achieved. Thus, it is crucial to implement detection mechanisms that

monitor changes in physical processes.

Attack Steps We find from our simulation results that the Damage action is the most

commonly used action by all the adversary profiles and often targets powerboards. Since the

outsider, cleaner, and station operators have physical access to all rooms, they can perform

the Damage action on the appropriate device to achieve any goal. Thus, the cost to damage

equipment, specifically powerboards, should be increased via additional physical guards. We

also note that none of the insiders were detected unless they physically damaged equipment.

Having a staff member escort a cleaner through the premises reduces the chance that the

cleaner will be able to perform malicious actions. However, that would not be enough to

detect malicious maintenance staff or station operators, so a specialized detection mechanism

is needed to distinguish between malicious actions and normal actions. In particular, we

need to monitor physical movements, host logins, and actions performed using the control

software.

Adversary Stealth During an adversary’s decision-making process, he or she may have a

choice of several attack paths. An adversary chooses one of the attack paths based on his or

her preference of either minimizing the cost of the attack path or reducing the risk of being

detected by a defender. We want to investigate which attack paths (which correspond to

use of different access cards) an adversary will take, given differing levels of stealthiness.

In particular, we want to investigate the deterrent effect on attackers of putting in place

an intrusion detector for malicious physical movement. We model the detector as a fixed

detection probability (0.5) for the Move attack step. In other words, the attacker has a

50% chance of being detected each time he or she moves into a space that requires a card

swipe (loggedAccess).

We represent the adversary’s stealthiness with a preference weight (which is then used

in the decision-making process). A weight of 0 implies that the adversary does not mind

being detected; a higher weight implies that the adversary cares more about remaining

undetected. We vary the preference weight from 0 to 10 and observe which access cards the
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PrivilegedInsider uses to achieve the TrainCollision goal.3

The simulation results show that for weights between 0 and 8, the adversary uses the

signals staff member card to access the signaling room. If the weight is above 8, the station

operator staff member card is used to access the PSC.

That shows that the stealthiest adversaries, i.e., those with higher weights, will use a

station operator’s access card to enter the station. Since the probability that the adversary

will be detected increases with the number of physical movements he or she takes, a stealthy

adversary will opt to take the shorter paths through a station, at the cost of an increased

amount of effort needed to conduct the attack. System practitioners should thus focus their

efforts on detecting the subsequent actions of that adversary that include logging into the

hosts and using the control software to perform actions.

Summary In conclusion, the adversaries that pose the biggest threat to the system in

terms of shorter time (or path length) to achieve goals and lower detection probability are

the server staff and station operators. When considered in combination, the outsider together

with the access control staff may also pose a problem, since the access control staff member

is able to grant access to the station. Our results also show that the inclusion of a detector

for malicious physical movement causes an adversary to adjust strategies by choosing shorter

paths through a building at the cost of increased effort in executing the attack.

2.8 RELATED WORK

Analysis of system security requires significant manual effort from the practitioner. One

way to reduce the practitioner’s burden is to use a common ontology or library that can be

applied to multiple similar systems. Ontologies have been used to build a knowledge base

of vulnerabilities and known attacks [30, 31]. The tool P 2CySeMoL [32] also builds up a

meta model that is based on a library of attack steps and countermeasures. Well-established

tools such as the TVA-tool [25, 26] use a predefined library of exploits. However, these

ontologies and libraries focus solely on the cyber domain, and thus are lacking when applied

to cyber-physical systems.

Chen et al. [12] analyzed a train control system and a mobile transportation app using

attack trees and a Failure Modes, Vulnerabilities and Effects (FMVEA) analysis. They

showed that the key challenges in analyzing a cyber-physical system’s security are those of

identifying attacks from both the cyber and physical domains, and tracing the consequences

3The preference weight can be any integer, but we will see later that values above 11 do not affect the
results.
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of attacks in the physical domain. For example, Marronne et al. [33] combined two Unified

Modeling Language (UML) models, one addressing physical protection of a system and the

other addressing cyber protection, to perform vulnerability analysis in critical infrastruc-

ture systems. They applied model transformations to the extended language to obtain the

corresponding Bayesian Networks and Petri Nets for the system. They used a small use

case of a railway trackside shelter to evaluate their approach. The TREsPASS project [34]

developed an attack navigator [35] that takes in adversary profiles and a library of attack

patterns to generate an attack tree. Those attack patterns can span the cyber, human, and

physical domains. Although the project has ended, the authors aim to explore the usage of

ontologies.

Our approach also uses a high-level language to represent basic concepts and attack steps.

However, the ontology that we built aims to address the physical consequences of attacks in

far more detail. To address the effects of attacks in the physical domain, Peter et al. [36]

extended attack graphs to model the details of physical processes in a system. They modeled

the overheating of a transformer in a substation and show the key attack steps that need to

be performed. However, their approach is very specific and difficult to apply to a diverse set

of devices in a complex setting.

2.9 CONCLUSION

System practitioners often evaluate the attack surface of cyber-physical systems purely

from the cyber perspective, without taking into consideration the cascade effect of physical

consequences or actions that can impact the system negatively. In this chapter, we used the

ADVISE meta modeling approach to analyze a railway station.

We constructed an ontology that describes the assets and spaces in the system, and physi-

cal relations between them. We also defined attack steps that model the physical effects, such

as causing damage, device overheating, and powering off. That ontology can be reused on

other cyber-physical system case studies. Using the ADVISE tool, we generated an AEG for

a small portion of the railway station and simulated different adversary profiles’ movements

through the station.

The results show that adversaries can intelligently target a device within their reach,

causing a cascade that leads to a bad system state. When a detection mechanism for

physical movement is present in the system, the model shows how adversaries adjust their

strategy in response.

That result motivated our work in Chapter 4, which involves building such an intrusion

detector for malicious physical movement in a building. In Chapter 3, we will delve deeper
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into the system architecture and cyber protocol to deduce the possible cyber attacks that

can affect system safety (i.e., the TrainCollision goal). Then, we can enhance our ontology

and system instance diagram to include those cyber attacks, and rerun our analyses to

obtain insights into what other defense mechanisms are needed to harden the security of the

system.
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CHAPTER 3: CYBER-PHYSICAL SYSTEM ASSESSMENT: SAFETY
ANALYSIS

As safety-critical systems become increasingly interconnected, a system’s operations de-

pend on the reliability and security of the computing components and the interconnections

among them. Therefore, a growing body of research seeks to tie safety analysis to security

analysis. Specifically, it is important to analyze system safety under different attacker mod-

els. In this chapter, we develop generic parameterizable state automaton templates to model

the effects of an attack. Then, given an attacker model, we generate a state automaton that

represents the system operation under the threat of the attacker model. We use a railway

signaling system as our case study and consider threats to the communication protocol and

the commands issued to physical devices. Our results show that while less skilled attackers

are not able to violate system safety, more dedicated and skilled attackers can affect system

safety. We also consider several countermeasures and show how well they can deter attacks.

3.1 BACKGROUND AND MOTIVATION

Cyber-physical systems involve the monitoring and control of physical processes and de-

vices through the interactions among computing elements over a network. Many cyber-

physical systems have an impact on human life, especially critical infrastructure systems

such as the smart grid and transportation systems. For that reason, much effort has gone

into ensuring that such cyber-physical systems are safe. Safety of a system means that the

system will never enter a bad state that adversely affects people and the environment. For

example, safety in the context of a railway system refers to the absence of collisions and

derailments.

In practice, a safety analysis is performed to ensure that a system is safe despite com-

ponent faults and non-malicious human or system errors. The safety analysis is typically

conducted using approaches such as hazard analysis, failure mode and effect analysis, formal

verification, and fault tree analysis [37]. However, as the control of physical processes is in-

creasingly conducted remotely over communication links, the safety of a system is dependent

not just on the reliability of the system components and their interactions but also on the

security of the messages sent over the network. It is also necessary to consider the system

security at each architectural layer because of advances in cyber attack strategies. Many

researchers, domain experts, and government bodies have thus identified the need for cyber

security in safety-critical systems [5, 6] and have proposed different approaches for merging

safety analysis and security analysis [7–9].
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Safety-critical systems can be targeted by a variety of malicious actors with differing levels

of skill and system access, like nation-state attackers and hacktivists. For example, in 2010,

the Stuxnet worm infected nuclear power facilities, resulting in the failure of many uranium-

enriching centrifuges [2]. As seen from the incident, it is hard to guarantee a system’s safety

when it is under the threat of a nation-state attacker willing to dedicate time, energy, and

resources to infiltrate the system. While it may not be possible to assure complete safety of

a system, it is important to identify the necessary qualifications a malicious actor needs in

order to carry out an attack that violates system safety. A safety case can be built using

that knowledge as supporting evidence [38], and a security practitioner can focus efforts on

strengthening the system against such attacks.

In this chapter, we model cyber-physical systems and human actors’ capabilities using state

automata. For each attack capability, we define a generic model pattern that represents the

effects of an attack. This model pattern can be appended to the appropriate components

in the system state automata. We can then generate a state automaton that describes both

the normal workings of a system and the actions of an attacker on that system. As a case

study, we analyze the safety of a railway system relative to various types of malicious actors.

We consider several classes of attackers with respect to their capabilities and system access,

motivated by the existing literature on the feasibility of various attacks. Based on our

collaboration with railway industry partners, we constructed a hybrid automata model of a

railway system by using UPPAAL [39], a tool for modeling and verifying real-time systems.

Finally, using statistical model checking techniques, we assessed the safety of the system

under various input configurations of the trains in the system.

In summary, the contributions in this chapter are as follows:

• We modeled cyber-physical systems and human actors’ capabilities using state au-

tomata. We also constructed a framework for generating automata components in

UPPAAL that represent the effects of an attack on a system. That allows us to gen-

erate a state automaton that can be used for analysis of different attacker models.

• For each set of attacks, we verify the system’s safety by using statistical model checking

techniques. We inspect those attacks that induce a violation of safety to draw insights

into the system components that are more vulnerable to attack and the possible coun-

termeasures.

• We describe how we applied our framework to conduct a safety analysis of a railway

system subjected to a variety of malicious attacks.
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• We apply our security analysis approach from Chapter 2 to determine which attacks

are likely to be executed by an attacker to compromise system safety.

3.2 RELATED WORK

For many years, the well-grounded theory of formal methods has been used to prove

the safety of industrial systems [40]. One of the most well-studied and successful applica-

tions of formal methods is on verifying the safety of railway signaling systems [41]. With

the rapid evolution of the traditionally human-operated railway systems into a more auto-

mated communications-based system, the target of the formal verification techniques has

also changed, so that they now focus on proving the correctness of software and application

data [42–44]. Since the communication network also plays an integral role in the system,

work has also been done to verify that service availability is not affected by network degra-

dation or failure [45].

With the rise in cyber attacks on safety-critical systems, more researchers have investi-

gated the safety of railway systems under communication and command errors. Chen et

al. [12] conducted a security analysis of railway systems using methods from both the safety

and security engineering domains, and show the need for a cyber-physical perspective to

study the complicated physical consequences of cyber breaches. In [46], Ghosh et al. mod-

eled the physical train movement and communication with the servers in the network. The

safety property was specified as maintaining a safe distance between two trains. The authors

found counterexamples of the system’s being in an unsafe state when there were errors in

the application data or in the movement authority that determines the maximum distance

the train is allowed to move. In [47], the authors focused on threats to network communi-

cation. They simulated anomalies that included unknown information from track sensors,

unexpected train data, and unauthorized command messages. In [48], the failure logs of a

real accident were used in failure analysis to discover the source of the accident, which was

traced to communication failures. Finally, Cappart et al. [49] used statistical model checking

to verify that application data were accurate and that trains would not collide when there

were potential errors in application data and in locking points.

However, those approaches consider only a few specific attacks (e.g., an inaccurate move-

ment authority) and do not provide a comprehensive understanding of safety when the

system is subjected to a variety of attacks. Bloomfield et al. [50] presented a risk assessment

of a national railway system and considered the impact of various attacker models on the

system design. The authors used a fault tree analysis to conduct their risk assessment based

on expert knowledge and analysis. However, that approach may miss many potential com-
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binations of attack vectors that affect system safety. Thus, a more automated and formal

approach is needed to investigate the space of potential attacks.

Rocchetto and Tippenhauer [51] used the CL-Atse tool to find counterexamples (i.e.,

potential attacks) on a real-world water treatment testbed, given a Dolev-Yao attacker

model [52] that they extended to include physical-layer interactions with the system [53].

However, their approach does not take into account network topology and assumes a single

network channel. Puys et al. [54] considered both the Dolev-Yao attacker model and three

other attacker models that each had a subset of the capabilities of the Dolev-Yao attacker.

However, they did not consider physical-layer interactions in the attacker model. The au-

thors also considered the network architecture and the position of the attacker within the

system.

Since both of those approaches consider a generic attacker, the state space of the model

is extremely large and, given a more complicated system, would result in state-space ex-

plosion. In addition, the counterexamples that are found from such a model may not give

an intuitive insight into the circumstances under which attack capabilities translate into

an unsafe situation. In our work, we present a more parameterizable attacker model that

allows the modeler to define the situations in which an attack is executed. We also consider

physical-layer interactions and the attacker’s position.

3.3 STATE AUTOMATON MODEL

Our approach to verifying the safety of a system is shown in Figure 3.1. The first step is

to model the normal system operation as a state automaton, and define the model templates

for attacks. Then, we insert those attack templates into the system automaton to create a

parametrizable state automaton. Next, we generate the full state automaton with the given

parameters and use UPPAAL’s model checker to verify that the state automaton satisfies

the safety property. In this section, we describe the first step of modeling normal system

operation and defining model templates.

We use UPPAAL to model and verify a cyber-physical system. The tool allows us to specify

networks of timed automata and verify properties, which are specified using temporal logic,

on the automata.

Definition 3.1. We use B(V ) to denote a Boolean constraint over a set of symbols (or

variables) V . A timed automaton is a tuple (V,C, L, l0, I, A,E) where

• V is a set of variables,
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Figure 3.1: The general workflow of our approach.

• C is a set of clocks,

• H is a set of channel names,

• L is a set of locations (or states),

• l0 ∈ L is the initial location,

• Sync = {ch!, ch?|ch ∈ H} is a set of synchronization actions over the channels,

• I : L→ B(C ∪ V ) maps locations to invariants over clocks and variables,

• A : 2V × 2C → 2V × 2C is a set of actions that does an assignment of variables

w = exp(2V ), w ∈ V to an expression over the variable values, and clocks c = n, c ∈
C, n ∈ N+ to a natural number, and

• E ⊆ L× A×B(C ∪ V )× Sync× L is a set of transitions.

The system moves from one state to another by taking transitions. A transition (l, a, g, l′) ∈
E is fired if its guard g (i.e., a condition on variables and clocks) is enabled. If the transition

is taken, its action a (i.e., assignment of variables and clocks) is performed1. The UPPAAL

1UPPAAL allows custom-coded functions in the actions to perform the assignment of variables and clocks.
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modeling language also extends the timed automata with concepts such as synchronization

that allow state automata to communicate via channels [39]. More specifically, two or more

automata will take a transition at the same time if they are synchronized on the same chan-

nel chan. Messages are sent on a channel through use of the syntax chan!. The sending of

the messages are synchronized by (possibly multiple) receivers via the syntax chan?.

Timed automata model the progression of time, and networks of such timed automata

model concurrent processes, so timed automata are very suitable for modeling the network

communications and physical processes in a cyber-physical system. Figure 3.2 shows a small

timed automaton for a cyber-physical system that consists of a moving vehicle and its cyber

controller.

Now, we describe how we build a model of a cyber-physical system using timed automata.

We use variables to model the physical attributes of a system. In our small example in

Figure 3.2a, the physical attribute of the system that is important to its state is the velocity

of the vehicle, which is given by the variable v. The evolution of the physical process

is governed by differential equations, e.g., v̇ = c, an approach that is supported by the

Statistical Model Checking (SMC) extension of UPPAAL [55].

Digital data such as memory contents and network message contents are similarly modeled

as variables. The communication between the cyber controller and physical component is

achieved using synchronization over the channels, e.g., urgent, amsg, dmsg in our small

example.

Then, we can represent the safety property of the system as an invariant of the system

Inv(System). For example, the formula A�(0 < v ≤ 10) specifies that the vehicle’s velocity

must always remain below a speed limit of 10 and be non-negative in value.

3.3.1 Attacker Model Template

We represent the attack capabilities as transformation functions ∆ over the state automa-

ton representing the cyber components. In general, the attacker capabilities we consider in

this chapter are (1) removing, (2) delaying, and (3) inserting network messages and control

commands (i.e., the server’s sending of a signal to set points). For each class of attack, we

define a generic model pattern that can be applied to a specified target.

The circumstances under which an attack is performed can be either probabilistic or

deterministic. For example, the attack mentioned in [56] that spoofs messages between the

trainborne system and server involves a probabilistic chance of being able to successfully

craft a message. On the other hand, a jamming attack relies on the location of the jammer

in the case of certain wireless communications, and as such can be represented as a guard.
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Decelerating

 𝑣 = −𝑐, 𝑐 > 0

Stopped

 𝑣 = 0, 𝑣 == 0

Accelerating

 𝑣 = 𝑐, 𝑐 > 0

Constant 
speed

 𝑣 = 0, 𝑣 > 0

𝑆𝑦𝑛𝑐: 𝑎𝑚𝑠𝑔?
𝐴𝑐𝑡𝑖𝑜𝑛: 𝑐 = 2

𝑆𝑦𝑛𝑐: 𝑢𝑟𝑔𝑒𝑛𝑡?
𝐴𝑐𝑡𝑖𝑜𝑛: 𝑐 = 5

𝐺𝑢𝑎𝑟𝑑: 𝑣 ≥ 10𝑆𝑦𝑛𝑐: 𝑑𝑚𝑠𝑔?
𝐴𝑐𝑡𝑖𝑜𝑛: 𝑐 = 2

𝐺𝑢𝑎𝑟𝑑: 𝑣 ≤ 0

(a)

Idle

𝑆𝑦𝑛𝑐: 𝑎𝑚𝑠𝑔!
𝐺𝑢𝑎𝑟𝑑: 𝑒𝑥𝑡1

𝑆𝑦𝑛𝑐: 𝑑𝑚𝑠𝑔!
𝐺𝑢𝑎𝑟𝑑: 𝑒𝑥𝑡2

𝑆𝑦𝑛𝑐: 𝑢𝑟𝑔𝑒𝑛𝑡!
𝐺𝑢𝑎𝑟𝑑: 𝑒𝑥𝑡3

(b)

Figure 3.2: Small state automaton example of (a) a train’s physical movement, and (b) a
controller for that train. The controller receives external input ext1, ext2, ext3 from a
human.
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We represent that circumstance as a branch point when probabilities are involved or as a

committed location when deterministic decisions are involved. The two can be combined

when the circumstances involve both a deterministic choice and a probabilistic bound.

We first model the class of attacks that involve removal of a network message or com-

mand. If the attacker is trying to remove a network message, the target of the attack is

a transition with a synchronization channel message. If the attacker is trying to remove a

command, the target is a transition with the corresponding action. Targeting of a message

can happen on either the sender’s or receivers’ side. If the sender’s message! is targeted,

all receivers are equally affected by the change. On the other hand, if a receiver’s message?

is targeted, only that receiver is affected. Removal of a network message involves removal

of the synchronization message? or message! from the transition and removal of any other

actions that refer to the assigning of the message contents. Removal of a command involves

removal of the actions associated with the command. We show in Figure 3.3a an attack that

probabilistically succeeds in removing a command.

Delay of a network message or command (u, a, g, v), u, v ∈ L by t time units involves

addition of a location x and a new clock delayT imer ∈ C. The invariant of x is I(x) =

delayT imer ≤ t. The transition (u, a, g, v) is replaced by (x, a, g′, v) with a guard g′ =

delayT imer ≥ t, which implies that the delayed time has elapsed. A transition (u, a′, g, x)

is added with the update a′ = delayT imer = 0 to start the timer. We show in Figure 3.3b

an attack that deterministically decides when to delay a network message.

Finally, insertion of a network message or command is more circumstantial than the

first two classes of attacks. In general, we can model such an insertion by creating a new

automaton and modeling the circumstances under which the insertion should take place.

The insertion itself is modeled by a transition with either a synchronization message! in

the case of network messages, or updates in the case of a command.

Thus, we can model a set of attacker capabilities as δ ∈ 2∆ and apply that transformation

δ to the system automaton System. Then, we formulate the problem to be solved in this

chapter as the following question: Given δ ∈ 2∆, is the invariant Inv(δ, System) satisfied?

3.4 CASE STUDY: RAILWAY SIGNALING SYSTEM

Over the years, railway systems have started to integrate cyber technologies and infras-

tructure to improve system efficiency with regard to route capacity, that is, the number of

trains that can be driven on the rail lines while maintaining safety conditions. The safety

condition is measured by the acceptable distance between trains, or headway.

Previously, the train signaling system was a fixed-block system wherein train locations
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(a)

(b)

Figure 3.3: Model template that (a) removes a command with probability 0.3, and (b)
delays a network message by 2 time units if the train is on a given track.

were determined by old track circuits located at fixed intervals on the rail tracks. Now, the

train signaling system has evolved into a moving block system whereby trains constantly

relay their locations to a controller via a networked system, i.e., a Communication-Based

Train Control (CBTC) system. This increased precision in identifying the location of trains

allows the system to enforce a shorter headway between trains.

Although the quality of system service is better with a CBTC system, the dependence

on cyber infrastructure also increases the system’s susceptibility to attacks. The impact of

41



Figure 3.4: The architecture of the signaling components of the railway system.

such attacks can be very severe, ranging from service delays to derailment. For example, as

mentioned in Section 1.4, a Polish teenager once rewired a remote control to communicate

with a wireless switch junction, causing derailment of a train and injury of twelve people [16].

It is thus important to understand the potential extent of malicious actors’ impact on railway

system safety.

In this paper, we focus on the signaling components of the railway system, because they

directly affect the speed of the trains and the routes that they take. While the general

workings of the signaling systems are the same across all railway systems, railway compa-

nies differ in the exact communication protocols used and divisions of computation among

the architectural components. We modeled our signaling system based on information we

obtained via collaboration with our railway system partner. Although our results are based

on that model, they are easily generalizable to other signaling systems.
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Figure 3.5: The protocol underlying the movement of trains as they approach a branch in
the tracks. The numbers in circles indicate the sequence of messages sent, and the black
undirected lines represent the tracks.

3.4.1 Signaling System

The signaling subsystem consists of distributed components in three different locations:

the Control Center (CC), the station, and the trackside, as shown in Figure 3.4. The

Automatic Train Supervision (ATS) server in the CC manages the train schedules and routes,

while the Automatic Train Control (ATC) server controls the safe distance that trains are

allowed to travel. The Computer-based Interlocking (CBI) server manages the point machines

that operate mechanical switches (i.e., points). Points are located at track branches and

guide the train from one track to another, as shown in Figure 3.6.

Permanently fixed beacons placed at regular intervals across the length of the track trans-

mit absolute positions to the trainborne system on the train. The train regularly transmits

its location in a train status update message to the ATC and ATS server. Based on the

information collected about the current system state (i.e., train locations, points’ statuses),

the ATC server generates a movement authority (MA) for each train that describes the max-

imum distance the train can travel before encountering an obstacle. The train then adjusts

its speed based on the received MA.

Communication between the trackside equipment and train and the station servers is
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(a)

(b)

Figure 3.6: The railway track configuration at a station. (a) The labels represent track
segments, and the black circle represents a point that switches the tracks so that a train
can move on either track T4 or T5. (b) Graph representation of (a) during two different
point configurations. Given a certain point configuration, parts of the graph may be
disconnected because the train is unable to move to that segment of the track.

through a wireless waveguide system placed along the entire stretch of the track. Commu-

nication among the servers is through a wired backbone network that is isolated from the

Internet.

When a train reaches a branch in the tracks, it halts and sends a message to the ATS

server to request a route, as shown in Figure 3.5. The ATS server checks the train’s schedule

and, based on the embedded route tables in its software, will choose the appropriate route

and inform the CBI server to lock the appropriate points. Once the CBI server has locked

the points, it informs the ATC and ATS server of the change in point status. The route is

then confirmed, and the ATS server reserves the set of track segments for the train. The

ATC server sends the new MA to the train, allowing the train to move to the end of the
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Table 3.1: The attacker models described in terms of the positions they occupy in the
system and the potentially affected messages or commands. The numbers in the “protocol
component” column refer to the numbered messages in Figure 3.5, where 0 represents the
train status update.

Position in System
Protocol Component

Affected
Example of

Gaining Position
Train 0, 2, 6 Ride the train

ATC Server 0, 5, 6 Insider, malware
CBI Server 3, 4, 5 Insider, malware

Station Network 0, 2, 3, 5, 6 Insider, malware
ATS Server/CC Network 0, 2, 3 Insider, malware

reserved track segments.

3.4.2 Threat Model

We assume that the attacker does not have direct physical access to the trainborne system

or the trackside devices, because those components are located in places that are hard to

access. For example, accessing the trainborne system involves opening up the car exoskeleton,

and accessing trackside devices involves entering an underground tunnel.

We describe different levels of capability an attacker can possess, while providing examples

of how the attacker could have gained access to such a capability, as shown in Table 3.1. Since

railway systems around the world vary in their implementations of security mechanisms, we

take into consideration both the case in which a certain security mechanism is in place, and

the case in which it is not.

The attacker with the lowest capability level is the outsider who has the least access to the

railway system. However, the outsider can access the system as a passenger, and thus can

interact with the communication between the trainborne system and the waveguide network.

In particular, the attacker can jam communications between the trainborne system and the

rest of the network, as shown in several research papers [57, 58].

Even if current modern authentication and integrity protection levels are provided for

the network messages, a skilled attacker can also spoof messages to and from the train,

given enough time to capture and analyze transmitted messages between the train and

network [56, 59]. Depending on the networked system and authentication of endpoints,

an attacker could also set up his or her own access points and perform man-in-the-middle

(MITM) attacks.

The next attacker we consider is the insider who is a legitimate employee in the railway
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system company. The insider can have physical and/or cyber access to servers and network-

ing equipment. Although insiders may not have all the prerequisite skills for maliciously

manipulating the system, they may be in league with a skilled outsider party who can tai-

lor more sophisticated attacks to be delivered to the system with the help of the insider’s

access. They can then control the physical devices in the system by, for example, sending

commands to the point machines by accessing the CBI server either directly or via injection

of malware through USB ports. (We assume that such malware can tamper with messages

without altering the logical behavior of the server’s programs.)

Depending on the location of the insider within the system architecture (e.g., control

center, station, or a server), an attacker can also manipulate the communication messages

that pass through his or her stronghold. More precisely, the attacker can remove, insert,

modify, or delay those network packets, much like a Dolev-Yao attacker. The insider has a

much higher success rate in attacking the communication messages than the outsider does.

3.5 RAILWAY SYSTEM MODEL

A railway line has many junctions that are utilized for different purposes, like moving

trains to and from the depot or isolating and redirecting trains during emergencies. In this

paper, we model a diamond junction at an end station, as shown in Figure 3.7. We chose

this junction because the four points at this junction are used the most frequently in the

railway line. The points are used to redirect incoming trains to the opposite outgoing track.

A large volume of passengers also passes through this junction. For that reason, it is a prime

target for attackers who wish to cause collisions or derailment.

There are four paths that a train can take in a diamond junction. Trains coming into

the station move from track T6 to T7 and then T8, or from T6 to T3 and then T1. Trains

moving out of the station move from T8 to T5 and then T4, or from T1 to T2 to T4.

3.5.1 Trains

In our model, we allow an arbitrary number of trains to be specified, but we considered

two trains in our experiments, because the system design allows for only two trains in the

junction. However, the analysis can easily be generalized to three or more trains. We

abstract away the length of the train and model the train as a single point on the track,

because only the point of contact matters when dealing with derailment and collisions.

Each train with an id is characterized by its horizontal distance, position on the track
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Figure 3.7: The diamond junction at an end station. Boxes on the track represent the
points and are numbered. The track segments are numbered T1 to T8. Trains travel in the
direction indicated by the dotted arrows.

topology, speed, acceleration, and direction of travel. Thus, each train has the variables

VT = {dist, trackNum, velocity, acceleration, direction} ∈ V .

We simplify the train’s braking curve by specifying a constant acceleration and deceleration

c. We define a Loc automaton with a single state move and the following invariant.

I(move) = dist′ == direction× velocity ∧ velocity′ == acceleration (3.1)

We define a separate automaton that periodically sends a train status update message

(sendLoc?) to the server. We define global variables VM representing the message contents.

The transition with the sendLoc? synchronization has the action VM = VT , which updates

the message contents.

We also define a Control automaton that describes how the train’s movement is controlled,

as shown in Figure 3.8. The trains are initialized in a halted state. When the transition

locFront? is fired, an MA is received, and the action consists of calculation of the distance

at which the train should start braking, DIST THRESH. The train transitions to an accelerated

state with action acceleration = c. When the guard velocity ≥ MAX VELOCITY is enabled, the

train transitions to a fixed-speed state with action acceleration = 0. The train transitions

to a braking state with the action acceleration = −c when its guard direction × dist ≥
direction×DIST THRESH is enabled. When the train stops and has reached a triggering point

that is a fixed distance away from the nearest point, it sends a request route message by
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firing the transition reqRoute!. The message is resent periodically until an MA is received.

3.5.2 Track

While the Loc automaton models the physical distance, the Track automaton models the

discrete position of the train in the topology, as shown in Figure 3.9. We model the topology

of the track by dividing it into track segments similar to those shown in Figure 3.7. The

guards for the transitions in the Track automaton are based on the distance of the train and

the status of the points. When the train derails because of a particular alignment of points,

it transitions to a bad state, DERAIL.

3.5.3 Servers

Each of the servers (ATS, ATC, and CBI) has a separate automaton. The servers start

from an idle state and transition to a processing state when they receive a message. They

then use our custom-defined functions to process the received information. Then they tran-

sition back to the idle state after sending the appropriate message. The automaton for the

process threads in the ATC server is shown in Figures 3.10a and 3.10b. The automata for

the two other servers are similar, so we do not show them.

The ATS server automaton receives train status update (sendLoc?), request route (req-

Route?), and point status update (pointStatus?) messages. The server maintains its local

variables VS, which describe the position of the trains, VS = VM . When the transition

reqRoute? is fired, the action is a function that checks which of the four routes (mentioned

in the previous section) are available; if one is available, it books the path specified by three

track segments (e.g., T8, T5, T4). The transition pointSet! is then fired, sending a message

to the CBI server, with the action that assigns the message contents to global variables. The

contents include the points to be set, and an indication of whether each point should be set

in the normal or reverse position. When the transition pointStatus? is fired, the action is

setting of the route. When the train clears the last segment in its set route (e.g., T4), the

server releases the route.

The ATC server automaton receives train status update messages and point status up-

date messages. When the transition sendLoc? is fired together with the corresponding

synchronization from the train automaton, the action consists of updating of the server’s

local variables and firing of a frontLoc! transition to send an updated MA to the trains’

automata. When the transition pointStatus? is fired, the action is calculation of an up-

dated MA and firing of the frontLoc2! transition. That transition is synchronized with
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(a)

(b)

Figure 3.10: The state automata for (a) the train message thread in the ATC server, and
(b) the point message thread in the ATC server.

the train held at the triggering point, allowing the train to move until it clears its set route.

Finally, when the CBI server automaton’s transition pointSet? is fired, the action is

setting of the POINTS variables’ values as given by the global message variables. Then, the

pointStatus! transition is fired.

3.5.4 Safety Property

In this chapter, we focus on verifying the safety of a railway system. Although service

unavailability can be a large repercussion and affect the railway company negatively, it does

not involve loss of human life. Therefore, in this work, we do not consider service availability

as a property that the system must satisfy. The verification of service availability is discussed

further in Section 6.2.

The safety property is specified in temporal logic and has three requirements, as follows:
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A�(¬Track(0).DERAIL ∧ ¬Track(1).DERAIL) (3.2)

A�(¬(Track(0).T3 ∧ Track(1).T5)∧

¬(Track(0).T5 ∧ Track(1).T3))
(3.3)

A� ( |dist[0]− dist[1]| ≤ 20 =⇒ @p ∈ POINTS s.t.

trackNum[0], trackNum[1] ∈ connection(p) )
(3.4)

where POINTS = {point[i], i ∈ [1, 4]} is the set of points and connection is a function that

maps points to the set of tracks that it connects in the topology. Formally,

connection(p) =

{Ti, Tj} if p = 0,

{Ti, Tk} otherwise
(3.5)

Statement (3.2) means that a train must not transition into a derailed state, i.e., the train

must not run through a point that is not aligned in the right direction. Statement (3.3)

implies that two trains must not be located on tracks that cross each other, i.e., T3 and T5.

Finally, statement (3.4) implies that if the two trains are on tracks that are connected, they

must be separated by a safe distance of at least 20 meters.

3.6 RESULTS OF SAFETY ANALYSIS

In this section, we generate multiple state automata representing the system subjected to

a set of attacks. We then use statistical model checking to verify system safety. If the safety

property is not satisfied, UPPAAL will generate a counterexample showing a possible attack

execution trace that results in an unsafe system state. By varying the set of attacks modeled

in the state automata, we analyze the extent to which attackers will be able to compromise

system safety, and we then propose countermeasures to those attacks.

Since the model we construct is complex and large, the state-space explosion makes it

hard to perform a full state-space exploration. Statistical model checking, however, does

not involve exploration of the full state space to determine satisfiability. Instead, it relies on

generation of multiple simulations of the system and use of statistical reasoning to determine

satisfiability. Although it does not cover all possible system trajectories, it gives a confidence

bound on the probability of the satisfiability. Therefore, we use UPPAAL’s SMC extension

to model check our state automata.

We specify the safety property defined in Section 3.5.4 as the below query in UPPAAL’s
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syntax. We abstract away some syntax and details involved in listing the crossing tracks (i.e.,

T3 and T5) and the set of connected tracks. The model checker will return the probability

that within 100 time units of simulation, the safety property will always be satisfied.

Pr[ ≤ 100]( [ ]

!Track(0).DERAIL ∧ !Track(1).DERAIL ∧

(−20 ≥ dist[0]− dist[1] ≥ 20 ∨ (Track(0) 6= Track(1)

∧ notCrossing(Track(0), T rack(1)) ∧

notConnected(Track(0), T rack(1)) )))

(3.6)

3.6.1 Experiment Setup

The initial parameters to the model include the trains’ starting positions and the status

of the points. There are three possible combinations of valid starting positions: (1) T1 and

T8, (2) T1 and T6, and (3) T6 and T8. There are sixteen possible combinations of initial

point positions. In total, we have 48 input configurations. We set the train status updates

to be sent periodically every 300 ms. The maximum speed of the trains is 33 m/s. Finally,

the length of each straight track segment (T1, T2, T4, T6, T8) is 50 meters.

The SMC extension in UPPAAL allows the modeler to configure the statistical parameters

for model checking. We set the probabilistic uncertainty to 0.001 with a 95% confidence

interval. We conducted the experiments on a Windows 10 Pro machine with a 3.4 GHz CPU

core and 32 GB of RAM.

We consider a subset of the attacks defined in Table 3.1 that have the potential to affect

the system’s safety. Since we do not focus on system availability in this work, we do not

consider attacks that merely reduce the quality of system services, such as by delaying the

sending of the MA to the train. For each of the attacks that we consider, we define in

Table 3.2 the circumstances under which the attack is executed and the extent of the attack.

3.6.2 Results

We tested for system safety under different combinations of attacker capability and input

configurations. The results of our experiments are shown in Table 3.3, where we show the

number of input configurations in which safety was violated. The numbers of runs that

UPPAAL took to decide there was safety or to provide a counterexample ranged between

1,843 and 951,597.
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Outsider

As mentioned in Section 3.4.2, the outsider can access the communication between the

trainborne system and the base stations. The least skilled outsider can jam signals and

potentially delay network communications. Although such attacks can affect service avail-

ability, the attacker will not be able to affect system safety, as shown in Table 3.3.

If the communication channel is not properly secured (i.e., there are no authentication or

integrity checks), an attacker can inject messages into the communication channel with a

probability of 1. Even with current security practices, a skilled outsider can utilize vulner-

abilities in the communication protocol and inject messages, but with a probability of 0.01,

as measured in [56].

We experimented with inserting one message in which the MA was specified as the end of

the track line; that would allow the train to move unhindered as if there were no obstacles.

As shown in Table 3.3, insertion of just one MA message does not affect system safety,

because the ATC server will continue to send MAs that will readjust the train’s movement

to a safe state. However, if such insertions are combined with either delay or removal of the

train status messages, or removal of the MAs, the system safety is impacted.

Delay of the train status messages affects fewer configurations, since the train will only

move past the first track segment and cannot proceed past the second track segment, because

the MA sent to it will ensure that it stops before the second point. It causes unsafe states

when the two trains move into the crossing tracks (T3 and T5) or when the train takes the

wrong path from T1 to T3.

However, removal of the train status messages affects almost all input configurations except

for the case in which the trains are on T1 and T6 and all the points are in the normal state.

Then, the tracks are parallel to each other, and both trains move as per normal.

ATC Server

An attacker positioned at the ATC server can manipulate the MA messages sent to the

trains. Unlike the outsider, the insider has full control over the MA, and thus the execution

of the attack has a success rate of 1.

We consider the case when the attacker sends an MA specifying the end of the line to the

train after it has stopped at the triggering point. Since the attacker does not have control

over the locking of the points and the train status update messages, the attacker cannot

cause an unsafe state when the two trains are on tracks T1 and T6. Because of the locking

of the routes, the two trains will move in parallel with each other. However, for the other
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two track configurations (i.e., T1 and T8, and T6 and T8), the routes of the trains overlap

with each other, and the trains should proceed one after the other. Thus, the attack will

cause either derailment of one train or a collision at the crossing.

CBI Server

An attacker positioned at the CBI server can manipulate the commands sent to the point

machines. We consider the case in which the attacker drops or delays the commands sent

to the point machines while continuing operations as per normal. Since the insider has full

control over the commands, the execution of the attack has a success rate of 1. For the attack

to succeed when it is delaying the commands, we used the model checker to determine that

the minimum delay is 900 ms. The attack affects almost all track configurations unless the

points have already been set in the correct position for both trains. The attacks cause the

trains to derail or move onto the wrong path.

Station Network

Finally, the last attack we consider is the addition of the point status update. The attacker

may be positioned at the CBI server, at the ATC server, or within the station network. If

the attacker is within the servers, the attacker has full control, and thus the attack always

succeeds. Otherwise, if the attacker is within the station network, the attack has only a 0.01

probability of success, because of the security mechanisms in place. The effect is similar to

that of an injection of an MA from the ATC server, so this attack affects the same number

of track configurations.

3.7 SAFETY COUNTERMEASURES

Several safety countermeasures may be in place in the system. In particular, we consider

the following safety measure: if a train does not receive an MA within a time limit, the train

will come to an emergency stop. This safety measure affects how far the train will move

even after an attacker has successfully injected a single MA message.

After adding that safety measure, injection of a single MA message and removal of the

train status update do not affect as many configurations as before the addition of the safety

measure. To affect as many configurations as before, the attacker needs to inject more MA

messages to prevent the train from coming to an emergency stop. We used the model checker

to determine that the minimum number of messages that need to be injected is nine.
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Also, with the addition of the safety measure, an attacker could drop MA messages to force

a train to stop while he or she is injecting (or modifying) train status updates to trick the

servers into believing that the train has cleared its route. We created a separate automaton

that modeled the movement of an imaginary train A that accelerates faster than the actual

train. The location of the imaginary train is then used in the train status updates after the

train has passed the triggering point. When the servers believe that train A has cleared its

route, the other train will be given the go-ahead to move. The two trains will then collide,

since train A has stopped before its expected destination, unless the tracks are parallel to

each other (i.e., the two trains are on T1 and T6).

Another safety countermeasure is to use secondary track detection systems that are legacy

devices such as axle counters and track circuits that use physical mechanisms to detect the

presence of a train on a given part of a track. The servers can correlate data sent from such

trackside devices with train status update messages to check the position of a train as it

enters a junction crossing.

That safety countermeasure prevents an attacker from deceiving the servers about the

train position, so attacks that involve delaying, inserting, and removing train status update

messages will fail. Thus, all attacks from the outsider adversary will fail, but an insider with

access to either the ATC server or the station network would be able to drop the signal from

such trackside devices and successfully carry out the attacks.

In conclusion, a less skilled attacker who can only jam communication signals from the

train will not be able to affect system safety. However, even under current security pro-

tections, the vulnerabilities in the network protocol between the trainborne system and the

server can be exploited to violate system safety. Secondary track detection systems can

stop outsiders from attacking the system. However, if an attacker has gained access to the

internals of the system, such as the station network or the servers, he or she can easily

force the system into an unsafe state. Therefore, it is vital that the communication channel

between the trains and the station be fully secured, and that good security practices be

enforced within the station network to ensure that safety-critical components are isolated

and well-protected.

3.8 SECURITY ANALYSIS: IDENTIFYING THE LIKELY THREAT VECTOR TO BE
EXPLOITED

The results of the analyses in Section 3.6 show that there are three ways in which an

attacker can affect the safety of a system: (1) inject communication messages to the train,

(2) control the ATC server, or (3) cut the network connections to the CBI server. We want
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to identify which of those three threat vectors would likely be exploited by an attacker.

Therefore, we expand on the security analyses presented in Chapter 2 by updating the

ontology and model to include the attacks we described.

3.8.1 Updated Ontology

To model the attack on communication messages to the train, we defined an attack step

HackComms that can be performed on a ProgrammableDevice. The attack step will

only succeed if that ProgrammableDevice has a hackable attribute. The probability

that the attack will succeed is 0.01. The result of the HackComms attack step changes the

controlSetting associated with the device. The cost of the HackComms attack is quantified

in terms of the monetary cost incurred to prepare the attack; we estimate the cost to be

$50,000, as calculated in [56]. Assuming that there is no secondary track detection system

as a safety countermeasure, the attack will not be detected.

To model the attack on the CBI server, we defined an attack step CutCable that can

be performed on a ProgrammableDevice. If a ProgrammableDevice d1 has network-

Connections with another ProgrammableDevice d2, then the adversary can perform the

CutCable attack step to change the controlSetting of d2. The cost of the CutCable attack

is the same as that of the Damage attack. The attack will always be detected, because it

is obvious to the defender that the effect of the attack is malicious.

3.8.2 Updated System Instance Diagram

Finally, we modify our system instance diagram from Figures 2.3 and 2.4 to model the

additional assets and relations that affect system safety. The modified system instance

diagram is shown in Figures 3.11 and 3.12.

We add a Laptop device that controls the Train. The Laptop can be used to control the

Train only after the HackComms attack has succeeded. We also add a Points device that

represents the point machines in the system. We separate the Signaling Server device into

the ATS Server and the CBI Server, because the two servers control different components

of the system, i.e., the Train and Points, respectively. So the ATS Server controls the

Train, and the CBI Server has a networkConnection to the Points.

We expand on the TrainCollision goal of Chapter 2 to consider attacks on the point

machines. The goal can be achieved by either switching the value of the controlSetting state

variable of either the Train Device or the Points Device from 1 (On) to 0 (Off).
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3.8.3 Adversary Profile

Previously, we modeled different adversaries who possess varying amounts of physical

and cyber access to the system and compared their attack paths through the rooms in the

station. Some of the adversaries are unable to affect system safety because they do not have

the required physical or cyber access to the devices.

Instead, in this chapter, we want to determine what course of action an outsider can take

to compromise system safety. Based on the results of this chapter, we define three courses

of action for the adversary: (1) enter the rooms in the station through brute force, (2) bribe

an insider with the appropriate physical and cyber access, and (3) inject messages to the

train from public areas.

We define two additional attack steps in the ontology that represent the adversary’s gaining

of the appropriate skills and access to the system. We define a BruteForce attack step

that results in the adversary’s gaining of a BreakLock skill. The cost of the attack step

is quantified in terms of the monetary costs associated with preparing the attacks. An

adversary can enter the station rooms using brute force by (1) breaking directly through

doors, (2) stealing a staff member’s access card, or (3) forging an access card. The investment

cost for the adversary includes purchase of attack tools to gain access to station rooms

and power tools to access the equipment inside the rooms. We estimate the cost of the

BruteForce attack step to be $1,000. The BreakLock skill gives the adversary permission

to perform the Move, Damage, and CutCable attack steps. However, the adversary will

always be detected, because staff members will notice through video surveillance that an

outsider has entered staff-only areas.

We also define a BribeInsider attack step that results in the adversary’s gaining of

physical (Space X access elements, where X is any of the three subsystems) and cyber

access (Access X access elements) to the system. The investment cost for the adversary

consists of bribing an insider with money, so we estimate the cost of the attack step to

be $500,000. Since the insider is an authorized user of the system, the adversary will not

be detected when performing the Move, DirectControl, RemoteControl, Login, and

NetworkMove attack steps.

3.8.4 Experiment Results

We want to determine what course of action the adversary will take when he or she

is concerned with being stealthy. We therefore regenerated the attack graphs, using the

updated ontology and system instance diagrams. The adversary’s stealthiness is represented
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by a preference weight that is associated with physical and financial cost. That physical and

financial cost is what the adversary stands to lose if the attack campaign is detected by a

defender. Table 3.4 shows the resulting metrics for each attack campaign.

We varied the preference weight from $0 to $5,000,000 and observed which attack paths

the adversary takes. The simulation results show that for weights between $0 and $500,000,

the adversary chose the BruteForce attack step and entered the Signaling room to perform

the CutCable attack on the connection between the CBI Server and the Points machine.

If the weight was above $500,000, the adversary chose the BribeInsider attack step and

used the physical access gained to enter the same Signaling room to Login to the ATS

Server and RemoteCtrl the Train.

Our results show that when the adversary does not care about being detected, he or she

will choose to use brute force to enter the station. Then, the adversary will always be

detected by station operators who monitor the system using video surveillance. However, a

stealthy adversary would opt to expend more money on bribing an insider to compromise

the system. Although attacking train communications is less costly than bribing an insider,

it is also less likely to succeed, and thus will not be chosen by the adversary. Our findings

echo the opinions of railway system experts [56]. Therefore, in Chapters 4 and 5, we will

look at defense countermeasures to detect abnormal behavior by insiders.

Table 3.4: Calculated metrics for each attack campaign. The different attack steps are
listed.

Attack Campaign Cost Attack Steps
BruteForce $1,006 CutCable: CBI Server

BribeInsider $500,013
Login: ATS Server
RemoteCtrl: Train

HackComms $170,220
HackComms: Laptop
RemoteCtrl: Train

3.9 CONCLUSION

It is important to analyze the safety of a cyber-physical system that is under threat from

different attacker models. In this chapter, we modeled the cyber-physical system by using

state automata and we specified an adversary’s attacks by using model templates that can

be applied to a state automaton representing normal system operations. We defined the

circumstances under which an attack may be carried out and represented the attack in

UPPAAL.
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We described a safety analysis we conducted for a railway signaling system subjected to

both outsider and insider threats. We applied our attack model templates to the railway

system and focused on modeling attacks on the network messages and cyber commands

issued to physical devices.

Our results show how the different combinations of attack capabilities with respect to the

attacker’s position in the system can affect system safety. Our analysis of system safety

also provides insight into which safety countermeasures can deter attacks. We also reapplied

our approach from Chapter 2 to analyze which of the attacks that affect system safety

would be used by a stealthy adversary. Our results show that we should focus on detecting

abnormal behavior of insiders in order to prevent stealthy adversaries from compromising

system safety.
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CHAPTER 4: SOCIO-TECHNICAL SYSTEM DEFENSE: DETECTING
ABNORMAL PHYSICAL MOVEMENT

Insider threats are a top concern of all organizations because they are common and can

have severe consequences. In a recent report on IBM’s Cyber Security Intelligence Index [60],

insiders were found to account for 60% of the attacks launched in 2015, with 75% of those

attacks involving malicious intent and the remaining 25% being inadvertent.

However, insider threats are difficult to detect, since the adversary already has physical

and cyber access to the organization’s assets. Many state-of-the-art research efforts [61] and

state-of-the-practice tools [62, 63] focus on the cyber aspect of insider attacks by analyzing

the user’s cyber footprint (e.g., logins and file accesses). However, an organization’s defense

mechanisms are only as strong as its weakest link. By failing to consider the physical aspect

of users’ behavior, an organization not only leaves itself unable to detect precursor physical

behavior that could facilitate future cyber attacks, but also opens itself up to less tech-savvy

attacks such as vandalism and theft [64].

Thus, physical security plays a crucial role in an organization’s overall defense posture.

This is especially true for critical infrastructure systems such as power grids and transporta-

tion systems in which a physical breach can have major real-world effects. Therefore, in this

chapter, we address insider threats in critical infrastructures by detecting potential precursor

behavior of users in the physical domain. More specifically, we study the physical movement

behavior of users for any suspicious patterns that may manifest as a result of malicious

intent.

4.1 BACKGROUND AND MOTIVATION

To address physical security, building access controls [65] are often used to limit the areas

that users can access based on their role in the organization; they normally do so through

a relatively static assignment of a set of locations to the user’s tracking device (e.g., RFID

tag or access card). When a user moves between spaces (e.g., tapping a card at a door),

information about this movement is logged.

Although building access control restricts the spaces that a user is able to access, it

is merely the first step towards physical security. As with other access control solutions, it

faces the same problem of being overly permissive [66]. But denying access to rarely accessed

rooms is a costly solution, as it places the burden on administrators to grant every access

request, which can lead to severe consequences, especially in time-critical situations (e.g.,

maintenance). Even with a restrictive set of granted permissions, the access control solutions
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in place do not take into account the context of a user’s access.

Thus, we focus on developing a more advanced behavior-monitoring capability that detects

abnormalities in a user’s movement within an organization’s buildings. We envision that

when our detection system is put into use by a company, there will be existing movement

data logs that have been collected for the present users in that company. Those logs will be

used as training data by our algorithm to build the user movement models. The building of

the user movement models can be conducted during the installation of the intrusion detection

system through feeding in of the existing data logs. Then, our intrusion detection system

can be put into use immediately and be able to process door access in real time.

Currently, a railway system staff member would need to look through the physical access

logs manually in order to detect malicious behavior. We aim to reduce the amount of manual

effort with our detection system, which automatically presents a smaller subset of potentially

malicious physical accesses in real time to the staff member. The staff member can then focus

his or her attention on the smaller subset, using video surveillance to corroborate evidence

of malicious activity. To aid the decision-making, we can also supplement the suspicious

accesses with a model of the users’ normal behavior.

In Chapter 2, we examined the effect of the addition of such defenses on the overall security

posture of an organization. The results of the analysis in that section indicate that this type

of defense capability will increase the strength of the organization’s security. Thus, it is an

important defense mechanism that deserves more attention from researchers and security

practitioners.

In this chapter, we explore how physical access logs collected from a railway transit system

can be used to develop a more advanced behavior-monitoring capability for the purposes of

detecting abnormalities in a user’s movement. In particular, we aim (1) to determine the

feasibility of characterizing the movement behavior of users in a complex real-world system,

(2) to develop techniques that can be applied to this detection problem, and (3) to identify

ways to integrate real-time detection into physical security.

We provide a systematic approach for tackling those issues in a way that can be generalized

to a diverse set of systems. We observe that since an organization consists of users who have

a diverse set of roles, the movement patterns of users in different roles may vary vastly

because of their job needs. Instead of proposing a single technique to model all users, we

construct a methodical approach that selects the appropriate model based on the context

of the organizational role and learns that model from historical data. More specifically, we

propose metrics to determine the feasibility of modeling the behavior of certain users in a

system. We then construct models that factor in contextual information such as time and

location, and show that the model can be used in an online manner. We propose two different
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models and evaluate their ability to represent normal user movement behavior by comparing

the detection rates of the framework when it is using those models. This study is supported

by a set of real-life card tap logs that we collected from our industrial collaborator.

In summary, the contributions in this chapter are as follows:

• We define a framework that characterizes a user’s physical movement behavior and

learns models of the user’s behavior by using historical data. More specifically, we

propose a metric based on the entropy of time series that quantifies the regularity of

user movement in order to differentiate user movement behaviors. By choosing different

models for users with irregular behavior instead of regular behavior, we show that

integration of logs of relevant device state is needed to improve detection performance

for those users.

• We propose two different Markov models to represent the physical movement of a user.

These Markov models differ with respect to the amount of information they represent

about the physical paths taken by users.

• We evaluate our framework using a year and two months of real-world card tap logs ob-

tained from railway transit stations. We show that we can detect suspicious movement

behavior in an online manner before the final destination is reached.

4.2 DEFINITIONS AND SYSTEM MODEL

We define a system sys = (U,Env) (e.g., an enterprise organization or critical infrastruc-

ture systems) as the collection of users U who work for it, and the environment Env that

contains the system’s assets. The environment Env consists of both the physical and cyber

domains of the system. The physical domain is composed of the building and the physical

assets within it. The cyber domain consists of the networked computer system and its digital

assets. The cyber and physical domains are interrelated, but we focus only on the physical

domain in this chapter.

We represent the building topology as a directed graph G = (S,E) in which the set of

vertices represents the spaces in the building. A directed edge e(v1, v2) represents possible

movement from v1 to v2.1 For example, the floor plan in Figure 4.1b is represented as the

graph in Figure 4.2.

The set of spaces S can be divided into two partitioning subsets: rooms R, and common

areas C (e.g., staircases, corridors), i.e., S = R ∪ C, and R ∩ C = φ. The edges are

1This implies that if e(v1, v2) exists, the backward edge e(v2, v1) also exists in G.
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Figure 4.1: The building topology of a railway station. (a) The different levels of the
railway station, with staircases connecting two or more levels. (b) A small sample floor
plan of one of the levels. The PSC room is the Passenger Service Center.

labeled with the access door codes that are associated with user access. The edges can be

weighted to reflect a metric quantifying the relationship between the spaces, i.e., w : E → R.

For example, w(e(u, v)) can represent the physical distance between spaces u and v. In

Section 4.4, we will define w more precisely and use the edge weights to determine the

shortest paths between spaces.

The state of the system at time t is defined as Statet(sys) = (Lt, Accesst, Qt), where

• Lt ⊆ S|U | is the location of the users in the system;

• Accesst ⊆ U × S × S is the set of accesses, where an access is a triple (ui, s1, s2) or

s1 →ui
s2; and
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Figure 4.2: Graph representation of the railway station. Each labeled edge represents a
card reader on the door separating the spaces (vertices).

• Qt is the state of the environment, including the condition of the physical and cyber

topology and assets (e.g., malfunctioning devices, changes in networking access).

In our case study, a railway station consists of a single building that may house one or

multiple railway lines through it. The general public accesses the railway lines by passing

through fare gates in the concourse area and moving to the platform. Figure 4.1 depicts the

topology of the railway station in our case study.

In addition to the concourse and platform area, the railway station contains many rooms

hidden from the public eye that house the equipment necessary to maintain the running of

the station and its portion of the railway track. The rooms are distributed throughout the

station on multiple levels. The railway staff can access those spaces only by tapping their

access cards at readers on the doors. Although most of the doors inside the staff-only spaces

have card readers, there are a number of doors that allow free access. Different stations have

different floor plans, and the number of rooms within a station may vary. However, all the
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stations share the same types of rooms (e.g., power supply room).

Multiple rooms may share the same functionality. For each room, we label the correspond-

ing vertex with the subsystem associated with it, Subsys(v) = {OP, POW,EC, TM,ME},
where the description of each subsystem is as follows.

OP (Station operation control): e.g., the Passenger Service Center (PSC), server room,

office, and storeroom.

POW (Power control): e.g., traction power room and Uninterrupted Power Supply (UPS)

room.

EC (Environment control): e.g., water chiller room and ventilation fan room.

TM (Transport mechanical equipment control): e.g., escalator rooms and platform

screen door room.

ME (Mechanical equipment): e.g., lighting control room and pump room.

Unlike an enterprise system for which the office building has a simple, systematic layout

across all levels (e.g., a single corridor branching out to multiple rooms), a railway station

has a complex, asymmetrical layout. There are multiple paths with varying lengths that a

user can take to get from one room to another. That implies that topology is an important

factor in determining whether a user’s physical movement is anomalous. In addition, the

railway transit system has diverse user roles (e.g., station operators and power maintenance

staff). The job scopes of such users vary in terms of work shifts, responsibilities, and work

locations, all of which affect their physical movement behavior. Even users in the same role

exhibit different movement behaviors based on their assigned duties and personal habits.

The building access control system that is in place offers a limited view of users’ physical

movement. Since card readers may fail and certain doors are not outfitted with card readers,

we are unable to determine a user’s full movement trajectory. A user may also tailgate, i.e.,

follow closely behind, another user, and thus the access will remain invisible to us. (We

tackle that problem in Chapter 5.) Therefore, it is challenging to detect deviations in

a user’s movement behavior. We address the problem in the next section by integrating

knowledge of the system layout and by learning models of users’ behaviors from historical

card tap data.
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4.3 MALICIOUS MOVEMENT DETECTION FRAMEWORK: OFFLINE PHASE

In this section, we describe our framework that systematically analyzes users’ physical

movement logs to detect malicious insiders. The framework dissects the problem into three

parts: understanding the characteristics of users’ behaviors, learning a suitable model rep-

resentation, and using the model together with knowledge of the system layout to estimate

the probability of an abnormal access. The framework consists of an offline and an online

phase, as shown in Figure 4.3.
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Figure 4.3: The framework is divided into offline and online phases, where the models
learned from the offline phase are fed into the online phase.

The offline phase consists of two stages: characterization of users based on their past

movement behavior, and construction of models based on users’ characteristics and past

movement. The input to this phase is the training data that describe the historic system

states StateHist = Statet−1(sys) . . . Statet−n(sys), and the output of this phase is a collection

of tuples (M,Thresh), in which M is a model representing the movement behavior of a

user and Thresh : AccessPast → R is a function that takes in a set of accesses and returns

a real number that represents the threshold value, below which the probability score of a

movement will be considered anomalous.

4.3.1 User Types

The first stage of the offline phase is to distinguish between different users by using their

past movement behavior. Typical access control systems assign roles to users based on the

sets of rooms that they need to access. However, these roles do not directly reflect the user

behavior. Instead, we propose to categorize users according to how they move within a

building.

We define the different types of user behavior T based on the users’ “reasons” for move-

ment, where “reason” refers to the context that facilitates users’ movement patterns. These
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reasons can be inferred from the structure and numerical values of the historical system state

pertaining to the users. We define a function f : StateHist → F that extracts features from

the historical system state. We then calculate a function µ : F→ T over the feature vector

returned by f and output the user type or “reason.”

Application: In our railway station case study, there are two main types of user move-

ment behavior, T = {q1, q2}. The first type, q1, involves users who have a very regular

movement behavior, and the primary members are station operators. Station operators

work a fixed set of hours in the station, and, because of their job scope, their movement

patterns are fairly consistent. They remain in the Passenger Service Center (PSC) to assist

the public and monitor the state of the station, visit storerooms and staff rooms, and clock

in and out.

The second type of users, q2, is those whose movement is triggered when an event occurs.

This applies to maintenance staff who visit rooms to conduct maintenance and repairs on

the equipment. Different maintenance staff members are in charge of different subsystems

(e.g., power supply or signaling), and thus they access different sets of rooms in the station.2

In order to categorize a user into q1 or q2, we extract a feature based on the approximate

entropy of a time series [67] constructed using the collected historical access data, or training

data, f(AccessHist) = ln(Cm/Cm+1) = λe ∈ F, where Cm is the prevalence of repetitive

patterns of length m in the time series. Each subsequence of length m in the sequence

is compared to other subsequences. If the number of similar subsequences is high, then

Cm is large. This metric has been shown to be able to quantify the predictability of user

movement [68, 69]. We choose m to be 3, which provides a good metric for characterizing

our trace as shown in Section 4.6.

If the user’s entropy value is lower than E, then the user has more predictable movement.

Thus, the user belongs to q1; otherwise, the user belongs to q2. In other words,

µ(λe) =

q1 if λe < E

q2 otherwise
(4.1)

where E is a numerical threshold. The choice of parameter E is discussed in Section 4.6.

2The same principle may apply to other systems too. E.g., a security guard doing rotations in a building
belongs to q1, and a technical support staff member who goes to an office when his or her assistance is
required belongs to q2.
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4.3.2 User Behavior Models

Next, we construct behavior models for each behavior type q ∈ T defined earlier. Since

each user is motivated to move within the building for different reasons, it is not possible

to specify a single model for all users’ behavior. Such a model would be inherently biased

towards a certain set of users and perform badly for others.

Instead, for each q ∈ T, we select an appropriate modeling technique M ∈ UM from

a large set of possible modeling techniques UM. The model should leverage q’s distinct

characteristics and provide insight into the likelihood that a user will access a room given

the current system state Statetn+1(sys).

For each user u of type q ∈ T, we learn the model by analyzing the historic system states

StateHist described by the training data in order to assign probabilities to the rooms in R.

Finally, we describe the construction of the Thresh : AccessPast → R function in Section 4.4

for ease of understanding.

Application: Users belonging to q1 have a lower entropy value λe < E than those

belonging to q2. This implies that q1 users’ movement patterns are more predictable and

repetitive than those of q2 users’. Thus, we choose to represent a user’s movement behavior

with a Markov model.

Given the historic system states StateHist (obtained from the training data), we learn the

Markov model of a user u. We can reconstruct the full movement sequence SeqHist(u) =

S1 . . . Sn from AccessHist. The sequence SeqHist(u), or Seq(u) for short, can be divided

into segments such that a period of inactivity (of more than 3 hours) separates any two

segments, i.e., Seq(u) = Seg1
1,jSeg

2
j+1,k . . . Seg

m
p,n where

∑
i∈{1,...,m} |Segi| = n and ∀i ∈

{1, . . . ,m}, Segi = Sg . . . Sh, Seg
i+1 = Sh+1 . . . Sj; then, the accesses (u, Sh−1, Sh) = at,

(u, Sh, Sh+1) = at+T imply that T ≥ 3 hours.

There are many ways to represent that movement sequence as a Markov model. In this

dissertation, we present two different ways to express a user’s movement sequence in the

form of a Markov model. Specifically, we define (1) a Markov model that captures only the

sequence of rooms that are visited,Mr, that is the model defined in [70]; and (2) a Markov

model that, in addition to the visited rooms, also captures the sequence of common areas

visited on the path to those rooms, Ms.

The model Mr is less restrictive than Ms because, unlike Ms, it does not describe the

likelihood of a user’s favoring different paths to a room. Thus,Mr allows more freedom for

a user to move within a building without having his or her movement flagged as suspicious.

(E.g., a user could take a different path to the staff room because he or she stopped by a store
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in the opposite direction.) However, such freedom comes at the cost of potentially missing

malicious movement that deviates from the user’s normal path. For example, an attacker

may choose to take a path that is less populated to avoid meeting other staff members. We

will see in Section 4.6 how these two models,Mr andMs, compare in terms of false positive

and false negative rates.

We define the Markov model Mr as having:

• a state space that is the set of rooms R,

• a transition probability matrix P with the entry pij =
#ric1...cnrj∈Seq

#ri∈Seq as the normalized

frequency with which the user visits ri and then rj, and

• an initial probability vector π with πi =
#Segjk= (cj ...cnri... )

#Seg
,

where c1 . . . cn ∈ C.

On the other hand, the states in the Markov modelMs are represented by a tuple (rprev, s),

where rprev, similar to the state in Mr, is the previous room visited, and s ∈ S is the space

that the user is currently in. For example, a movement sequence c0 . . . cnr0cn+1 . . . cmr1

where ci ∈ C, i ∈ {0, . . . ,m} can be expressed as the following state transitions: (·, c0) →
(·, c1) · · · → (·, r0) → (r0, cn+1) → (r0, cn+2) · · · → (r0, r1). We therefore define the Markov

model Ms as having:

• a state space that is the set of tuples (R, S),

• transition probability matrix P with the entry pij =
#ric1...cnsksj∈Seq

#ric1...cnsk
as the normalized

frequency with which the user is in state i = (ri, sk) and then j = (rm, sj), and

• an initial probability π with πi = #Segj=(si... )
#Seg

.

However, the users belonging to q2 have less regular movements and may change move-

ment patterns based on events in the system. We therefore combine the Markov model with

additional contextual knowledge about the states of the devices in the rooms. More specif-

ically, we annotate each state associated with a room with a Boolean variable indicating

whether a device failure has occurred within that room.

4.4 MALICIOUS MOVEMENT DETECTION FRAMEWORK: ONLINE PHASE

The online phase involves determining, based on the behavior models derived from the

offline phase, whether a user’s access is an abnormality. We thus advance the state of the art
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of physical security systems by attempting to detect anomalous accesses as early as possible

so that the appropriate response actions, such as blocking access to a room, can be taken.

The inputs to this phase are the tuple (M,Thresh) from the offline phase and the current

state of the system Statetn+1(sys). The output of this phase is a real number in R that

indicates the degree of abnormality of the access.

The current system state Statetn+1(sys) includes the location of a user ui, L
tn+1

i = s1 ∈ S
and the physical access that is being made, A = (ui, s1, s2) ∈ Accesstn+1 . In other words,

the user is moving from s1 to s2. Using our knowledge of the building topology, the behavior

model M, and the current state, we can calculate a probability that the current access

fits into the user’s normal movement behavior. That probability score is compared to the

threshold value returned from the application of the Thresh function on the past accesses

AccessPast = Accesst0 . . . Accesstn . If the probability score falls below the threshold value,

then the access is marked as anomalous.

Application: During the online phase, we keep track of certain properties of the past

system state. For the Markov model Mr, we keep track of the room that the user has

last accessed: rL ∈ R, where SeqPast = s1 . . . rLc1 . . . cm. Then, based on the transition

probability matrix, we can extract the set of probabilities associated with the next possible

visited room NextRoom = {ri ∈ R|pLi > 0}. Since the Markov modelMr does not directly

assign transition probabilities to the non-room spaces, we instead derive the probability score

of an access by determining whether the user’s movement is bringing him or her closer to

the next possible room to be visited.

In other words, given the access A, we want to determine all the rooms that the user

is likely to access. We first find all the rooms that are reachable from s2, i.e., PT = {ri ∈
NextRoom|∃(s2, si, . . . si+mri)}, where (s2, si, . . . si+mri) is a sequence of vertices on the path

from s2 to ri. For all such vertices ri ∈ PT , we decide whether the user is likely to access ri

by moving to s2 from s1. If it’s easier to access ri from s2, then we consider ri one of the

rooms that ui is likely to move to next.

To decide whether ri is easily accessed, we calculate path lengths by using the weights on

the edges, i.e., d(si, sj) = min∀(s1...sm) w(e(si, s1)) + w(e(sm, sj)) +
∑m−1

k=1 w(e(sk, sk+1)). We

calculate the shortest path from s1 to ri, d(s1, ri), and compare it to the shortest path from

s1 to ri through s2, d(s1, s2) + d(s2, ri). If the shortest path through s2 is similar in length

to the shortest path d(s1, ri) ≈ d(s1, s2) + d(s2, ri), then we consider ri a possible room that

the user wants to access.

In this dissertation, we choose a simple assignment of weights to edges. That assignment

of weights can easily be changed depending on users’ preferences for taking certain types of
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paths. We assign all edges a weight of 1, with the exception of edges that connect different

levels of the building (i.e., staircases, elevators, and escalators). We assume that users prefer

to take as few staircases as possible, so we assign a weight of 10 to those edges that connect

different levels.

With the resulting shortlisted set of rooms, we sum up the likelihoods of those rooms∑
ri∈PT

pLi to obtain a final score.

Although we describe the construction of the Thresh function in this section for ease of

understanding, the construction is actually performed in the offline stage alongside the con-

struction of the movement models. The Thresh function maps the past accesses AccessPast

(or, more specifically, a property of the past accesses that is kept track of in the online

phase) to a threshold value, below which the probability of a movement is considered anoma-

lous. For the Markov model Mr, Thresh takes in the room last accessed, rL, and returns

percentilex(pL), i.e., Thresh(rL) = percentilex(pL). The reasoning behind that threshold

is that since there are rooms that the user may seldom visit, transitions through them may

be deemed anomalous. We therefore take as the threshold a certain percentile value, x,

of the probability distribution associated with the room rL, pL. The percentile value can

be changed by practitioners based on the system requirements; a higher value reduces the

false positives but potentially allows malicious movements to be missed, while a lower value

catches more malicious movements but increases the false positives. We compare the prob-

ability score to the threshold value returned by the function Z = Thresh(rL), and if the

score is below Z, access A is deemed anomalous. The algorithm for that phase is given below

in Algorithm 4.1.

Algorithm 4.1 OnlineDetection algorithm for Mr Markov model

Require: (Lt+1
i , A = s1 → s2) ∈ Statet+1, rL = Property(AccessPast)

function OnlineDetection(Statet+1,Mr, Thresh, Property(AccessPast))

score← 0;Z ← Thresh(rL)

NextRoom←Mr(rL)

for all ri ∈ NextRoom do

shortestlen← GetShortestPath(s1 → ri)

len← GetShortestPath(s2 → ri) + w(e(s1, s2))

if len < shortestlen× k then score← score+ pLi end if

end for

if s2 ∈ R then rL ← s2 end if

if score < Z then return Anomaly end if

end function
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For the Markov model Ms, instead of calculating the probability of the current access,

we calculate the probability that the sequence of movement steps is within normal user

movement behavior. In other words, for a sequence of Markov states b0 → b1 · · · → bn, the

probability of such a sequence is
∏n

i=0 pbibi+1
. Since we are calculating that probability in an

online fashion, we only need to keep track of the previous accumulated product,
∏n−1

i=0 pbibi+1
,

and the previous state bn−1.

The Thresh function, in that case, takes in the length of the movement sequence, in addi-

tion to the starting state b0 = (r0, s0). For each state b = (ri, sj) in the transition probability

matrix, we use the movement sequence from AccessHist, obtained from the training data, to

determine the typical probability distribution of a user who starts in state b and moves k steps

within the building. More precisely, Thresh(b0, k) = percentilex({
∏k−1

i=0 pbibi+1
|bo . . . bk ∈

SeqHist}). In the next section, we vary the percentile value to examine the trade-off between

the false positive and true positive rates for a given Markov model.

Then we can compare the threshold value returned by the function Z = Thresh(b0, k)

with the accumulated probability score for the current access. If the probability score is

below the threshold Z, then the access is deemed anomalous.

However, since our simple algorithm relies on the accumulation of probabilities, the pres-

ence of low probability values earlier in the movement sequence will directly affect the proba-

bility score of future accesses. In other words, the appearance of anomalies in the movement

sequence would cause the probability of the movement chain to drop below the threshold

even after the user’s movement returns to normal, thus falsely marking future accesses as

being equally anomalous.

To prevent that phenomenon, we divide the accumulated probability score (and threshold

value) by the path length, i.e., 1
k

∏k
i=0 pbibi+1

. This division allows us to average out the effect

of the low probability values.

However, even with that division, the probability of the movement chain after the anoma-

lous movement cannot immediately bounce back to above the threshold value. Instead, it

slowly increases in value. To prevent the low-probability values from influencing future ac-

cesses in the movement chain, we restart our calculations and start a new accumulation of

a movement chain immediately after the anomalous accesses. To pinpoint the access im-

mediately after the anomalous accesses, we compare the previous probability score scorek

with the current access’s probability score scorek+1. If scorek < scorek+1 < Z, that implies

that the transition probability associated with the current access is high enough to cause the

average to increase, so the current access is most probably not anomalous. The algorithm

using the Markov model Ms is given below in Algorithm 4.2. Both the algorithms for Mr
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and Ms are of complexity O(1).3

Algorithm 4.2 OnlineDetection algorithm for the Ms Markov model.

Require: (Lt+1
i , A = S1 → S2) ∈ Statet+1, (rL, scoreprev, chainlen, prevState, b0) =

Property(AccessPast)

function OnlineDetection(Statet+1,Ms, Thresh, Property(AccessPast))

currState← (rL, s2)

Z ← Thresh(b0, chainlen+ 1)

score← (scoreprev×chainlen)×Ms(prevState→currState)

chainlen+1

if score < Z, score ≤ scoreprev then return Anomaly end if

if score < Z, score > scoreprev then

scoreprev ← 0

chainlen← 0

rL ← φ, prevState← φ

b0 ← currState

else

scoreprev ← score

chainlen← chainlen+ 1

if s2 ∈ R then rL ← s2 end if

prevState← currState

end if

end function

Finally, for the q2 users, we include another step in the online detection algorithm that

correlates the remaining suspicious accesses with logs about the device state after all the

accesses have been vetted through the Markov model. One can see intuitively that if a device

in room Rd fails and then a physical access into Rd is logged, that physical access should be

considered non-malicious. Therefore, when a device failure in a room is logged, we update

the Boolean variable of the state in the Markov model that is associated with that room to

indicate that movement into that room may be impending. Then, when an access is made

to that room, we run it through the OnlineDetection algorithm. If it returns with a

suspicion alert, then we check whether the Boolean variable associated with the room is

checked. If so, then we deem that access as non-malicious.

3For Algorithm 4.1, we can precompute the probability scores for each space in the offline phase, thus
removing the complexity of computing shortest paths during real-time analysis.
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4.5 EMPIRICAL ANALYSIS OF DATA

We use a real-world data set containing physical accesses to a railway station in a city.

The data set reflects a period from June 2016 to August 2017. The station has 62 rooms,

and the data include a total of 141,357 card taps (or accesses) made by 590 users. While we

focus on one station in this dissertation, the whole railway line consists of 33 stations, 12 of

which are interchange stations. We estimate that the average number of card taps per hour

over all the stations is approximately 450, whereas the highest number of card taps per hour

is around 1,200. Those high numbers pose a significant challenge if the associated logs need

to be examined manually.

The data set contains the following information regarding physical accesses: (1) date and

time, (2) door code, (3) user identification, and (4) type of access (legal entry, failed entry,

clock-in, or clock-out). When the access is a failure, that implies either that the user’s card

had expired or that the user did not have permission to access the room. Those failed accesses

serve as ground truth for known abnormal accesses. Clock-ins and clock-outs represent the

users’ card taps at a time punch clock inside a room in the station.

In explaining the design of our detection framework and user behavior model in Section 4.3,

we made a number of claims about the spatial and temporal properties of user movement

behavior. In this section, we substantiate those claims by analyzing the physical movement

data set, and justify our modeling choices.

4.5.1 Movement Independence

First, we justify our decision to model user movement with first-order Markov chains.

We make the following two claims in support of our decision: (1) a user’s next movement

(or access) is well-predicted using only recent movement history (i.e., that user movement

behavior is Markovian); and (2) it is sufficient to use just the current state to determine a

user’s subsequent movement (i.e., the Markov models should be first-order).

We substantiate both claims by using chi-square tests for Markov chain analysis as de-

scribed in [71]. We ran a multi-stage test in which each n-th stage attempted to reject

the null hypothesis that the data conformed to a Markov chain of order higher than n.

Acceptance of the null hypothesis for the n-th test would signify that a user’s subsequent

movement depended only on the previous n states in the user’s Markov chain (inclusive of

the current state), and rejection of the null hypothesis would signify that there was likely

some higher-order dependence in the data. More precisely, we have three null hypotheses:
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H0 : χ2 =
∑

xt,xt+1∈ST

(N(xt, xt+1)− N(xt)N(xt+1)
n−1

)2

N(xt)N(xt+1)
n−1

(4.2)

H1 : χ2 =
∑

xt,xt+1,xt+2∈ST

(N(xt, xt+1, xt+2)− N(xt,xt+1)N(xt+1,xt+2)
N(xt+1)

)2

N(xt,xt+1)N(xt+1,xt+2)
N(xt+1)

(4.3)

H2 : χ2 =
∑

xt,xt+1,xt+2,xt+3∈ST

(N(xt, xt+1, xt+2, xt+3)− N(xt,xt+1,xt+2)N(xt+1,xt+2,xt+3)
N(xt+1,xt+2)

)2

N(xt,xt+1,xt+2)N(xt+1,xt+2,xt+3)
N(xt+1,xt+2)

(4.4)

where ST is the state space of the Markov chain, N(xi, . . . , xi+m) = |{t|Xt = xi, . . . , Xt+m =

xi+m}|, and Xt represents the t-th state of the user movement sequence Sequ. The first null

hypothesis H0 tests for independence between the Markov states. Null hypothesis H1 tests

for first-order dependence, and null hypothesis H2 tests for second-order dependence. We

expect that each user’s movement sequence should reject H0, thus implying that there

is dependence on recent movement history (Claim 1), but accept H1, thus implying that

subsequent movements are best predicted using only the current state (Claim 2).

For each user, we convert his or her historic movement sequence SeqHist into a sequence of

Markov states, Xt. In the case of the Markov modelMr, that would be a sequence of rooms

that the user accesses. In the case of the Markov model Ms, that would be a sequence of

(room,space)-tuples. Then, we calculate the chi-squared values for each of the three null

hypotheses and based on the rejection or acceptance of the hypothesis, reach a decision on

which order of Markov chain statistically fits the user’s movement sequence. More precisely,

the order of the user’s Markov chain is

n =



0, if p0 > 0.15

1, if p0 ≤ 0.15, p1 > 0.01

2, if p0 ≤ 0.15, p1 ≤ 0.01, p2 > 0.01

≥ 3 otherwise

(4.5)

where p0, p1, p2 are the p-values obtained from the three chi-squared tests, respectively.

The results in Table 4.1 show that when we examine users’ room movements (Mr Markov

models), we find that over 84% of users are best modeled by zero-order or first-order models,

and when we examine (room,space)-movements (Ms Markov models), we find that over 95%

of users are best modeled by zero-order or first-order models. Note that any user best mod-

eled by a zero-order model (i.e., with no dependence between movements) can be accurately
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modeled by a first-order model that is a complete graph with identical next-state transition

probabilities from each state. Thus, both of our assumptions hold for the vast majority

of users. We also find that the few users who exhibit second-order and higher dependence

in their Ms models have a high entropy, with a minimum value of 1.04, which indicates

that their movement behavior is relatively aperiodic and therefore unlikely to achieve good

performance with our approach.

Table 4.1: The percentage of users who fit an n-th order Markov model Mr and Ms.

Order
0 1 2 ≥ 3

Model
Mr 19.0 64.6 10.9 5.5
Ms 7.5 89.1 1.4 2.0

4.5.2 Consistency of Movement Paths

In this subsection, we justify our decision to model the sequence of spaces (or the path)

taken by users in Ms. We claim that users tend to follow a small set of distinct paths, and

thus those paths are a property or feature of their normal movement behavior; any deviation

from those paths should be considered anomalous. We would like to show empirically that

users habitually follow the same path when moving from a given room to another, only

occasionally choosing a different path.

For each user, we group his or her historic physical accesses SegHist by the sequence

of doors visited between two rooms. In other words, we obtain tuples of (ui, rj, rk), ui ∈
U, rj, rk ∈ R, and each tuple is associated with the collection of trips made between room

rj and rk by ui, Trip(ui, rj, rk) = T i
j,k ⊆ P . We define a trip as the sequence of doors that

are accessed, p = (d1, d2 . . . dn) ∈ P, di ∈ DoorCode, and two trips are equal only if their

sequences are exactly the same. We can then define the collection of distinct trips for each

tuple UniqTripij,k = {p1, p2 ∈ T i
j,k|∀p1, p2 ∈ UniqTrip, p1 6= p2}.

In total, there are 2,273 (ui, rj, rk)-tuples. For each tuple, we calculate the following:

• Overlap =
|{d∈pi∩pj |pi,pj∈UniqTrip,i6=j}|

|{d∈pi|pi∈UniqTrip}| , the fraction of doors that are shared among the

unique trips,

• FrequentedTrip = {p ∈ UniqTrip | |t∈T |t=p|
|T | > 1

|UniqTrip|}, the unique trips that appear

more than average, i.e., the unique trips that appear more than 1
x

times, where x is

the total number of unique trips; and
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• ConcentratedTrip = 1
|T |

∑
|{t|t = p, p ∈ FrequentedTrip}|, the fraction of all trips

that are in FrequentedTrip.

We divide the 2273 (ui, R1, R2)-tuples into three categories:

• Tuples with |UniqTrip| ≤ 5,

• Tuples with |UniqTrip| > 5 and ConcentratedTrip > 0.8, and

• Tuples with |UniqTrip| > 5 and ConcentratedTrip ≤ 0.8.

The first category is tuples that have fewer than 5 unique trips. We find that 96.9% of

the tuples fall under this category. The average of Overlap over those tuples is 0.42, which

implies that the unique trips do share common doors that are accessed.

The second category is tuples for people who have more unique trips, but for whom more

than 80% of the total trips are associated with a small subset of unique trips. There are

27 tuples in the second category. All of them have |FrequentedTrip| ≤ 5, except for one

tuple with |FrequentedTrip| = 6 and one with |FrequentedTrip| = 7. Thus, fewer than

7 unique trips account for a majority of the trips. Those unique trips also have a higher

average overlap, Overlap = 0.74. That implies that although there are more unique trips

than in the first category of tuples, the paths are quite similar.

Finally, the third category consists of tuples whose trips are more varied. It contains 44 tu-

ples. For those tuples, FrequentedTrip ≤ 4, and those trips that are not in FrequentedTrip

account for less than 16% of the total trips T . Even though there is a larger spread of unique

trips, the average overlap between those trips is high, Overlap = 0.72. Thus, the unique

trips were very similar and differed only in terms of the sequence or repetition of some ac-

cessed doors. Of the 44 tuples, only 4 have a lower overlap, Overlap ≤ 0.5. For those tuples,

the less frequented trips p /∈ FrequentedTrip appeared only once or twice; so those unique

trips were very rarely taken.

In conclusion, our analysis informs us that users tend to take a small set of unique paths,

and when we delved into the sequence of doors accessed, we found that those unique paths

share a high overlap. Thus, the paths that users take can be characterized as part of

their normal movement behavior patterns, and any deviations from those paths would be

empirically anomalous.

4.5.3 Temporal Behavior

Finally, we examine the temporal behavior of users’ physical movements to determine

whether such information can be used in tandem with spatial behavior to characterize users’
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movement sequences.

First, we examine the time of day of users’ accesses to test for the presence of time-of-day

patterns in the users’ movement behavior that could be used to detect anomalous movements.

Figure 4.4 shows the distribution of all the users’ accesses over the time of day. We see that

the accesses are spread throughout the day, with multiple small surges of activity at certain

times of the day. That implies that the users do not share a single, well-defined schedule,

though users do seem to be more active during the normal workday (7 AM to 8 PM). Thus,

we further examine the users’ accesses individually.

In our dataset, we have accesses that represent users’ clock-ins and clock-outs. Users with

such accesses are more likely to have regular schedules in the system, since their work hours

are explicitly logged.

We find that 29% of the users have clock-ins and/or clock-outs in their card tap logs.

However, all but 4 of those users did not consistently perform a clock-in and/or clock-out

when they entered and left the station. Further, when we examined those users’ time-of-day

accesses (seen in Figure 4.6), we found that while some of the users have more well-defined

shift timings, their shifts are not consistent and change frequently.

For example, Figure 4.5a shows the the time-of-day distribution of accesses for one of

the users with clock-ins and clock-outs. There are three big spikes in the user’s overall
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Figure 4.4: The distribution of all users’ accesses over the time of day.
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Figure 4.5: The overall distribution of the access times for (a) a user with clock-ins and
clock-outs, and (b) a user with no clock-ins or clock-outs.
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Figure 4.6: The distribution of the access times over a few days of (a) a user with clock-ins
and clock-outs, and (b) a user with no clock-ins or clock-outs.
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distribution, which implies that the user likely has three different shift schedules in the

logs. However, we see in Figure 4.6a that the shifts do not have consistent lengths and that

their timings can overlap (e.g., 6am—8pm and 6pm—8am). Furthermore, the changes in

shifts do not follow a consistent periodic behavior. Users who did not have any clock-ins or

clock-outs were similarly very sporadic in their behavior, as shown in Figures 4.5b and 4.6b.

Without additional information about the actual assignment of shifts to users, it would be

a nontrivial task to predict timing information for users, and that would limit the utility

of using temporal behavior in detecting malicious accesses. Thus, while using time-of-day

behavior might provide additional information, we decided not to use it in this work, opting

instead to look only at spatial behavior. As we will show in the subsequent sections, our

spatial-based detector performs very well on the users with clock-ins and/or clock-outs, so

we believe that the utility of including temporal behavior in our model would be limited.

4.6 EVALUATION: DETECTION PERFORMANCE

In this section, we utilize the real-world data set to demonstrate the effectiveness of our

framework in our railway transit station case study. We determine the detection capability

of our proposed behavior models, and we examine the possibility of detecting malicious

movement in an online manner.

4.6.1 Experiment Setup

We simulated malicious movement in order to conduct a more thorough assessment of the

detection ability. For each user, we injected accesses into the testing data to simulate an

adversary’s deviations from normal movement.

We chose a few points within the sequence of movement accesses in the testing data

representing the time at which the adversary decides to move off-course. Then, for each

point, Si, we randomly selected a target room RT ∈ R that the adversary will visit, because

almost all rooms house critical assets and can be potential targets. For the sake of simplicity,

we assume that the adversary will take the shortest path to reach the room RT from the

current point Si, because the adversary would want to tap through as few doors as possible

to reduce the possibility of detection.

We calculated the shortest path from Si to RT as Sie1S1 . . . SnenRT . For each edge ei,

i ∈ [1, n] that has a door code, we added an injected access Ai = Si → Si+1 that represents

the logging of the adversary’s movement as he or she uses the acquired access control device

to move through the spaces protected by card readers.
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We can repeat that process to choose a series of rooms that the attacker visits (to consider

the case when an attacker wanders around the space to do a site survey and explore potential

attack opportunities, or when an attacker needs to access a few rooms in sequence to achieve

his or her goal). We can also restrict the choice of rooms to only those rooms that have been

visited by the user in the historic card tap logs, to simulate a stealthier attacker. We set

the number of rooms visited by the attacker to 1; in the next section, we describe how we

experimented with increasing the number of rooms visited by the attacker.

We set the rate at which we inject data (or choose points within the testing data) at 5%.

In the next section, we discuss experiments in which we varied the percentage of malicious

accesses by changing the rate at which we injected data.

We split the data set into 80% training and 20% testing subsets and performed 10-fold

cross-validation. We conducted the experiments on a Windows 7 Home Premium machine

with a 2.7 GHz CPU core and 4 GB of RAM.

4.6.2 Results

In this subsection, we present the evaluation results for our approach from Section 4.3

based on the card tap data set from the railway station. We also compare our approach to a

baseline method that is a simple extension of building access controls. The baseline method

keeps a list of spaces V isited = {s ∈ SeqHist(ui)} that has been visited by a user ui, and

any card tap by ui that led to a space not contained in V isited is marked as malicious. In

other words, the baseline method is similar to the whitelisting in building access controls,

but limits the user’s movement further to only those spaces in the historic card tap logs that

the user has visited before.

Implementation Performance

We evaluated the running time of both the offline and online phases. The average running

times over all users of the construction of Markov models in the offline phase were 1.18 s

and 12.4 s, respectively, for the Mr and Ms Markov models, whereas the average running

times over all physical accesses of the OnlineDetection function in the online phase were

0.2 ms and 0.07 ms, respectively, for the Mr and Ms Markov models.

The running time of the offline phase for theMs Markov model is longer than that ofMr

because of the larger amount of information needed to construct the Thresh function. On

the other hand, the running time of the online phase for theMr Markov model is longer than

that ofMs because of the calculation of shortest paths in the OnlineDetection algorithm.
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The offline phase can be conducted sporadically during system downtime, whereas the online

phase is fast enough to be executed in a real-time manner.

The average size over all the users of the constructedMr Markov models is 3 vertices and

6 edges, with a maximum size of 28 vertices and 77 edges. On the other hand, the average

size over all the users of theMs Markov models is 16 vertices and 28 edges, with a maximum

size of 162 vertices and 251 edges.

Detection Capability

We varied the percentile value used to select the threshold value in Thresh for the two

different Markov models and plotted their receiver operating characteristic (ROC) curves.

The ROC curve plots the true positive rate against the false positive rate obtained using

different percentile values and is used to analyze the ability of a binary classifier. The closer

the curve is to the top left-hand corner of the plot, the better a classifier (or in this case,

our intrusion detection solution) is. The ROC curves are shown in Figure 4.7. The areas

under the curve (AUCs) of the Mr ROC curve and the Ms ROC curve are 0.80 and 0.85,

respectively. Those ROC curves show that both models achieve relatively high accuracy

rates, although at the slight cost of an increased false positive rate. Based on the higher-

peaked curve and the AUC value, theMs model does a better job at classification than the

Mr model. For the results detailed in the following paragraphs, we picked a 95th percentile

value as the threshold for both the Mr and Ms models, for fair comparison.

Out of the 98,818 card taps, ourMr Markov model approach marked 9,187 as suspicious,

whereas the Ms Markov model approach marked 12,929 as suspicious. Hence, either way,

the practitioner’s effort would have been reduced by over 85%. Table 4.2 shows the number

of card taps over the ten testing subsets. We can see that large fractions of the injected

accesses and malicious ground truth data are detected as malicious. The numbers of false

positives are also low and fairly constant over the ten subsets.

On average, over the ten testing subsets, the Mr approach gives a false positive rate of

0.09 and a false negative rate of 0.28, while the Ms approach gives a false positive rate

of 0.13 and a false negative rate of 0.20. In comparison, the baseline method had a false

positive rate of 0.03 and a false negative rate of 0.35.

Since theMs Markov model incorporates more information about the user’s normal move-

ment behavior, its false negative rate is lower, since we can more easily detect deviations

from that normal behavior. However, that comes at the cost of a slightly higher false positive

rate. On average, about 30% of the users had a lower false positive rate, with an average

decrease of 0.35 and a maximum decrease of 1.0 relative to rates found with theMr model.
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Figure 4.7: The ROC curves for the Mr and Ms Markov models.

Table 4.2: The number of physical accesses over time divided into three sections
representing the valid (or non-malicious) accesses, the malicious ground truth accesses, and
injected accesses.

Invalid Injected Valid
Total Mr Ms Total Mr Ms Total Mr Ms

15/7 57 47 49 1067 756 874 9963 1145 1693
31/8 67 44 49 1044 762 844 9122 642 1066
15/10 63 36 38 1134 832 888 9542 881 1155
30/11 21 17 18 1036 749 816 9138 742 1188
15/1 27 24 25 1215 884 996 10428 985 1204
28/2 35 21 27 1237 923 1011 11174 1214 1659
15/4 35 28 30 1292 902 1004 11017 961 1355
31/5 39 29 29 1250 875 991 9687 781 1096
15/7 60 40 38 1159 830 948 9162 905 1205
31/8 45 34 37 1180 858 949 9136 931 1308

On the other hand, the baseline method has the lowest false positive rate, but at the cost

of a higher false negative rate. In particular, we find that if an attacker carefully selects his

or her path by moving only to previously visited rooms, the baseline method will not be able

to identify any of those paths (i.e., its false negative rate will be 100%). In comparison, our
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solution can still raise an alarm if the path covers any unusual transitions among previously

visited rooms. When the number of rooms visited by the attacker is 1, our false negative rate

for the Mr Markov model is relatively high (i.e., 0.28) because a substantial fraction of the

generated malicious paths are indistinguishable from legitimate paths that a user actually

traveled before. In other words, since most of the generated paths are short, it becomes

impossible in a certain fraction of cases to differentiate anomalous and normal movement

behavior.

To study how the length of the attacker’s path affects the performance of our approach,

we varied the number of visited rooms in the path; the results are presented in Figure 4.8.

The baseline method is still unable to detect any of these malicious paths, regardless of their

lengths. In contrast, the probabilities that our Markov model approaches will detect a path

increase as the path grows longer. As seen in Figure 4.8, the Ms Markov model performs

better than the Mr Markov model.
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Figure 4.8: The percentage of detected malicious paths vs. number of rooms in the path
for the Mr Markov model and the Ms Markov model.

We also varied the rate at which we injected malicious accesses into the testing data and

plotted the resulting false positive and false negative rates obtained from using the Ms

Markov model. The plot is shown in Figure 4.9. We can see that the false positive rate

increases almost linearly with the percentage of malicious accesses that were injected into
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Figure 4.9: The false positive and false negative rates for the Ms model vs. the rate of
injection of malicious accesses. The solid line represents the false positive rate, whereas the
other dashed lines are the false negative rates for each malicious access on the path and the
accumulative false negative rate.

the testing data.

For every point of injection into the data, AiAi+1, where Ai and Ai+1 are accesses and the

point of injection is between the two of them, the resulting sequence of physical movement

accesses would be AiM1 . . .MrAi+1, where Mi, i ∈ [1, r] are the injected malicious accesses

ending in a room, Mr = Si → Rm.

If we consider the access Ai+1 = Sj → Sj+1, the previous visited room is now Rm, which

is a random room in the station according to our simulation strategy. Therefore, the current

state would be (Rm, Sj+1). The likelihood that this state belongs in the Markov model

Ms and has a high transition probability from the previous state is low, so our detection

algorithm will mark it as a malicious access. Then, for every point of injection into AiAi+1,

the originally non-malicious access Ai+1 would be marked as malicious instead of normal.

The false positive rate would therefore be correlated with the rate of injection of data.

On the other hand, the false negative rate decreases slightly as additional malicious data

are injected. In particular, the false negative rate for the first malicious access on the path,

M1, decreases while the false negative rates for the second, third, and fourth malicious
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accesses (M2,M3,M4, respectively) remain relatively steady. That shows that the more

active an adversary is in moving around the station (equivalent to a higher injection rate of

malicious accesses), the higher our chance of detecting the malicious movement early on.

Finally, we determine the amount of training data that are required for the algorithm

to construct an accurate model of normal movement behavior. We see in Figure 4.10 that

the larger the number of days that a user is active in the training data, the lower the false

positive rates obtained. More precisely, the upper bound on the false positive rate is seen to

decrease linearly with an exponential increase in the number of distinct (but not necessarily

consecutive) days of activity. In particular, the vertical line in the figure shows that 37

active days of data are needed to achieve at worst a false positive rate of 0.4. Therefore, our

detection system requires around a month’s worth of active accesses for training, which, in

practice, is a reasonable amount of data to obtain.

2 3 4 5 6
Number of Active Days in Training Data (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

Fa
lse

 P
os

iti
ve

 R
at

e

37 days

Figure 4.10: The false positive rates vs. the number of days that a user is active in the
training data.

Comparison with Different Models

We want to determine how accurately different models can be used in our detection system.

We used the F2 score, which measures a weighted average of the precision and recall of the
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detection system’s accuracy. Since it is more important to detect anomalies (i.e., suspicious

movement behavior) than to reduce false positives, we chose the F2 score because it weighs

the recall more than the precision.

In particular, we compared the first-order Markov modelMs with the first-order Markov

model Mr, a second-order Markov model M2
s, and several Bayesian network models.

Bayesian network models are probabilistic graphical models that encode the dependencies

between states. They are a richer model than Markov chains because they allow for a

larger set of dependencies among states and are not restricted to the single directed chain

of dependencies of the Markov model.

We constructed Bayesian network models whose nodes represent the sequence of spaces

visited by the user. For example, a Bayesian network with three nodes N1, N2, N3 represents

the first, second, and third spaces visited by the user, respectively. While a Markov chain

would have N3 dependent on N2 and N2 dependent on N1, a Bayesian network could have

any other combination of dependencies (as long as it resulted in an acyclic graph).

We used the Bayes Server tool [72] to learn a Bayesian network model. For a given number

of nodes in the network, x, we fed training data for each user into the tool. The training

data are a collection of moving windows of size x over the historic access data of a user. The

tool learns the structure of the network and the parameters for the dependencies among the

nodes. We varied the number of nodes in the Bayesian network to be between 2 and 5.

Then, in the online phase, given the current movement sequence Seq = S1S2 . . . Sn, we

calculated the log-likelihood of the sequence, log(p(S1S2 . . . Sn)), and the conflict score of the

sequence, Conf(Seq) = log((p(S1)p(S2)...p(Sn))/P (Seq)). The Thresh function takes in the

training data and returns the 95th percentile of the log-likelihood, and the 100th percentile

of the conflict scores of those data given the network model. The function definition is shown

below.

Thresh(AccessPast) = percentile95(log(P (AccessPast))), percentile100(Conf(AccessPast))

(4.6)

We can compare the threshold values returned by the function Y, Z = Thresh(AccessPast)

with the log-likelihood and conflict score of the current movement sequence. If the log-

likelihood of the current movement sequence falls below Y or the conflict score falls above

Z, then the access Sn is deemed anomalous.

We calculated the F2 score for each model used in the detection system. The results

are shown below in Table 4.3. The higher the F2 score, the more accurate the model is in

capturing the users’ movement behavior.

We can see from the table that as the number of nodes in the Bayes network increases, the
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F2 score decreases. That corroborates our previous findings that most users’ movements have

only first-order dependence. We also note that the 2-node Bayes network model performs

the best, followed closely by our first-order Markov model Ms.

The 2-node Bayes network model has one dependence relation, since there are only 2

nodes in the model. Then, the log-likelihood of a 2-node sequence in the Bayes network

model is equivalent to the probability of a 2-node sequence in Ms. However, our model Ms

considers the cumulative probability of longer sequences. That implies that accumulating a

probability of sequences longer than 2 spaces would not increase the accuracy of the model.

In future work, we will investigate the types of users to which that observation applies and

further improve our model Ms to accommodate that insight.

Table 4.3: The false positive rate, false negative rate, and F2 score for each of the models.

False Positive
Rate

False Negative
Rate

F2 score

Mr 0.09 0.28 0.66
Ms 0.13 0.20 0.69
M2

s 0.19 0.15 0.67
2-node Bayes 0.12 0.16 0.72
3-node Bayes 0.15 0.19 0.67
4-node Bayes 0.19 0.23 0.62
5-node Bayes 0.21 0.27 0.58

Online Detection

We have shown the running time of our algorithm to be on the order of milliseconds. Since

the complexity of the algorithm is constant, it is also scalable. Therefore, our approach can

work fast enough to process physical accesses in real-time. In addition, we want to study how

early on a malicious path of a certain length can be detected, because we want to analyze

how effective our approach is at raising an alert in real-time before an attacker reaches his

or her destination room. We considered injected paths with a length of 4, and the false

negative rates for the first, second, third, and fourth injected accesses in the path were 0.49,

0.3, 0.12, and 0.04, respectively, for the Mr Markov model and 0.32, 0.12, 0.09, and 0.02,

respectively, for the Ms Markov model. That shows that our approach is able to detect

malicious paths (with a certain minimum length) with high confidence, and even before an

attacker has reached the destination room.
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4.7 EVALUATION: MODEL SELECTION

In this section, we evaluate our decision to choose different models to represent user

movement behavior based on the users’ categorization. First, by evaluating our usage of the

entropy metric, we answer the question of whether the movement behavior of users can be

characterized effectively in a complex system. Then, we determine whether integration of

information about device state can increase the accuracy of our detection approach for a

particular class of user.

User Characterization

First, we evaluate whether the entropy metric defined in Section 4.3 is suitable for char-

acterizing user behaviors. If the entropy metric can differentiate user behaviors, then the

Markov models constructed for users with lower entropy (q1 ∈ T) will have a better de-

tection capability (lower false positive and negative rates) than those constructed for users

with higher entropy. If so, that would substantiate our choice of using Markov models for

q1 users; in the next subsection, we evaluate the augmented Markov models for q2 users and

consider how they improve on the base Markov model.

We plot the entropy vs. false positive rates for the Mr Markov model in Figure 4.114.

Each point in Figure 4.11 represents a single user in one testing data subset. One user should

map to a maximum of 10 points in the plot.

We can see that users whose entropy is below 0.7 have a lower false positive rate, on

average, than users whose entropy is above 0.7. We also note that users with clock-ins

and/or clock-outs have a lower entropy value in general and a lower false positive rate. The

implication is that there is some correlation between the regularities of spatial and temporal

movement, which corroborates our claim that our approach works better with users who

have more periodic behavior. We can therefore set our entropy threshold E to 0.7 in order

to distinguish between the user types. Then, 29% of the users would belong to q1 and 71%

to q2. Although fewer users are categorized under q1, these users account for 63% of the card

taps.

However, several outliers show a high false positive rate for q1-type users. We studied

each of them individually and found that there were reasons why the accesses were marked

as suspicious. The users represented by triangles in Figure 4.11 accessed rooms that they

had not previously visited, whereas the users represented by squares had a small testing set

(fewer than 10 card taps), so their false positive rates are disproportionately high. In actual

4The results for the Ms Markov model are similar, and we therefore do not show them here.
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Figure 4.11: The distributions of false positive rates according to the entropy of users’
movements. Blue points represent users with clock-ins and/or clock-outs, snd red points
represent users without clock-ins or clock-outs.

operation, the training data set and set of real-time card taps will be much larger, so there

won’t be outliers.

Integration of Device State

In Section 4.3, we proposed to correlate logs documenting device state with physical access

logs in order to decrease the false positives for the q2-type users. Since the device-state logs

in our case study are collected separately from the physical access logs, we have to assume

that the timing information in the device-state logs and physical access logs is synchronized.

The logs collected for different types of device (e.g., breakers or lights) are different, and

thus the amount of information about the device’s state that can be extracted varies. We

extracted the textual description and alarm values that indicated device failure and searched

the device logs for failure incidents.

In particular, there are four rooms in the station for which we could identify the failure of

a device from the logs with particularly strong confidence. These rooms contained devices

that controlled the environment in the station (e.g., air chiller and water pumps).
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With the additional step of correlating device failures with physical accesses, we reduced

the false positives for a subset of the users by an average of 0.45 for the four rooms. This

preliminary result shows that we can use additional logs regarding the system environment

to determine whether an access was malicious.

4.8 RELATED WORK

In this section, we discuss the related work spanning domains from physical movement

tracking and prediction to anomaly detection of physical movement and cyber events.

There has been a substantial amount of work on use of cyber logs (e.g., network flows and

system logs) to profile users and detect events of interest. For example, Kent et al. pro-

posed authentication graphs [73] to profile user behavior and detect threats using computer

authentication logs in an enterprise network. Specifically, the authors analyze a 4-month

log of authentication events in an enterprise network that ran a Microsoft Windows Active

Directory authentication system. They observe distinguishable graph attributes for different

user roles and propose to use such differences to help improve user behavior profiling and

misuse detection. In contrast, our work focuses on physical access logs, for which physical-

world factors, like space and time, directly impact the correlation among different access

events. Our data set also tends to be more noisy and less complete than a log collected

from an authentication system. Despite those differences, we too observe the importance of

distinguishing different user roles.

In the area of physical access control, there has been work in the route anomaly detection

area that looked at people or objects moving in a geographical space that was not delineated

by rooms [74–76]. Pallotta and Jousselme [74] and Radon et al. [75] both detect deviations

in the trajectory of a vessel in the maritime domain. Their approaches use contextual

information, such as the speed of the vessel and weather information, in order to predict the

next location of a vessel. However, in the maritime domain, the source and destination of

the vessel are already known beforehand, and the anomalies are assumed to arise from the

differences in trajectories. That is unlike our work, in which we focus on an indoor setting

that has unpredictable destinations for each user.

Dash et al. [76] use mobile data to predict the movement of people in a geographical

region. They construct multiple Dynamic Bayesian network models, each of which includes

different granularities of context (e.g., day of the week vs. time of day). They predict the

next visited location by analyzing the results obtained from each of those models. Unlike

their completely data-driven approach of applying all models before computing the best

result, we propose a more guided approach in which one first chooses the appropriate model
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based on an understanding of a person’s past movement data.

Lin et al. [77] also use mobile data for user verification by constructing Hidden Markov

Models (HMMs) that represent each user’s mobility patterns. Those HMMs are constructed

from cell tower data and ambience features of WiFi. Using the sequential probability ratio

test, the authors decide whether the current sequence of locations adheres well to the user’s

HMM model and not to other users’ HMM models. Although their approach allows for

real-time authentication of a user, the result of the analysis at each time point may be

inconclusive if the evidence of the user’s movement does not conform more strongly to the

user’s HMM model than to other users’ HMM models. Our approach, however, produces a

decisive yes-or-no answer for each user movement and does not compare the movement to

other users’ models. In other words, we take a more conservative approach and treat any

deviations from the user’s movement model as suspicious behavior. This allows the security

practitioner to more quickly identify malicious behavior when it appears.

In contrast to the works described above, we consider the more restrictive setting of indoor

location tracking, which reduces the amount of noise in the data and allows us to identify

a user’s location with more confidence. Because of physical barriers that prevent a user

from moving uninhibited from one space to another, the paths that a user can take are also

limited.

For indoor physical access, there has been work in both movement prediction and anomaly

detection. In the movement prediction domain, Gellert and Vintan [78] use HMMs to predict

a user’s next location. They use real-world physical access data of four users from a single

floor of an office building; notably, the size and topology of the building are very small.

Their data set contains only four users. Their results show that a simple Markov model of

order 1 gives the best performance. Koehler et al. [79] expand on Gellert’s work by using

ensemble classifiers to predict how long a user will stay at a given location.

In the anomaly detection domain, different techniques to detect differences in a user’s

movement have been proposed. Graph models have been studied by Eberle and Holder [80]

and Davis et al. [81]. Eberle and Holder [80] detect structural anomalies by extracting

common subgraph movement patterns [82]. However, they only consider simplified physical

layouts and do not distinguish among different user roles. Davis et al. [81] search labeled

graphs for both structural and numeric anomalies and apply their approach to physical

access logs in an office building.

Other models, ranging from finite state machines to specific rules, have also been studied.

Liu et al. [83] model the normal movements of devices as transitions in finite state machines.

Unlike us, they focus on the movement of devices (instead of people) in a hospital setting,

where their main goal is to detect missing-device events. Biuk-Aghai et al. [84] focus on
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suspicious behavioral patterns, including temporal, repetitive, displacement, and out-of-

sequence patterns. Those patterns involve only the time interval between movements and

the reachability of locations rather than the sequence of locations that were visited.

Finally, patents from IBM [85] and Honeywell [86] present the general designs of ways to

use physical access data to detect potential security incidents. However, they do not discuss

detailed designs for dealing with complicated building topology and user roles, and do not

provide experimental studies involving real-world traces.

4.9 CONCLUSION

One way in which organizations address insider threats is through physical security. How-

ever, the state of the art in building access control is lacking. In this chapter, we studied the

use of physical access logs for detecting malicious movement within a building. We proposed

a systematic framework that uses knowledge of the system and its users in order to analyze

physical access logs, and we applied the framework to a real-world data trace of physical

accesses in railway stations.

First, we characterized users by using a set of metrics that take historical physical access

data as input. In particular, we defined a metric based on the approximate entropy of

a time series that measures the regularity of user movement. Each user type is mapped

to a behavior model, and the details of the model are learned through use of the user’s

past physical accesses. More specifically, we defined two different Markov models, which

represent different amounts of information about the user’s movement sequences. Finally,

we developed an online detection algorithm that takes the behavior model and the building

topology as input, and returns a score indicating the likelihood that the user’s access is

anomalous.

We applied our framework to a real-world data trace of physical accesses in railway sta-

tions. The results show that our proposed Markov models perform well in representing user

movement behavior. In particular, inclusion of information about the path taken between

rooms in the model helps the detection algorithm flag more malicious movement at the cost

of a slightly increased false positive rate. The results also show that our framework can

be applied in an online fashion to monitor and flag suspicious movement before an insider

reaches the final destination room.

However, physical access logs are only able capture certain scenarios of human movement

behavior. In real life, people can use physical or social means to circumvent the building

access control system and remain undetected by sensors in the building. In the following

chapter, we will address that limitation and propose ways to overcome it.
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CHAPTER 5: SOCIO-TECHNICAL SYSTEM DEFENSE: DETECTING
TAILGATING

In critical infrastructure facilities such as power substations, airports, and railway stations,

physical security is of the utmost importance, in part because the equipment located within

those buildings must be safeguarded from unauthorized insider threats [65,87]. Physical se-

curity is typically enforced using building access control systems that limit human movement

in indoor settings. The data collected from such systems are used for a variety of analyses,

including detection of unauthorized or abnormal physical movement, as we showed in Chap-

ter 4. Those analyses rely on the assumption that the cyber data on physical movement

reflect actual movement scenarios.

However, that assumption is not true in real life, since people can circumvent a building

access control system, so that their movements will not be captured by sensors. Then,

our detection approach in Chapter 4 would not be able to identify those movements. In

this chapter, we address that limitation of building access control systems by developing

approaches that use physical constraints of human movement in indoor settings to identify

instances of movement that escape detection by existing building access control systems.

5.1 BACKGROUND AND MOTIVATION

Building access control systems use door movement sensors and card readers to capture

the movement of people. Those devices can be circumvented by physical and social means,

e.g., by “tailgating”, which means following an authorized person. Tailgating is a serious

issue because it could allow unauthorized users into critical spaces, and that can constitute

a security or safety violation. Thus, it is important (1) to determine the extent to which

building access control systems can capture tailgating, and (2) to leverage additional data

sources to identify the scenarios that cannot be captured by those systems.

In this chapter, we define physical constraints on human movement that we then use

to infer tailgating from data collected by building access control systems. We study the

limitations of those cyber data and propose solutions that use physical data sources to

complement those data to identify potential physical security violations.

We base our study on the same building access control system discussed in Chapter 4,

which monitors the movement of staff members and visitors in a railway station. The card

tap logs collected by that system contain information about entries (card taps) and exits

(door movement) to a space. We also collected physical and cyber data from other sources

in that railway station, such as sign-in log book entries, to complement the card tap logs.
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Specifically, the contributions in this chapter are as follows:

• We study how tailgating manifests in real life based on observations of tailgating in a

railway station over a 6-day period. We use our observations and domain knowledge

to infer movement behavior from card tap logs.

• We specify two physical constraints on human movement that are based on building

topology and space occupancy, which we then use to drive our approach.

• We use the topological constraints on human movement to implement a checker that

identifies tailgating when it finds a discontinuity in a person’s movement trajectory.

We thus found 3,999 instances of tailgating in a railway station during a 17-month

period.

• We use the constraints on space occupancy to develop several approaches based on

comparison of the numbers of card taps and egress events in the card tap logs, and

show that there remain scenarios that are not visible in those logs; e.g., a visitor who

tailgates in and out of a space remains invisible.

• We show that the limitations of card tap logs can be mitigated in part by using physical

data sources such as manual sign-in logs to supply information regarding expected room

occupancy. For example, we found that in 36 of the 80 visits to a server room, visitors

noted their presence in the sign-in logs, but were invisible in the card tap logs.

5.2 RELATED WORK

Building access control systems typically use card readers and door movement sensors

to provide dashboard information about users’ accesses and door movement [87, 88]. That

information can be used to track the locations of users, prevent unauthorized access, and

detect violations of access control policy [70, 78, 79, 89]. However, building access control

systems do not capture all potential user movement, e.g., tailgating.

Tailgating is a vulnerability that can result in theft, damage of property, and other unau-

thorized activity that is harmful to the system, and it has been found to occur at a rate

of 40 to 60% in some office buildings, according to one report [90]. Measures such as em-

ployee education and installation of turnstiles [91] have been taken to prevent tailgating, as

recommended by various guidelines, including the NERC CIP-014 [92]. However, physical

mechanisms like turnstiles are not enforceable throughout a secure building, and it is hard to

ensure that all employees will follow rules, even when they have been provided with training.
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There has been work on detecting tailgating by using different technologies, such as video

surveillance and additional sensors and badges. Advances in computer vision have allowed

video surveillance to be further automated to detect and classify motion trajectories [93–95].

In particular, such algorithms can be used in tandem with radio-frequency identification

(RFID) based technologies to detect tailgating [96]. Indoor location systems track users by

using networks of beacons on access doors, and RFID tags [97] or phone apps [98–100] that

are located on each user.

The limitation of those technologies is that they require additional installations of physi-

cal equipment (like antennas) and distribution of tracking devices, and they also introduce

privacy and security concerns [101]. Unlike those approaches, we use existing data from

building access control systems. We view video camera surveillance as a complementary so-

lution and alternative data source to be used as part of our approach to identifying instances

of tailgating.

5.3 CASE STUDY: RAILWAY STATION

We use the same railway station used in Chapter 4 for our case study. That railway

station contains 62 rooms that house the equipment necessary to maintain the running of

the station and its portion of the railway track. Below, we describe the data collected by that

building access control system, and other supplementary information regarding the presence

of people within the station.

5.3.1 Data Sources

We collected the following cyber and physical data about human movement and system

events: (1) card tap logs, (2) station sign-in logs, (3) equipment room sign-in logs, (4)

maintenance schedules, (5) manual observations of human movement, and (6) device event

logs. The time periods of the collected data for each data source overlap and are shown in

Figure 5.1.

The card tap logs, station sign-in logs, and device event logs contain data about the entire

station. Both the equipment room sign-in logs and maintenance schedule contain data about

events in the server room, which is labeled in Figure 5.2. Finally, the manual observations

contain data about human movement to the doors highlighted in grey in Figure 5.2.
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Figure 5.1: The shared timeline of the collected data from the railway station.
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Figure 5.2: A small sample floor plan of Level G of the railway station. The doors that we
observed are marked with grey squares.

Card Tap Log

We have card tap logs collected by the physical access system. They contain information

about card taps and door movement events in the railway station. The events took place

between April 2016 and August 2017, and during the month of January 2019. A total of

298,799 card taps were made by 781 users.

The logs contain the following information regarding physical movement: (1) timestamp;

(2) doorcode; (3) card number; (4) user identification; (5) type of event (Legal Access

(legal entry), Invalid Attempt (failed entry), Free Egress, Clock In, or Clock Out);

and (6) condition of door (Door Open Fail, Door Close Fail). A failed entry implies

either that the user’s card has expired or that the user does not have permission to access

the room. Clock-ins and clock-outs represent card taps at a time punch clock inside a room

in the station. The condition of the door reflects special situations in which the door has

either been left open for more than 10 seconds (Door Close Fail), or has not been opened
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after someone tapped his or her card (Door Open Fail).

Station Sign-in Log

When visitors or staff members enter the railway station, they are first required to sign

in at the Passenger Service Center (PSC). They record their pertinent details manually in

a log book that is then signed by the station operator inside the PSC. At the end of their

visit, they need to sign out at the PSC by recording their sign-out time which is then signed

by the station operator. We have collected 97 entries in the log book from January 7 to 13,

2019.

That log book contains the following information: (1) name, (2) user identification, (3)

the department to which the user belongs, (4) purpose of visit, (5) date of visit, (6) time of

sign-in, (7) time of sign-out, (8) staff member who witnessed sign-in, and (9) staff member

who witnessed sign-out. Visitors are always escorted by a railway staff member and are

assigned a visitor pass with no credentials.

Equipment Room Sign-in Log

Each equipment room in the station has a log book. Every person who enters an equipment

room needs to record his or her visit in that log book. At the end of their visits, people must

record their sign-out times. We collected 143 entries to a server room in the railway station

that took place between April 2016 and December 2017.

The log book contains the following information: (1) name, (2) the department to which

the user belongs, (3) purpose of visit, (4) date of visit, (5) time of sign-in, (6) time of sign-

out, and (7) name of accompanying staff member. Only staff members who are custodians

of a room have card access to that room.

Maintenance Schedule

The equipment in the rooms is periodically maintained by teams of staff members. We

have collected data about the maintenance schedule for the server room that contains the

following information: (1) date of maintenance, and (2) devices to maintain. The schedule

covers dates between April 2016 and December 2017.
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Manual Observations

To complement the data that we collected, we conducted a small experiment to elucidate

the movement of people in real life as they perform their tasks in the railway station. Given

the sensitive nature of the data collection, we observed the movement of people only from

public areas such as the concourse and platform. From our vantage point, we gathered a total

of 86 movement events through 5 doors from January 7 to 13, 2019 for a total of 8 hours.

Those 5 doors serve either as an (1) entrance to the station, or (2) entrance to corridors that

lead to equipment rooms, including the server room, as shown in Figure 5.2. We recorded

the following information: (1) date and time of movement, (2) doorcode, (3) description of

people moving, (4) type of movement (entry or exit), and (5) identity of person who taps

his or her card.

Device Events Log

The equipment in the rooms is constantly monitored, and any change in its state is logged

in a database. We have collected the logs for the equipment in all the rooms in the station for

the period of July and August of 2017. The logs contain the following information on events

pertinent to the devices: (1) timestamp, (2) device identification, (3) event description, (4)

event type, (5) value associated with event, (6) severity level of event, and (7) operator

handling the event.

5.3.2 Data Preprocessing

Coalescing. In the card tap log, we found occurrences of multiple Legal Access (by

the same card) or Free Egress events at the same door within the span of a few seconds.

Consecutive Legal Access events within such a short period are due to a person’s tapping

of a card more than once to open the door. Similarly, closely spaced Free Egress events

occur because of multiple movements of the door as someone pushes it open to exit. Since

those events are repetitive instances of a single action, we coalesce each of those groups of

events into a single entry. After analyzing the distribution of inter-event times, we set the

threshold for coalescing at 20 seconds.

Identifying users across logs. We want to associate a user’s presence in the server room

with his or her card tap activity. Therefore, we cross-referenced the names of the custodial

staff members and accompanying staff members in the equipment room sign-in log with the
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user identities that appear in the card tap logs from the time period indicated by the sign-in

log.

Grouping of visits. Multiple entries in the equipment room sign-in log sometimes rep-

resent a single visit by a group of people. Since we want to analyze the movement activity

during each visit separately, we grouped the 143 log entries into incidents representing single

visits, based on the time period and purpose of the visit. There were a total of 80 incidents,

of which 27 were visits by a single person, and 53 were visits by a group of people.

Relating observations to logs. We wanted to determine how the movement we observed

manifested in card tap logs. Specifically, we wanted to test our hypothesis that if a door

is held open for long, i.e., a Door Close Fail event, that implies that tailgating has oc-

curred. So we cross-referenced our observations with the card tap logs by using the recorded

timestamps. We found that of the 12 times a Door Close Fail event occurred in the card

tap logs during the period of our observations, only 3 of those instances corresponded to

tailgating. Thus, that disproves our hypothesis and shows that we need a more involved

approach to identify tailgating.

5.4 PHYSICAL CONSTRAINTS ON HUMAN MOVEMENT

Based on our observations and domain knowledge, we found that the events in card tap

logs are not indicative of the number of people moving or the direction in which they moved.

A Legal Access event implies only that the person who tapped his or her card was outside

the door and was likely to enter that space. A Free Egress event implies that at least one

person was inside the space prior to the egress event. A Clock In or Clock Out event

implies that the person who tapped his or her card was in the room containing the clock

puncher. So we can only infer the possible locations of people from those events, and thus

cannot identify tailgating directly from the card tap logs. Instead, we define two physical

constraints on human movement that allow us to use the card tap logs to identify tailgating:

1. A person who wants to tap at a card reader B in a space that is protected by another

card reader A must first tap at A before B. A violation of this constraint means that

the person tailgated into the space.

2. Before a Legal Access or Invalid Attempt event at card reader (or door) A, the

occupancy of the space outside the door must be nonzero. Before a Free Egress

event at door A, the occupancy of the space behind the door must be nonzero. Thus,
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by tracking the occupancy of a space based on card tap log events, we can identify

tailgating when there is a violation of the constraint.

5.5 USING BUILDING TOPOLOGY TO INFER TAILGATING

In this section, we use Constraint 1 defined in Section 5.4, that is, a person can only move

through a series of connected spaces, to infer tailgating from card tap logs. We can build a

person’s movement sequence by tracking the Legal Access, Invalid Attempt, Clock In,

and Clock Out events, as discussed in Section 5.4. Then, we use the building topology to

determine the reachability of the spaces containing the card readers. If there is a gap in the

sequence that required the person to access an additional card reader to reach the space, it

implies that tailgating happened there.

We employ the same representation of building topology used in Chapter 4. More con-

cretely, we represent the building topology as a directed multigraph G = (S,E) in which

the set of vertices S represents the spaces in the building. A directed edge ei = (v1, v2)

represents possible movement from v1 to v2. The edges are labeled with doorcodes, label(e),

if there is a card reader bordering the two spaces. We use the example of the floor plan in

Figure 5.2, which is represented as a graph in Figure 4.2.

We use the graph G to determine all possible pairs of doorcodes that can occur in a

movement sequence without violating Constraint 1. First, we find all possible simple paths

that a person may take between any pair of spaces.

Paths = {(sieisi+1 . . . si+nei+nsj)|∀si, sj ∈ S, ei = (si, si+1) ∈ E} (5.1)

The edges along those paths are Pathse = {(ei . . . ei+n)|(sieisi+1 . . . si+nei+nsj) ∈ Paths}.
Some of those edges may not have a doorcode; for example, moving out of a room does not

involve tapping a card. We therefore remove those edges to get D = {(ei . . . ei+m) ⊆ p ∈
Pathse|∀e, ∃label(e)}. Then, the possible pairs of doorcodes in a movement sequence are

Dc = {(label(ej), label(ek))|(ej, ek) ⊆ D}.
If there is a pair of doorcodes in the movement sequence that does not exist in Dc,

(label(ei), label(ej)) /∈ Dc, then the person has tailgated between those spaces. The set of

possible doors that the person skipped is {(label(ei+1) . . . label(ei+n))|(ei, ei+1 . . . ei+n, ej) ∈
D}.

We found a total of 3,999 instances of a person not tapping his or her card at a door. 201

out of 781 people had at least one instance of such a violation. An example of a violation

was a person who tapped at e7 and then at e5, skipping e6.
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To verify that those instances were indeed indications that someone skipped a card tap

and not artifacts of a disused card reader, we checked that all the possible skipped doorcodes

had at least one occurrence of a Legal Access recorded in the card tap logs. We found

that there always was, and thus that the 3,999 instances were occurrences of tailgating in

the station.

We found that a majority of the missing card taps were to staircases or doors that lead

into the station. However, a sizable amount of missing card taps were to corridors that lead

to critical equipment rooms (indicated in red in Figure 5.3), although some of those corridors

are potentially more tightly controlled, and thus have fewer missing card taps. Thus, our

approach can be used to discover which areas in a building have higher occurrences of

tailgating.
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Figure 5.3: Frequency of occurrences of violations at different locations.

However, that approach only considers card taps. It does not consider egress events or

cases where a person tailgates into several spaces and finally a room (e.g., e7, e6, e5). We

will tackle this issue in Section 5.6, where we consider both card tap and egress events.
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5.6 TRACKING ROOM OCCUPANCY TO INFER TAILGATING

In this section, we use Constraint 2 defined in Section 5.4, which pertains to tracking the

occupancy of a space, to infer tailgating. However, card tap logs do not provide information

about the number of people moving into or out of a space, which is important for under-

standing the effect of movement on occupancy change. We propose to classify all possible

movement scenarios and use our manual observations to identify the most common scenarios

for the purpose of assigning movement counts to the events in the card tap logs.

5.6.1 Classification of Physical Movement Behavior

The events in the card tap log that pertain to the movement of people are Legal Access

and Free Egress. Since those events are not indicative of the actual movement of people,

it is possible for an arbitrary number of people to enter and exit the space.

We define the classes of movement scenarios as the different combinations of counts of

people moving In and Out of the room for each Legal Access and Free Egress event,

i.e., each class is labeled as Access-In*-Out* or Egress-In*-Out*, where * represents a

quantifier (0, 1, or N) for the number of people moving in the given direction.

For the Access class, the person associated with the tapping event may or may not move

In to the space. Independent of that person, an arbitrary number of people can move In

or Out of the space. Thus, the set of possible quantifiers for the Access class is Access-

In{0,1}{0,N}-Out{0,N}.

For the Egress class, the person who pushed the door open may or may not move Out

of the space. Independent of that person, an arbitrary number of people can move In or

Out. However, for Egress, unlike the Access class, there is no information on who pushed

the door open, so we only differentiate between 0, 1, and N people moving Out; therefore,

the set of possible quantifiers for the Egress class is Egress-In{0,N}-Out{0,1,N}. All

movement scenario classes are shown in Table 5.1.

We used our manual observations to relate each movement scenario class to real-life sit-

uations, which we describe in Table 5.1. We annotated each class with the number of

occurrences we found in our observations.

We found occurrences of the Access-In00-OutN class that happened at the service gates

because those were the only doors that required someone to tap his or her card (Legal Ac-

cess) to exit the space. Therefore, events that occur at the service gates cannot differentiate

between a person entering and exiting the station.

We also found occurrences of the Access-In00-Out0 class that corresponded to a person’s

109



Table 5.1: Classes of movement scenarios annotated with the likelihood of the class’s
occurrence (LH), the number of occurrences of that class we found in our 86 observation
events (Found), and a description of how that class manifests in real-life situations
(Situation).

LH Found Class Situation
2 0 Access-In10-OutN People exit coincidentally as someone taps card
5 28 Access-In10-Out0 Someone taps card and enters

2 0 Access-In1N-OutN
Someone taps card and lets people in
because of social courtesy or to let

visitors in; people exit coincidentally

5 10 Access-In1N-Out0
Someone taps card and lets people in
because of social courtesy or to let

visitors in

1 0 Access-In0N-OutN
Someone taps card for other people to
enter but doesn’t enter; people exit

coincidentally

2 1 Access-In0N-Out0
Someone taps card for other people

to enter but doesn’t enter

2 13 Access-In00-OutN
Someone taps card and no one enters;

people exit coincidentally
1 2 Access-In00-Out0 Someone taps card and no one enters or exits

4 0 Egress-InN-Out1
Someone pushes door open to exit;

people enter coincidentally

3 0 Egress-InN-OutN
Someone pushes door open for group of
people to exit; people enter coincidentally

3 3 Egress-InN-Out0
Someone pushes door open for people to

enter
5 23 Egress-In0-Out1 Someone pushes door open and exits

5 6 Egress-In0-OutN
Someone pushes door open for group of people

to exit

1 0 Egress-In0-Out0
Someone pushes door open and no one enters

or exits
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tapping of his or her card at the service gate again to ensure that the gate was properly

locked.

Finally, the one occurrence of the Access-In0N-Out0 class happened when a staff mem-

ber from the inside tapped at the service gate to allow another staff member to enter the

station.

By the definition of tailgating, the movement scenarios that involve the movement of a

group of people into a space are the only classes that constitute tailgating; we italicize them

in Table 5.1. We are particularly concerned with identifying instances of those classes.

We can see from Table 5.1 that of the movement classes that correspond to tailgating, the

Access-In1N-Out0 and Egress-InN-Out0 classes happen the most frequently. Thus, we

will focus our efforts on identifying instances of those classes. We also find that the most

common classes of movement are Access-In10-Out0 and Egress-In0-Out1. So we can

assume that a Legal Access and Free Egress event corresponds to the movement of a

single person.

5.6.2 Using Card Tap Logs to Identify Tailgating

Based on our domain knowledge, we leverage the constraint that the occupancy of a

room must be 0 at the end of a working day. In tracking the occupancy of a space, we

use the assumption from Section 5.6.1 that one event in the card tap logs corresponds to

the movement of one person. We base our approach on the physical constraints that there

should be no one in an equipment room before and after a visit (presuming that visits don’t

overlap). Then, if no tailgating occurs, we expect that the number of entries will be equal

to the number of exits for that room for each day.

We count the number of entries to a room sr (Legal Access to any door that leads to

the room e = (s, sr)) and subtract the number of exits from that room (Free Egress from

any door that leads to the room e = (s, sr)). If the result is negative, there are more exits

than entries, which implies that someone has tailgated into the room.

We define an approach, sum, that performs that calculation at the end of the day as

shown in Algorithm 5.1. We applied sum to the server room for the time periods recorded

in the equipment room sign-in log so we could compare the results with the analyses later,

in Section 5.6.3. The sum approach identified 18 occurrences of tailgating.

However, the sum approach does not take into account the space occupancy during the

day. So we defined an approach, ctr, that extends sum by keeping a running count of the

number of entries and exits to the room. The ctr approach is shown in Algorithm 5.2. Then,

by Constraint 2 in Section 5.4, we can identify tailgating as soon as the room occupancy
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falls below 0. The ctr approach identified 2 more occurrences of tailgating than sum did,

and thus performed better than sum because it checks the number of accesses and egresses

at each event. However, those two approaches do not take into account people who tailgate

both in and out of the room. We tackle that issue in Section 5.6.3.

Algorithm 5.1 sum algorithm

Require: A card tap log is a sequence of events, X = (x0 . . . xn). For each event xi, there

is a User and AccessType field, [User, Type] ∈ xi.
function sum(X)

if |xi[Type] == LegalAccess| − |xi[Type] == FreeEgress| < 0 then return tailgat-

ing

end function

Algorithm 5.2 ctr algorithm

Require: A card tap log is a sequence of events, X = (x0 . . . xn). For each event xi, there

is a User and AccessType field, [User, Type] ∈ xi.
function ctr(X)

score← 0

for all xi ∈ X do

if xi[Type] == LegalAccess then score← score+ 1 end if

if xi[Type] == FreeEgress then score← score− 1 end if

if score < 0 then return tailgating end if

end for

end function

5.6.3 Using Sign-in Logs in Tandem with Card Tap Logs

A railway station consists mainly of staff rooms, storerooms, and equipment rooms. We

focus on equipment rooms because they contain critical equipment for the running of the

system. The equipment rooms have sign-in logs that contain information about the number

of people in a group during a visit, so we can use that information to determine room

occupancy more accurately.

Ideally, the number of people in the sign-in log would be equal to the number of people

who tapped their cards. However, there can be policy violations in which a person taps to

enter the room but is not in the sign-in log, and we indeed found instances of missing names

of accompanying staff members in the sign-in logs. On the other hand, if a person appears

112



in the sign-in log but did not tap to enter the room, the sum and ctr approaches will fail to

identify tailgating when there were instances of Egress-In0-OutN classes during the visit.

Therefore, we propose the ctr-eqp approach, which extends the ctr approach to account

for the number of visitors tailgating into the room. The algorithm for ctr-eqp is shown in

Algorithm 5.3. First, we check that the number of people in the sign-in log is equal to the

number of people associated with the Legal Access events. If the sign-in log shows more

people than the number who tapped their cards, someone must have tailgated into the room.

Then, we keep a running count of entries and exits, much like the ctr approach, except that

on the first Legal Access event, the running count is further increased by the number of

visitors instead of just 1.

Algorithm 5.3 ctr-eqp algorithm

Require: A card tap log is a sequence of events, X = (x0 . . . xn). For each event xi, there is

a User and AccessType field, [User, Type] ∈ xi. Equipment room sign-in logs have visits

annotated with the total number of people visiting, total people, and the number of those

people who have the visitor role num visitors.

function ctr-eqp(X, total people, num visitors)

if |xi[User]| < total people then return tailgate end if

score← 0

for all xi ∈ X do

if xi[Type] == LegalAccess then

if score == 0 then score← score+ num visitors end if

score← score+ 1

end if

if x[Type] == FreeEgress then score← score− 1 end if

if score < 0 then return tailgate end if

end for

end function

The ctr-eqp approach identified 22 more occurrences of tailgating than ctr did, as shown in

Figure 5.4. Thus, the tailgating instances identified by the ctr-eqp approach are a superset of

the instances identified by the sum or ctr approach, which shows that inclusion of additional

data sources like the sign-in logs help to identify tailgating.
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Figure 5.4: Identified occurrences of tailgating by sum, ctr, and ctr-eqp.

5.7 DISCUSSION

Dataset Limitations. Manual sign-in logs are often not fully accurate or complete. In

particular, we found that around 60% of the accesses to the server room were not logged

as visits in the sign-in logs, and 5 of the 33 dates in the maintenance schedule do not have

corresponding entries in the sign-in logs. In addition, the names of all the accompanying staff

members are not always written in the log, and we had to infer those missing staff members

using the card swipe logs. The sign-in and sign-out times in the logs are sometimes missing

or incomplete and are just a rough estimate of the duration of the visit. Thus, it is important

to understand and acknowledge the limitations of the sign-in log and perform further cross-

checks of the information in that log with other forms of data sources.

Approach Generality. Our topology-based approach is applicable to any building since

it is based on physical limitations of human movement in an indoor setting. Of our room

occupancy-based approaches, ctr is also applicable to any building because it capitalizes on

the constraint that occupancy of a space should not fall below 0. On the other hand, sum

and ctr-eqp approaches rely on domain knowledge and additional data sources, in the case

of ctr-eqp.

Attacker Model and Limitations. If an attacker tailgates into any space in the station,

they need to have first signed in at the station entrance with a staff member and entered into

the space with a non-malicious staff member. We assume that the staff member will ensure

that the attacker has logged their entry in the sign-in log book. However, our approaches
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do not distinguish between “benign” tailgating and “suspicious” tailgating that is the result

of malicious behavior. As we see in our results, a large portion of the tailgating instances

that we uncovered were due to visitors who needed to be escorted by railway staff members.

In those cases, tailgating was necessary for them to do their jobs. While it can be argued

that such instances need not be identified, we strongly believe that it is essential to uncover

them, because they give insight into potential policy violations (e.g., a visitor’s borrowing

of a staff member’s card for convenience).

In our analysis of the identified tailgating instances, we also found interesting quirks in

the card tap logs. For example, one of the visits to the server room had only a single Free

Egress event in the card tap log, with no corresponding Legal Access event within the

span of a few days. Occasionally, a Legal Access event had no user identification associated

with it, and in one instance, an Invalid Attempt event resulted in entry of people into the

room. Discussions with our railway system collaborator suggested that the user may have

been tapping at the reader with multiple cards and the reader read the wrong card.

5.8 SECURITY ANALYSIS: EVALUATING OUR SYSTEM DEFENSE APPROACHES

In Section 3.8, we used the ADVISE model to identify the likely course of action an

adversary will take to compromise the safety of the system. Our findings showed that a

stealthy adversary would bribe an insider to use his or her credentials to gain physical access

to the system. Thus, in this chapter and in Chapter 4, we proposed approaches to detect

abnormal physical movement behavior by insiders. In this section, we want to analyze the

extent to which our proposed approaches protect the system against such attack campaigns.

5.8.1 Updated ADVISE Model

We use the results from our proposed detection systems to update the ADVISE model in

Section 3.8. Specifically, we assign detection probabilities to the Move attack step in the

ontology.

If the insider uses his or her physical access card to enter the station, then our approach

in Chapter 4 will attempt to detect abnormal sequences of card taps. In Section 4.6.2,

we calculated the false negative rates for the first, second, third, and fourth accesses of a

user. Thus, we can annotate each directed path in the system instance diagram with the

corresponding detection probability, as shown in the second column of Table 5.2.

Otherwise, if the insider tailgates another staff member into the station, then our approach

in Chapter 4 is unable to detect the physical movement. According to protocol, the insider
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Table 5.2: Detection probabilities for the Move attack step.

Move To
Detection Probability
Chapter 4 Chapter 5

Concourse 0.68 0
Corr 1 0.68 0
PSC 0.88 0

Corr 2 0.88 0
Corr 3 0.88 0
Server 0.91 1
Power 0.91 1

Signaling 0.91 1
Platform 0 0

and staff member would record their presence in the log book located within the equip-

ment room. Then our ctr-eqp approach from Section 5.6.3 will always detect the tailgating

instance, but only after the attack has taken place.

Our ctr and sum approaches may still be able to detect the tailgating instance if the

insider and staff member have a combination of accesses and exits that do not fulfill the

constraints we defined. However, we are unable to assign concrete detection probabilities

without further ground truth data to statistically verify the accuracy of those approaches.

We therefore assume the worst-case scenario in which the ctr and sum approaches are unable

to detect the tailgating instance.

We create a separate system instance diagram to model the detection probabilities of the

ctr-eqp approach as shown in the third column of Table 5.2. Only the Move attack steps to

a Room will have a detection probability of 1, whereas other Move attack steps will have

a detection probability of 0. Since the PSC is the only Room that is not an equipment

room, the Move attack step to the PSC will have a detection probability of 0.

5.8.2 Experiment Results

We want to determine whether our detection approaches will alter the attack campaign

chosen by the adversary. In Section 3.8, we found that a stealthy adversary who stands to

lose more than $500,000 will choose the BribeInsider attack step.

We varied the preference weight (or the adversary’s stealthiness) from $0 to $5,000,000.

The simulation results show that if the insider uses his or her physical access card, then

the payoff of bribing an insider is consistently lower than that of using brute force to enter

the station, because the insider is almost as likely to be detected as an outsider. Since our

116



detection system from Chapter 4 operates in an online manner, the time to detection would

be comparable to that taken by a staff member observing video surveillance. Therefore, our

online detection approach from Chapter 4 increases the security of the system.

Our results show that for weights between $0 and $3,300,000, the adversary chooses the

BruteForce attack step and performs the CutCable attack on the connection between the

CBI Server and the Points machine. If the weight is above $3,300,000, the adversary chooses

to perform the HackComms attack step on the Laptop and performs the RemoteCtrl

attack on the Train.

Previously, only adversaries who stood to lose less than $500,000 would choose to enter

the station via brute force. Those adversaries who stood to lose more than $500,000 would

choose to bribe an insider. So with the addition of our detection system, more adversaries

would choose to enter the station via brute force. Those adversaries would be detected while

performing the attack steps. Only a very stealthy adversary (e.g., a nation-state adversary)

would attempt to hack the communications between the train and the servers, despite the

large amount of time needed to collect the data needed.

However, if the insider is able to tailgate behind another staff member, then the payoff

of bribing an insider is consistently higher than that of hacking the communications of the

train. Our results show that if the weight is above $500,000, the adversary will perform the

BribeInsider attack step and tailgate into the PSC to Login to the Host and RemoteCtrl

the Train.

We can, however, develop our detection approach further to infer tailgating instances for

other spaces, and the PSC in particular, using other sources of information. In particular,

we can identify cyber logins to terminals in the PSC by using the device event logs. Then,

if we find a user login to the terminal in the PSC but no card tap associated with that

user, that implies the user has tailgated into the space. Therefore, we can assign a detection

probability of 1 to the Move attack step into the PSC.

With that improvement to our detection approach, the payoff of bribing an insider to

tailgate another staff member into the station is now consistently lower than that of enter-

ing the station through brute force. Then, our results show that for weights between $0

and $3,300,000, the adversary chooses the BruteForce attack step, and for weights above

$3,300,000, the adversary chooses the HackComms attack step. Therefore, the inclusion

of our detection approach has also incentivized the adversary away from bribing an insider.

The drawback to our detection approach is that the defender can infer that tailgating,

and therefore the attack, has occurred only after the attack has taken place. However, that

post-mortem detection analysis can inform the defenders to whom they should attribute the

attack. We also believe that the time to detection for our approach would be short because
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the forensics team only needs to obtain the station sign-in log book, equipment room sign-in

log books, and card tap logs. Corroboration of those data does not take much time, since

there are not many accesses to equipment rooms in a day. In comparison, forensic analyses

of the terminals take much more time to detect the DirectControl attack step by an insider

if he or she has inserted malware to erase or hide traces of malicious activity in the host

logs.

5.9 CONCLUSION

Physical security is essential to protect the equipment inside critical infrastructure facili-

ties. However, building access control systems that rely on card readers and door movement

sensors are inadequate to prevent tailgating behavior that potentially violates physical access

control policies.

In this chapter, we developed approaches to detect tailgating that use existing data sources

in railway stations. We defined several physical constraints on human movement that drove

our approach to inferring tailgating from card tap logs. We analyzed the movement tra-

jectories derived from the card tap logs and found 3,999 instances of tailgating throughout

the building. Then, we narrowed our focus to critical equipment rooms and proposed two

approaches that keep track of room occupancy using only the card tap logs, and another

approach that uses equipment room sign-in logs together with the card tap logs to iden-

tify tailgating. Our results show that the equipment room sign-in logs are very useful in

identifying tailgating.

We also reapplied our approach from Chapter 2 to analyze how our detection approaches

from this chapter and Chapter 4 would affect the decisions made by adversaries. Our re-

sults show that our detection approaches would incentivize the adversaries to either attack

the communication messages to the train or, in most cases, perform brute-force attacks

to enter the station instead of bribing insiders. Therefore, our detection approaches have

strengthened the security of the system.
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CHAPTER 6: CONCLUSION

Today, the increased interconnections among devices in critical infrastructure systems have

improved the system’s efficiency at the cost of a larger attack surface. Malicious adversaries

are now able to launch both physical and cyber attacks to compromise the safety of systems,

resulting in real-world consequences that impact citizens. Thus, it is important to protect

such critical infrastructure systems from both physical and cyber threats.

In this dissertation, we presented a model-driven framework that combines information

from the cyber, physical, and human domains to analyze a system’s state and defend against

malicious physical attacks. Specifically, our contributions are (1) a novel ontology to rep-

resent cyber-physical systems and cyber and physical actions by an adversary for security

analysis, (2) a strategic approach for representing combinations of cyber actions of an adver-

sary for safety verification, (3) the first large-scale analysis of human movement for detection

of malicious behavior, and (4) the first real-life study of identification of tailgating. We ap-

plied our contributions to a railway system case study and showed that it supports our

thesis statement, which is that the protection of critical infrastructure systems requires an

integration of security analysis, safety analysis, and system defense that is enabled by the

cross-domain models that we developed. In this chapter, we briefly review our contributions

and describe further avenues of work.

6.1 REVIEW OF CONTRIBUTIONS

First, we presented a novel ontology that represents the cyber and physical system compo-

nents, the relationships among them, and the cyber and physical actions of a human actor,

for the purposes of security analysis. We modeled a railway station using concepts from the

ontology and input that model into the ADVISE tool, which then generated an attack exe-

cution graph automatically. We used that attack execution graph to analyze the potential

attack paths of an adversary and showed that the addition of a defense system for physical

movement of humans would help to strengthen the security of the system.

Then, we presented a safety analysis of the railway system that identified potential cy-

ber threats to the signaling system. We used networks of timed automata to model the

cyber-physical control feedback loop of the signaling system that drives system service. We

developed a set of transformations on those state automata to represent different combina-

tions of cyber actions taken by a human adversary. Then, we performed model checking

to identify which combinations of attacks would violate system safety. We found potential
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threat vectors that could be utilized by outsider and insider adversaries and showed the

effects of several safety countermeasures in mitigating those threat vectors. We reapplied

our security analysis with the addition of those cyber threat vectors and showed that ad-

versaries would respond to safety countermeasures by exploiting physical and social means

rather than cyber means to compromise system safety.

To strengthen the security of the system, we presented two detection systems to identify

suspicious physical movement of humans. Our first detection system identifies abnormal

sequences of card taps by humans by employing socio-technical models to represent normal

patterns of movement behavior of human actors in an indoor setting. We used historic

physical access logs collected from building access control systems to build Markov models

of normal movement behavior for each human actor. Then, in real-time, we screened phys-

ical card taps and compared the current sequence of card taps to those models to detect

deviations from the models. We showed that our detection system can detect suspicious

movement with increasing likelihood as the length of the suspicious movement sequence in-

creases. However, our detection system is unable to capture suspicious movement that does

not involve the tapping of an access card.

Thus, we developed our second detection system that uses cyber and physical data sources

to identify tailgating movement behavior. We identified physical constraints on human

movement based on our domain knowledge. Then, we developed several approaches that

track the physical location of human actors and identify instances of tailgating when those

physical constraints are violated. We showed that our detection system can identify certain

scenarios of tailgating behavior and that inclusion of additional physical data sources helps

to build a more complete user location model. We reapplied our security analysis and showed

that our detection systems can incentivize adversaries to pursue a cyber-attack campaign

that would take considerable time and effort instead of bribing insiders.

6.2 FUTURE DIRECTIONS

There are many avenues of future work that we can pursue to advance the state of safety

and security in critical infrastructure systems. We will now discuss the different technical

improvements that can be done for each chapter’s contribution. Then, we propose further

extensions of the work and conclude with a discussion about the future of our proposed

framework.
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6.2.1 Technical Improvements

In Chapter 2, we constructed an ontology for cyber-physical systems that models a sys-

tem’s cyber and physical components, and cyber and physical actions on that system. The

generated attack execution graph is only as complete as that ontology. Therefore, our on-

tology could be extended in the future to model various types of devices and possible attack

steps and their consequences.

We currently model physical consequences of a human action as attack steps in the ontol-

ogy that are performed by an adversary. However, the physical consequences of an action

can take effect immediately and are not themselves actions performed by a human actor.

The physical consequences could be modeled instead by composing the attack execution

graph with stochastic activity networks (SANs), fault trees, or hybrid attack graphs that

model the system functions.

It is difficult to perform such a composition with the current version of the ADVISE tool,

because the tool’s simulation of the adversary’s decision-making process is unable to view

the effects of certain actions outside the attack execution graph generation and would not

be able to account for complex interactions between different models. Thus, the adversary’s

modeled decision-making process would not have the foresight to attempt certain actions.

One could explore the different ways in which the tool’s simulation algorithm could have full

visibility into the workings of the system to better inform the adversary’s decision-making

process. We envision that this feature will be part of future releases of the tool.

In Chapter 3, we used statistical model checking to verify the safety of the system. Al-

though statistical model checking provides a good measure of system safety, we want to be

able to say with certainty that safety is guaranteed under certain conditions. One avenue

of further work is to reduce model complexity by removing the differential equation that

represents the train movement and discretizing certain elements of the model. One could

also bound the model to prevent state-space explosion. Then, UPPAAL’s built-in model

checker could be used to explore the full state space.

We modeled attacks on network messages and commands in Chapter 3. Other attacks on

the control feedback loop, such as the traction power supplied to the track, relevant signals

sent to the train, and the environmental conditions of the railway tunnel that are controlled

by computing devices in the station, could be considered.

In Chapter 4, we compared our Markov models to Bayesian network models and found that

2-node Bayesian network models also had high accuracy in detecting abnormal movement

sequences. One could analyze the users’ movement sequences further to determine under

what conditions Markov or Bayesian network models should be used.
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Finally, in Chapter 5, we conducted an observation study to determine how often each

movement scenario occurs in real life. That study could be extended to obtain more ground

truth data and verify the results of our tailgating detection approaches. Our approaches

could also be extended to look at events at other locations instead of only a specific space.

For example, if a person taps somewhere outside a room, we can infer that he or she has left

the room, but that only allows us to associate egresses with that person.

6.2.2 Extending Approach Generality

In our dissertation, we have chosen several key components of the railway system to model

and analyze. In particular, we considered one of the 13 railway stations on the railway line

and performed a security analysis. We also collected various cyber and physical data logs

from that station, including physical access logs and equipment room sign-in logs. Although

all of the railway stations are similar in terms of the types of rooms and devices contained

within them, the physical architecture, number of rooms, and devices differ from one station

to another.

Therefore, our analyses could be extended to all the railway stations. In particular, our

system instance diagram from Chapter 2 could be extended to the full railway system, and

one could evaluate how different station architectures affect the ability of adversaries to

achieve their goals. One could also analyze how different physical architectures affect the

movement of humans, especially those railway staff who visit different stations to perform

their duties.

The goal of our detection systems for physical movement is to identify abnormal movement

behavior. However, not all abnormal behavior is the result of malicious intent. For example,

our tailgating detection approach can only determine that tailgating has happened and is

unable to identify when that tailgating happened or whether that tailgating event can be

attributed to benign or malicious purposes. Other information about the system state could

be used to provide more context for the movement behavior. We collected several types of

cyber and physical data that were not put to full use in our dissertation. For instance, we

used the device event logs to extract information about device failures in 4 rooms of a station

to enhance the movement models for maintenance staff. That work could be extended to

use device event logs to determine when people are interacting with the devices in a room.

The main challenge in using that data source is that of correctly attributing changes in the

device state to physical interaction with a person instead of automated physical processes

or remotely controlled actions. Device event logs could also be combined with cyber login

data to determine whether a person is attempting to perform malicious actions on a device.
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We also collected station sign-in logs that identify the people who should be in the station

at any given point in time. Much like the equipment room sign-in logs, that knowledge can

help us find instances of tailgating. However, it is harder to use station sign-in logs than

equipment room sign-in logs because we only have the information that a certain person

is in the building at a given time; we cannot pinpoint his or her location. Thus, building

topology could be used to track the movement of all users in the building to correlate the

Legal Access and Free Egress events.

In Chapter 3, we analyzed the safety of a diamond crossing by taking into consideration

the possible attacks on the network protocol and commands issued to point machines. One

could also investigate safety in other locations on the railway line, such as railway yards, to

gain a better understanding of the overall system safety. We could reapply our model to

those locations by modifying the track topology model and routing table functions in our

server automaton. While we have not considered system availability in this dissertation, our

analysis could be extended to include the impact of attacks on system service.

6.2.3 Towards a Comprehensive Framework

We envision that our framework for security analysis, safety analysis, and system defense

can be applied to other critical infrastructure systems to provide insight into the threats

posed by different adversary profiles and suggest countermeasures to put in place.

Our framework abstracts model elements to reduce the amount of system practitioners’

effort needed to construct the models needed for analysis. For example, when there are

changes in the system or updates to the possible attacks, a system practitioner need only

modify the ontology and system model in Chapter 2 instead of the attack execution graph. In

our works’ current state, the models we discussed in different chapters do not share common

definitions. Thus, work needs to be done to integrate common pieces of information, such

as the system’s architecture, which is used in Chapters 2, 4, and 5.

Once the inputs to each approach have been consolidated, the system-specific inputs of

our approaches can be divided into three components: system architecture and service,

system data, and adversary profiles. In particular, if system practitioners want to apply our

framework to their critical infrastructure systems, they will perform the following steps.

1. Model the system’s physical and cyber network architecture and interdependencies,

using the classes and relations in the base ontology.

2. Use networks of timed automata to model the control feedback loop that drives system

service.
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3. Input system logs, including building access control logs, to the physical defense system.

4. Model the different adversary profiles and goals expressed in terms of the system model.

5. Restrict the potential combination of attacks on the system based on domain knowl-

edge.

Once they have done so, our security analysis approach from Chapter 2 will use the system

model from step 1, the adversary profiles and goals from step 4, and the attacks from step

5 to generate the attack execution graph. Our safety analysis approach from Chapter 3 will

use the model from step 2, the adversary profiles and goals from step 4, and the attacks

from step 5 to verify the safety of the system. Finally, our system defense approaches from

Chapters 4 and 5 will use the system model from step 1 and the system logs from step 3 to

generate models of user behavior and user location.

6.3 CONCLUDING REMARKS

There are many complex interactions in critical infrastructure systems that can be ex-

ploited by attackers to compromise system safety. During the course of our work, we found

that modeling the intricacies of human behavior in the context of the interaction between

the human actor and the system is the most difficult task in our modeling approaches. The

reason is that it is hard to claim completeness of the possible malicious scenarios that may

happen in a system.

In our dissertation, we model the preconditions and effects of a human action. It is

important also to model the duration of a human action because it affects the time to

response of detection systems and system defenders. However, we model only the duration

of a human action in Chapter 3, because we restricted the possible sets of scenarios that

can occur. It is difficult to specify a suitable range for the duration of a human action

because different adversaries may take different amounts of time to accomplish an action. In

addition, there may be multiple human actors performing malicious actions to achieve their

goal. Adversaries may also employ deception techniques or actions to mask their malicious

actions. Therefore, the modeling of human-initiated cyber and physical actions on a system

is a continuing research area that requires the fostering of open collaborations among domain

experts, system operators, and researchers in an effort to better understand and protect such

systems.

We have learned many valuable lessons from interacting with our railway system collab-

orators. Our discussions about potential attacker scenarios exposed differences of opinion
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with regard to the ability of an attacker to achieve certain attack goals. While our collabora-

tors were focused on the practical possibilities, we were more concerned with the theoretical

possibilities. The results of our security analysis did show that our collaborators were correct

in assuming the limits of certain attackers. However, the theoretical attacks that we exposed

were important for our collaborators to be aware of.

Our collaborators were also open to providing data, for which we are very grateful. Those

data allowed us to identify problems with their system and present solutions and analyses

to them for potential deployment in the future.

In conclusion, we believe that protection of critical infrastructure systems is a team effort

by domain experts, system operators, and researchers that involves development of analytic

techniques enabled by models that integrate the cyber, physical, and human domains of the

system.
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J. Jantos, T. Hughes, L. Lefkowitz, M. Witbrock, D. Lenat, and E. Larson, “A
knowledge-based approach to network security: Applying Cyc in the domain of network
risk assessment,” in Proceedings of the 17th Conference on Innovative Applications of
Artificial Intelligence, vol. 3. AAAI Press, 2005, pp. 1563–1568.

[32] H. Holm, K. Shahzad, M. Buschle, and M. Ekstedt, “P2 CySeMoL: Predictive, prob-
abilistic cyber security modeling language,” IEEE Transactions on Dependable and
Secure Computing, vol. 12, no. 6, pp. 626–639, Nov, 2015.

[33] S. Marrone, R. J. Rodriguez, R. Nardone, F. Flammini, and V. Vittorini, “On syn-
ergies of cyber and physical security modelling in vulnerability assessment of railway
systems,” Computers & Electrical Engineering, vol. 47, pp. 275–285, 2015.

[34] The TREsPASS Project, “Technology-supported risk estimation by predictive assess-
ment of socio-technical security,” https://www.trespass-project.eu/, 2017.

128



[35] C. W. Probst, J. Willemson, and W. Pieters, “The attack navigator (invited),” in
Graphical Models for Security - Revised Selected Papers, ser. Lecture Notes in Com-
puter Science, S. Mauw, B. Kordy, and S. Jajodia, Eds. Berlin: Springer Verlag,
February 2016, vol. 9390, p. 1–17.

[36] P. J. Hawrylak, M. Haney, M. Papa, and J. Hale, “Using hybrid attack graphs to model
cyber-physical attacks in the smart grid,” in Proc. of 5th International Symposium on
Resilient Control Systems, Aug, 2012, pp. 161–164.

[37] J. Rouvroye and E. van den Bliek, “Comparing safety analysis techniques,” Reliability
Engineering & System Safety, vol. 75, no. 3, pp. 289–294, 2002.

[38] E. Denney and G. Pai, “Evidence arguments for using formal methods in software certi-
fication,” in Proc. IEEE International Symposium on Software Reliability Engineering
Workshops, 2013, pp. 375–380.

[39] “UPPAAL,” http://www.uppaal.org/, accessed: 2018-05-20.

[40] A. Borälv, “The industrial success of verification tools based on St̊almarck’s method,”
in Computer Aided Verification, O. Grumberg, Ed. Springer, 1997, pp. 7–10.

[41] A. Fantechi, “Twenty-five years of formal methods and railways: What next?” in
Software Engineering and Formal Methods, S. Counsell and M. Núñez, Eds. Cham:
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