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Abstract

This dissertation makes three contributions in the area of controlled vocabulary pre-

diction of Medical Subject Headings. The first contribution is a new partial matching

measure based on distributional semantics. The second contribution is a probabilis-

tic model based on text similarity and citations. The third contribution is a case

study of cross-domain vocabulary prediction in US Patents. Medical subject head-

ings (MeSH) are an important life sciences controlled vocabulary. They are an ideal

ground to study controlled vocabulary prediction due to their complexity, hierarchical

nature, and practical significance. The dissertation begins with an updated analysis

of human indexing consistency in MEDLINE. This study demonstrates the need for

partial matching measures to account for indexing variability. Here, I develop four

measures combining the MeSH hierarchy and contextual similarity. These measures

provide several new tools for evaluating and diagnosing controlled vocabulary mod-

els. Next, a generalized predictive model is introduced. This model uses citations

and abstract similarity as inputs to a hybrid KNN classifier. Citations and abstracts

are found to be complimentary in that they reliably produce unique and relevant can-

didate terms. Finally, the predictive model is applied to a corpus of approximately

65,000 biomedical US patents. This case study explores differences in the vocabulary

of MEDLINE and patents, as well as the prospect for MeSH prediction to open new

scholarly opportunities in economics and health policy research.

ii



Acknowledgements

I would first like to thank Dr. Vetle Torvik for his patient help and guidance in this

project. His support, both practical and moral, has been invaluable. Dr. Torvik’s

lecture on literature based discovery in my first course on data mining profoundly

changed the trajectory of my career. The help of the committee has also made a major

impact on my work. Dr. Dubin was incredibly gracious with his time and advice at

multiple stages of this project. Dr. Smalheiser’s pioneering work in literature based

discovery has been a source of inspiration to me from the beginning of my studies in

information science. Dr. Downie and Dr. Ludaescher have both provided valuable

insights that helped focus my research strategy. I owe a debt of gratitude to Dr. Les

Gasser. His incredible insight, creativity, and kindness are sorely missed. Finally, I

would like to thank my wife, Kamila Kehoe. This dissertation would not have been

possible without her support.

iii



Contents

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Outline of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2 Background and Literature Review . . . . . . . . . . . . . 9

Biomedical Controlled Vocabularies: Medical Subject Headings and Patent

Classifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Defining the MeSH Prediction Problem . . . . . . . . . . . . . . . . . . . . 18

Hierarchical and Multilabel Classification . . . . . . . . . . . . . . . . . . . 18

Notable MeSH Prediction Systems . . . . . . . . . . . . . . . . . . . . . . 25

MeSH Prediction Beyond MEDLINE . . . . . . . . . . . . . . . . . . . . . 29

Chapter 3 Explaining Prediction Accuracy: Beyond Exact Matching 30

Revisiting the Consistency of MeSH Indexing: An Argument For Partial

Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Partial Matching in the MeSH Hierarchy . . . . . . . . . . . . . . . . . . . 35

Combining Word2vec and the MeSH Hierarchy . . . . . . . . . . . . . . . 44

Chapter 4 Predicting MeSH in MEDLINE: Leveraging Citations and

Abstracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Candidate Identification Procedure . . . . . . . . . . . . . . . . . . . . . . 61

Training Data Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 63

Complementarity of Citations and Text . . . . . . . . . . . . . . . . . . . . 69

iv



Identifying Relevant Candidate Terms: A Hybrid K-Nearest Neighbors and

Binary Classification Approach . . . . . . . . . . . . . . . . . . . . . 72

Partial Matching Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Chapter 5 Beyond MEDLINE: A Case Study in Patents . . . . . . . 102

Purpose, Styles of Attribution and Language: Patents vs the Scientific Lit-

erature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Prediction Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Patent MeSH: Human and Drug Oriented . . . . . . . . . . . . . . . . . . 108

Chapter 6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Review of Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . 118

Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Comparing Patent Classifications with MeSH . . . . . . . . . . . . . . . . 122

Limitations of AbSim: Rare, Distinct and Misleading Terms . . . . . . . . 122

Improving Prediction Results with MeSH Distributional Semantics . . . . 126

Beyond Patents: Empowering New Scholarly Opportunities in Health Policy

and Information Retrieval . . . . . . . . . . . . . . . . . . . . . . . . 127

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

v



Chapter 1

Introduction

This dissertation is focused on the automatic prediction of controlled vocabulary,

specifically Medical Subject Headings. The following chapters are structured around

three contributions:

1. First, this dissertation describes a longstanding problem in the evaluation of

controlled vocabulary prediction models, namely an over-reliance on exact match-

ing. The evaluation chapter updates an existing study on the indexing consis-

tency of human annotators. This study also provides a reference dataset for

the development of new partial matching measures that quantitatively cap-

ture broad relationships between terms based on their distributional semantics.

These measures are designed to supplement existing evaluation metrics.

2. Second, this dissertation presents a predictive model that extracts and ranks

candidate terms from related records using citations and abstract similarity.

The primary finding is that citations and text are complimentary and typically

have high recall of the original MeSH. This model is designed to be highly

general and applicable to a wide array of bibliographic databases outside of

MEDLINE.

3. Third, the predictive model described above is applied in a case study of US

patents. This case study demonstrates the application of automated MeSH

prediction beyond MEDLINE, and discusses potential uses of MeSH as an in-

formation retrieval and policy analysis tool.
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The Medical Subject Headings (MeSH) are at the center of my experiments. Ar-

guably, MeSH is the most important controlled vocabulary in the life sciences. Since

1960, the National Library of Medicine (NLM) has applied MeSH to millions of sci-

entific publications[59]. In that time, the NLM has continuously revised MeSH based

on scientific developments. The vocabulary spans a wide variety of topics, including

many outside of medicine and biology. Beyond scientific papers, MeSH is also used to

index several NLM databases, including clinical trials[59]. In short, MeSH is a widely

used, practically significant, and complex controlled vocabulary.

One of the practical motivations of this dissertation is that MeSH is not available

for many important life science corpora. This dissertation explores potential applica-

tions of MeSH to the patent literature in a case study, and describes the significant

limitations of patent controlled vocabularies for the life sciences. The wider goal of

this work is to develop a flexible MeSH model that can be applied to biomedical docu-

ments generally. This goal informs a modeling strategy that focuses on understanding

widely available document features, namely citations and abstract text.

Beyond improving access to these corpora, MeSH indexing could also empower

a range of new scholarship. For example, the hierarchical nature of MeSH enables

aggregation by higher level topics. This is particularly useful in policy analysis, where

control over the level of topical granularity is helpful in tracking the flow of research

investments over time[28]. More broadly, controlled vocabulary could be a useful

tool for “science of science” studies, including the patent space[28]. For example, a

common MeSH index could help locate connections between academic research and

commercial innovation. MeSH is also a helpful tool in many literature based discovery

paradigms. In short, extending MeSH beyond MEDLINE would have a number of

practical and scientific benefits.

While MeSH is a highly valuable resource, it is also expensive to apply, especially
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in domains outside of MEDLINE. Manual annotation is costly, and requires expertise

in both the life sciences and complex indexing practices. The value of MeSH and the

high cost of manual indexing has inspired many automated MeSH prediction efforts

and competitions. The wide range of MeSH prediction strategies are reviewed in the

following chapter.

Past efforts in this area have met with modest success. MeSH prediction involves

a combination of special characteristics that make it a challenging machine learning

task. MeSH prediction is best described as a hierarchical multilabel classification

(HMLC) problem. The formal details of this problem are discussed in greater detail

below. Unlike binary or multiclass tasks, HMLC predicts a set rather than a single

class. A further complication is that MeSH is structured in a hierarchy, where a term

may belong to more than one branch. The MeSH vocabulary is large, with many

terms that are closely related to each other. The issue of redundancy and conceptual

similarity between terms is explored in depth in both the evaluation and modeling

chapter.

In terms of modeling, approaches to HMLC problems have historically pursued

one of two strategies. In the first, the data is simplified to fit established machine

learning algorithms. For example, the multilabel problem can be decomposed into

a large set of binary classification tasks. These approaches have the advantage of

simplifying the problem, but come at the cost of discarding important information

about relationships between the labels. The other strategy involves creating new

algorithms that are natively capable of predicting sets. These approaches typically

make good use of label relationships, at the cost of tractability and increased risk of

overfitting. These approaches are summarized in detail in the following chapter.

The MeSH prediction literature has prominent examples of both strategies. This

dissertation seeks to address a common limitation in the existing literature: a narrow
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focus on performance measures using exact term matching. This focus is understand-

able, as common, unambiguous performance measures are central to machine learning

scholarship. However, this focus has obscured an underlying evaluation problem.

The dissertation begins with experiments comparing human indexing consistency

in a set of papers that were inadvertently indexed twice. This study demonstrates,

unsurprisingly, that annotators frequently make different vocabulary choices. The im-

portant consequence of this rather obvious observation is that performance measures

based on exact matching can provide only limited insight into model performance.

If we were to treat the duplicate human annotations as the prediction of a model,

we would often conclude that the performance of the model is poor – despite the

fact that in other circumstances we would happily treat those annotations as a gold

standard. This highlights the crucial importance of partial matching. Here, we im-

mediately see that the duplicate annotations are generally similar. However, most

existing approaches to partial matching rely heavily on the MeSH hierarchy. This

dissertation presents a new approach to partial matching that leverages the shared

context of terms in addition to the hierarchy. This permits a flexible, continuous

measure of similarity between terms that augments existing graph-based techniques.

The third general area of focus is in cross-domain prediction. MeSH prediction

scholarship has almost exclusively focused on MEDLINE. This dissertation focuses on

the development of a more general classification strategy that can predict MeSH for a

wide range of scientific documents. I begin with the observation that biomedical doc-

uments tend to have similar features: titles, an abstract-like summary, and citations

to the scientific literature. As such, this dissertation is strongly focused on elucidating

the relationship between citations, text similarity and candidate MeSH. The scientific

objective here is not to optimize prediction accuracy so much as to understand how

these document features function. Such an understanding is a vital basis to develop a
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principled, empirical basis for optimization in the future. The fourth chapter develops

a classification model that applies a hybrid K Nearest Neighbors strategy that avoids

classic pitfalls in multilabel classification.

Research Questions

The following questions summarize my research objectives. A brief explanation of

each question is provided, along with pointers to where the question is answered.

RQ1: Given that human inter-rater reliability is modest, how
should MeSH prediction systems evaluate accuracy?

The MeSH vocabulary is large and complex, and each paper has a varying number

of labels. Previous studies have found that inter-rater reliability is modest, at about

50%[17]. Evaluations based only on strict matching miss valid assignments. They

also overly reward high performance on common terms. How can prediction systems

quantitatively differentiate between true errors and partial matches? Chapter 3 es-

tablishes a framework for the later modeling chapter. This framework develops a new

measure of MeSH similarity based on term context within MEDLINE. This approach

also leverages the MeSH hierarchy for partial matching.

RQ2A: Are abstracts and citations effective features for pre-
dicting medical subject headings in MEDLINE?

Most biomedical documents have abstract-like text, and many have direct citations

to MEDLINE. These links can provide candidate MeSH terms, even if the original

document is not in MEDLINE. Can these candidate terms be effectively ranked? How

well does this approach predict MeSH terms within MEDLINE? Chapter 4 describes

the performance of a classification model based on abstracts and citations.
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RQ2B: To what degree are abstracts and citations comple-
mentary within MEDLINE and USPTO Patents?

The ubiquity of citations and abstracts make them an attractive source of data. But,

do they contain complimentary information? Are there significant differences in their

candidate term sets? If so, what is the underlying source of this complimentarity?

Chapter 4 describes the differences between abstracts and citations in terms of capture

rate and temporal span.

RQ3: How do MeSH terms in MEDLINE compare to pre-
dicted MeSH in USPTO patents?

MeSH prediction is straightforward to assess in MEDLINE because there are many

labeled examples. However, there are many domains outside of the scientific literature

that could benefit from MeSH annotation. How do the distributions of MeSH compare

between MEDLINE and USPTO patents? Chapter 5 details a case study of MeSH

prediction in USPTO patents.

Outline of Experiments

This section is intended to provide a sequential overview or roadmap of the individual

experiments described above. The overall structure of this work is to begin with a

deep examination of evaluation in order to fully contextualize the performance of the

predictive model. We will then transition into developing a general, robust model

for predicting MeSH in a wide variety of domains. Further, we will apply insights

from the evaluation experiments to diagnose and examine model output. Finally, we

present a practical case study in applying the MeSH model to a sample of biomedical

patents. Along the way, we will reintroduce and address the research questions posed
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above.

We begin with experiments measuring the consistency of human annotators in

order to provide a baseline comparison for predictive models. This is accomplished

by collecting a set of papers that were published and annotated more than once.

These duplicate papers provide a useful dataset for comparing MeSH annotations.

I begin by examining MeSH consistency using exact matching over a roughly forty

year span. Next, I develop a novel partial matching measure based on the shared

context of MeSH terms. I then apply these measures to a dataset based on the

duplicate papers described above. The third chapter concludes with examples of

these measures applied to an example paper to highlight evaluation issues such as

redundant term predictions.

The fourth chapter features experiments in predicting MeSH based on citations

and text. We begin by examining how well citations and text produce candidate MeSH

sets before any inferential modeling. Next, we review a sequence of four progressively

more sophisticated models that provide a ranking of candidate terms. These models

are evaluated on a series of test sets that are designed to probe the robustness of each

model to potential sparsity of citations or abstract text. This evaluation includes

high level exact matching metrics, as well as an assessment of performance within

each branch of the MeSH hierarchy, and at each level of the hierarchy. The chapter

concludes with an application of the partial matching measures introduced earlier.

Here, we examine how context based partial matching measures can help identify

systematic limitations of the model.

The fifth chapter applies the best model from the second chapter to the patent

space in an exploratory case study. We begin by constructing a paired dataset of

MEDLINE papers with similar characteristics to a sample of patents. We then explore

systematic differences between model predictions in MEDLINE and patents. We will
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also examine suggestive patterns, such as differences in term frequencies related to

pharmaceuticals and diseases. The chapter concludes with a close examination of a

sample patent and its annotations.

8



Chapter 2

Background and Literature Review

Biomedical Controlled Vocabularies: Medical Sub-

ject Headings and Patent Classifications

Biomedical controlled vocabularies are at the core of this dissertation. Different

scholarly communities and stakeholders have varying views of controlled vocabulary.

Some see them as practical tools for information retrieval, and are primarily concerned

with their construction and application. The machine learning perspective on con-

trolled vocabulary necessarily involves reducing it to a mathematical structure that is

compatible with a classification algorithm[74]. Another perspective views controlled

vocabulary as a kind of artificial language[9]. Each of these perspectives contribute

important insights that are explored in this dissertation.

What is a Controlled Vocabulary?

Each of the three perspectives detailed above describes and defines controlled vocab-

ularies differently. Perhaps the simplest perspective is mathematical. From this point

of view, a controlled vocabulary is a set consisting of possible lexical units as elements.

The annotations of any given document are a subset of the vocabulary itself. These

sets can utilize more complex structures, as with medical subject headings, where

terms are arranged in a graph. These graph structures commonly take the form of

a directed acyclic graph or tree. Other structures, such as semantic triples, can be

used to indicate subject-predicate-object relationships. Further distinctions can be

made in terms of designating major and minor terms. Many of these complexities
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are described in detail below as they relate to specific prediction challenges. For the

purpose of introduction, suffice it to say that controlled vocabularies can be viewed

as a discrete mathematical structure comprised of distinct lexical units.

Most machine learning approaches to vocabulary prediction happily disregard the

history, context and purpose of the target vocabulary in favor of a concise mathemat-

ical description. Such mathematical descriptions form the foundations of algorithms

and other formal methods for manipulating controlled vocabularies. However, re-

ducing controlled vocabulary to the simplest possible discrete structure misses the

richness of a view of controlled vocabulary as a living, if stylized, language. It would

be as if computational linguistics viewed text as mere lexicology – inert arrays of

tokens, devoid of grammar or higher order structure.

A more nuanced view of controlled vocabularies is that they are a form of “docu-

mentary language,” induced over a set of documents[9]. While the primary practical

purpose of controlled vocabulary is to facilitate search, it also locates a document

within a coherent system of knowledge. In other words, the relationship of terms to

each other is as important as the relationship of terms to a particular document.

This dissertation is mostly concerned with medical subject headings, a large

biomedical vocabulary that has been in continual use over millions of documents

for nearly sixty years at the time of writing. Most prediction efforts view the collec-

tive body of MeSH assignments as training data, useful for inducing a classification

function for new documents. This is a productive viewpoint, and many of the ex-

periments below follow in this tradition. But the millions of annotated documents

represent more than just assignments of terms to a document. They also represent

expert judgments about which terms belong together. One of the central ideas of

this dissertation is that it is possible to marry the machine learning view (controlled

vocabulary as inert discrete structure) and the “documentary language” view (con-
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trolled vocabulary as artificial language). In other words, techniques of computational

linguistics and distributional semantics can be useful in recovering patterns in the re-

lationships between terms. Cumulatively, the structure of MeSH as well as the living

practice of annotation, form a kind of language of medicine.

To recap, controlled vocabulary at an explicit level is a simple discrete structure,

comprised of individual terms. Though the specific arrangement of this structure may

vary (simple sets vs. hierarchical graph), they remain at root a list of terms. At an

implicit level, the specific terms in the vocabulary and their application to a body of

documents arguably represent a particular system of knowledge. One of the major

questions of this dissertation is if this system of knowledge can be systematically

recovered and quantified. Later sections return to this idea by using computational

linguistics tools, namely distributional semantics, to develop quantitative means of

recovering deeper semantic structures implicit in controlled vocabulary assignments.

These models represent terms as a high-dimensional vector space, opening up many

useful mathematical tools.

This rather conceptual view of controlled vocabulary might be made clearer with

a metaphor. The game of chess can be defined by a board, a set of pieces, and a

set of permissible operations (legal moves) over those pieces. However, chess is more

than its rules – we distinguish the higher order strategy of chess from the power set of

legal moves. Similarly, a controlled vocabulary can be defined atomically as a set of

terms, their configuration (flat list, hierarchy, etc), and rules for their assignment. But

the complexity of controlled vocabulary is only appreciable over time, in their large

scale assignment. The higher order structure of controlled vocabulary only emerges

through application, or intelligent “play” in the chess metaphor. This dissertation

necessarily engages with the basic definition and mechanics of MeSH, but it is also

concerned with a statistical exploration of the “moves” made by countless annotators
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over its 60 year history. The cornerstone of this approach is appreciating that the

context and relationships between terms to each other is as much valuable as data as

the mapping of particular terms to particular documents.

What Problem Does MeSH Solve?

To review: a controlled vocabulary is a set of authoritative vocabulary terms reflecting

a larger system of knowledge. What problem does this solve? The initial goal of the

Medical Subject Headings was to create a unified index for searching the biomedical

literature that would be both simple for users and efficient for the National Library

of Medicine to maintain and use[59]. The desirability of such a unified index was

juxtaposed with the difficulty of reconciling conceptual ambiguity from the outset.

The authors of the Medical Subject Headings quoted the following from Swanson

(1959) in their organizing principles:

[Medical information] has been drawn from such a wide span of time and

such a diversity of specialized fields that its doctrines belong to several

different systems and its language problem is almost as bad as that of

India. There is at least one major language for each major department,

and each of these has several dialects. The situation is made even worse

because in each language we teach a mixture of doctrines which range

from Newtonian absolutism to Einsteinian relativism, including additive,

reciprocal, exponential, and circular structures. It is tragic to contemplate

the amount of effort we now waste because of our conflicting doctrines,

and intriguing to wonder to what heights we might soar, each in his own

way, once we manage to resolve the internal contradictions in the system

by which we live and work[59].
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In response to this problem, the organizing principles go on to state:

There will be less frustration on the part of librarians and other users of

catalogs, indexes, and bibliographies if it is realized that the complexities

of the field are such that simple, unequivocal solutions to the problem

of the form and substance of medical subject headings are not easy to

find...[f]rom one point of view, subject headings may be looked at as

an artificial language which bears only superficial resemblances to the

natural language. Subject headings are more stilted, more stereotyped.

From another point of view, if subject headings conceived of as pointers,

rather than as labels, a certain amount of ambivalence is tolerable[59].

Here, we see the recognition that controlled vocabulary is more than a set of terms,

but rather an “artificial language,” in of itself, even if “stereotyped.” Rather than

attempting to untangle the deep complexities and contradictions of scientific knowl-

edge, the creators of MeSH sought to create useful “pointers” that could be widely

understood by users. Ambiguity would be unavoidable, but the practical usefulness

of the vocabulary would overcome the inevitable faults in its internal consistency or

descriptiveness.

In other words, MeSH was not designed to solve the fragmentation of scientific

language, though it was a tempting prospect, so much as to manage it. Just as natural

language is necessarily an incomplete description of reality, the artificial language of

controlled vocabulary is an incomplete description of a conceptual landscape. Also

as in natural language, arguably what is unsaid is often as important as what is said.

These conceptual underpinnings are important and under-appreciated in the lit-

erature of machine learning prediction of controlled vocabulary. The formal tradition

of machine learning has emphasized controlled vocabulary as a static set of terms
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and rules. It has been less appreciative that a controlled vocabulary can be a kind of

language. This distinction is important both in terms of modeling and particularly

in evaluation. For example, the current paradigm asks the question: which model

most accurately recovers the exact individual terms applied to a given paper? An-

other way to see the problem is: which model best expresses the aggregate meaning

of the assigned terms? For example, a model that accurately predicts species terms

but never predicts substances may have high precision in some parts of the literature.

Such a model is intuitively less desirable than a model that returns all branches with

approximately correct terms. The second model, while perhaps less faithful to the

individual “words,” better recovers the “sentence.”

The challenge for formal methods in this area is precisely the problem of measuring

“meaning.” The problem of meaning is formidable, ancient, and deeply philosophical.

No solution is offered here. However, in the simplified realm of controlled vocabulary,

the problem is perhaps better reframed as the problem of partial matching. Most

quantitative evaluation methodologies are variations on the theme of counting how

many predicted terms match “true terms.” Such an approach necessarily reduces the

measure of a language to its vocabulary. As stated above, one way to resolve this

problem is to map the relationships of terms to each other based on their historical

application. This approach creates a second representation of a controlled vocabulary:

its space of “meaning” in the sense of which terms share a context, based on the view

of distributional semantics that the meaning of a word depends on its relationship

with other words.
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Patent Classification and MeSH

As in the scientific literature, the complexity and difficulty of keyword search moti-

vated the development of several large scale controlled vocabulary systems in patents.

An additional complexity in the historical development of patent controlled vocab-

ulary is the role of national patent offices. The United States Patent Classification

(USPC), developed in 1889, has been a mainstay in patent controlled vocabulary,

along with the widely used International Patent Classification (IPC) vocabulary [15].

The IPC was developed subject to the Strasbourg Agreement in 1971 via the World

Intellectual Property Organization (WIPO). Since 2013, the United States and the

European Patent Office have jointly developed the Cooperative Patent Classification

system. The CPC has also been adopted by the Chinese, Korean and Mexican patent

offices, as well as the Russian Federation. The CPC is largely modeled on the IPC

[15].

The relatively widespread adoption of CPC make it an ideal target for comparison

with MeSH in the biomedical space. Its predecessor, the IPC, has been widely studied

and applied. Prior to the CPC, the IPC was used by over 100 patent-issuing bodies

worldwide. It is comprised of about 70,000 hierarchically organized classes. There

are many national variants of the IPC – the European Classification (ECLA) has

132,000 classes, and the Japanese variant contains 170,000. Various tools exist to help

reconcile the versions with each other, or in a limited fashion, with the USPC[15].

Given the historical importance of IPC, it is the natural vocabulary to juxtapose

with MeSH. The IPC is organized into eight top level categories corresponding to

very high level domains such as “Electricity” or “Textiles;paper.” Figure 2.1 provides

an illustrative example of a biomedical classification[70].

In this example, the starting code of A indicates the “Human Necessities” category.

15



Figure 2.1: Examples of IPC Codes and Subcodes: Many classification codes require
combining their superordinate classes to fully interpret their meaning

Code 61 references medical, veterinary or hygiene. B indicates inventions related to

diagnostics[15].

One of the more complex aspects of interpreting IPC codes involves the subcodes.

In the above example 3/00 indicates devices for testing the eyes. The code 3/04 is

a child of “for testing visual acuity.” Though the code 3/06 appears to be at the

same level of the hierarchy, it is in fact at a higher level. The numerical codes do

not directly correspond to the structure of the controlled vocabulary. Additionally,

many classification codes require combining their superordinate classes in order to

fully understand the description of the invention[15].

The general complexity of this system has led to a system that is difficult to use,

even for experts. As a result, there has been a longstanding interest in annotating

patents with more scientifically familiar classification schemes, notably MeSH[15].

Medical Subject Headings in Practice

To review, the Medical Subject Heading (MeSH) vocabulary was created as an index-

ing tool and thesaurus in 1960 by the National Library of Medicine[59]. The vocabu-

lary was created in the context of early computerization, as well as continued growth

of the biomedical literature. The modern version of MeSH contains approximately

twenty eight thousand descriptors, organized in an eleven level hierarchy across six-
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Diagnostic Techniques and Procedures Diagnostic Techniques, Neurological

Electroencephalography

Magnetoencephalography

Neuroendoscopy

Neuroimaging

Neurologic Examination

Olfactometry

Spinal Puncture

Diffusion Tensor Imaging

Functional Neuroimaging

Neuroradiography

Figure 2.2: MeSH term with parent and child terms

teen categories [37]. Examples of these categories include anatomic terms, drugs and

diseases and organisms. MeSH terms are currently primarily assigned manually by

expert indexers at the NLM. The annotation process utilizes a computer recommender

system that provides indexers with suggestions that are then manually filtered. Most

MEDLINE records have an average of 13 annotations per document, although this

can vary depending on the domain [22]. Cost estimates vary, but a common figure

is that one MEDLINE article costs approximately 9 USD to annotate as of 2013[38].

The MeSH vocabulary has grown far beyond its original application as an indexing

tool and is currently used for a variety of tasks, including query expansion, document

summarization and other text mining tasks[34, 28, 61].

There has been growing interest in MeSH prediction as the scale of the literature

continues to grow, and as MeSH continues to take on useful applications. In the

following section, I will briefly review the MeSH prediction problem more formally,

multilabel classification models generally and an examination of several prominent

MeSH prediction strategies.
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Defining the MeSH Prediction Problem

MeSH prediction is a hierarchical, multilabel classification problem[43, 61]. In a tradi-

tional classification problem, the goal is to associate an instance xi ∈ X with one class

cj ∈ C. In MeSH prediction specifically and multilabel classification generally, the

task is more complex: an instance is simultaneously classified with a set Cj ∈ C[74].

In MeSH prediction, the classes are also organized in a hierarchical structure. In hi-

erarchical classification these structures are either Directed Acyclic Graphs (DAGS)

or trees. In such hierarchies, superclass relationships are represented with a partial

order such that c1, c2 ∈ C, c1 ≺h c2 ⇐⇒ c1 is a superclass of c2. Hierarchical classifi-

cation tasks are further divided by whether they predict classes strictly from the leaf

nodes of their hierarchy, or whether intermediate nodes are also permitted. MeSH

prediction falls into the latter category of “optional leaf-node prediction” problems,

as terms can be predicted at any level.

MeSH prediction is a particularly complex example of hierarchical multilabel clas-

sification because it involves a very large set of classes. The MeSH hierarchy is a DAG,

where terms can have multiple parents and exist in more than one branch of the hier-

archy. Terms at every level of the hierarchy are used, with highly varying frequencies.

The definition of the vocabulary itself has changed substantively over time. This

is highly significant, as training samples will putatively contain annotations from

different versions of the hierarchy.

Hierarchical and Multilabel Classification

Multilabel classification involves a number of special challenges: necessity of special

evaluation methods, adapting either the data or the algorithm to accommodate the
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use of multiple labels, and the exponential relationship between the number of labels

and the outcome space[74].

A common strategy for addressing these challenges is to leverage information

about the relationships between labels[74]. There are three common approaches:

the simplest “first order” strategy simply ignores interrelationships between labels.

The “second order” strategy uses pairwise relationships between labels to enhance

classification. This might involve simple co-occurence frequency, or ranking between

a relevant and irrelevant pair. Finally, the “higher order” strategy uses multiple

relationships between labels, potentially including relationships across the entire set

of labels[74]. All of these strategies have been used with varying degrees of success

in MeSH classification.

Defining Multilabel Classification

Suppose a d-dimensional instance spaceX = Rd, and label space Y = {y1, y2, y3, ..., yq}

denoting q possible classes. Multilabel classification learns the function h : X → 2y

from a training set D = {xi, Yi}. xi is a d-dimensional feature vector (x1, x2, ..., xd

representing an instance, and Yi ⊆ y is the set of labels for that instance[74].

Multilabel Evaluation Metrics

As stated above, multilabel models predict more than one class, necessitating mod-

ified forms of common machine learning performance measures. The primary “flat”

evaluation measures used in HMLC are as follows[74]:

oneError =
1

p

p∑
i=1

[[argmaxy ∈ γf(xi, y)] /∈ Γi]]

The “one error” metric measures the proportion of incorrect top ranked terms.
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subsetAcc(h) =
1

p

p∑
i=1

[[h(xi) = Yi]]

The subset accuracy metric measures how many of the predicted terms are correct.

Jaccardexam(h) =
1

p

p∑
i=1

|Yi ∩ h(xi)|
|Yi ∪ h(xi)|

The Jaccard index measures the “intersection over the union” between the pre-

dicted and true classes.

Precisionexam(h) =
1

p

p∑
i=1

|Yi ∩ h(xi)|
|h(xi)|

The precision metric measures the proportion of predicted classes that are correct.

Recallexam(h) =
1

p

p∑
i=1

|Yi ∩ h(xi)|
|Yi|

The recall metric measures the proportion of the true classes that are recovered.

Hierarchical Multilabel Measures: Lowest Common Ancestor

The complexity of many multilabel hierarchies requires partial matching evaluation

measures. The BioASQ MeSH prediction challenge has traditionally included two

such measures: “hierarchical” precision, recall and f-score and the “lowest common

ancestor (LCA)” precision, recall and f-score[62]. The “hierarchical” version simply

adds all of the ancestors of the predicted and true classes to a set of augmented classes

(Yaug and Ŷaug, respectively)[31]. However, this approach penalizes nodes with many

ancestors.

The LCA measures attempt to overcome this problem by augmenting the predicted

and true classes more selectively by using their shared lowest common ancestor and
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all of the terms connecting them[31]. Here, the lowest common ancestor is the graph

theoretic concept of the lowest node in a tree T that is an ancestor of a pair of terms

n1 and n2. The LCA procedure collects all of the lowest common ancestors for each

predicted class against each true class, and prunes redundant LCAs. This in turn

yields a more targeted augmented set. The precision, recall and f-score metrics are

calculated as above, replacing the predicted and true classes with the augmented ver-

sions. This dissertation uses an implementation of the LCA algorithm by its authors,

called HEMkit[31]. The precision, recall and F-score LCA variants are defined below:

PLCA(h) =
1

p

p∑
i=1

|Ŷaug ∩ Yaug|
|Ŷaug|

RLCA(h) =
1

p

p∑
i=1

|Ŷaug ∩ Yaug|
|Yaug|

FLCA(h) =
2PLCARLCA

PLCA +RLCA

Problem Transformation Strategy: The Label Powerset

The simplest example of the problem transformation approach is to convert mul-

tilabel classification into a large multi-class (but single label) problem. This is done

by transforming the label space into a powerset of possible labels[74].

Suppose that σy : 2y → N maps the power set of y to the natural numbers. The

label power set transforms the multilabel classes of D to a set of distinct labels as

individual classes:

D†
γ = {xi, σy(Yi))|1 <= i <= m}
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The advantage of this approach is that it transforms the problem in a way that

can be approached using traditional classification methodologies. Perhaps more im-

portantly, this method takes into account the relationships between labels explicitly.

The obvious disadvantage is that it creates an exponentially large space of possi-

ble classes. Further, this approach cannot capture label combinations outside of the

training data. Finally, this approach may result in a small number of examples for

some label combinations.

A modification of this approach uses smaller, random subsets of labels in applying

the label powerset technique[63]. The label space Y is partitioned into Y k, comprising

all possible distinct label sets of k-labelsets. The total size of Y k is |Lk| =
(|L|
k

)
.

From this set, k-labelsets are iteratively sampled and then used to induct a label

powerset classifier. Each iteration contributes to an ensemble of classifiers. A new

instance document x is processed by each classifier, accumulating binary hi(x, yj)

for each yj in the corresponding labelset. The final classification is produced by

calculating an average decision of the ensemble classifiers, with a threshold t, often

set to 0.5 [63].

Problem Transformation Strategy: Binary Classifiers

An alternative approach to problem transformation involves training a binary clas-

sifier for each label in the label space[74, 48]. In most formulations, any instance xi

containing a class yi is considered a positive instance, and any instance xj not con-

taining the class is considered a negative instance. The strongest advantage of this

approach is its simplicity: any binary classification method can be induced on the

decomposed labels. The greatest disadvantage of this approach is that it disregards

any information about relationships between the labels. Additionally, class imbal-

ances can be a significant problem when the label space is large and sparse, as it is
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in MeSH[74].

As with binary classification methods broadly, the classifier chain trains a single

classifier per label, but incorporates the predictions of previous classifiers. This ap-

proach is highly sensitive to the ordering of the classifiers, as errors propagate from

the top of the chain.

Directly Optimizing the F-Score: Reverse Multilabel Learning

Many researchers have observed that the techniques described above optimize for

proxies of the desired performance measures. An alternative approach originated by

Petterson and Caetano reverses the prediction problem in order to permit optimiza-

tion on a convex relaxation of the F-score [44]. That is, they predict a set of instances

given a label. Further, they use a constraint generation strategy (most violated con-

straint) to make the optimization problem tractable. A subsequent paper extends

this methodology by accounting for relationships between labels[45].

Algorithm Adaptation Strategy: KNN methods

The previously described approaches all transform multilabel problems into new prob-

lems that are easier to solve using existing technique. In the case of random label

sets, the problem is transformed from a multilabel prediction problem into a mul-

ticlass problem. More sophisticated versions of this class of technique use ensemble

methods to make predictions more robust or tractable. An even simpler approach,

binary classification, decomposes the problem into independent binary predictions.

An entirely different approach to multilabel classification modifies classic machine

learning algorithms to multilabel data, rather than transforming multilabel data to

standard supervised learning problems. One such example of this approach is a

modification of the K-Nearest Neighbors algorithm to the multilabel setting [73].
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Figure 2.3: Tree vs Directed Acyclic Graph (DAG): Hierarchical mulitlabel classifi-
cation algorithms are often adapted for either tree or DAG structures. MeSH is con-
sidered a DAG because a term can have multiple parent terms in different branches
of the hierarchy.

Hierarchical Multilabel Classification

In multilabel classification, an object is associated with more than one class. Another

category of tasks involves classification problems where the classes are additionally

structured within a tree or a directed acyclic graph (DAG)[8]. Due to this structure,

this type of classification task is often described as hierarchical classification. When

the classification task involves assigning multiple paths in the class hierarchy it is

labeled hierarchical multilabel classification (HMLC). HMLC problems can be found

in a wide array of bioinformatics such as protein function prediction, in text classifi-

cation and image annotation[12, 64, 3, 10, 4]. MeSH prediction can be best described

as an HMLC problem.

In many HMLC problems, the classification task is to assign leaf nodes in the

hierarchy to each object. In the case of MeSH classification, “shallower” intermediate

categories are the classification target. This raises additional complexities. As the
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number of classes grows and the depth in the hierarchy increases, the classification

task becomes more complex due to the smaller number of training examples.

As in multilabel classification, most approaches to HMLC focus on either problem

transformation or algorithm adaptation. The simplest approach is to simply flatten

the class hierarchy and predict each class separately.

There are broadly two approaches to HMLC: local and global prediction. In

local prediction, an ensemble of classifiers predict labels in different parts of the class

hierarchy and then combine predictions together. One common approach is to train

a cascade of classifiers that predict particular nodes or hierarchical levels using a

top-down strategy[30, 12, 27]. This strategy tends to be computationally expensive,

since individual classifiers are required for every class or every level of the hierarchy.

Additionally, errors may propagate from classifier to classifier.

In global prediction, a single classifier predicts the classes for the hierarchy as

a whole. Typically global classifiers are computationally cheaper and do not suffer

from the error propagation problems. However, they often discard information from

the hierarchy. Examples include the reverse multilabel learning paradigm discussed

above[44].

Notable MeSH Prediction Systems

MeSH classification is a particularly challenging multilabel problem, both due to the

complexity and the size of the MeSH vocabulary. A multilabel problem with only

twenty class labels has over a million possible label sets. The MeSH vocabulary has a

very large number of class labels (approximately 28,000, one for each MeSH term) and

a strongly uneven underlying frequency distribution. Inducing a classification function

from existing annotations is difficult for a number of reasons. As will be explored in
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some detail later, annotators frequently disagree on appropriate annotations. Further,

indexing practices and the vocabulary itself change over time. In short, due to the

size and complexity of the MeSH vocabulary, there are many plausibly valid MeSH

assignments for any given record, making relevance judgments difficult.

The high cost of annotation and ever increasing volume of newly published biomed-

ical research attract many researchers to MeSH prediction. A wide range of algorithms

and approaches has been applied. Broadly, most approaches use one of two strategies.

The first is thesaurus-oriented, focusing exclusively on the information available in

the MeSH thesaurus itself[61]. These systems match free text to MeSH terms, and

their synonyms and short text descriptions. The second strategy is concept-oriented

and typically entails building statistical models for each MeSH term[68, 65, 56, 43].

In the second strategy, features may be extracted directly from the available text

or from related documents. Nearest neighbor methods is a predominate approach,

particularly via related citations [22, 61, 52, 29].

More recent approaches have used hybrid methods that draw upon ensembles em-

ploying both strategies. Two state of the art systems, DeepMeSH and MeSHLabeler,

use a combined thesaurus-oriented text matching classifier and a large series of inde-

pendent MeSH classifiers. These systems also use second-order relationships between

labels, namely pairwise correlation, to enhance their final predictions. Finally, both

systems also use a model to predict the appropriate number of labels to further reduce

the possible output space.

The following sections will present a high level overview of two prominent MeSH

prediction systems. The first is MTI, the official MeSH recommender system devel-

oped by the National Library of Medicine. The second system is DeepMeSH, the

current state of the art system in MeSH prediction.
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MTI: MetaMap and PRC

Perhaps the most well known MeSH prediction tool is the Medical Text Indexer

(MTI) system. The MTI system assists NLM indexers in providing MeSH terms[38].

The MTI system takes inputs of an identifier, title and abstract but is also capable

of processing arbitrary biomedical text [38]. Recommendations are computed using

two methods: MetaMap indexing and PubMed Related Citations (PRC), a K-nearest

neighbors algorithm that identifies similar citations [37]. MetaMap processes the title

and abstract to identify UMLS Metathesaurus concepts that can then be mapped to

MeSH. Precision and recall performance for the MTI system is typically around .60

[37].

Natural language techniques for matching variants of free text terms to the MeSH

vocabulary is a common approach to MeSH prediction. These approaches have

demonstrated some promise, but continue to be limited by the inherent ambigu-

ity of biomedical text. The MetaMap component of MTI is capable of generating a

large number of variants from text and has some capabilities for word sense disam-

biguation. However, these capabilities come at considerable computational cost at

processing time.

DeepMeSH

Recent research efforts have focused on ensemble approaches that blend information

drawn from text pattern matching algorithms with machine learning approaches that

train models for each term. DeepMeSH builds upon existing hybrid models by in-

corporating distributional semantics based features[43]. DeepMeSH is itself based on

a hybrid/ensemble system developed by Liu, et. al called MeSHLabeler[33]. This

system uses MTI predictions as inputs in a more complex ranking algorithm.
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The DeepMeSH system consists of two components systems, a MeSH ranking

algorithm and a MeSH number prediction system. The MeSH number algorithm is

based on prior work by Liu, et. al and predicts the number of MeSH terms given

the number of annotated MeSH (MH) terms of citations from the same journal,

the number of annotated MH of nearest neighbor documents, the number of terms

recommended by MTI and cut offs based on scoring from binary classifiers and the

MeSH ranking algorithm[43].

The MeSH ranking algorithm is complex and incorporates several sources of evi-

dence: scoring from a per-MH binary classifier trained on MEDLINE, scores from sim-

ilar citations obtained by KNN, parwise MeSH correlations between candidate terms,

and pattern matching using the MetaMap portion of MTI. DeepMeSH develops upon

this foundation by using distributional features, ie doc2vec and doc2vec-TFIDF. Fi-

nal predictions are made by selecting the top terms, with the cutoff determined by

the MeSH number model[43].

The DeepMeSH system is of interest in that it leverages both a second-order strat-

egy by incorporating pairwise MeSH correlations, and dense semantic representations

(ie doc2vec) in the input text[35]. This approach has demonstrated significant suc-

cess; in the BioASQ3 challenge DeepMeSH outperformed MTI in micro F-measure

by 12%, and the previous state of the art MeSHLabeler by 2%[43].

However, in the context of MeSH prediction beyond MEDLINE, both of these

strategies are untenable. The putative second-order relationships between vocabu-

lary terms are essentially unknown outside of MEDLINE because there is no labeled

corpus to draw upon. Indeed, it seems likely that the pairwise correlations would be

significantly different in other bibliographic databases. Similarly, the word embed-

dings trained in MEDLINE are likely to be based on different distributions of term

occurrences than those found in other literatures where style, context and vocabulary
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differ markedly.

MeSH Prediction Beyond MEDLINE

Relatively little research has been developed with respect to MeSH prediction outside

of MEDLINE, though there have been several attempts to apply the MeSH vocabu-

lary to patents. In “Annotating Patents with MEDLINE MeSH Codes via Citation

Mapping” Thomas Griffin et. al presented a system which matched patent references

to MEDLINE records and extracted MeSH terms [19]. This system retrieves the

MeSH terms and arranges them alphabetically or by frequency of the term. A patent

held by IBM titled “System and Method for Annotating Patents with MeSH Data”

proposes a similar procedure that extracts non-patent references directly using the

MeSH vocabulary of the cited documents [23].

These approaches were both inspired by the clear information retrieval value of the

MeSH vocabulary. Thomas Grin et. al [15] developed an analysis comparing the IPC

classification system and MeSH, finding that the MeSH vocabulary is better suited

to describing biomedical research. However, neither classification system discussed

above attempts to rank or filter MeSH terms beyond frequency measures.
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Chapter 3

Explaining Prediction Accuracy:
Beyond Exact Matching

Revisiting the Consistency of MeSH Indexing: An

Argument For Partial Matching

Before posing the question of how accurately an algorithm can assign MeSH, it

is worth considering how consistent human annotators are. If human indexers are

highly consistent, we may conclude that the vocabulary evaluation should be treated

in a fairly strict, exact manner. Likewise, if there is limited consistency by human

indexers, we may conclude that the vocabulary permits multiple valid annotations

for a given document, or at least that indexing behavior is heterogeneous.

Either of these situations have important consequences for automatic annotation.

If there are multiple valid annotations, evaluating automatically assigned labels must

take into account that measures based on exact matching will potentially fail to

recognize plausible terms from implausible terms. Additionally, if human annotators

apply widely varying standards to their annotations, then any training data derived

from human annotated papers will also contain a complex mixture of judgments about

term relevance. Likewise, exact evaluation measures of such a prediction model will

inevitably capture a limited representation of the system’s ability to replicate a mosaic

of annotation styles.

This chapter begins by empirically addressing how consistent human annotators

have been in the last forty years through a collection of papers that were inadvertently

indexed twice. As we will see, indexing consistency measured from an exact matching
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point of view has been modest over time. This likely reflects the intrinsic difficulty of

assigning MeSH. As described previously, MeSH is a large and complex vocabulary

that seeks to describe the scientific enterprise broadly. It is perhaps unsurprising that

experts would come to different decisions in selecting terms. This chapter quantifies

the degree of difference in their collective judgments. The difference is large enough

that we must confront a second question: how can we algorithmically differentiate

between plausible, semantically similar predictions and plainly wrong, spurious ones?

The next section of this chapter will briefly review existing methods for measur-

ing the similarity of terms. These approaches have tended to focus on leveraging the

MeSH hierarchy itself to derive a measure of similarity based on taxonomic relation-

ship. Here, we explore a novel method of calculating term similarity through learning

a vector space representation based on distributional semantics and shared context.

Next, this similarity measure will be compared to consistency measures based on ex-

act matching in the duplicate paper set. This will show that while exact matching

consistency is low, partial matching consistency is very high between the duplicate

annotations.

Finally, we will see how this context-based measure can be applied to partial

matching and MeSH evaluation more broadly. Using a set of four metrics, we will

see how context-based measures can be combined with hierarchical information to

evaluate MeSH annotation quality. These four metrics will be used again later in the

modeling experiments for evaluation and model diagnostics.

Revisiting “Indexing Consistency in MEDLINE”

Determining how consistent indexers are is an economically difficult problem. The

high cost of manual indexing means that the National Library of Medicine actively

avoids duplication of effort. Indeed, the high cost of annotation is the primary mo-
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tivation for many studies of automatic MeSH assignment. Studies of indexing con-

sistency are also hampered by the labor required to generate a significant sample.

These difficulties were addressed in “Indexing consistency in MEDLINE”, Funk et.

al by identifying 760 papers that were accidentally indexed twice[17]. The bulk of

these papers were annotated twice due to the same article being published in more

than one venue. Funk et. al systematically collected these papers and compared their

annotation in a natural experiment of indexing consistency.

Funk et. al used Hooper’s consistency metric to measure agreement between

annotators. Hooper’s consistency metric is given as:

CP (%) =
100A

A+ |M |+ |N |
(3.1)

• A is the number of terms in agreement

• |M | is the number of terms used by M but not N

• |N | is the number of terms used by N but not M

Funk et. al found a mean consistency of 48.2% among main headings[17]. Consis-

tency varied significantly between branches of the MeSH hierarchy, with the lowest

level of consistency in branches E, F, H and N. Branches A, B and D had higher

levels of consistency. Additionally, they found that the language, indexing priority

and length of the article had no significant effect on overall indexing consistency[17].

MeSH Consistency: 1973 - 2016

The analysis by Funk et al. assessed twice annotated papers up to 1983. I have

performed a similar analysis by querying all papers with the same title, authors and

year from 1973 to 2016. This yielded 3627 pairs of papers. Following the methodology

32



of Funk et. al, I calculated the Hooper consistency metric between the MeSH of each

pair. Figure 3.1 plots the mean consistency over the period:

Figure 3.1: Average MEDLINE Hooper’s Consistency Between Duplicate Papers:
1973-2016. Indexing consistency has remained close to 0.5 over time, despite dramatic
increases in biomedical publishing and increasing vocabulary complexity

The mean consistency of papers in this larger set is 52.3%, a slight increase from

the 1983 study. Indexing consistency has remained largely flat over time. The relative

stability of indexing consistency is notable given the growth in publications and the

complexity of the MeSH vocabulary. Figure 3.2 details the number of duplicate papers

each year:
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Figure 3.2: Total Number of Duplicate Annotated Pairs in MEDLINE Per Year: 1973-
2016. The number of duplicate papers has shown a relative increase as biomedical
publishing has expanded

Taken together, this data suggests that advances in indexing tools have arguably

kept pace with the explosion of biomedical research, as well as growing complexity

of the MeSH vocabulary. While this is impressive, it raises problems for automated

MeSH prediction experiments. For instance, consider the following thought experi-

ment. Imagine if we were to take the duplicate paper’s annotations as the predictions

of an automated model and compare them to the original gold standard annotations.

By exact matching metrics, we would conclude that the model performs somewhat

modestly. This would of course belie the fact that in other circumstances, we would
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readily accept the “model” predictions as equally valid. If exact matching metrics

cannot meaningfully identify the similarity between similar human selected annota-

tions, then they will be similarly limited in judging the performance of models.

Several questions arise in light of this data. How can differences between vo-

cabulary be characterized in a way that accounts for partial matches? How can we

differentiate between plausible and wholly incorrect predictions? In admitting partial

matching, how can we can control the degree of closeness so that we do not succumb

to the opposite error and make overly lax assessments? In short, to fully assess the

consistency between terms, a robust partial matching metric is necessary.

Partial Matching in the MeSH Hierarchy

The key problem of measuring both indexing consistency and prediction accuracy in

MeSH is differentiating the degrees to which two terms match. As shown above, using

only exact matching shows that human indexers are aprroximately 50% consistent by

the Hooper’s Consistency metric. This is impressive given the size and complexity

of the MeSH vocabulary, but also an indication of the difficulty of the prediction

problem. While exact matching provides important, straightforward evidence to the

accuracy of a model, it has limited ability to describe the overall plausibility of a set

of predicted terms. It also only provides binary information; two terms are either a

match, or not.
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Figure 3.3: Simple Hierarchical Partial Matching: An example of measuring the accu-
racy of a model based on exact matching, partial match by hierarchical relationship,
and partial matching taking term redundancy into account. In this figure, the average
accuracy at each rank position is calculated. The difference between the unadjusted
and adjusted partial match gives an indication of the role of redundancy by rank

One approach to this problem is to use a relaxed form of matching by leveraging

the MeSH hierarchy itself. In this scheme, two terms can be considered to be a partial

match with a score determined by the type of relationship[28, 27]. For example, an

exact match is scored at 1, a parent-child relationship at .5 and a sibling relationship

at .25. More sophisticated versions of this scheme are possible by taking into account

co-occurrences within each MeSH branch. A simple framework based on this design

was used in previous work on MeSH prediction[28]. In that work, model accuracy
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was evaluated at each rank using three measures: exact matching, a partial match

based on hierarchy relationship and an adjusted partial match that only allowed a

match to be calculated with one of the true label terms. The adjusted partial match

score prevents several predicted terms from matching with the same term, preventing

redundant predictions from being highly scored. Figure 3.3 demonstrates the accuracy

curves using these three models in a previous model.

The shortcoming of this approach is that the MeSH hierarchy is highly incon-

sistent in terms of the grouping of terms. For example “Death” (C23.550.260) and

“Dehydration” (C23.550.274) are sibling terms under the parent of “Pathological

Processes” (C23.550). Though these terms are plainly dissimilar, the simple scoring

method described above would assign the match a value of .25. Another example:

“Epidemiologic Methods” (E05.318) and “Protein Folding” (E05.790) are siblings,

despite covering entirely different biological areas. Partial matching via the hierarchy

also cannot take into account semantic relationships between different categories, for

example between disease and symptom terms.

Other approaches, described above in the literature review section, use vocabulary

hierarchies to augment the predicted and true classes. However, these approaches are

vulnerable to the same limitations of the structure of the vocabulary. For instance,

the Lowest Common Ancestor algorithm would find the same shortest path between

the example sibling terms described previously.

A third MeSH specific strategy originated by Smalheiser and Bonifield uses the

tendency of two terms to co-occur in the same article and in the same set of papers

written by an individual as a partial matching measure[55]. The advantage of this

approach is that it is independent of the hierarchy, and takes into account actual

indexing practices. This context driven strategy is a natural compliment to hierarchy

based measures. Below, I describe a similar approach that utilizes the context of a

37



MeSH term in order to construct a vector space representation of MeSH.

Partial Matching via Distributional Semantics: Vector Space
Models and Word2vec

In the natural language processing community (NLP) there has been a longstand-

ing research interest in representing words using continuous valued vectors rather

than discrete structures like simple lists or taxonomic graphs like WordNet[35]. Vec-

tor space models have the advantage of being able to group similar words in a shared

space, allowing a richer set of operations and comparisons than are possible with

discrete representations based on atomic symbols. Likewise, in the MeSH prediction

problem we are inherently interested in being able to systematically group similar

MeSH terms together and to quantitatively measure their similarity. The objective of

this section is to describe a vector space model of MeSH terms, based on the Word2vec

family of techniques developed by Mikolov, et al[35].

Vector space models have a long history in text mining, and nearly all are based

on the distributional hypothesis. The distributional hypothesis is a view of language

wherein words with similar meanings have similar distributions in text[35]. Word2vec

uses a predictive approach to learn a vector representation of a set of words from

text. The representation is learned through a classification task utilizing a three layer

neural network, with one of two possible model architectures. In the “continuous bag

of words (CBOW)” model, the classification task is to predict the current word based

on a context window. In the “skip gram” architecture, the problem is inverted to

predict a target term based on the context. The model has two primary parameters:

the size of an embedding matrix representing each word with an arbitrary number

of dimensions, and a window size of the number of terms to include in the context.

The embedding matrix weights are optimized against a binary classification objective
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following either of the two strategies described above. The ultimate output of the

Word2vec model is the embedding matrix which provides an arbitrary length vector

for each word in the corpus. Mikolov, et al. reported a surprising finding that the

resulting vectors demonstrate semantic regularities; i.e. similar words lie near each

other in the vector space[35].

The vector representation provided by word2vec has been used in a wide variety

of natural language tasks, including measuring term similarity. Specifically, the re-

latedness of two terms can be measured by calculating the cosine similarity of their

embedding vectors. Next, we will show how this approach can be extended to con-

trolled vocabulary, essentially by treating annotations as a kind of text.

Partial Matching Via Word2vec in MeSH

This section describes a quantitative method for measuring the similarity of two

MeSH terms based on their shared context without relying on the MeSH hierarchy.

The method encodes each MeSH term as an arbitrarily high dimensional vector, using

the Word2vec technique described above. Such an approach permits a continuous-

scale measurement of similarity between two terms, irrespective of their location in

the MeSH hierarchy, using cosine similarity. This approach contributes to two signif-

icant MeSH partial matching problems: measuring the similarity of terms that are

similar but not related in the hierarchy (e.g.: “Anti-Bacterial Agents” and “Bacterial

Infections”), and differentiating terms that are closely related in the hierarchy but

semantically different (ex: sibling terms “Death” and “Dehydration”).

This idea also takes inspiration from Swanson in describing controlled vocabularies

as an artificial language, and from Smalheiser in using MeSH context as a basis for

similarity[55]. Though Word2vec was originally intended for natural language, the

idea of learning a vector representation based on shared context is applicable to
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artificial languages, as well. To train the MeSH word embeddings, the following

procedure was used:

1. Each MeSH term was tokenized. In other words, the complete term phrase is

considered an independent lexical unit. For example “Anti-Bacterial Agents”

would be tokenized as “Anti-Bacterial Agents” and not as two separate words.

Importantly, the whole MeSH term is the unit of analysis and not the underlying

text.

2. The context window of the word2vec model was set to 15 (a typical number of

MeSH assignments) to reflect the irrelevance of word order. Terms were further

randomized to avoid an alphabetic bias in cases where there are more than 15

assigned MeSH terms.

For training data, a set of 14.3 million papers’ annotations were used, representing

every available MeSH assignment through 2017. The Word2vec model was trained

using the 3.7.2 version of the Python-based Gensim library[49]. Two publicly available

datasets are available in conjunction with this thesis[26]. The first is a Word2vec

model file containing the underlying embeddings. The second is a pairwise list of the

cosine similarity and hierarchy relationship of each MeSH term.

In the following sections, we will explore a variety of applications for the embedding-

based cosine similarity measure. We will begin by examining how the cosine similarity

measure compares to the Hooper’s Consistency metric in distinguishing documents

of varying degrees of relatedness. Then, we will demonstrate how the MeSH embed-

dings can be used to explore the MeSH hierarchy itself by measuring how similar

sibling and parent/child pairs are within each branch. Finally, we will present a set

of four metrics that utilize the cosine similarity to calculate set-level partial matching

evaluation measures.
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Cosine Similarity vs Hooper’s Consistency as Partial Match Measure

Above, we introduced the problem that a pair of identical papers could have

similar annotations but also have a very low consistency score. Intuitively, an ideal

metric should directly reflect the degree of similarity: identical papers with slightly

different annotations should have a very high score, and less related pairs of papers

would have lower similarity scores with smooth transitions in values.

To that end, I have compiled a set of papers with the following characteristics:

1. Twice-annotated “duplicate” papers that are expected to have the same or

highly similar annotations, as described above in the consistency study.

2. The same set of papers with one randomly selected citation with MeSH, repre-

senting a related but non-identical paper.

3. The same set of papers with a randomly selected pair paper. Compared to the

first two datasets, the similarity should be somewhat close to zero.

These sets of papers are designed to approximately control for the degree of re-

latedness between the paper pairs. In other words, we assume that citations of a

paper will contain significant overlap but not be identical. Further, we expect that

by chance there will be minor overlap between random pairs, but that on the whole

they should be unrelated. A useful partial match score should be able to reflect the

progressive drop in relatedness between each of the three sets. Next, we will com-

pare Hooper’s consistency with the MeSH embedding cosine similarity as a partial

matching metric.

Figure 3.4 reflects the Hooper’s consistency metric in each of the three paper

collections. Here, we see that the score is distributed in a somewhat erratic fashion.

A sizable density of papers have exactly matching annotations among the duplicate
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papers, but most have an exact match below .50. The paired citation shows that

almost all papers have some overlap, but most have a consistency close to zero.

The random papers show that there is usually an overlap of zero. Importantly, the

Hooper’s Consistency metric is unable to reflect degrees of relatedness.

Figure 3.4: Comparison of Hooper’s Consistency Across Duplicates, Citations, and
Random Pairs

Figure 3.5 shows the distribution of a cosine similarity based score. The score is

calculated by averaging the best match of each of the second paper’s MeSH anno-

tations to the first paper. Further details on this metric are discussed below. For

our purposes here, we see in the duplicate set that most of the values are close to 1,
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reflecting that they are contextually very similar. The citation set shows a smooth

transition, where most scores are at an intermediate range between 0.5 and 0.75, re-

flecting moderate relatedness. The random pairs are centered around a much lower

value.

Figure 3.5: Comparison of Cosine Similarity Derived Partial Matching Metric Across
Duplicates, Citations, and Random Pairs

In summary, Hooper’s consistency has a limited ability to reflect degrees of re-

latedness. When we would expect to see nearly exact matches between annotations,

the metric has a somewhat bimodal distribution. In the modeling setting, we would

expect that automatically generated predictions would show very limited consistency
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with the original MeSH. Further, because the metric cannot capture nuances, we

would be left uncertain if the model predictions were completely incorrect or merely

slightly different from the gold standard. The cosine similarity based metric better

reflects degrees of relatedness, with smoother transitions. Additionally, the cosine

similarity score allows precisely measuring the degree of mismatch rather than a sim-

ple binary determination – a potential we will revisit in the next chapter.

Combining Word2vec and the MeSH Hierarchy

A continuous measure of similarity between two terms in the MeSH hierarchy

based on their context opens many analytical opportunities. For instance, a key

problem in measuring partial matches is the inconsistency of semantic similarity in

different parts of the MeSH hierarchy. Above, I introduced the example of “De-

hydration” and “Death” as siblings – clearly, terms with very different meanings.

Combining both the information provided by the MeSH hierarchy and information

about their context permits a quantitative description of how semantically consistent

relationships are throughout the vocabulary.

Figure 3.6 plots the average pairwise cosine similarity of sibling terms, aggregated

by depth. As may be expected, siblings at the top of the hierarchy are generally

less similar. Similarity generally increases at progressively lower (and therefore more

granular) levels of the hierarchy. An exception to this is at the 11th level of the

hierarchy, where similarity levels dip.
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Figure 3.6: Pairwise Similarity Between Siblings by Depth

A similar analysis can be done for similarity within each MeSH branch. In Figure

3.7 we see that the ’Geographicals’ branch is among the most consistent. This view

of the MeSH hierarchy provides a map of conceptually diverse and homogeneous

components of the hierarchy. In an earlier example, we reviewed a simple hierarchical

scheme that weighted matches based on their hierarchy relatiosnhip. This scheme

could be further enriched by taking into account branch-specific similarity.
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Figure 3.7: Pairwise Similarity Between Siblings by MeSH Branch

The analysis can also be extended to other kinds of relationships. For example,

Figure 3.8 demonstrates pairwise similarity between parent/child pairs in MeSH, ag-

gregated by MeSH branch. This approximately measures how steep of a conceptual

change occurs within each branch.
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Figure 3.8: Pairwise Similarity Between Parent/Child by MeSH Branch

Figure 3.9 shows the distribution of similarity between parent/child pairs, ag-

gregated by depth. Again, the pattern shows a general trend towards increasing

similarity at greater levels of depth, with a small reduction at the extremes.
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Figure 3.9: Pairwise Similarity Between Parent/Child by Depth

For the purposes of MeSH prediction, the combination of the MeSH hierarchy

and cosine similarity permit more finely tuned approaches to evaluation than were

previously possible. For instance, partial matching can be calculated with arbitrary

weights based on relationship, or by an adjusted weighting scheme based on the

relative consistency of each branch. The cosine similarity itself can also be used as a

partial match measure. Both of these possibilities are explored below.

Beyond prediction, the vocabulary-wide mapping can be used by controlled vo-

cabulary designers to identify areas of potential inconsistency. Outlier analysis may

also be particularly helpful in identifying anomalies in the vocabulary – for exam-

ple, identifying sibling terms that share extremely dissimilar contexts. The modeling
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chapter provides further examples of applications of the semantic similarity measure

as a diagnostic and evaluation tool. The discussion section also explores applications

outside of controlled vocabulary prediction that are beyond the immediate scope of

MeSH prediction.

Evaluation Measures

In constructing evaluation measures based on cosine similarity, it is important to

introduce two additional concepts. The first is hierarchical versus non-hierarchical

restrictions. The cosine similarity measure intentionally is not based on the hierarchy.

Therefore, categorically different terms may have a very high similarity if they appear

together often – for example, in disease-drug combinations. Likewise, the hierarchical

measures take advantage of relationships, but weights them equally without regard for

context. One possible approach is to combine the two by restricting partial matches

to terms that have a direct relationship in the hierarchy and weighing the match

by cosine similarity. Another approach uses no hierarchy restrictions, and simply

takes the highest cosine similarity. The interpretive difference is that in the hierarchy

restricted versions, terms are guaranteed to belong to the same branch. Therefore,

for example, a drug cannot be rated as a high similarity match to a disease. The

non-hierarchical measure is intended to be a looser reflection of the plausibility of the

assignment.

The second concept is between “free” and “restricted” matching. This primarily

concerns the issue of redundant predictions. For example, a set of predictions may

contain many synonyms for a few labels, poorly representing the original term as-

signments. To address this, one metric uses a “restricted” scheme where only one

prediction can match to any true term. The “free” version removes this restriction

and allows matching multiple predicted terms against a true term. Here again, the
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interpretive difference is between a more strict view that seeks to measure how well

the original classes are represented as a group, versus a more relaxed view that seeks

to address how plausible the predicted terms are individually.

The following expresses the basic measure definitions mathematically:

HierarchyFree(H) =
1

p

p∑
i=1

∑k
j=1Cosbest(hj, y)∀y ∈ Y, ∀h ∈ H : HasRel(hj, y)

|H|

NonHierarchyFree(H) =
1

p

p∑
i=1

∑k
j=1Cosbest(hj, y)∀y ∈ Y, ∀h ∈ H

|H|

In summary:

1. “HierarchyFree”: Calculates partial matching between terms with a hierarchy

relationship (child, parent, sibling, etc), weighted by their pairwise cosine sim-

ilarity. The “free” component means that any predicted term is free to match

against any true term; in other words, multiple predicted terms may match

against the same true term. This metric is meant to capture the overall “sen-

sibility” of the predictions balanced against a close match to the true term’s

position in the hierarchy.

2. “NonHierarchyFree”: This measure reflects the best cosine similarity match

between predicted and true terms. Unlike above, this is not restricted to terms

with hierarchy relationships. Because this is less restricted, the value is typically

higher. However, due to the lack of constraint in hierarchy relationship, this

may provide partial match credit to term pairs that have a common context

but are categorically different; e.g. a disease-drug pair. As above, this version

allows multiple predicted terms to match to one true term.
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3. “HierarchyRestricted”: This metric is the same as HierarchyFree, but only per-

mits each true term to be matched once. This prevents prediction sets from

having a high score if they only approximately match a small number of the

true classes.

4. “NonHierarchyRestricted”: This is the same as NonHierarchyFree metric, but

only permits each true term to be matched once.

In the next chapter, we will see how these measures can be used as a supplement to

existing partial matching evaluation approaches. In particular, these metrics and the

MeSH embeddings provide useful tools for exploring model predictions and probing

issues like prediction redundancy.

Applying Exact and Partial Matching Measures: An Example

The final portion of this chapter will provide a fully worked example of matching

metrics in a paper with a set of MeSH predictions. We will begin by reviewing

the relatively simple calculation of exact matching measures, including one error,

precision, recall, Jaccard’s index and Hooper’s consistency. Subsequently, we will

examine the application of the proposed partial matching measures to this set of

annotations.

In anticipation of the following modeling chapter, we will examine a paper drawn

randomly from a test set of 5,000 MEDLINE records. The paper is titled “Eosinophils

in hereditary and inflammatory myopathies”, and is available in full-text via PubMed

Central [53]. Since our focus here is on evaluation, we will examine a set of 15 MeSH

predictions for this paper against its original annotations. A full discussion of the

underlying model details are provided in the following chapter; our objective here is
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simply to illustrate how evaluation metrics on an arbitrary set of predictions can be

calculated.

Table 3.1 provides a list of both predicted and true terms for the paper. Each

row indicates if the term is among the labels, the predictions, or both. Note that

MeSH subheadings are consolidated into main heading form. For example, the terms

“Eosinophilia/genetics” and “Eosinophilia/epidemiology” become “Eosinophilia”.

Table 3.1: An example set of labels and predictions for paper PMID24803842:
”Eosinophils in hereditary and inflammatory myopathies.” Matches between predic-
tions and labels are marked in bold.

Term Labels Predictions
Adolescent Yes No
Adult Yes Yes
Aged Yes Yes
Animals No Yes
Biopsy Yes Yes
Child Yes No
Child, Preschool Yes No
Eosinophilia Yes Yes
Eosinophils No Yes
Female Yes Yes
Germany Yes No
Humans Yes Yes
Infant Yes No
Male Yes Yes
Middle Aged Yes Yes
Muscular Dystrophies, Limb-Girdle Yes Yes
Muscle, Skeletal No Yes
Myositis Yes Yes
Myositis, Inclusion Body No Yes
Polymyositis No Yes
Staining and Labeling Yes No

Since issues of ranking are measured by some evaluation measures, the list of

predictions ordered by their relevance probability is provided in Table 3.2. The top

15 terms are used for the purposes of this example annotation. A longer list of
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25 terms is provided to show that in practice, a model can potentially output a very

long ranked list consisting of all candidate terms. A significant modeling challenge for

rank-based prediction is to eliminate spurious or redundant terms to prevent relevant

terms from being excluded. In this example, the correct term “Child” is in position

16, and therefore would be excluded from consideration.

Table 3.2: Example of prediction set for PMID24803842: ”Eosinophils in hereditary
and inflammatory myopathies.” True match terms are marked in bold
Rank Term Branch Probability Match
1 Humans Organisms 0.98 True
2 Female None 0.88 True
3 Male None 0.86 True
4 Muscle, Skeletal Anatomy 0.79 False
5 Myositis Diseases 0.71 True
6 Adult Named Groups 0.68 True
7 Middle Aged Named Groups 0.55 True
8 Polymyositis Diseases 0.52 False
9 Aged Named Groups 0.45 True
10 Eosinophils Anatomy 0.43 False
11 Muscular Dystrophies, Limb-Girdle Diseases 0.41 True
12 Biopsy Analytical/Diagnostic 0.34 True
13 Eosinophilia Diseases 0.30 True
14 Myositis, Inclusion Body Diseases 0.26 False
15 Animals Organisms 0.23 False
16 Child Named Groups 0.18 True
17 Muscle Proteins Chemicals and Drugs 0.16 False
18 Dermatomyositis Diseases 0.14 False
19 Child, Preschool Named Groups 0.14 True
20 Diagnosis, Differential Analytical/Diagnostic 0.11 False
21 Muscle Fibers, Skeletal Anatomy 0.10 False
22 Cells, Cultured Anatomy 0.10 False
23 Genetic Predisposition to Disease Diseases 0.10 False
24 Disease Progression Diseases 0.10 False
25 Anti-Inflammatory Agents Chemicals and Drugs 0.10 False

Exact Matching Measures

The simplest measure to calculate is the “one error” which simply reflects the pro-

portion of incorrect top ranked predictions:

oneError =
1

p

p∑
i=1

[[argmaxy ∈ γf(xi, y)] /∈ Γi]]

53



In this case, the top ranked term “Humans” is correct, giving a value of 0.

The precision metric measures the proportion of correctly predicted terms:

Precisionexam(h) =
1

p

p∑
i=1

|Yi ∩ h(xi)|
|h(xi)|

Since 10/15 of the predicted terms are correct, the precision is .66. The sub-

set accuracy metric is extremely similar, and measures the total number of correct

predictions.

The recall measures how many of the labels are retrieved by the predictions:

Recallexam(h) =
1

p

p∑
i=1

|Yi ∩ h(xi)|
|Yi|

Since there are 16 total label terms, and 10 of them are retrieved by the model,

the recall is 10/16 or .63.

The Jaccard Index measures the “intersection over the union” between the pre-

dicted and true classes:

Jaccardexam(h) =
1

p

p∑
i=1

|Yi ∩ h(xi)|
|Yi ∪ h(xi)|

The union of the predicted and true classes contains 21 terms, and the intersection

contains 10 terms. This makes the Jaccard Index for this example 10/21 or .48.

Finally, Hooper’s Consistency used above by Funk et. al is essentially the same

as the Jaccard Index, except represented as a percentage. Hooper’s Consistency is:

CP (%) =
100A

A+ |M |+ |N |
(3.2)

Where A is the number of terms in agreement, and M and N are the unique

terms of each list. As above, there are 10 terms in agreement. The sum of the terms
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in agreement and the unique terms is equivalent to the union, and is 21, giving a

Hooper’s Consistency percentage of 48%.

Partial Matching Measures

This section will demonstrate the calculation of each of the four partial matching

measures introduced above: “HierarchyFree”, “NonHierarchyFree”, “HierarchyRe-

stricted”, and “NonHierarchyRestricted.” Before examining each measure indepen-

dently, we will briefly review the matches and hierarchy relationship between mis-

matches.

In the example, there are a total of 16 assigned terms. 10 are a direct match to pre-

dicted terms, and are weighted as 1. The six terms not predicted are: “Adolescent”,

“Child”, “Child, Preschool”, “Germany”, “Infant”, and “Staining and Labeling.”

Terms that were predicted but are not among the assigned terms are: “Animals”,

“Eosinophils”, “Muscle, Skeletal”, “Myositis, Inclusion Body” and “Polymyositis”.

Among the predicted terms, three terms have relationships to true terms. The term

“Animals” is an ancestor of the term “Humans”. “Polymyositis” is a child term of

“Myositis.” The term “Myositis, Inclusion Body” is also a child of “Myositis.”

The HierarchyFree measure weights the partial matching score based on the pair-

wise cosine similarity between true and predicted terms. It is predicated on there

being a direct hierarchy relationship (child, parent, sibling, etc.) in order to prevent

terms from different branches but with similar contexts from being ranked highly. In

this case, only the terms “Animals”, “Polymyositis” and “Myositis, Inclusion Body”

are assigned a partial matching score due to their hierarchy relationships. Humans

and Animals has a negative cosine similarity and is clamped to zero. The cosine sim-

ilarity of “Myositis” and “Polymyositis” is .85, and the cosine similarity of “Myositis,

Inclusion Body” and “Myositis” is .69. As a reminder, the exact matching subset
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accuracy is .66 or 10/15. The hierarchy free measure is calculated as the sum of the

weighted matches with hierarchy relationships, or 10 + 0.0 + 0.85 + .69 over the

total number of predicted terms of 15. Thus, the partial match score in the hierarchy

free measure is 11.54/15 or .77.

The NonHierarchyFree measure disregards hierarchy relationships and simply takes

the highest matching score from the true terms. The best matches for each of the

predicted terms not in the true terms is collected in Table 3.3. The partial match

score in this measure is 10 + 0.58 + .73 + .56 + .72 + .85 divided by the total number

of predictions, 15. The final value is 13.44/15 or .90.

Table 3.3: Hierarchy relationship type and best cosine similarity matches for predicted
terms not among true terms

Predicted Term Best Match Relationship Score
Animals Middle Aged None .58
Eosinophils Eosinophilia None .73
Muscle, Skeletal Muscular Dystrophies, Limb-Girdle None .56
Myositis, Inclusion Body Muscular Dystrophies, Limb-Girdle None .72
Polymyositis Myositis Parent-Child .85

Before proceeding with the “restricted” version of the metrics, it is worth com-

menting on a few qualitative aspects of the calculations above. The role of the hierar-

chy is very clear in this example. For example, “Eosinophils” and “Eosinophilia” are

clearly related by a molecule-disease relationship and have a high cosine similarity.

They are however, not directly related in the MeSH hierarchy since they belong to

distinct categories: Anatomy and Diseases, respectively. This is an example of the

difficult question raised above: how should we treat predictions that are clearly re-

lated to the labels, but are of a different type? From one perspective, “Eosinophilia”

implies the relatedness of “Eosinophils.” However, does this implication rise to the

level of a potential redundancy? In this case, consolidating “Eosinophils” would have

freed a ranking position, admitting the correct term “Child” into the predictions.
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From another perspective, the cosine similarity allows us to identify a plausible pre-

diction that would otherwise be discounted by hierarchical measures. Secondly, the

combination of hierarchy and cosine similarity allows us to rank misclassifications.

The Polymyositis-Myositis error is clearly the smallest – it is a child of an assigned

term, and has a very similar context with a cosine similarity of .85. Eosinophils is

somewhat in between; it doesn’t have a relationship, but it does have a moderately

high cosine similarity with an assigned terms. Finally, the term “Animals” is a true

miss – its best match has a low cosine similarity and does not have a hierarchy re-

lationship. The combination of factors provides a much richer lens to examine and

measure classification errors than is otherwise possible.

Next, we will examine the slightly more complex “restricted” versions of the two

metrics above. The additional restriction here is that only one true term may match

to any predicted term. In the “HierarchyRestricted” version, as above we limit partial

matches to terms with hierarchy relationships. Much of the calculation remains the

same. However, both “Polymyositis” and “Myositis, Inclusion Body” were matched

with “Myositis” in the hierarchical restriction (recall that “Myositis, Inclusion Body”

is not free to match with its best match “Muscular Dystrophies, Limb-Girdle” due

to the hierarchy requirement). Since “Myositis” is already a match, neither term

receives a partial match score. The final scoring is 10 + 0.0 + 0.0 + 0.0, divided

by the total number of predictions, 15 for a final score of .66. Note that that this is

equivalent with the exact matching subset accuracy.

The “NonHierarchyRestricted” metric changes dramatically by removing existing

matches. The term “Muscle, Skeletal” matches first due to its ranking to “Staining

and Labeling” with a very low cosine similarity of .03. Next, “Polymyositis” matches

to “Child, Preschool” with a cosine similarity of .17. Eosinophils matches to its third

best match of “Adolescent” with a score of .06. “Myositis, Inclusion Body” matches
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to Infant at .01. The final term “Animals” drops out altogether because the remaining

matches fall below zero. The final score is 10 + . 03 + .17 + .06 + .01, divided by

the total number of predictions, 15 for a final score of .68.

In summary, we have calculated partial matching accuracy scores using four met-

rics. The first two metrics disregard potential redundancy, and address only the

individual plausibility of the assigned terms. The values of .77 and .90 reflected

that nearly all of the predicted terms had some relationship to the label terms.

For example, we found that “Eosinophils” was inappropriately predicted, but that

“Eosinophilia” was an assigned term. Only the term “Animals” appeared to be a

completely incorrect prediction. The second two metrics address issues of redun-

dancy by only permitting predicted terms to match once. Here, we see a dramatic

difference. The incorrect predictions do have relationships to label terms – but of-

ten the true terms were also predicted exactly. For example, “Polymyositis” has a

relatively high cosine similarity to “Myositis” – but “Myositis” is already correctly

predicted. From this more strict vantage, the partial matching measures fall to or

very close to their exact matching version.

The interplay between the four metrics qualitatively reflect that the model re-

turned individually plausible but somewhat redundant labels. The “errors” were

largely not close matches to terms the model otherwise missed. In fact, none of the

predicted terms addressed the missing demographic and geographic terms of the pa-

per. An intriguing observation is that if the redundant predictions were consolidated,

several of the demographic terms would likely have made the final predictions. We

will revisit the issue of redundancy in greater detail in the following chapter as we

seek to address the performance of a MeSH prediction model.
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Chapter 4

Predicting MeSH in MEDLINE:
Leveraging Citations and Abstracts

Introduction

The focus of this chapter is MeSH prediction. We begin by reviewing the primary

research questions addressed in this chapter, as well as special evaluation consid-

erations inherent in MeSH prediction. We then outline a procedure for identifying

candidate MeSH terms via abstract text and citations. This discussion will include

a detailed overview of the AbSim tool as a mechanism for obtaining MeSH terms

from documents with similar abstract text. Following that discussion, we introduce

a training dataset of 25,000 MEDLINE records used in the modeling experiments.

We then foreground the role of text and citations by describing how candidate MeSH

reflect a target document, as well as their overall complimentarity, prior to mod-

eling. After this, we will describe a series of four progressively more sophisticated

MeSH prediction models based on text and citation features. Next, three specially

constructed evaluation test sets designed to address issues of sparsity and robustness

are introduced. After each model is described, an overall evaluation is presented in

terms of exact matching. At the close, we will apply the partial matching approaches

described in the previous chapter, and develop several illustrative examples of the

application of distributional semantics.

An important introductory note is that the modeling and evaluation presented in

this chapter is designed to address specific research questions regarding the role of

text and citations. It is not meant to provide a point of comparison with MEDLINE
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optimized models. State of the art MeSH prediction systems are often comprised

of complex ensembles and specialized subsystems, such as regression models for pre-

dicting the number of MeSH to assign. The explicit goal is not to reproduce such a

full-fledged MEDLINE based prediction system, as the focus of this work is on do-

mains outside of MEDLINE. Rather, the modeling research objectives are to A) fully

focus on the dynamics of text and citations and their underlying complimentarity as

a novel approach to MeSH prediction in a wide range of domains, and B) highlight

evaluation issues and new diagnostic approaches. This approach, as we shall see, has

yielded several new avenues of investigation that complement existing scholarship. In

the discussion section, we will revisit many of these issues in a roadmap for future

work which would develop an additional comparative analysis in MEDLINE.

The research questions assessed in this chapter are:

RQ1: Are abstracts and citations effective features for pre-
dicting MeSH terms in MEDLINE?

RQ1 is addressed in two ways. First, we establish the overall recall of a target

document’s MeSH through related records. Secondly, this question is addressed by

training and evaluating models to predict MeSH terms in a large set of MEDLINE

papers. This model uses features derived from the frequency of candidate terms in

both abstract and citation sets. In sum, four models are assessed: one with citations

alone, one with text similarity alone, one with citations and text, and an extended

model utilizing citations, text, and “citations of citations” and “citations of AbSim.”

Each model is assessed in three separate test datasets. The first is sampled with

“ideal” conditions where citations and abstracts are both plentiful. The second and

third are sampled with low citations and short abstracts, respectively. Additionally,

the models are evaluated in terms of their performance in each branch and at each
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level in the MeSH hierarchy.

RQ2: To what degree are abstracts and citations complemen-
tary within MEDLINE and USPTO Patents?

RQ2 is addressed by an analysis of the complimentarity of candidate terms cap-

tured using abstracts and citations in terms of how often unique terms are captured.

Additionally, the analysis includes a temporal aspect, analyzing how often papers

retrieved by abstract similarity are published after the target paper.

Candidate Identification Procedure

Candidate terms are identified using two procedures. The first uses citations from the

document to extract MeSH vocabulary directly. This pool of terms is then optionally

expanded by retrieving the citations of those papers, and extracting their vocabulary.

The second approach collects the abstract of the target paper and retrieves a set

of MEDLINE papers with similar abstracts using a tool called AbSim, described in

detail below. The MeSH terms of this set of papers is then added as candidates.

These candidate sets are referred to throughout the following experiments as the

AbSim (abstract similarity) set. The citations of the AbSim papers are also optionally

retrieved, with their vocabulary extracted as well. Importantly, all AbSim papers were

filtered to ensure that the target paper is not included, since the most similar paper

by abstract will always be itself.

Using these two procedures, the result is four set of candidate terms: the citation

set, the citation of citation set, the AbSim set, and the citations of the AbSim set.

In the first three models described, only the citation and the AbSim set are used. In

the final model, all four are used.
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AbSim: Citations with Similar Abstracts

The AbSim tool, developed by the Torvik Research Group, accepts document IDs

for MEDLINE papers, USPTO Patents and NIH grants as an input and returns a

set of k MEDLINE papers with the highest text similarity as calculated by BM25

between abstracts[60]. First I will describe optional parameters for AbSim, as well

as technical aspects of how text is preprocessed. Secondly, I will review the BM25

ranking function to further define how text similarity is defined.

AbSim takes two parameters: a cut-off k of the number of papers to return, and n,

the number of distinctive query words to use. Throughout the experiments presented

here, these values are 10 and 20, respectively. It is important to note that in cases

where there are ties in the ranking, AbSim continues to take additional documents

until there is a drop in score. Therefore, though the cutoff is set to 10, some records

may have more than 10 AbSim results.

The text of the input document is first lower-cased, tokenized and stoplisted. The

corpus-wide word frequencies for each potential query term are then obtained. Up to

20 of the lowest frequency terms, excluding terms with a frequency of one, are used to

construct a BM25 query against MEDLINE abstracts. Abstract terms are processed

by ascending frequency. If a word has a frequency above 5 million, the query list

is truncated. Additionally, if the term has a frequency over 1.5 million and the list

already contains more than 5 terms, the list is truncated.

Text similarity is defined using the MySQL Sphinx implementation of BM25[2].

The BM25 ranking function is a frequency based, bag-of-words method for ranking.

The BM25 measure of a set of query terms q against a document d is calculated as

follows [50]:
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BM25(d) =
n∑
i=1

IDF (qi)
f(qi) ∗ (k1 + 1)

f(qi) + k1 ∗ (1− b+ b ∗ |D|/davg))

• f(qi) is the number of times the query term qi appears in the document

• b and k1 are free parameters

• |D| is the number of words in document d

• davg is the average number of words per document

The IDF term is the inverse document frequency:

IDF(qi) = log
N −N(qi) + 0.5

N(qi) + 0.5

• N is the total number of documents

• N(qi) is the number of documents containing query term qi

In summary, the AbSim tool provides a mechanism to retrieve the most similar

MEDLINE records to an input MEDLINE paper, US patent or NIH grant. The

target paper’s abstract is tokenized, and the most distinctive terms are used to for-

mulate a set of query terms. Documents are then ranked using the MySQL Sphinx

implementation of BM25. The top k matches are returned (k is set to 10 throughout

the experiments described below). If there is a tie in the matching score, additional

records are added until the tie is broken.

Training Data Characteristics

The training data for the model were collected from 25,000 MEDLINE papers. The

following selection criteria were used:
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1. The paper must have assigned MeSH.

2. The paper must have an abstract.

3. The paper must have at least one citation.

A population of papers meeting these requirements was collected, and the 25,000

training papers were randomly sampled from that population. The papers range from

the years of 1971 to 2015. The training data was intentionally sampled to contain a

wide range of papers with respect to the total number of citations and the length of

the abstract, and to make minimal assumptions about the documents.
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Figure 4.1: Key Training Data Characteristics: Number of citations, AbSim papers,
citations of AbSim and citations of citations at log scale

The training data contained a total of 27,014,307 candidate terms (taking the

union of each of the four sets), with 26,640 unique terms. These unique terms rep-

resent approximately 99% of the MeSH vocabulary. Figure 4.1 plots the number of

papers from each candidate set at log scale.
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Figure 4.2: Distribution of abstract length (in characters) in training data

Table 4.1 summarizes the total number of related records, both in terms of cita-

tions and AbSim records, as well as the length of the abstract in characters.

Table 4.1: Training Set Characteristics of 25000 papers used to train binary relevance
model

Minimum Median Mean Max
Year 1971 2010 2006 2016
Citations 1 32 36.85 1255
Citations of Citations 0 291 517 12169
Similar Abstract Citations 10 11 11.58 49
Abstract Length (Characters) 95 1425 1407 6093

How Well Do Candidate Sets Capture the Target Terms?

Because the candidate sets determine what terms can be predicted, the degree

to which they capture the target MeSH is extremely important. In the following

sections, I use “capture rate” to describe the percentage of label terms that are

covered by the candidate sets. For example, if all of the paper’s MeSH are captured

by the candidates, this would be considered a capture rate of 100%. The capture
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rate of both citations and AbSim records is high, with a mean of 86% and 74%,

respectively. Further, the capture rate of citations and AbSim are weakly correlated

(R2=.32). The combination of the citation and AbSim candidates captures 91% of

the target MeSH on average with a median of 93%. Figure 4.3 shows the distribution

of capture rates in the citation and AbSim sets, as well as the citation of citation and

citation of AbSim sets.
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Figure 4.3: Capture Rates in Citations, AbSim, Citations of Citations and Citations
of AbSim

Figure 4.4 displays the increase in average cumulative recall by each added ci-

tation. On average, over 50% of terms are captured within 5 citations. A slightly

smaller number of AbSim records are required to achieve the same capture rate,
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demonstrated in Figure 4.5.

Figure 4.4: Average Cumulative Recall over 20 Citations: Average incremental in-
crease in recall per additional citation
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Figure 4.5: Average Cumulative Recall over 20 AbSim Records: Average incremental
increase in recall per additional AbSim record

Complementarity of Citations and Text

To summarize, the candidate collection procedure described above produces four sets

of MeSH terms, each of which have high recall of the target paper’s MeSH. A natural

question is the degree to which these sets are complimentary, that is, the degree to

which they produce unique and useful terms. Although “complementarity” may have

many interpretations, here complementarity is measured by the symmetric difference

between the “true” MeSH terms of any two candidate sets. In other words, com-

plementarity is meant to describe the unique and correct terms captured by a pair
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of candidate sets. Note that complementarity is primarily useful for comparing two

fundamentally dissimilar candidate sets – for example, citations and AbSim. The

distinction tends to be less relevant when using derived sets, such as “citations of ci-

tations” or “citations of AbSim”, as these reflect underlying differences in the original

candidate sets.

Within the training data, in 89% of papers there is at least one unique, correct

term within the AbSim or citation sets. On average, a paper has 3.1 unique and

correct terms provided by either the AbSim or citation sets, constituting 23% of the

overall MeSH. There are two situations which account for the remaining 12.51% of

papers without complementarity. In 93.43% of these cases there is no complementarity

because both the AbSim and the citation sets each captured all of the relevant terms

– making it impossible for either set to contribute a unique term. In the remaining

minority of cases there is no complementarity because neither the AbSim or citation

sets had any true terms at all. Of those, 46 had no recall in the citation set, and 25

had no recall from the AbSim set. 3 papers out of 25,000 had no recall from either

citations or AbSim.

The above establishes that there is complementarity between the two sets. A

deeper question is why there is complementarity. One obvious mechanism of com-

plementarity is temporal. Since citations are inherently retrospective (i.e. it is only

possible to cite what has already been published), they are limited by whatever the

MeSH vocabulary and indexing practices were at the time of publication. Abstract

similarity can retrieve related records published after the target record, and thus cap-

ture more relevant terms. On average, the AbSim set has 5 records published after the

target date, or 45% newer. The impact of temporality varies significantly; the older

the paper, the greater the number of newer AbSim papers (R2 = −.58). The year

span, number of AbSim records and number of newer papers are plotted in Figure
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4.6.

Figure 4.6: Distribution of Publication Year, Number of AbSim Records per Paper,
and Number of Newer AbSim References in Training Data

Another mechanism of complementarity is citing behavior; it is challenging if not

impossible for researchers to comprehensively cite the literature. The AbSim set may

reflect highly related papers that were not cited because the researcher was unaware

of the work, or because the work had indirect bearing on the work at hand. Overlap

is limited, with an average of 1 shared paper between the citations and AbSim sets.

Again, temporal factors are significant. The older the paper, the more likely there

is to be newer AbSim papers, and by definition there can be no overlap between

citations and newer AbSim papers. The greater the number of newer AbSim papers,
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the total number of overlapping papers falls (R2 = −.32).

Identifying Relevant Candidate Terms: A Hybrid

K-Nearest Neighbors and Binary Classification Ap-

proach

Above, I describe how citations and text-based term sets are complimentary –

that is, that they uniquely contribute “true” candidate terms. The underlying mech-

anisms of this complementarity are temporal factors and citing behaviors. The next

important research question is how well citations and abstracts serve as features in

a predictive model. In other words, does this complementarity produce improved

overall performance robustness in practice?

To address this question, we will examine four progressively more complex logistic

regression models based on citations and abstracts. Each model shares the same basic

structure; each takes as input a set of candidate terms from a target paper as described

above and makes a binary prediction of the relevance of the term. Candidate terms

are indicated as either relevant or irrelevant based on whether the term was selected

by a human annotator. The model then collects a ranked list of terms, sorted by

relevance probability. In practice, the list could be returned to the user either by

probability threshold or by a set number of terms. For purposes of evaluation, we

take the top 15 terms.

The larger modeling objective here is to rank candidate terms derived from “neigh-

bor” papers, as defined by the four sets described above. The candidate term mecha-

nism forms the basis of the KNN aspect of the system. The binary classifier serves to

reduce a large set of candidates to likely term matches. The inherent class imbalance

between relevant and irrelevant candidate terms leads to relatively modest precision

and recall in the binary model. That is, the exact probability of any given candidate
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term tends to be low due to the large number of irrelevant terms. As a result, the

evaluation here focuses on the final multilabel setting rather than the intermediate

binary model.

We begin by introducing each model individually, with a review of its model

coefficients and brief remarks on its notable characteristics. To test the efficacy of

text and citations as prediction features, we first establish two baseline models. The

first model uses only candidate term frequencies derived from citations, and the second

model uses only candidate term frequencies derived from AbSim records. The third

model combines the two, using frequencies from both sets. The final and most complex

model also includes “citations of citations” and the citations of AbSim papers. This

approach seeks to increase the total number of records as a hedging strategy against

potential sparsity in related records.

Next, we will examine model predictions for an individual paper to demonstrate

how the model is used in practice. This will also serve to provide illustrative examples

of evaluation issues. From the individual paper we will move to a more systematic

assessment of performance. This assessment is based on multilabel performance mea-

sures in a series of three test sets. These test sets are designed to probe the potential

strengths and weaknesses of each model by simulating potential issues involving ei-

ther citation or abstract sparsity. This evaluation will also examine performance with

respect to each branch of the hierarchy, as well as each level. The chapter will close by

demonstrating how the partial matching measures developed in the previous chapter

can be applied in multilabel evaluation.
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Baseline Citation Only Model

Table 4.2: Citation Only Model Coefficients
Estimate Std. Error z value Pr(>|z|)

Intercept -1.13 .019 -56.99 <2e-16
Citation Count 2.49 .003 757.38 <2e-16
Total Citations -1.36 .004 -338.73 <2e-16
Log(MEDLINE Frequency) -.03 .001 -19.85 <2e-16

In the first model, term relevance is predicted based on the log of the number of

times the candidate term appeared in the citation set, as well as the log of the total

number of citation candidate terms. Additionally, the log frequency of the term in

MEDLINE is included to adjust for the overall rarity of the term. The model was

trained using 10 fold cross-validation using the dataset of 25,000 papers described

above. The model coefficients are provided in Table 4.2.

Evaluation figures for this model can be found below in Tables 4.9, 4.11 and 4.10.In

the balanced citations and abstract test set, the citation only model has relatively high

performance. However, this version of the model is highly sensitive to the number

of available citations. In the “low citation” test set, mean accuracy drops by 29%.

Notably, the median one-error is the worst of all models at 0. The short abstract

test set does not differ significantly in the citation only model, which is not directly

impacted by the abstract characteristics.

Baseline AbSim Only Model

Table 4.3: AbSim Only Model Coefficients
Estimate Std. Error z value Pr(|z|)

Intercept -3.72 .041 -90.84 2e-16
Citation Count 3.09 .003 1004.80 2e-16
Total Citations -1.19 .016 -75.24 2e-16
Log(MEDLINE Frequency) -.11 .001 108.98 2e-16
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In the next version of the model, only the AbSim features are used. Performance

overall is lower than in the citation-only version in the normal and short abstract

versions. However, unlike the citation only model, performance remains very stable,

even in the short abstract test set. There are several possible mechanisms for this

difference. Whereas having fewer citations dramatically reduces the amount of infor-

mation available to the citation model, a short abstract still provides a great deal of

information to the AbSim only model. This is because a short abstract will return a

similar number of AbSim records as a long abstract.

Though this model is more robust in all three settings, it is still has lower perfor-

mance than the citation only model, likely due to the additional noise introduced by

the text similarity algorithm. As stated above, the AbSim method is fundamentally a

“bag of words,” frequency driven approach. As a result, rare but irrelevant terms can

play an outsized role in defining the results. This issue is explored in the discussion

section, as alternative approaches to text similarity could potentially improve this

component of the model.

Combined Citation and Absim Model

Table 4.4: Citation and AbSim Model Coefficients
Estimate Std. Error z value Pr(>|z|)

Intercept -0.63 .045 -14.20 <2e-16
Citation Count 1.84 .003 571.92 <2e-16
Total Citations -1.03 .004 -295.58 <2e-16
Absim Count 1.36 .004 329.50 <2e-16
Total Absim -0.51 .016 -30.90 <2e-16
Log(MEDLINE Frequency) -0.06 .001 -51.23 <2e-16

In the next iteration of this approach, the AbSim and citation models are combined.

Notably, this model achieves the highest overall performance of all the models and
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remains robust in all three datasets. Throughout, this model is referred to as the

“simple” version, as it does not make use of citations of citations, or citations of

AbSim records.

Citations, Abstracts, and Related Records Model

Table 4.5: Citation, AbSim and Related Record Coefficients
Estimate Std. Error z value Pr(>|z|)

Intercept -0.40 .045 -8.31 2e-16
Citation Count 1.69 .005 363.39 <2e-16
Total Citations -0.87 .005 -168.35 <2e-16
Citation of Citation Count -0.01 .003 -4.97 6.83e-07
Total Citations of Citations -0.05 .002 -18.46 <2e-16
Absim Count 1.17 .005 255.69 <2e-16
Total Absim -0.40 .017 -24.01 <2e-16
Citations of Absim Count 0.23 .003 80.02 <2e-16
Total Citations of Absim -0.16 .002 -70.39 <2e-16
Log(MEDLINE Frequency) -.07 .001 -65.54 <2e-16

In order to further enrich the underlying candidate set, I included “citations of cita-

tions” and “citations of AbSim” records. Expanding the number of related records

increases the overall candidate size dramatically. Notably, the performance of the

model is very similar to the simpler citation and abstract only model. This may

be due to the already high recall of candidate MeSH without further enrichment.

However, using “citations of citations” may be an effective strategy in domains with

relatively sparse citations and abstracts, or a lower intrinsic capture rate. In the

MEDLINE setting, the much larger candidate set does not appear to adversely im-

pact the model. This model, though it does not outperform the simpler citation and

AbSim model, may be useful in cases where the intrinsic capture rate is unknown or

expected to be low. Further work is required to assess whether there are significant

differences between the “simple” and “full” model in domains beyond MEDLINE.
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Example Model Output

The previous sections described models trained using subsets of the available features.

This section will review an example input paper and its model outputs. We will review

exact matches, as well potentially plausible terms. Among the plausible terms, we

will closely examine one case of a partial match term that can be systematically

detected using either hierarchical or contextual methods. We will conclude with

a more difficult case which highlights subtle differences between the training task

(identifying individually relevant terms) and the evaluation standard (matching to

human judgments).

Table 4.6 collects the top 25 predictions for PMID22688958 using the citation

and AbSim model. This paper, titled “Understanding the evolution and development

of neurosensory transcription factors of the ear to enhance therapeutic translation”

was randomly selected from the “balanced” test set described above. The full text

of the paper is available via PubMed Central[41]. This paper has eight assigned

MeSH terms. In total, 4563 candidate terms were processed and ranked. Each term

was assigned a binary relevance probability. Predictions can be returned to a user

in several ways: by relevance probability threshold or by rank. The MeSH branch

could also potentially be used to filter results. For the purposes of the evaluation

experiments below, the top 15 terms are used. The first 25 terms are provided to

illustrate the role of rank in evaluation.
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Table 4.6: First 25 terms predicted for PMID 22688958 ”Understanding the evo-
lution and development of neurosensory transcription factors of the ear to enhance
therapeutic translation.” Matching terms are indicated in bold.
Rank Term Branch Probability Match
1 Animals Organisms 0.99 True
2 Mice Organisms 0.98 False
3 Basic Helix-Loop-Helix Transcription Factors Chemicals and Drugs 0.96 True
4 Cell Differentiation Phenomena and Processes 0.93 False
5 Gene Expression Regulation, Developmental Phenomena and Processes 0.93 True
6 Hair Cells, Auditory Anatomy 0.92 False
7 Humans Organisms 0.87 True
8 Nerve Tissue Proteins Chemicals and Drugs 0.84 False
9 Cochlea Anatomy 0.82 False
10 Ear, Inner Anatomy 0.82 True
11 Mice, Knockout Organisms 0.82 False
12 Female NA 0.66 False
13 Organ of Corti Anatomy 0.62 True
14 Mice, Transgenic Organisms 0.54 False
15 Signal Transduction Phenomena and Processes 0.54 False
16 In Situ Hybridization Analytical, Diagnostic... 0.45 False
17 Stem Cells Anatomy 0.45 False
18 Mutation Phenomena and Processes 0.37 False
19 Male NA 0.31 False
20 Immunohistochemistry Analytical, Diagnostic... 0.30 False
21 Transcription Factors Chemicals and Drugs 0.28 False
22 Homeodomain Proteins Chemicals and Drugs 0.28 False
23 Evolution, Molecular Phenomena and Processes 0.23 True
24 Epithelium Anatomy .23 False
25 Cell Survival Phenomena and Processes .23 False

The first 25 ranked terms contain 7 out of 8 of the assigned MeSH terms. The

unaccounted for term, “Hearing Loss” is in the candidate set, but was ranked at

position 167 with a binary relevance probability of .01. Using the standard of either

selecting the first 15 terms or selecting terms with a probability > 0.5, the predictions

have a precision of .40 (6/15) and a recall of .75 (6/8).

On manual examination, several of the incorrect predictions are likely plausible

annotations. For example, the term “mice” appears in the text of the paper in 22

instances and “hair cells” occurs 95 times. The frequency of incorrect MeSH terms

appearing in the paper are listed in Table 4.7. A further observation is that the

most frequently occurring incorrect prediction, “Hair Cells, Auditory” is a sibling of

a correctly assigned term “Organ of Corti”.
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Table 4.7: Incorrect predictions for PMID 22688958 ”Understanding the evolution and
development of neurosensory transcription factors of the ear to enhance therapeutic
translation.” Several incorrect predictions have a high number of occurrences in the
text of the article

Rank Term Probability # Text Occurrences
2 Mice 0.98 22
4 Cell Differentiation 0.93 11
6 Hair Cells, Auditory 0.92 95
8 Nerve Tissue Proteins 0.84 0
9 Cochlea 0.82 6
11 Mice, Knockout 0.82 5
12 Female 0.66 0
14 Mice, Transgenic 0.54 0
15 Signal Transduction 0.54 6

Though this example was selected simply to illustrate the model output, it is also

instructive in terms of the overall difficulty of evaluating MeSH predictions. The term

“Hair Cells, Auditory” is a highly ranked term, with a relevance probability of .92. It

occurs frequently in the text of the article, and is a child term of an assigned MeSH

term. The word embedding cosine similarity between “Hair Cells, Auditory” and

“Organ of Corti” is .90, reflecting a high degree of shared context. If we were to view

the term in isolation, we would likely conclude that is accurate and appropriate for

this paper. However, this view is challenged by the fact that an arguably more specific

term, “Organ of Corti” is available. Indeed, “Organ of Corti” occurs in both the first

and the last sentence of the article abstract. While “Hair Cells, Auditory” is clearly

not a complete error, it is arguably redundant. Fortunately, either hierarchy-based

or context-based will identify this term as a partial match.

Several other cases are more difficult to evaluate. For example “Mice” is highly

ranked, but not directly related to any of the true label annotations. None of the par-

tial matching methods would identify this as a plausible match. However, the paper

79



makes repeated references to mice. These references go beyond citing the literature

or establishing background information. The closing sentence of the article reads “Fi-

nally, we will provide a novel perspective on how to use recently generated complex

mutant mice to understand the molecular tuning of specific cell types independent

of the topological information” (emphasis added) [41]. It is difficult to conclude if

“Mice” is an annotation omission, since the focus of the paper is on the biology of

human hearing loss therapy. Ultimately, the usefulness and appropriateness of a term

like “Mice” will vary by perspective. From a pure relevance perspective “Mice” is

arguably relevant to the paper. A biologist or domain expert might assert that the

fundamental topics are related to the molecular biology of human hearing. Indeed,

the fact that the term was not selected by the NIH annotator supports this view.

This example raises a deeper problem inherent in MeSH annotation. Is the goal

to comprehensively annotate all relevant terms, or is to curate the smallest and most

representative set? A complex set of annotation guidelines influences the human an-

notator, based on principles of parsimony. For example, this question can be reposed

as: is “Humans” or “Mice” a more appropriate term to describe the organism of in-

terest? The answer is clearly “Humans,” given the focus on therapeutic applications.

Annotators instinctively navigate such questions, based on a sophisticated interplay

between other assigned terms and the paper itself. A naive machine agent, without

a model of such principles, is limited to simple individual judgments. If the goal

is to identify all relevant terms, “Mice” is an appropriate term. However, we are

limited by existing annotations, and therefore have no systematic way to credit such

a prediction. We must recall that the evaluation of MeSH predictions is in reality

a measurement of how well a naive agent reproduces a mosaic of human annotation

standards, not a representation of how well all relevant terms were retrieved.
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Model Evaluation

The evaluation of the models presented in this chapter serves two key aims: first, to

explore differences between models based on abstract and citations, and secondly to

probe the sensitivity of the models to sparsity. The issue of sparsity is particularly

of interest due to the goal of predicting MeSH in domains outside of MEDLINE,

where citations to the literature may be scarce, or where abstracts vary significantly

in length.

To that end, the evaluation of each model is performed in three distinct datasets,

each comprised of 5,000 records. The overarching goal of using these three datasets

is to simulate potentially different conditions in different biomedical domains and

highlight strengths and weaknesses of each model. Specifically, the datasets are as

follows:

1. “Sparse citations”: a dataset comprised of MEDLINE papers with fewer than

6 citations, and an abstract of greater than 250 characters.

2. “Average case”: comprised of MEDLINE papers with at least 15 citations and

an abstract of at least 250 characters.

3. “Short abstracts”: consisting of MEDLINE papers with at least 15 citations

and abstract of fewer than 750 characters

Table 4.8 reflects the mean citations, abstract length and recall of AbSim and

citations in each testset. Recall that the citation and AbSim recall refer to how well

the candidate terms capture the target publication’s MeSH prior to modeling – in

other words, representing a ceiling of model performance.
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Table 4.8: Mean citations, abstract length (in characters), citation recall and AbSim
recall in three test datasets

Dataset Citations Abstract Length Citation Recall AbSim Recall
Balanced 42 1461 .89 .74
Short Abstract 36 553 .86 .74
Limited Citations 1.5 1060 .24 .73

Notably, the the AbSim recall is generally significantly lower than citations in the

“Average case” and “Short Abstract” test set. However, it remains stable even when

abstract text is limited in the “Short Abstract” test set due to the ability of AbSim

to retrieve a consistent number of records even for short texts. Conversely, citations

are the most sensitive to sparsity and show a dramatic dropoff in the underlying

capture rate that is reflected in model performance. Next, we will compare model

performance in each of the three test sets.

Balanced Test Set Performance

Table 4.9 provides an overview of each model in the “balanced” dataset where papers

have an average number of citations and abstracts.

Table 4.9: Comparison of model performance in the “balanced” test set. Note that
“Full” refers to the combined citation, AbSim, citation of citation and citation of
AbSim model. Highest model values in bold

Model Subset Accuracy Recall One Error MicroF Jaccard Index
CitOnly .45 .51 .90 .47 .31
AbsimOnly .42 .48 .91 .44 .29
Cit+Absim .47 .54 .92 .49 .34
”Full” .47 .54 .91 .48 .33

Here, the citation and AbSim combined model has the highest overall performance.

The “full” model including citations of citations has a similar performance profile. The

performance of the best model is only somewhat better than the citation only baseline

model. Additionally, the citation and AbSim models are also relatively similar to each

other in overall performance.
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Low Citation Test Set Performance

Table 4.10 collects model performance in the “low citation” dataset, where papers

have few or no citations. Unsurprisingly, the citation only model performance drops

dramatically. The “full” model here has the highest overall performance, but is

again very closely matched by the citation and AbSim model. The most important

result here is that the combination of AbSim with citations significantly improves

performance and largely overcomes the lack of citation data.

Table 4.10: Comparison of model performance in the “limited citations” test set.
Highest model values in bold.

Model Subset Accuracy Recall One Error MicroF Jaccard Index
CitOnly .16 .24 .37 .19 .11
AbsimOnly .35 .52 .88 .40 .27
Cit+Absim .37 .54 .86 .42 .28
”Full” .37 .55 .87 .43 .28

Short Abstract Test Set Performance

Table 4.11 collects model performance in the “short abstract” dataset. These results

illustrate the striking robustness of AbSim, even when text is limited. This robustness

reflects the relatively steady underlying level of AbSim recall. As discussed above,

short text still provides a high degree of information about the paper and returns a

large number of related records. While overall AbSim is less accurate than citations,

it is more stable provided there is available text input.

Table 4.11: Comparison of model performance in the “short abstract” test set. High-
est model values in bold

Model Subset Accuracy Recall One Error MicroF Jaccard Index
CitOnly .37 .55 .88 .43 .28
AbsimOnly .35 .52 .88 .40 .26
Cit+Absim .40 .58 .90 .46 .31
”Full” .39 .58 .89 .45 .30

83



Precision and Recall by MeSH Branch

Next, we will examine the performance of each model’s precision and recall by MeSH

branch in Table 4.12. For reference, A legend of each branch code’s full category

name is provided in Table 4.13. As in the consistency study above, performance varies

significantly by branch. The best overall performance is found in the “Organisms”

branch, largely due to highly frequent terms like “Humans” and “Mice.” Because

the model weights term relevance by frequency in related documents, these common

terms tend to have high precision and recall.

Several branches show significant differences between precision and recall values.

For example, the “Information Science” (Branch L) and “Named Groups” (Branch

M) have significant precision and recall spreads. In the “full” model, Information

Science has a low precision of .33 but a very high recall of .66. Likewise, Named

Groups has a precision of .43 and a recall of .77. Similar differences between precision

and recall occur in each model, including the baseline models. The fact that each

model individually has these differences suggest that they are not due to a particular

artifact of either the citation or the AbSim candidate sets individually, but rather

from idiosyncrasies in the MeSH vocabulary.

An example of such an idiosyncrasy is the term “Molecular Sequence Data.” This

is a commonly predicted Information Science term that was automatically assigned

to any paper referencing molecular sequences or containing references to sequence

databanks from 1988 to 2016. Due to the KNN mechanism of the model, this term

may be over predicted due to its prevalence in a subset of the literature. We will

examine this issue in greater depth below in examining common classification errors,

as well as in a case study of patents.
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Table 4.12: Precision and Recall by Branch: ”Full” refers to the combined citation,
”citation of citation”, AbSim, and citation of AbSim model. ”Simple” refers to the
citation and AbSim model. Branches like Information Science (Branch L) reflect a
significant difference between precision and recall

Branch Full P Full R Simple P Simple R CitOnly P CitOnly R
A .42 .47 .43 .48 .39 .45
B .66 .88 .67 .86 .66 .87
C .55 .54 .55 .55 .50 .55
D .48 .51 .48 .52 .44 .50
E .38 .28 .38 .30 .36 .27
F .44 .40 .44 .40 .40 .38
G .38 .40 .39 .41 .37 .38
H .30 .28 .30 .27 .27 .26
I .40 .29 .40 .29 .36 .26
J .37 .26 .36 .26 .33 .25
K .44 .34 .42 .34 .51 .36
L .33 .66 .34 .63 .32 .65
M .43 .77 .45 .77 .47 .72
N .40 .25 .41 .26 .35 .24
Z .49 .32 .50 .33 .43 .27

Table 4.13: MeSH Branch Code Legend
MeSH Code Category
A Anatomy
B Organisms
C Diseases
D Chemicals and Drugs
E Analytical, Diagnostic and Therapeutic Techniques and Equipment
F Psychiatry and Psychology
G Phenomena and Processes
H Disciplines and Occupations
I Anthropology, Education, Sociology and Social Phenomena
J Technology, Industry and Agriculture
K Humanities
L Information Science
M Named Groups
N Healthcare
Z Geographicals

Precision and Recall by Level

Table 4.14 reflects performance statistics in each level of the hierarchy. There are

significant differences in precision and recall at different levels of the hierarchy. The
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shallower levels, particularly L2, L3 and L4 have very low precision and recall. Like-

wise, deeper levels such as L10-L11 have higher performance with another drop off

at the deepest levels. This is again likely a reflection of the hierarchy itself, as well

as annotation standards. As more specific terms are preferred to broad terms, we

expect to see better performance in lower, more granular levels of the hierarchy.

Table 4.14: Precision and Recall by Level: L1-12 refers to the depth in the hierarchy
Full P Full R Simple P Simple R CitOnly P CitOnly R

L1 .34 .34 .35 .35 .29 .34
L2 .29 .35 .30 .35 .29 .33
L3 .11 .18 .12 .18 .10 .16
L4 .13 .17 .13 .17 .11 .16
L5 .31 .25 .31 .26 .27 .23
L6 .32 .31 .33 .32 .29 .29
L7 .41 .40 .41 .41 .36 .38
L8 .48 .46 .48 .47 .44 .43
L9 .40 .73 .41 .73 .41 .69
L10 .69 .93 .70 .93 .69 .92
L11 .42 .24 .42 .25 .38 .18
L12 .46 .29 .43 .31 .33 .21

Partial Matching Evaluation

This section has three components. The first is an evaluation of the models described

above using existing hierarchical partial matching measures, namely the “hierarchi-

cal” and Least Common Ancestor precision, recall and f-score. The second section

applies the novel word embedding based metrics introduced in Chapter 3. These

metrics reflect how well the predicted classes represent the true classes in terms of

their cosine similarity and hierarchy position. The final section demonstrates how

the word embedding based evaluation measures can be used for model debugging.

For example, the similarity based measure allows identification of the best and least

well represented terms, as well as commonly “confused” terms. Further, the simi-

larity measure is applied to an analysis of highly similar and potentially redundant
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prediction terms.

Hierarchical Measures

The “hierarchical” measures naively augment the true and predicted classes with all

of the ancestor terms[31]. The Lowest Common Ancestor metric, as described in

Chapter 2, is a more sophisticated approach that selectively augments the true and

predicted classes by using the shortest paths between the lowest common ancestor

terms. These measures reflect a high degree of similarity with the flat hierarchical

measures. For each model, the evaluation was run against the “normal” conditions

dataset (i.e. the dataset with average citations and abstracts). As in the flat evalua-

tion, the performance is relatively stable across models but is highest in the “simple”

model using citations and abstract similarity without related records. These metrics

are collected in Table 4.15.

Table 4.15: Hierarchical Evaluation Measures: Hierarchical Precision, Recall and
F-score and Lowest Common Ancestor Precision, Recall and F-Score in baseline eval-
uation dataset

hP hR hF LCA-P LCA-R LCA-F
Cit+AbSim .67 .68 .66 .43 .45 .43
”Full” .67 .67 .65 .43 .45 .42
Cit Only .65 .67 .64 .42 .44 .41
AbSim Only .62 .64 .61 .40 .42 .40

Combined Word Embedding and Hierarchical Measures

Table 4.16 collects the performance of the models in the normal conditions dataset

using the word embedding based metrics described above. To review from Chapter

3, the four metrics here reflect different views of accuracy:

1. HierarchyFree: This calculates partial matching between terms with a hierarchy
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relationship (child, parent, sibling, etc.) weighted by their pairwise cosine sim-

ilarity. The “free” component means that any predicted term is free to match

against any true term; in other words, multiple predicted terms may match

against the same true term. This metric is meant to capture the overall “sensi-

bility” of the predictions balanced against a close match to the true terms place

in the hierarchy.

2. NonHierarchyFree: This measure reflects the best cosine similarity match be-

tween predicted and true terms. Unlike above, this is not restricted to terms

with hierarchy relationships. Because this is less restricted, the value is typi-

cally higher. However, due to the lack of constraint in hierarchy relationship,

this may provide partial match credit to term pairs that have a common context

but are categorically different; e.g. a disease-drug pair. As above, this version

allows multiple predicted terms to match to one true term.

3. HierarchyRestricted: This metric is the same as HierarchyFree, but only permits

each true term to be matched once. This prevents prediction sets from having

a high score if they only approximately match one or two true classes.

4. NonHierarchyRestricted: This is the same as NonHierarchyFree metric, but

only permits each true term to be matched once.

There is a somewhat clearer difference in evaluation measures here than in the

traditional hierarchical measures. The difference between the HierarchyFree and Hier-

archyRestricted performances suggests some degree of redundancy in the prediction

sets, with a drop of 0.6-.07 in each model. The “NonHierarchyFree” measure is

expected to have the highest values and to measure the plausibility of individual pre-

dictions rather than their performance as a group. Interestingly, the partial matching
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score is similar to partial matches between papers with their citations, described in the

previous chapter. Combined with the restricted versions of the metrics, this suggests

that the model is capturing generally relevant terms but is perhaps less successful in

efficiently selecting only the most representative terms.

Table 4.16: Embedding Based Partial Match Measures: Four partial matching mea-
sures in the baseline evaluation dataset

HierFree NonHierFree HierRestricted NonHierRestricted
Cit+AbSim .52 .72 .45 .52
Full .51 .71 .45 .51
CitOnly .50 .71 .43 .51
AbsimOnly .47 .68 .40 .49

The overall semantic similarity of predictions varies between and within branches.

Figure 4.7 plots the distribution of the best match semantic similarity of predictions

to labels in each branch. Some suggestive patterns are clear: branches that are

relatively conceptually narrow (Technology and Industry and Health Care) have a

tighter range and slightly higher average matching. Broader categories like Diseases

and Phenomena and Processes have some of the widest ranges.

Intriguingly, Information Science has the highest median matching, with the

widest difference between median and mean. Further work is required to make

stronger claims about the significance of this, but one possible cause is the com-

bination of the unusual conceptual broadness of Information Science and a significant

frequency imbalance of terms. Notably, the Information Science branch had one of

the highest gaps between precision and recall in the exact matching evaluation de-

scribed above. The Information Science branch also contains an extremely wide range

of terms, from “Algorithm” to “Phylogeny” to “Interlibrary Loans”. Further, a fre-

quent Information Science term “Molecular Sequence Data”, discussed above, was

subject to indexing rules that led it to be automatically applied to any paper con-

taining databank accesssion numbers from 1988-2016. This issue is explored again in
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the following chapter as it pertains to patent predictions.

Figure 4.7: Semantic Similarity of Predictions by Branch: Average cosine similarity of
predicted terms to labels using MeSH word embedding, partitioned by MeSH branch

Using Word Embeddings for Model Performance Diagnostics

The semantic similarity approach can be useful for diagnosing model performance

with respect to individual terms as well. Table 4.17 represents the 5 terms with

lowest average semantic matching in the predictions. The “Frequent Matches” column

describes the 5 terms that were the most frequent best match to the target. In

several cases, the best matches are clearly close: for example, “Gene Expression”

has an overall low matching score but its most frequent match is “Gene Expression

90



Regulation”, a sibling term. In two cases, the term itself is the most frequent match,

but with a high degree of confusion with other terms. Table 4.18 provides further

detail on the best matches with “Young Adult.” Here, we find that 20% of the time

Young Adult is successfully matched with itself, but 34% of the time is matched with

other age related named groups like “Middle Aged” and “Child, Preschool.” While

these terms are clearly related to age demographics, they likely have low semantic

similarity because they have different contexts – the topics connected to children are

different from those of young adults. Here again, the frequency basis of the model

may lead to repetitive Named Group terms being applied. Further work is required

to address this difficulty, either by using a dedicated model or applying a policy like

consolidating age groups to the summary term “Age Groups” if there are multiple

ages predicted or if confidence is low.

Table 4.17: Top five predicted terms with worst matches to true labels by cosine
similarity

Term Branch Avg Similarity Frequent Matches

Time Factors Phenomena .40
Female, Time Factors,
Humans, Male,
Age Factors

Gene Expression Phenomena .41
Gene Expression Regulation,
”Transcription, Genetic”,
Cell Differentiation

Young Adult* Named Group .45
Young Adult, Middle Aged,
”Child, Preschool Child,
Cross-Sectional Studies

Recombinant Proteins Chemicals .46

Recombinant Proteins,
Amino Acid Sequence,
”Cloning, Molecular”,
Transfection, Protein Binding

Models, Biological Analytical... .48

”Models, Biological”,
Signal Transduction,
Protein Binding,
Computer Simulation,
Biological Transport

Table 4.19 collects the best matching terms. Here, we see that the frequency basis

of the models leads to high performance in common terms. Terms like “Animals” and
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Table 4.18: Disambiguation of ”Young Adult”. The top five best matching terms to
”Young Adult” by their frequency and cosine similarity

Term Branch Semantic Similarity Frequency
Young Adult Named Group 1.0 20%
Middle Aged Named Group .27 18%
Child, Preschool Named Group .33 10%
Child Named Group .31 6%
Cross-Sectional Study Analytical, Health Care .39 6%

“Humans” are almost always correctly matched to themselves. However, there is an

interesting continuity with the worst results – the term “Middle Aged” is correctly

matched 90% of the time, but when it is confused, it is frequently confused with

“Child” and “Young Adult”.

Table 4.19: Highest Average Semantic Similarity Terms: 5 terms with highest match
to predictions using cosine similarity

Term Branch Avg. Similarity Frequent Matches

Animals Organisms .99

Animals (99%), Middle Aged,
Sequence Alignment,
Structure-Activity Relationship,
Phosphorylation

Humans Organisms .99
Humans (99%), Female,
Calcium, DNA-Binding Proteins,
Mycobacterium tuberculosis

Male NA .96
Male (96%), Cell Differentiation,
Humans, Transcription Factors,
Cell Cycle Proteins

Female NA .95

Female (95%), Humans,
Bacterial Proteins,
Immunohistochemistry,
”Influenza, Human”

Middle Aged Named Group .95
Middle Aged (90%), Animals,
Humans, Child, Young Adult

Analyzing Highly Similar MeSH Terms

The modeling methodology described above essentially makes independent judgments

about the relevance of a MeSH term. As previously shown in studies of duplicate

annotations, there are often many plausible, highly related MeSH terms that might

be appropriate for a given paper. It follows that there may be a possibility of ranking
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several similar terms highly. These terms may be so similar as to be redundant. In

a previous example, we saw potential redundancy in the prediction of “Hair Cells,

Auditory” and “Organ of Corti”. Particularly in ranking based evaluation, these

redundancies can cause a decrease in performance by preventing correct terms from

being included.

A method for measuring the degree of redundancy is an essential first step to

consolidating highly similar MeSH terms. This is complicated by the fact that we

naturally expect term pairs to have a somewhat high degree of similarity, given the

contextual basis of the measure. The complexity lies in differentiating between groups

of terms that share a coherent context and those that may be redundant.

The evaluation results above show a marked difference (-.07) between the “free”

and “restricted” metrics, indicating that multiple predictions are associated with one

true term. A natural question arises: how often are “redundant” terms used in real

annotations? How often do they appear in predictions? Are there patterns in the

types of redundant terms that appear?
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Figure 4.8: The number of potentially redundant term pairs in labels, predictions and
candidates. There is some natural redundancy in labels assigned by humans, and a
much higher degree of potential redundancy in predicted terms

To address this question, the predicted terms, actual terms and candidate terms

were partitioned into possibly redundant and non-redundant terms using a cosine

similarity threshold of 0.8. As stated above, many non-redundant term pairs will have

highly similar contexts in the true labels. The challenge is to differentiate between

naturally co-occurring terms and potentially redundant predictions. Figure 4.8 shows

the distribution of redundancy in each set. Most papers contain an expected degree

of redundancy in labels, and a higher degree of redundancy among predictions.
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Figure 4.9: Redundancy of Labels and Predictions by MeSH Branch: Count of poten-
tially redundant pair of terms based on cosine similarity threshold of 0.8, partitioned
by MeSH branch

The distribution of this redundancy differs between branches in true terms versus

predictions. Notably, the degree of potential redundancy is higher among disease,

organism and chemical terms, as visualized in Figure 4.9. The pattern is less clear

when analyzed by the type of relationship between similar terms (sibling, parent-child,

etc) in 4.10, other than there is greater overall redundancy among predictions.
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Figure 4.10: Redundancy of Labels and Predictions by Relationship Type: Count
of potentially redundant pair of terms based on cosine similarity threshold of 0.8,
partitioned by relationship type between pairs

Table 4.20 provides examples of the top 5 redundant term pairs among predictions

in each branch. In many cases, terms are so similar as to be considered synonymous

(e.g.: “Anxiety Disorders” vs “Phobic Disorders”). In other cases, the relationship

seems to be one of subcategory (“Diabetes Mellitus, Type 2” versus “Diabetes Melli-

tus”). In a few cases, the terms are clearly not synonyms – for example, “Men” and

“Women”, though putatively their context in MeSH is highly similar.
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Table 4.20: Top Redundant Terms in Predictions: Top 5 most similar term pairs in
predictions for each MeSH category
Branch Term 1 Term 2
Organism Rats, Sprague-Dawley Rats, Wistar
Organism Rats, Sprague-Dawley Rats, Inbred Strains
Organism Rats, Wistar Rats, Inbred Strains
Organism Rats, Wistar Rats, Sprague-Dawley
Organism Mice, Inbred C57BL Mice, Inbred BALB C
Disease HIV Infections Acquired Immunodeficiency Syndrome
Disease Cardiovascular Diseases Coronary Disease
Disease Diabetes Mellitus, Type 2 Diabetes Mellitus
Disease Cardiovascular Diseases Hypertension
Disease Coronary Disease Myocardial Infarction
Phenomenon Genetic Variation Genotype
Phenomenon Protein Conformation Protein Structure, Secondary
Phenomenon Algorithms Artificial Intelligence
Phenomenon Ion Channel Gating Membrane Potentials
Phenomenon Stress, Mechanical Biomechanical Phenomena
Anatomy Neurons Axons
Anatomy Cerebral Cortex Brain
Anatomy Epidermis Skin
Anatomy Hematopoietic Stem Cells Bone Marrow Cells
Anatomy Neurons Synapses
AnalyticTechnique Palliative Care Terminal Care
AnalyticTechnique Models, Biological Models, Theoretical
AnalyticTechnique Randomized Controlled Trials as Topic Clinical Trials as Topic
AnalyticTechnique Equipment Design Evaluation Studies as Topic
AnalyticTechnique Retrospective Studies Prospective Studies
Chemicals Anti-Inflammatory Agents, Non-Steroidal Cyclooxygenase Inhibitors
Chemicals Membrane Proteins Carrier Proteins
Chemicals Luteinizing Hormone Follicle Stimulating Hormone
Chemicals Anti-Inflammatory Agents, Non-Steroidal Cyclooxygenase 2 Inhibitors
Chemicals Follicle Stimulating Hormone Luteinizing Hormone
Psychology Risk-Taking Adolescent Behavior
Psychology Risk-Taking Sexual Behavior
Psychology Anxiety Disorders Phobic Disorders
Psychology Visual Perception Pattern Recognition, Visual
Psychology Reward Reinforcement (Psychology)
Healthcare Safety Management Patient Safety
Healthcare Medicaid Medicare
Healthcare Medicare Medicaid
Healthcare Population Population Characteristics
Healthcare Health Care Costs Cost-Benefit Analysis
NamedGroups African Americans Hispanic Americans
NamedGroups Infant, Premature Infant, Low Birth Weight
NamedGroups Men Women
NamedGroups European Continental Ancestry Group African Continental Ancestry Group
NamedGroups European Continental Ancestry Group Continental Population Groups

Table 4.21 and Table 4.22 collect examples of papers with high redundancy in both

labels and predictions. Although it is not possible to draw conclusions from individual

cases, these examples are helpful for probing model performance and underlying com-
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plexities. Table 4.21 collects five papers with highly similar labels. The top paper, for

example, contains MeSH assignments for many types of Hyperlioproteinemias. Cu-

mulatively, these examples show cases where the assigned MeSH distinctively cluster

around a few key concepts. An important observation is that not all highly similar

terms are redundant, and that there is an underlying degree of highly similar term

pair selections in human annotations.

Table 4.21: Top 5 papers with highest number of pairwise similar assigned MeSH
terms

PMID Labels

6346238

Humans; Hyperlipidemia, Familial Combined;
Hyperlipoproteinemia Type I;
Hyperlipoproteinemia Type II;
Hyperlipoproteinemia Type III; Hyperlipoproteinemia Type IV;
Hyperlipoproteinemia Type V; Hyperlipoproteinemias;
Lipoproteins; Lipoproteins, HDL

12816106

Adolescent; Adult; Animals; Animals,Domestic;
Child; Child, Preschool; Contact Tracing;
Disease Outbreaks; Female; Humans; Illinois;
Indiana; Infant; Kansas; Male; Middle Aged; Missouri;
Monkeypox virus; Muridae; Ohio; Poxviridae Infections
Sciuridae; Wisconsin

6177960

Adrenergic alpha-Antagonists; Adrenergic beta-Antagonists;
Adult; Antihypertensive Agents; Cholesterol; Cholesterol, LDL;
Cholesterol, VLDL; Drug Therapy, Combination;
Humans; Hypertension; Lipids; Lipoproteins;
Lipoproteins, LDL; Lipoproteins, VLDL; Male;
Middle Aged; Triglycerides

12341391

Africa; Africa South of the Sahara; Africa, Southern;
Agriculture; Demography; Developing Countries; Economics;
Emigration and Immigration; Employment; Health Manpower;
Income; Lesotho; Population; Population Dynamics; Social Planning;
Socioeconomic Factors; South Africa; Technology

6815875

Animals; Candidiasis; Coccidioidomycosis; Cryptococcosis;
Digestive System Diseases; Entomophthora; Geotrichosis;
Haplorhini; Monkey Diseases; Mucormycosis; Mycoses;
Pan troglodytes; Papio; Paracoccidioidomycosis; Primates
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Perhaps more importantly, this approach also allows identification of concentration

of highly similar terms in the predictions. These term pairs are potential targets for

consolidation. Table 4.22 provides examples of the 5 papers with the most redundant

predictions:

Table 4.22: Top 5 papers with highest number of pairwise similar terms among pre-
dictions

PMID Predictions

6293146

Animals; Macaca mulatta; Primates; Macaca fascicularis;
Haplorhini; Callitrichinae; Galago; Saguinus; Callithrix; Cebidae;
Papio; Aotus trivirgatus; Saimiri; Cercopithecus aethiops;
Gastrointestinal Neoplasms

16009392

Humans; Depth Perception; Vision, Binocular; Vision Disparity;
Photic Stimulation; Vision, Monocular; Visual Perception;
Animals; Contrast Sensitivity; Pattern Recognition, Visual;
Form Perception; Psychophysics; Adult; Optical Illusions;
Visual Cortex

1553698

Middle Aged; Adult;Wounds and Injuries; Adolescent;
Aged; Child; Child, Preschool; Aged, 80 and over;
Wounds, Nonpenetrating; Young Adult; Infant;
Multiple Trauma; Abdominal Injuries; Thoracic Injuries;
Wounds, Penetrating

12507406

Stroke; Animals; Cardiovascular Diseases;
Hydroxymethylglutaryl-CoA Reductase Inhibitors;
Atherosclerosis; Hypertension; Arteriosclerosis;
Postoperative Complications; Vascular Diseases;
Inflammation; Coronary Artery Disease; Heart Failure;
Carotid Artery Diseases; Thrombosis; Carotid Stenosis

1349908

Ovarian Neoplasms; Breast Neoplasms; Receptor, ErbB-2;
Mice; Animals; Neoplasm Invasiveness;
Laryngeal Neoplasms; Genital Neoplasms, Female;
Adenocarcinoma; Endometrial Neoplasms; Uterine Neoplasms
Carcinoma; Carcinoma, Squamous Cell; Fallopian Tube Neoplasms;
Uterine Cervical Neoplasms

The first example paper with PMID 6293146 is titled “Gastrointestinal neoplasms

in nonhuman primates: a review and report of eleven new cases,” and include the

primate species “Callitrichinae” and “Macaca mulatta” as MeSH assignments. The
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predicted MeSH are almost entirely related to primates. Several of the terms listed

are plausibly relevant, but were not assigned. For example, the abstract text refer-

ences “Saguinus” and “Galago crassicaudatus” which are contained in the predictions.

However, many of this species may be better represented with a consolidated term.

Likewise, the other examples show cases where a single basic concept is predominant

among the predictions.

Cumulatively, these examples and the overarching statistics of highly similar term

pairs strongly suggest that there is a degree of redundancy in predicted terms. Con-

solidation heuristics may be useful, though examples of high similarity in human

annotations suggest a need for caution. Future work is required to determine how to

effectively consolidate terms without sacrificing granularity. The discussion section

will return to this question.

Summary

In summary, the word embedding based similarity metrics have several uses. As sum-

mary measures, they can help characterize different aspects of how well predictions

match true terms. The non-hierarchical measures provide a general assessment of how

plausible individual matches are from a contextual perspective. The hierarchically

constrained versions are slightly more strict and prevent terms from entirely different

branches from matching. The redundancy sensitive measures are helpful in assessing

how well predictions function as a group. Here, we found that while the model pre-

dicts valid individual predictions, there is a tendency to predict variants of a few key

concepts.

The similarity metrics were also useful for evaluating performance between branches,

and for identifying commonly misclassified terms. At the level of the paper, the cosine
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similarity metrics useful for locating extremes: terms that have the worst semantic

fit, or papers with the most redundant label or prediction terms. These individual

examples help to surface model mechanics that are difficult to observe through grosser

summary statistics.

Further work is required to develop and assess the uses and interpretation of the

word embedding metric. It is not intended as a replacement for hierarchy based partial

matching measures. As shown in this chapter, both hierarchy and context information

are best used together. By itself, hierarchy measures are inherently limited by the

structure of the controlled vocabulary. While this can be an effective strategy for

partitioning terms based on semantic type, it is more difficult to compare similarity

consistently across the hierarchy. The word embedding similarity measure effectively

represent how often terms appear together, but it cannot independently control for

the semantic type of the term. Combining the two together allows one to judge that a

sibling pair like “Heterocyclic Compounds, 3-Ring” and “Heterocyclic Compounds, 4-

Ring” are quite similar, whereas another sibling pair like “Dehydration” and “Death”

are not.

In terms of specific findings, the partial matching analysis suggests the following:

1. There are more highly similar pairs in predictions than labels, suggesting a

degree of redundancy. The distribution of redundancy varies by branch, and is

highest in disease and chemical terms.

2. The degree of redundancy influences the overall quality of annotations. This

is especially important due to the use of a constant threshold for determining

terms. Future work is required to address methods for consolidating potentially

redundant terms.
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Chapter 5

Beyond MEDLINE: A Case Study
in Patents

This chapter addresses the final research question:

RQ3: How do MeSH terms in MEDLINE compare to pre-
dicted MeSH in USPTO patents?

MeSH prediction has been widely studied, but almost entirely in the context

of MEDLINE. This chapter provides a case study in applying MeSH prediction to

patents. First, I examine key differences between patents and scientific papers, partic-

ularly as they relate to citations and text in terms of the proposed model. Second, the

probabilistic model described in the previous chapter is applied to a sample of approx-

imately 65,000 biomedical patents. The resulting predicted terms are then compared

to MeSH terms from a comparison sample of papers drawn from MEDLINE as well

as the model predictions for those papers.

Purpose, Styles of Attribution and Language: Patents

vs the Scientific Literature

The primary objective of this case study is to apply a probabilistic model that

relies on citations and abstract similarity to predict MeSH. As such, it is important

to outline what both citations and abstracts are in the context of patents versus

the scientific literature in order to establish that a model trained in the scientific

literature has face validity in the patent domain. I argue that while citations and

abstracts function very differently in each domain, they share common features that
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satisfy assumptions of the model. This viability stems from distinct economic, legal

and normative motivations.

At root, both patents and scientific papers are formal documents designed to con-

vey precise information. Both are intended to clearly elucidate an idea, and provide

the reader with insight into how the idea was developed and tested. Further, there

is significant overlap in both the institutions and people involved: many researchers

are also patent holders, and many industry scientists have rich publication histo-

ries. However, patents are a distinct “genre” of document from scientific papers in a

number of respects.

First, the strategic intent of a patent is to define an invention for the purpose of

protecting intellectual property. Economic interests are at the heart of patent writing;

they are necessarily both technical and legal documents. As such, the key task of a

patent is to clearly delineate an idea and to demonstrate its originality. The strategic

disclosure of information is key: enough to establish the claims of the inventor, but

not so much as to empower competitors.

This is in distinction to the scientific literature. Claims of novelty are common

in science, but secondary to claims of truth. Although scientific papers often discuss

matters of considerable financial and social value, they are principally concerned with

the communication of knowledge rather than the assertion of property. This is not

to imply that the scientific community is entirely free of economic or quasi-economic

motivations. Citing behaviors in particular are influenced and sometimes corrupted

by social incentives[16].

Second, issues of quality and originality are adjudicated differently between patents

and scientific papers. Patents are issued by the state after a complex review process.

The issuance of a patent bears a strong legal assumption of validity [13]. Patent

disputants engage in legal proceedings, with strongly defined precedents and proce-
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dures. Title 35 of the U.S. Patent Code governs strict criteria of patentability. A

patent application can be rejected for the following reasons[13]:

1. 35 U.S.C. §101: Subject Matter Eligibility or Utility: rejecting the

claimed invention because it either is directed to ineligible subject matter, such

as a law of nature, physical phenomena, or abstract idea, or is not useful.

2. 35 U.S.C. §102: Novelty: rejecting the claimed subject matter because it is

not novel at the time of invention and is described in a printed publication or

publicly used or sold in the United States more than one year prior to the filing

of the patent application.

3. 35 U.S.C. §103: Non-Obviousness: rejecting the claimed invention because

it is not an obvious advance over what was known at the time of invention.

4. 35 U.S.C. §112: Disclosure: rejecting the claimed invention because the

patent fails to adequately describe and enable others to practice the invention

or fails to clearly define what is claimed.

5. 35 U.S.C. §121: Restriction requirements: restricting the patent appli-

cation to a single invention because the application includes two or more inde-

pendent and distinct inventions.

Peer review, by contrast, is administered by the scientific community: its specific

practices and norms vary by field and by journal. There is arguably significant overlap

between scientific values, particularly in terms novelty and non-obviousness (35 U.S.C.

§102 and 35 U.S.C. §103). Even 35 U.S.C. §121 is reflected in the common emphasis

on parsimony and the practice of the “least publishable unit.” However, the risk

calculus is markedly different in each setting, and has significant implications.
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The complex set of factors – strategic, normative, and legal – influence the way

in which patent writers and scientists cite and write. The following sections explore

how these factors influence citing behavior as well as linguistic choices.

The difference of strategic aims is perhaps most clearly reflected in styles of ci-

tation. For patent writers, the originality and distinctiveness of the invention are at

issue. As such, the purpose of a citation in patents is to position the invention with

respect to previous work. The most likely challenge to a patent will come from an

argument that the idea was either not new, or that it was so widely known as to be

trivial at the time of publication. In other words, citations are materially important

in potential patent litigation.

In the scientific realm, citations broadly act to record the intellectual history of a

work. Philosophies and citation styles differ between individuals and between fields,

but citations are commonly used to properly attribute ideas and to provide readers

with further information. Unlike in patents, there is no constraint to protect or

legally define an idea. In fact, in distinction to patents, scientists are often judged

in terms of various impact factors that reward prolific publishing. As such, scientists

are incentivized to self-cite, and to cooperatively cite others.

Further, the language of patent and scientific papers are also different. This is

largely due to their formal construction. Patents are arguably both scientific and

engineering documents, but they are also legal documents. As such, distinctive and

sometimes formulaic language is used in patent text. The definition of the invention

is also subject to strategic considerations. The patent holder wants the broadest

possible definition, but also does not want to over extend themselves in opposition

proceedings.
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Differing Goals With Common Mechanisms: Linkages Be-
tween Related Work

In sum:

1. Patents focus on defining and protecting intellectual property. Scientific papers

aim to communicate new ideas and evidence.

2. Patents use attribution as part of an argument of originality. Scientific papers

use attribution to create a record of intellectual labor.

3. Patents use formulaic, legal language narrowly focused on a claim and de-

signed to withstand legal scrutiny. Scientific papers emphasize communication

of claims and are comparatively less formal.

The differing styles of attribution and abstract writing have implications for the

MeSH prediction strategy. These are mostly positive. While patents may not cite as

exhaustively as scientific papers, their writers are strategically motivated to provide

key citations to avoid litigation challenges. The narrow focus of patents also means

that cited papers are directly related to the invention. Likewise, patent abstracts

tend to be narrowly focused on the key claims and invention. Due to legal con-

straints, patents must describe a single invention. However, unusual and formulaic

language can be a potential barrier to text similarity methods like AbSim which are

designed to emphasize distinctive terms. The technological language of patents (e.g:

“invention” and “inventor”) are less common in MEDLINE and may pose problems

for text similarity methods. Future work is required to systematically examine how

the underlying language differs between scientific papers and patents, and whether

this has any significant impact on the AbSim approach.
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Prediction Methodology

Table 5.1: Patent and MEDLINE sample characteristics: note that the median MED-
LINE article has slightly more citations and a much longer abstract

N Avg. Cit. Avg. Abstract Median Cit. Median Abstract
Patents 62671 47 640 30 568
MEDLINE 62671 38 1411 33 1425

This case study applies the models described in the previous chapter, specifi-

cally the model using citations, AbSim, as well as citations of citations and abstract

citations or “full” model. A corpus of patents was selected based on citations to

the biomedical literature, and on having citation and abstract characteristics similar

to the baseline evaluation dataset. Citations to the literature were retrieved using

PATCI, a tool for mapping patent citations to MEDLINE[1]. Specifically, the patents

had to have the following characteristics:

1. At least 15 biomedical citations.

2. An abstract of at least 250 words.

This resulted in a set of 67,621 biomedical patents. For comparative purposes,

a matched dataset of MEDLINE papers with the same characteristics was sampled.

No criteria was placed on the year of either patents or MEDLINE papers. As in the

previous chapter, the top ranked 15 predicted terms were taken for each patent. The

MEDLINE sample was also processed using the model to compare predicted terms.

Table 5.1 collects summary statistics comparing the patent and MEDLINE datasets.
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Patent MeSH: Human and Drug Oriented

Table 5.2: MeSH Branch Proportion of Total Predicted Vocabulary in Patents vs
Pubmed Samples

MeSH Branch Patent Proportion Pubmed Proportion Difference
Anatomy .58 .50 +.08
Organisms .99 .95 +.04
Diseases .35 .50 -.15
Chemicals... .89 .70 +.19
Analytical... .69 .73 +.04
Psychiatry... .02 .15 -.13
Phenomena... .86 .69 +.17
Disciplines... .06 .10 -.04
Anthropology... .00 .08 -.08
Technology... .02 .03 -.01
Humanities... .00 .01 -.01
InformationSci... .50 .14 +.36
Named Groups .26 .30 -.04
Healthcare .01 .13 -.12
Geographicals .00 .14 -.14

Table 5.2 collects the relative percentage of each MeSH branch, compared against

the MEDLINE sample. For comparsion, the difference between the MEDLINE pre-

dictions and true labels is collected in Table 5.3. The dominant category in patents

is Organisms, followed by Chemicals and Drugs. As a whole, patents are less diverse

than the MEDLINE sample, with no term terms reported in the “Psychiatry and

Psychology”, “Healthcare”, “Geographicals” or “Anthropology, Education, Sociol-

ogy and Social Phenomena” branches. Neither the MEDLINE sample or the patent

sample had an appreciable number of papers with Humanities terms. Notably, Hu-

manities and Geographical terms were predicted in similar proportions (<.05%) in

the MEDLINE prediction set. This is suggestive that the lack of these terms in the

patent set is not an artifact of the modeling process.
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Table 5.3: MeSH Branch Proportion of Total Predicted Vocabulary in Pubmed vs
Actual Terms

MeSH Branch Predictions Proportion Pubmed Proportion Difference
Anatomy .54 .50 +.04
Organisms .99 .95 +.04
Diseases .48 .50 -.02
Chemicals... .74 .70 +.04
Analytical... .68 .73 +.05
Psychiatry... .13 .15 -.02
Phenomena... .72 .69 +.03
Disciplines... .08 .10 -.02
Anthropology... .06 .08 -.02
Technology... .03 .03 .00
Humanities... .01 .01 .00
InformationSci... .26 .14 +.12
Named Groups .42 .30 +.12
Healthcare .09 .13 -.04
Geographicals .09 .14 -.05

Information science terms were dramatically more common (+.36) in the patent

set, and significantly (+.12) more common in the comparison predictions. This is

likely due to the high prevalence of the “Molecular Sequence Data” term, amounting

to nearly half of the papers in the patent set. Likewise, “Amino Acid Sequence”

and “Base Sequence” were also highly prevalent, and both have dual locations in

the Phenomena and Process branch as well as the Information Science branch. The

Chemicals and Drugs branch is also more prevalent (+.19) in the patent sample than

in the MEDLINE set. This branch is only moderately more common in the MEDLINE

predictions. Both patents and the MEDLINE sample had a relatively large percentage

of special terms that do not belong within the regular MeSH hierarchy, primarily the

“Female” and “Male” term. These terms are denoted with NA in the table below.

Broadly considered, the MEDLINE predictions are close to the true term propor-

tions. Except for the Information Science and the Named Groups branches, all other

branches are within <= .05 of the true proportions.
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Table 5.4: Top Pubmed and Patent Terms in Sample: ”Humans” and ”Animals” are
much more prevalent in the patent predictions

Rank Patent Term Patent Ct. Pubmed Term Pubmed Ct.
1 Humans 62196 Humans 42134
2 Animals 59752 Animals 24262
3 Female 36985 Female 21878
4 Male 35662 Male 21446
5 Molecular Sequence Data 31695 Adult 11641
6 Mice 31499 Middle Aged 10365
7 Amino Acid Sequence 24184 Mice 9190
8 Base Sequence 22926 Aged 7301
9 Rats 17104 Molecular Sequence Data 5072
10 Adults 14900 Adolescent 4721

An examination of the most frequent MeSH terms shows broad similarities in the

top terms in both patents and MEDLINE papers by ranking, but a striking difference

in frequency. These are collected in Table 5.4. “Humans” is by far the most dominant

patent MeSH term, with 92% of patents containing the term, compared to 62% in the

MEDLINE comparison. Animals is similarly dominant, at 88%. Though it is difficult

to assess the significance without further evaluation of the underlying predictions, the

dominance of “Humans” and “Animals” suggests a stronger applied medical focus in

patents versus the broader biomedical literature. This is consistent with 35 U.S.C.

§101 prohibitions against patents on physical laws or basic phenomena.

Table 5.5: Top Patent vs Pubmed Frequency Differences: ”Animals” and ”Molecular
Sequence Data” are much more prevalent in the patent predictions

Term MeSH Branch Diff. Patent Ct. Pubmed Ct.
Animals Organisms 35490 59752 24262
Molecular Sequence Data InfoSci 26623 31695 5072
Mice Organisms 22309 31499 9190
Amino Acid Sequence Phenomena/InfoSci 20876 24184 3308
Humans Organisms 20062 62196 42134
Base Sequence Phenomena/InfoSci 19403 22926 3523
Female NA 15107 36985 21878
Male NA 14216 35662 21446
Rats Organisms 12891 17104 4213
Cell Line Anatomy 9493 12309 2816

There are several similarly suggestive differences in the frequency of individual
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terms, collected in Table 5.5. Here, we again see that “Molecular Sequence Data”,

“Amino Acid Sequence” and “Base Sequence” have a much higher frequency in

patents than in the Pubmed sample.

Table 5.6: Top Chemicals and Drugs Patent Terms: Genetics and molecular biology
terms are more common in patents than the MEDLINE comparison

Term Patent Frequency Pubmed Frequency
DNA 7701 1287
RNA, Messenger 6702 2102
Antibodies, Monoclonal 5396 731
Recombinant Proteins 5271 1131
Peptides 2962 733
Proteins 2764 850
Bacterial Proteins 2522 1716
Antineoplastic Agents 2038 805
Recombinant Fusion Proteins 1949 685
DNA, Viral 1831 583

Examining the top Chemicals and Drugs terms in Table 5.6 shows higher frequen-

cies for molecular biology terms: DNA is nearly 6 times as prevalent, and RNA is 3.3

as prevalent. Two terms with wide applications in pharmaceuticals and diagnostics,

“Antibodies, Monoclonal” and “Recombinant Proteins” were 7.3x and 4.6x as preva-

lent in patents. Given the likely connection of patents to pharmaceuticals, the top

pharmaceutical terms are provided in Table 5.7. “Antineoplastic Agents” is by far

the most frequent, and nearly 2.5 more common than in the MEDLINE comparison.
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Table 5.7: Top Pharmaceutical Categories in Patents: ”Antineoplastic Agents” is the
most common pharmaceutical category and is 2.5x more frequent in patents than in
the MEDLINE comparison

Term Patent Frequency Pubmed Frequency
Antineoplastic Agents 2038 805
Enzyme Inhibitors 1147 514
Anti-Bacterial Agents 1083 950
Antiviral Agents 918 286
Oligonucleotide Probes 585 102
Adjuvants, Immunologic 493 91
DNA Probes 432 100
Antioxidants 418 303
Contrast Media 403 171
Protease Inhibitors 352 102

Diseases were relatively underrepresented in the patent predictions (-.15) and

nearly the same between the MEDLINE predictions and terms (-.02). However, there

are some suggestive patterns in the top terms, collected in Table 5.8. For example,

“Neoplasms” is 1.7x as common in patents. More general conditions like “Obesity”

and “Inflammation” were relatively more common in MEDLINE. Further work is

required to examine if these reflect systematic differences, or are artifacts of the

modeling process.

Table 5.8: Top Disease Subjects in Patents: Terms related to neoplasms are more
common in patents. ”Disease Models, Animal” is striking less common, perhaps due
to the focus on applications in humans

Term Patent Frequency Pubmed Frequency
Neoplasms 1823 1058
Breast Neoplasms 1088 1014
Alzheimer Disease 928 348
Disease Models, Animal 808 1770
Neovascularization, Pathologic 638 233
Prostatic Neoplasms 577 445
Coronary Disease 555 166
Obesity 472 709
Postoperative Complications 469 426
Inflammation 458 713
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The most over-represented category in patents was “Information Science”. The

top Information Science terms are collected in Table 5.9. Examining terms only

from the Information Science branch (i.e, removing terms with multiple locations

like “Amino Acid Sequence”) confirms that “Molecular Sequence Data” is the main

driver of this difference. The striking frequency of this term may be due to indexing

practices. As discussed in the previous chapter, from 1988-2016, this term was auto-

matically applied to any paper containing databank accession numbers, or any papers

with molecular sequences in the text. Given that the underlying modeling method is

based on the frequency of term assignments, this term may be artificially common in

related papers and therefore be overpredicted.

Table 5.9: Top Information Science Branch Terms: ”Molecular Sequence Data” is
strikingly more frequent in patents, but likely due to an idiosyncracy of MeSH. The
term was applied by default to any paper referencing sequence data, giving it a very
high frequency in the citations and AbSim records of many patents

Term Patent Freq. Pubmed Freq.
Molecular Sequence Data 31695 5072
Image Processing, Computer-Assisted 943 496
Computer Simulation 634 936
Software 508 625
Signal Processing, Computer-Assisted 358 108
Databases, Factual 173 310
User-Computer Interface 162 187
Computers 162 62
Internet 119 407
Computer-Aided Design 98 32

Example Patent Annotation

This section will review an individual patent and its predicted annotations to provide

an illustrative example of the model in practice. The patent, titled “Pleiotrophin

growth factor receptor for the treatment of proliferative, vascular and neurological

disorders” (US7528109B2) was randomly selected from the collection of biomedical
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patents described above [67]. The top 25 predicted terms are provided in Table 5.10.

Table 5.10: Top 25 predictions for Patent US7528109B2: ”Pleiotrophin growth factor
receptor for the treatment of proliferative, vascular and neurological disorders”

Rank Term Branch Probability Relevant
1 Humans Organisms 0.99 Yes
2 Animals Organisms 0.98 Yes
3 Mice Organisms 0.92 Yes
4 Carrier Proteins Chemicals and Drugs 0.80 Yes
5 Tumor Cells, Cultured Anatomy 0.75 Yes
6 Cell Division Phenomena and Processes 0.73 Yes
7 Signal Transduction Phenomena and Processes 0.72 Yes
8 Molecular Sequence Data Information Science 0.71 Yes
9 Cytokines Chemicals and Drugs 0.69 Yes
10 Female None 0.51 No
11 Rats Organisms 0.50 No
12 Transfection Analytical, Diagnostic... 0.49 Yes
13 Base Sequence Phenomena and Processes 0.49 Yes
14 Gene Expression Regulation, Neoplastic Phenomena and Processes 0.35 Yes
15 Male None 0.35 No
16 Mice, Nude Organisms 0.33 Yes
17 Phosphorylation Phenomena and Processes 0.31 Yes
18 Cells, Cultured Anatomy 0.31 Yes
19 Amino Acid Sequence Phenomena and Processes 0.28 Yes
20 Gene Expression Phenomena and Processes 0.27 Yes
21 Apoptosis Phenomena and Processes 0.26 Yes
22 RNA, Messenger Chemicals and Drugs 0.22 Yes
23 Cloning, Molecular Analytical, Diagnostic... 0.20 No
24 Neovascularization, Pathologic Diseases 0.19 Yes
25 Mutation Phenomena and Processes 0.18 No

Each term has been marked as relevant or irrelevant to the patent, on the basis of

that term occurring in the text of the patent in a significant context. For example,

the word “Rats” occurs twice in the text of the patent, but is used in passing reference

and is not a major subject of the patent and is therefore marked as irrelevant. Expert

judgment would be required to definitively determine which set of MeSH would best

describe the patent, and if any significant terms are missing. The judgments provided

here are simply meant to illustrate model output and provide examples of several of

the patterns described above.

A simple initial question is to ask how well the predicted vocabulary reflect the

title of the patent. “Pleiotrophin” is mapped directly to “Carrier Proteins” and “Cy-
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tokines” in the MeSH Supplementary Concept Data. Both MeSH terms are highly

ranked, in position 4 and 9, respectively. The patent title references “proliferative,

vascular and neurological disorders.” Several of the terms relate to proliferation,

notably “Cell Division” and “Apoptosis”. However, only one disease term is listed:

“Neovascularization, Pathologic” and is ranked in the 24th position with a low prob-

ability of .19.

On an individual basis, a clear deficit of the predictions is the inclusion of too

many species. A total of five species are predicted, with Organism terms in the top

three positions. This is largely due to the high frequency of model organisms in

cited works. The subject of the patent deals with the treatment of disease, making

“Humans” an appropriate term. Animals is arguably broad, but applicable due to

the inclusion of animal model data in the patent. Mice, specifically Nude Mice, are

discussed intensively. As mentioned above, “Rats” is an irrelevant term.

This example also demonstrates a key difficulty of evaluating MeSH prediction

outside of MEDLINE. Deep expertise is required to fully assess whether term pre-

dictions are relevant, and further, if they are effective in describing the patent as a

group. Further work is required to develop techniques capable of easing this burden.

One potential approach could attempt to align aspects of existing patent classification

codes with MeSH to test the accuracy of specific terms. However, the model predic-

tions do appear to capture significant aspects of the patent, including key concepts

related to pleiotrophin.

Key Findings

In sum:

1. Patents and scientific papers use citations and abstracts very differently. Patents
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use citations as part of a carefully considered legal strategy to define the precise

claim of their invention. Scientists use citations more variably, but generally as

a way to provide credit and to document their intellectual path.

2. Although the motivations behind particular citations and writing choices differ,

they both provide rich links to papers with representative MeSH. In the case of

patents, the careful selection of citations provides a reasonable expectation that

the cited work will have a close relationship to the subject of the patent. Like-

wise, both scientists and patent writers are motivated to write crisp abstracts

that focus on the key contribution or claim they are making.

3. The patent vocabulary reflected significant differences from the MEDLINE vo-

cabulary. Terms related to chemicals and drugs and information science are

much more prevalent (+19% and +36%) due to a much larger number of terms

related to pharmaceuticals and molecular biology. These categories are also

higher in the predicted terms of the MEDLINE sample, but to a lesser extent

(.04% and +.12%, respectively).

4. Predicted terms also differ in terms of diseases studied. Disease terms were

lower in patents (-.15%) and essentially the same in the predicted termset (-

.02%). However, the most prevalent disease subjects were related to neoplasms

and Alzheimer disease and appear much more frequently than the MEDLINE

comparison (1.72x and 2.66x, respectively)

5. Many of the less applied branches relating to the humanities, geographic loca-

tions, and healthcare nearly disappear in the patent set. They remain relatively

stable in the predicted terms of the PUBMED set.

While the results are suggestive, further work is required to assess their signif-
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icance. On the whole, the differences described suggest that patents have a more

applied, human-centric and pharmaceutical focus than MEDLINE. These findings

are broadly consistent with the nature of the patent literature.

As stated above, it is difficult to evaluate the accuracy of individual MeSH as-

signments in patents. However, policy analysts have proposed summarizing MeSH

terms to relatively high levels of the hierarchy to examine broad patterns of invest-

ment in biomedicine[28]. Here, we see that the top level branches are fairly consistent

between the MEDLINE comparison predictions and true labels, with some possible

model artifacts in the Information Science branch. This consistency is an encouraging

indication that econometric work may benefit from MeSH prediction in the patent

space. Future efforts may also provide new tools to assess model accuracy, such as

controlled vocabulary alignment with existing patent classification systems.
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Chapter 6

Discussion

Review of Research Questions

This dissertation centered around four research questions. The following summarizes

each research question, as well as the major findings and contributions.

RQ1: Given that human inter-rater reliability is modest, how
should MeSH prediction systems evaluate accuracy?

In the evaluation chapter, an early study on MeSH indexing consistency was updated

to the present. This study found that inter-rater reliability (as measured by Hooper’s

consistency) has remained relatively modest though stable at 50%. This measure

relies on exact matching, which disregards valid, related assignments. In order to

develop a more comprehensive picture, several partial matching systems were intro-

duced. The first were graph based measures which give a partial score for matching

a term closely in the MeSH hierarchy. Secondly, a partial matching mechanism using

distributional semantics was introduced. This measure treats MeSH assignments as

an artificial language and trains word embeddings using the Word2vec model. Term

similarity was measured using cosine similarity between term vectors in the word em-

bedding space. This approach provides a direct similarity metric, as well as a way to

filter relationships in the hierarchy. Using these two approaches, inter-rater reliability

was found to be much more robust. This approach also highlighted the importance

of evaluation metrics in MeSH prediction broadly, and the challenge of interpreting

model predictions.
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RQ2A: Are abstracts and citations effective features for pre-
dicting medical subject headings in MEDLINE?

In the third chapter a probabilistic model was introduced for assigning MeSH terms.

This model uses candidate terms drawn from citations and MEDLINE records with

similar abstracts. Several variants based on this concept were introduced: a model

using only citations, only abstract similarity, both together, and a final model using

related records (citations of citations) from both the citation and abstract similarity

sets. Each model was tested in three different settings, including a sample with few

citations, a sample with short abstracts, and a “normal” sample with typical cita-

tions and abstracts. The primary finding is that the citation only model performs

relatively well compared to more complex models, but is highly sensitive to citation

sparsity. Likewise, the abstract only model performs more modestly but also more

robustly, even when abstracts are short. The best performance is achieved by com-

bining citation and abstract similarity features. Including citations of citations does

not improve the model significantly in the test datasets, at least in the MEDLINE

setting.

A partial matching analysis using the findings above reflected that redundancy

may be a significant challenge. Here, I found that there are more highly similar

term pairs in predictions than in labels, particularly in the disease and drug related

branches.

RQ2B: To what degree are abstracts and citations comple-
mentary within MEDLINE and USPTO Patents?

The model evaluation described above indicates that performance improves by

combining the abstract and citation features. There are several factors at play. The

abstract and citation sets were found to contain unique, relevant terms 88% of the
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time. The majority of cases where no unique terms were found was due to both

sets perfectly covering the target paper. Including both these sources of information

clearly improves the underlying candidate sets. There are at least two mechanisms

underlying this complementarity. The first is temporality. Citations are inherently

retrospective, and are limited by the state of the vocabulary at the time they were

indexed. Abstract similarity allows the inclusion of papers published after the target,

and thus a potentially broader selection of terms. Secondly, citation behavior is always

constrained by the awareness and motivation of researchers. Abstract similarity may

include papers that were overlooked or otherwise uncited. As described above, the

abstract similarity approach is also less sensitive to sparse data. A short abstract

has less impact on the overall model performance than having few citations – largely

because even a short abstract can still yield a significant number of related papers.

However, the abstract similarity sets are also “noisier,” returning larger termsets and

more spurious terms. This is due in large part to the inexact nature of text similarity

matching. Unlike citations, there is no assurance of a close relationship between the

target and the related paper. In summary, abstracts and citations are complementary

both in terms of their contributions to the candidate sets, and in terms of mitigating

data sparsity.

RQ3: How do MeSH terms in MEDLINE compare to pre-
dicted MeSH in USPTO patents?

The best model from the earlier chapters was applied to a sample of approximately

65,000 biomedical US patents. The biomedical nature of the patent was established

by the patent having citations to MEDLINE. An equivalent sample of MEDLINE

papers was constructed, along with the model’s predicted terms. Analysis of the

resulting vocabulary found significant differences between the distribution of terms.
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Many of the less applied branches relating to the humanities, geographic locations,

and healthcare nearly disappear in the patent set. Terms related to chemicals and

drugs and information science are much more prevalent(+19% and +36%) due to

a much larger number of terms related to pharmaceuticals and molecular biology.

These categories are also higher in the predicted terms of the MEDLINE sample,

but to a lesser extent (.04% and +.12%, respectively). Disease terms were lower in

patents (-.15%) and essentially the same in the predicted termset (-.02%). However,

the most prevalent disease subjects were related to neoplasms and Alzheimer disease

and appear much more frequently than the MEDLINE comparison (1.72x and 2.66x,

respectively). Further work is required to assess the significance of these differences.

These early results are suggestive that patents reflect a more applied, pharmaceutical

focus than MEDLINE as a whole.

Future Directions

In the course of this research, several promising directions for future work became

apparent. Namely:

1. Revisiting the patent case study using a comparative framework between patent

classification codes (CPC) and MeSH.

2. Comprehensively studying the impact of different text similarity algorithms.

For example, using a word2vec or doc2vec approach instead of the BM25 text

similarity tool used here.

3. Optimizing the modeling approach through the use of ensemble models and

models for determining the term cutoff threshold.

4. Expanding on the MeSH word embedding concept as a basis for postprocessing
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prediction rankings, particularly in consolidating potentially redundant terms.

5. New scholarly opportunities in economic and policy analysis via MeSH summa-

rization.

Comparing Patent Classifications with MeSH

The case study presented in Chapter 5 describes empirical differences between a

sample of patents and PUBMED papers. However, this study is only suggestive as

to the accuracy of the terms. A gold standard dataset is difficult and expensive to

obtain, as patents are not currently indexed using MeSH. A large body of qualified

annotators would be necessary to properly index a sample, but also prohibitively

difficult to obtain. The entire endeavor of MeSH prediction outside of MEDLINE

is limited by a lack of validation data. To that end, future work might attempt to

reconcile aspects of the patent classification system (CPC) and MeSH in order to

provide an estimate of accuracy. By linking similar terms between the two systems,

it may be possible to more rigorously investigate the underlying model performance

without expensive human annotation. However, significant work would need to be

undertaken to make this approach possible – especially given the complexity of patent

classification codes.

Limitations of AbSim: Rare, Distinct and Mislead-

ing Terms

One of the early goals of this research was to establish a flexible, modular approach

to MeSH prediction. As such, the text similarity algorithm used is intended to be

replaceable with other methods. One of the known limitations of the AbSim method
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is that it can be misled by statistically unusual language. For example, regional id-

iosyncrasies in terms can create an artificially “rare” term that skews AbSim towards

inappropriate results. A case of this can be found in the paper “’You don’t know

which bits to believe’: qualitative study exploring carers’ experiences of seeking in-

formation on the internet about childhood eczema.” The paper abstract is reflected

in Figure 6.1. The term “carer” appears several times throughout the abstract. In

the UK, a family member or paid helper is referred to as a “carer.” In most other

countries, this role is referred to either as a caregiver or home health aide. As a result,

the top AbSim result for this paper is a paper titled “The role of district nursing:

perspectives of cancer patients and their carers before and after hospital discharge,”

shown in Figure 6.2. Though the majority of the first paper is concerned with in-

formation seeking behavior and technology, the rare, distinct but marginally relevant

term “carer” dominates the AbSim results.

The distinctiveness of “carer” is largely an artifact of discrepancies in language

usage. Geographic differences in language provide particularly stark examples of

artificially distinctive terms, but other issues abound – namely the classic problem of

word sense disambiguation. These limitations all stem from a reliance on the precise

words used in the abstract.

As described in some length above, recent work in distributional semantics has

sought to address these shortcomings by calculating continuous space vector represen-

tations of words. This approach has been widely and successfully used in document

retrieval and summarization [35]. To address rare but misleading terms encountered

in AbSim, I conducted a small number of experiments using a prototype Word2Vec-

based text matching system[42]. This system, called Kamaji, matches arbitrary input

text to the average of Word2vec vectors in PUBMED abstracts using a simple ap-

proximate nearest neighbors index[7].
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Figure 6.1: Reference Paper PMID25854963: An example of a paper with distinctive
regional language that potentially misleads frequency-based systems like AbSim
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Figure 6.2: Top AbSim Result: The best match AbSim paper (PMID14982309)
matches on the distinctive term ’carer’, reflecting the nursing connection

Figure 6.3: Top Kamaji Result: The best match Kamaji paper (PMID25899617)
matches based on word embeddings, and reflects the overall emphasis on information
seeking
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A full comparison of Kamaji and AbSim will need to be undertaken in future work.

Nevertheless, the paper referenced above (Figure 6.1) offers an instructive example.

The top AbSim result for this paper is a match for the unusual term “carer,” but is

otherwise unrelated to the health information themes that are central in the target

paper. The top Kamaji result matches (shown in Figure 6.3) the information seeking

behavior aspect, but is otherwise unrelated to the target. Because Kamaji does not

rely on exact word matching, it successfully overcomes the “carer” pitfall. However,

the representation of the input text to a single point in the vector space permits only

very general comparison.

Experimentally, Kamaji has a higher degree of complementarity (unique and rel-

evant terms) and a larger overall vocabulary size than AbSim. However, this initial

version did not perform as well as a replacement to AbSim in the overall relevance

model described in Chapter 4. The larger vocabulary size suggests that more irrele-

vant terms are introduced. The averaging scheme used in Kamaji can be revisited and

improved using more sophisticated approaches. The use of distributional semantics

for MeSH prediction and biomedical text processing is a highly promising direction

for future research.

Improving Prediction Results with MeSH Distribu-

tional Semantics

As described in Chapter 3 and Chapter 4, the MeSH word embedding approach

is a useful evaluation tool. In future work, it may also have a more direct application

in a probabilistic model. One approach might be to use the similarity measure to

prune highly redundant terms – pairwise terms with very high similarity. Other more

sophisticated approaches could also attempt to identify spurious terms through a very

low cosine similarity with other predictions.
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One approach to filtering potentially redundant terms could combine the pairwise

MeSH term probability score developed by Smalheiser with the contextual embed-

dings developed here [55]. In this framework, possibly redundant terms would be

identified by high cosine similarities, and further filtered by having low pairwise oc-

currence probabilities. This would have the advantage of identifying term pairs that

share a general context but rarely occur together. Further work is required to de-

velop a method for identifying which term to select, as well as accommodating other

idiosyncrasies in the MeSH hierarchy.

There are several promising directions for improving the underlying model. Two

clear opportunities are in using ensemble models. Secondly, adding an additional

model to predict the number of MeSH terms could help improve accuracy by tuning

the cut-off threshold k. Finally, the evaluation approach could also be extended by

developing recall oriented cosine similarity measures. The measures developed here

primarily focused on prediction accuracy, but further work could focus on measures

reflecting how many of the fundamental concepts of the target paper are captured in

the predictions.

Beyond Patents: Empowering New Scholarly Op-

portunities in Health Policy and Information Re-

trieval

Although patents were the focus of the non-MEDLINE case study, other types of

biomedical documents are compatible with the predictive model described in this dis-

sertation. For example, conference proceedings and NIH grant awards both typically

contain abstracts and citations. MeSH prediction in these bibliographic databases

could yield a number of benefits.

The most obvious application would be in practical information retrieval tools.
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A unified annotation system could help enhance retrieval applications by providing

users with a familiar and highly nuanced vocabulary. Applying MeSH across a range

of life sciences bibliographic databases could be a first step towards more comprehen-

sive search systems. Such a system would have the advantage of covering not only

published scientific research, but also applications (in patents) and prospective work

(in NIH grants).

This work also has implications for more theoretical areas of information science.

The distributional semantics approach to MeSH could be adapted for a variety of

information retrieval tasks. For example, cosine similarity could be used to construct

term “neighborhoods” for query expansion. In such an approach, a user could select

a similarity threshold for a query consisting of a set of MeSH. Either automatically

or manually, similar terms could be added to their query. The MeSH hierarchy

could also be applied to enhance this approach by filtering terms by categories like

“Chemicals and Drugs” or “Diseases.” Simple similarity searching could also be used

in conjunction with the hierarchy to construct a concept graph. For instance, a

user could formulate a query identifying the most similar pharmaceutical terms to

a given disease term. More advanced applications might leverage the hierarchy and

contextual similarity together to find additional terms via connected components.

The vector properties of word embeddings have been widely studied in informa-

tion retrieval, particularly in terms of search by analogy [35]. As described above,

vector arithmetic can be used to find analogous concepts, as in the “King - Man

+ Woman = Queen” example. The MeSH word embeddings can also support these

kinds of queries. A simple prototype system built on this concept is available online at:

http://meshexplorer.adamkehoe.com. Using the analogy vector addition framework,

one can juxtapose biologically related terms. For example, a user can input a pair of

terms related to a molecule and a genetic disease (“alpha 1-Antitrypsin” and “alpha
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1-Antitrypsin Deficiency”). A third target term is introduced (“Phenylketonurias”).

The vector offset between the first pair can be applied to the third term to locate

a similar concept. In the example query, “Phenylalanine hydroxylase” is returned.

The term results could be further ranked based on their rarity, their closeness to the

target vector, or other properties such as their location in the MeSH hierarchy.

MeSH embeddings could also be used to support topic identification. For exam-

ple, the MeSH of a target paper could be clustered based on their location in the

embedding space. The term nearest to the centroid of each cluster could be used to

represent the core areas of a paper. Another prototype system along these lines is

available at: http://meshexplorer.adamkehoe.com/clustering

Medical subject heading prediction also has applications beyond information re-

trieval. Economic and policy analyses of the impact of the National Institute of

Health have focused on the impact of single grants, or portfolios of grants related to

disease areas[28]. Colleagues have suggested that MeSH could be a natural choice to

expand and extend such analyses with its “comprehensive and rigorous classification”

[28]. The breadth of the MeSH vocabulary is particularly important due to the un-

expected way in which many scientific discoveries develop. NIH Associate Director

Carrie D. Wolinetz noted in 2016 that “The pathways from research to practice to

changes in public health are typically non-linear and unpredictable. For a scientific

discovery to make that journey may take decades or more and involves a complex

ecosystem”[69]. Empirically tracing the flow of federal funding through translational

research requires a broad methodology. For example, neurostimulation technologies

provide an example of how NIH funding can generate ideas that cross disciplinary

boundaries [14, 28]. Beginning in the late 1960s, researchers supported by NIH began

experimenting with using electrodes for the purpose of restoring hearing loss which

evolved into more advanced cochlear implants by the mid-1990s[14, 28]. Motivated
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by the initial research in auditory rehabilitation, researchers in 1973 began exam-

ining the relationship between electrical function and Parkinson’s disease eventually

leading to the development of treatments that successfully reduced the intensity of

tremors[14, 28]. Recently, this research has served as a foundation for new methods

for treating spinal cord injuries and vision loss[14, 28]. Narrower methods based on

a single disease would be unable to trace this development. MeSH is better suited to

describing the complex evolution of ideas that are commonplace in the life sciences.

Connecting NIH funding with the MeSH taxonomy could create a foundation for

a systematic examination of the impact of federal funding on the research and inno-

vation ecosystem in terms of the generation and flow of both scholars and ideas[28].

MeSH could serve both as a means of categorizing research efforts, and as a kind of

connective tissue linking together different domains. For example, with both patents

and NIH grants annotated, it may be possible to track not only federal investment,

but also private research. MeSH annotation could be a powerful first step in opening

several new realms of scholarly inquiry in policy and economics.
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