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ABSTRACT

This dissertation aims to enhance machining accuracy by machine tool error reduction and
workpiece metrology. The error characteristics are studied by building a quasi-static error model.
Perturbed forward kinematic model is used for modeling a 5-axis Computer Numerical Control
(CNC) machine with one redundant linear axis. It is found that the 1% order volumetric error model
of the 5-axis machine is attributed to 32 error parameter groups. To identify the model by
estimating these parameter groups using the least-squares fitting, errors at 290 quasi-randomly
generated measurement points over the machine’s workspace are measured using a laser tracker.
The identified error model explains 90% of the mean error of the training data sets. However, the
measurements using the laser tracker take about 90 minutes, which may cause the identified error
parameters to be inaccurate due to the slow varying and transient natures of thermal errors.

To shorten the measurement time, an experimental design approach, which suggests the
optimal observation locations such that the corresponding robustness of identification is
maximized, is applied to design the optimal error observers. Since the observers must be uniformly
distributed over the workspace for gaining redundancy, the constrained K-optimal designs are used
to select 80 K-optimal observers for the 5-axis machine. Six measurement cycles using 80
observers are done at machine’s different thermal states within a 400-minute experiment. Six error
models are trained with consistent performances and are found to be comparable to the one trained
by 290 quasi-random observations. This shows the feasibility of using smaller but more strategical-
chosen point-set in data-driven error models. More importantly, the growth on mean nominal
(119.1 to 181.9 microns) and modeled error (26.3 to 33.9 microns) suggest the necessity of thermal

error tracking for enhancing the machining accuracy.



A point-set based metrology is also developed to compensate the inaccuracies introduced
by workpiece and fixtures and enhance machining accuracy. The machinability of all planar
features is examined by virtually comparing the scanned data with the nominal machining planes,
which are also known as virtual gages. The virtual gaging problem is modeled as a constrained
linear program. The optimal solution to the problem can compensate the displacement introduced
by workpiece and fixtures and hence guarantee a conforming finished part. To transfer point-set
data into mathematical constraints, algorithms that align, segment, downsize and filter the point-
set data are exploited. The concept of virtual gage analysis is demonstrated using experimental
data for a simple raw casting. However, for the case where the casting is defective, and some
virtual gages are not feasible, the corresponding linear program was found to have no solution. By
introducing slack variables to the original linear programming problem, the extended problem has
been solved. The extended model is validated for the data obtained for another casting. Further,
the analysis predicts the machining allowances on all functional features.

Cylindrical surface and its tolerance verification play important role in machining process.
Although there exist many approaches that can fit the maximum, minimum and minimum zone
cylinders, the cylinder fitting problems can be even simplified. The proposed methodology seeks
to reduce the number of parameters used in cylinder fitting model by using the projection model
that considers the degenerated tolerance specifications of the projected 2-D point-set. Also, to
avoid the problem of local optimum by introducing the optimal direction of projection such that
the 2-D point projected onto this direction has optimal tolerance specifications (maximum,
minimum and minimum zone circles), global optimum solver such as Particle Swarm Optimization
(PSO) is used. The proposed simplified method shows consistent results compared with the results

from literature.
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CHAPTER 1.INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

A Computer Numerical Control (CNC) machine tool uses a computer-controlled servo
system to interpret and execute pre-programmed sequences of motion commands. They were
developed to machine parts with complex shape in a precise manner [16]. The required tasks for
producing a part using CNC machines include:

(a) Offline tasks, which start with a geometric model, i.e., by 2D or 3D Computer Aided
Design (CAD) model and generate a RS-274 part program (often referred to a g-code
program) for controlling the NC machine to produce it,

(b) Online tasks, composed of reading and interpreting the part program generated by the
offline tasks and the subsequent generation of motion of the tool relative to the workpiece
so that the part is properly machined, and

(c) Post-processing tasks that include inspection of the finished part, either on the machine or
with a Coordinate Measurement Machine (CMM). The measured dimensions are compared
with the CAD model of the part and corrections are made, if necessary. The compensation
of the measured error can be achieved by modifying tool offsets and performing additional

machining operations.

CNC machine tools are very flexible and versatile. They are capable of machining a variety
of parts with different geometries by changing the part programs and using different cutting tools.
In contrast to manual machines where motion is manually controlled by hand wheels and the
workpiece is intermittently measured by external devices to achieve the desired accuracy, CNC
machines must rely on the accuracy and stability of their mechanical frame and their motion

control system for accuracy. This introduces uncertainty in the positioning of the tool relative to

1



the workpiece and, hence, the accuracy of the parts machined, because of quasi-static flexural and
thermal deformations of a machine’s frame as well as dynamic errors (for example, due to
machining forces) in its positioning system. Periodic maintenance and calibration for the machine
tool can alleviate some of this uncertainty. However, the errors that accrue from the above-
mentioned effects can be addressed by modeling the machine tool error and employing the
workpiece metrology.

In general, a machine tool designer should consider (i) the overall static stiffness against
flexural strain caused by self-weight of moving parts and the workpiece or the assembly error, (ii)
thermal stiffness against thermally-induced deformation, and (iii) the dynamic performance (e.g.,
sensitivity to periodic forcing and resonances). A well-designed machine produces less machine
tool error, defined by “the difference between the actual response of a machine to a command
issued according to the accepted protocol of that machine’s operation and the response to that
command anticipated by that protocol” [1]. Errors can be reduced by avoidance or elimination.
The former seeks to remove the error sources and thus avoid the errors being produced. For
example, the thermally-induced error can be avoided at the design stage of the machine tool by
distributing the internal heat sources uniformly [2]-[5] or by operating the machine in an
environment with the temperature well controlled [6]. However, the nature of the quasi-static
errors are experimentally observed to be slowly time varying, which makes them not only difficult
to be identified and compensated but also dominant in machining inaccuracy [7]-[10]. In fact,
quasi-static errors are inevitable even for well-designed machine tools since the designers are not
able to consider all the operating conditions [5]. Thus, the strategy of error elimination, which aims
to predict and compensate the errors without removing the error sources, is crucial for machining

error reduction. However, the current modeling and compensation approaches are difficult to be



implemented in production environments because they are either time-consuming or not robust in
parameter identification procedures. These disadvantages also cause the existing approaches
susceptible to thermal variation of the machine tool and not capable of tracking the thermal errors
of the machine over time.

In order to secure the quality of machining process, metrologist examines and compares
the finished part with the nominal geometry to perform the compensation [11]. The examination
performed by the metrologist is based on the dimension and tolerance given by the print, which
are defined following the national standard, ASME Y14.5 the Geometric Dimensioning and
Tolerancing (GD&T) standards [12]. However, traditional hard gage-based metrology method
takes measurements at only few points on the part and may not truly representative. Therefore, the
results cannot be used to fully determine the dimensioning and toleranceing requirements. A
comprehensive metrology method such as point-cloud-based metrology that uses the entire surface
profile of workpiece is preferable. However, the difficulties of implementing point-cloud based-
metrology include:

(@) not having sufficient computational power and well-developed algorithms to
process and manipulate a large point-set of size of millions points.

(b) lack of probe-based metrology instruments to provide condensed and representative
measurements of workpiece surface.

Laser scanning technology allows a metrologist to depict the surface profile in a more
efficient way using point-cloud data set, which is more condensed and representative for the
surface. Further, many powerful and robust open-source point-set manipulation algorithms are
available online. Quick and accurate optimization solvers that not only deal with linear programs

but also complex nonlinear programs are also available. The advances in instrumentation as well



as the computational power have opened an opportunity to overcome the difficulties involved in

developing point-cloud based metrology.

1.2 RESEARCH OBJECTIVES, SCOPE, AND TASKS

This dissertation aims to generate a system by which a manufacturer, in an automated
fashion, can compensate for machine tool workspace errors induced due to part, fixture, tooling,
or machine tool errors, specifically of 5-axis machine tool. The specific focus will be on thermal
error tracking, construction of virtual gages for displacement error compensation and cylindrical
surface’s tolerance verification.

The scope of this dissertation is limited to applying the newer metrology instruments (e.g.
laser tracker and laser scanner), optimization techniques (e.g. design of experiments, least-square
fitting, linear/nonlinear programming and particle swarm optimization) and computational
geometry (e.g. nearest and farthest VVoronoi diagrams) to make machine tool calibration and point-
set based metrology more efficient and accurate. The proposed research objectives will be

achieved through specific research tasks, with associated sub-tasks, described as follows.

1.21 TASK 1: MAPPING THE WORKSPACE ERRORS OF A MACHINE TOOL

This research task focuses on understanding the characteristics of the quasi-static errors of
machine tools by building a kinematic error model for a 5-axis machine tool and designing a quick
measuring cycle with optimized error model observers.

e Sub-Task 1: Quasi-Static Error Modeling Using Laser Tracker

A modeling approach introduced by Ferreira and Liu [7] and extended by Kiridena [8],
[13], [14] is proposed to be used for the quasi-static errors of a 5-axis machine tool with one
redundant axis. By introducing errors to the ideal joints and shape transforms of the kinematics of

the machine, an error model will be developed. First order error characteristics will be used to



parameterize the introduced errors. To identify these error parameters, the volumetric error
components at randomly chosen points will be measured with a laser tracker. The unknown
modeling parameters can be obtained by the least-squares estimation, and the volumetric error
model of a 5-axis machine will be built.
e Sub-Task 2: Quasi-Static Error Observer Design for Thermal Error Tracking

The parameter identification procedure for identifying the parameters of a volumetric error
model of a large and complex machine tool usually requires a large number of randomly-chosen
observations of volumetric error components in its workspace [15], which makes the thermal
variations of the volumetric error model difficult to track. Therefore, several optimal designs,
including A, D and K-optimal designs will be applied to reduce the number of observations and
hence reduce measurement time in the error parameter identification procedure. The feasibility of
using a smaller but strategical-chosen observation set to track thermal errors will be checked by

periodically repeating the measurement cycle.

1.22 TASK 2: POINT-SET BASED WORKPIECE METROLOGY

The goal of this research task addresses the problem of characterizing the raw casting for
the purpose of (a) deciding on the acceptability of the part based on its material condition, (b) make
adjustments to the machining reference coordinate system to allow the part to be successfully
machined, and (c) showing the surfaces with defects if any such surface is not machinable.

e Sub-Task 1: Data Pre-Processing Algorithm

A laser scanner is used to collect the point-set data that represents the physical location and
shape of the workpiece. Depending on the scanning strategy, the collected data usually have a
large number of points. In this sub-task, a pre-processing algorithm that (a) roughly aligns the raw

data set with the solid model of the workpiece for data sampling and referencing, (b) breaks the



original data set into several data sets based on features of the solid model, and (c) removes the
points, which are redundant or obviously contain a lot of noise (e.g., outliers and points locate by
the edges) will be developed.
e Sub-Task 2: Construction of the Virtual Gage

In order to check if the dimensional defects of the part can be compensated by shifting and
rotating the machining coordinate system, virtual gages will be placed as imaginary boundaries
based on the prints and the design of the final casting [16]-[18]. The geometrical shapes formed
by the imaginary boundaries will be transformed into algebraic expression as constraints of
inequality, which will be used later in the optimization procedure.

e Sub-Task 3: Displacement Compensation Using Virtual Gage

The goals of this research task are: (a) checking if the workpiece has positive machining
allowances for all surfaces to be properly machined; (b) estimating the displacement offsets if the
workpiece does have enough material to be machined, and (c) experimentally verifying the
proposed approach using a misplaced part with locating errors. Form tolerances will be defined by
min-max algorithms [9], [19], [20] and linear programming problems, which seek to identify a
rigid body transformation such that all constraints of inequalities generated in previous sub-task
are satisfied, and all functioning features are considered equally significant. If such a rigid body
transformation exists, then all surfaces to be machined will have a positive machining allowance.
On the other hand, if the algorithm does not yield a solution and a rigid body transformation, it
shows the workpiece has insufficient material or bad placement that is impossible to be
compensated by changing the machining reference coordinate system alone. In this case, the
workpiece could be rejected for the next level of machining process or efforts can be made to

detect the defects.



e Sub-Task 4: Defective Feature Detection
The algorithm developed in sub-task 3 only determines if the part is machinable but is not
capable of finding defective features, which cause the part cannot be machined properly. This is
important for being economical since rejecting a raw casting could be costly in a more complicated
machining case using complicated part because the defects might be manually compensated by
adding material. In this task, the algorithm proposed in sub-task-3 is extended such that the
defective features with negative machining allowances not having sufficient material to be
machined can be detected.
e Sub-Task 5: Tolerance Verification for Cylindrical Surfaces
Sub-tasks 1-4 are developed for checking planar surfaces’ material conditions. In addition
to the planar surfaces, cylindrical surfaces are the most common features in machining process.
This sub-task seeks to develop a method to verify the material conditions of a point-set, which
represent a cylindrical surface. The material conditions of a cylinder are quantified by minimum
and maximum radii. The cylindricity error of a discrete point-cloud is also verified. The developed
numerical algorithms are based on particle swarm optimization (PSO), which searches the regional
extremum of a complex surface. The computational geometry-based methods are built based on
nearest and fartherst VVoronoi diagrams to geometrically determine the smallest, largest and

minimum zone cylinders.

1.3 THESIS OUTLINE

This thesis is organized as follows. The existing relevant research for machining accuracy
enhancement is reviewed in Chapter 2. The quasi-static error is one of the most important issues
in machine tool accuracy, and dominating sources of quasi-static error is thermal error. A variety

of modeling and tracking techniques are reviewed and compared. The variation and displacement



of the workpiece can be modeled, measured and quantified by point-set metrology. Tolerancing
design and verification are two prospects of GD&T specification and are commonly used in point-
set metrology. Many researchers have contributed their knowledge on these fields of study. The
tolerance verification approaches are reviewed next, which include the planar surfaces and the
cylindrical surfaces. Finally, the gaps in knowledge leading to the work of this dissertation are
outlined.

In Chapter 3, a methodology of modeling a 5-axis machine with a redundant axis is
proposed based on existing joint transformation models. The ideal and perturbed models for three
types of joint transformation are used. Besides, the error model for the rotary joint is proposed to
be modeled using Fourier sine series. With all perturbed joint transformation, one is able to obtain
the perturbed forward kinematic chain and build the error model. Although the model contains
nonlinear terms in different joints and links, it can still be linearized by eliminating higher order
terms in the model. The model can thus be identified experimentally using a laser tracker by taking
quasi-random measurements in the machine’s workspace. After the error parameters are identified,
the error model is obtained and tested using another previously unseen training set.

The concept of error model observer is introduced in Chapter 4. Since the time spent on
taking measurements is too lengthy to capture the thermal error of the machine even with quick
measurement instrument such as a laser tracker, one must obtain the optimal locations that
represent the most informative observations. This problem can be formulated using optimization
with different criteria according to A, D and K-optimal designs. The observer design problems can
thus be solved using optimization solvers. The thermal errors can thus be tracked by periodically
updating the error model using the data-driven approach. Finally, the thermal behavior of each

axis during the experiment is analyzed and correlated with the temperature variation.



In Chapter 5, the point-set based metrology is presented. Section 5.1 provides background
knowledge, followed by the definition and the mathematical model of planar virtual gage given in
Section 5.2. Section 5.3 elaborates the experimental setup for the validation. Two example
problems are solved and used to demonstrate the feasibility of virtual gage analysis in Sections 5.4
and 5.5.

The tolerance validation problem is extended for cylindrical surface, which is discussed in
Chapter 6. Initially, a 2-D circle fitting problem is considered. The Voronoi diagram-based
approaches are reviewed and tested, while the numerical method based on particle swarm
optimization (PSO) shows similar results in three different circle fitting problems in Section 6.2.
The 3-D cylinder fitting problem is simplified by casting projection onto the x-y plane and
degenerate to 2-D circle fitting problem in Section 6.3. The modeled problems are difficult to solve
since it contains nonlinearity that describes by axis orientation. Therefore, PSO is used to solve
the simplified nonlinear optimization problem with only 2 degrees-of-freedom. In Section 6.4,
measurement data sets available in the literature are used as example problems, and the results are
compared with the results reported in literature.

The contributions and conclusions drawn for this thesis are given in Chapter 7. Several

future works for the continuation of this research are also recommended in this chapter.



CHAPTER 2.LITERATURE REVIEW

In this chapter, a literature survey on research relevant to this thesis is reviewed. Sections
2.1 and 2.2 present the work related to machine tool calibration, specifically focus on the
identification of quasi-static errors and the thermal errors. To improve the accuracy and efficiency
on error calibration procedure, design of experiments for optimal observer design is introduced in
Section 2.3. Section 2.4 summarizes the standard of workpiece metrology given by ASME Y14.5
research works related to GD&T verifications using traditional measurements. Research works
using point-set to verify GD&T specifications of planar and cylindrical surfaces are given in
Sections 2.5 and 2.6, respectively. Finally, the gaps in knowledge leading to the work of this thesis

are described in Section 2.7.

2.1 QUASI-STATIC ERROR MODELING OF MACHINE TOOL

About 70 percent of the inaccuracy of a machine tool is caused by quasi-static errors. As
their name suggest, the quasi-static errors are slowly varying errors. The sources of the quasi-static
error include assembly errors, flexural errors (due to self-weight of moving parts and the work
piece), and thermal deformations (due to heat generation at the spindle, drives, guideways and
cutting tools as well as ambient temperature variations, all of which gradually generate the
geometric inaccuracies in the underlying kinematic structure of the machine [14], [21]). Compared
with dynamic errors (e.g., servo-tracking errors; dynamic response to cutting forces), quasi-static
errors vary slowly during the operation of the machine. Due to being constrained, small thermal
changes cause structural members of the machine to undergo deformation that, in turn, are
magnified by the Abbe effect [3], [22], [23]. Therefore, thermal errors can, depending on the mode
of operation and the level of control of the factory environment, become the dominant component

of quasi-static errors, especially for larger machines with variable operation cycles [24]-[26].
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Quasi-static machine tool errors, because of their large imprint on workpiece inaccuracy, and their
slow variation, are good candidates for compensation. Vast body of literature exists on
characterization and measurement of the quasi-static errors. In the following two sections, research
works relevant to this thesis are presented.

A number of researchers have reported the approaches.

2.1.1 MODELING APPROACHES
Denavit-Hartenberg (DH) parameters are commonly used for describing the relation
between reference frames attached to the links of a spatial kinematic chain [27]. A generalized
predictive error model, considering combinations of polynomials and functions of nominal
positions and temperature was proposed by Donmez et al. [28]. Ferreira and Liu [7] applied rigid
body transformations with small error parameters to develop a linear volumetric error in workspace
and used least-squares to estimate them. The shape transformation for general inaccurate link is
modeled by:
1 —a p a+Aa
_| a 1 —y b+Ab

T = )
shape = 1_B vy 1  c+Ac
0 0 0 1

(2.1)

where «, 8 and y are the angular rotations characterizing the rotary form errors of the link and Aa,
Ab and Ac are the components of its dimensional errors along the three axial directions.

The transformation for an inaccurate prismatic joint with angular and positioning errors are
modeled as linear functions of position along the joint, and the straightness errors are depicted as

quadratic functions,
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1 da ap 1+6 -
X I X I x( X)
da ) dy x%da
o, =|*gx Fax 2dx | (2:2)
dp dy . x2dp
x dx x dx 2 dx
0 0 0 1 .

where x is the position along the joint, Z—z, % and Z—Z are the rates of change of the angular errors

with respect to position along joint and 8x is a rate of accumulation of positioning error.

For machines with rotary joint, Kiridena and Ferreira [8] used perturbations to Jacobian
matrix to develop error maps of different 5-axis machine configurations. On the other hand, inverse
kinematics is also a common approach used to identify error components [29], [30]. To model the
thermally-induced error, which causes the deformation of the structure of the machine to vary with
time, a strategy using finite element analysis (FEA) coupled with temperature field measurements
by thermocouples was proposed by Creighton et al. [22]. Veldhuis and Elbestawi [23] also
proposed a thermal error compensation strategy based on neural network for five-axis machine,
which eliminates significant error sources.

For indirect error identification, Sheth and Uicker [31] modeled the kinematic structure of
the machine with shape and joint transformations. For CNC machines, one deals primarily with
prismatic joints [6] and rotary joints [32], while the shape transformation primarily involves
translations across links [33]. A model for the errors of the machine is constructed by introducing
small perturbations (errors) into the parameters of the shape and joint transformations and an
expression for the volumetric error vector is obtained as the difference in the spatial location of
the tool/spindle (relative to the workpiece table) produced by the perturbed and ideal kinematics
of the machine. The equation expresses the volumetric error in terms of the yet-to-be-determined

unknown perturbations of the links and joints of the machine. When observations/measurements

12



of the volumetric errors in the machine’s workspace are made, optimization techniques such as
least-squares fits are used to estimate these perturbations [7], [13], [34]. For example, a 3-axis

machine’s volumetric error can be modeled using 24 error parameters [7]:

[ex1 0 fi o 0 f35 0 fi fs fo f7
ex,
ex,

91 0 92 93 0 g4 g5 9o 97 Ys|X, (2.3)
where [€x1 ex, exs]T is the modeled error, f,~f;, g1~9gs and h;~hq are 24 undetermined error

hl h, O hs hy, hs hg h, hg ho

parameters and X = [x? xZ x3 x,x, X,X3 X3X, X1 X x3 1]7 is a vector determined by
observations and machine’s forward kinematics.
The error component along x; direction has linear relationship with error parameters,

f1~f> and can be estimated by n observations in the workspace (n > 7),

e"ll x21 %1 Xp1X31 X11 X1 X311 f} R
€y, = : : : o =X (2.4)
exln x2n 3n XonX3n X1n Xon X3n f7
where X is the design matrix.
The best estimator of f is given by the least-squares estimation,
f=@"X)1X"e,,. (2.5)

To ensure the observations carry sufficient information to make accurate estimates of the
values of the unknown parameters, a large number of observations, (quasi-) randomly distributed
across the workspace, are required [15], [35], [36]. Figure 2.1 shows a quasi-random point-set in
a 5-axis machine’s workspace measured by a laser tracker [15]. The collected data is used to

identify the parameters in the error model.
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Figure 2.1: Observation point-set for error model identification of a 5-axis machine. Collision
avoidance (CA) and line of sight (LOS) areas are not measured [15]

A large set of observation points enforced redundancy in the observations leads to long
measurement times, even with automated devices like laser trackers. As a result, it limits the use
of such a volumetric error calibration approaches to static, base-line machine tool calibrations, not

addressing the changes that may occur as a result of thermal variations during the operation of the

machine.
2.1.2 MEASUREMENT APPROACHES

The circular test and the use of a telescoping ball-bar, introduced by Bryan [37] in 1982
can make measurements in several planes and only requires, at its core, a short-range, high-
resolution measuring device like a linear variable differential transformer (L\VVDT). The circular
test with a telescoping ball-bar, when conducted in several planes at different locations in the

machine is capable of exposing scale mismatch errors and squareness errors between the axes as
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well as squareness errors between the axes as shown in Figure 2.2. More importantly, this approach
exposes backlash during axes reversals, dynamic contouring/gain-mismatch errors (when
conducted at different speeds). Several other devices such as the laser ball-bar [38] or the grid
encoder [39] are an attestation to the power of the circular test and its ability to reveal hidden
characteristics of a machine. While it provides some values (backlash, scale errors) for
compensation, the observations made by the ball-bar only contain the error component along the
ball-bar direction. The test is not meant to provide a complete geometrical/kinematic calibration

of the machine.

Figure 2.2: Setup of the telescoping magnetic ball bar system [40]

The ASME B5.54 [41] is a standard that establishes methodology for specifying and testing
the performance of CNC machining centers. It provides a series of examinations for each axis
(linear or rotary) of the machine. The calibration of the machine is built up axis-by-axis as shown
in Figure 2.3. Built largely around laser interferometry measurements, each axis is calibrated while
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the other axes are fixed [25], [42], [43]. The tested axis is traversed along the entire extent of its
(linear or angular) range with programmed periodic measurements taken by measurement system
comparing the commanded to the measured position. Interferometric measurements can also
evaluate relative changes in the angular and straightness errors at each measured position. While
such beam-based measurements are well-suited for linear axes, laser interferometers are used along
the axis of rotation to characterize (translation and angular) wandering of the center and axis of
rotation. While capable of very high accuracy measurements, the use of the laser interferometer
for B5.54 measurements makes it time-consuming (imposing length downtimes on productive and
expensive machines) and difficult measurements requiring skill and expertise with the
measurement equipment. While the B5.54 measurements provide sound axis calibration, they do
not provide a full characterization of the interactions between axes of a machine. Therefore, they
only provide a partial characterization of the volumetric errors of a machine and generally cannot

be used to identify parameters of volumetric error models.
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Figure 2.3: Schematic of calibrating machine tool using ASME B5.54 standard [41]

Several artifact-based methods exist for testing of machine tools. Bringmann and Kiing
[44], for example, designed a ball plate, an artifact that consists of an array of precision spheres

and a measuring device consisting of 4 linear probes (LVDTs). As shown in Figure 2.4, the
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NAS979 is an artifact that consists of a circle, diamond and square that must be cut by the machine
exposing the machines linear and circular contouring capabilities, axes backlash, cornering (or lag)
errors, squareness between axes and leadscrew pitch errors [45]. This is a test commonly used for
acceptance testing of machine tools. Kiridena and Ferreira [10], [13] designed a grid of precision
cubes and a measuring tool consisting of 3 orthogonal LVVDTs for tracking the changes in the
volumetric errors of a machine due to thermal effects. Several artifacts like calibrating spheres
(use for ASME B89 calibration of CMMs) and rings are also use to implement the aforementioned
circular tests on machine tools. Notwithstanding the convenience of having a calibration artifact,
mechanical probing (measuring with a touch trigger probe) is slow and time-consuming. Further,
artifacts can be expensive for absolute calibration as they must be made of low CTE (coefficient

of thermal expansion) material and must be periodically calibrated themselves.

Figure 2.4: Testing artifact NAS979 [45]

On the other hand, the use of a versatile metrology instrument such as a laser tracker [3],
[46]-[48] allows for a model with a large number of parameters to be identified, thus improving

the effectiveness of the modeling procedure. The experiment setup for tracker-based error
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parameter identification procedure is shown in Figure 2.5. The ease and speed of making
measurements with a tracker open the possibility of capturing the thermal drift of the machine by
periodically rebuilding the error model based on sufficiently many measurements over the whole
workspace taken in a short time interval. The laser tracker-based calibration provides an
opportunity to revisit the quasi-static error modelling, which could be identified with a more
convenient and robust approach. The reader is referred to Machine tool Metrology by G. Smith

[49] for a complete description of different machine tool testing and calibration techniques.

Reflector

Points
Laser
Tracker

Figure 2.5: Schematic of tracker based calibration setup [46].

2.2 THERMAL ERROR MODELING

In the context of machine tool accuracy, quasistatic, or seemly static, errors account for
about 70% of the observed machine errors and accrue from geometric/kinematic errors induced by
manufacturing and assembly inaccuracy, flexural deformations and thermally-induced

deformations, with the latter be one of the primary sources [50]. The thermal errors are considered
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to be the inaccuracy caused by the thermal elastic deformations of machine’s structural members
[24], [50] due to changes in ambient conditions and heat input from internal sources such as spindle
and axes motors, friction in the guideways, and the machining process. It is difficult to separate
thermal effects from the other quasi-static error sources. Strategies to control their effects include
avoidance of thermal errors. This can be achieved by operating the machine at its thermal steady
state in a temperature-controlled environment but is difficult to justify in a production
environment. A rich body of research exists for using thermal error models and compensating to
deal with thermal errors. An adaptive learning model is proposed by Blaser et al. [51]. Finite
element models (FEA) [22], [52], as shown in Figure 2.6, neural networks [53], and perturbation
models [8], [10], [54] have also been proposed. Yan and Yang [55] and minimize the number of
thermal sensors on a CNC turning center based on the synthetic grey correlation theory as shown
in Figure 2.7. These models seek to correlate the machine’s thermal drifts with the temperature

readings.

(a)

Figure 2.6:(a) Discretized geometrical structure for finite element method [52] ;(b) thermal
deformation FEA simulation under thermal stresses [22]
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Figure 2.7: Temperature sensors placement of a turning center thermal error modeling [55]

While several approaches exist for measuring the errors of the workspace of a machine,
they are time consuming (requiring extended machine down-times) and manual (typically
requiring the time of both a machine operator and a metrologist). Because of the quasi-static nature
of the dominant error sources, e.g., thermal and flexural deflections and an inability to efficiently
update the error map at regular intervals, the effectiveness of error maps for compensating machine
tool errors is often called into question. Also, the main difficulty with these modeling approaches
IS in characterizing the heat sources, thermal characteristics of joints and surfaces and, hence the
thermal state of the machine’s structural members under varying operating conditions. Data-driven
approaches require large amounts of observations during the operation of the machine. Lengthy
measurement processes are not possible because of the transient nature of a machine’s thermal
state. Therefore, even in the support of this strategy, the concept of optimal design of observations
is important to identify most informative observations and shorten the length of the time interval
for measurements. Some related works using the concept of optimal observer designs in the fields

of sensor placement and machine tool calibration are reviewed in the following section.
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2.3 OPTIMAL OBSERVER DESIGN

Design of experiment (DOE) is a discipline that addresses the question of designing
observations to identify a robust model of a system. In the context of error parameter identification,
the DOE question becomes one of determining where to locate points in a machine’s workspace
at which to measure the volumetric error components so that the error model’s unknown
parameters can be robustly estimated. Martinez and Bullo [36] addressed a similar problem in the
determination of the best sensor location for a tracking control system, using the Fisher information
matrix. A simulated annealing approach was proposed by Lin to handle the sensor placement
problem by minimizing the maximum distance error in a sensor field satisfying given constraints
[35]. Sensor placement algorithms that satisfy the entropy and mutual information criteria are
described and demonstrated by Krause [56].

Consider a typical linear identification/design of experiments problem with n design points
where a random process is considered:

é=MG@Gy,..J.)Pp +N, (2.6)

where e € R"represents a vector of n observable values that is related to p € R¥, a set of k
unknown parameters is the vector consisting of all undetermined parameters, py, ... px (Whose

values are to be estimated) by the design matrix, M(Jy, ...J,,) € R™¥ whose row vectors are

functions of j, ... J,,, Sets of variables that can be independently controlled, N e R" represents the
observational noise vector with elements being random errors, normally distributed, with a mean
of 0 and a variance of ¢2.

In many parameter identification/design of experiments situations, one has latitude in
selecting the location of the observation/design points. Thus, the problem of selecting appropriate

locations and number of design points in the space of j; to get robust estimates of the parameter
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vector, p is the design-of-experiments problem or the problem of designing an observer for the
model given in Equation (2.6).

The least-squares unbiased estimator of p, p minimizes the sum of square errors,

lle — Mpl||,. p is also the best linear unbiased estimator (BLUE), which can be obtained by,
p=MTM)IMTe. (2.7)

As the Gauss-Markov theorem states, the variance associated with BLUE, given by the
variance-covariance matrix is minimized for the design characterized by M,

Var[p|M] = c2(M™M)1, (2.8)
where MTM € R**¥ is called the information matrix.

The variance-covariance matrix captures the uncertainty in the correlation between the
elements of the estimator, p. It must be noted that a2 is the variance of the residual, a property of
the random process. So, the uncertainty in the values of the parameter vector and the predictions
they make can be seen to be completely dependent on M. Because of the above considerations, a
number of optimality criteria associated with different matrix norms of the design matrix, M have
been proposed in both the design of experiments (DOE) and the design of observers (for
continuous/on-line estimation and compensation). For a linear regression design problem with n
observations and k unknown parameters to be determined (n > k), the optimal design represents
the selection of n observations that carry the largest amount of information and the
correspondingly, the estimator has the lowest variance.

D-optimality is the most commonly used criterion because the target function to be
minimized is simpler than the other criteria [57]. A D-optimal design seeks to maximize
information carried by the observations and quantified by the determinant of the information

matrix. It does so by minimizing the volume of the confidence volumes or the uncertainty region
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around the estimator and its predictions [58], [59] with minimizing the objective function given

below,

k
1 2.9
min |[(M"M)™!| = min 1_[—, (29)
J1-Jn Ji-gnd LA
=1
where J; ...J,, are n sets of controllable variables (in our case, the commanded axial positions) that
control each row in the design matrix M, and 4; is the i eigenvalue of M™ M.

Similarly, an A-optimal design seeks to minimize the average variance of the estimations

on the regression coefficients, and its objective is given by:
Sl
min er((MTM)) = min Y, (2.10)
JiJn JaoJn & Ai

where J; ...J,, are n sets of controllable variables (in our case, the commanded axial positions) that
control each row in the design matrix M, tr((MTM)~1) is the trace of (MTM)~* and 2, is the i"
eigenvalue of M™ M.

The K-optimality criterion which seeks to minimize the sensitivity of estimator to
observation/measurement error does so by minimizing the condition number of the design matrix
[60] denoted by k(M) which is always greater or equal to 1. It implies that the error in observation
always corrupt the estimation. The condition number can be infinity if (and only if) M does not
have full column rank. Consider an ordinary linear estimation system,

e = Mp, (2.11)
where e is the accurate observation and p is the correct estimation.

Now, introduce observational error, Ae (e.g. measurement noise and disturbance) to the
system that causes errors in the estimations of parameters, Ap using least-squares fitting:

e+ Ae = M(p + Ap), (2.12)
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where Ae is the errors in observation, Ap is the error in estimation due to Ae.
Condition number of M, k(M) is defined by the worst-case relative error caused by the
error in observations,

Ae Ap
8l _ o 1851 213
E] 51

Also, k(M) can be defined as the ratio of largest and smallest singular values of M,

Um ax

k(M) = , (2.14)

where a,,,, and o,,,;,, are the largest and smallest singular values of M respectively.
By definition of condition number given above, the K-optimal design can be formulated to
minimize the objective function:

Gmax

min k(M) = min
J1-Jn J1-Jn Omin

(2.15)
It must be noted that all eigenvalues of MT M are non-negative and real, and the singular

values of MT M are obtained by taking square root of the eigenvalues of M” M. Thus, K-optimal

design can be written as the following eigenvalue design problem, which is similar to D- and A-

optimal design problem formulations specified in Equations (4.3) and (4.4):

A
min k(M) = min ———, (2.16)
J1-Jn J1-Jn Amin

where A4, and 4,,;,, are the largest and smallest eigenvalues of the information matrix, M™ M.
In the field of machine tool calibration, the design of the error observers involves the
determination of where to locate of observations of volumetric error in the machine’s workspace.
Kiridena and Ferreira [10] proposed a greedy algorithm for selecting a sub-set of points on a
calibration artifact as shown in Figure 2.8(a). The linear identification procedure using all 81

possible observations is given by,
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eg1 = Mp, (2.17)
where ég, € R8! is the vector of all observed error components, M € R&*17 js the design matrix

and p € R is the error parameter vector.

(a) (b)

Figure 2.8: (a) Experimental setup of probe-based thermal error modeling (27 grids of
measurements); (b) 17 optimized measure locations given by the greedy algorithm [10]

The proposed algorithm seeks to pick 17 most valuable observations (rows) over 81

possible ones to identify 17 error parameters. The 17 rows in M becomes B, a submatrix of M.

Since the there are possibilities, method of exhaustion is not possible. The greedy

81!
17!%(81-17)!
algorithm seeks a local minimum of the condition number of the 17 by 17 submatrix of M. The
optimized observation points are shown in Figure 2.8(b). The following pseudocode is used in the

algorithm [10],

Xm

Given M = [ B ] minprog=-10°, maxproj=0
NB(n_ 1 1

m)xm
While (minproj<maxproj)
minproj=10°

Fori€ln
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P=[I-C*C]
If (mag(Pbi)<minproj)
minproj € mag(Pbi)
Pm€ P, bmin€ b
endif
endfor
maxproj=0
For i€1,m-n
If (mag(Pmnbi)>maxproj)
maxproj € mag(Pmnbi)

nbmaxe nbi

—

endif
endfor
If (maxproj >minproj)
Bmin <> Nbmax
endif
endwhile
In the greedy algorithm, C is a sub-matrix formed by removing one row, from b; the basis.
Ct =CT(cCcT) ! is the Moore-Penrose pseudoinverse of C, which is a rectangle matrix, P
defines the null space of C and Pbi is the projection of bj into the null space of C. Two For loops
first determine the best row to be removed from the basis and select one from the non-basis rows

to replace it. Thus, the identification system of 17 optimized observations is given by,

e = Bp, (2.18)
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where é;, € R7 is the vector of all observed error components, B € R7*17 is the square design

matrix and p € R17 is the error parameter vector is now estimated by p ~ B~ 1e,,.

2.4 GEOMETRIC DIMENSION AND TOLERANCE (GD&T)

Geometric Dimensioning and Tolerancing (GD&T) is widely used to describe the nominal
designs and the maximum acceptable variations from the nominal ones. The conventions of
geometric tolerances follow the American Society of Mechanical Engineer (ASME) standard
Y14.5 [12] and related International Standards Organization (ISO) standards. There are several
prospects to understand GD&T. First, the tolerances are directly affect the machining accuracy
and hence the cost. Therefore, the designers control tolerances as designable variables that quantify
the worst-case variability of the part. A rich body of research has been done from this point of
view. X. Zhao et al. [61] proposed a model that supports integrated measurement processes by
combining ASME Y14.5M-1994 [12] with Dimensional Measuring Interface Standard (DMIS)
and Standard for the Exchange of Product model data (STEP). Turner and Wozny [62], [63] used
numerical approaches including Monte Carlo method and linear programming to design the
tolerance variables for part assemblies. To optimize the design of tolerance variables and model
geometric tolerance, tolerance map (T-map) was proposed and utilized [64]-[66] as can be seen in
Figure 2.9(a) and (b). Chen et al. [67] studied the advantages and disadvantages of four 3D
tolerance analysis methods including T-Map, matrix model, unified Jacobian—Torsor model and
direct linearization method (DLM). Menqg et al. [68] presented an approach for aligning
measurement data with the CAD model based on least-square fitting technique with the application
of error comparative analysis. Marziale and Polini [69] compared two different tolerance modeling

methods, vector loop (as shown in Figure 2.9(c)) and matrix.
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Figure 2.9: (a) Cross-section of an assembly with clearance c [64]; (b) tolerance zone analysis of
(@) using T-Map [64]; (c) assembly variables and tolerances of vector loop model [69]

From the metrologist and manufacturer’s prospect, finished parts have to be examined and
compared the finished part with the nominal geometry to perform the compensation to secure the
quality of machining process [11]. When large castings are finished by machining processes, it
becomes necessary to be highly adaptive. Large dimensions (here, of the order of 1000 to 2000
mm) cause the magnification of errors that accrue from shrinkage and warpage. Further, similar
large dimensions of the structural and transmission elements of the machine tools used to machine
such castings magnify the effects of small temperature changes and flexural deformations, giving
rise to large quasi-static thermal and flexural errors in the work volume of the machine tool. The
former can have magnitudes in the millimeter range and can quickly consume any allocated
allowances [70], while the latter can grow to be several hundred microns and can easily exceed
tolerances specified on critical machined features on the casting [71]. Furthermore, the placement
of the castings on the fixture might be imperfect [3]. As a result, using only nominal,
uncompensated NC programs and datum frames defined on machines and fixtures can lead to high
levels of rejects and low yields. The castings tend to be of complex geometries and are not quickly
and easily manufactured when out-of-tolerance conditions arise. Given the cost of producing such

castings and the limited capacity to do so, it becomes necessary to adjust both, the datum frames
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and the machining programs to the geometry of each casting to achieve an acceptable, within-
tolerance finished workpiece. Besides, incoming stock from casting and forging suppliers can vary
to the point that standard machine tools cannot adequately respond the existing material condition
in the as-programmed state. Due to the machine tool’s inability to dynamically respond to material
stock variation, broken tooling, scrap parts, and severe delays occur in the entire value stream. The
manufacturing community has attempted to solve this problem through part probing in the machine
tool, programming sub-routines in the controller, or through manual adjustments made by the
machinist. The approach vyielded a sub-optimal process that requires significant human

intervention and does not guarantee a conforming part.

2.5 TOLERANCE VERIFICATION FOR PLANAR SURFACES

The examination performed by the metrologist is based on the dimension and tolerance
given by the print, which are defined following the national standard, ASME Y14.5 the Geometric
Dimensioning and Tolerancing (GD&T) standards [12]. Tolerance verification can be done by
evaluation of form errors, which requires measurements using coordinate measuring machines
(CMMs). The probe-based CMMs are commonly used to verify the tolerance by taking discrete
measurements on surface. However, the limited time on measuring limits the number of
measurements, which has significant influence on the accuracy of the evaluation. A surface profile
is within tolerance if the deviation at any point on the surface is within the specified bound. Cases
may occur when sampled deviations are within bound, whereas non-sampled deviations are in fact
out of tolerance [68]. Thus, researchers have proposed many measurement and sampling strategies
for choosing the most information locations for evaluating geometric tolerance. A statistical
analysis is used to determine the number of required points for surface profile measurement and

tolerance specification [68]. Colosimo et al. [72] used a regression-based tolerance interval

29



approach to optimize the sample locations. Summerhays et al. [73], [74] built a Chebyshev/Fourier
model to select the most informative for estimating form errors on internal cylindrical surfaces.
An adaptive sampling strategy based on surface patches’ Gauss curvatures was proposed by
Obeidat and Raman [75] to obtain the optimum number of measurements. Badar et al. [76]
suggested that reducing the sample size and number of measurements using Tabu search and a
hybrid search can maintain comparable accuracies on flatness evaluation. Carr and Ferreira
proposed a methodology on tolerancing validation that transfers the form error problem into a
linear programming problem (LPP) using point-set data [19], [20] as shown in Figure 2.10(a). The
flatness verification algorithm for a set of data points P that represents the surface of a tolerance

planar feature using linear program is given by [19], [77],

Min(dimax ~ dmin)»

subjected to:
(2.19)
Apin < TP; < dppax fori = 1~n,

TE+Ty+T7 =1,
where p; = [pix piy pl-z]T is the i™ coordinates data point in point-set P, T = [T, T, TZ]T is the
zone orientation direction vector, n is the number of points in P and d,,,, and d,,;,, represent the
farthest and closest distance from any point to the plane of the tolerance zone.

The general tolerance verification stated in Equation (2.19) is solved as a sequence of linear

program as shown in Figure 2.10(b).
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Figure 2.10: (a) Geometric model of flatness verification [77]; (b) Inspection flowchart of form
and size tolerance specifications [77].

From the prospect of product quality, customers would prefer the machined surface to have
shiny finish even though it is not a direct indicator of cleanliness per se [78]. Therefore, the virtual
gage, defined by the boundary of a tolerance zone is used to check the tolerance model and the
machinability of features virtually [16]-[18], [79]. The construction of the virtual gage provides a
different point of view to geometric variation. If there exists intersection(s) between the real
surface and the virtual gage, the part should be rejected because some surfaces will not satisfy the
assigned GD&T design. It opens an opportunity to understand and compensate the machining
errors caused by geometric variation and the fixture errors. To provide a pre-process, in-situ
conformity test for the raw casting, a metrology instrument, which depicts the surface profile of
the workpiece, is required. Using touch trigger probe is accurate but takes a long time to probe all

the critical features on the workpiece. Alternatively, a laser scanner that combines controlled
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steering of laser beams with a laser rangefinder is able to depict the surface profile by taking a
distance measurement of the surface shape of the scanned object [80]. By combining multiple
surface models, which can be obtained from different scanning paths, a full 3D model of the object
can thus be constructed [81]. Open computer vision and image processing source libraries
providing basic point-cloud operations including surface reconstruction, model segmentation and

point-set manipulation of large size of point-cloud are easy to access today [82].

2.6 TOLERANCE VERIFICATION FOR CYLINDRICAL SURFACES

Without a good algorithm, metrologist could not properly process a larger data sets
collected by CMMs, which may lead to overestimation of the tolerance, reject the acceptable parts
and increase the cost. Hence, a quick and accurate algorithm that processes the data set and
analyzes the conformity of the workpiece is critically needed. Planar and cylindrical surfaces are
two of the most common surfaces in machining, and there exists a rich body of research discussing
how to verify the tolerance of cylindrical surfaces.

To begin with, a 2-D data set representing a circular part is considered. According to ASME
Y14.5 [12], the most common tolerance specifications of a circular part include maximum and
minimum radii and roundness error. The verifications of these three tolerance specifications can
be done in numerical or computational geometry-based approaches. Numerical techniques
including Monte Carlo, simplex and spiral search were tested in Murthy and Abdin’s work [83].
Wen et al. [84] proposed a genetic algorithm to verify circularity errors. Xiuming and Zhaoyao
[85] found the lines for maximum circumscribed circle(MC) and minimum inscribed circle (MI)
iteratively based on convex hull in polar coordinate to identify the control points that determine
the roundness error. The computational geometry-based methods, on the other hand, seek to find

the key geometries, minimum circumscribed circle (MC), maximum inscribed circle (MI) and
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minimum zone circle (MZ) in this case by geometrically finding the control points of them.
Although the formulations of three problems are similar, the difficulties of fitting three types of
circle are different. Finding MC of a given point-set is the easiest one since the optimization is
convexly constrained. The most effective algorithm was proposed by Welzl [86]. Roy and Zhang
[87], [88] proposed a computational geometric model based on nearest and farthest VVoronoi
diagrams to compute three pairs of concentric circles with the minimum radial separation under
three cases (case 3+1, 1+3 and 2+2) as shown in Figure 2.11. The roundness error is defined by

MZ, the smallest amount of separation among three pairs of concentric circles.

(a) (b) (c)

\

Figure 2.11: Three cases of roundness error: (a) case 3+1 by farthest VVoronoi diagram; (b) Case
1+3 by nearest VVoronoi diagram; (c) Case 2+2 by superimposing VVoronoi diagrams [87]

Voronoi diagrams, by definition given by Okabe et al. [89], is “given a set of two or more
but a finite number of distinct points in the Euclidean plane, we associate all locations in that space
with the closest member(s) of the point-set with respect to the Euclidean distance. The result is a

tessellation of the plane into a set of the regions associated with members of the point-set. We call
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this tessellation the planar ordinary VVoronoi diagram generated by the point-set, and the regions
constituting the VVoronoi diagram ordinary VVoronoi polygons.”
Let P = {py,...,pn} © R?(2 < n < ) be afinite point-set. The i nearest Voronoi region
(polygon for 2-D point-set), Vy (p;), associated with the i" point p; in P is defined by [89],
V(@) = {x] llx — x;1l < ||x — x;]| vj = i}. (2.20)
The nearest VVoronoi diagram is given by the set of all n \Voronoi polygons,
Vn(P) = {Vy(p1), -, Vn(Pn)}- (2.21)
Similarly, the definition of the farthest Voronoi polygon, Vz(p;), associated with p; is
given by,
Ve(p) = {pld(p,p) = d(p,p;).p; € P\{pi}}, (2.22)

Or equivalently,

Vr(p) = {pld(p, p) 2 max{d(p,p;),p; € P\{pi}}}, (2.23)
The farthest Voronoi diagram is given by the set of all n farthest VVoronoi polygons,

Ve(P) = {Vp(P1), .., Ve () }- (2.24)
Figure 2.12 shows a nearest and a farthest VVoronoi diagrams. The readers are referred to
the book by Okabe et. al [89] for more detailed properties and applications of VVoronoi diagrams.
The concept of using Voronoi diagrams to define roundness error was extended by Kim et al. [90]
using pixel maps for larger point-set. Besides, equi-angular diagrams using the inner hull were
proposed by Samuel and Shunmugam [91] to find maximum inscribing and minimum zone circles.
Liu et. al [92] applied intersecting chord method to develop sub-models, the 2+1 and 1+2 models

and generalized the 3+1 and 1+3 models.
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(a) (b)

Figure 2.12: (a) A nearest VVoronoi diagram; (b) a farthest VVoronoi diagram [89]

In 3-D cases, minimum inscribed cylinder (MIC), maximum circumscribed cylinder
(MCC) and minimum zone cylinder (MZC) play important roles in general tolerance (plus/minus)
specification and form errors of part with cylindrical surfaces [77]. For example, the tolerance
specification of a pins and holes is usually given by minimum, maximum acceptable radius and
cylindricity, which can be verified by fitting the MIC, MCC and MZC respectively. As the matter
of fact, finding the MIC, MCC and MZC of a point-set can all be modeled by optimization
problems. However, these optimization problems cannot be solved easily since they have nonlinear
rotation terms. Moreover, the non-differentiable objective functions due to discrete point-set as
shown in Figure 2.16 make them impossible to be solved by traditional differentiation-based
optimization techniques [93], [94]. Carr and Ferreira [19], [20] presented their approaches using
sequential linear programming to remove the nonlinearity. The minimum circumscribed fit size

tolerance of a point-set P is given by,

r%iTn ml_alx(dl-), (2.25)
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where L is locating point vector, T is axis direction vector and d; is the distance between the it"
point in P and the axis of cylinder as shown in Figure 2.13.

Direction Vecior T

Locating Point L
t

Top View

Figure 2.13: Cylinder tolerance zone: reference feature is the axis [77]

Equation (2.25) can also be written as the constrained minimization model,

mind 3 d; < dVi = 1~n. (2.26)

LT
It can be seen that the optimization shown in Equation (2.26) is subjected to n linear constraints.
Similarly, maximum inscribed fit size tolerance can be formulated by the unconstrained and

constrained maximization models,
rrzl’:;x miin(dl-). (2.27)

rrzl‘e;xd 3d < d;Vi=1~n. (2.28)

Figure 2.14 schematically shows the geometric model of using coaxial cylinder to model

cylindricity error. The form tolerance of cylinder can be written as,

n%,lrn n}’e}x(rmax = Tmin) (2.29)
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where 7,4, = maxd; and r,;, = maxd;.
i j
nzliTn(rmax = Tmin) D Tmin < d;i < Tax (2.30)

Direcuon Vector T

/ Locating Pont L
. H
L
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] L
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Figure 2.14: Two coaxial cylinders tolerance zone [77]

Equations (2.26), (2.28) and (2.30) are nonlinear programs since their objectives are
distances from a given point to an arbitrary axis, specified by vectors L and T. Sinusoidal terms of

elements in L and T make the programming problems difficult to be solved. But, these problems

can be linearized and solved with linear programing solver by making the assumptions that all

variables in L and T are sufficiently small. The orientation and location of the axis can thus be
sequentially updated and finally converges to an optimum.

However, the sequential linearization approach relies on an initial guess close to an
optimum [20] but still does not guarantee the convergence to global optimum. Cheraghi et al. [94]
simplified the three cylinder fitting problems by projecting all data set onto the x-y plane. The MC,
MI and MZ of the projected 2-D point-set were computed and updated by small rotation
perturbations, and the flowchart is shown in Figure 2.15. The merit of this approach is that the
translational variables representing the location of the cylinder axis no longer matter, hence the

number of optimization variables can be decreased by two. However, the objective functions of
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fitting the MIC, MCC and MZC of a point-set have multiple local optimums within small region
as shown in Figure 2.16, the stopping criteria of the sequential linear programming are easily to
be achieved when the objective reaches a local optimum. Searching for the global optimum of the
objective functions is thus a better strategy than solving the nonlinear optimizations sequentially.
Hence, many bionics intelligent algorithms have been exploited in the field of tolerance
verification. For example, generic algorithm (GA) was applied to verify tolerance including
roundness, cylindricity and straightness [84], [95], [96]. Xianqing et al. [97] used geometry
optimization searching algorithm (GOSA) to evaluate cylindricity iteratively. Wen et al. estimated
sphericity error objective function using immune evolutionary algorithm (IEA) [98], and applied

particle swarm optimization (PSO) to minimize conicity and cylindricity [99].

Select initial values
for 0., 8,

v

Initialize step size @
and a small number £ Input:
i 1. A rotation angle set (8, 8,).
2. Sample data points,
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0,+09*(i-1), B+*(j-1), where v
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Figure 2.15: Cylindricity error evaluation flowchart using perturbation iteration [94]
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Figure 2.16: Non-differentiable objective function of minimizing cylindricity error [94]

2.7 GAPSIN LITERATURE

Error modeling of machine tool has been extensively studied since 1980°s. However, the
error model of the rotary joint has not been modeled using Fourier sine series, which could be a
good basis for modeling nonlinear but sinusoidal-like function. Further, literature reveals that
researchers have not modeled a machine with a redundant axis since one might expect that a
redundant axe would introduce parameters that would be confounded with each other. Also, a
versatile metrology instrument such as a laser tracker, which allows a model with many parameters
to be identified has not been used in conjunction with the modeling approach and the identification
of the model. The ease and speed of making measurements with a tracker opens the possibility of
capturing the thermal drift of the machine by periodically rebuilding the error model based on
sufficiently many measurements over the whole workspace taken in a short time interval.

As the matter of fact, using laser track saves time spending on taking measurements for
data-driven error modeling approach and makes data-driven approach more efficient.
Nevertheless, a large (quasi-)randomly generated point-set that takes considerable time to be

finished is still required for securing robust estimations. Due to the transient nature of thermal
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error, thermal error tracking becomes difficult using data-driven approach. Also, the periodical
calibration procedure cannot be implemented in the production environment if a single calibration
cycle is time consuming, which will greatly shorten the production time. Hence, choosing the most
informative observations to shorten the length of time interval for measurements becomes a vital
issue. The question of how to optimize the locations of observation for machine tool error modeling
over the entire command space has not been fully addressed due to its complexity and dependency
on higher computation speed. Therefore, a generalized optimization sequence based on DOE
theories to optimize the error observation cycle with sufficiently many measurements in a shorter
time interval is needed.

Even a rich body of research based on ASME Y14.5 has been published including
traditional measurement and point-set based approaches, most of the research focus on the
tolerance verification for single feature. The question of how to use point-set data of a complex
part to verify the conformity remains unsolved. There is clearly a gap in current body of research
regarding the problem that considers multiple complicated features simultaneously. Thus, robust
algorithms including point-set manipulation and metrology for verifying multiple features’
conformity are necessary.

In the problems of finding minimal, maximal radii and the roundness error of a given 2-D
point-set, both geometry-based and numerical approaches can fit the circles. Maximum inscribed
circle is not well-defined since the corresponding maximization problem can be unbounded. Hence,
the definition should be given properly. In the 3-D case of cylinder fitting, some researchers have
reported their works using different strategy to deal with the nonlinearity of axis orientation. The
iterative approaches require an initial guess, which is sufficiently close to the global optimum, or

the approaches are only able to provide local optima. Thus, the approaches of using intelligent
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searching algorithms to find the global optimum would be preferable. However, the efficiency and
accuracy of such intelligent searching algorithms depend on the complexity of the objective
function. There is still some room to improve by reducing the number of variables in the objective

functions, so the efficiency and accuracy can be enhanced.
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CHAPTER 3. MACHINE TOOL QUASI-STATIC ERROR MODELING
A comprehensive error modeling approach for machine tool is proposed in this chapter. In
Section 3.1, three typical types of rigid body transformation used in machine tool error model are
introduced. A 5-axis CNC machine with one redundant axis is used as example, and the linear
error model is built. In Section 3.2, the error parameters in error model are identified
experimentally using a laser tracker. The model is tested using another smaller but previously
unseen point-set, while Section 3.3 presents a summary of the work done on quasi-static error

modeling.

3.1 ERROR MODEL DERIVATION
A schematic of the 5-axis machine used in this study and its kinematic equivalent are shown
in Figure 3.1. The travel of prismatic joints, X, Y, Z and W axisare 4 m, 2.5 m, 2.2 m and 800 mm

respectively. The rotary joint, B axis allows the table to rotate about Y-axis by 360 degrees.

(a) (b)

Figure 3.1: (a) Schematic of a 5-axis machine; (b) kinematic model showing the shape and joint
transformation
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The ideal kinematic of the machine from the table to the spindle can be expressed by the
series of homogeneous transformation matrices (HTMs). This series consists of alternating joint
and shape transformations. Joint transformations, denoted by &g, ®,, ®,, ®,,®,,, model the
constraints and degrees of freedom of the transmission elements or joints of the machine, while
shape transformations model the geometry and dimensions of the structural members that hold the
joints. Thus, the ideal coordinate transformation that takes a point on the tool expressed in the
spindle frame to a frame attached to the table is given by:

H = ®pT, @, T,0,T:®,T,®,Ts. (3.1)

To introduce rotational and translational errors into the shape and joint transformations,
constant (not position dependent) components of errors are introduced into the shape
transformations while the position dependent components are introduced into the joint

transformations. There are three types of transformation for a machine tool.

3.1.1 SHAPE TRANSFORMATIONS (T1~T5s)
If the small dimensional (translation) and deflection (angular) errors are introduced to T;,

an ideal shape transformation, the actual transformation, shown in Figure 3.2, becomes,
1 —a B x+Ax;
=% 1 —vi yitly

Y-8 1z + Az
0 0 0 1

where a;, ;and y; are small rotational errors about Z, Y and X directions, [X; ¥: Z]Tand
[Ax; Ay; Az]T are the constant shift vector and the small position errors vector in the

workspace.
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Figure 3.2: Ideal and actual shape transformations

3.1.2 PRISMATIC JOINT TRANSFORMATIONS (@&, @y, @, and &)

An actual prismatic joint, in addition to producing the desired translation, will also produce
error motions, including error in positioning along the joint, straightness errors and angular errors.
As is evident for this transformation matrix, the error terms are functions of the joint displacement.

A HTM of a prismatic joint, proposed by Ferreira and Liu [33] is given below:

da  dp -
1 X X x(1+ 6x)
da dy x*da
o =*% ' ;o T | (33)
dp dy x2dp
o o ' T7@x
0 0 0 1

where x is the commanded joint position, dx is a rate of accumulation of positioning error and d_Z’

% and Z—Z are the rates of accumulation of angular errors (roll, pitch and yaw) as the joint moves

along X-axis.
The linear variation of angular errors with displacement along the axis necessitates the
addition of squared terms to the straightness error as suggested by Bryan [100]. One may add

additional higher order terms to account for other effects. Figure 3.3 shows the relationships
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between the error terms and the fixed and moving coordinate frames for such a joint model. The
actual transform introduces small angular motions and a positioning error to the ideal desired
motion. Similarly, HTMs for inaccurate prismatic joints for Y, Z and W axes can also be derived.

Actual _ Actual Moving,

Trajectory

Ideal
Trajectory

Ideal Moving

Figure 3.3: Ideal and actual ismatic joint transformations

3.1.3 ROTARY JOINT TRANSFORMATIONS (@®s)

The joint transformation of an ideal rotary joint (rotation about Y-axis) can be expressed

as:
cos(B) 0 sin(B) O
0 1 0 0
= A4
s —sin(B) 0 cos(B) O (34)
0 0 0 1

where B is command rotational displacement of the joint.

An actual joint introduces several error motions. First, when the joint is commanded to a
position B, it may have positioning error, . Further, the rotational errors may introduce tilts of a
and y, and the entire moving table may shift due to the accumulation of translation errors d,, d,,

and d,. Thus, as depicted in Figure 3.4, the actual transform introduces small translational and
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rotational displacements to model the wandering and tilt of an actual joint. The joint transformation

for an actual rotary joint (rotation about the y-axis), assuming small angles, the errors, is given by:

[ cos(B) - BB'sM®B)  _gB’ sin(B) + BB’ cos(B) B'd,]

P} = b ! B By (35)
—sin(B) — BB’ cos(B) yB'  cos(B) —BB'sS"®  B'qd,
0 0 0 1

where B’ is the error associated with the rotary command, which is modelled using Fourier sine

series:
¥ nB
=) bysin(). (36)
n=1
B(B)
Actual Movmg@
Frame\..l ! Q} (B)
R K Ideal
": Moving
I Frame
Z

Figure 3.4: Ideal and actual rotary joint transformations

For a typical rotary joint as shown in Figure 3.5 and Figure 3.6, for purposes of consistency
one would like to have the errors at B = 0 close to those at B = 2m [32]. The error parameters are
modelled by Fourier sine series instead of Taylor series to satisfy the consistency. For model

efficiency and simplicity, only the first term in Equation (3.6) is used (b; = 1).
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Figure 3.5: Errors of a rotary table: (a) about X-axis; (b) about Y-axis; (c) about Z-axis [32]
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Figure 3.6: Errors of a rotary table: (a) x-directional translation error; (b) y-directional translation
error [32]

3.1.4 LINEAR MODEL CONSTRUCTION
Now combining all the HTMs of inaccurate joints and structural members defined in
Equation (3.2), (3.3) and (3.5), the actual coordinate transformation that takes a point on the tool
expressed in the spindle frame to a frame attached,
R = ®pT,®,'T,'®,'T5'®,'T,/d,'Ts . (3.7)
Eliminating second and higher-order terms of small errors, the first-order forward
kinematic equation with errors for the machine can be written as:
R=H+AH+0(2) ~H+AH, (3.8)
where H is the ideal forward kinematics derived in Equation (3.1), determined by ideal machine

joints and nominal dimensions of the structural members that hold them (i.e., ideal joint and shape
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transformations) are given, AH is the sum of ten first-order terms, and 0(2) represents all higher
order terms.
Thus, the machine’s volumetric error components can be defined as the difference between

actual and ideal forward kinematics,

[‘i] = Ty(R — H) [it] ~ T,AH [it] (3.9)

where e is the error vector € = [éx €y €z]T, T, is one additional shape transformation added to
obtain a convenient reference for measurement or programming, and 7; is the position of the target

in the spindle frame as shown in Figure 3.1(b).

3.1.5 IDENTIFICATION OF ERROR MODEL PARAMETERS

The model, developed in Section 3.1.4, assembles all the error sources in the kinematic
chain to obtain their influence on the volumetric error components of the machine. There are a
total of 52 error sources or parameters (five shape transformations, each with six error parameters,
four joint transformations for linear axes, each with four error parameters, and one for a rotary axis
with six parameters) that are composed into an expression for the volumetric error components
observed in the machine’s workspace. To use this model for compensating the volumetric errors,
it is necessary to obtain values for these parameters.

Estimation of the parameters in the error model is done by observing the volumetric errors
of the machine at different points in its workspace with a laser tracker. The relationship between
the measurement frame and the table frame (from the kinematic model of the machine) is captured
by the homogeneous transformation matrix, T, as shown in Figure 3.7. However, to do so, the
frame in which the laser tracker makes measurements, T, must be first estimated before the

parameters of the error model can be obtained. This is done in the following two steps.
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Figure 3.7: Depiction of measurement of volumetric error of the machine using a laser tracker

e Step 1: Find T, the best-fit measurement frame

Assume the machine to be ideal and identify the best values for T, to minimize the
discrepancy between the laser tracker observations of position and the commanded position. Since
T, is a rigid transformation, this step accounts any location and alignment errors between the
machine and the laser tracker as shown in Figure 3.7. In addition, this step will also reduce the
effects of any error sources that produce a rigid displacement of the entire machine’s workspace.
The residual errors that result from this process (of aligning measuring frame with the machines
coordinates) are referred to as the nominal errors of the machine.

To identify T,, assume ideal kinematics for the machine defined in Equation (3.1),

FtO = TOCI)BTchxTZCDZT3CI)yT4CI)WT5 = TOHFI" (310)

where T, has rigid body translations and small angle rotations as parameters to be identified,
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Further, 7, is the position of the target in the spindle frame and 73, is its image in the
measurement frame. For different joint commands (or measurement points), the kinematic
transmission of the machine, H will vary. For the i measurement point, the error vector, e;
between the forward kinematic transmission and the measurement recorded by the laser tracker
can be expressed as,

e; = ToHT — q;, (3.12)
where q; is the measurement recorded by the tracker.
The best-fit homogeneous transformation, T, to the measurement frame can be obtained by
minimizing the sum-of-squares of the discrepancy between the ideal machine’s commanded
positions and the measurements made by the tracker.
e Step 2: Identify the parameters of the error model from the nominal errors observed
in the machine’s workspace

The error sources in the kinematic chain of the machine cause the workspace of the
machine to dilate/contract, shear and bend. These effects are encoded errors measured in the point-
cloud of error measurements made by the laser tracker. In this step, least-square is used to identify
the parameters. As mentioned earlier, there are 52 error sources/parameters in the error model.
Further, for the derivation of the error model, these errors are assumed to be small. The model is
linear in the set of parameters and can be expressed by an error parameter vector, ps, pre-
multiplied by a coefficient matrix, Mc,. Equation (3.12) is written as:

e; = Ms; P52, (3.13)
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where ¢; € R3? is the modeled error vector, ps, contains all 52 error parameters and Ms, ; is a
matrix with three rows and 52 columns, where each term being a function of known machine
constants and commanded positions. Each row then represents the coefficients of the linear
combination that take the error sources to the X, Y and Z components of volumetric error at a point
in the machine’s workspace.

As would be expected, the influence of some parameters on the observed volumetric error
components will be inseparable from each other by only change the commanded position of the
tool. Ax;~Axs are linear misalignments along X direction, which affect only the X component in
the volumetric error. S is the angular error about Y-direction, which only causes an Abbe error of
—1:f5 along X-direction. Ax; ~Axs and S5 contribute in exactly the same manner to volumetric
error components at a point, irrespective of its location in the machine’s workspace. They must
therefore be identified as a group. Similarly, Az;~Azs are grouped, and Ay;~Ays are grouped
with rys, Further, @, and a5 are the Z-rotational errors of the two structural members that hold
the Z-axis. They share the same leverage and cause identical effect of volumetric errors, and hence

should be identified together. Similarly, g5 and g, are grouped as well as y; and y,. Also, other
parameters such as a,, ag and 2—3 must be removed because they have no influence on the

volumetric error when the tool reference point lies along the axis of the spindle.
After all these redundant parameters are eliminated or grouped, the error model is derived,
e; = M;p, (3.14)
where M; € R**32 is a sub-matrix of M, ; and

p=

5 5 5
(a1, az + @3, B1, B2, Bz + Bas V1 + V2, V3, Va, = P51t + Z 1Axi YsTe + Z 1Ayi 'Z_ 1Azi'
i= i= i=
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o R 6y, 5 S 62,5 R A 6w, By, dy, d] € R, where T is
tool length.

The M; matrix for the above set of parameters, constructed for a particular point in the
machine’s workspace, as previously mentioned, has elements made up of functions of the

machine’s constants and the axial commands that correspond to that point. Thus,

€x,i Mx,i
ez,i Mz,i

where M, ;, M, ; and M,; correspond to the linear combinations of the error parameters that
produce the i measured set of error components e, ;, ey;ande,;.

Now consider an observation set consisting of errors observed at n points, under the
assumption that the errors observed at the i'" point is explained by the model:

é =Mp+N, (3.16)
where e; = [éxi €y, €zi]Tcontains the components of the errors observed at the i point, M; is
the corresponding 3x32 relational matrix and N € R3 is the observation noise vector with elements
drawn from the Gaussian distribution N (0, o), o being the standard deviation of the observation
noise, a system of 3n equations for estimating the parameters is built:

e = Mp, (3.17)
where e = [e] ... eT]" € R3" vector containing the components of the measured error vectors in
the point-set, M = [MT ... MT]T € R3™*32 s the new coefficient matrix.

The least-squares estimate of p which minimizes the sum of squares of the discrepancy
between the RHS and LHS of Equation (3.17) is given by:

p = (MTM)"1MTé, (3.18)
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The estimate p minimizes the Lo-norm of the residuals, |le — Mp||, = (e — Mp)T (e —
Mp) and produces an unbiased estimate of p over the entire set of observations (and the
workspace, if the point-set is a good representation of it).

3.2 EXPERIMENTAL VALIDATION
3.2.1 DATACOLLECTION

In order to identify the kinematic error model parameters, measurements of the machine
tool are taken. These measurements are collected over the entire 3D space using a Laser Tracker
and Active Target system (Figure 3.8) to ensure that all axis-dependent machine tool geometric
errors are captured. The Laser Tracker used in this test is the APl Radian which has a static
measurement accuracy of +/- 10 um or 5 ppm (2c) according to the specifications provided by
API. From this and the tracker’s position on the machine, the largest measurement standard
deviation (o) value over the measured range was calculated to be 8.9 um. In order to ensure that
the Laser Tracker was thermally isolated from the machine tool, a plastic Isolation Block was
placed between the Laser Tracker base and the machine tool.

Before measurements are taken, a measurement frame is identified. With the Laser Tracker
attached to the machine tool bed and the Active Target attached to the machine tool spindle, as
shown in Figure 3.8, the B-Axis is rotated with the other axes stationary in order to generate a
circle of points. The normal vector of this circle is used as the vertical (Y-Axis) of the measurement
frame. Next, the B-Axis is re-oriented to its 0° position and three points are measured as the
machine moves along its X-Axis. The best fit line to these points is used as the X-Axis direction
of the measurement frame. A right-handed frame is established from these two axes. This frame is

then transformed into the negative Y-Axis direction by the Y-Axis encoder value of the machine
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tool to account for the Y position of the machine tool spindle during the measurement frame

identification.

Figure 3.8: Machine tool work cell and table base frame

The machine tool repeatability, which establishes the maximum possible accuracy for a
perfectly compensated machine tool, was calculated next. To determine the machine tool’s
repeatability, eight quasi-random points from the machine tool’s working joint space were
measured ten times each. Each cycle of the eight points was measured in a different randomized

order to approximate arbitrary approach directions. The error of each measurement is given by,

€ij = \/(xi,,- —%) + (= 5) + (- 7)’, (3.19)
where e; ; is the error of the j measurement of the i" point, [xl-, i Vi) Zi, ]-] is the j™ measurement of
the it point, and [x; y; Z;] is the average measurement of the i point.

From the measurements taken of the machine, the largest error was 0.0217 mm, which is
used as the machine tool’s repeatability. It should be noted that this repeatability value is only 2.4
times the measurement standard deviation meaning that a large portion of this value is may be due

to the accuracy level of the laser tracker as opposed to the machine itself. Despite this fact, this
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repeatability still corresponds to the highest potential measured accuracy of the machine if it was
perfectly compensated.

The measurement locations used for model identification and testing were selected next.
For the identification set, 290 quasi-random points were selected throughout the machine tool’s
joint space, and an additional 50 quasi-random points were generated as a testing set. The number
of points selected for identification and testing was selected through past experience with similar
sized machine tools [15]. This number has the necessary richness to appropriately identify the
geometric errors of the machine tool while minimizing the machine tool’s down time. The joint
ranges used to generate these points are shown below in Table 3.1, and the distributions of the
points are shown below in Figure 3.9.

Table 3.1: Minimum and maximum commands used for modeling and testing

AXis Minimum Command Maximum Command
B 0° 360°
X -1250 mm 1250 mm
Z 900 mm 2200 mm
Y 350 mm 2500 mm
W -800 mm -200 mm

- Laser Tracker
....... | e

e Identification Points

%  Testing Points

Y Axis (mm)

500 ..

2000

_ -2000 2000
Z Axis (mm) X Axis (mm)

Figure 3.9: Positions of identification and testing points inside working envelop, given in
machine tool base frame.
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Using the Laser Tracker and Active Target system, the 290-point identification set was
measured twice. In each measurement set a different length mount was used to attach the active
target to the spindle as shown in Figure 3.8. Because the rotation of the spindle does not need to
be modeled, these two mounts (Figure 3.10) allow for the spindle orientation to be determined for

each point by finding the vector between the measurement sets.

Figure 3.10: Active Target machine tool spindle mounts

Because the same axis commands are used when taking both sets of identification points,
it is possible to use the two sets of measurements to examine the potential existence of thermal
drift in the measurement setup. For each point in the identification set, the distance between the
two measurements of that point is ideally equal to the tool length difference of the two Active
Target mounts (within machine tool repeatability). Therefore, if the distance between
measurements is larger than the repeatability (0.0217 mm), then some shift must have occurred
during the time that the system was measured. The distances between the measurements from each
set (with the tool length offset removed) are shown in Figure 3.11. The distance between
corresponding points ranges from -0.13 to 0.11 mm. Since this value is approximately six times

the measured repeatability value, there is evidence that some sort of drift occurred during the
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measurement process. Furthermore, since the air temperature changed by 3.7°C during the

measurement process, thermal effects is a likely source of some or all of this drift.

40
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N
o
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Figure 3.11: Distance between short tool and long tool measurements

3.2.2 BEST-FIT MEASUREMENT FRAME

The procedure described in Section 3.2.1 was used on the data collected in both the
identification and testing data sets (described in Section 3.2.3). Table 3.2 shows the estimated
errors between the nominal measurement frame and the machine’s reference. Also shown in the
table is the mean magnitude of the residual error vectors at the measurement points. For
identification purpose, two sets of measurement were taken using different lengths of tool. After
that, the identified parameters were used for modeling the testing sets.

Table 3.2: Best measuring frames of each measuring set

Set Short Tool Long Tool Test 1 Test 2

Xo (Mm) 0.00845 0.0122 0.00715 0.0111

Yo (Mm) 0.351 0.304 0.293 0.298

Zy (mm) -0.0147 -0.0124 0.0095 0.0116
a, (rad) -6.21E-06 3.68E-05 5.78E-05 6.68E-05
B, (rad) -2.13E-05 -1.85E-05 -2.43E-05 -2.35E-05
¥, (rad) 1.05E-05 2.41E-05 3.52E-06 5.05E-06

Residual(mm) 0.4214 0.3175 0.2783 0.2745
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3.2.3 ERROR PARAMETER IDENTIFICATION

The results of parameter identification are shown in Table 3.3. The data for the two
different tools (short, 312.035mm, and long, 435.185mm) were analyzed separately to identify the
error parameters of the two identification sets. From Table 3.3, the high correlation between the
parameters identified in the two experiments is apparent. The deviations seen are due to the

temperature changes between the two experiments and the uncertainty in the assembly of the target

on the tool.
Table 3.3: Values identified for the parameters of the error model
Unit: mm Unit: rad Unit: rad/mm

Parameter Short Long Parameter Short Long Parameter Short Long
X1+...X5-tifs 3.62E-02 5.92E-02 o1 -2.36E-05 | -1.96E-05 do/dx 1.55E-08 2.57E-08
yi+..ys+tys | -4.78E-02 | -2.35E-02 o2+03 -1.01E-05 | -1.18E-05 dp/dx 1.13E-09 7.01E-09
u+...25 -3.12E-01 | -1.97E-01 p1 -6.93E-05 | -6.95E-05 dy/dx -1.04E-08 | -1.16E-08
dx 1.13E-02 3.75E-03 2 4.16E-05 3.51E-05 do/dy -1.26E-08 | -1.80E-08
dy 2.62E-02 2.71E-02 [3tpa 5.83E-05 4.82E-05 dp/dy 2.57E-08 3.03E-08
dz -1.28E-02 | -7.25E-03 y1ty2 -1.85E-04 | -1.77E-04 dy/dy -5.54E-09 | -1.54E-09
Unit: dimensionless 73 9.02E-05 8.19E-05 do/dz -1.68E-08 | -1.34E-08
Parameter Short Long V4 -1.85E-04 | -2.07E-04 dp/dz -3.81E-08 | -2.73E-08
ox -1.23E-04 | -1.12E-04 p -9.57E-07 | -9.72E-06 dy/dz 2.97E-08 2.78E-08
oy -1.10E-04 | -1.09E-04 o 1.15E-06 6.78E-07 dp/dw 2.93E-08 1.80E-08
oz -3.75E-05 | -3.75E-05 y 8.03E-06 4.84E-06 dy/dw -4.10E-07 | -4.19E-07

ow -1.06E-04 | -1.06E-04

Figure 3.12(a) shows the distributions of the residual errors. The statistical analysis of the
results is shown in Table 3.4. Compared with the residual errors obtained from the frame alignment
process, the error model reduces not only the mean but also the maximum (which characterizes

the worst-case uncertainty of the machine/model) errors by 90% and 82% respectively.
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Figure 3.12: (a) The magnitudes of error residuals on two identification sets (290 points in each);
(b) the magnitudes of error residuals on two testing sets (48 points in each).

Table 3.4: Model performance for two sets with two different tool lengths

Short tool Mean Residual % decrease Max. Residual % decrease
Nominal 0.4214 mm N/A 0.6270 mm N/A
Least squares 0.0277 mm 93.43% 0.1073 mm 82.88%
Long tool Mean Residual % decrease Max. Residual % decrease
Nominal 0.3175 mm N/A 0.5492 mm N/A
Least squares 0.0307 mm 90.34% 0.0941 mm 82.86%

3.2.4 ERROR MODEL TESTING

With the error model parameters obtained from the identification sets, the model’s
prediction capability are checked against two testing sets consisting of 48 previously-unseen data
points, taken with the long tool. The results of this testing are shown in Table 3.5 and Figure
3.12(b). Compared with the nominal machine errors, the model can provide, approximately, a 75%

reduction of average magnitude of errors vectors at the points in the data sets.
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Table 3.5: Model performance for two testing data sets (Tool length=435.185mm)

Testing set 1 Mean Residual % decrease Max. Residual % decrease
Nominal 0.2783 mm N/A 0.4624 mm N/A
Least squares 0.0590 mm 78.80% 0.1760 mm 61.94%
Testing set 2 Mean Residual % decrease Max. Residual % decrease
Nominal 0.2745 mm N/A 0.4546 mm N/A
Least squares 0.0670 mm 75.59% 0.1767 mm 61.13%

3.3 SUMMARY

A kinematics model for a 5-axis machine tool with a redundant linear axis is developed in
this chapter. This model introduced 52 parameters, linked to the error kinematics of the machine
tool, which would need to be identified. Analysis of the model shows that only 32 of them have
linearly independent effects on the volumetric errors in the workspace. A 2-step procedure for
least-squares identification of the error model parameters from observations of the volumetric
errors at points in the machine’s workspace is also developed.

A laser tracker was used to make measurements at 290 randomly generated points in the
machine’s workspace. These measurements were repeated with tools of two different lengths
characterizing the behavior of the machine with long and short tools. The error model parameters
were estimated for these two different data sets. Despite some thermal drift on the machine
between the experiments, the error model parameters estimated remained consistent in both
magnitude and sign. Further, the model was able to reduce the errors at the observation points to
about a third of their original values. The model was tested on two data sets of 48 observation
points each. A similar model performance was observed. The proposed model has potential to be

used for error prediction on commanded positions.
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CHAPTER 4.ERROR OBSERVER DESIGN FOR MACHINE TOOL

In this chapter, the design and use of optimal error observer to track machine tool error is
presented. The machine, modeling approach, and measurement techniques discussed in Chapter 3
are used to demonstrate the feasibility of using them to track machine’s thermal error. It must be
noted that the methodology of designing machine tool error observer is not limited to the error
model developed in Chapter 3. Section 4.1 builds the mathematical model for optimal observer
design of linear identification system. Section 4.2 describes the application of the optimal design
theories in designing the thermal error observers for a 5-axis machine. Different design observer
sets are proposed to identify the parameters in the volumetric error model. Section 4.3 describes
the experimental setup to collect the measurement data, and Section 4.3.2~4.3.4 present results on

the behavior of the model identified. Section 4.4 outlines the conclusions, drawn from this work.
4.1 OPTIMAL OBSERVER DESIGN FOR LINEAR SYSTEM

411 INTRODUCTION

As reviewed in Section 2.3, a linear identification problem with n design points is given

by:

IR

e =M@y, ...Jn)D, (4.1)
where e € R"represents a vector of n observable values that is related to p € R¥, a set of k
unknown parameters is the vector consisting of all undetermined parameters, p,, ... px (Whose
values are to be estimated) by the design matrix, M(Jy, ...J,,) € R™¥ whose row vectors are
functions of j,, ... J,,, sets of variables that can be independently controlled.

The best fit estimator of p, p is given by least-squares fitting,

p=M"M)IMTe. (4.2)
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The D-optimal design maximizes information by minimizing the volume of the confidence

volumes or the uncertainty region around the estimator. The D-optimality is given by,

k
1 4.3
min |[(M"M)™!| = min 1_[—, 43)
J1-Jn Ji-gnd LA

=1
where J; ...J,, are n sets of controllable variables (in our case, the commanded axial positions) that
control each row in the design matrix M, and 4; is the i eigenvalue of M™ M.

A-optimal design minimizes the average variance of the estimations on the regression

coefficients, and its objective is given by:
Sl
min er((MTM)) = min Y, (4.4)
J1-Jn JaoaJn & Ai

where J; ...J,, are n sets of controllable variables (in our case, the commanded axial positions) that
control each row in the design matrix M, tr((MTM)~1) is the trace of (MTM)~* and 2, is the i"
eigenvalue of M™ M.

The K-optimality criterion minimizes the sensitivity of estimator to observational error by

minimizing the condition number of the design matrix,

. . Umax . Amax
min k(M) = min = min , (4.5)
J1-Jn Ji-Jn O—min J1-n Amin

where a,,,, and o,,;,, are the largest and smallest singular values of M, 4,,,, and A,,;,, are the
largest and smallest eigenvalues of the information matrix, MTM.

D, A and K-optimality criteria are all related to the eigenvalues of the information matrix
[58], [59]. All three types of design problems deal with the maximization of information,
quantified by surrogate functions of these eigenvalues. In Section 4.3, K-optimal design is selected
to reject the measurement noise. However, the optimal design theories produce the best locations

for observations to identify model parameters under the assumption that the form or degree (if it
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is a polynomial) of the underlying model of the linear system is known. In many situations, the
functions used for machine tool error models are simplifications (typically with polynomials of
axial displacements). Further, to keep the number of parameters manageable, they are assumed to
be low-order polynomials. In such cases, there is always a possibility that neglected higher-order
terms may be significant. Any observer design process must take steps to alleviate the deleterious
effects of model inadequacy.
412 EXAMPLE PROBLEM

For example, if one tries to fit a straight-line model to a parabolic function, y = x? over
the domain [0,1] with four observations. As can be seen in Figure 4.1, the modeling residuals of
any line y = p;x + p, are not normally distributed but dependent on x because the linear model

is inadequate. The identification system of p; and p, is given by:

V1

X1 1
=] ] [1’;;] = Mp, (4.6)
YVa Xy 1

where x4, ...x, are the positions of the observations, y;, ... y, are the corresponding observations

and M is the design matrix.

—_—y=x 2

- — y=x

08 | _.—.y=x-0.0938
07 y=x-0.1667
O unconstrained

S constrained

f(x)

Figure 4.1: Quadratic function fitted by linear functions
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The optimal design problem is given by,
jml]p f(M)>sj,€eT(i=1,..n), (4.7)

where f(M) could be D, A or K-optimization objectives defined in Equations (4.3), (4.4) and (4.5)
and I' is the design space.

In this example, ' = [0,1],n =4 and j; = x; fori = 1,...4. A, D and K-optimal designs
all suggest that the best four observations for Equation (4.7) are x=0,0,1,1, and the line fitted by
these observations is y = x. As shown in Table 4.1, the corresponding objectives, tr((MTM)™1),
[(MTM)~1! |, and k(M) of these four observations are minimized to be 1.5, 0.25 and 2.618. It’s
been observed in Figure 4.1 that the straight line defined by the end points only has good model
performance at two ends. In fact, the best linear fitting of over that minimizes the sum of squared
error is the green line in Figure 4.1. The observers produced by the optimal designs localize the

observations at the boundaries of the design space, which causes the poor overall fitting

performance.
Table 4.1: Optimal observers designed by A, D, K-optimal designs
Case x; x5 x5 x; tr((MTM)™1) [((MTM)™1 | k(M)
Unconstrained 0 0 1 1 15 0.25 2.618
Constrained 0 0.25 0.75 1 2.25 0.4 3.25

To avoid localized observation points, one can introduce constraints to the optimization
procedure to distribute observations over the domain or design space. For example, the distribution
can be one observation between 0 and 0.25, two between 0.25 and 0.75 and the last one between
0.75 and 1. A generalized constrained optimization problem is given by,

min f M)3j;eni=1,..n), (4.8)
1-Jn

where f(M) is the objective function to be minimized and I} is the i constraint for the i set of

variables.
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In this case, n = 4, I} = [0,0.25], T, = I'; = [0.25,0.75] and I, = [0.75,1], and j; = x;
fori =1,...4. As can be seen in Table 4.1, the solution to Equation (4.8) using A, D and K-
optimality gives four different observers, x=0, 0.25, 0.75 and 1. The corresponding objectives,
tr((MTM)™1), [((MTM)~1 |, and k(M)of these four observations are 2.25, 0.4 and 3.25, which are
all larger than their unconstrained counterparts, 1.5, 0.25 and 2.618. Figure 4.1 shows the fitting
result of the constrained optimization using the dashed black line. The line fitted by the observers
of the constrained optimization is y = x — 0.0938, which is much closer to the best fitting line,
y =x—0.1667.

Thus, the judicious introduction of constraints to obtain distribution of the points balances
the need to maximize the amount of information in the observer design with the need to guard
against inadequacy of the proposed model. In this example, one might realize that the minimum
number of observation points required for estimating the model parameters is two. By introducing
redundancy (two additional observations) and constraining the locations of these extra points, one
can provide the optimization procedure the flexibility to maximize the information content while,
at the same time, ensure that all regions of the domain of the fit are represented. This strategy will

be used in the next Section for the design of error observers for machine tools.

4.2 OBSERVER DESIGN FOR THE ERRORS OF A 5-AXIS MACHINE

The concepts discussed in Section 4.1 are tested on the machine and error model, which is
built in the Section 3.1. The schematic of the 5-axis machine used in this study and its kinematic
equivalent are shown in Figure 3.1. The machine has four prismatic joints, X, Y, Z and W axis
with travels of 4m, 2.5m, 2.2m and 800mm respectively and a rotary joint, B axis that allows the

table to rotate about the Y direction by 360 degrees. The Z and W axes are redundant axes.
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To track the evolution of thermal errors, based on consultation by the users, it was decided
that we design the observer so that the time for making measurements was limited to 25 minutes.
Based on empirical experience, it is therefore decided to limit the number of measurement points
for the observer to 80. The linear error model in Equation (3.14), as previously explained can be
rewritten in the form of design matrix times the error parameter vector:

e; = M;(Jp, (4.9)
where e; € R? is the error observed at the i" measurement, M; € R3*32 has elements that are
functions of the i commanded X, Y, Z, W and B axes positions, denoted by j; and p € R3? is the
error parameter vector.

With 80 observations, a system of 240 equations can be produced, given by:

e = M(Jy .- Jgo)PD (4.10)
where M € R?%9%32 js the design matrix controlled by 80 design points J; ...Jgo, € € R?4°
contains all components of the measured error vectors in the observer point-set.

The optimization problem that seeks to maximize the amount of information carried by 80
design points suggests the best set of axes command. Each design point is controlled independently
by the commands of X, Y, Z, W and B axis. Therefore, the problem has 80x5 degrees of freedom
subjected to the size command space defined by the limitation on each axis.

The A, D and K-optimal observers can be produced by solving the constrained optimization
problem defined in Equations (4.7) and (4.8). This was encoded in a MATLAB program, using
the generalized constrained optimization function FMINCON takes as input the definition of M in
terms of axial positions of the machine and the constraints of the workspace. This function finds a
local minimum, hence it was called several time with different randomly generated, feasible initial

solutions. The objective functions converged to the similar values for all the cases. The positions

66



of the measurements points for the three criteria in the work envelop of the machine are shown in
Figure 4.2(a), (b) and (c). The values for the objective functions for three different criteria of

optimal designs are listed in Table 4.2.
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Figure 4.2: Designed observer sets given in machine tool base frame

Table 4.2: The unconstrained designs

Type | Points | ¢r((MTM)™1) [(MTM)™1 | k(M)
A 80 99.7 2.27 X 10737 253.7

D 80 125.0 6.86 x 10742 337.5

K 80 183.2 5.04 x 10715 122.0
Random | 290 80.9 5.95 x 10746 437.8

The locations of the measurement points for the A- and D-optimal observers are similar,

and mostly located near the boundary of the workspace. This is because the objective of A and D-
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optimal designs maximizes the distance between observations in the domain to increase their
influence on the estimates of the unknown parameters. However, the observations for the K-
optimal observer are highly localized and located primarily near the bottom of the workspace. In
the process of minimizing the influence of errors in observations, it also minimizes the influence
of the observations. As mentioned in Section 4.1.2, the unconstrained locations for the optimal
design of observers are expected to produce such localization. To obtain a more uniform location,
the workspace of the machines is sliced into 4 zones along the y axis. Each slice is further
decomposed into a central block and an annular space (having the same volume). Thus the
workspace is broken up into 8 equal volumes as shown in Figure 4.3. Constraints formed by 8
volumes are then introduced into the optimization program to ensure that each of these 8 volumes
contains 10 measurement points of the new “constrained” A, D and K-optimal observers. The
results of the introduction of these distribution constraints is given in Figure 4.2(d), (e) and (f), and
the new values of objective functions for the different criteria and designs are tabulated in Table
4.3.

Constrained K-optimal Constrained K-optimal

27/
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%b“‘ X l ® o ...‘0. ..
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Figure 4.3: 8 constrain volumes and the constrained K-optimal observer set
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Table 4.3: The constrained designs

Type Points tr((MTM)™1) |((MTM)~™1 | k(M)
A 80 100.5 1.33 x 10738 273.1

D 80 131.8 8.90 x 10740 330.1

K 80 108.3 3.74 x 107%° 207.3
Random 290 80.9 5.95 x 10746 437.8

It can be seen in Figure 4.2 that the constraints successfully spread the measurement points
over the whole workspace, but the price paid for introducing these constraints is also apparent in

the value of the objective functions shown in Table 4.2 and Table 4.3.

4.3 EXPERIMENTAL VALIDATION

An experiment was designed to test the aforementioned 80-point, constrained K-optimal
observer on the machine described in Section 4.2. A similar experiment with the unconstrained K-
optimal observer was also performed. In this experiment, the objectives were to:

(1) Check how error models using the parameter estimates it produces compare with those
using parameters estimated from the more traditional, measurement-intensive quasi-
random point-sets.

(2) Determine its ability to track changes in these parameters as the thermal state of the
machine changes.

(3) Assess improvements, if any, in the observer’s performance brought about by the

introduction of constraints to distribute the measurements in the workspace.

4.3.1 EXPERIMENT SETUP

Similar experiment setup was used as shown in Figure 3.8. An APl Radian laser tracker
with active target system was used to collect the data over the entire 3D space. The 80 points in
the K-optimal observer were analyzed for reachability of the laser tracker. It was found that 4
points were not reachable. The value of objective function for the observer with the remaining 76

points increased from 207.3 to 222.0, which was not changed significantly. The machine was
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programmed to carry the active target of the tracker and dwell for a few seconds at these 76
measurement points. The tracker and machine were synchronized so that the tracker recorded the
position of the target after the machine had settled at a measurement point. This measurement cycle
was repeated at intervals of one hour. Six such measurements cycles were performed. The first one
at the start of the experiment can identify the errors of the machine’s initial state. In the four
intervals between the first five measurement cycles, the spindle of the machine and the axes of the
machine were exercised at roughly half their maximum speeds to heat up the machine. The
machine could cool in the interval between the 5" and 6" measurement cycles. Figure 4.4 shows

the schedule of the 8-hour experiment.

Machine is heated up

T Cooling down

Six measurement cycles

Figure 4.4: Measurement, heating and cooling cycles

Prior to the start of the experiment, the laser tracker is mounted at the center of the table
on top of a thermal isolation block. A set of measurements are taken and processed to align the
measurement frame to the machine’s coordinate system as Section 3.1.5 and 3.2.2 show. Further,
measurements are made to assess the repeatability of measurements of the laser tracker on the
machine. This was found to be around 20 microns as discussed previously in Section 3.2.1.

Additionally, the machine was instrumented with 16 wireless thermal sensors to record

temperatures at different positions of the machine structure. Four packet radio transceivers (shown
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in Figure 4.5), Adafruit Feather MO RFM96 LoRa Radio (433 MHz) with 13 temperature sensors,
TMP 36 were placed over the course of the experiment as shown in Figure 4.6, and the data
acquisition system transmit temperature data to a computer-based server, which monitored and
recorded the temperature readings in real time. Each of the 4 linear axes was instrumented with 3
temperature sensors (one on the drive and the others distributed around the length of the axes).
One of the sensors on the Y-axis was used to monitor the spindle housing temperature.
Temperatures were recorded at 1-minute intervals during the experiment.

Antenna

Box lid

MEMA Box (3.70 x 2.56 x 2.24 in)
Adafruit Feather

LoRa 433MHz

3D printed adapter

Lithium/polymer Battery
1200 mAh @3.7 WV

Cable gland for
sensor signals

Section

Figure 4.5: Wireless transceiver unit

Figure 4.6: Temperature sensors setup on W-axis
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The experiment was commenced in the morning and concluded late afternoon. The data
recorded in each measurement cycle at the measurement points was fed into a MATLAB program
and used to identify the parameters of the error model as demonstrated in Section 3.2.3 using least-
squares fitting technique.

A similar experiment was conducted with the unconstrained K-optimal observer. In this
case, the experiment was conducted without running the spindle between measurement cycles (the
reason was to reduce the uncertainty in repeated mounting and dismounting the active target).

The following are some key points in the processing of the data obtained in each
measurement cycle. For the first (initial) measurement cycle, misalignment between the
measurement and movement frame, T, ; and error parameters, p, are identified separately. In all
subsequent cycles, the workspace drift is picked up by the constant terms of the error model. Thus,
in the first measurement cycle, two minimization problems are solved as elaborated in Section
3.1.5:

1. ldentify misalignment between the measurement and movement frame, T ; in the first

(initial) cycle,

2
)

(4.11)

76
nT”linZ”To,le‘Ft - C?i,1|
0,1 =

where T, , H;T; is the ideal position of the i measurement point predicted by the ideal forward
kinematics and q; , is the actual position measured by the laser tracker at the i measurement point.

2. Estimate the 32 error parameters, p;:

76
I%ian”Mi@ - (TO,lHiFt - ﬁm)”z; (4.12)
i=1

where M;p; is the modelled error, T, ; H;7; — q; 1 is the observed error.
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For all subsequent (the 2" to 6™) cycles, the misalignment between the measurement and
movement frame T ; is not updated. T, ; is used as the starting reference for the thermal drift of
the machine and to give the growth in errors due to thermal effects. Therefore, the j" error
parameter group denoted by p; is identified using a single-step identification (j = 2~6),

76
. N ~ N 2,
T%IIHZ”Min — (ToaHiTe — G ||, j = 2~6. (4.13)
7=
The modelling residual at the i observation of the j™ cycle can be computed by,

RESL'J' S ”Mlﬁ] - (TO,lHiFt - ﬁi.j)”yi S 1"-’76 ,j S 1~6 (414)

4.3.2 MODEL PERFORMANCE

The statistics of the behaviour of the models identified for six different thermal states are
shown in Table 4.4. The observed mean and max are the statistics of the errors observed after the
tracker placement error are removed from the tracker readings. The mean and maximum residual
are the statistics of the difference between the observed errors and those predicted by the identified
models. One could expect these error statistics if the identified model was used for compensation.
Figure 4.7 shows the average temperatures recorded by four wireless transmission systems on four
linear axes.

Table 4.4: Model performances on different states (constrained K-optimal)

Machine Observed (um) Residual (um) % Decrease
State Mean Max Mean Max Mean Max
Initial 119.1 265.9 26.3 98.2 77.92% 63.07%

Heating 134.4 279.6 315 97.2 76.56% 65.24%

Heating 154.0 310.2 28.8 94.5 81.30% 69.54%

Heating 169.6 311.6 33.9 113.4 80.01% 63.61%

Heating 181.9 331.6 30.9 111.6 83.01% 66.34%

Cooling 157.3 309.4 29.8 101.7 81.06% 67.13%
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Figure 4.7: Temperature variations over the course of the experiment

The models identified by making measurements at points prescribed by the constrained K-
optimal observer over 6 measurement cycles suggest highly repeatable performance for each
thermal state. During the first data collecting cycle (initial state), the model provides 77% and 63%
reductions in the mean and maximum magnitude of error, respectively. These percentages
increased as the average magnitude of the machine’s errors increased because the average
magnitude of the residuals remained a relatively narrow (8 micron) band.

The observer performed well in terms of explaining the error. The repeatability of the
positioning was around 20 microns (machine and laser tracker combined). Further, an additional
uncertainty of about 5 microns was introduced because the active target had to be removed and
remounted between measurement cycles (because the heating cycles required the spindle to be
run). The average magnitude of the residuals at the observer measurement points over six

experiments was close to 30 microns, which suggests that the identified models were capturing
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most of the systematic errors of the machine and adjusting the parameters appropriately to adjust
to thermal changes of the machine.

These results are comparable to those reported in Section 3.2.3 on the same machine, using
the same kinematic model but, instead using a quasi-randomly generated set of 290 observation
points. In the aforementioned work, the average magnitude of the residuals was 27.7 microns as
shown in Table 3.1. Thus, with the machine’s thermal condition varying, additional uncertainty of
removing and replacing the laser target in the spindle and a measurement set reduced by more than
a third, the constrained K-optimal observer produced comparable performance. The feasibility of
using a smaller and more strategically-chosen point-set to perform on-line thermal error tracking
is thus demonstrated. The measurement cycle time for measurements for this reduced set of points
is only 24 minutes. This suggests that, with a quick data collection strategy and a robust error
model parameter estimation procedure, one might be able to track and compensate the thermal

errors as they evolve by executing a process intermittent gaging and error updating strategy.

4.3.3 THERMAL ERROR TRACKING AND ANALYSIS

One can compare the performance of tracking approach to that of a static calibration
approach that does not attempt to track and compensate thermal errors. In such a situation the
machine is calibrated once (typically, a quarter or a month or, optimistically, at the beginning of a
shift) and the results are used, without regards to the thermal state of the machine, for compensation
of its errors during operation. Simulating an optimistic situation, where the machine is calibrated
at the beginning of the shift and the results of the calibration are used through the entire shift,
measurement frame discrepancy, T, ; and error parameters, p, in the first cycle (initial state) are
computed and used to calibrate the rest of five data sets. Thus, the residual at the i"" observation of

the j™ cycle in this case is given by:
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RES;; = |Mipy = (To Hitt — Gij)||,, G =1, ... 6). (4.15)
The statistics of the residuals produced by this approach (or the performance of a static
compensation approach) are given in Table 4.5. The average model residual grew from 26.3 to
155.1 microns in the five-hour heating up process and reduced to 120.7 after a one-hour cooling
period. Over a 400-minute period of operation, the compensations estimated in the cold state of
the machine, though producing some improvements in the error, are seen to become increasing
ineffective. After 5 hours of heating, the compensations only produce a 15% reduction in error.

Table 4.5: Thermal drifts without updating the error parameters

Machine Observed (um) Residual (um) %Decrease
State Mean Max Mean Max Mean Max
Initial 119.1 265.9 26.3 98.2 77.92% 63.07%

Heating 134.4 279.6 77.1 122.6 42.63% 56.15%

Heating 154.0 310.2 1154 180.0 25.06% 41.97%

Heating 169.6 311.6 138.6 208.8 18.28% 32.99%

Heating 181.9 331.6 155.1 235.0 14.73% 29.13%

Cooling 157.3 309.4 120.7 208.6 23.27% 32.58%

In many situations, instead of opting for a static calibration or attempting to update the
entire parameter vector (to compensate for workspace drift and distortion), one may opt to probe
a few points, estimate the drift and program in a shift of the programming origin based on these
measurements. This situation is simulated by doing a full calibration in the first cycle, then use
fixed error parameters, p; but update workspace drift specified by T, ;, which now has only three
translational degrees-of-freedom. For the remaining five measurement cycles, the workspace
drift, T, ; Ty is identified by:

76

. N - N 2,
rpOmZIIszl — (ToiHiTe — @i || j = 2~6, (4.16)
T =

where T ; has only three translational variables,
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Xo0,j

Yo, (4.17)
Zo,j
1

S O - O
S =L O O

The same error parameters, p; is used to predict the errors at the same observer locations.
The prediction errors of the i observation of the j cycle is given by,

RES;; = |Mipy — (To jHiF: — Gy )|

o) = 2~6. (4.18)

As shown in Table 4.6, updating T, ; is effective in controlling the inaccuracies caused by
the thermal effect. The worst mean model residual occurs at the end of the heating period and is
measured to be 98.1 microns, which is lower than that produced by using static calibrations.
However, the model performance is seen to degrade severely when compared to the full
identification of the model parameters. One can see that that using a static compensation and
tracking only the drift of the workspace explain only 46.07% of the observed thermal error. These
comparisons between full periodic parameter identification, partial (drift only) identification, and
no identification not only illustrate the scale of the relative influence of thermal errors (workspace
drift and distortion), but also demonstrates the need and importance of periodic updates to
calibrations.

Table 4.6: Thermal drifts (only compensate the shift of the measurement frame)

Machine Observed (um) Residual (um) %Decrease
State Mean Max Mean Max Mean Max
Initial 119.1 265.9 26.3 98.2 77.92% 63.07%

Heating 134.4 279.6 68.7 184.4 48.88% 34.05%

Heating 154.0 310.2 73.3 203.0 52.40% 34.56%

Heating 169.6 311.6 88.6 243.1 47.76% 21.98%

Heating 181.9 331.6 98.1 255.5 46.07% 22.95%

Cooling 157.3 309.4 84.9 195.6 46.03% 36.78%
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4.3.4 AXIAL BEHVIORS AGAINST THERMAL VARIATIONS

The thermal effects are observed to cause the average error of the machine to grow from
119.1 in the cold state to around 181.9 microns after 4 heating cycles. With compensation, the
error model parameters (see Section 3.1 for more details) estimated by the single step identification
process error, described in the Section 4.3.2, would hold the average error of the machine to around
30 microns. The error parameters were identified by the least-squares fitting. The variations of

parameters related to X, Y, Z, and W axis at different machine’s thermal states are shown in Figure

4.8.
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Figure 4.8: Variations of error parameters over the course of the experiment

Only parameters associated with the Y and W axes show significant changes during four

heating cycles. The spindle was turned on during the heating process, and the readings of the
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wireless temperature sensors as depicted in Figure 4.7 show that the temperature readings of W
and Y-axis increased by 4.5 and 3°C, respectively. The other parameters related to the X and Z-
axis, on the other hand, had less than a 2°C rise in temperature during the 400-minute heating
process. By studying the thermal behaviour of each axis, one can understand the characteristics of
the machine, which could be used in error avoidance. For example, it is observed that the error
parameters associated with W-axis are varying significantly during an operation. It shows that the
machine’s positioning error caused by distortion of W-axis could be more significant. Therefore,
the positioning error could be avoided by replacing a W-axis movement with a Z-axis movement.
Besides, it is observed that some parameters do not vary significantly over time and could be
considered constants (e.g. parameters associated with X and Z axes). By making such assumptions,
the number of undetermined error parameters can be reduced and thus reduce the needed number
of observations.

The experiment on the unconstrained K-optimal observer design (i.e., observer obtained
without measurement point distribution constraints by solving Equation (4.7)) was also conducted.
The statistics of the results are shown in shown in Table 4.7. First, because the machine spindle
was not run, between measurement cycles, the observed errors stayed constant. The temperatures
during the experiment were observed to remain constant to within 2°C. While the parameters
identified based on the measurements prescribed by the observer explain about 70% of the
observed error, it can be seen that in terms of magnitude, the residuals are higher than those seen
in the constrained observer (shown in Table 4.4) as well as in the quasi-random measurements

(shown in Table 3.4).
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Table 4.7: Model performances over time(unconstrained K-optimal)

Machine Observed (um) Residual (um) %Decrease
State Mean Max Mean Max Mean Max
Initial 176.0 460.9 47.9 114.5 72.78% 75.16%

Heating 180.4 449.4 49.2 114.8 72.73% 74.45%

Heating 177.2 444.1 48.9 110.8 72.40% 75.05%

Heating 176.7 453.7 48.4 119.5 72.61% 73.66%

Heating 172.9 443.5 47.6 110.8 72.47% 75.02%

Cooling 169.8 427.4 49.8 130.4 70.67% 69.49%

Cooling 163.8 417.6 46.5 105.8 71.61% 74.66%

4.4 SUMMARY

In this chapter, the idea of using error observers to track the machine tool errors is
introduced. An optimal observer design identifies a set of locations in the machine’s workspace at
which to make error measurements, so that the information contained in the set to estimate the
parameters of a given error model is maximized. The approach can be used for any of the many
proposed volumetric/quasistatic machine tool error models. The concept of applying the K-optimal
design that minimizes the sensitivity of measurement errors on the parameter estimates has been
proposed. The use of a single optimality criterion in the observer design leads to localization of
the measurement points either near the center of the workspace or at its boundaries. To overcome
the tendency, constraint volumes are used to uniformly distribute the observer points over the
workspace. Redundancy (more measurement points than the minimum needed) is also introduced
to guard against the effects of model inadequacy. Constrained and unconstrained observer designs

based on the K-optimal design criterion have been generated for a 5-axis machine.
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CHAPTER 5.POINT-SET BASED METROLOGY FOR PLANAR SURFACES

In Chapter 5, the concept of point-set based metrology combined with virtual gaging that
not only verifies the finished specification of the manufactured part, but also adjust to the
variability as it accrues between manufacturing steps of a part is proposed and verified
experimentally. Section 5.1 introduces the problem, while mathematical model of virtual gages is
proposed in Section 5.2 proposed. Section 5.3 shows the experimental work. The procedures of
virtual gage analysis are proposed, and a prototype problem is solved to validate the idea of virtual
gage analysis in Section 5.4. The generalized virtual gage analysis with slack variables is tested in

Section 5.5, while Section 5.6 presents a summary drawn from this chapter.

5.1 INTRODUCTION

A virtual gage is a digital simulation that combines real data (measured from an artifact)
with a computer representation of a condition or test that the data should satisfy. For example, the
former might be a point-set extracted from the scanned data of a part while the latter might be the
equation of a plane extracted for part model that represents an ideal material condition that must
be satisfied by all points in the aforementioned point-set. The virtual gage assembles these entities
into a common reference frame, creates the appropriate set of inequality conditions to be satisfied,
and then checks them on each point in the point-set. Figure 5.1(a) shows a typical situation
encountered in the test case of deciding the acceptability of a casting for final machining. To
produce an acceptable finished part, a machining allowance of do is desired on each machined
surface. The virtual gage software computes the rigid body transform (translation and rotation) of
the point-set to produce each point in the set representing the casting surface satisfies the gage
equation (given in Figure 5.1(b)). Obviously, a part will have several such specifications and the

virtual gage software is expected to find a single rigid body transformation with which to
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simultaneously satisfy all of them. One may introduce conditional steps into the procedure, for
example, if all the gages can be satisfied, then the software should “equalize” the allowances on
all machined surfaces. As is apparent, each virtual gage introduces one or more sets of inequality
constraints as does the conjoining of the reference frames of point-set and gage planes. Thus the
problem becomes a constrained optimization problem, where an optimal solution satisfies the
virtual gage constraints and minimizes or maximizers some objective (such as difference in

machining allowance on all machined faces).

(a) (b)

Uncut surface .
Removed material

Raw casting surface \

Insufficient material

Displaced raw casting
Raw casting

Figure 5.1: Figure 1. Virtual gage and point-set before (a) and after (b) adjustment

Thus, in summary, to setup a virtual gaging problem, a point-cloud representing the
physical part and virtual gages idealized geometrical surfaces and representing the dimensional
tolerance and allowance specifications are required. In the GD&T standard, dimensions and
tolerances are defined based on a reference or datum coordinate frame. This may be different from
the coordinate system in which machining is programmed. For simplicity, a homogeneous
transformation is applied so that the datum coordinate system is made coincident with the

machining programming coordinate system.
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5.2 FORMULATION OF VIRTUAL GAGE
5.2.1 SINGLE VIRTUAL GAGE PROBLEM
Let 7; be the i point in the point-set, S that represents a planar surface on a part. After the
rigid body transformation, T is applied, the shortest distance from 7; to some plane, A4, with
equation, ax + by + cz + d = 0 is given by,
ee=la b ¢ dIT [i‘] (5.1)

With small angle assumptions, a rigid body transformation can be written as,

1 —-a [ Ax
a 1 -y Ay

T = , 5.2
-5 vy 1 Az (52)
0 0 0 1

where «, 8 and y are the roll, pitch yaw angles in radian for angular motion and Ax, Ay and Az
describe linear motion.

Q is defined as the set of all rigid body transformations where -4, < «,B,y < §, and
—8; < Ax,Ay,Az < 6, (the angular rotations are limited by &, and the translations are limited by
é;), so that the optimization problem can be bounded.

A 3-D planar virtual gage problem that attempts to make plane A, a support plane for S at
a minimum distance of ¢ from it while minimizing the distance of the farthest point in S from it
can be expressed as a constrained min-max linear programming problem [19], [62],

ereigq suchthat0) <e<e <q,Vr; €S, (5.3)

where q is the target function as well as an upper bound of all the distance of points r; in S from
A, and ¢ is the desired “clearance from” or “allowance for” the gage to the point-set as shown in

Figure 5.2.
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Figure 5.2: Optimized rigid body transformation is found by minimizing the maximal distance

5.2.2 MULTIPLE VIRTUAL GAGE PROBLEM

For a part with multiple virtual gages specified, a single homogeneous transformation
matrix, T is used to simultaneously displace (rotate and translate) all the point-sets so that their
correspoding gage planes become supporting. For example, three point-sets as shown in Figure
5.3 are cheched against three virtual gages. Two points (marked as solid circles) do not satisfy
their corrsponding virtual gage. A single homogeneous transformation matrix, T, is used to
simultaneously displace (rotate and translate) all the point-sets so that their corresponding gage

planes equations are satisfied.

Tl’j

1"2']' °
HTM, T Tn, Ty
Satisfied
Unsatisfied |:> Oa ste
L Sej=q
b i 7y ° o

o T7s;

Figure 5.3: An HTM rigidly displaces the point-sets so that their corresponding gage planes are
satisfied
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In an n-gage problem, n pairs of point-sets and gage planes {S;,p;},i =1,2,...n are
considered. The distance e; ; of the j™ point, 7; ; in i" point-set, S; to the i gage plane, p; is given

by:

ri,j

U] < q (5.4)

~T
eij = Di T[
where g; represents an upper bound one; ;, and ﬁiT =[a; b; c¢; d;]isthe coefficient vector
of the i gage plane, p; with plane equation a;x + b;y + c;z + d; = 0, where ||[[a; b; ¢]7|| =
1.

The algorithm seeks to minimize the weighted sum of n distance upper bounds,

n
I’II'lel(l;.lzﬁql BOSei,j SquTi'j ESi,i: 1,..n, (55)
i=1

where f;, is a non-negative weighting coefficient for the distance measure, g; of the i"" virtual gage
has elements.
The constraints in Equation (5.5) can be written as linear inequalities,

bixij —aiyij izij—cixiy GYij—biziy a; by ¢ =11, [_hi,j

5.6
h, (5.6)

a;yij— bixij cixpj—aizij bizij—cyi; —a; —bg —¢; 0 v=
where v = [a By Ax Ay Az q;]" is the vector of controllable variables, h; ; = a;x; ; + b;y; ; +
ciz;j + d; is the discrepancy from 7; ; to the plane.

The linear program of Equation (5.5) is bounded because Q, the domain of its decision
space, is bounded. If the linear programming problem is found to be infeasible, there are two
possible reasons:

1. Q, the limitation on allowable transformations T is restricting the algorithm for

obtaining a feasible solution:
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The reason for the infeasibility can be verified by examining the Lagrange multipliers of
the constraints at termination. If any of the constraints that correspond to the limits imposed by Q
have non-zero values, then one can attribute the infeasibility due to restricting the set of feasible
rigid-body transformation. The situation can be resolved either by relaxing Q or by using a
sequential programming approach, which updates the problem linear program at the current value
of T and restarting the optimization. As can be seen in Figure 5.4, the two gage problem cannot be
solved since the point-set is not allowed to rotate about Z direction. There exists no translational
matrix such that the two gages can be satisfied simultaneously. However, if rotation about Z

direction is possible in the HTM, the problem is solvable.

(a) Case 1: infeasible (b) Case 2: feasible
mian.BOSeUSq., mian.BOSeUSq.,
Ten L " L Ten t " t
i i
1 0 Ax cosf —sinf Ax
where T = [0 1 Ay where T = [sin@ cos6 Ayl
0 0 1 0 0 1
(<) (<)
(<) ° (<) °
Sup} @ @
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| | | |
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Figure 5.4: 2-D examples, problem is: (a) infeasible due to rotation is not allowed; (b) feasible
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If none of the tight constraints are associated with , then the infeasibility is due to
dimensional defects (e.g., insufficient material). In the context of the casting metrology problem
described earlier, one can choose to reduce clearances or machining allowance requirements, relax
constraints post by gages deemed less important than other, or reject the casting.

2. The infeasibility is due to insufficient material on the part:

As can be seen in Figure 5.5, the 1% and 2" pair of virtual gage and point-set cause the
infeasibility of the problem formulated by Equation (5.5). Since the distance between gage 1 and
2 are shorter than the distance between the two closest points in S; and S, there does not exist any
displacement that can satisfy these two gages at the same time. In this case, further analysis is

required to detect the gages that cannot be satisfied.

mTinZiqi 5 0 <e;; < q;isinfeasible
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Figure 5.5: Problem is infeasible since insufficient material on features 1 and 2.

5.23 MULTIPLE GAGE PROBLEM WITH INSUFFICIENT MATERIAL

A general form of linear programming problem can be written as
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min fTx 3 Ax < b, (5.7)
X

where x is the vector of controllable variables, f is the coefficient vector, Ax < b are the
constraints of linear inequalities.

The existence of the solution to Equation (5.7) depends on only the constraints, Ax < b.
The feasible region is the set of all solutions that satisfy Ax < b. There are three different cases of
feasible region and the associated constraints:

(@) Ax < b has infinitely many solutions. The constraints are loose.

(b) Ax < b has unique solution. At least two constraints are tight (can be satisfied exactly).

(c) Ax < b has no solution. At least two constraints are broken (infeasible).

A virtual gage is a set of linear constraints. Similarly, a virtual gage can be loose, tight or

broken when it appears as constraints in a linear programming problem as shown in Figure 5.6.

(a) Loose gages (b) Tight gages (c) Broken gages
Ax < b has solutions Ax < b has unique solution, Ax < b has no solution
eg.d<d Ax =b eg.d,.>d
eg.d_=d
gage  ps
Gage 1 Gage 2 Gage 1 Gage 2 Gage 1 Gage 2
< > | : |.
° P b 1 @ o d, . .© o gage I
1 ! | i | ! o
o¢:i----—----1p9g © S | ° | 0€---->O |
° : dps : ° ° .:* dps >:. ° ° i ps | ®
°o o ° ‘0 o e
| , o ! I o : @
-14+x<0 6+x=>5 0+x<0 5+x>=5 1+x<0 44+x=5
x<1 x> -1 x<0 x=0 x<-1 x=1

Figure 5.6: Schematics of three types of virtual gages: (a) loose; (b) tight; (c) broken

When there exists no feasible solution for Equation (5.5), mathematically speaking, the
feasible region formed by the corresponding constraints does not exist. Without further analysis,

the only conclusion can be made is that the raw casting has defectives, so the final casting will not
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satisfy all GD&T requirements. However, the defectives might be fixed by manually adding
material on the defective surfaces and still gets acceptable finished part. If the features are too
defective to be manually compensated, rejection could be considered. Therefore, more quantifiable
information regarding the surfaces, where the material conditions cannot be satisfied are required
to decide to reject or accept the part.

This examination of unsatisfiable feature’s machining allowance is implemented by
allowing the gages to move along the direction of their normal vectors by the values of their slack
variables, which will be introduced to the linear programming formulation. A virtual gage with a
positive slack variable cannot be satisfied by any HTM, and its slack variable represents the
amount of negative machining allowance. In order to find the infeasible virtual gages, slack

variables, denoted by s; are introduced:

n
I’II'IEIKI?Z giSi @ —S; < € j < qi Vri,j € Sl',i =12..n, (58)
i=1

where e; ; is the discrepancy of the j™ point in the point-set paired with the i virtual gage defined
in Equation (5.4), and g; is the i"" non-negative weighting coefficient for the i slack variable, s;
for the i virtual gage.

The solution to Equation (5.8) suggests the least summation of the slack variables. The
solution to the i™ slack variables is found to be s;, where s; > 0. If s; > 0, the i"" virtual gage is
infeasible. By releasing all infeasible gages by the values of the slack variables, Equation (5.5)

becomes:

n
I’II'IEIKI?Z flql =) _Si* < € j < qi Vri,j € Sl',i =12..n, (59)
i=1
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where f; represents non-negative weighting coefficient, e; ; is the discrepancy of the j™ point in
the point-set paired with the i virtual gage defined in Equation (5.4) and s; is the slack variable
obtained from Equation (5.8).

Assume that the k'™ virtual gage is found to be infeasible with positive slack variable, s3>0,
as the 1% gage shown in Figure 5.7(a). There exists at least one gage associated with the k™ gage
that cannot be satisfied if the k™ gage is not allowed to be released. As can be seen in Figure 5.7(b),
the 2" and 3" gages must be moved, or the problem is unsolvable. The minimum group of the
gages that cannot be satisfied simultaneously is called an infeasible gage group. The other
members in the group can be found be solving a linear programming problem with equality

constraint of s, = 0:
n

I%lEiSIIIZfiqi D—s;<e;<qVr;€S; (i=1~n),s;, =0, (5.10)
i=1

where f; represents non-negative weighting coefficient, e; ; is the discrepancy of the j™ point in
the point-set paired with the i virtual gage defined in Equation (5.4), s; is the slack variable
obtained from Equation (5.8) and sy, is forced to be zero.

The other gage members that cannot be satisfied with the k™ gage are given by the gages
with positive slack variables. There are always two or more gages in the infeasible group. Figure

5.7 shows an example of an infeasible gage group of three gages.
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Figure 5.7: Schematics of infeasible group: (a) the 1% gage is infeasible; (b) the 2" and 3" gages
must be released if 1% gage is not released

It must be noted that Equation (5.9) is always solvable since all infeasible virtual gages are
released to be feasible. Although the released virtual gages can be satisfied, the allowances
associated with these released gages will be all zero. As explained in Figure 5.6(b). The feasible
region is a single point. Hence, the solution to Equation (5.9) must be that feasible point, which is
no longer objective function dependent. In fact, the ways of releasing the constraints such that the
feasible region exists are not unique, and they are all solutions of Equation (5.9), as shown in
Figure 5.7. Releasing every constraint by same amount is a better strategy because it reduces the
maximum amount of violation of the infeasible group and hence reduces the chance of rejection.

To conclude, the downsides of solving Equation (5.9) are:

(@) There are infinitely many ways to release the constraints.

(b) Some constraints may be over released.

(c) The optimal solution is independent on objective function.
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Therefore, a generalized problem is given by minimizing the summation of the original

objective function, all the slacks and the largest slack:

min
TEQ ¢

L

fiqitgisitud-—u<s-—-s;<e¢;<qVr;€S,i=12.n, (5.11)

n
=1
where e; ; is the discrepancy of the j™ point in the point-set paired with the i virtual gage defined
in Equation (5.4), f; and g; are the non-negative weighting coefficients for the distance measure,
g; and the slack variable, s; of the i virtual gage and u is the largest slack variable.

Similarly, the constraints given by point 7; ; in are written as linear inequalities,

bixi,j_aiyi,j Qizjj — CiXj,j Ciyi,j_bizi,j a; b; ¢ -1 0
a;yij —bixy; cixij—aizij bizij—c¢yj —a; —by —¢ 0 -1

—h; -
v < [ L ”] (5.12)
ij

where v' = [ By Ax Ay Az q; s;]" is the vector of controllable variables, h; ; = a;x; j + b;y; ; +
ciz; j + d; is the discrepancy from 7; ; to the plane.

Solution to Equation (5.11) not only detects the features that cannot be satisfied but also
takes into consideration on optimizing the original objective function. More importantly, Equation
(5.11) always has solution, even when some material conditions of the part cannot be satisfied.
would also equalize the amounts of release on infeasible gages because the largest slack in the
objective, u is introduced in the objective function. If some slack variables are found to be positive,
their corresponding gage plane will be violated by the same amount and the material condition
cannot be satisfied. Decision by human is required to determine the acceptability of a defective
part based on the functionalities of the defective features and the values of the slack variables. If
all slack variables are found to be zeros, all material conditions are satisfiable. The conformity of

the part is guaranteed.
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53 EXPERIMENTAL WORK

A test part is designed to verify the feasibility of virtual gage analysis and shown in Figure
5.8(a) is scanned to verify the feasibility of virtual gage analysis. A Keyence LJ-V7200 laser
scanner is mounted on the spindle of a machine tool, and Figure 5.8(b) schematically shows the
setup. The scan paths are generated by VERICUT®, a machine tool simulation tool and verified
on the actual machine to ensure that no collision occurs. During the experiment, the machine tool
is commanded to move the laser scanner along the scanning paths at the feed rate 100 mm/s with

scan frequency of 1000 Hz.

(a) (b)

Machine Tool Controller

= } Encoder
Laser
scanner

Computer

- —
use Power

Power Supply

LS Controller
Y

Figure 5.8: (a) Nominal model of the raw casting; (b) Schematic of using machine tool to move
laser scanner and collect data

To test the validity of the virtual gage analysis for the casting with fixturing error, spacers
were placed between locator Xi and casting as well as between the Y-locators and casting to
simulate the translation error as shown in Figure 5.9(a). Similarly, a small angular error about the
Z-axis was introduced by the spacers between the locator Z1, Z» and the casting. The casting with

fixturing error was scanned and 130976 points were collected as shown in Figure 5.9(b).
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Number of points: 130976
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Figure 5.9: (a) Locators and spacers setup; (b) Collected point cloud of the casting

54 VIRTUAL GAGE ANALYSIS

A 2-step virtual gage analysis procedure is developed as shown in Figure 5.10. First, the
point cloud data is aligned with the raw casting’s CAD model and divided into sub-point-sets to
represent functional features. The redundant points in the sub-point-sets are removed using a
convex hull filter. Second, virtual gages are parameterized as a;x + b;y + c¢;z + d; = 0 based on
CAD model and GD&T requirements of the final casting. The parameterized gages and extracted
sub-point-sets are used to formulate linear programming problem with constraints. The optimal
solution obtained can be used to correct the machining coordinate system and predict the

machining allowance of each feature. Each step is explained in detail as follows.
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Figure 5.10: 2-step procedure of virtual gage analysis

5.4.1 POINT-SET MANIPULATION
Data alignment

The virtual gage integrates the gage planes with sample data (point cloud) from the physical
part. The gage planes are extracted from CAD models, and compatible reference frames between
the point cloud data and the CAD model are established. In this example, a 3-2-1 location scheme
to identify three orthogonal planes that serve as primary, secondary and tertiary data planes are
used. To locate the reference frame of the part, the features of the locators are also scanned before
the part is fixed on the locators. A locator frame is fitted using the point-set representing the
locators.

Data that corresponds to locator planes is extracted from the point cloud. The primary
datum or locating plane, by convention, is selected as the XY plane of the reference frame that

defines its z-direction. Likewise, the XZ-plane and YZ-plane are the secondary and tertiary datum
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reference, respectively. Each of these locator planes is obtained by identifying best-fit support
planes for their corresponding point-sets. The planes are identified sequentially, with the primary
(XY) plane being identified first, the secondary (XZ) plane next with the additional constraint that
it is perpendicular to primary location plane, and finally the tertiary (YZ) plane is identified with
constraints added to ensure that it is perpendicular to the other locator planes.

The primary datum plane, a,x; + b,y; + z; + d, = 0 is obtained by using the point-sets
associated with the location surfaces of the primary datum and finding the best supporting plane

with the following linear optimization problem:

minmax(p, 7 +d,)s.t.p, T +d, = 0; |5, = 1Vi, (5.13)

Pz.dz

where ﬁZT =[a, b, c,]isthe normal to the identified plane and d, locates it in space and 7;
represents a point in the point-set(s) associated with the primary location plane. The above
optimization problem can be linearized and solved as a sequential linear program by preprocessing
the data (For example, setting up the search for the optimal support plane is as a small perturbation
on the best-fit least square plane for the given data). It should be noted that this formulation can
be reduced to the linear programming formulation given in Equation (5.5). Additionally, since a
support plane is searched, the point-set can be reduced (thus reducing the number of constraints),
by only retaining the points on the convex hull of the point-set.

After the primary datum plane is fitted, the secondary datum plane can be obtained by same
formulation given in Equation (5.13) but with the addition of a constraint to enforce the
perpendicularity requirement between the identified primary datum and the secondary datum.

Thus, the following constrained optimization problem is considered:

. N - o - T .
min max(p, ‘1;,+d,) 3 p,-1;+dy, =0; |’py||=1; py "p;=0Vj, (5.14)

py.dy
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where ﬁyT =[ay by cy]isthe normal to the identified secondary normal, and 7; represents a
point in the point-cloud from the surfaces associated with the secondary location plane.

The normal vector of the tertiary datum plane is fixed as it must be the cross product of p,,
and p, i.e, py = P, X p,. The optimization of the tertiary plan can then be written as:

min max dy 3 py 1 +d, > 0 VK, (5.15)

where p, = p, X p, ﬁxT =[ay by c4]is the normal vector of the virtual X-plane and 7y
represents a point in the point-cloud of the X-locators.
After three datum planes are fitted, the locator frame can be constructed. The origin of the

frame is given by solving three plane equations,

s ol |4 (5.16)

A coordinate system can be represented by a 4 by 4 homogeneous transformation matrix
(HTM). The locator frame identified above, in the coordinate systems of the point-sets (scanner’s

coordinate system) is given by,

ay ay, a; Oy
by b, b, o

S _ y
=\ o o of (5.17)
0 0 0 1

As an example of the solid model is constructed in a modeling frame, Cf the with the same
primary, secondary and tertiary locator surfaces, then, located in the point-cloud data reference
system, it should be a 4 by 4 identity matrix. Brought into the point-cloud reference frame (scanner
frame), it would locate the part at its origin with its locator surfaces, aligned with the principal
(XY, YZ, and ZX) planes. When the part’s CAD model is brought into the point-cloud coordinate

system, it is aligned with the locator frame, but situated at the origin. The coordinate transformation
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H moves the point-cloud so that its locator frame is aligned with the locator frame of the part
model. The point-cloud locator frame, C7, identified by the aforementioned procedure coincident
with the locator frame attached to the model is given by:

HXxCP=cCf =1, (5.18)

Thus,

H= (5™ (5.19)

Therefore, HTM, H brings the point-cloud into alignment with the CAD model frame with
the same datum planes.

Feature extraction

After the point-cloud is aligned with the part CAD model, the point-cloud can be
segmented in to point-sets, such that each set is associated with a virtual gage. Each of these point-
sets can then be processes to remove redundant points from the set.

The extraction of points from the point cloud to form a point-set for a virtual gage is
accomplished by creating sampling volumes and classifying (deciding whether a point is in or out)
the points against these volumes. These sampling volumes are associated with important features
and constructed with the part CAD model (because the CAD environment has the appropriate tools
to create and locate them relative to a face in part CAD model that will become a gage plane in the
virtual gage). Besides identifying the points to be included in the point-set for a virtual gage, the
sampling volumes are used for the removal of scanning artifacts (especially those produced near
the edges of a surface during scanning). Figure 5.11(a) schematically depicts the use of sampling
volumes to extract a set of points from the point cloud, and Figure 5.11(b) shows the sampled
point-set (green) from the point cloud(as shown in Figure 5.9(b)) after applying the sampling

volume on a face. In the current stage, only rectangular boxes can be used as sampling volumes.

98



(a) (b)
Number of sampled points: 20664
Sampling box

Sampling volume

120

— 100
£ 80
B0

40

Nominal CAD model

50 100

4
Sampled point-set 200

x(mm) 250

50

y(mm)

Figure 5.11: (a) Schematic segmentation of point-cloud data using sampling volumes; (b) An
example of extracting a point-set for a virtual gage from the part’s point-cloud

Data filtering

The constrained optimization algorithms that implement the virtual gages are
computationally intensive. Dense point-sets generate many constraints for a virtual gage, many of
which are redundant. To reduce the computational time required to check a virtual gage, reducing
the number of constraints by thinning down the associated point-sets by identifying and
eliminating redundant points is required.

Since virtual gages essentially identify optimal support or classifying planes for point-sets
(i.e., planes that define half-spaces that either contain all the points or none), convex closures of
the point-set play an important role in characterizing them relative to the gage planes. Therefore,
only those points involved in the definition of a convex closure or hull (i.e., its vertices) need be
considered. Other points, interior to the closure can be eliminated without fear of changing any
metrics relative to the gage planes.

The convex hull of a finite point-set, S is defined by the convex combination,

CH(S) = {3 awx; |(Viia; = 0) AXY a; = 1}, (5.20)

L=
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where x; is the i point in S.

A finite point-set has unique convex hull, whose vertices, S’ are the minimal possible
subset of S that share the same convex hull. Thus,

CH(S) = CH(S"). (5.21)

All extremal (minimum or maximum) distances between the S and a support or classifying
plane are defined by points in S’. Hence, only the vertices of the convex hull need be considered
in the virtual gage algorithms. In general, |S’| < |S| can be expected, and the computing of CH(S)
is computationally much less intensive than solving the constrained optimization problem of the
virtual gages. Thus, by using the vertices of convex hulls of the point-sets instead of the entire
point-set for the implementation of the virtual gage algorithm is able be to greatly reduce the
computational effort. Figure 5.12 shows the use of a convex hull filter in replacing the point-set

extracted by a sampling volume in Figure 5.11.
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Figure 5.12: A point-set shown in Figure 5.11(b) of 20664 points, filtered to 87 points

o
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54.2 LINEAR PROGRAMMING FORMULATION

A 3-D virtual gage analysis requires to setup a linear programming problem that minimizes
the sum of maximal distances from gage planes to sub-point-sets. However, before formulating a
linear programming problem, for every sub-point-set collected in Section 5.4.1, at least one

corresponding virtual gage plane needs to be defined. Since the virtual gage usually cannot be seen
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in the CAD model, it should be referred to a reference feature (a reference plane or a datum
surface), which can be found and defined in CAD software.

Having known the sub-point-sets and virtual gages, constraints for linear programming are
defined. Every point provides two constraints, which must be converted to linear inequalities for
the linear programming solver as shown in Equations (5.6) and (5.12). After all constraints are
defined, a linear programming problem is formulated.

5.4.3 RESULTS AND DISCUSSION

As shown in Figure 5.14(a), three separate locators (Z1, Z2, Z3,) provided data for fitting
the primary datum as the XY plane of the reference frame that defines the z-direction, followed by
fitting the secondary and tertiary datum, XZ and YZ planes shown in Figure 5.13(b) and (c). All

six scanned locators are shown in Figure 5.13(d).

Y-plane,-0.00010346x+1y+0.0026502z+-853.4401=0

il ‘ E* 1

I
150 100 50 0 -50 -100

Z-plane,0.001732x+-0.0026501y+0.99999z+-462.2193=0

I I |
-100 -50 0 50 100 150

x(mm)

x(mm)

X-plane,1x+0.00010805y+-0.0017317z+130.3151=0

Figure 5.13: Fitted datum surfaces: (a) Z-plane; (b) Y-plane; (c) X-plane; (d) the scan data of the
3-2-1 locators
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Figure 5.14(a) virtually shows the placement of the CAD model on the 3-2-1 locators.
Equations (5.13)-(5.17) are solved to fit the point cloud locator frame, C;. Figure 5.14(b) shows
the point cloud and two their reference frames, C; and C¢. The homogeneous transformation, H
between two frames is given by solving Equations (5.18) and (5.19). By applying H to displace

the point cloud, the point cloud is aligned with the CAD model as shown in Figure 5.14(c).

(a) (b) ()

Aligned by locator

Coordinate transformation

z(mm)

x(mm)

Figure 5.14: a)Virtually located CAD model in point cloud data scanned from the location
surfaces of a fixture; (b) The raw point cloud and the CAD model; (c) The point cloud given in
CAD model’s frame

Initially, thirteen point-sets are extracted using sampling volumes to represent 13
associated planes of the casting as shown in Figure 5.15(a). However, seven of them, including
the top and side of the flange, two inner walls and two outer walls and the top of the tower as
shown in Figure 5.15(b) are used in the virtual gage analysis since they represent the critical
features with tolerance specifications according to the print. Note that six of the seven faces
including top of flange, four inner wall faces and top of the tower restrict only the linear translation
along X and Z-axes as linear constraints. If all normal vectors of virtual gages are perpendicular

to y-axis, then the motion along y-axis is unconstrained, and the solution for translation along y-
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axis, Ay is not unique. Hence, the side face of flange is also considered to provide restriction on

translation along Y-direction for the uniqueness of solution.
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Figure 5.15: (a) Thirteen extracted point-sets; (b) seven point-sets used in virtual gage analysis

The GD&T requirements specified in the print include the minimum thickness of two walls
and with a plus and minus 1.1 mm tolerance region for the machined flange surface. Hence, the
set of points representing the top of the flange surface, as can be seen in Figure 5.15(b), is checked
against the virtual gages, z > 109.3 and z < 111.5 for the specified tolerance region to determine
if the flange surface can be machined properly. Other GD&T specifications are all minimum
material conditions, which are checked only by single gage. The sets of parameters of all virtual
gages obtained from CAD model are given in Table 5.1. All extracted point-sets are filtered by
convex hull to remove redundant points. The size of seven point-sets representing seven features

with and without filtering is given in Table 5.2.
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Table 5.1: Virtual gage parameter sets, a;x + b;y + ciz+d; = 0

Feature a; b; Ci d;(mm)
Top of flange 0 0 1 -109.30
Top of flange 0 0 -1 111.50
Side of flange 0 1 0 -145.80

Outer wall 1 1 0 0 -87.43
Outer wall 2 -1 0 0 12.42
Inner wall 1 -1 0 0 75.62
Inner wall 2 1 0 0 -23.48
Top of tower 0 0 1 -124.20
Table 5.2: Point-set size with and without filtering
Size before Size after
Feature L o
filtering filtering
Top of flange 20664 87
Side of flange 5361 79
Outer wall 1 841 57
Outer wall 2 1024 59
Inner wall 1 661 47
Inner wall 2 767 53
Top of tower 3482 97

Since the machine used in the test has three linear axes and one rotary axis, which only

allows the table to rotate about Y-axis, the HTM is limited to four degrees-of-freedom,

1 0 B Ax
0 1 0 Ay

T = 5.22
—B 0 1 Azf (5.22)
0 00 1

where translational offsets, Ax, Ay and Az are in mm and rotary offset of Y-axis, £ is in radian
and restricted by the small angular assumption, —0.05 < 8 < 0.05.
Since all virtual gages are considered equally important, the weighting coefficient f; is

chosen to be 1. A linear programming problem given by Equation (5.5) can be written as,

8
. T .
r’}lelsr)lz q 20<[a;b;c; di]T[ 111] <q;,i=1~8 (5.23)
i=1
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where e; j and g; are defined in Equation (5.4).

The linear programming problem is formulated with the linear constraints as given in

Equation (5.6), and the linear programming solver returns a unique, optimal HTM for the 4-axis

machine as,
1 —-a* B Ax* 1 0 -0.0267 -—-3.12
“ a* 1 —y* Ay” 0 1 0 —-3.09
= = .24
T - v 1 Az* 0.0267 O 1 —-7.19 (5.24)
0 0 0 1 0 0 0 1

where «*, B* and y* are angular offsets in radian, a* and y* are restricted to be zeros since the
table can only be rotated about Y-axis and Ax*, Ay* and Az* are linear offsets in mm.

As can be seen in Equation (5.24), T* suggests a rotation of the casting by -0.0267 radian
(-1.298 degrees) along Y-axis, which is close to the angular offset, generated by the spacers placed
between spacer Z1, Z2 and the casting. The point-set, which represents the top of the flange, is
tilted, but the effect of the rigid body transformation rotates the point-set back to the horizontal
position, as shown in Figure 5.16 and Figure 5.17. The whole point-set is translated by -3.12 mm
along X-direction and -3.09 mm along Y-direction, respectively. These translated distances are

close to 3.00 mm, the thickness of the spacers placed between the casting part and the Y-spacers.

Before
After

N 100

80 80
-40 -20 0 20 40 60 80 100 120 140 -40 -20 0 20 40 60 80 100 120 140

y(mm) y(mm)

Figure 5.16: Front view of the seven point-sets (a) before T" is applied; (b) after T" is applied
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Flange top(before) Flange top(after)
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x(mm) *(mm)
Figure 5.17: Side view of the point-set that represents flange top (a) before T" is applied; (b) after
T" is applied

Similarly, the point-set for the top face of the neck must lie above the cutting line of the
top face, which is already satisfied. Figure 5.18 shows how T* compensates for the angular error
about Y-axis and linear error along Z-axis to make the point-set approximately sit on the horizontal

plane, z=130 mm,

T top(bef
0 ower top(before) 140 - Tower top(after)
130 130 L
g 120 f ' E 120 +
N I
110 110 +
100 ! 100 ‘
0 20 40 60 80 100 0 20 40 60 80 100
x(mm) X(mm)
Figure 5.18: Side view of the point-set that represents tower top (a) before T" is applied; (b) after
T" is applied

Also, four virtual gages, shown as four vertical lines in Figure 5.19 are deployed to check
the two walls’ thickness. By applying T* to compensate the rotary errors and translational error
along X-axis, the point-sets moved to the new positions without touching the virtual gages. It

shows that the requirements on thickness can be satisfied.
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Figure 5.19: Side view of the point-sets that represents four walls (a) before T™ is applied; (b)
after T is applied

To check the validity of the virtual gage analysis, the machining paths in the G-code was
modified according to the transformation of the machining coordinate frame using T*. The error
map of the finished part was built by comparing the scan data of the finished part with the nominal
CAD model. The magnitude of error vector is visualized using color code and shown in Figure
5.20. All machined surfaces on flange and tower are shown as green (error magnitude is between
-0.4 and 0.4 mm). Since all locations of machined faces are within tolerance of 1 mm, the machined

part is conforming.

[mm]

Spacers for translational errors - Spacer for rotational error

Figure 5.20: Error map of the finished part (compared with nominal CAD model)

55 EXAMPLE: CASTING WITH UNSATISFIABLE MATERIAL CONDITIONS
The purpose of this example is to check if the virtual gage analysis developed in Section

5.2.3 could identify the defective casting where the material conditions specified are not met for
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some features. An industrial part of approximate size of 1.5 m x 1.5 m x 1.5 m is scanned. The
part has many features including steps, slots, pockets and holes, etc. However, the example part
has two specific features, represented as type-A (pocket with slot) and type-B (step) that are shown

in Figure 5.21 and Figure 5.22, respectively.

(a) (b)

Pocket

Stair 2

Stair 1 Stair 3

Wall 1 Wall 3
Wall 4

slot ]

Stair 4

Figure 5.21: Type-A feature: (a) CAD model; (b) top view, eight sampling volumes and eight
virtual gages

(a) (b) (c)

Side 1-1 Side 2-1
e —
1 1 1 1
| 1 1 |
| 1 TOp 1 1 |
Top 1-1 | 1 f 1
————— +Pl | 1|4
1 1 ] 1
_______ 1 !
Topr2 P21 L |
4=—4_‘;;L L Top 2 L
-------- 1 1 1 1
Machined face Top 2-2 l 1 i i
| 1 1 |
* | 1 i | 1
| |
Bottom Side 1-2 Side 2-2

Figure 5.22: Type-B feature: (a) CAD model; (b) side view, three sampling volumes and five
gages; (c) top view, two sampling volumes and four gages

As can be seen in Figure 5.21 (a), the type-A feature is a pocket with slot. Figure 5.21 (b)

shows the top view of type-A feature and eight sampling volumes and virtual gages, represented
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by the black boxes and dashed lines, respectively. Eight point-sets are extracted to represent eight
faces (Wall 1~4 and Stair 1~4). The blue gages are used to check four wall thicknesses, and the
green gages examine four depths of steps. All eight gages are built by offsetting the reference
surfaces, marked as red lines, and the offsets represent the minimum acceptable thicknesses and
depths. Note the arrows in Figure 5.21(b) and Figure 5.22(b) and (c) point the side of feasible half-
space. If the entire point-set is within the feasible region, the feature has positive allowance and
has enough material for machining.

Type-B feature is a step shape feature, which is schematically depicted in Figure 5.22(a).
Three sampling volumes (black boxes) as shown in Figure 5.22(b) are applied to extract point-sets
representing two top faces and the bottom face. The ideal machined face (the red line in Figure
5.22(b)) is defined as a virtual gage to check if the bottom face has enough material to be machined
properly. To examine if the thicknesses are within a plus/minus tolerance, two pairs of virtual
gages (Top 1-1, 1-2 and Top 2-1, 2-2) are defined and shown using the side view of type-B feature
(see the dashed lines in Figure 5.22(b)). These four gages are all defined by offsetting the nominal
top faces, and the distances between blue/green dashed lines to red line are the minimum/maximum
acceptable thicknesses. Similarly, two sampled point-sets extracted by the two sampling volumes
as shown in Figure 5.22(c) are checked against four virtual gages, which are defined to control the
width of type-B feature. Distances between blue/green dashed lines represent minimum/maximum
acceptable widths.

The point cloud data is collected with a blue light scanner by scanning four main features.
636368 points are collected. A similar 2-step procedure as mentioned in Section 5.4 and Figure
5.10 is used to execute the virtual gage analysis with slack variables. As shown in Figure 5.21 (b),

atype-A feature is represented by eight point-sets, which are checked by eight virtual gages. Figure
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5.22(b) and (c) show type-B feature has five sampled point-sets, which are checked by nine gages.
The part has three type-A features and one type-B feature. Therefore, 29 point-sets are extracted,
and 33 virtual gages are defined in total. The linear programming problem with slack variables is

formulated as,

33

min » q;+si+u 3 -us< -5 < [a; b; ¢; d;]T [”11] <gq;,i=1~33, (5.25)

i=1
The linear constraints are given in Equation (5.12). T the optimal HTM using 4-axis

machine is obtained by solving Equation (5.25),

1 —a° B Ax 1 0 —0.0037 —2.25
e 1 =y oy o 1 0 —-8.11 .
= -B* y* 1 Az 0.0037 0 1 —5.87 (5.26)
0 0 0 1 0 0 0 1

where a*, B* and y* are angular offsets in radian, a* and y* are restricted to be zeros since the
table can only be rotated about Y-axis and Ax*, Ay* and Az* are linear offsets in mm.

The machining allowances with and without compensation on three Type-A features are
shown in Table 5.3. If the machining coordinate system is not adjusted, the finished casting would
have four unmet material conditions (not enough material for machining) on three type-A features
with negative allowances in depth, which are marked as bold in Table 5.3. With the compensation

of T*, all 24 material conditions of three Type-A features are satisfied.
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Table 5.3: Machining allowances of three Type-A features (mm) before and after compensation

No Gage Depth Depth Gage Thickness Thickness
' (before) (after) (before) (after)
Stair 1 -8.2 0 Wall 1 15.0 7.0
1 Stair 2 7.1 0 Wall 2 6.2 13.0
Stair 3 14.0 5.6 Wall 3 4.3 13.0
Stair 4 1.8 8.9 Wall 4 8.2 1.1
Stair 1 -6.8 1.0 Wall 1 18.0 10.0
5 Stair 2 4.4 3.9 Wall 2 3.4 3.8
Stair 3 -0.4 0 Wall 3 13.0 19.0
Stair 4 6.6 0 Wall 4 6.2 5.8
Stair 1 5.8 12.0 Wall 1 22.0 16.0
3 Stair 2 4.1 0.2 Wall 2 6.7 10.0
Stair 3 8.6 0.6 Wall 3 12.0 20.0
Stair 4 -1.7 2 Wall 4 9.7 5.9

For Type-B feature, as can be seen in Table 5.4 and Figure 5.23(a), if the compensation

HTM, is not applied, the Type-B feature has only one unmet material condition on side 1-1 but is

placed off-center. With the compensation of T*, the Type-B feature is aligned by center. Two slack

variables in the analysis are found to be positive, and the two corresponding material conditions

of maximum acceptable width cannot be satisfied as shown in Figure 5.23(b), which schematically

shows the unsatisfiable material conditions on sides 1-1 and 2-1. This also shows the width of the

type-B feature is larger than the maximum acceptable width by 5 mm (sum of two negative

allowances in the third column of Table 5.4), which is further verified by direct measurement.

Table 5.4: Material allowances of Type-B feature (mm)

Gage Thickness/width(before) | Thickness/width(after)
Top 1-1 4.4 2.4
Top 1-2 3.7 6.6
Top 2-1 4.5 2.3
Top 2-2 3.9 6.6
Bottom 2.5 0.4
Side 1-1 -7.9 -2.4
Side 1-2 16.9 11.3
Side 2-1 2.6 -2.7
Side 2-2 6.1 11.8
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Figure 5.23: Type-B feature with unsatisfiable material conditions on maximum width: (a)
before compensation; (b) after compensation

56 SUMMARY

In this chapter, the virtual gage analysis is proposed to determine the acceptability of a raw
casting for the machining process. The concept of virtual gage is proposed by a parameterized
plane and its half space, which represents a feasible region for the point-cloud data. The analysis
seeks to displace the point-cloud using a single HTM sot that every defined virtual gage can be
satisfied simultaneously. If such an HTM exists, the conformity of the part can be guaranteed. The
analysis is also extended by introducing slack variables to deal with the part without enough
material. Even the part cannot be properly machined, the HTM given by the analysis can still

improve the conformity.
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CHAPTER 6. TOLERANCE VERIFICATION OF CYLINDRICAL SURFACES

In Chapter 5, the virtual gage analysis is introduced to virtually check the material
conditions of multiple planner surfaces. The concept of point-set based metrology is extended to
cylindrical surfaces in this chapter. However, the difficulty of examining cylindrical surfaces is
higher because a cylindrical surface has more degrees-of-freedom (five for a cylindrical surface
and three for a planar surface). More importantly, the feasible space of plane fitting is always a
convex space, which can be used to reduce the size of constraints and thus reduce the complexity
of the problem. However, not every type of cylinder fitting problem has convex feasible space.
For example, the fitting of maximum possible inscribed cylinder has non-convex feasible space,
which makes the complexity of problem grows exponentially with the size by using traditional
optimization solver. Therefore, different strategies are required.

Section 6.1 introduces the problem. In Section 6.2, the 2-D circular fitting problems are
discussed, and the corresponding computational geometry-based approaches are developed. The
projection model of 3-D point-set is built in Section 6.3, followed by example problems using
available data sets in the literature demonstrated in Section 6.4. Section 6.5 summarizes this

chapter.

6.1 INTRODUCTION

Modern metrology techniques make the measurements of surface profile efficiently with
introduction of new measuring equipment such as laser scanner, which allows metrologist to get
accurate and dense measurement data set. As the accuracy of measuring machine improves,
requirements on manufacturing tolerance become more rigorous. However, the paradigm of
workpiece metrology in the industry remains unchanged for decades. Without a good algorithm,

metrologists are not able to process a larger data sets specifically obtained for the cylindrical
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surface, which may lead to overestimation of the tolerance, rejecting the acceptable parts and
increasing the cost. Thus, a quick and accurate algorithm that judge the conformity of cylindrical
surface is critically needed.

According to ASME Y14.5 [12], common tolerance specifications of cylindrical surfaces
include minimum/maximum possible cylinder radii and the cylindricity error. These specifications
are difficult to be measured or evaluated directly using CMMs since they are controlled by a three-
dimensional data set. However, minimum and maximum possible cylinder radii can be estimated
by the radii of maximum inscribed cylinder (MIC) and minimum circumscribed cylinder (MCC),
and the cylindricity can be modeled using minimum zone cylinder (MZC) using optimization
algorithms. However, the optimization problems cannot be solved easily due to the nonlinearities
caused by the rotation and their non-differentiable target functions caused by discrete point-set.

In this chapter, a simplified approach for verifying cylindrical surface’s tolerance
specifications is proposed. Unlike the reported works, which directly use intelligent searching
algorithms to find all five parameters of the best-fit cylinder (including two parameters
representing the orientation of cylinder axis and three parameters for linear offset of cylinder axis),
the proposed methodology only searches for two parameters that control the orientation of the
cylinder. This is done by casting projection of the 3-D point-set along different directions to get
different 2-D projected point-sets and their corresponding 2-D tolerance specifications, which are
computed by computational geometry-based approaches. After the 2-D model is built by 2-D
circular fitting problems, particle swarm optimization (PSO) is applied to find the cylinder axis’s
orientations (specified by azimuthal and polar angles) that optimize the corresponding 2-D
tolerance specifications. By reducing the number of optimization parameters, the efficiency and

accuracy of the tolerance verification procedure can thus be improved.
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6.2 2-DCIRCULAR FITTING PROBLEMS

These tolerance specifications of cylindrical surface are usually difficult to be measured or
evaluated directly using CMMs since they are controlled by a three-dimensional data set. For
simplicity and efficiency, only a portion of the cylinder is measured, and a two-dimensional data
set is collected around a circle and used to represent the entire cylinder. This method greatly
simplifies the problems by reducing the dimension. The tolerance specifications in 3-D can be
approximated using 2-D data set and its 2-D specification, i.e. minimum/maximum possible radii
and the roundness error of the 2-D point-set. The verifications of these three 2-D tolerance
specifications can be done in numerical or computational geometry-based approaches, which are
explained in the following sections.
6.2.1 MAXIMUM RADIUS AND MINIMUM CIRCUMSCRIBED CIRCLE

MC is defined by the smallest possible circle that can be fitted around the roundness profile.
Radius of MC represents the maximum possible radius of a circular profile. A min-max
optimization can be used to define MC of a point-set,

rgiyn e D T 2(x —x)* + (y —y)?Vi=1..n, (6.1)

where r3,c and [x, y] are the radius and center of MC and the coordinate of i point in the point-
set is given by [x; v;].

Equation (6.1) is a quadratically constrained quadratic program problem (QCQP), which
generally is an NP hard problem [101]. However, as a special case of QCQP, Equation (6.1) can
be simplified and solved using interior point method since the feasible region is a circle, which is
a convex region. The two-dimensional optimization can be also solved by optimization solvers

numerically.
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The geometrical-based algorithm developed by Welzl [86] is able to solve MC fitting
problem the problem. The algorithm starts with a MC candidate defined by two or three points in
the point-set. If a point in the point-set is inside of the circle, the point is ignored in the following
iteration as shown in Figure 6.1(a). Figure 6.1(b) shows the case that the point, which is outside
the current circle is used to form the new circle. When a new point is considered, the circle becomes
larger and circumscribes more points in the point-set. The iteration stops when all points in the
point-set is either ignored or used to form the circle. The algorithm finds the control points that
determine MC and provides the solution for Equation (6.1), and its complexity is proportional to

the size of the point-set.

(a) (b)

New MC candidate

-

MC candidate MC candidate

Figure 6.1: Welzl’s algorithm on finding MC: (a) Case 1: remove a surrounded point; (b) Case 2:
fit a larger circle using the point out of current circle

Sorting by the number of control points, there are four outcomes of finding MC for a given
finite point-set, P. The center and radius of MC, and the i"" point in P are denoted by ¢y, 1y and
i, respectively.

1. Number of control points of MC is 1.
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It is a special case. Either every point in P coincides or there is only one point in P. In this
case, Cyc = P1, Tye = 0.

2. Number of control points of MC is 2.

Two control points, the a" and b™ points in P define the diameter of MC. If there are more
than three points in P, the triangle determined by the control points and any other point in P is an
obtuse triangle as shown in Figure 6.2(a). In this case, cyc = (Pa + Pa)/2, Tmc = 1Pa — Do ll2-

3. Number of control points of MC is 3.

The three control points (a, b™ and ¢ points in P) form an acute triangle and its
circumscribed circle is MC of P. Figure 6.2(b) shows an example that three points determine the
point-set’s MC.

4. Number of control points of MC is 4 or larger than 4.

As can be seen in Figure 6.2(c), it is a special case like case 3 that all four (or more) control

points are concyclic.

(b) (c)

¢ > 90°

0,6, 0, <90°

Figure 6.2: Circumscribed circle determined by: (a) 2 points; (b) 3 points; (c) 4 or more points

6.2.2 MINIMUM RADIUS AND MAXIMUM INSCRIBED CIRCLE

According to ISO 12181-1:2011 standard [102], Ml is defined by the largest possible circle
that can be fitted within the roundness profile. For a discrete point-set data, the roundness profile
is not a continuous boundary and cannot be used to restrict the location of MI. Therefore, the
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roundness profile is approximated by MC, which surrounds the point-set. This implies that Ml
must be surrounded by MC. For example, if all points in the point-set are concyclic and form a
perfect circle, Ml and MC of the point-set are identical. Ml of a finite point-set can thus be
formulated using the following max-min optimization [20], [77]:

Max T, 3 Tr + |Cur = el < twe i S —x)? + (Y —y)?Vi=1..n, (6.2)

where 1y¢ and Cye = [Xmc Yuc] are the radius and center of MC, ry,; and ¢ = [x y] are the
radius and center of MI and the coordinate of i*" point in the point-set is given by [x;, y;].

Equation (6.2) also forms a quadratically constrained quadratic program problem like
Equation (6.1). However, the feasible region formed by the constraints is a ring-shape area, which
is non-convex, and the problem is hence NP hard [101]. In the other word, without relaxation of
constraints, the complexity and computation time of the problem grow exponentially with the size
of problem. Therefore, using traditional optimization solver to solve Equation (6.2) might be
inefficient for point-set with larger size. Thus, intelligent searching algorithms such as using
particle swarm optimization (PSO) can be used to solve Equation (6.2) [103]. A generalized
problem form that intelligent searching algorithms deal with is formulated as,

max f(v) 3; <v; <u; Vi, (6.3)
v

where v € R" is the vector with n variables, f(v) is the objective function, [; and u; are lower and
upper bounds for the i variable v;.
Equation (6.2) is rewritten without the constraint on MI’s location and size so that
intelligent searching algorithms can be applied,
max miin[(x —x)*+ (—y)*IVi 3, <x<u,l, <y<u, (6.4)

where [, and u, are the lower and upper bound for x and [,, and u,, are the lower and upper bound
for y.
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However, the constraint on MI’s location and size given in Equation (6.2) cannot be fully
considered in Equation (6.4). The optimal solution might be inaccurate. Alternatively, the nearest
Voronoi diagram, NV (P) for point-set P can also be used to find all inscribed circles and MI.
NV (P) is the intersection of all the nearest Voronoi convex sets. The nearest VVoronoi convex set
associated with the i point in P is the set of all the points that are closer to the i point in P than
to any other point. The nearest VVoronoi diagram is composed of Voronoi edges and has two
important properties [87], which are shown schematically in Figure 6.3:

1. The vertices of NV (P), denoted by Vy (P) are all points equidistant from at least three points
in P and farther to all the others points in P. Every point in Vy (P) can be the center of a circle
that passes through at least three points in P without circumscribing any other points in P.

2. A set of points equidistant from two points in P and farther to all the others in P depict a
nearest VVoronoi edge, and the set of all nearest VVoronoi edges are denoted by Ey (P). Every
edge is a part of perpendicular bisector of two points in P. Every point on Ey (P) can be the
center of a circle that passes through exact two points in P without circumscribing any other

points in P.

e P

@ Vy(P)

— Ey(P)
Inscribed

Figure 6.3: Schematic of nearest VVoronoi diagram and its properties
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By taking advantage of the first property of nearest VVoronoi diagram, one can examine
every potential inscribed circle that passes through at least three points in P but does not
circumscribe any other points. The following steps are used to find all inscribed circles defined by
at least three points:

1. Find minimum circumscribed circle of P, as shown in the black circle in Figure 6.4(a).

2. Construct nearest VVoronoi diagram, NV (P) with edges, Ey (P) shown as blue lines in Figure
6.4(a).

3. For each vertex of NV(P) (each point in V (P)), shown as blue points in Figure 6.4(a),

(@) Find the three points, which are equally distant to the vertex.

(b) Define a corresponding inscribed circle using three points found.

(c) As shown in Figure 6.4(a), check if the potential inscribed circle is inside of MC. If

yes, add it into the candidate list.

4. Find the largest potential inscribed circle left from step 3.

(a) (b)

o P ° Vy(P) Ey(P)
—— Min. Circum. circle (MC) —— Inscribed circle (candidate) = = Inscribed circle (removed)

Figure 6.4: (a) Schematic of finding inscribed circles defined by 3 points; (b) every inscribed
circle defined by 3 points is out of the minimum circumscribed circle
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In general, using algorithms such as PSO to solve Equation (6.4) or constructing VVoronoi
diagram using at least three points in the point-set can find an inscribed circle for finding MI.
However, it is possible that the found inscribed circle from these approaches is out of the roundness
profile depicted by MC as shown in Figure 6.4(b). In general, this happens for point-set that hardly
depicts a circular shape (e.g. the black points shown in Figure 6.4(b)). Hence, two additional
situations (case | and 1) are proposed and their solutions based on VVoronoi diagram are developed.

Case I: Ml is defined using 2 points in P and 1 tangent point on MC

Every point on the edge of VVoronoi diagram can be the center of an inscribed circle. The
inscribed circle passes through exactly two points in the point-set without circumscribing any other
points. Since the inscribed circle should be as large as possible and within MC, the inscribed circle
of the point-set must be also the internally tangent circles (ITC) of MC. The following steps explain
how to find all circles that are not only ITCs of MC but also inscribed circles of the point-set:

1. Remove the points on MC and construct the new Voronoi diagram for the smaller point-set,
P’

2. Find all edges in Ey(P").

3. For every edge found in step 2, it has two ends, V; and V, as shown in Figure 6.5(a).

(@) Find A4 and B, the two points in P’, which are closest to the edge.

(b) Given A and B, solve two tangent points, Q; and Q, on MC so that two circles

determined by ABQ, and ABQ, are two ITCs of MC.

(c) Determine C; and C,, the centers of two ITCs. Note that V3, V,, C; and C, are collinear.

(d) Check if 2ZAC;B > £AV;B (i=1,2). If yes, add the i"" ITC into the candidate list.

Otherwise, remove the i ITC because it circumscribes other points in P’. For example,
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ITC LinFigure 6.5 (a) is a candidate because £AC; B > £AV;B. ITC 2 in Figure 6.5(a),
on the other hand, will not be considered in the next step.

4. Find the largest circle in the candidate list found in step 3.

( ) MI determine d by 2 pts, 1 =0.76747
M

08 |

o P o Vy(P) En(P")

—— Min. Circum. Circle (MC)
—— Internally tangent circle 1 (candidate)

— — Internally tangent circle 2(removed)
Figure 6.5: (a) Schematic of finding ITC using two points; (b) largest ITC in Case Il

Case I1I: Ml is defined by 1 point from point-set and 1 tangent point on MC.

A circle can also be determined using two points if these two points also define the
diameter. To maximize the diameter defined in this way, the ITC can be defined using a point
inside of MC and the farthest possible point. With the assistance of nearest VVoronoi diagram, all
ITC candidates can be found using the following steps:

1. Remove the points on MC and construct the new Voronoi diagram for the smaller point-set,
P’

2. For every point in P’, do the following steps (details are shown in Figure 6.6(a)):
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(@) Find the diameter of MC that passes through the point, A. The two ends of the diameter
are N and F. Two ITCs can be found using diameters defined by AN and AF.

(b) Check if AN and AF intersects with any of the Voronoi edges, Ey(P"). If yes, the
defined ITC circumscribes other points in P" and hence is not a candidate. As can be
seen in Figure 6.6(a), AF intersects one edge in Ey(P') at T. The circle defined by AF
will not be considered in step 3.

(c) If AN does not intersect with any Voronoi edges, add the ITC with diameter of AN to
the list of candidates as shown in Figure 6.6(a). Similarly, check if the ITC defined by
AF should be added.

3. Find the largest circle in the candidate list found in step 2.

(a) (b)

Mi determined by 1 pt, r =0.815
M

o P En(P") @® Center of MC

—— Min. Circum. Circle (MC)
—— Internally tangent circle 1 (candidate)

— — Internally tangent circle 2(removed)
Figure 6.6: (a) Schematic of finding ITC using one point; (b) largest ITC in Case Il
To find M1 of a point-set, all cases including MI determined by at least three points should

be considered. The largest inscribed circle given by one of the three cases is MI. For example, Ml
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of the six points shown in Figure 6.4(b) cannot be defined using at least three points. Figure 6.5(b)
shows the inscribed circle defined by Case | with radius of 0.768. The inscribed circle defined by
Case Il as shown in Figure 6.6(b) has radius of 0.815. Therefore, M1 of the point-set has radius of
0.815.
6.2.3 ROUNDNESS AND MINIMUM ZONE CIRCLE

Roundness, also known as circularity is described by the tolerance zone bounded by two
concentric circles [12], [104]. The minimum zone circle (MZ) fitting problem of a point-set, P
with n points can be formulated with a min-max problem [20], which is similar to Ml fitting

problem as stated in Equation (6.4):

min fr(x,¥) (6.5)

where f.(x,y) = miax\/(x —x)>+(y—y)?— mjin\/(x — xj)z + (y — yj)z (i,j =1~n) is
the objective function of the roundness deviation controlled by x and y, the center position of the
concentric circles and [x; y;] is the i point in P.

The roundness is given by f(x*, y*) where x* and y* are the solution of Equation (6.5) as
well as the positions of MZ. Equation (6.5) can also be numerically solved using intelligent
searching algorithms such as PSO [105] and genetic algorithm (GA) [84]. However, a
computational geometry method based on nearest and farthest VVoronois diagrams [87], [88], [90]
provides the global optimum of Equation (6.5) geometrically. Since a pair of concentric circles has
four degrees of freedom, four or more control points within the point-set that uniquely determine
the concentric circles are searched. According to Roy and Zhang’s works [87], [88], one must
individually find three pairs of concentric circles, whose outer and inner circles are defined by

three and one points (case 3+1), two and two points (case 2+2), and one and three points (case
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1+3). The pair with smallest amount of radial separation among three cases to be MZ. Roundness
error can thus be obtained by radial difference of the concentric circles.

The roundness is given by f,-(x*, y*), where x* and y* are the solution of Equation (6.5)
as well as the center position of MZ. Equation (6.5) can also be numerically solved using intelligent
searching algorithms such as PSO and genetic algorithm (GA). However, a computational
geometry method based on nearest and farthest \Voronois diagrams provides the global optimum
of Equation (6.5) geometrically [87], [88], [90]. Since a pair of concentric circles has four degrees
of freedom (two for center position and two for radii of two circles), four or more control points
within the point-set that uniquely determine the concentric circles are searched. According to Roy
and Zhang’s works [87], [88], one must individually find three pairs of concentric circles, whose
outer and inner circles are defined by three and one points (case 3+1), two and two points (case
2+2), and one and three points (case 1+3), respectively. The pair with smallest amount of radial
separation among three cases to be MZ. Roundness error can thus be obtained by radial difference
of the concentric circles. The flowchart of computational geometry-based algorithms for MC, Ml

and MZ fitting is shown in Figure 6.7.
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2D Point-set /

Convex hull
A A A
Welzl’s Farthest V. Nearest V.
algorithm diagram diagram
A A
Case 3+1 Case 2+2 Case 1+3

Min. Circumscribed Circle

Min. Zone Circle

Max. Inscribed Circle

Figure 6.7: Computational geometry-based algorithms for fitting MC, M1 and MZ [87]

In case 1+3, center of the concentric circles is determined by an inscribing circle of P. A
potential inscribing circle must passes through at least 3 points in the point-set and does not
circumscribe any other points in the point-set [88]. Hence, a potential inscribing circle must center

on a vertex of the nearest VVoronoi diagram. Equation (6.5) can be modified by searching the

optimal concentric circles in case 1+3,

I’I]’(lil’l ﬁ'(ka' YRN)I
N

(6.6)

where  fi(xXiy, Viy) = ml.ax\/(ka - xi)z + (Viey — Yi)z - mjin\/(ka - xj)z + (Viey — Yj)z'

Vi,j = 1~nand [xg, Yk, ] is one of the vertices in Vy (P).
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Case 3+1, on the other hand, defines the center of the concentric circles by a circumscribing
circle of P. As discussed in Section 6.2.1, MC of P might be defined by only two points in P. The
potential circumscribing circle in Case 3+1, on the other hand, must be defined by 3 or more points
[88]. In order to find the potential circumscribing circles, the farthest VVoronoi diagram of P, FV (P)
is constructed. The center of a potential circumscribing circle is one of the vertices FV (P) denoted

by Ve (P). Similarly, the formulation of case 3+1 is given by,

n’:i'nﬁ(xkF' ku)' (67)

where fr(xkF,ku) = miax\/(xkF - xi)z + (ku _ yi)z _ m].in\/(xkF - xj)z + (ku - yj)z ,
Vi,j = 1~nand [xy, yk,] is one of the vertices in Vg (P).

It must be noted that the outer and inner circle found in case 3+1 and 1+3 might be different
circles from MC and Ml of P.

In case 2+2, both concentric circles pass through two or more points. The inner circle
cannot circumscribe any points, while the outer one should circumscribe the entire point-set. The
center of such a pair of concentric circles is determined by the intersections of nearest and farthest

Voronoi edges, Ey(P) and Ex(P) [87], [88]. The problem can be written as,

Ir}cilnf:f’(xkl' yk[)’ (68)

where £y (i i) = ma (e = 30)” + (= %) = min [ =) + (= )°
Vi,j = 1~nand [xy, yi,] is one of the intersections of Ey (P) and Er(P).

Example problem

A randomly generated point-set is use to test the PSO-based and VVoronoi diagram-based

methods. PSO algorithm is used to solve Equation (6.5) with particle size of 20 and maximum

number of iterations of 2000. For the VVoronoi-based method, three cases of radial deviation are
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individually computed using nearest and farthest VVoronoi diagrams. Three pairs of concentric
circles are obtained and shown in Fig. 7. The roundness is found to be 1.055088 determined by
case 2+2. As seen in Table 6.1, two methods have consistent results on both the center of MZ and

the roundness.

Case 3+1: C 5 1024807 ion:1.1287 Case 2+2: C

Figure 6.8: Three cases of finding minimum zone circle with smallest radial separation: (a) case
3+1; (b) case 2+2; (c) case 1+3

Table 6.1: Roundness and MZ fitting of a point-set using two proposed methods

Method X, Y. Roundness
Voronoi (case 2+2) 0.0906190 -0.1888661 1.0550880
PSO 0.0906191 -0.1888664 1.0550879

6.3 3-DCYLINDRICAL DATAFITTING PROBLEMS

A cylinder has five degrees-of-freedom including two parameters for orientation of
cylinder axis vector, two parameters for the offset of the axis vector and one to specify the radius.
The schematic of using Plucker coordinate [20] to fit a cylinder is shown in Figure 6.9. The

optimization formula of fitting MCC and MZC are given by [20],

min ryce By, d, L) = min max|(p; — L) x a|,i = 1~n, (6.9)
a,L a,L 2

min firzc (B, @ L) = min [mgxl(ﬁi — L) x a| = min|(p; — L) x &I] ji=1~n,  (6.10)
a, a,
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where a is axis direction, L is locating position vector, a’L = 0, |a| = 1 is the orientation vector

of cylinder axis, Lisa point on cylinder axis, p; is the it point in P.

— - -

Figure 6.9: Define axis vector and the distance from points to axis using Plucker coordinate

MIC fitting problem of point-set is an unbounded maximizing problem like MI fitting
problem. Therefore, two additional constraints to limit the axis location and orientation are

required for the existence of solution.
n%%er,C(ﬁi,&, D)= ncll%x miin|(ﬁl- - Z) xal,i=1~n 3 LeT,, (6.11)

where I, limits the location of the axis within the cylindrical profile.

As can be seen in Equations (6.9)~(6.11), the three problems seek to optimize variables in
a and L that specify position and orientation of the axes [20], [95], [99]. The number of variables
in a can be reduced from 3 to 2 by (a) adjusting the axis coordinate by aligning it with Z-axis and
(b) assuming the angular displacements of axis are sufficiently small. The simplified model of a
isgivenby a = [AB  —Ay 1]7,where AB and Ay are small angular displacements about Y and

X axes. Similarly, L has 3 variables but and can be simplified by coordinate adjustment. Since the

axis, d is assumed to be aligned with Z-axis, L = [Lx Ly 01]7 is given to reduce the number of
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variables. With small variable assumptions, Equations (6.9)~(6.11) are solvable sequentially (e.g.,
by updating AB, Ay, L, and L,, step by step until the objective cannot be improved anymore) [20],
[77]. Thus, intelligent searching algorithms such as PSO is applied to find global optimum for five

parameters (including two parameters in axis direction a = [q, q, 1]7, and three parameters in

locating positon vector L= [x0 Yo Zo]” as shown in Figure 6.9) [99]. Cheraghi et al. [94]
constructed a perturbation model for 3-D point-set’s rotation and projection. Although the global
optimum is not promised due to the nonlinearities of rotations, the projection model can be used
to simplify the problem. The radii of MIC and MCC and cylindricity error of a 3-D point-set are
formulated by maximum radius of MI, minimum radius of MC and minimum roundness error of
the rotated and projected 3-D point-set, which can be solved using numerical and geometrical

methods as discussed in Section 6.2. If the projection model is used, parameters in locating positon

vector, L are redundant, and only two variables (two angles to specify an arbitrary rotation) are
required to determine MIC, MCC and MZC as shown in Figure 6.10. After the projection model
is built, PSO is used to find the optimal rotation (specified by two angles) that optimizes maximum
radius of MI, minimum radius of MC and minimum roundness error of the rotated and projected

3-D point-set.

130



a

@ P, points on cylinder
([ Q, points on circle

Figure 6.10 Project a 3-D point-set, P along a onto x-y plane to be Q

An arbitrary rotation applied to a point can be described by two consecutive rotations about
Y and Z axes using polar and azimuthal angles. As shown in Figure 6.10, the projection of the

rotated point onto x-y plane can be expressed as,

1 0 0 cos¢p —sing O cosH sm@
q; = 0 1 0] [smcp cosgb ” ]'ﬁi, (6.12)

—sinf 0 cosf
where p; € R? is the i point in P, g; € R? is the i point Q, the projected point-set of P, 8 €
[0 /2] is the polar angle and ¢ € [—rr 7] is the azimuthal angle.
As can be seen in Figure 6.10, the projection of rotated P is Q, a 2-D point-set whose MC,
MI and MZ can be solved using the methods reviewed in Section 6.2 for given 6 and ¢. Equations

(6.9)~(6.11) can be rewritten based on Equations (6.1), (6.4) and (6.5):

minr = min ry,, = min |min max C g 6.13
P Mcc P MC K |Mc qll]! ( )

6.14
mlnfMZC = mlnfMZ = m1n [mln(maxchZ q;l — m1n|cMZ q1|)], ( )
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max ;e = maxny; = max |maxmin|cy; — g;||
b Mic b M B | max AN qi

T + 1Cur — Cucl < e VO, @

(6.15)

where g; is the i pointin Q, 7cc and ry;c are the radii of minimum circumscribed and maximum
inscribed cylinder of P, fy;z¢ is the cylindricity of P, ry, and ry,; are radii of MC and Ml of Q and
Cumcr Cuz, Cyy are centers of MC, MZ, M.

In this chapter, PSO is applied to solve 8 and ¢ in Equation (6.13)~(6.15). In the main
loop, 2-D tolerance specifications are computed using the computational geometry-based methods
as shown in Figure 6.7. The flowchart of operation is given in Figure 6.11. It must be noted that
one can also use PSO-based fitting in the main loop, since PSO is also capable of fitting circles of

the projected point-set as demonstrated in Section 6.2.
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/ P, 3D point-set /
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v
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v

Project onto x-y plane

/ Q, 2D point-set / Update 6 and ¢

y
Computational geometry method
(See Figure 6.9)
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Intelligent searching algorithm

y

Optimal objective value in 2D,

Tuc (0, 0), 14y (6, ¢) or £, (6, D)

PSO algorithm
Optimum found?

Report optimal solution,
0™ and ¢*for

Tmces Tmic OF fyyc

Figure 6.11: Flowchart of MCC, MIC and MZC fitting for a 3-D point-set

6.4 RESULTS

Four sets of data from literature are used for testing the proposed method [20], [95], [97].
Computational geometry methods are used in all iterations for all test results shown in this section.
For the PSO solver, the particle size is selected as 20 and maximal number of iterations to be 2000.
The searching regions of 8 and ¢ are 0 to m/2 and —m to , which represent the half upper

spherical surface. Table 6.2 to Table 6.5 show the results, and the used data sets are shown in
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Appendices A, B, C and D, respectively. For each data set, MIC, MCC and MZC are fitted. The

fitted cylinder axis direction specified by polar and azimuthal angles, the radii of MIC and MCC

and the cylindricity are compared with the results reported in literature.

Table 6.2: Results of MIC, MCC and MZC fitting using data set 1 [20]

Proposed approach Literature
0*(rad) | ¢*(rad) | Radius/Cylindricity | 8*(rad) | ¢*(rad) | Radius/Cylindricity
MIC | 0.95531 | 0.78539 49.9956642 0.95531 | 0.78541 49.9956642
MCC | 0.95539 | 0.78539 50.0041462 0.95539 | 0.78541 50.0041462
MZzC | 0.95534 | 0.78539 0.0094101 0.95540 | 0.78541 0.00941
Table 6.3: Results of MIC, MCC and MZC fitting using data set 2 [20]
Proposed approach Literature
6*(rad) ¢*(rad) | Radius/Cylindricity 6*(rad) ¢*(rad) | Radius/Cylindricity
MIC | 5.9435E-03 | -2.68556 59.9362261 6.0663E-03 | -2.65050 59.9362147
MCC | 7.0404E-03 | -1.46939 60.0706331 1.29075E-02 | -1.22423 60.0578814
MZzC | 2.9801E-03 | -1.78017 0.1839574 2.9665E-03 | -1.78017 0.18396
Table 6.4: Results of MIC, MCC and MZC fitting using data set 3 [95]
Proposed approach Literature
6*(rad) ¢*(rad) | Radius/Cylindricity | 6*(rad) ¢*(rad) | Radius/Cylindricity
MIC | 1.5627E-02 | 2.67553 12.0001738 1.5625E-02 | 2.67574 12.000174
MCC | 1.5613E-02 | 2.67779 12.0015866 1.5613E-02 | 2.67780 12.001587
MZC | 1.5632E-02 | 2.67489 0.0027883 1.5619E-02 | 2.67689 0.002788
Table 6.5: Results of MIC, MCC and MZC fitting using data set 4 [97]
Proposed approach Literature
6*(rad) ¢*(rad) | Radius/Cylindricity | 6*(rad) ¢*(rad) | Radius/Cylindricity
MIC | 2.5528E-05 | 1.34413 34.9529517 N/A N/A N/A
MCC | 2.3936E-04 | -0.90318 34.9823836 N/A N/A N/A
MZC | 1.6417E-04 | -1.62812 0.0318301 1.6397E-04 | -1.63300 0.0319
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Compared with the literature using sequential linear programming approach [20], the
model developed in this paper shows similar results for data set 1 as can be seen in Table 6.2.
However, for data set 2 given in Table 6.3, results of MCC fitting are slightly different from those
reported in literature. The difference may be caused by the selection of the initial guess and the
small displacement assumption. Table 6.4 shows the comparison between the methods presented
in this paper with the genetic algorithms (GA) method [95], while two methods show high
consistency on all MIC, MCC and MZC fitting performance. The Geometry Optimization
Searching Algorithm (GOSA) [97] is also compared with the proposed method in Table 6.5, while
the proposed method has similar estimation on cylindricity. The validity of the proposed methods

on MIC, MCC and MZC fitting is thus demonstrated.

6.5 SUMMARY

In this chapter, the 2-D circular fitting problems are reviewed to verify tolerance
specifications including maximum and minimum possible radii, roundness of a circular feature.
Traditional fitting approaches including numerical and computational geometry-based methods
define M1 using at least three points in the point-set. However, the fitted inscribed circle may not
be fitted within the roundness profile for some ill-shaped point-set. Hence, two more scenarios that
define MI with one or two points and a tangent point on MC are considered. The corresponding
solutions for these two scenarios are also developed based on VVoronoi diagram.

The 3-D cylinder fitting problem for MCC, MIC and MZC can be modeled as problems of
optimizing cylinder axis and solved using different algorithms. The reported approaches use four
or five parameters to specify the cylinder axis’s orientation and translation, which are
geometrically redundant. Only two orientation variables are required if the 3-D point-set is

projected along the axis direction. The proposed approach fits MIC, MCC and MZC by finding
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the optimal cylinder axis direction to project the point-set so that the corresponding 2-D
specifications (minimum radius, maximum radius and roundness) of the projected 3-D point-set

are optimized (maximized, minimized and minimized, respectively).
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CHAPTER 7.CONCLUSIONS AND FUTURE WORK
This chapter provides a summary of the work presented in this thesis. The overall objective
of this dissertation is to characterize and compensate for CNC machine tool’s machining
inaccuracy. The proposed objective is met by machine tool quasi-static error modeling, point-set
based workpiece metrology and GD&T verification. Specific conclusion drawn from the research
work is given in Section 7.1. Recommendations for continued research are also presented in

Section 7.2.

7.1 SUMMARY AND CONCLUSIONS
The main contributions of this thesis may be categorized into two basic areas, machine tool

quasi-static error modeling and point-set based workpiece metrology.

7.1.1 MACHINE TOOL QUASI-STATIC ERROR MODELING

(1) A general modeling approach for quasi-static error for a 5-axis machine with a redundant axis
is developed. This approach can be applied to model machines with different kinematic and
static structures. The error model for a rotary joint modeled by Fourier sine series is proposed
based on experimental data provided in literature. The error model of the 5-axis machine was
found to be dependent on 32 linearly independent parameter groups, whose values could be
evaluated using the least-squares fitting technique with errors observed in machine’s
workspace.

(2) The model is identified and verified experimentally using a laser tracker. A large set of
volumetric error measurements collected by a laser tracker with 290 quasi-random
observations in machine’s workspace is done within 90 minutes, which shows the capability

of laser tracker on collecting a large set of measurements efficiently.
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(3) The average magnitude of residual error vectors in the two training sets are 27.7 and 30.7
microns, which are consistent with the repeatability of the machine and the fact that the thermal
environment changed during the experiments. 90% and 83% of mean and maximum quasi-
static error are captured by the proposed model. The modeling approach, along with the
convenience of observing errors as a large set of randomly selected points in a machine’s
workspace with a laser tracker can make for an effective means of regularly updating
compensation tables of machines.

(4) To reduce the number of observations for reducing measurement time but still get robust
estimation on error parameters, different design observers including A, D and K-optimal
design based on optimal design theory used in design of experiments (DOE) are proposed.
Experiments have been conducted to assess the behavior of K-optimal (minimizing the
condition number of the design matrix) observers. Compared with the condition number of
437.8 for 290 randomly-generated commands, the 80-point K-optimal observers have a better
conditioned design matrix with condition number of 122.0. The constrained 80-point K-
optimal observer chosen for with a condition number of 207.3 is also found to be an
improvement.

(5) Over six identical data collection cycles, the constrained K-optimal observer set produces mean
and maximum residuals of 30 and 100 microns, respectively, which are comparable to those
(27.7 and 107.3 microns) produced by the 290 quasi-randomly generated point-set. More
importantly, one data collection cycle takes only 24 minutes. This clearly demonstrates that a
smaller strategically-chosen measurement set can produce estimates comparable to those

produced by larger point-sets.
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(6) To test the possibility of using the observer sets to track the thermal drift of a five-axis machine
with 32 error parameters, a data collecting cycle consisting of 76 constrained K-optimal
observers is used for each of the six thermal states including initial set and four heating and
one cooling cycles. The mean and maximum modeling residuals for six thermal states are
found to be 26.3 and 98.2 microns, respectively, which are close to the mean and maximum
modeling residuals (27.7 and 107.3 microns, respectively) modeled by 290 quasi-random
generated points. This also shows that using a smaller observer set does not corrupt the
accuracy of the error model.

(7) The thermal error of the machine is observed to be significant (around 60 microns over the
course of 320 minutes) during the operation of the machine. The largest mean residual error
for the six measurement cycles conducted is observed to be 33.9 microns. During this period,
if a static compensation model whose parameters were estimated with the machine in a cold
state was used, the mean residual error (the average error one would expect after compensation)
would have risen from 26.3 to 155.1 microns over the course of 320 minutes. If rudimentary
workspace drift was compensated, the residual error would have grown from 26.3 to 98.1
microns. This not only demonstrates that the observer is able to consistently track thermal
errors of the machine as its thermal is was continuously varying, but also serves as a reminder
of the importance and magnitude the thermal component of quasi-static errors.

(8) It is observed that the error parameters correspond to W-axis vary the most because it holds a
heat source, the spinning spindle. For the Y-axis, as it is the closet axis to W-axis and the
second most heated axis, the variation of the error parameters associated with the Y-axis is

also considerable. The other axes, on the other hand, behave relatively stable as the machine
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being warmed up and cooled down. The proposed methodology on thermal error tracking is

also capable of analyzing thermal stability of each axis of the machine.

7.1.2 POINT-SET BASED METROLOGY

Planar surfaces

(1) The concept of replacing traditional metrology with laser-scanned data and virtual gages is
introduced. A metrology system using point-set, algorithms based on constrained optimization
formulations has been developed. By fitting a coordinate system of the casting, point-set data
representing the casting can be aligned with the nominal CAD model. The point-set
manipulation algorithms are used to extract 13 features represented by sub-point-sets from the
raw data set with 14 million points. The point-set filter based on convex hull is introduced to
reduce the number of constraints and greatly improves the computational efficiency.

(2) To find a displacement such that all functional planar surfaces can have enough material for
machining, the virtual gage analysis is developed to model the problem as a constrained min-
max optimization. By solving the optimization using linear programing solver, the optimal
displacement information that simultaneously satisfies all GD&T requirements can be
obtained. The virtual gage analysis can be used for two metrology purposes:

(a) Post-process examination: to determine if a finished part satisfies all GD&T requirements.
(b) Pre-process examination: to adjust the machining reference coordinate before the raw
casting is machined so that the finished part can be conforming.

(3) The validity is tested using a test part with eight functional features. Fixturing errors, which
are introduced intentionally by placing spacers are detected by the virtual gage analysis and

compensated by the displacement information given by the algorithm. The final casting is
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measured and found to be conforming against all GD&T requirements. The feasibility of
examining the raw casting before the machining process is thus demonstrated.

(4) The virtual gage analysis is enhanced to deal with the case that some material conditions might
not be satisfied and the solution may not exist because the problem is overconstrained. Slack
variables are introduced to release the constraints. The system is modeled by linear
programming problem with slack variable. The enhanced model is tested using an industrial
part with 29 functional planar features. Although some features may not have enough material
for machining, the enhanced virtual gage analysis can still suggest an optimal offset
information that satisfies all satisfiable material conditions. The analysis can also predict the
machining allowance of every features with and without the suggested compensation. If some
material conditions cannot be satisfied, the part cannot be properly machined. However, the
compensation can still improve the conformity of the machined part.

Cylindrical surfaces

(1) The common tolerance specifications of cylindrical surfaces include minimum and maximum
possible cylinder radii and the cylindricity error. Typically, the tolerance specifications of a
cylinder represented by a 3-D point-set is approximated by 2-D data-set and its specifications.
Minimum circumscribed circle (MC), maximum inscribed circle (MC) and minimum zone
circle (MZ) of circular fitting problems are discussed.

(2) In defining M1 of a 2-D point-set, typically, at least three points in the point-set are used.
However, the inscribed circle determined using three points may not satisfy the condition that
MI must be fitted within the roundness profile. Two cases are identified for the point-sets
whose inscribed circles determined by at least three points are not within the roundness profile.

These two cases provide internally tangent circles of MC, which are also inscribed circles of
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the point-set. The VVoronoi diagram-based approaches to find all these internal tangent circles
of MC are developed, and MI can be defined as the largest internally tangent circle found in
these two cases.

(3) A simplified approach for fitting MIC, MCC and MZC combining PSO solver and
computational geometry models is developed. The approach has only two angle variables that
describe the orientation of the cylinder axis. Compared with the approach in the literature,
which uses five variables that describe cylinder axis’s orientation (two angle variables) and
offset (three translation variables), the developed model uses only two angle variables but still
gets comparable results. The tolerance specifications of cylindrical surfaces including
minimum and maximum acceptable radii and the cylindricity can be verified using the radii of
MIC, MCC and the radial separation of MZC, respectively.

(4) Four data sets found in literature are used to test the proposed cylinder fitting method.
Compared with the sequential linear programming method, the proposed model solved by
Particle Swarm Optimization (PSO) has slightly different results on three types of cylinder
fitting. It is because PSO can found global optimum for a nonlinear and discontinuous objective
function without an accurate initial guess. The Genetic Algorithm (GA)-based approach,
Geometry Optimization Searching Algorithm (GOSA)-based method and the proposed
approach have similar performance since GA, GOSA and PSO algorithms all provide global
optimum for the objective function. The accuracy and validity of the work are demonstrated.

7.2 RECOMMENDATIONS FOR FUTURE WORK

The research in this thesis was a step forward towards developing a scientific basis for
enhancing machining accuracy through machine tool error modeling and compensation and

workpiece metrology. The methodology was conceptually developed and demonstrated by
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examining raw casting before machining and machining after compensation. Some

recommendations for future work in this area are listed below.

(1) For better performance for quasi-static error model, a thermally stable environment would be
necessary. Additionally, tracking the thermal drift of the machine with time would yield better
model performance. For this, a quicker (consisting of fewer and more strategically-chosen
points) and more convenient data-collection cycle that can be easily embedded into the normal
operation of the machine is needed. A higher order model that better describes machine’s error
characteristic is another approach to reduce the modeling residual.

(2) Chapter 4 has demonstrated the feasibility of tracking thermal errors with constrained K-
optimal observers with periodic measurements taking only around 24 minutes to perform.
Future work will address the evaluation of D- and A-optimal observers.

(3) Faster and less intrusive (than laser trackers) methods for implementing the observers need to
be explored. The error model can be even simplified by replacing the error parameters with
stable thermal behavior with constants. For the fewer parameters, the fewer observations would
be required to get robust estimation.

(4) This work opens possibility of using temperature readings for tracking thermal errors. By
correlating the estimated values of the error model parameter to temperatures in different parts
of the machine, it should be possible to compute volumetric errors using only temperature
readings, thus reducing the time required by, and invasiveness of, the thermal error tracking
system.

(5) The main difficulty in implementing the point-set metrology is to setup the constraints in the
linear programming problem because transferring the GD&T requirements (usually given in a

2D print) into algebraic inequalities is lengthy and unintuitive. To improve the practicability
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of the whole process, a better user interface that helps the user to define virtual gages should
be developed for future consideration.

(6) The proposed approach can be extended to tolerance verifications of straightness, concentricity
and runout. More complicated tolerance verification of point-set data, for example, conicity

and the profile of any given surface can be done using projection model and PSO optimization.
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APPENDIX A. CYLINDRICITY VERIFICATION DATASET 1

Table A.1: Data set 1 [20]

No. X Y Z No. X Y Z
1 | -11.820859 | 50.421254 | -15.817382 | 21 | 33.207329 | 64.844079 | -10.665479
2 | 42.403448 | -6.693162 | 56.567707 | 22 | 34.46129 | 41.806234 | 94.623903
3 | 10.366902 | 80.249947 | 26.965969 | 23 | -26.871029 | 3.103967 39.48246
4 | 18.527457 | 61.577469 | -13.680418 | 24 | -4.153639 | 67.427229 | 23.451422
5 | 23.930322 | 23.878386 | -41.820643 | 25 22.371 47.845956 | 88.060867
6 | 66.363729 | 0.636729 | 49.246025 | 26 | 67.398986 | 16.520701 | 79.062822
Il -3.608026 | -24.493246 | 39.678687 | 27 | 79.257377 | 49.418921 | 4.727043
8 | 75.507564 | 20.208045 | 6.298139 | 28 | -37.543275 | 31.718373 | 8.573268
9 | 48.919097 | 55.614254 | -13.266609 | 29 | 49.576671 | 65.965076 | -6.501629
10 | 65.713317 | 2.841028 3.498858 | 30 | 96.781947 | 53.421231 | 22.908004
11 | 46.632786 | 80.517454 | 4.866333 | 31 | -18.623157 | 23.988046 | 47.691608
12 | 13.598993 | 83.519129 30.375 32 | 58.416292 | -4.557784 | 48.525368
13 | 84.570573 | 18.219363 | 28.224203 | 33 | 48.408528 | 15.833662 | 81.511728
14 | 2.322453 | -10.802862 | 51.268799 | 34 | 31.694971 | -2.169579 | 63.538387
15 | 82.820384 | 38.516367 | 9.148307 | 35 | -18.366214 | 2.837799 | 46.415679
16 | 3.553158 | 75.111087 | 30.738097 | 36 | 81.087477 | 11.573666 | 46.319607
17 | -5.898713 | 21.39033 | 60.097056 | 37 | 57.311572 | -9.09605 | 38.123767
18 | 30.009532 | -24.696147 | 35.870356 | 38 | 68.59397 | 33.580936 | -6.118165
19 | -3.793621 | -14.263808 | 46.897322 | 39 | 89.036231 | 21.72231 | 35.086999
20 | 58.357492 | 87.161327 | 11.960644 | 40 | 3.141412 | 52.730721 | 67.919265
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APPENDIX B. CYLINDRICITY VERIFICATION DATA SET 2

X
60.051121
-57.932024
57.432130
55.022756
29.180100
-58.861558
-44.597179
-23.247383
34.041568
-34.084135

Y
0.002953
15.399312
17.488707
-23.936632
-52.423113
-11.113569
40.113733
-55.406652
-49.309081
-49.427745

Table B.1: Data set 2 [20]

Z
3.946134
15.983017
20.365942
11.505062
1.037163
20.134482
2.005267
17.669299
15.807863
12.479981

154

No.

11
12
13
14
15
16
17
18
19
20

X
50.684216
57.318676
-40.408130
-39.838370
-10.261352
53.919844
-8.540012
-59.369089
-38.029817
47.946099

Y

-32.022045
17.619539
-44.485701
44.994386
-59.146784
26.493193
59.442972

8.361285
46.404843
-35.925380

Z
22.865941
22.082457
22.692315

7.411167
22.600675
18.949042
13.092342

7.133233

4.995216
27.276243



APPENDIX C. CYLINDRICITY VERIFICATION DATA SET 3

Table C.1: Data set 3 [95]

No. X Y Z No. X Y Z
1 11.0943 0.4522 65.2328 13 10.8150 0.5918 85.2304
2 5.0940 10.8450 65.0765 14 4.8148 10.9846 85.0740
3 -6.9063 10.8439 65.0089 15 -7.1855 10.9835 85.0641
4 -12.9065 0.4498 65.0897 16 -13.1858 0.5894 84.8952
5 -6.9063 -9.9429 65.0540 17 -7.1855 -9.8033 85.0516
6 5.0940 -9.9418 65.2216 18 4.8149 -9.8022 85.2171
7 10.9546 0.5220 75.2316 19 10.6754 0.6616 95.2291
8 4.9544 10.9148 75.0752 20 4.6752 11.0544 95.0728
9 -7.0459 10.9137 75.0770 21 -7.3253 11.0533 94.9077
10 -13.0461 0.5196 74.8964 22 -13.3254 0.6592 95.0940
11 -7.0459 -9.8731 75.0528 23 -1.3252 -9.7335 95.0504
12 4.9545 -9.8720 75.2204 24 4.6752 -9.7323 95.2170
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APPENDIX D. CYLINDRICITY VERIFICATION DATA SET 4

Table D.1: Data set 4 [97]

No. X Y Z No. X Y Z
1 -7.169 -34.21 30.5 41 6.174 34.448 60.8
2 -14.324 -31.887 30.5 42 14.594 31.802 60.8
3 -25.509 -23.877 30.5 43 28.945 19.636 60.8
4 -33.683 -9.283 30.5 44 34.887 2.506 60.8
5 -34.167 7.378 30.5 45 31.458 -15.279 60.8
6 -25.051 24.377 30.5 46 20.538 -28.299 60.8
7 -7.1 34.238 30.5 47 6.489 -34.352 60.8
8 8.071 34.034 30.5 48 -7.37 -34.173 60.8
9 19.797 28.86 30.5 49 -15.817 -31.168 81
10 28.945 19.647 30.5 50 -28.573 -20.125 81
11 34.891 2.595 30.5 51 -33.084 -11.238 81
12 34.168 -7.484 30.5 52 -34.611 4.838 81
13 28.525 -20.224 30.5 53 -25.488 23.924 81
14 18.113 -29.908 30.5 54 -16.38 30.884 81
15 7971 -34.044 30.5 55 -0.788 34.969 81
16 -6.778 -34.29 30.5 56 10.206 33.457 81
17 -11.322 -33.073 43.3 57 21.025 27.971 81
18 -20.262 -28.475 43.3 58 30.269 17.524 81
19 -24.016 -25.389 43.3 59 33.93 8.513 81
20 -31.014 -16.098 43.3 60 34.787 -3.557 81
21 -34.584 -4.991 43.3 61 31.626 -14.895 81
22 -30.614 16.878 43.3 62 18.362 -29.755 81
23 -19.46 29.045 43.3 63 3.4 -34.794 81
24 -5.802 34.484 43.3 64 -5.318 -34.548 81
25 10.248 33.444 43.3 65 -8.484 -33.909 975
26 23.395 26.026 43.3 66 -18.607 -29.583 97.5
27 32.027 14.043 43.3 67 -26.163 -23.175 975
28 34.985 0.374 43.3 68 -33.973 -8.156 975
29 33.364 -10.449 43.3 69 -34.49 5.71 97.5
30 27.418 -21.716 43.3 70 -29.015 19.502 975
31 17.678 -30.164 43.3 71 -17.564 30.231 97.5
32 -0.706 -34.942 43.3 72 -3.842 34.765 975
33 -14.539 -31.801 60.8 73 15.389 31.424 97.5
34 -22.717 -26.563 60.8 74 29.428 18.935 975
35 -26.655 -22.607 60.8 75 34.054 8.042 975
36 -31.59 -14.943 60.8 76 34.931 -2.026 97.5
37 -34.892 1.967 60.8 77 33.204 -11.008 975
38 -29.347 18.995 60.8 78 29.818 -18.273 97.5
39 -19.04 29.322 60.8 79 21.451 -27.629 975
40 -6.241 34.407 60.8 80 15.791 -31.216 97.5
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