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ABSTRACT 

This dissertation aims to enhance machining accuracy by machine tool error reduction and 

workpiece metrology. The error characteristics are studied by building a quasi-static error model. 

Perturbed forward kinematic model is used for modeling a 5-axis Computer Numerical Control 

(CNC) machine with one redundant linear axis. It is found that the 1st order volumetric error model 

of the 5-axis machine is attributed to 32 error parameter groups. To identify the model by 

estimating these parameter groups using the least-squares fitting, errors at 290 quasi-randomly 

generated measurement points over the machine’s workspace are measured using a laser tracker. 

The identified error model explains 90% of the mean error of the training data sets. However, the 

measurements using the laser tracker take about 90 minutes, which may cause the identified error 

parameters to be inaccurate due to the slow varying and transient natures of thermal errors. 

To shorten the measurement time, an experimental design approach, which suggests the 

optimal observation locations such that the corresponding robustness of identification is 

maximized, is applied to design the optimal error observers. Since the observers must be uniformly 

distributed over the workspace for gaining redundancy, the constrained K-optimal designs are used 

to select 80 K-optimal observers for the 5-axis machine. Six measurement cycles using 80 

observers are done at machine’s different thermal states within a 400-minute experiment. Six error 

models are trained with consistent performances and are found to be comparable to the one trained 

by 290 quasi-random observations. This shows the feasibility of using smaller but more strategical-

chosen point-set in data-driven error models. More importantly, the growth on mean nominal 

(119.1 to 181.9 microns) and modeled error (26.3 to 33.9 microns) suggest the necessity of thermal 

error tracking for enhancing the machining accuracy.  
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A point-set based metrology is also developed to compensate the inaccuracies introduced 

by workpiece and fixtures and enhance machining accuracy. The machinability of all planar 

features is examined by virtually comparing the scanned data with the nominal machining planes, 

which are also known as virtual gages. The virtual gaging problem is modeled as a constrained 

linear program. The optimal solution to the problem can compensate the displacement introduced 

by workpiece and fixtures and hence guarantee a conforming finished part. To transfer point-set 

data into mathematical constraints, algorithms that align, segment, downsize and filter the point-

set data are exploited. The concept of virtual gage analysis is demonstrated using experimental 

data for a simple raw casting. However, for the case where the casting is defective, and some 

virtual gages are not feasible, the corresponding linear program was found to have no solution. By 

introducing slack variables to the original linear programming problem, the extended problem has 

been solved. The extended model is validated for the data obtained for another casting. Further, 

the analysis predicts the machining allowances on all functional features. 

Cylindrical surface and its tolerance verification play important role in machining process. 

Although there exist many approaches that can fit the maximum, minimum and minimum zone 

cylinders, the cylinder fitting problems can be even simplified. The proposed methodology seeks 

to reduce the number of parameters used in cylinder fitting model by using the projection model 

that considers the degenerated tolerance specifications of the projected 2-D point-set. Also, to 

avoid the problem of local optimum by introducing the optimal direction of projection such that 

the 2-D point projected onto this direction has optimal tolerance specifications (maximum, 

minimum and minimum zone circles), global optimum solver such as Particle Swarm Optimization 

(PSO) is used. The proposed simplified method shows consistent results compared with the results 

from literature. 
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CHAPTER 1. INTRODUCTION 

1.1 BACKGROUND AND MOTIVATION 

A Computer Numerical Control (CNC) machine tool uses a computer-controlled servo 

system to interpret and execute pre-programmed sequences of motion commands. They were 

developed to machine parts with complex shape in a precise manner [16]. The required tasks for 

producing a part using CNC machines include: 

(a) Offline tasks, which start with a geometric model, i.e., by 2D or 3D Computer Aided 

Design (CAD) model and generate a RS-274 part program (often referred to a g-code 

program) for controlling the NC machine to produce it, 

(b) Online tasks, composed of reading and interpreting the part program generated by the 

offline tasks and the subsequent generation of motion of the tool relative to the workpiece 

so that the part is properly machined, and 

(c) Post-processing tasks that include inspection of the finished part, either on the machine or 

with a Coordinate Measurement Machine (CMM). The measured dimensions are compared 

with the CAD model of the part and corrections are made, if necessary. The compensation 

of the measured error can be achieved by modifying tool offsets and performing additional 

machining operations. 

CNC machine tools are very flexible and versatile. They are capable of machining a variety 

of parts with different geometries by changing the part programs and using different cutting tools. 

In contrast to manual machines where motion is manually controlled by hand wheels and the 

workpiece is intermittently measured by external devices to achieve the desired accuracy, CNC 

machines must rely on the accuracy and stability of their mechanical frame and their motion 

control system for accuracy. This introduces uncertainty in the positioning of the tool relative to 
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the workpiece and, hence, the accuracy of the parts machined, because of quasi-static flexural and 

thermal deformations of a machine’s frame as well as dynamic errors (for example, due to 

machining forces) in its positioning system. Periodic maintenance and calibration for the machine 

tool can alleviate some of this uncertainty. However, the errors that accrue from the above-

mentioned effects can be addressed by modeling the machine tool error and employing the 

workpiece metrology. 

In general, a machine tool designer should consider (i) the overall static stiffness against 

flexural strain caused by self-weight of moving parts and the workpiece or the assembly error, (ii) 

thermal stiffness against thermally-induced deformation, and (iii) the dynamic performance (e.g., 

sensitivity to periodic forcing and resonances). A well-designed machine produces less machine 

tool error, defined by “the difference between the actual response of a machine to a command 

issued according to the accepted protocol of that machine’s operation and the response to that 

command anticipated by that protocol” [1]. Errors can be reduced by avoidance or elimination. 

The former seeks to remove the error sources and thus avoid the errors being produced. For 

example, the thermally-induced error can be avoided at the design stage of the machine tool by 

distributing the internal heat sources uniformly [2]–[5] or by operating the machine in an 

environment with the temperature well controlled [6]. However, the nature of the quasi-static 

errors are experimentally observed to be slowly time varying, which makes them not only difficult 

to be identified and compensated but also dominant in machining inaccuracy [7]–[10]. In fact, 

quasi-static errors are inevitable even for well-designed machine tools since the designers are not 

able to consider all the operating conditions [5]. Thus, the strategy of error elimination, which aims 

to predict and compensate the errors without removing the error sources, is crucial for machining 

error reduction. However, the current modeling and compensation approaches are difficult to be 



3 
 

implemented in production environments because they are either time-consuming or not robust in 

parameter identification procedures. These disadvantages also cause the existing approaches 

susceptible to thermal variation of the machine tool and not capable of tracking the thermal errors 

of the machine over time. 

In order to secure the quality of machining process, metrologist examines and compares 

the finished part with the nominal geometry to perform the compensation [11]. The examination 

performed by the metrologist is based on the dimension and tolerance given by the print, which 

are defined following the national standard, ASME Y14.5 the Geometric Dimensioning and 

Tolerancing (GD&T) standards [12]. However, traditional hard gage-based metrology method 

takes measurements at only few points on the part and may not truly representative. Therefore, the 

results cannot be used to fully determine the dimensioning and toleranceing requirements. A 

comprehensive metrology method such as point-cloud-based metrology that uses the entire surface 

profile of workpiece is preferable. However, the difficulties of implementing point-cloud based-

metrology include: 

(a) not having sufficient computational power and well-developed algorithms to 

process and manipulate a large point-set of size of millions points. 

(b) lack of probe-based metrology instruments to provide condensed and representative 

measurements of workpiece surface. 

Laser scanning technology allows a metrologist to depict the surface profile in a more 

efficient way using point-cloud data set, which is more condensed and representative for the 

surface. Further, many powerful and robust open-source point-set manipulation algorithms are 

available online. Quick and accurate optimization solvers that not only deal with linear programs 

but also complex nonlinear programs are also available. The advances in instrumentation as well 
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as the computational power have opened an opportunity to overcome the difficulties involved in 

developing point-cloud based metrology.  

1.2 RESEARCH OBJECTIVES, SCOPE, AND TASKS 

This dissertation aims to generate a system by which a manufacturer, in an automated 

fashion, can compensate for machine tool workspace errors induced due to part, fixture, tooling, 

or machine tool errors, specifically of 5-axis machine tool. The specific focus will be on thermal 

error tracking, construction of virtual gages for displacement error compensation and cylindrical 

surface’s tolerance verification. 

The scope of this dissertation is limited to applying the newer metrology instruments (e.g. 

laser tracker and laser scanner), optimization techniques (e.g. design of experiments, least-square 

fitting, linear/nonlinear programming and particle swarm optimization) and computational 

geometry (e.g. nearest and farthest Voronoi diagrams) to make machine tool calibration and point-

set based metrology more efficient and accurate. The proposed research objectives will be 

achieved through specific research tasks, with associated sub-tasks, described as follows. 

1.2.1 TASK 1: MAPPING THE WORKSPACE ERRORS OF A MACHINE TOOL 

This research task focuses on understanding the characteristics of the quasi-static errors of 

machine tools by building a kinematic error model for a 5-axis machine tool and designing a quick 

measuring cycle with optimized error model observers.  

• Sub-Task 1: Quasi-Static Error Modeling Using Laser Tracker 

A modeling approach introduced by Ferreira and Liu [7] and extended by Kiridena [8], 

[13], [14] is proposed to be used for the quasi-static errors of a 5-axis machine tool with one 

redundant axis. By introducing errors to the ideal joints and shape transforms of the kinematics of 

the machine, an error model will be developed. First order error characteristics will be used to 
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parameterize the introduced errors. To identify these error parameters, the volumetric error 

components at randomly chosen points will be measured with a laser tracker. The unknown 

modeling parameters can be obtained by the least-squares estimation, and the volumetric error 

model of a 5-axis machine will be built. 

• Sub-Task 2: Quasi-Static Error Observer Design for Thermal Error Tracking 

The parameter identification procedure for identifying the parameters of a volumetric error 

model of a large and complex machine tool usually requires a large number of randomly-chosen 

observations of volumetric error components in its workspace [15], which makes the thermal 

variations of the volumetric error model difficult to track. Therefore, several optimal designs, 

including A, D and K-optimal designs will be applied to reduce the number of observations and 

hence reduce measurement time in the error parameter identification procedure. The feasibility of 

using a smaller but strategical-chosen observation set to track thermal errors will be checked by 

periodically repeating the measurement cycle.  

1.2.2 TASK 2: POINT-SET BASED WORKPIECE METROLOGY 

The goal of this research task addresses the problem of characterizing the raw casting for 

the purpose of (a) deciding on the acceptability of the part based on its material condition, (b) make 

adjustments to the machining reference coordinate system to allow the part to be successfully 

machined, and (c) showing the surfaces with defects if any such surface is not machinable.  

• Sub-Task 1: Data Pre-Processing Algorithm 

A laser scanner is used to collect the point-set data that represents the physical location and 

shape of the workpiece. Depending on the scanning strategy, the collected data usually have a 

large number of points. In this sub-task, a pre-processing algorithm that (a) roughly aligns the raw 

data set with the solid model of the workpiece for data sampling and referencing, (b) breaks the 
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original data set into several data sets based on features of the solid model, and (c) removes the 

points, which are redundant or obviously contain a lot of noise (e.g., outliers and points locate by 

the edges) will be developed.  

• Sub-Task 2: Construction of the Virtual Gage  

In order to check if the dimensional defects of the part can be compensated by shifting and 

rotating the machining coordinate system, virtual gages will be placed as imaginary boundaries 

based on the prints and the design of the final casting [16]–[18]. The geometrical shapes formed 

by the imaginary boundaries will be transformed into algebraic expression as constraints of 

inequality, which will be used later in the optimization procedure. 

• Sub-Task 3: Displacement Compensation Using Virtual Gage 

The goals of this research task are: (a) checking if the workpiece has positive machining 

allowances for all surfaces to be properly machined; (b) estimating the displacement offsets if the 

workpiece does have enough material to be machined, and (c) experimentally verifying the 

proposed approach using a misplaced part with locating errors. Form tolerances will be defined by 

min-max algorithms [9], [19], [20] and linear programming problems, which seek to identify a 

rigid body transformation such that all constraints of inequalities generated in previous sub-task 

are satisfied, and all functioning features are considered equally significant. If such a rigid body 

transformation exists, then all surfaces to be machined will have a positive machining allowance. 

On the other hand, if the algorithm does not yield a solution and a rigid body transformation, it 

shows the workpiece has insufficient material or bad placement that is impossible to be 

compensated by changing the machining reference coordinate system alone. In this case, the 

workpiece could be rejected for the next level of machining process or efforts can be made to 

detect the defects. 
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• Sub-Task 4: Defective Feature Detection  

The algorithm developed in sub-task 3 only determines if the part is machinable but is not 

capable of finding defective features, which cause the part cannot be machined properly. This is 

important for being economical since rejecting a raw casting could be costly in a more complicated 

machining case using complicated part because the defects might be manually compensated by 

adding material. In this task, the algorithm proposed in sub-task-3 is extended such that the 

defective features with negative machining allowances not having sufficient material to be 

machined can be detected. 

• Sub-Task 5: Tolerance Verification for Cylindrical Surfaces  

Sub-tasks 1-4 are developed for checking planar surfaces’ material conditions. In addition 

to the planar surfaces, cylindrical surfaces are the most common features in machining process. 

This sub-task seeks to develop a method to verify the material conditions of a point-set, which 

represent a cylindrical surface. The material conditions of a cylinder are quantified by minimum 

and maximum radii. The cylindricity error of a discrete point-cloud is also verified. The developed 

numerical algorithms are based on particle swarm optimization (PSO), which searches the regional 

extremum of a complex surface. The computational geometry-based methods are built based on 

nearest and fartherst Voronoi diagrams to geometrically determine the smallest, largest and 

minimum zone cylinders. 

1.3 THESIS OUTLINE 

This thesis is organized as follows. The existing relevant research for machining accuracy 

enhancement is reviewed in Chapter 2. The quasi-static error is one of the most important issues 

in machine tool accuracy, and dominating sources of quasi-static error is thermal error. A variety 

of modeling and tracking techniques are reviewed and compared. The variation and displacement 
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of the workpiece can be modeled, measured and quantified by point-set metrology. Tolerancing 

design and verification are two prospects of GD&T specification and are commonly used in point-

set metrology. Many researchers have contributed their knowledge on these fields of study. The 

tolerance verification approaches are reviewed next, which include the planar surfaces and the 

cylindrical surfaces. Finally, the gaps in knowledge leading to the work of this dissertation are 

outlined. 

In Chapter 3, a methodology of modeling a 5-axis machine with a redundant axis is 

proposed based on existing joint transformation models. The ideal and perturbed models for three 

types of joint transformation are used. Besides, the error model for the rotary joint is proposed to 

be modeled using Fourier sine series. With all perturbed joint transformation, one is able to obtain 

the perturbed forward kinematic chain and build the error model. Although the model contains 

nonlinear terms in different joints and links, it can still be linearized by eliminating higher order 

terms in the model. The model can thus be identified experimentally using a laser tracker by taking 

quasi-random measurements in the machine’s workspace. After the error parameters are identified, 

the error model is obtained and tested using another previously unseen training set. 

The concept of error model observer is introduced in Chapter 4. Since the time spent on 

taking measurements is too lengthy to capture the thermal error of the machine even with quick 

measurement instrument such as a laser tracker, one must obtain the optimal locations that 

represent the most informative observations. This problem can be formulated using optimization 

with different criteria according to A, D and K-optimal designs. The observer design problems can 

thus be solved using optimization solvers. The thermal errors can thus be tracked by periodically 

updating the error model using the data-driven approach. Finally, the thermal behavior of each 

axis during the experiment is analyzed and correlated with the temperature variation. 
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In Chapter 5, the point-set based metrology is presented. Section 5.1 provides background 

knowledge, followed by the definition and the mathematical model of planar virtual gage given in 

Section 5.2. Section 5.3 elaborates the experimental setup for the validation. Two example 

problems are solved and used to demonstrate the feasibility of virtual gage analysis in Sections 5.4 

and 5.5. 

The tolerance validation problem is extended for cylindrical surface, which is discussed in 

Chapter 6. Initially, a 2-D circle fitting problem is considered. The Voronoi diagram-based 

approaches are reviewed and tested, while the numerical method based on particle swarm 

optimization (PSO) shows similar results in three different circle fitting problems in Section 6.2. 

The 3-D cylinder fitting problem is simplified by casting projection onto the x-y plane and 

degenerate to 2-D circle fitting problem in Section 6.3. The modeled problems are difficult to solve 

since it contains nonlinearity that describes by axis orientation. Therefore, PSO is used to solve 

the simplified nonlinear optimization problem with only 2 degrees-of-freedom. In Section 6.4, 

measurement data sets available in the literature are used as example problems, and the results are 

compared with the results reported in literature.  

The contributions and conclusions drawn for this thesis are given in Chapter 7. Several 

future works for the continuation of this research are also recommended in this chapter. 
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CHAPTER 2. LITERATURE REVIEW 

In this chapter, a literature survey on research relevant to this thesis is reviewed. Sections 

2.1 and 2.2 present the work related to machine tool calibration, specifically focus on the 

identification of quasi-static errors and the thermal errors. To improve the accuracy and efficiency 

on error calibration procedure, design of experiments for optimal observer design is introduced in 

Section 2.3. Section 2.4 summarizes the standard of workpiece metrology given by ASME Y14.5 

research works related to GD&T verifications using traditional measurements. Research works 

using point-set to verify GD&T specifications of planar and cylindrical surfaces are given in 

Sections 2.5 and 2.6, respectively. Finally, the gaps in knowledge leading to the work of this thesis 

are described in Section 2.7. 

2.1 QUASI-STATIC ERROR MODELING OF MACHINE TOOL 

About 70 percent of the inaccuracy of a machine tool is caused by quasi-static errors. As 

their name suggest, the quasi-static errors are slowly varying errors. The sources of the quasi-static 

error include assembly errors, flexural errors (due to self-weight of moving parts and the work 

piece), and thermal deformations (due to heat generation at the spindle, drives, guideways and 

cutting tools as well as ambient temperature variations, all of which gradually generate the 

geometric inaccuracies in the underlying kinematic structure of the machine [14], [21]). Compared 

with dynamic errors (e.g., servo-tracking errors; dynamic response to cutting forces), quasi-static 

errors vary slowly during the operation of the machine. Due to being constrained, small thermal 

changes cause structural members of the machine to undergo deformation that, in turn, are 

magnified by the Abbe effect [3], [22], [23]. Therefore, thermal errors can, depending on the mode 

of operation and the level of control of the factory environment, become the dominant component 

of quasi-static errors, especially for larger machines with variable operation cycles [24]–[26]. 
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Quasi-static machine tool errors, because of their large imprint on workpiece inaccuracy, and their 

slow variation, are good candidates for compensation. Vast body of literature exists on 

characterization and measurement of the quasi-static errors. In the following two sections, research 

works relevant to this thesis are presented. 

A number of researchers have reported the approaches. 

2.1.1 MODELING APPROACHES 

Denavit-Hartenberg (DH) parameters are commonly used for describing the relation 

between reference frames attached to the links of a spatial kinematic chain [27]. A generalized 

predictive error model, considering combinations of polynomials and functions of nominal 

positions and temperature was proposed by Donmez et al. [28]. Ferreira and Liu [7] applied rigid 

body transformations with small error parameters to develop a linear volumetric error in workspace 

and used least-squares to estimate them. The shape transformation for general inaccurate link is 

modeled by: 

𝑇𝑇𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 = �

1 −𝛼𝛼 𝛽𝛽 𝑎𝑎 + ∆𝑎𝑎
𝛼𝛼 1 −𝛾𝛾 𝑏𝑏 + ∆𝑏𝑏
−𝛽𝛽 𝛾𝛾 1 𝑐𝑐 + ∆𝑐𝑐
0 0 0 1

�, 

 

(2.1) 
 

where 𝛼𝛼, 𝛽𝛽 and 𝛾𝛾 are the angular rotations characterizing the rotary form errors of the link and ∆𝑎𝑎, 

∆𝑏𝑏 and ∆𝑐𝑐 are the components of its dimensional errors along the three axial directions. 

The transformation for an inaccurate prismatic joint with angular and positioning errors are 

modeled as linear functions of position along the joint, and the straightness errors are depicted as 

quadratic functions, 
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(2.2) 
 

where 𝑥𝑥 is the position along the joint, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 and 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 are the rates of change of the angular errors 

with respect to position along joint and 𝛿𝛿𝛿𝛿 is a rate of accumulation of positioning error. 

For machines with rotary joint, Kiridena and Ferreira [8] used perturbations to Jacobian 

matrix to develop error maps of different 5-axis machine configurations. On the other hand, inverse 

kinematics is also a common approach used to identify error components [29], [30]. To model the 

thermally-induced error, which causes the deformation of the structure of the machine to vary with 

time, a strategy using finite element analysis (FEA) coupled with temperature field measurements 

by thermocouples was proposed by Creighton et al. [22]. Veldhuis and Elbestawi [23] also 

proposed a thermal error compensation strategy based on neural network for five-axis machine, 

which eliminates significant error sources.  

For indirect error identification, Sheth and Uicker [31] modeled the kinematic structure of 

the machine with shape and joint transformations. For CNC machines, one deals primarily with 

prismatic joints [6] and rotary joints [32], while the shape transformation primarily involves 

translations across links [33]. A model for the errors of the machine is constructed by introducing 

small perturbations (errors) into the parameters of the shape and joint transformations and an 

expression for the volumetric error vector is obtained as the difference in the spatial location of 

the tool/spindle (relative to the workpiece table) produced by the perturbed and ideal kinematics 

of the machine. The equation expresses the volumetric error in terms of the yet-to-be-determined 

unknown perturbations of the links and joints of the machine. When observations/measurements 
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of the volumetric errors in the machine’s workspace are made, optimization techniques such as 

least-squares fits are used to estimate these perturbations [7], [13], [34]. For example, a 3-axis 

machine’s volumetric error can be modeled using 24 error parameters [7]: 

�
𝑒𝑒𝑥𝑥1
𝑒𝑒𝑥𝑥2
𝑒𝑒𝑥𝑥3

� = �
0 𝑓𝑓1 𝑓𝑓2 0 𝑓𝑓3 0 𝑓𝑓4 𝑓𝑓5 𝑓𝑓6 𝑓𝑓7
𝑔𝑔1 0 𝑔𝑔2 𝑔𝑔3 0 𝑔𝑔4 𝑔𝑔5 𝑔𝑔6 𝑔𝑔7 𝑔𝑔8
ℎ1 ℎ2 0 ℎ3 ℎ4 ℎ5 ℎ6 ℎ7 ℎ8 ℎ9

� 𝑥⃑𝑥, 

 

(2.3) 
 

where �𝑒𝑒𝑥𝑥1  𝑒𝑒𝑥𝑥2 𝑒𝑒𝑥𝑥3�
𝑇𝑇

 is the modeled error, 𝑓𝑓1~𝑓𝑓7 , 𝑔𝑔1~𝑔𝑔8  and ℎ1~ℎ9  are 24 undetermined error 

parameters and 𝑥⃑𝑥 = [𝑥𝑥12 𝑥𝑥22 𝑥𝑥32 𝑥𝑥1𝑥𝑥2 𝑥𝑥2𝑥𝑥3 𝑥𝑥3𝑥𝑥1 𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 1]𝑇𝑇  is a vector determined by 

observations and machine’s forward kinematics. 

The error component along 𝑥𝑥1  direction has linear relationship with error parameters, 

𝑓𝑓1~𝑓𝑓7 and can be estimated by n observations in the workspace (𝑛𝑛 ≥ 7), 

𝑒𝑒𝑥𝑥1 = �
𝑒𝑒𝑥𝑥11
⋮

𝑒𝑒𝑥𝑥1𝑛𝑛
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⋮
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� = 𝑋𝑋𝑓𝑓, 

 

(2.4) 
 

where 𝑋𝑋 is the design matrix. 

The best estimator of 𝑓𝑓 is given by the least-squares estimation, 

𝑓𝑓 ≅ (𝑋𝑋𝑇𝑇𝑋𝑋)−1𝑋𝑋𝑇𝑇𝑒𝑒𝑥𝑥1 . 
 

(2.5) 
 

To ensure the observations carry sufficient information to make accurate estimates of the 

values of the unknown parameters, a large number of observations, (quasi-) randomly distributed 

across the workspace, are required [15], [35], [36]. Figure 2.1 shows a quasi-random point-set in 

a 5-axis machine’s workspace measured by a laser tracker [15]. The collected data is used to 

identify the parameters in the error model. 



14 
 

 

Figure 2.1: Observation point-set for error model identification of a 5-axis machine. Collision 
avoidance (CA) and line of sight (LOS) areas are not measured [15] 

A large set of observation points enforced redundancy in the observations leads to long 

measurement times, even with automated devices like laser trackers. As a result, it limits the use 

of such a volumetric error calibration approaches to static, base-line machine tool calibrations, not 

addressing the changes that may occur as a result of thermal variations during the operation of the 

machine. 

2.1.2 MEASUREMENT APPROACHES 

The circular test and the use of a telescoping ball-bar, introduced by Bryan [37] in 1982 

can make measurements in several planes and only requires, at its core, a short-range, high-

resolution measuring device like a linear variable differential transformer (LVDT). The circular 

test with a telescoping ball-bar, when conducted in several planes at different locations in the 

machine is capable of exposing scale mismatch errors and squareness errors between the axes as 
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well as squareness errors between the axes as shown in Figure 2.2. More importantly, this approach 

exposes backlash during axes reversals, dynamic contouring/gain-mismatch errors (when 

conducted at different speeds). Several other devices such as the laser ball-bar [38] or the grid 

encoder [39] are an attestation to the power of the circular test and its ability to reveal hidden 

characteristics of a machine. While it provides some values (backlash, scale errors) for 

compensation, the observations made by the ball-bar only contain the error component along the 

ball-bar direction. The test is not meant to provide a complete geometrical/kinematic calibration 

of the machine. 

 

Figure 2.2: Setup of the telescoping magnetic ball bar system [40] 

The ASME B5.54 [41] is a standard that establishes methodology for specifying and testing 

the performance of CNC machining centers. It provides a series of examinations for each axis 

(linear or rotary) of the machine. The calibration of the machine is built up axis-by-axis as shown 

in Figure 2.3. Built largely around laser interferometry measurements, each axis is calibrated while 
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the other axes are fixed [25], [42], [43]. The tested axis is traversed along the entire extent of its 

(linear or angular) range with programmed periodic measurements taken by measurement system 

comparing the commanded to the measured position. Interferometric measurements can also 

evaluate relative changes in the angular and straightness errors at each measured position. While 

such beam-based measurements are well-suited for linear axes, laser interferometers are used along 

the axis of rotation to characterize (translation and angular) wandering of the center and axis of 

rotation. While capable of very high accuracy measurements, the use of the laser interferometer 

for B5.54 measurements makes it time-consuming (imposing length downtimes on productive and 

expensive machines) and difficult measurements requiring skill and expertise with the 

measurement equipment. While the B5.54 measurements provide sound axis calibration, they do 

not provide a full characterization of the interactions between axes of a machine. Therefore, they 

only provide a partial characterization of the volumetric errors of a machine and generally cannot 

be used to identify parameters of volumetric error models. 

 

Figure 2.3: Schematic of calibrating machine tool using ASME B5.54 standard [41] 

Several artifact-based methods exist for testing of machine tools. Bringmann and Küng 

[44], for example, designed a ball plate, an artifact that consists of an array of precision spheres 

and a measuring device consisting of 4 linear probes (LVDTs). As shown in Figure 2.4, the 
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NAS979 is an artifact that consists of a circle, diamond and square that must be cut by the machine 

exposing the machines linear and circular contouring capabilities, axes backlash, cornering (or lag) 

errors, squareness between axes and leadscrew pitch errors [45]. This is a test commonly used for 

acceptance testing of machine tools. Kiridena and Ferreira [10], [13] designed a grid of precision 

cubes and a measuring tool consisting of 3 orthogonal LVDTs for tracking the changes in the 

volumetric errors of a machine due to thermal effects. Several artifacts like calibrating spheres 

(use for ASME B89 calibration of CMMs) and rings are also use to implement the aforementioned 

circular tests on machine tools. Notwithstanding the convenience of having a calibration artifact, 

mechanical probing (measuring with a touch trigger probe) is slow and time-consuming. Further, 

artifacts can be expensive for absolute calibration as they must be made of low CTE (coefficient 

of thermal expansion) material and must be periodically calibrated themselves.  

 

Figure 2.4: Testing artifact NAS979 [45] 

On the other hand, the use of a versatile metrology instrument such as a laser tracker [3], 

[46]–[48] allows for a model with a large number of parameters to be identified, thus improving 

the effectiveness of the modeling procedure. The experiment setup for tracker-based error 
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parameter identification procedure is shown in Figure 2.5. The ease and speed of making 

measurements with a tracker open the possibility of capturing the thermal drift of the machine by 

periodically rebuilding the error model based on sufficiently many measurements over the whole 

workspace taken in a short time interval. The laser tracker-based calibration provides an 

opportunity to revisit the quasi-static error modelling, which could be identified with a more 

convenient and robust approach. The reader is referred to Machine tool Metrology by G. Smith 

[49] for a complete description of different machine tool testing and calibration techniques. 

 

Figure 2.5: Schematic of tracker based calibration setup [46]. 

2.2 THERMAL ERROR MODELING 

In the context of machine tool accuracy, quasistatic, or seemly static, errors account for 

about 70% of the observed machine errors and accrue from geometric/kinematic errors induced by 

manufacturing and assembly inaccuracy, flexural deformations and thermally-induced 

deformations, with the latter be one of the primary sources [50]. The thermal errors are considered 
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to be the inaccuracy caused by the thermal elastic deformations of machine’s structural members 

[24], [50] due to changes in ambient conditions and heat input from internal sources such as spindle 

and axes motors, friction in the guideways, and the machining process. It is difficult to separate 

thermal effects from the other quasi-static error sources. Strategies to control their effects include 

avoidance of thermal errors. This can be achieved by operating the machine at its thermal steady 

state in a temperature-controlled environment but is difficult to justify in a production 

environment. A rich body of research exists for using thermal error models and compensating to 

deal with thermal errors. An adaptive learning model is proposed by Blaser et al. [51]. Finite 

element models (FEA) [22], [52], as shown in Figure 2.6, neural networks [53], and perturbation 

models [8], [10], [54] have also been proposed. Yan and Yang [55] and minimize the number of 

thermal sensors on a CNC turning center based on the synthetic grey correlation theory as shown 

in Figure 2.7. These models seek to correlate the machine’s thermal drifts with the temperature 

readings.  

 

Figure 2.6:(a) Discretized geometrical structure for finite element method [52] ;(b) thermal 
deformation FEA simulation under thermal stresses [22] 

(a) (b) 
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Figure 2.7: Temperature sensors placement of a turning center thermal error modeling [55] 

While several approaches exist for measuring the errors of the workspace of a machine, 

they are time consuming (requiring extended machine down-times) and manual (typically 

requiring the time of both a machine operator and a metrologist). Because of the quasi-static nature 

of the dominant error sources, e.g., thermal and flexural deflections and an inability to efficiently 

update the error map at regular intervals, the effectiveness of error maps for compensating machine 

tool errors is often called into question. Also, the main difficulty with these modeling approaches 

is in characterizing the heat sources, thermal characteristics of joints and surfaces and, hence the 

thermal state of the machine’s structural members under varying operating conditions. Data-driven 

approaches require large amounts of observations during the operation of the machine. Lengthy 

measurement processes are not possible because of the transient nature of a machine’s thermal 

state. Therefore, even in the support of this strategy, the concept of optimal design of observations 

is important to identify most informative observations and shorten the length of the time interval 

for measurements. Some related works using the concept of optimal observer designs in the fields 

of sensor placement and machine tool calibration are reviewed in the following section. 
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2.3 OPTIMAL OBSERVER DESIGN 

Design of experiment (DOE) is a discipline that addresses the question of designing 

observations to identify a robust model of a system. In the context of error parameter identification, 

the DOE question becomes one of determining where to locate points in a machine’s workspace 

at which to measure the volumetric error components so that the error model’s unknown 

parameters can be robustly estimated. Martínez and Bullo [36] addressed a similar problem in the 

determination of the best sensor location for a tracking control system, using the Fisher information 

matrix. A simulated annealing approach was proposed by Lin to handle the sensor placement 

problem by minimizing the maximum distance error in a sensor field satisfying given constraints 

[35]. Sensor placement algorithms that satisfy the entropy and mutual information criteria are 

described and demonstrated by Krause [56].  

Consider a typical linear identification/design of experiments problem with n design points 

where a random process is considered: 

 𝑒𝑒 = 𝑀𝑀(𝚥𝚥1, … 𝚥𝚥𝑛𝑛)𝑝⃑𝑝 + 𝑁𝑁��⃑ , 
 

(2.6) 
 

where 𝑒𝑒 ∈ ℝ𝑛𝑛 represents a vector of n observable values that is related to 𝑝⃑𝑝 ∈ ℝ𝑘𝑘 , a set of k 

unknown parameters is the vector consisting of all undetermined parameters, 𝑝𝑝1, … 𝑝𝑝𝑘𝑘  (whose 

values are to be estimated) by the design matrix, 𝑀𝑀(𝚥𝚥1, … 𝚥𝚥𝑛𝑛) ∈ ℝ𝑛𝑛×𝑘𝑘 , whose row vectors are 

functions of 𝚥𝚥1, … 𝚥𝚥𝑛𝑛, sets of variables that can be independently controlled, 𝑁𝑁��⃑ ∈ ℝ𝑛𝑛 represents the 

observational noise vector with elements being random errors, normally distributed, with a mean 

of 0 and a variance of 𝜎𝜎2. 

In many parameter identification/design of experiments situations, one has latitude in 

selecting the location of the observation/design points. Thus, the problem of selecting appropriate 

locations and number of design points in the space of 𝚥𝚥𝑖𝑖 to get robust estimates of the parameter 
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vector, 𝑝⃑𝑝 is the design-of-experiments problem or the problem of designing an observer for the 

model given in Equation (2.6).  

The least-squares unbiased estimator of 𝑝⃑𝑝 , 𝑝̂𝑝  minimizes the sum of square errors, 

‖𝑒𝑒 − 𝑀𝑀𝑝⃑𝑝‖2. 𝑝̂𝑝 is also the best linear unbiased estimator (BLUE), which can be obtained by,  

𝑝̂𝑝 = (𝑀𝑀𝑇𝑇𝑀𝑀)−1𝑀𝑀𝑇𝑇𝑒𝑒. 
 

(2.7) 
 

As the Gauss-Markov theorem states, the variance associated with BLUE, given by the 

variance-covariance matrix is minimized for the design characterized by 𝑀𝑀, 

𝑉𝑉𝑉𝑉𝑉𝑉[𝑝̂𝑝|𝑀𝑀] = 𝜎𝜎2(𝑀𝑀𝑇𝑇𝑀𝑀)−1, 
 

(2.8) 
 

where 𝑀𝑀𝑇𝑇𝑀𝑀 ∈ ℝ𝑘𝑘×𝑘𝑘 is called the information matrix. 

The variance-covariance matrix captures the uncertainty in the correlation between the 

elements of the estimator, 𝑝̂𝑝. It must be noted that 𝜎𝜎2 is the variance of the residual, a property of 

the random process. So, the uncertainty in the values of the parameter vector and the predictions 

they make can be seen to be completely dependent on 𝑀𝑀. Because of the above considerations, a 

number of optimality criteria associated with different matrix norms of the design matrix, 𝑀𝑀 have 

been proposed in both the design of experiments (DOE) and the design of observers (for 

continuous/on-line estimation and compensation). For a linear regression design problem with n 

observations and k unknown parameters to be determined (𝑛𝑛 ≥ 𝑘𝑘), the optimal design represents 

the selection of n observations that carry the largest amount of information and the 

correspondingly, the estimator has the lowest variance.  

D-optimality is the most commonly used criterion because the target function to be 

minimized is simpler than the other criteria [57]. A D-optimal design seeks to maximize 

information carried by the observations and quantified by the determinant of the information 

matrix. It does so by minimizing the volume of the confidence volumes or the uncertainty region 
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around the estimator and its predictions [58], [59] with minimizing the objective function given 

below,  

min
𝚥𝚥1…𝚥𝚥𝑛𝑛

|(𝑀𝑀𝑇𝑇𝑀𝑀)−1| = min
𝚥𝚥1…𝚥𝚥𝑛𝑛

�
1
𝜆𝜆𝑖𝑖

𝑘𝑘

𝑖𝑖=1

, 

 

(2.9) 
 
 

where 𝚥𝚥1 … 𝚥𝚥𝑛𝑛 are n sets of controllable variables (in our case, the commanded axial positions) that 

control each row in the design matrix 𝑀𝑀, and 𝜆𝜆𝑖𝑖 is the ith eigenvalue of 𝑀𝑀𝑇𝑇𝑀𝑀.  

Similarly, an A-optimal design seeks to minimize the average variance of the estimations 

on the regression coefficients, and its objective is given by: 

min
𝚥𝚥1…𝚥𝚥𝑛𝑛

𝑡𝑡𝑡𝑡((𝑀𝑀𝑇𝑇𝑀𝑀)−1) = min
𝚥𝚥1…𝚥𝚥𝑛𝑛

�
1
𝜆𝜆𝑖𝑖

𝑘𝑘

𝑖𝑖=1

, 

 

(2.10) 
 

where 𝚥𝚥1 … 𝚥𝚥𝑛𝑛 are n sets of controllable variables (in our case, the commanded axial positions) that 

control each row in the design matrix 𝑀𝑀, 𝑡𝑡𝑡𝑡((𝑀𝑀𝑇𝑇𝑀𝑀)−1) is the trace of (𝑀𝑀𝑇𝑇𝑀𝑀)−1 and 𝜆𝜆𝑖𝑖 is the ith 

eigenvalue of 𝑀𝑀𝑇𝑇𝑀𝑀.  

The K-optimality criterion which seeks to minimize the sensitivity of estimator to 

observation/measurement error does so by minimizing the condition number of the design matrix 

[60] denoted by 𝜅𝜅(𝑀𝑀) which is always greater or equal to 1. It implies that the error in observation 

always corrupt the estimation. The condition number can be infinity if (and only if) 𝑀𝑀 does not 

have full column rank. Consider an ordinary linear estimation system, 

𝑒𝑒 = 𝑀𝑀𝑝⃑𝑝, 
 

(2.11) 
 

where 𝑒𝑒 is the accurate observation and 𝑝⃑𝑝 is the correct estimation. 

Now, introduce observational error, ∆𝑒𝑒 (e.g. measurement noise and disturbance) to the 

system that causes errors in the estimations of parameters, ∆𝑝⃑𝑝 using least-squares fitting: 

𝑒𝑒 + ∆𝑒𝑒 = 𝑀𝑀(𝑝⃑𝑝 + ∆𝑝⃑𝑝), 
 

(2.12) 
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where ∆𝑒𝑒 is the errors in observation, ∆𝑝⃑𝑝 is the error in estimation due to ∆𝑒𝑒. 

Condition number of 𝑀𝑀, 𝜅𝜅(𝑀𝑀) is defined by the worst-case relative error caused by the 

error in observations, 

‖∆𝑒𝑒‖
‖𝑒𝑒‖

≤ 𝜅𝜅(𝑀𝑀)
‖∆𝑝⃑𝑝‖
‖𝑝⃑𝑝‖

, 

 

(2.13) 
 

Also, 𝜅𝜅(𝑀𝑀) can be defined as the ratio of largest and smallest singular values of 𝑀𝑀,  

𝜅𝜅(𝑀𝑀) =
𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚
𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

, 

 

(2.14) 
 

where 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚 are the largest and smallest singular values of 𝑀𝑀 respectively. 

By definition of condition number given above, the K-optimal design can be formulated to 

minimize the objective function: 

min
𝚥𝚥1…𝚥𝚥𝑛𝑛

𝜅𝜅(𝑀𝑀) = min
𝚥𝚥1…𝚥𝚥𝑛𝑛

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚
𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

. 

 

(2.15) 
 

It must be noted that all eigenvalues of 𝑀𝑀𝑇𝑇𝑀𝑀 are non-negative and real, and the singular 

values of 𝑀𝑀𝑇𝑇𝑀𝑀 are obtained by taking square root of the eigenvalues of 𝑀𝑀𝑇𝑇𝑀𝑀. Thus, K-optimal 

design can be written as the following eigenvalue design problem, which is similar to D- and A- 

optimal design problem formulations specified in Equations (4.3) and (4.4): 

min
𝚥𝚥1…𝚥𝚥𝑛𝑛

𝜅𝜅(𝑀𝑀) = min
𝚥𝚥1…𝚥𝚥𝑛𝑛

𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

, 

 

(2.16) 
 

where 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 and 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 are the largest and smallest eigenvalues of the information matrix, 𝑀𝑀𝑇𝑇𝑀𝑀. 

In the field of machine tool calibration, the design of the error observers involves the 

determination of where to locate of observations of volumetric error in the machine’s workspace. 

Kiridena and Ferreira [10] proposed a greedy algorithm for selecting a sub-set of points on a 

calibration artifact as shown in Figure 2.8(a). The linear identification procedure using all 81 

possible observations is given by, 
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𝑒𝑒81 ≅ 𝑀𝑀𝑝⃑𝑝, 
 

(2.17) 
 

where 𝑒𝑒81 ∈ ℝ81 is the vector of all observed error components, 𝑀𝑀 ∈ ℝ81×17 is the design matrix 

and 𝑝⃑𝑝 ∈ ℝ17 is the error parameter vector.  

 

Figure 2.8: (a) Experimental setup of probe-based thermal error modeling (27 grids of 
measurements); (b) 17 optimized measure locations given by the greedy algorithm [10] 

The proposed algorithm seeks to pick 17 most valuable observations (rows) over 81 

possible ones to identify 17 error parameters. The 17 rows in 𝑀𝑀 becomes 𝐵𝐵, a submatrix of 𝑀𝑀. 

Since the there are 81!
17!×(81−17)!

 possibilities, method of exhaustion is not possible. The greedy 

algorithm seeks a local minimum of the condition number of the 17 by 17 submatrix of 𝑀𝑀. The 

optimized observation points are shown in Figure 2.8(b). The following pseudocode is used in the 

algorithm [10], 

Given 𝑀𝑀 = �
𝐵𝐵𝑚𝑚×𝑚𝑚

𝑁𝑁𝐵𝐵(𝑛𝑛−𝑚𝑚)×𝑚𝑚
�, minprog=-106, maxproj=0 

While (minproj<maxproj) 

 minproj=106 

 For i1,n 

(a) (b) 
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  𝑃𝑃 = [𝐼𝐼 − 𝐶𝐶+𝐶𝐶]  

  If (mag(Pbi)<minproj) 

minproj mag(Pbi) 

Pm P, bmin bi 

  endif 

 endfor  

 maxproj=0 

 For i1,m-n 

  If (mag(Pmnbi)>maxproj) 

   maxproj mag(Pmnbi) 

   nbmax nbi 

  endif  

endfor 

If (maxproj >minproj) 

 bmin nbmax 

endif 

endwhile  

In the greedy algorithm, 𝐶𝐶 is a sub-matrix formed by removing one row, from bi the basis. 

𝐶𝐶+ = 𝐶𝐶𝑇𝑇(𝐶𝐶𝐶𝐶𝑇𝑇)−1  is the Moore-Penrose pseudoinverse of 𝐶𝐶 , which is a rectangle matrix, 𝑃𝑃 

defines the null space of 𝐶𝐶 and Pbi is the projection of bi into the null space of 𝐶𝐶. Two For loops 

first determine the best row to be removed from the basis and select one from the non-basis rows 

to replace it. Thus, the identification system of 17 optimized observations is given by, 

𝑒𝑒17 ≅ 𝐵𝐵𝑝⃑𝑝, 
 

(2.18) 
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where 𝑒𝑒17 ∈ ℝ17 is the vector of all observed error components, 𝐵𝐵 ∈ ℝ17×17 is the square design 

matrix and 𝑝⃑𝑝 ∈ ℝ17 is the error parameter vector is now estimated by 𝑝⃑𝑝 ≈ 𝐵𝐵−1𝑒𝑒17.  

2.4 GEOMETRIC DIMENSION AND TOLERANCE (GD&T) 

Geometric Dimensioning and Tolerancing (GD&T) is widely used to describe the nominal 

designs and the maximum acceptable variations from the nominal ones. The conventions of 

geometric tolerances follow the American Society of Mechanical Engineer (ASME) standard 

Y14.5 [12] and related International Standards Organization (ISO) standards. There are several 

prospects to understand GD&T. First, the tolerances are directly affect the machining accuracy 

and hence the cost. Therefore, the designers control tolerances as designable variables that quantify 

the worst-case variability of the part. A rich body of research has been done from this point of 

view. X. Zhao et al. [61] proposed a model that supports integrated measurement processes by 

combining ASME Y14.5M-1994 [12] with Dimensional Measuring Interface Standard (DMIS) 

and Standard for the Exchange of Product model data (STEP). Turner and Wozny [62], [63] used 

numerical approaches including Monte Carlo method and linear programming to design the 

tolerance variables for part assemblies. To optimize the design of tolerance variables and model 

geometric tolerance, tolerance map (T-map) was proposed and utilized [64]–[66] as can be seen in 

Figure 2.9(a) and (b). Chen et al. [67] studied the advantages and disadvantages of four 3D 

tolerance analysis methods including T-Map, matrix model, unified Jacobian–Torsor model and 

direct linearization method (DLM). Menq et al. [68] presented an approach for aligning 

measurement data with the CAD model based on least-square fitting technique with the application 

of error comparative analysis. Marziale and Polini [69] compared two different tolerance modeling 

methods, vector loop (as shown in Figure 2.9(c)) and matrix. 
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Figure 2.9: (a) Cross-section of an assembly with clearance c [64]; (b) tolerance zone analysis of 
(a) using T-Map [64]; (c) assembly variables and tolerances of vector loop model [69] 

From the metrologist and manufacturer’s prospect, finished parts have to be examined and 

compared the finished part with the nominal geometry to perform the compensation to secure the 

quality of machining process [11]. When large castings are finished by machining processes, it 

becomes necessary to be highly adaptive. Large dimensions (here, of the order of 1000 to 2000 

mm) cause the magnification of errors that accrue from shrinkage and warpage. Further, similar 

large dimensions of the structural and transmission elements of the machine tools used to machine 

such castings magnify the effects of small temperature changes and flexural deformations, giving 

rise to large quasi-static thermal and flexural errors in the work volume of the machine tool. The 

former can have magnitudes in the millimeter range and can quickly consume any allocated 

allowances [70], while the latter can grow to be several hundred microns and can easily exceed 

tolerances specified on critical machined features on the casting [71]. Furthermore, the placement 

of the castings on the fixture might be imperfect [3]. As a result, using only nominal, 

uncompensated NC programs and datum frames defined on machines and fixtures can lead to high 

levels of rejects and low yields. The castings tend to be of complex geometries and are not quickly 

and easily manufactured when out-of-tolerance conditions arise. Given the cost of producing such 

castings and the limited capacity to do so, it becomes necessary to adjust both, the datum frames 

(a) (b) (c) 
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and the machining programs to the geometry of each casting to achieve an acceptable, within-

tolerance finished workpiece. Besides, incoming stock from casting and forging suppliers can vary 

to the point that standard machine tools cannot adequately respond the existing material condition 

in the as-programmed state. Due to the machine tool’s inability to dynamically respond to material 

stock variation, broken tooling, scrap parts, and severe delays occur in the entire value stream. The 

manufacturing community has attempted to solve this problem through part probing in the machine 

tool, programming sub-routines in the controller, or through manual adjustments made by the 

machinist. The approach yielded a sub-optimal process that requires significant human 

intervention and does not guarantee a conforming part. 

2.5 TOLERANCE VERIFICATION FOR PLANAR SURFACES 

The examination performed by the metrologist is based on the dimension and tolerance 

given by the print, which are defined following the national standard, ASME Y14.5 the Geometric 

Dimensioning and Tolerancing (GD&T) standards [12]. Tolerance verification can be done by 

evaluation of form errors, which requires measurements using coordinate measuring machines 

(CMMs). The probe-based CMMs are commonly used to verify the tolerance by taking discrete 

measurements on surface. However, the limited time on measuring limits the number of 

measurements, which has significant influence on the accuracy of the evaluation. A surface profile 

is within tolerance if the deviation at any point on the surface is within the specified bound. Cases 

may occur when sampled deviations are within bound, whereas non-sampled deviations are in fact 

out of tolerance [68]. Thus, researchers have proposed many measurement and sampling strategies 

for choosing the most information locations for evaluating geometric tolerance. A statistical 

analysis is used to determine the number of required points for surface profile measurement and 

tolerance specification [68]. Colosimo et al. [72] used a regression-based tolerance interval 
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approach to optimize the sample locations. Summerhays et al. [73], [74] built a Chebyshev/Fourier 

model to select the most informative for estimating form errors on internal cylindrical surfaces. 

An adaptive sampling strategy based on surface patches’ Gauss curvatures was proposed by 

Obeidat and Raman [75] to obtain the optimum number of measurements. Badar et al. [76] 

suggested that reducing the sample size and number of measurements using Tabu search and a 

hybrid search can maintain comparable accuracies on flatness evaluation. Carr and Ferreira 

proposed a methodology on tolerancing validation that transfers the form error problem into a 

linear programming problem (LPP) using point-set data [19], [20] as shown in Figure 2.10(a). The 

flatness verification algorithm for a set of data points 𝑃𝑃 that represents the surface of a tolerance 

planar feature using linear program is given by [19], [77],  

min
𝑇𝑇

(𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚), 

subjected to:  

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑇𝑇𝑝⃑𝑝𝑖𝑖 ≤ 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 for 𝑖𝑖 = 1~𝑛𝑛,  

𝑇𝑇𝑥𝑥2 + 𝑇𝑇𝑦𝑦2 + 𝑇𝑇𝑧𝑧2 = 1, 

(2.19) 
 

where 𝑝⃑𝑝𝑖𝑖 = �𝑝𝑝𝑖𝑖𝑖𝑖 𝑝𝑝𝑖𝑖𝑖𝑖 𝑝𝑝𝑖𝑖𝑖𝑖�
𝑇𝑇

 is the ith coordinates data point in point-set 𝑃𝑃, 𝑇𝑇 = �𝑇𝑇𝑥𝑥 𝑇𝑇𝑦𝑦 𝑇𝑇𝑧𝑧�
𝑇𝑇

 is the 

zone orientation direction vector, 𝑛𝑛 is the number of points in 𝑃𝑃 and 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 represent the 

farthest and closest distance from any point to the plane of the tolerance zone.  

The general tolerance verification stated in Equation (2.19) is solved as a sequence of linear 

program as shown in Figure 2.10(b). 
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Figure 2.10: (a) Geometric model of flatness verification [77]; (b) Inspection flowchart of form 
and size tolerance specifications [77]. 

From the prospect of product quality, customers would prefer the machined surface to have 

shiny finish even though it is not a direct indicator of cleanliness per se [78]. Therefore, the virtual 

gage, defined by the boundary of a tolerance zone is used to check the tolerance model and the 

machinability of features virtually [16]–[18], [79]. The construction of the virtual gage provides a 

different point of view to geometric variation. If there exists intersection(s) between the real 

surface and the virtual gage, the part should be rejected because some surfaces will not satisfy the 

assigned GD&T design. It opens an opportunity to understand and compensate the machining 

errors caused by geometric variation and the fixture errors. To provide a pre-process, in-situ 

conformity test for the raw casting, a metrology instrument, which depicts the surface profile of 

the workpiece, is required. Using touch trigger probe is accurate but takes a long time to probe all 

the critical features on the workpiece. Alternatively, a laser scanner that combines controlled 

(a) (b) 
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steering of laser beams with a laser rangefinder is able to depict the surface profile by taking a 

distance measurement of the surface shape of the scanned object [80]. By combining multiple 

surface models, which can be obtained from different scanning paths, a full 3D model of the object 

can thus be constructed [81]. Open computer vision and image processing source libraries 

providing basic point-cloud operations including surface reconstruction, model segmentation and 

point-set manipulation of large size of point-cloud are easy to access today [82].  

2.6 TOLERANCE VERIFICATION FOR CYLINDRICAL SURFACES 

Without a good algorithm, metrologist could not properly process a larger data sets 

collected by CMMs, which may lead to overestimation of the tolerance, reject the acceptable parts 

and increase the cost. Hence, a quick and accurate algorithm that processes the data set and 

analyzes the conformity of the workpiece is critically needed. Planar and cylindrical surfaces are 

two of the most common surfaces in machining, and there exists a rich body of research discussing 

how to verify the tolerance of cylindrical surfaces.  

To begin with, a 2-D data set representing a circular part is considered. According to ASME 

Y14.5 [12], the most common tolerance specifications of a circular part include maximum and 

minimum radii and roundness error. The verifications of these three tolerance specifications can 

be done in numerical or computational geometry-based approaches. Numerical techniques 

including Monte Carlo, simplex and spiral search were tested in Murthy and Abdin’s work [83]. 

Wen et al. [84] proposed a genetic algorithm to verify circularity errors. Xiuming and Zhaoyao 

[85] found the lines for maximum circumscribed circle(MC) and minimum inscribed circle (MI) 

iteratively based on convex hull in polar coordinate to identify the control points that determine 

the roundness error. The computational geometry-based methods, on the other hand, seek to find 

the key geometries, minimum circumscribed circle (MC), maximum inscribed circle (MI) and 
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minimum zone circle (MZ) in this case by geometrically finding the control points of them. 

Although the formulations of three problems are similar, the difficulties of fitting three types of 

circle are different. Finding MC of a given point-set is the easiest one since the optimization is 

convexly constrained. The most effective algorithm was proposed by Welzl [86]. Roy and Zhang 

[87], [88] proposed a computational geometric model based on nearest and farthest Voronoi 

diagrams to compute three pairs of concentric circles with the minimum radial separation under 

three cases (case 3+1, 1+3 and 2+2) as shown in Figure 2.11. The roundness error is defined by 

MZ, the smallest amount of separation among three pairs of concentric circles.  

 

Figure 2.11: Three cases of roundness error: (a) case 3+1 by farthest Voronoi diagram; (b) Case 
1+3 by nearest Voronoi diagram; (c) Case 2+2 by superimposing Voronoi diagrams [87]  

Voronoi diagrams, by definition given by Okabe et al. [89], is “given a set of two or more 

but a finite number of distinct points in the Euclidean plane, we associate all locations in that space 

with the closest member(s) of the point-set with respect to the Euclidean distance. The result is a 

tessellation of the plane into a set of the regions associated with members of the point-set. We call 

(a)                                                          (b)                                                               (c)  
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this tessellation the planar ordinary Voronoi diagram generated by the point-set, and the regions 

constituting the Voronoi diagram ordinary Voronoi polygons.” 

Let 𝑃𝑃 = {𝑝𝑝1, … ,𝑝𝑝𝑛𝑛} ⊂ ℝ2(2 ≤ 𝑛𝑛 < ∞) be a finite point-set. The ith nearest Voronoi region 

(polygon for 2-D point-set), 𝑉𝑉𝑁𝑁(𝑝𝑝𝑖𝑖), associated with the ith point 𝑝𝑝𝑖𝑖 in 𝑃𝑃 is defined by [89], 

𝑉𝑉𝑁𝑁(𝑝𝑝𝑖𝑖) = �𝑥𝑥| ‖𝑥𝑥 − 𝑥𝑥𝑖𝑖‖ ≤ �𝑥𝑥 − 𝑥𝑥𝑗𝑗� ∀𝑗𝑗 ≠ 𝑖𝑖�. 
 

(2.20) 
 

The nearest Voronoi diagram is given by the set of all n Voronoi polygons, 

𝑉𝑉𝑁𝑁(𝑃𝑃) = {𝑉𝑉𝑁𝑁(𝑝𝑝1), … ,𝑉𝑉𝑁𝑁(𝑝𝑝𝑛𝑛)}. 
 

(2.21) 
 

Similarly, the definition of the farthest Voronoi polygon, 𝑉𝑉𝐹𝐹(𝑝𝑝𝑖𝑖), associated with 𝑝𝑝𝑖𝑖  is 

given by, 

𝑉𝑉𝐹𝐹(𝑝𝑝𝑖𝑖) = �𝑝𝑝|𝑑𝑑(𝑝𝑝,𝑝𝑝𝑖𝑖) ≥ 𝑑𝑑�𝑝𝑝, 𝑝𝑝𝑗𝑗�,𝑝𝑝𝑗𝑗 ∈ 𝑃𝑃\{𝑝𝑝𝑖𝑖}�, 
 

(2.22) 
 

Or equivalently,  

𝑉𝑉𝐹𝐹(𝑝𝑝𝑖𝑖) = �𝑝𝑝|𝑑𝑑(𝑝𝑝, 𝑝𝑝𝑖𝑖) ≥ max
𝑗𝑗
�𝑑𝑑�𝑝𝑝,𝑝𝑝𝑗𝑗�, 𝑝𝑝𝑗𝑗 ∈ 𝑃𝑃\{𝑝𝑝𝑖𝑖}��, 

 

(2.23) 
 

The farthest Voronoi diagram is given by the set of all n farthest Voronoi polygons, 

𝑉𝑉𝐹𝐹(𝑃𝑃) = {𝑉𝑉𝐹𝐹(𝑝𝑝1), … ,𝑉𝑉𝐹𝐹(𝑝𝑝𝑛𝑛)}. 
 

(2.24) 
 

Figure 2.12 shows a nearest and a farthest Voronoi diagrams. The readers are referred to 

the book by Okabe et. al [89] for more detailed properties and applications of Voronoi diagrams. 

The concept of using Voronoi diagrams to define roundness error was extended by Kim et al. [90] 

using pixel maps for larger point-set. Besides, equi-angular diagrams using the inner hull were 

proposed by Samuel and Shunmugam [91] to find maximum inscribing and minimum zone circles. 

Liu et. al [92] applied intersecting chord method to develop sub-models, the 2+1 and 1+2 models 

and generalized the 3+1 and 1+3 models.  
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Figure 2.12: (a) A nearest Voronoi diagram; (b) a farthest Voronoi diagram [89] 

In 3-D cases, minimum inscribed cylinder (MIC), maximum circumscribed cylinder 

(MCC) and minimum zone cylinder (MZC) play important roles in general tolerance (plus/minus) 

specification and form errors of part with cylindrical surfaces [77]. For example, the tolerance 

specification of a pins and holes is usually given by minimum, maximum acceptable radius and 

cylindricity, which can be verified by fitting the MIC, MCC and MZC respectively. As the matter 

of fact, finding the MIC, MCC and MZC of a point-set can all be modeled by optimization 

problems. However, these optimization problems cannot be solved easily since they have nonlinear 

rotation terms. Moreover, the non-differentiable objective functions due to discrete point-set as 

shown in Figure 2.16 make them impossible to be solved by traditional differentiation-based 

optimization techniques [93], [94]. Carr and Ferreira [19], [20] presented their approaches using 

sequential linear programming to remove the nonlinearity. The minimum circumscribed fit size 

tolerance of a point-set 𝑃𝑃 is given by, 

min
𝐿𝐿�⃑ ,𝑇𝑇

max
𝑖𝑖

(𝑑𝑑𝑖𝑖), 

 
(2.25) 

 

(a) (b) 
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where 𝐿𝐿�⃑  is locating point vector, 𝑇𝑇 is axis direction vector and 𝑑𝑑𝑖𝑖 is the distance between the ith 

point in 𝑃𝑃 and the axis of cylinder as shown in Figure 2.13. 

 

Figure 2.13: Cylinder tolerance zone: reference feature is the axis [77] 

Equation (2.25) can also be written as the constrained minimization model, 

min
𝐿𝐿�⃑ ,𝑇𝑇

𝑑𝑑 ∋ 𝑑𝑑𝑖𝑖 ≤ 𝑑𝑑∀𝑖𝑖 = 1~𝑛𝑛. 

 
(2.26) 

 
It can be seen that the optimization shown in Equation (2.26) is subjected to n linear constraints. 

Similarly, maximum inscribed fit size tolerance can be formulated by the unconstrained and 

constrained maximization models, 

max
𝐿𝐿�⃑ ,𝑇𝑇

min
𝑖𝑖

(𝑑𝑑𝑖𝑖). 

 
(2.27) 

 
max
𝐿𝐿�⃑ ,𝑇𝑇

𝑑𝑑 ∋ 𝑑𝑑 ≤ 𝑑𝑑𝑖𝑖∀𝑖𝑖 = 1~𝑛𝑛. 

 
(2.28) 

 
Figure 2.14 schematically shows the geometric model of using coaxial cylinder to model 

cylindricity error. The form tolerance of cylinder can be written as, 

min
𝐿𝐿�⃑ ,𝑇𝑇

max
𝑖𝑖,𝑗𝑗

(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚), 

 
(2.29) 
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where 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 = max
𝑖𝑖
𝑑𝑑𝑖𝑖 and 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 = max

𝑗𝑗
𝑑𝑑𝑗𝑗. 

min
𝐿𝐿�⃑ ,𝑇𝑇

(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚) ∋ 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑑𝑑𝑖𝑖 ≤ 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚. 

 
(2.30) 

 

 

Figure 2.14: Two coaxial cylinders tolerance zone [77] 

Equations (2.26), (2.28) and (2.30) are nonlinear programs since their objectives are 

distances from a given point to an arbitrary axis, specified by vectors 𝐿𝐿�⃑  and 𝑇𝑇. Sinusoidal terms of 

elements in 𝐿𝐿�⃑  and 𝑇𝑇 make the programming problems difficult to be solved. But, these problems 

can be linearized and solved with linear programing solver by making the assumptions that all 

variables in 𝐿𝐿�⃑  and 𝑇𝑇 are sufficiently small. The orientation and location of the axis can thus be 

sequentially updated and finally converges to an optimum.  

However, the sequential linearization approach relies on an initial guess close to an 

optimum [20] but still does not guarantee the convergence to global optimum. Cheraghi et al. [94] 

simplified the three cylinder fitting problems by projecting all data set onto the x-y plane. The MC, 

MI and MZ of the projected 2-D point-set were computed and updated by small rotation 

perturbations, and the flowchart is shown in Figure 2.15. The merit of this approach is that the 

translational variables representing the location of the cylinder axis no longer matter, hence the 

number of optimization variables can be decreased by two. However, the objective functions of 
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fitting the MIC, MCC and MZC of a point-set have multiple local optimums within small region 

as shown in Figure 2.16, the stopping criteria of the sequential linear programming are easily to 

be achieved when the objective reaches a local optimum. Searching for the global optimum of the 

objective functions is thus a better strategy than solving the nonlinear optimizations sequentially. 

Hence, many bionics intelligent algorithms have been exploited in the field of tolerance 

verification. For example, generic algorithm (GA) was applied to verify tolerance including 

roundness, cylindricity and straightness [84], [95], [96]. Xianqing et al. [97] used geometry 

optimization searching algorithm (GOSA) to evaluate cylindricity iteratively. Wen et al. estimated 

sphericity error objective function using immune evolutionary algorithm (IEA) [98], and applied 

particle swarm optimization (PSO) to minimize conicity and cylindricity [99]. 

 

Figure 2.15: Cylindricity error evaluation flowchart using perturbation iteration [94] 
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Figure 2.16: Non-differentiable objective function of minimizing cylindricity error [94] 

2.7 GAPS IN LITERATURE 

Error modeling of machine tool has been extensively studied since 1980’s. However, the 

error model of the rotary joint has not been modeled using Fourier sine series, which could be a 

good basis for modeling nonlinear but sinusoidal-like function. Further, literature reveals that 

researchers have not modeled a machine with a redundant axis since one might expect that a 

redundant axe would introduce parameters that would be confounded with each other. Also, a 

versatile metrology instrument such as a laser tracker, which allows a model with many parameters 

to be identified has not been used in conjunction with the modeling approach and the identification 

of the model. The ease and speed of making measurements with a tracker opens the possibility of 

capturing the thermal drift of the machine by periodically rebuilding the error model based on 

sufficiently many measurements over the whole workspace taken in a short time interval. 

As the matter of fact, using laser track saves time spending on taking measurements for 

data-driven error modeling approach and makes data-driven approach more efficient. 

Nevertheless, a large (quasi-)randomly generated point-set that takes considerable time to be 

finished is still required for securing robust estimations. Due to the transient nature of thermal 
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error, thermal error tracking becomes difficult using data-driven approach. Also, the periodical 

calibration procedure cannot be implemented in the production environment if a single calibration 

cycle is time consuming, which will greatly shorten the production time. Hence, choosing the most 

informative observations to shorten the length of time interval for measurements becomes a vital 

issue. The question of how to optimize the locations of observation for machine tool error modeling 

over the entire command space has not been fully addressed due to its complexity and dependency 

on higher computation speed. Therefore, a generalized optimization sequence based on DOE 

theories to optimize the error observation cycle with sufficiently many measurements in a shorter 

time interval is needed. 

Even a rich body of research based on ASME Y14.5 has been published including 

traditional measurement and point-set based approaches, most of the research focus on the 

tolerance verification for single feature. The question of how to use point-set data of a complex 

part to verify the conformity remains unsolved. There is clearly a gap in current body of research 

regarding the problem that considers multiple complicated features simultaneously. Thus, robust 

algorithms including point-set manipulation and metrology for verifying multiple features’ 

conformity are necessary. 

In the problems of finding minimal, maximal radii and the roundness error of a given 2-D 

point-set, both geometry-based and numerical approaches can fit the circles. Maximum inscribed 

circle is not well-defined since the corresponding maximization problem can be unbounded. Hence, 

the definition should be given properly. In the 3-D case of cylinder fitting, some researchers have 

reported their works using different strategy to deal with the nonlinearity of axis orientation. The 

iterative approaches require an initial guess, which is sufficiently close to the global optimum, or 

the approaches are only able to provide local optima. Thus, the approaches of using intelligent 
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searching algorithms to find the global optimum would be preferable. However, the efficiency and 

accuracy of such intelligent searching algorithms depend on the complexity of the objective 

function. There is still some room to improve by reducing the number of variables in the objective 

functions, so the efficiency and accuracy can be enhanced. 
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CHAPTER 3. MACHINE TOOL QUASI-STATIC ERROR MODELING 

A comprehensive error modeling approach for machine tool is proposed in this chapter. In 

Section 3.1, three typical types of rigid body transformation used in machine tool error model are 

introduced. A 5-axis CNC machine with one redundant axis is used as example, and the linear 

error model is built. In Section 3.2, the error parameters in error model are identified 

experimentally using a laser tracker. The model is tested using another smaller but previously 

unseen point-set, while Section 3.3 presents a summary of the work done on quasi-static error 

modeling. 

3.1 ERROR MODEL DERIVATION 

A schematic of the 5-axis machine used in this study and its kinematic equivalent are shown 

in Figure 3.1. The travel of prismatic joints, X, Y, Z and W axis are 4 m, 2.5 m, 2.2 m and 800 mm 

respectively. The rotary joint, B axis allows the table to rotate about Y-axis by 360 degrees.  

 

Figure 3.1: (a) Schematic of a 5-axis machine; (b) kinematic model showing the shape and joint 
transformation 

(a)                                                                                       (b) 
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The ideal kinematic of the machine from the table to the spindle can be expressed by the 

series of homogeneous transformation matrices (HTMs). This series consists of alternating joint 

and shape transformations. Joint transformations, denoted by Φ𝐵𝐵,Φ𝑥𝑥,Φ𝑧𝑧,Φ𝑦𝑦,Φ𝑤𝑤 , model the 

constraints and degrees of freedom of the transmission elements or joints of the machine, while 

shape transformations model the geometry and dimensions of the structural members that hold the 

joints. Thus, the ideal coordinate transformation that takes a point on the tool expressed in the 

spindle frame to a frame attached to the table is given by: 

𝐻𝐻 = Φ𝐵𝐵𝑇𝑇1Φ𝑥𝑥𝑇𝑇2Φ𝑧𝑧𝑇𝑇3Φ𝑦𝑦𝑇𝑇4Φ𝑤𝑤𝑇𝑇5. 
 

(3.1) 
 

To introduce rotational and translational errors into the shape and joint transformations, 

constant (not position dependent) components of errors are introduced into the shape 

transformations while the position dependent components are introduced into the joint 

transformations. There are three types of transformation for a machine tool. 

3.1.1 SHAPE TRANSFORMATIONS (T1~T5) 

If the small dimensional (translation) and deflection (angular) errors are introduced to 𝑇𝑇𝑖𝑖, 

an ideal shape transformation, the actual transformation, shown in Figure 3.2, becomes, 

𝑇𝑇𝑖𝑖′ = �

1 −𝛼𝛼𝑖𝑖 𝛽𝛽𝑖𝑖 𝑥𝑥𝑖𝑖 + ∆𝑥𝑥𝑖𝑖
𝛼𝛼𝑖𝑖 1 −𝛾𝛾𝑖𝑖 𝑦𝑦𝑖𝑖 + ∆𝑦𝑦𝑖𝑖
−𝛽𝛽𝑖𝑖 𝛾𝛾𝑖𝑖 1 𝑧𝑧𝑖𝑖 + ∆𝑧𝑧𝑖𝑖

0 0 0 1

� , 𝑖𝑖 = 1~5, 

 

(3.2) 
 

where 𝛼𝛼𝑖𝑖 , 𝛽𝛽𝑖𝑖and 𝛾𝛾𝑖𝑖  are small rotational errors about Z, Y and X directions, [𝑥𝑥𝑖𝑖 𝑦𝑦𝑖𝑖 𝑧𝑧𝑖𝑖]𝑇𝑇and 

[∆𝑥𝑥𝑖𝑖 ∆𝑦𝑦𝑖𝑖 ∆𝑧𝑧𝑖𝑖]𝑇𝑇  are the constant shift vector and the small position errors vector in the 

workspace.  
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Figure 3.2: Ideal and actual shape transformations  

3.1.2 PRISMATIC JOINT TRANSFORMATIONS (Φx, Φy, Φz and Φx) 

An actual prismatic joint, in addition to producing the desired translation, will also produce 

error motions, including error in positioning along the joint, straightness errors and angular errors. 

As is evident for this transformation matrix, the error terms are functions of the joint displacement. 

A HTM of a prismatic joint, proposed by Ferreira and Liu [33] is given below:  

Φ𝑥𝑥 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 1 −𝑥𝑥

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑥𝑥
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑥𝑥(1 + 𝛿𝛿𝛿𝛿)

𝑥𝑥
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

1 −𝑥𝑥
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑥𝑥2

2
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

−𝑥𝑥
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑥𝑥
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

1 −
𝑥𝑥2

2
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

0 0 0 1 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

, 

 

(3.3) 
 

where 𝑥𝑥 is the commanded joint position, 𝛿𝛿𝛿𝛿 is a rate of accumulation of positioning error and 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 and 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 are the rates of accumulation of angular errors (roll, pitch and yaw) as the joint moves 

along X-axis.  

The linear variation of angular errors with displacement along the axis necessitates the 

addition of squared terms to the straightness error as suggested by Bryan [100]. One may add 

additional higher order terms to account for other effects. Figure 3.3 shows the relationships 
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between the error terms and the fixed and moving coordinate frames for such a joint model. The 

actual transform introduces small angular motions and a positioning error to the ideal desired 

motion. Similarly, HTMs for inaccurate prismatic joints for Y, Z and W axes can also be derived. 

 
Figure 3.3: Ideal and actual prismatic joint transformations  

3.1.3 ROTARY JOINT TRANSFORMATIONS (ΦB)  

The joint transformation of an ideal rotary joint (rotation about Y-axis) can be expressed 

as:  

Φ𝐵𝐵 = �

cos (𝐵𝐵) 0 sin (𝐵𝐵) 0
0 1 0 0

−sin (𝐵𝐵) 0 cos (𝐵𝐵) 0
0 0 0 1

�, 

 

(3.4) 
 

where 𝐵𝐵 is command rotational displacement of the joint.  

An actual joint introduces several error motions. First, when the joint is commanded to a 

position 𝐵𝐵, it may have positioning error, 𝛽𝛽. Further, the rotational errors may introduce tilts of 𝛼𝛼 

and 𝛾𝛾, and the entire moving table may shift due to the accumulation of translation errors 𝑑𝑑𝑥𝑥, 𝑑𝑑𝑦𝑦 

and 𝑑𝑑𝑧𝑧. Thus, as depicted in Figure 3.4, the actual transform introduces small translational and 
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rotational displacements to model the wandering and tilt of an actual joint. The joint transformation 

for an actual rotary joint (rotation about the y-axis), assuming small angles, the errors, is given by:  

Φ𝐵𝐵
′ =

⎣
⎢
⎢
⎡ cos(𝐵𝐵) − 𝛽𝛽𝐵𝐵′sin(𝐵𝐵) −𝛼𝛼𝐵𝐵′ sin(𝐵𝐵) + 𝛽𝛽𝐵𝐵′ cos(𝐵𝐵) 𝐵𝐵′𝑑𝑑𝑥𝑥

𝛼𝛼𝐵𝐵′ 1 −𝛾𝛾𝐵𝐵′ 𝐵𝐵′𝑑𝑑𝑦𝑦
− sin(𝐵𝐵) − 𝛽𝛽𝐵𝐵′ cos(𝐵𝐵) 𝛾𝛾𝐵𝐵′ cos(𝐵𝐵)− 𝛽𝛽𝐵𝐵′sin(𝐵𝐵) 𝐵𝐵′𝑑𝑑𝑧𝑧

0 0 0 1 ⎦
⎥
⎥
⎤
, 

 

(3.5) 
 

where 𝐵𝐵′ is the error associated with the rotary command, which is modelled using Fourier sine 

series: 

𝐵𝐵′ = �𝑏𝑏𝑛𝑛 sin(
𝑛𝑛𝑛𝑛
2

)
𝑁𝑁

𝑛𝑛=1

. 

 

(3.6) 
 

 
Figure 3.4: Ideal and actual rotary joint transformations 

For a typical rotary joint as shown in Figure 3.5 and Figure 3.6, for purposes of consistency 

one would like to have the errors at 𝐵𝐵 = 0 close to those at 𝐵𝐵 = 2𝜋𝜋 [32]. The error parameters are 

modelled by Fourier sine series instead of Taylor series to satisfy the consistency. For model 

efficiency and simplicity, only the first term in Equation (3.6) is used (𝑏𝑏1 = 1).  
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Figure 3.5: Errors of a rotary table: (a) about X-axis; (b) about Y-axis; (c) about Z-axis [32]  

 
Figure 3.6: Errors of a rotary table: (a) x-directional translation error; (b) y-directional translation 

error [32] 

3.1.4 LINEAR MODEL CONSTRUCTION 

Now combining all the HTMs of inaccurate joints and structural members defined in 

Equation (3.2), (3.3) and (3.5), the actual coordinate transformation that takes a point on the tool 

expressed in the spindle frame to a frame attached, 

𝑅𝑅 = Φ𝐵𝐵
′ 𝑇𝑇1′Φ𝑥𝑥′𝑇𝑇2′Φ𝑧𝑧′𝑇𝑇3′Φ𝑦𝑦′𝑇𝑇4′Φ𝑤𝑤′𝑇𝑇5′. 

 
(3.7) 

 
Eliminating second and higher-order terms of small errors, the first-order forward 

kinematic equation with errors for the machine can be written as: 

𝑅𝑅 = 𝐻𝐻 + ∆𝐻𝐻 + 𝑂𝑂(2) ≈ 𝐻𝐻 + ∆𝐻𝐻, 
 

(3.8) 
 

where 𝐻𝐻 is the ideal forward kinematics derived in Equation (3.1), determined by ideal machine 

joints and nominal dimensions of the structural members that hold them (i.e., ideal joint and shape 
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transformations) are given, ∆𝐻𝐻 is the sum of ten first-order terms, and 𝑂𝑂(2) represents all higher 

order terms.  

Thus, the machine’s volumetric error components can be defined as the difference between 

actual and ideal forward kinematics, 

�𝑒𝑒
1
� = 𝑇𝑇0(𝑅𝑅 − 𝐻𝐻) �𝑟𝑟𝑡𝑡

1
� ≈ 𝑇𝑇0∆𝐻𝐻 �

𝑟𝑟𝑡𝑡
1
�, 

 
(3.9) 

 

where 𝑒𝑒 is the error vector 𝑒𝑒 = [𝑒𝑒𝑥𝑥 𝑒𝑒𝑦𝑦 𝑒𝑒𝑧𝑧]𝑇𝑇, 𝑇𝑇0 is one additional shape transformation added to 

obtain a convenient reference for measurement or programming, and 𝑟𝑟𝑡𝑡 is the position of the target 

in the spindle frame as shown in Figure 3.1(b).  

3.1.5 IDENTIFICATION OF ERROR MODEL PARAMETERS 

The model, developed in Section 3.1.4, assembles all the error sources in the kinematic 

chain to obtain their influence on the volumetric error components of the machine. There are a 

total of 52 error sources or parameters (five shape transformations, each with six error parameters, 

four joint transformations for linear axes, each with four error parameters, and one for a rotary axis 

with six parameters) that are composed into an expression for the volumetric error components 

observed in the machine’s workspace. To use this model for compensating the volumetric errors, 

it is necessary to obtain values for these parameters.  

Estimation of the parameters in the error model is done by observing the volumetric errors 

of the machine at different points in its workspace with a laser tracker. The relationship between 

the measurement frame and the table frame (from the kinematic model of the machine) is captured 

by the homogeneous transformation matrix, 𝑇𝑇0 as shown in Figure 3.7. However, to do so, the 

frame in which the laser tracker makes measurements, 𝑇𝑇0  must be first estimated before the 

parameters of the error model can be obtained. This is done in the following two steps.  



49 
 

 
Figure 3.7: Depiction of measurement of volumetric error of the machine using a laser tracker  

• Step 1: Find 𝑇𝑇0, the best-fit measurement frame 

Assume the machine to be ideal and identify the best values for 𝑇𝑇0  to minimize the 

discrepancy between the laser tracker observations of position and the commanded position. Since 

𝑇𝑇0 is a rigid transformation, this step accounts any location and alignment errors between the 

machine and the laser tracker as shown in Figure 3.7. In addition, this step will also reduce the 

effects of any error sources that produce a rigid displacement of the entire machine’s workspace. 

The residual errors that result from this process (of aligning measuring frame with the machines 

coordinates) are referred to as the nominal errors of the machine.  

To identify 𝑇𝑇0, assume ideal kinematics for the machine defined in Equation (3.1),  

𝑟𝑟𝑡𝑡0 = 𝑇𝑇0Φ𝐵𝐵𝑇𝑇1Φ𝑥𝑥𝑇𝑇2Φ𝑧𝑧𝑇𝑇3Φ𝑦𝑦𝑇𝑇4Φ𝑤𝑤𝑇𝑇5 = 𝑇𝑇0𝐻𝐻𝑟𝑟𝑡𝑡, 
 

(3.10) 
 

 

where 𝑇𝑇0 has rigid body translations and small angle rotations as parameters to be identified,  
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𝑇𝑇0 = �

1 −𝛼𝛼0 𝛽𝛽0 𝑥𝑥0
𝛼𝛼0 1 −𝛾𝛾0 𝑦𝑦0
−𝛽𝛽0 𝛾𝛾0 1 𝑧𝑧0

0 0 0 1

�. 

 

(3.11) 
 

Further, 𝑟𝑟𝑡𝑡  is the position of the target in the spindle frame and 𝑟𝑟𝑡𝑡0  is its image in the 

measurement frame. For different joint commands (or measurement points), the kinematic 

transmission of the machine, 𝐻𝐻  will vary. For the ith measurement point, the error vector, 𝑒𝑒𝑖𝑖 

between the forward kinematic transmission and the measurement recorded by the laser tracker 

can be expressed as, 

𝑒𝑒𝑖𝑖 ≅ 𝑇𝑇0𝐻𝐻𝑟𝑟𝑡𝑡 − 𝑞⃑𝑞𝑖𝑖, 
 

(3.12) 
 

where 𝑞⃑𝑞𝑖𝑖 is the measurement recorded by the tracker.  

The best-fit homogeneous transformation, 𝑇𝑇0  to the measurement frame can be obtained by 

minimizing the sum-of-squares of the discrepancy between the ideal machine’s commanded 

positions and the measurements made by the tracker.  

• Step 2: Identify the parameters of the error model from the nominal errors observed 

in the machine’s workspace 

The error sources in the kinematic chain of the machine cause the workspace of the 

machine to dilate/contract, shear and bend. These effects are encoded errors measured in the point-

cloud of error measurements made by the laser tracker. In this step, least-square is used to identify 

the parameters. As mentioned earlier, there are 52 error sources/parameters in the error model. 

Further, for the derivation of the error model, these errors are assumed to be small. The model is 

linear in the set of parameters and can be expressed by an error parameter vector, 𝑝⃑𝑝52  pre-

multiplied by a coefficient matrix, 𝑀𝑀52. Equation (3.12) is written as: 

𝑒𝑒𝑖𝑖 ≅ 𝑀𝑀52,𝑖𝑖𝑝⃑𝑝52, 
 

(3.13) 
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where 𝑒𝑒𝑖𝑖 ∈ ℝ3  is the modeled error vector, 𝑝⃑𝑝52  contains all 52 error parameters and 𝑀𝑀52,𝑖𝑖  is a 

matrix with three rows and 52 columns, where each term being a function of known machine 

constants and commanded positions. Each row then represents the coefficients of the linear 

combination that take the error sources to the X, Y and Z components of volumetric error at a point 

in the machine’s workspace.  

As would be expected, the influence of some parameters on the observed volumetric error 

components will be inseparable from each other by only change the commanded position of the 

tool. ∆𝑥𝑥1~∆𝑥𝑥5 are linear misalignments along X direction, which affect only the X component in 

the volumetric error. 𝛽𝛽5 is the angular error about Y-direction, which only causes an Abbe error of 

−𝑟𝑟𝑡𝑡𝛽𝛽5 along X-direction. ∆𝑥𝑥1~∆𝑥𝑥5 and 𝛽𝛽5 contribute in exactly the same manner to volumetric 

error components at a point, irrespective of its location in the machine’s workspace. They must 

therefore be identified as a group. Similarly, ∆𝑧𝑧1~∆𝑧𝑧5 are grouped, and ∆𝑦𝑦1~∆𝑦𝑦5 are grouped 

with 𝑟𝑟𝑡𝑡𝛾𝛾5, Further, 𝛼𝛼2 and 𝛼𝛼3 are the Z-rotational errors of the two structural members that hold 

the Z-axis. They share the same leverage and cause identical effect of volumetric errors, and hence 

should be identified together. Similarly, 𝛽𝛽3 and 𝛽𝛽4 are grouped as well as 𝛾𝛾1 and 𝛾𝛾2. Also, other 

parameters such as 𝛼𝛼4 , 𝛼𝛼5  and 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 must be removed because they have no influence on the 

volumetric error when the tool reference point lies along the axis of the spindle.  

After all these redundant parameters are eliminated or grouped, the error model is derived, 

𝑒𝑒𝑖𝑖 ≅ 𝑀𝑀𝑖𝑖𝑝⃑𝑝, 
 

(3.14) 
 

where 𝑀𝑀𝑖𝑖 ∈ ℝ3×32 is a sub-matrix of 𝑀𝑀52,𝑖𝑖 and  

𝑝⃑𝑝 = 

[𝛼𝛼1,𝛼𝛼2 + 𝛼𝛼3,𝛽𝛽1,𝛽𝛽2,𝛽𝛽3 + 𝛽𝛽4, 𝛾𝛾1 + 𝛾𝛾2,𝛾𝛾3, 𝛾𝛾4,−𝛽𝛽5𝑟𝑟𝑡𝑡 + � ∆𝑥𝑥𝑖𝑖
5

𝑖𝑖=1
, 𝛾𝛾5𝑟𝑟𝑡𝑡 + � ∆𝑦𝑦𝑖𝑖

5

𝑖𝑖=1
,� ∆𝑧𝑧𝑖𝑖

5

𝑖𝑖=1
, 
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, 𝛿𝛿𝛿𝛿, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, 𝛿𝛿𝛿𝛿, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, 𝛿𝛿𝛿𝛿, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, 𝛿𝛿𝛿𝛿,𝛼𝛼,𝛽𝛽, 𝛾𝛾,𝑑𝑑𝑥𝑥,𝑑𝑑𝑦𝑦,𝑑𝑑𝑧𝑧] ∈ ℝ32, where 𝑟𝑟𝑡𝑡 is 

tool length. 

The 𝑀𝑀𝑖𝑖 matrix for the above set of parameters, constructed for a particular point in the 

machine’s workspace, as previously mentioned, has elements made up of functions of the 

machine’s constants and the axial commands that correspond to that point. Thus, 

�
𝑒𝑒𝑥𝑥,𝑖𝑖
𝑒𝑒𝑦𝑦,𝑖𝑖
𝑒𝑒𝑧𝑧,𝑖𝑖

� ≅ �
𝑀𝑀𝑥𝑥,𝑖𝑖
𝑀𝑀𝑦𝑦,𝑖𝑖
𝑀𝑀𝑧𝑧,𝑖𝑖

� 𝑝⃑𝑝, 

 

(3.15) 
 

where 𝑀𝑀𝑥𝑥,𝑖𝑖 , 𝑀𝑀𝑦𝑦,𝑖𝑖  and 𝑀𝑀𝑧𝑧,𝑖𝑖  correspond to the linear combinations of the error parameters that 

produce the ith measured set of error components 𝑒𝑒𝑥𝑥,𝑖𝑖, 𝑒𝑒𝑦𝑦,𝑖𝑖 and 𝑒𝑒𝑧𝑧,𝑖𝑖. 

Now consider an observation set consisting of errors observed at n points, under the 

assumption that the errors observed at the ith point is explained by the model: 

𝑒𝑒𝑖𝑖 = 𝑀𝑀𝑖𝑖𝑝⃑𝑝 + 𝑁𝑁��⃑ , 
 

(3.16) 
 

where 𝑒𝑒𝑖𝑖 = [𝑒𝑒𝑥𝑥,𝑖𝑖 𝑒𝑒𝑦𝑦,𝑖𝑖 𝑒𝑒𝑧𝑧,𝑖𝑖]𝑇𝑇contains the components of the errors observed at the ith point, 𝑀𝑀𝑖𝑖 is 

the corresponding 3x32 relational matrix and 𝑁𝑁��⃑ ∈ ℝ3 is the observation noise vector with elements 

drawn from the Gaussian distribution 𝑁𝑁(0,𝜎𝜎), 𝜎𝜎 being the standard deviation of the observation 

noise, a system of 3n equations for estimating the parameters is built: 

𝑒𝑒 = 𝑀𝑀𝑝⃑𝑝, 
 

(3.17) 
 

where 𝑒𝑒 = [𝑒𝑒1𝑇𝑇  … 𝑒𝑒𝑛𝑛𝑇𝑇]𝑇𝑇 ∈ ℝ3𝑛𝑛 vector containing the components of the measured error vectors in 

the point-set, 𝑀𝑀 = [𝑀𝑀1
𝑇𝑇  … 𝑀𝑀𝑛𝑛

𝑇𝑇]𝑇𝑇 ∈ ℝ3𝑛𝑛×32 is the new coefficient matrix.  

The least-squares estimate of 𝑝⃑𝑝 which minimizes the sum of squares of the discrepancy 

between the RHS and LHS of Equation (3.17) is given by: 

𝑝̂𝑝 = (𝑀𝑀𝑇𝑇𝑀𝑀)−1𝑀𝑀𝑇𝑇𝑒𝑒. 
 

(3.18) 
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The estimate 𝑝̂𝑝  minimizes the L2-norm of the residuals, ‖𝑒𝑒 − 𝑀𝑀𝑝⃑𝑝‖2 = (𝑒𝑒 − 𝑀𝑀𝑝⃑𝑝)𝑇𝑇(𝑒𝑒 −

𝑀𝑀𝑝⃑𝑝)  and produces an unbiased estimate of 𝑝⃑𝑝  over the entire set of observations (and the 

workspace, if the point-set is a good representation of it).  

3.2 EXPERIMENTAL VALIDATION 

3.2.1 DATA COLLECTION 

In order to identify the kinematic error model parameters, measurements of the machine 

tool are taken. These measurements are collected over the entire 3D space using a Laser Tracker 

and Active Target system (Figure 3.8) to ensure that all axis-dependent machine tool geometric 

errors are captured. The Laser Tracker used in this test is the API Radian which has a static 

measurement accuracy of +/- 10 μm or 5 ppm (2σ) according to the specifications provided by 

API. From this and the tracker’s position on the machine, the largest measurement standard 

deviation (σ) value over the measured range was calculated to be 8.9 μm. In order to ensure that 

the Laser Tracker was thermally isolated from the machine tool, a plastic Isolation Block was 

placed between the Laser Tracker base and the machine tool.  

Before measurements are taken, a measurement frame is identified. With the Laser Tracker 

attached to the machine tool bed and the Active Target attached to the machine tool spindle, as 

shown in Figure 3.8, the B-Axis is rotated with the other axes stationary in order to generate a 

circle of points. The normal vector of this circle is used as the vertical (Y-Axis) of the measurement 

frame. Next, the B-Axis is re-oriented to its 0° position and three points are measured as the 

machine moves along its X-Axis. The best fit line to these points is used as the X-Axis direction 

of the measurement frame. A right-handed frame is established from these two axes. This frame is 

then transformed into the negative Y-Axis direction by the Y-Axis encoder value of the machine 
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tool to account for the Y position of the machine tool spindle during the measurement frame 

identification. 

 
Figure 3.8: Machine tool work cell and table base frame 

The machine tool repeatability, which establishes the maximum possible accuracy for a 

perfectly compensated machine tool, was calculated next. To determine the machine tool’s 

repeatability, eight quasi-random points from the machine tool’s working joint space were 

measured ten times each. Each cycle of the eight points was measured in a different randomized 

order to approximate arbitrary approach directions. The error of each measurement is given by, 

𝑒𝑒𝑖𝑖,𝑗𝑗 = ��𝑥𝑥𝑖𝑖,𝑗𝑗 − 𝑥̅𝑥𝑖𝑖�
2

+ �𝑦𝑦𝑖𝑖,𝑗𝑗 − 𝑦𝑦�𝑖𝑖�
2

+ �𝑧𝑧𝑖𝑖,𝑗𝑗 − 𝑧𝑧𝑖̅𝑖�
2

, 
 

(3.19) 
 

where 𝑒𝑒𝑖𝑖,𝑗𝑗 is the error of the jth measurement of the ith point, �𝑥𝑥𝑖𝑖,𝑗𝑗 𝑦𝑦𝑖𝑖,𝑗𝑗  𝑧𝑧𝑖𝑖,𝑗𝑗� is the jth measurement of 

the ith point, and [𝑥̅𝑥𝑖𝑖 𝑦𝑦�𝑖𝑖  𝑧𝑧𝑖̅𝑖] is the average measurement of the ith point.  

From the measurements taken of the machine, the largest error was 0.0217 mm, which is 

used as the machine tool’s repeatability. It should be noted that this repeatability value is only 2.4 

times the measurement standard deviation meaning that a large portion of this value is may be due 

to the accuracy level of the laser tracker as opposed to the machine itself. Despite this fact, this 
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repeatability still corresponds to the highest potential measured accuracy of the machine if it was 

perfectly compensated. 

The measurement locations used for model identification and testing were selected next. 

For the identification set, 290 quasi-random points were selected throughout the machine tool’s 

joint space, and an additional 50 quasi-random points were generated as a testing set. The number 

of points selected for identification and testing was selected through past experience with similar 

sized machine tools [15]. This number has the necessary richness to appropriately identify the 

geometric errors of the machine tool while minimizing the machine tool’s down time. The joint 

ranges used to generate these points are shown below in Table 3.1, and the distributions of the 

points are shown below in Figure 3.9.  

Table 3.1: Minimum and maximum commands used for modeling and testing 
Axis Minimum Command Maximum Command 

B 0° 360° 
X -1250 mm 1250 mm 
Z 900 mm 2200 mm 
Y 350 mm 2500 mm 
W -800 mm -200 mm 

 

 
Figure 3.9: Positions of identification and testing points inside working envelop, given in 

machine tool base frame. 
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Using the Laser Tracker and Active Target system, the 290-point identification set was 

measured twice. In each measurement set a different length mount was used to attach the active 

target to the spindle as shown in Figure 3.8. Because the rotation of the spindle does not need to 

be modeled, these two mounts (Figure 3.10) allow for the spindle orientation to be determined for 

each point by finding the vector between the measurement sets.  

 

Figure 3.10: Active Target machine tool spindle mounts 

Because the same axis commands are used when taking both sets of identification points, 

it is possible to use the two sets of measurements to examine the potential existence of thermal 

drift in the measurement setup. For each point in the identification set, the distance between the 

two measurements of that point is ideally equal to the tool length difference of the two Active 

Target mounts (within machine tool repeatability). Therefore, if the distance between 

measurements is larger than the repeatability (0.0217 mm), then some shift must have occurred 

during the time that the system was measured. The distances between the measurements from each 

set (with the tool length offset removed) are shown in Figure 3.11. The distance between 

corresponding points ranges from -0.13 to 0.11 mm. Since this value is approximately six times 

the measured repeatability value, there is evidence that some sort of drift occurred during the 
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measurement process. Furthermore, since the air temperature changed by 3.7°C during the 

measurement process, thermal effects is a likely source of some or all of this drift.  

 

Figure 3.11: Distance between short tool and long tool measurements 

3.2.2 BEST-FIT MEASUREMENT FRAME 

The procedure described in Section 3.2.1 was used on the data collected in both the 

identification and testing data sets (described in Section 3.2.3). Table 3.2 shows the estimated 

errors between the nominal measurement frame and the machine’s reference. Also shown in the 

table is the mean magnitude of the residual error vectors at the measurement points. For 

identification purpose, two sets of measurement were taken using different lengths of tool. After 

that, the identified parameters were used for modeling the testing sets.  

Table 3.2: Best measuring frames of each measuring set 
Set Short Tool Long Tool Test 1 Test 2 

𝑥𝑥0 (mm) 0.00845 0.0122 0.00715 0.0111 
𝑦𝑦0 (mm) 0.351 0.304 0.293 0.298 
𝑧𝑧0 (mm) -0.0147 -0.0124 0.0095 0.0116 
𝛼𝛼0 (rad) -6.21E-06 3.68E-05 5.78E-05 6.68E-05 
𝛽𝛽0 (rad) -2.13E-05 -1.85E-05 -2.43E-05 -2.35E-05 
𝛾𝛾0 (rad) 1.05E-05 2.41E-05 3.52E-06 5.05E-06 

Residual(mm) 0.4214 0.3175 0.2783 0.2745 

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15
0

5

10

15

20

25

30

35

40

Distance (mm)

Fr
eq

ue
nc

y



58 
 

3.2.3 ERROR PARAMETER IDENTIFICATION 

The results of parameter identification are shown in Table 3.3. The data for the two 

different tools (short, 312.035mm, and long, 435.185mm) were analyzed separately to identify the 

error parameters of the two identification sets. From Table 3.3, the high correlation between the 

parameters identified in the two experiments is apparent. The deviations seen are due to the 

temperature changes between the two experiments and the uncertainty in the assembly of the target 

on the tool.  

Table 3.3: Values identified for the parameters of the error model 
Unit: mm Unit: rad Unit: rad/mm 

Parameter Short Long Parameter Short Long Parameter Short Long 

x1+…x5-tlβ5 3.62E-02 5.92E-02 α1 -2.36E-05 -1.96E-05 dα/dx 1.55E-08 2.57E-08 

y1+…y5+tlγ5 -4.78E-02 -2.35E-02 α2+α3 -1.01E-05 -1.18E-05 dβ/dx 1.13E-09 7.01E-09 

z1+…z5 -3.12E-01 -1.97E-01 β1 -6.93E-05 -6.95E-05 dγ/dx -1.04E-08 -1.16E-08 

dx 1.13E-02 3.75E-03 β2 4.16E-05 3.51E-05 dα/dy -1.26E-08 -1.80E-08 

dy 2.62E-02 2.71E-02 β3+β4 5.83E-05 4.82E-05 dβ/dy 2.57E-08 3.03E-08 

dz -1.28E-02 -7.25E-03 γ1+γ2 -1.85E-04 -1.77E-04 dγ/dy -5.54E-09 -1.54E-09 

Unit: dimensionless γ3 9.02E-05 8.19E-05 dα/dz -1.68E-08 -1.34E-08 

Parameter Short Long γ4 -1.85E-04 -2.07E-04 dβ/dz -3.81E-08 -2.73E-08 

δx -1.23E-04 -1.12E-04 β -9.57E-07 -9.72E-06 dγ/dz 2.97E-08 2.78E-08 

δy -1.10E-04 -1.09E-04 α 1.15E-06 6.78E-07 dβ/dw 2.93E-08 1.80E-08 

δz -3.75E-05 -3.75E-05 γ 8.03E-06 4.84E-06 dγ/dw -4.10E-07 -4.19E-07 

δw -1.06E-04 -1.06E-04       

 
Figure 3.12(a) shows the distributions of the residual errors. The statistical analysis of the 

results is shown in Table 3.4. Compared with the residual errors obtained from the frame alignment 

process, the error model reduces not only the mean but also the maximum (which characterizes 

the worst-case uncertainty of the machine/model) errors by 90% and 82% respectively. 
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Figure 3.12: (a) The magnitudes of error residuals on two identification sets (290 points in each); 

(b) the magnitudes of error residuals on two testing sets (48 points in each). 

Table 3.4: Model performance for two sets with two different tool lengths 
Short tool Mean Residual % decrease Max. Residual % decrease 
Nominal 0.4214 mm N/A 0.6270 mm N/A 

Least squares 0.0277 mm 93.43% 0.1073 mm 82.88% 
Long tool Mean Residual % decrease Max. Residual % decrease 
Nominal 0.3175 mm N/A 0.5492 mm N/A 

Least squares 0.0307 mm 90.34% 0.0941 mm 82.86% 
 
3.2.4 ERROR MODEL TESTING 

With the error model parameters obtained from the identification sets, the model’s 

prediction capability are checked against two testing sets consisting of 48 previously-unseen data 

points, taken with the long tool. The results of this testing are shown in Table 3.5 and Figure 

3.12(b). Compared with the nominal machine errors, the model can provide, approximately, a 75% 

reduction of average magnitude of errors vectors at the points in the data sets. 
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Table 3.5: Model performance for two testing data sets (Tool length=435.185mm) 
Testing set 1 Mean Residual % decrease Max. Residual % decrease 

Nominal 0.2783 mm N/A 0.4624 mm N/A 
Least squares 0.0590 mm 78.80% 0.1760 mm 61.94% 
Testing set 2 Mean Residual % decrease Max. Residual % decrease 

Nominal 0.2745 mm N/A 0.4546 mm N/A 
Least squares 0.0670 mm 75.59% 0.1767 mm 61.13% 

 
3.3 SUMMARY 

A kinematics model for a 5-axis machine tool with a redundant linear axis is developed in 

this chapter. This model introduced 52 parameters, linked to the error kinematics of the machine 

tool, which would need to be identified. Analysis of the model shows that only 32 of them have 

linearly independent effects on the volumetric errors in the workspace. A 2-step procedure for 

least-squares identification of the error model parameters from observations of the volumetric 

errors at points in the machine’s workspace is also developed.  

A laser tracker was used to make measurements at 290 randomly generated points in the 

machine’s workspace. These measurements were repeated with tools of two different lengths 

characterizing the behavior of the machine with long and short tools. The error model parameters 

were estimated for these two different data sets. Despite some thermal drift on the machine 

between the experiments, the error model parameters estimated remained consistent in both 

magnitude and sign. Further, the model was able to reduce the errors at the observation points to 

about a third of their original values. The model was tested on two data sets of 48 observation 

points each. A similar model performance was observed. The proposed model has potential to be 

used for error prediction on commanded positions. 
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CHAPTER 4. ERROR OBSERVER DESIGN FOR MACHINE TOOL 

In this chapter, the design and use of optimal error observer to track machine tool error is 

presented. The machine, modeling approach, and measurement techniques discussed in Chapter 3 

are used to demonstrate the feasibility of using them to track machine’s thermal error. It must be 

noted that the methodology of designing machine tool error observer is not limited to the error 

model developed in Chapter 3. Section 4.1 builds the mathematical model for optimal observer 

design of linear identification system. Section 4.2 describes the application of the optimal design 

theories in designing the thermal error observers for a 5-axis machine. Different design observer 

sets are proposed to identify the parameters in the volumetric error model. Section 4.3 describes 

the experimental setup to collect the measurement data, and Section 4.3.2~4.3.4 present results on 

the behavior of the model identified. Section 4.4 outlines the conclusions, drawn from this work. 

4.1 OPTIMAL OBSERVER DESIGN FOR LINEAR SYSTEM 

4.1.1 INTRODUCTION 

As reviewed in Section 2.3, a linear identification problem with n design points is given 

by: 

 𝑒𝑒 ≅ 𝑀𝑀(𝚥𝚥1, … 𝚥𝚥𝑛𝑛)𝑝⃑𝑝, 
 

(4.1) 
 

where 𝑒𝑒 ∈ ℝ𝑛𝑛 represents a vector of n observable values that is related to 𝑝⃑𝑝 ∈ ℝ𝑘𝑘 , a set of k 

unknown parameters is the vector consisting of all undetermined parameters, 𝑝𝑝1, … 𝑝𝑝𝑘𝑘  (whose 

values are to be estimated) by the design matrix, 𝑀𝑀(𝚥𝚥1, … 𝚥𝚥𝑛𝑛) ∈ ℝ𝑛𝑛×𝑘𝑘 , whose row vectors are 

functions of 𝚥𝚥1, … 𝚥𝚥𝑛𝑛, sets of variables that can be independently controlled. 

The best fit estimator of 𝑝⃑𝑝, 𝑝̂𝑝 is given by least-squares fitting,  

𝑝̂𝑝 = (𝑀𝑀𝑇𝑇𝑀𝑀)−1𝑀𝑀𝑇𝑇𝑒𝑒. 
 

(4.2) 
 



62 
 

The D-optimal design maximizes information by minimizing the volume of the confidence 

volumes or the uncertainty region around the estimator. The D-optimality is given by,  

min
𝚥𝚥1…𝚥𝚥𝑛𝑛

|(𝑀𝑀𝑇𝑇𝑀𝑀)−1| = min
𝚥𝚥1…𝚥𝚥𝑛𝑛

�
1
𝜆𝜆𝑖𝑖

𝑘𝑘

𝑖𝑖=1

, 

 

(4.3) 
 
 

where 𝚥𝚥1 … 𝚥𝚥𝑛𝑛 are n sets of controllable variables (in our case, the commanded axial positions) that 

control each row in the design matrix 𝑀𝑀, and 𝜆𝜆𝑖𝑖 is the ith eigenvalue of 𝑀𝑀𝑇𝑇𝑀𝑀.  

A-optimal design minimizes the average variance of the estimations on the regression 

coefficients, and its objective is given by: 

min
𝚥𝚥1…𝚥𝚥𝑛𝑛

𝑡𝑡𝑡𝑡((𝑀𝑀𝑇𝑇𝑀𝑀)−1) = min
𝚥𝚥1…𝚥𝚥𝑛𝑛

�
1
𝜆𝜆𝑖𝑖

𝑘𝑘

𝑖𝑖=1

, 

 

(4.4) 
 

where 𝚥𝚥1 … 𝚥𝚥𝑛𝑛 are n sets of controllable variables (in our case, the commanded axial positions) that 

control each row in the design matrix 𝑀𝑀, 𝑡𝑡𝑡𝑡((𝑀𝑀𝑇𝑇𝑀𝑀)−1) is the trace of (𝑀𝑀𝑇𝑇𝑀𝑀)−1 and 𝜆𝜆𝑖𝑖 is the ith 

eigenvalue of 𝑀𝑀𝑇𝑇𝑀𝑀.  

The K-optimality criterion minimizes the sensitivity of estimator to observational error by 

minimizing the condition number of the design matrix, 

min
𝚥𝚥1…𝚥𝚥𝑛𝑛

𝜅𝜅(𝑀𝑀) = min
𝚥𝚥1…𝚥𝚥𝑛𝑛

𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚
𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚

= min
𝚥𝚥1…𝚥𝚥𝑛𝑛

𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

, 

 

(4.5) 
 

where 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚  and 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚  are the largest and smallest singular values of 𝑀𝑀, 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚  and 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚  are the 

largest and smallest eigenvalues of the information matrix, 𝑀𝑀𝑇𝑇𝑀𝑀. 

D, A and K-optimality criteria are all related to the eigenvalues of the information matrix 

[58], [59]. All three types of design problems deal with the maximization of information, 

quantified by surrogate functions of these eigenvalues. In Section 4.3, K-optimal design is selected 

to reject the measurement noise. However, the optimal design theories produce the best locations 

for observations to identify model parameters under the assumption that the form or degree (if it 
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is a polynomial) of the underlying model of the linear system is known. In many situations, the 

functions used for machine tool error models are simplifications (typically with polynomials of 

axial displacements). Further, to keep the number of parameters manageable, they are assumed to 

be low-order polynomials. In such cases, there is always a possibility that neglected higher-order 

terms may be significant. Any observer design process must take steps to alleviate the deleterious 

effects of model inadequacy.   

4.1.2 EXAMPLE PROBLEM 

For example, if one tries to fit a straight-line model to a parabolic function, 𝑦𝑦 = 𝑥𝑥2 over 

the domain [0,1] with four observations. As can be seen in Figure 4.1, the modeling residuals of 

any line 𝑦𝑦 = 𝑝𝑝1𝑥𝑥 + 𝑝𝑝2 are not normally distributed but dependent on 𝑥𝑥 because the linear model 

is inadequate. The identification system of 𝑝𝑝1 and 𝑝𝑝2 is given by: 

�
𝑦𝑦1
⋮
𝑦𝑦4
� = �

𝑥𝑥1
⋮
𝑥𝑥4

1
⋮
1
� �
𝑝𝑝1
𝑝𝑝2� = 𝑀𝑀𝑝⃑𝑝, 

 

(4.6) 
 

where 𝑥𝑥1, . . . 𝑥𝑥4 are the positions of the observations, 𝑦𝑦1, … 𝑦𝑦4 are the corresponding observations 

and 𝑀𝑀 is the design matrix. 

 

Figure 4.1: Quadratic function fitted by linear functions 
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The optimal design problem is given by, 

min
𝚥𝚥1…𝚥𝚥𝑛𝑛

𝑓𝑓(𝑀𝑀) ∋ 𝚥𝚥𝑖𝑖 ∈ Γ(𝑖𝑖 = 1, …𝑛𝑛), 

 
(4.7) 

 
where 𝑓𝑓(𝑀𝑀) could be D, A or K-optimization objectives defined in Equations (4.3), (4.4) and (4.5) 

and Γ is the design space.  

In this example, Γ = [0,1], 𝑛𝑛 = 4 and 𝚥𝚥𝑖𝑖 = 𝑥𝑥𝑖𝑖 for 𝑖𝑖 = 1, … 4. A, D and K-optimal designs 

all suggest that the best four observations for Equation (4.7) are x=0,0,1,1, and the line fitted by 

these observations is 𝑦𝑦 = 𝑥𝑥. As shown in Table 4.1, the corresponding objectives, 𝑡𝑡𝑡𝑡((𝑀𝑀𝑇𝑇𝑀𝑀)−1), 

|(𝑀𝑀𝑇𝑇𝑀𝑀)−1 |, and 𝜅𝜅(𝑀𝑀) of these four observations are minimized to be 1.5, 0.25 and 2.618. It’s 

been observed in Figure 4.1 that the straight line defined by the end points only has good model 

performance at two ends. In fact, the best linear fitting of over that minimizes the sum of squared 

error is the green line in Figure 4.1. The observers produced by the optimal designs localize the 

observations at the boundaries of the design space, which causes the poor overall fitting 

performance. 

Table 4.1: Optimal observers designed by A, D, K-optimal designs 
 Case 𝑥𝑥1∗ 𝑥𝑥2∗ 𝑥𝑥3∗ 𝑥𝑥4∗ 𝑡𝑡𝑡𝑡((𝑀𝑀𝑇𝑇𝑀𝑀)−1) |(𝑀𝑀𝑇𝑇𝑀𝑀)−1 | 𝜅𝜅(𝑀𝑀) 

Unconstrained  0 0 1 1 1.5 0.25 2.618 
Constrained  0 0.25 0.75 1  2.25  0.4  3.25 

 
To avoid localized observation points, one can introduce constraints to the optimization 

procedure to distribute observations over the domain or design space. For example, the distribution 

can be one observation between 0 and 0.25, two between 0.25 and 0.75 and the last one between 

0.75 and 1. A generalized constrained optimization problem is given by, 

min
𝚥𝚥1…𝚥𝚥𝑛𝑛

𝑓𝑓(𝑀𝑀) ∋ 𝚥𝚥𝑖𝑖 ∈ Γ𝑖𝑖(𝑖𝑖 = 1, …𝑛𝑛), 

 
(4.8) 

 
where 𝑓𝑓(𝑀𝑀) is the objective function to be minimized and Γ𝑖𝑖 is the ith constraint for the ith set of 

variables. 
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In this case, 𝑛𝑛 = 4, Γ1 = [0,0.25], Γ2 = Γ3 = [0.25,0.75] and Γ4 = [0.75,1], and 𝚥𝚥𝑖𝑖 = 𝑥𝑥𝑖𝑖 

for 𝑖𝑖 = 1, … 4. As can be seen in Table 4.1, the solution to Equation (4.8) using A, D and K-

optimality gives four different observers, x=0, 0.25, 0.75 and 1. The corresponding objectives, 

𝑡𝑡𝑡𝑡((𝑀𝑀𝑇𝑇𝑀𝑀)−1), |(𝑀𝑀𝑇𝑇𝑀𝑀)−1 |, and 𝜅𝜅(𝑀𝑀)of these four observations are 2.25, 0.4 and 3.25, which are 

all larger than their unconstrained counterparts, 1.5, 0.25 and 2.618. Figure 4.1 shows the fitting 

result of the constrained optimization using the dashed black line. The line fitted by the observers 

of the constrained optimization is 𝑦𝑦 = 𝑥𝑥 − 0.0938, which is much closer to the best fitting line, 

𝑦𝑦 = 𝑥𝑥 − 0.1667. 

Thus, the judicious introduction of constraints to obtain distribution of the points balances 

the need to maximize the amount of information in the observer design with the need to guard 

against inadequacy of the proposed model. In this example, one might realize that the minimum 

number of observation points required for estimating the model parameters is two. By introducing 

redundancy (two additional observations) and constraining the locations of these extra points, one 

can provide the optimization procedure the flexibility to maximize the information content while, 

at the same time, ensure that all regions of the domain of the fit are represented. This strategy will 

be used in the next Section for the design of error observers for machine tools. 

4.2 OBSERVER DESIGN FOR THE ERRORS OF A 5-AXIS MACHINE 

The concepts discussed in Section 4.1 are tested on the machine and error model, which is 

built in the Section 3.1. The schematic of the 5-axis machine used in this study and its kinematic 

equivalent are shown in Figure 3.1. The machine has four prismatic joints, X, Y, Z and W axis 

with travels of 4m, 2.5m, 2.2m and 800mm respectively and a rotary joint, B axis that allows the 

table to rotate about the Y direction by 360 degrees. The Z and W axes are redundant axes. 
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To track the evolution of thermal errors, based on consultation by the users, it was decided 

that we design the observer so that the time for making measurements was limited to 25 minutes. 

Based on empirical experience, it is therefore decided to limit the number of measurement points 

for the observer to 80. The linear error model in Equation (3.14), as previously explained can be 

rewritten in the form of design matrix times the error parameter vector:  

𝑒𝑒𝑖𝑖 ≅ 𝑀𝑀𝑖𝑖(𝚥𝚥𝑖𝑖)𝑝⃑𝑝, 
 

(4.9) 
 

where 𝑒𝑒𝑖𝑖 ∈ ℝ3  is the error observed at the ith measurement, 𝑀𝑀𝑖𝑖 ∈ ℝ3×32  has elements that are 

functions of the ith commanded X, Y, Z, W and B axes positions, denoted by 𝚥𝚥𝑖𝑖 and 𝑝⃑𝑝 ∈ ℝ32 is the 

error parameter vector. 

With 80 observations, a system of 240 equations can be produced, given by: 

𝑒𝑒 ≅ 𝑀𝑀(𝚥𝚥1 … 𝚥𝚥80)𝑝⃑𝑝 
 

(4.10) 
 

where 𝑀𝑀 ∈ ℝ240×32  is the design matrix controlled by 80 design points 𝚥𝚥1 … 𝚥𝚥80 , 𝑒𝑒 ∈ ℝ240 

contains all components of the measured error vectors in the observer point-set. 

The optimization problem that seeks to maximize the amount of information carried by 80 

design points suggests the best set of axes command. Each design point is controlled independently 

by the commands of X, Y, Z, W and B axis. Therefore, the problem has 80x5 degrees of freedom 

subjected to the size command space defined by the limitation on each axis.  

The A, D and K-optimal observers can be produced by solving the constrained optimization 

problem defined in Equations (4.7) and (4.8). This was encoded in a MATLAB program, using 

the generalized constrained optimization function FMINCON takes as input the definition of 𝑀𝑀 in 

terms of axial positions of the machine and the constraints of the workspace. This function finds a 

local minimum, hence it was called several time with different randomly generated, feasible initial 

solutions. The objective functions converged to the similar values for all the cases. The positions 



67 
 

of the measurements points for the three criteria in the work envelop of the machine are shown in 

Figure 4.2(a), (b) and (c). The values for the objective functions for three different criteria of 

optimal designs are listed in Table 4.2.  

 

Figure 4.2: Designed observer sets given in machine tool base frame 

Table 4.2: The unconstrained designs
Type Points 𝑡𝑡𝑡𝑡((𝑀𝑀𝑇𝑇𝑀𝑀)−1) |(𝑀𝑀𝑇𝑇𝑀𝑀)−1 | 𝜅𝜅(𝑀𝑀) 

A 80 99.7 2.27 × 10−39 253.7 
D 80 125.0 6.86 × 10−42 337.5 
K 80 183.2 5.04 × 10−15 122.0 

Random 290 80.9 5.95 × 10−46 437.8 
 

The locations of the measurement points for the A- and D-optimal observers are similar, 
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optimal designs maximizes the distance between observations in the domain to increase their 

influence on the estimates of the unknown parameters. However, the observations for the K-

optimal observer are highly localized and located primarily near the bottom of the workspace. In 

the process of minimizing the influence of errors in observations, it also minimizes the influence 

of the observations. As mentioned in Section 4.1.2, the unconstrained locations for the optimal 

design of observers are expected to produce such localization. To obtain a more uniform location, 

the workspace of the machines is sliced into 4 zones along the y axis. Each slice is further 

decomposed into a central block and an annular space (having the same volume). Thus the 

workspace is broken up into 8 equal volumes as shown in Figure 4.3. Constraints formed by 8 

volumes are then introduced into the optimization program to ensure that each of these 8 volumes 

contains 10 measurement points of the new “constrained” A, D and K-optimal observers. The 

results of the introduction of these distribution constraints is given in Figure 4.2(d), (e) and (f), and 

the new values of objective functions for the different criteria and designs are tabulated in Table 

4.3.  

 

Figure 4.3: 8 constrain volumes and the constrained K-optimal observer set 
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Table 4.3: The constrained designs
Type Points 𝑡𝑡𝑡𝑡((𝑀𝑀𝑇𝑇𝑀𝑀)−1) |(𝑀𝑀𝑇𝑇𝑀𝑀)−1 | 𝜅𝜅(𝑀𝑀) 

A 80 100.5 1.33 × 10−38 273.1 
D 80 131.8 8.90 × 10−40 330.1 
K 80 108.3 3.74 × 10−29 207.3 

Random 290 80.9 5.95 × 10−46 437.8 
 

It can be seen in Figure 4.2 that the constraints successfully spread the measurement points 

over the whole workspace, but the price paid for introducing these constraints is also apparent in 

the value of the objective functions shown in Table 4.2 and Table 4.3.  

4.3 EXPERIMENTAL VALIDATION 

An experiment was designed to test the aforementioned 80-point, constrained K-optimal 

observer on the machine described in Section 4.2. A similar experiment with the unconstrained K-

optimal observer was also performed. In this experiment, the objectives were to: 

(1) Check how error models using the parameter estimates it produces compare with those 

using parameters estimated from the more traditional, measurement-intensive quasi-

random point-sets. 

(2) Determine its ability to track changes in these parameters as the thermal state of the 

machine changes. 

(3) Assess improvements, if any, in the observer’s performance brought about by the 

introduction of constraints to distribute the measurements in the workspace.  

4.3.1 EXPERIMENT SETUP 

Similar experiment setup was used as shown in Figure 3.8. An API Radian laser tracker 

with active target system was used to collect the data over the entire 3D space. The 80 points in 

the K-optimal observer were analyzed for reachability of the laser tracker. It was found that 4 

points were not reachable. The value of objective function for the observer with the remaining 76 

points increased from 207.3 to 222.0, which was not changed significantly. The machine was 
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programmed to carry the active target of the tracker and dwell for a few seconds at these 76 

measurement points. The tracker and machine were synchronized so that the tracker recorded the 

position of the target after the machine had settled at a measurement point. This measurement cycle 

was repeated at intervals of one hour. Six such measurements cycles were performed. The first one 

at the start of the experiment can identify the errors of the machine’s initial state. In the four 

intervals between the first five measurement cycles, the spindle of the machine and the axes of the 

machine were exercised at roughly half their maximum speeds to heat up the machine. The 

machine could cool in the interval between the 5th and 6th measurement cycles. Figure 4.4 shows 

the schedule of the 8-hour experiment.  

 

Figure 4.4: Measurement, heating and cooling cycles 

Prior to the start of the experiment, the laser tracker is mounted at the center of the table 

on top of a thermal isolation block. A set of measurements are taken and processed to align the 

measurement frame to the machine’s coordinate system as Section 3.1.5 and 3.2.2 show. Further, 

measurements are made to assess the repeatability of measurements of the laser tracker on the 

machine. This was found to be around 20 microns as discussed previously in Section 3.2.1.  

Additionally, the machine was instrumented with 16 wireless thermal sensors to record 

temperatures at different positions of the machine structure. Four packet radio transceivers (shown 
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in Figure 4.5), Adafruit Feather M0 RFM96 LoRa Radio (433 MHz) with 13 temperature sensors, 

TMP 36 were placed over the course of the experiment as shown in Figure 4.6, and the data 

acquisition system transmit temperature data to a computer-based server, which monitored and 

recorded the temperature readings in real time. Each of the 4 linear axes was instrumented with 3 

temperature sensors (one on the drive and the others distributed around the length of the axes). 

One of the sensors on the Y-axis was used to monitor the spindle housing temperature. 

Temperatures were recorded at 1-minute intervals during the experiment.  

 

Figure 4.5: Wireless transceiver unit 

 
Figure 4.6: Temperature sensors setup on W-axis 
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The experiment was commenced in the morning and concluded late afternoon. The data 

recorded in each measurement cycle at the measurement points was fed into a MATLAB program 

and used to identify the parameters of the error model as demonstrated in Section 3.2.3 using least-

squares fitting technique.  

A similar experiment was conducted with the unconstrained K-optimal observer. In this 

case, the experiment was conducted without running the spindle between measurement cycles (the 

reason was to reduce the uncertainty in repeated mounting and dismounting the active target). 

The following are some key points in the processing of the data obtained in each 

measurement cycle. For the first (initial) measurement cycle, misalignment between the 

measurement and movement frame, 𝑇𝑇0,1 and error parameters, 𝑝⃑𝑝1 are identified separately. In all 

subsequent cycles, the workspace drift is picked up by the constant terms of the error model. Thus, 

in the first measurement cycle, two minimization problems are solved as elaborated in Section 

3.1.5: 

1. Identify misalignment between the measurement and movement frame, 𝑇𝑇0,1 in the first 

(initial) cycle, 

min
𝑇𝑇0,1

��𝑇𝑇0,1𝐻𝐻𝑖𝑖𝑟𝑟𝑡𝑡 − 𝑞⃑𝑞𝑖𝑖,1�
2

76

𝑖𝑖=1

, 

 

(4.11) 
 

where 𝑇𝑇0,1𝐻𝐻𝑖𝑖𝑟𝑟𝑡𝑡 is the ideal position of the ith measurement point predicted by the ideal forward 

kinematics and 𝑞⃑𝑞𝑖𝑖,1 is the actual position measured by the laser tracker at the ith measurement point. 

2. Estimate the 32 error parameters, 𝑝⃑𝑝1: 

min
𝑝⃑𝑝1

��𝑀𝑀𝑖𝑖𝑝⃑𝑝1 − (𝑇𝑇0,1𝐻𝐻𝑖𝑖𝑟𝑟𝑡𝑡 − 𝑞⃑𝑞𝑖𝑖,1)�
2
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𝑖𝑖=1

, 

 

(4.12) 
 

where 𝑀𝑀𝑖𝑖𝑝⃑𝑝1 is the modelled error, 𝑇𝑇0,1𝐻𝐻𝑖𝑖𝑟𝑟𝑡𝑡 − 𝑞⃑𝑞𝑖𝑖,1 is the observed error. 
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For all subsequent (the 2nd to 6th) cycles, the misalignment between the measurement and 

movement frame 𝑇𝑇0,𝑗𝑗 is not updated. 𝑇𝑇0,1 is used as the starting reference for the thermal drift of 

the machine and to give the growth in errors due to thermal effects. Therefore, the jth error 

parameter group denoted by 𝑝⃑𝑝𝑗𝑗 is identified using a single-step identification (𝑗𝑗 = 2~6), 

min
𝑝⃑𝑝𝑗𝑗

��𝑀𝑀𝑖𝑖𝑝⃑𝑝𝑗𝑗 − (𝑇𝑇0,1𝐻𝐻𝑖𝑖𝑟𝑟𝑡𝑡 − 𝑞⃑𝑞𝑖𝑖,𝑗𝑗)�
2

76

𝑖𝑖=1

, 𝑗𝑗 = 2~6. 

 

(4.13) 
 

The modelling residual at the ith observation of the jth cycle can be computed by,  

𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,𝑗𝑗 = �𝑀𝑀𝑖𝑖𝑝⃑𝑝𝑗𝑗 − (𝑇𝑇0,1𝐻𝐻𝑖𝑖𝑟𝑟𝑡𝑡 − 𝑞⃑𝑞𝑖𝑖,𝑗𝑗)�
2

, 𝑖𝑖 = 1~76 , 𝑗𝑗 = 1~6. 
 

(4.14) 
 

4.3.2 MODEL PERFORMANCE 

The statistics of the behaviour of the models identified for six different thermal states are 

shown in Table 4.4. The observed mean and max are the statistics of the errors observed after the 

tracker placement error are removed from the tracker readings. The mean and maximum residual 

are the statistics of the difference between the observed errors and those predicted by the identified 

models. One could expect these error statistics if the identified model was used for compensation. 

Figure 4.7 shows the average temperatures recorded by four wireless transmission systems on four 

linear axes.  

Table 4.4: Model performances on different states (constrained K-optimal) 
Machine 

State 
Observed (μm) Residual (μm) % Decrease 

Mean Max Mean Max Mean Max 
Initial 119.1 265.9 26.3 98.2 77.92% 63.07% 

Heating 134.4 279.6 31.5 97.2 76.56% 65.24% 
Heating 154.0 310.2 28.8 94.5 81.30% 69.54% 
Heating 169.6 311.6 33.9 113.4 80.01% 63.61% 
Heating 181.9 331.6 30.9 111.6 83.01% 66.34% 
Cooling 157.3 309.4 29.8 101.7 81.06% 67.13% 

 



74 
 

 

Figure 4.7: Temperature variations over the course of the experiment 

The models identified by making measurements at points prescribed by the constrained K-

optimal observer over 6 measurement cycles suggest highly repeatable performance for each 

thermal state. During the first data collecting cycle (initial state), the model provides 77% and 63% 

reductions in the mean and maximum magnitude of error, respectively. These percentages 

increased as the average magnitude of the machine’s errors increased because the average 

magnitude of the residuals remained a relatively narrow (8 micron) band. 

The observer performed well in terms of explaining the error. The repeatability of the 

positioning was around 20 microns (machine and laser tracker combined). Further, an additional 

uncertainty of about 5 microns was introduced because the active target had to be removed and 

remounted between measurement cycles (because the heating cycles required the spindle to be 

run). The average magnitude of the residuals at the observer measurement points over six 

experiments was close to 30 microns, which suggests that the identified models were capturing 
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most of the systematic errors of the machine and adjusting the parameters appropriately to adjust 

to thermal changes of the machine. 

 These results are comparable to those reported in Section 3.2.3 on the same machine, using 

the same kinematic model but, instead using a quasi-randomly generated set of 290 observation 

points. In the aforementioned work, the average magnitude of the residuals was 27.7 microns as 

shown in Table 3.1. Thus, with the machine’s thermal condition varying, additional uncertainty of 

removing and replacing the laser target in the spindle and a measurement set reduced by more than 

a third, the constrained K-optimal observer produced comparable performance. The feasibility of 

using a smaller and more strategically-chosen point-set to perform on-line thermal error tracking 

is thus demonstrated. The measurement cycle time for measurements for this reduced set of points 

is only 24 minutes. This suggests that, with a quick data collection strategy and a robust error 

model parameter estimation procedure, one might be able to track and compensate the thermal 

errors as they evolve by executing a process intermittent gaging and error updating strategy. 

4.3.3 THERMAL ERROR TRACKING AND ANALYSIS 

One can compare the performance of tracking approach to that of a static calibration 

approach that does not attempt to track and compensate thermal errors. In such a situation the 

machine is calibrated once (typically, a quarter or a month or, optimistically, at the beginning of a 

shift) and the results are used, without regards to the thermal state of the machine, for compensation 

of its errors during operation. Simulating an optimistic situation, where the machine is calibrated 

at the beginning of the shift and the results of the calibration are used through the entire shift, 

measurement frame discrepancy, 𝑇𝑇0,1 and error parameters, 𝑝⃑𝑝1 in the first cycle (initial state) are 

computed and used to calibrate the rest of five data sets. Thus, the residual at the ith observation of 

the jth cycle in this case is given by:  
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𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,𝑗𝑗 = �𝑀𝑀𝑖𝑖𝑝⃑𝑝1 − �𝑇𝑇0,1𝐻𝐻𝑖𝑖𝑟𝑟𝑡𝑡 − 𝑞⃑𝑞𝑖𝑖,𝑗𝑗��2, (𝑗𝑗 = 1, … 6). 
 

(4.15) 
 

The statistics of the residuals produced by this approach (or the performance of a static 

compensation approach) are given in Table 4.5. The average model residual grew from 26.3 to 

155.1 microns in the five-hour heating up process and reduced to 120.7 after a one-hour cooling 

period. Over a 400-minute period of operation, the compensations estimated in the cold state of 

the machine, though producing some improvements in the error, are seen to become increasing 

ineffective. After 5 hours of heating, the compensations only produce a 15% reduction in error.  

Table 4.5: Thermal drifts without updating the error parameters 
Machine 

State 
Observed (μm) Residual (μm) %Decrease 

Mean Max Mean Max Mean Max 
Initial 119.1 265.9 26.3 98.2 77.92% 63.07% 

Heating 134.4 279.6 77.1 122.6 42.63% 56.15% 
Heating 154.0 310.2 115.4 180.0 25.06% 41.97% 
Heating 169.6 311.6 138.6 208.8 18.28% 32.99% 
Heating 181.9 331.6 155.1 235.0 14.73% 29.13% 
Cooling 157.3 309.4 120.7 208.6 23.27% 32.58% 

 

In many situations, instead of opting for a static calibration or attempting to update the 

entire parameter vector (to compensate for workspace drift and distortion), one may opt to probe 

a few points, estimate the drift and program in a shift of the programming origin based on these 

measurements. This situation is simulated by doing a full calibration in the first cycle, then use 

fixed error parameters, 𝑝𝑝1 but update workspace drift specified by 𝑇𝑇0,𝑗𝑗, which now has only three 

translational degrees-of-freedom. For the remaining five measurement cycles, the workspace 

drift, 𝑇𝑇0,𝑗𝑗 T0,jis identified by: 

min
𝑇𝑇0,𝑗𝑗

��𝑀𝑀𝑖𝑖𝑝⃑𝑝1 − (𝑇𝑇0,𝑗𝑗𝐻𝐻𝑖𝑖𝑟𝑟𝑡𝑡 − 𝑞⃑𝑞𝑖𝑖,𝑗𝑗)�
2

76

𝑖𝑖=1

, 𝑗𝑗 = 2~6, 

 

(4.16) 
 

where 𝑇𝑇0,𝑗𝑗 has only three translational variables, 
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𝑇𝑇0,𝑗𝑗 = �

1 0 0 𝑥𝑥0,𝑗𝑗
0 1 0 𝑦𝑦0,𝑗𝑗
0 0 1 𝑧𝑧0,𝑗𝑗
0 0 0 1

� 

 

(4.17) 
 

The same error parameters, 𝑝⃑𝑝1 is used to predict the errors at the same observer locations. 

The prediction errors of the ith observation of the jth cycle is given by, 

𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,𝑗𝑗 = �𝑀𝑀𝑖𝑖𝑝⃑𝑝1 − �𝑇𝑇0,𝑗𝑗𝐻𝐻𝑖𝑖𝑟𝑟𝑡𝑡 − 𝑞⃑𝑞𝑖𝑖,𝑗𝑗��2, 𝑗𝑗 = 2~6. 
 

(4.18) 
 

As shown in Table 4.6, updating 𝑇𝑇0,𝑗𝑗 is effective in controlling the inaccuracies caused by 

the thermal effect. The worst mean model residual occurs at the end of the heating period and is 

measured to be 98.1 microns, which is lower than that produced by using static calibrations. 

However, the model performance is seen to degrade severely when compared to the full 

identification of the model parameters. One can see that that using a static compensation and 

tracking only the drift of the workspace explain only 46.07% of the observed thermal error. These 

comparisons between full periodic parameter identification, partial (drift only) identification, and 

no identification not only illustrate the scale of the relative influence of thermal errors (workspace 

drift and distortion), but also demonstrates the need and importance of periodic updates to 

calibrations. 

Table 4.6: Thermal drifts (only compensate the shift of the measurement frame) 
Machine 

State 
Observed (μm) Residual (μm) %Decrease 

Mean Max Mean Max Mean Max 
Initial 119.1 265.9 26.3 98.2 77.92% 63.07% 

Heating 134.4 279.6 68.7 184.4 48.88% 34.05% 
Heating 154.0 310.2 73.3 203.0 52.40% 34.56% 
Heating 169.6 311.6 88.6 243.1 47.76% 21.98% 
Heating 181.9 331.6 98.1 255.5 46.07% 22.95% 
Cooling 157.3 309.4 84.9 195.6 46.03% 36.78% 
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4.3.4 AXIAL BEHVIORS AGAINST THERMAL VARIATIONS 

The thermal effects are observed to cause the average error of the machine to grow from 

119.1 in the cold state to around 181.9 microns after 4 heating cycles. With compensation, the 

error model parameters (see Section 3.1 for more details) estimated by the single step identification 

process error, described in the Section 4.3.2, would hold the average error of the machine to around 

30 microns. The error parameters were identified by the least-squares fitting. The variations of 

parameters related to X, Y, Z, and W axis at different machine’s thermal states are shown in Figure 

4.8.  

 

Figure 4.8: Variations of error parameters over the course of the experiment 

Only parameters associated with the Y and W axes show significant changes during four 

heating cycles. The spindle was turned on during the heating process, and the readings of the 
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wireless temperature sensors as depicted in Figure 4.7 show that the temperature readings of W 

and Y-axis increased by 4.5 and 3oC, respectively. The other parameters related to the X and Z-

axis, on the other hand, had less than a 2oC rise in temperature during the 400-minute heating 

process. By studying the thermal behaviour of each axis, one can understand the characteristics of 

the machine, which could be used in error avoidance. For example, it is observed that the error 

parameters associated with W-axis are varying significantly during an operation. It shows that the 

machine’s positioning error caused by distortion of W-axis could be more significant. Therefore, 

the positioning error could be avoided by replacing a W-axis movement with a Z-axis movement. 

Besides, it is observed that some parameters do not vary significantly over time and could be 

considered constants (e.g. parameters associated with X and Z axes). By making such assumptions, 

the number of undetermined error parameters can be reduced and thus reduce the needed number 

of observations. 

The experiment on the unconstrained K-optimal observer design (i.e., observer obtained 

without measurement point distribution constraints by solving Equation (4.7)) was also conducted. 

The statistics of the results are shown in shown in Table 4.7. First, because the machine spindle 

was not run, between measurement cycles, the observed errors stayed constant. The temperatures 

during the experiment were observed to remain constant to within 2oC. While the parameters 

identified based on the measurements prescribed by the observer explain about 70% of the 

observed error, it can be seen that in terms of magnitude, the residuals are higher than those seen 

in the constrained observer (shown in Table 4.4) as well as in the quasi-random measurements 

(shown in Table 3.4). 
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Table 4.7: Model performances over time(unconstrained K-optimal) 
Machine 

State 
Observed (μm) Residual (μm) %Decrease 

Mean Max Mean Max Mean Max 
Initial 176.0 460.9 47.9 114.5 72.78% 75.16% 

Heating 180.4 449.4 49.2 114.8 72.73% 74.45% 
Heating 177.2 444.1 48.9 110.8 72.40% 75.05% 
Heating 176.7 453.7 48.4 119.5 72.61% 73.66% 
Heating 172.9 443.5 47.6 110.8 72.47% 75.02% 
Cooling 169.8 427.4 49.8 130.4 70.67% 69.49% 
Cooling 163.8 417.6 46.5 105.8 71.61% 74.66% 

 
4.4 SUMMARY 

In this chapter, the idea of using error observers to track the machine tool errors is 

introduced. An optimal observer design identifies a set of locations in the machine’s workspace at 

which to make error measurements, so that the information contained in the set to estimate the 

parameters of a given error model is maximized. The approach can be used for any of the many 

proposed volumetric/quasistatic machine tool error models. The concept of applying the K-optimal 

design that minimizes the sensitivity of measurement errors on the parameter estimates has been 

proposed. The use of a single optimality criterion in the observer design leads to localization of 

the measurement points either near the center of the workspace or at its boundaries. To overcome 

the tendency, constraint volumes are used to uniformly distribute the observer points over the 

workspace. Redundancy (more measurement points than the minimum needed) is also introduced 

to guard against the effects of model inadequacy. Constrained and unconstrained observer designs 

based on the K-optimal design criterion have been generated for a 5-axis machine. 
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CHAPTER 5. POINT-SET BASED METROLOGY FOR PLANAR SURFACES 

In Chapter 5, the concept of point-set based metrology combined with virtual gaging that 

not only verifies the finished specification of the manufactured part, but also adjust to the 

variability as it accrues between manufacturing steps of a part is proposed and verified 

experimentally. Section 5.1 introduces the problem, while mathematical model of virtual gages is 

proposed in Section 5.2 proposed. Section 5.3 shows the experimental work. The procedures of 

virtual gage analysis are proposed, and a prototype problem is solved to validate the idea of virtual 

gage analysis in Section 5.4. The generalized virtual gage analysis with slack variables is tested in 

Section 5.5, while Section 5.6 presents a summary drawn from this chapter. 

5.1 INTRODUCTION 

A virtual gage is a digital simulation that combines real data (measured from an artifact) 

with a computer representation of a condition or test that the data should satisfy. For example, the 

former might be a point-set extracted from the scanned data of a part while the latter might be the 

equation of a plane extracted for part model that represents an ideal material condition that must 

be satisfied by all points in the aforementioned point-set. The virtual gage assembles these entities 

into a common reference frame, creates the appropriate set of inequality conditions to be satisfied, 

and then checks them on each point in the point-set. Figure 5.1(a) shows a typical situation 

encountered in the test case of deciding the acceptability of a casting for final machining. To 

produce an acceptable finished part, a machining allowance of do is desired on each machined 

surface. The virtual gage software computes the rigid body transform (translation and rotation) of 

the point-set to produce each point in the set representing the casting surface satisfies the gage 

equation (given in Figure 5.1(b)). Obviously, a part will have several such specifications and the 

virtual gage software is expected to find a single rigid body transformation with which to 
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simultaneously satisfy all of them. One may introduce conditional steps into the procedure, for 

example, if all the gages can be satisfied, then the software should “equalize” the allowances on 

all machined surfaces. As is apparent, each virtual gage introduces one or more sets of inequality 

constraints as does the conjoining of the reference frames of point-set and gage planes. Thus the 

problem becomes a constrained optimization problem, where an optimal solution satisfies the 

virtual gage constraints and minimizes or maximizers some objective (such as difference in 

machining allowance on all machined faces). 

 
Figure 5.1: Figure 1. Virtual gage and point-set before (a) and after (b) adjustment 

Thus, in summary, to setup a virtual gaging problem, a point-cloud representing the 

physical part and virtual gages idealized geometrical surfaces and representing the dimensional 

tolerance and allowance specifications are required. In the GD&T standard, dimensions and 

tolerances are defined based on a reference or datum coordinate frame. This may be different from 

the coordinate system in which machining is programmed. For simplicity, a homogeneous 

transformation is applied so that the datum coordinate system is made coincident with the 

machining programming coordinate system. 

Displaced raw casting 

Positive allowance 
Ideal machined surface, 𝑧𝑧 ≥ 𝑑𝑑 

Raw casting surface 
Removed material Uncut surface 

Raw casting 

Insufficient  material 

(a) (b) 
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5.2 FORMULATION OF VIRTUAL GAGE 

5.2.1 SINGLE VIRTUAL GAGE PROBLEM 

Let 𝑟𝑟𝑖𝑖 be the ith point in the point-set, 𝑆𝑆 that represents a planar surface on a part. After the 

rigid body transformation, 𝑇𝑇  is applied, the shortest distance from 𝑟𝑟𝑖𝑖  to some plane, 𝐴𝐴 , with 

equation, 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 + 𝑑𝑑 = 0 is given by, 

𝑒𝑒𝑖𝑖 = [𝑎𝑎 𝑏𝑏 𝑐𝑐 𝑑𝑑]𝑇𝑇 �𝑟𝑟𝑖𝑖
1
�. 

 
(5.1) 

 
With small angle assumptions, a rigid body transformation can be written as, 

𝑇𝑇 = �

1 −𝛼𝛼 𝛽𝛽 ∆𝑥𝑥
𝛼𝛼 1 −𝛾𝛾 ∆𝑦𝑦
−𝛽𝛽 𝛾𝛾 1 ∆𝑧𝑧
0 0 0 1

�, 

 

(5.2) 
 

where 𝛼𝛼, 𝛽𝛽 and 𝛾𝛾 are the roll, pitch yaw angles in radian for angular motion and ∆𝑥𝑥, ∆𝑦𝑦 and ∆𝑧𝑧 

describe linear motion.  

Ω is defined as the set of all rigid body transformations where −𝛿𝛿𝑟𝑟 ≤  𝛼𝛼,𝛽𝛽, 𝛾𝛾 ≤ 𝛿𝛿𝑟𝑟 and 

−𝛿𝛿𝑡𝑡 ≤  ∆𝑥𝑥,∆𝑦𝑦,∆𝑧𝑧 ≤ 𝛿𝛿𝑡𝑡 (the angular rotations are limited by 𝛿𝛿𝑟𝑟 and the translations are limited by 

𝛿𝛿𝑡𝑡), so that the optimization problem can be bounded. 

A 3-D planar virtual gage problem that attempts to make plane 𝐴𝐴, a support plane for 𝑆𝑆 at 

a minimum distance of 𝜀𝜀 from it while minimizing the distance of the farthest point in 𝑆𝑆 from it 

can be expressed as a constrained min-max linear programming problem [19], [62], 

min
𝑇𝑇∈Ω

𝑞𝑞  𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 0 ≤ 𝜀𝜀 ≤ 𝑒𝑒𝑖𝑖 ≤ 𝑞𝑞,∀ 𝑟𝑟𝑖𝑖 ∈ 𝑆𝑆, 
 

(5.3) 
 

where 𝑞𝑞 is the target function as well as an upper bound of all the distance of points  𝑟𝑟𝑖𝑖 in 𝑆𝑆 from 

𝐴𝐴, and 𝜀𝜀 is the desired “clearance from” or “allowance for” the gage to the point-set as shown in 

Figure 5.2. 
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Figure 5.2: Optimized rigid body transformation is found by minimizing the maximal distance 

5.2.2 MULTIPLE VIRTUAL GAGE PROBLEM 

For a part with multiple virtual gages specified, a single homogeneous transformation 

matrix, 𝑇𝑇 is used to simultaneously displace (rotate and translate) all the point-sets so that their 

correspoding gage planes become supporting. For example, three point-sets as shown in Figure 

5.3 are cheched against three virtual gages. Two points (marked as solid circles) do not satisfy 

their corrsponding virtual gage. A single homogeneous transformation matrix, 𝑇𝑇 , is used to 

simultaneously displace (rotate and translate) all the point-sets so that their corresponding gage 

planes equations are satisfied. 

 

Figure 5.3: An HTM rigidly displaces the point-sets so that their corresponding gage planes are 
satisfied 

𝐴𝐴: 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 + 𝑑𝑑 ≥ 0 

𝑆𝑆′: {𝑅𝑅𝑟𝑟𝑖𝑖 + 𝑡𝑡} 

𝑒𝑒𝑖𝑖  

𝑞𝑞 

𝑆𝑆: {𝑟𝑟𝑖𝑖} 

𝑇𝑇𝑟𝑟1,𝑗𝑗  𝑇𝑇𝑟𝑟2,𝑗𝑗 

𝑇𝑇𝑟𝑟3,𝑗𝑗 

0 ≤ 𝑒𝑒𝑖𝑖,𝑗𝑗 ≤ 𝑞𝑞𝑖𝑖  

HTM, 𝑇𝑇 

𝑟𝑟1,𝑗𝑗  𝑟𝑟2,𝑗𝑗 

𝑟𝑟3,𝑗𝑗 

Unsatisfied 
Satisfied 
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In an n-gage problem, n pairs of point-sets and gage planes {𝑆𝑆𝑖𝑖,𝑝𝑝𝑖𝑖}, 𝑖𝑖 = 1, 2, …𝑛𝑛  are 

considered. The distance 𝑒𝑒𝑖𝑖,𝑗𝑗 of the jth point, 𝑟𝑟𝑖𝑖,𝑗𝑗 in ith point-set, 𝑆𝑆𝑖𝑖 to the ith gage plane, 𝑝𝑝𝑖𝑖 is given 

by: 

 𝑒𝑒𝑖𝑖,𝑗𝑗 = 𝑝⃑𝑝𝑖𝑖
𝑇𝑇𝑇𝑇 �𝑟𝑟𝑖𝑖,𝑗𝑗

1
� ≤ 𝑞𝑞𝑖𝑖, 

 

(5.4) 
 

where 𝑞𝑞𝑖𝑖 represents an upper bound on 𝑒𝑒𝑖𝑖,𝑗𝑗, and 𝑝⃑𝑝𝑖𝑖
𝑇𝑇 = [𝑎𝑎𝑖𝑖 𝑏𝑏𝑖𝑖 𝑐𝑐𝑖𝑖 𝑑𝑑𝑖𝑖] is the coefficient vector 

of the ith gage plane, 𝑝𝑝𝑖𝑖 with plane equation 𝑎𝑎𝑖𝑖𝑥𝑥 + 𝑏𝑏𝑖𝑖𝑦𝑦 + 𝑐𝑐𝑖𝑖𝑧𝑧 + 𝑑𝑑𝑖𝑖 = 0, where ‖[𝑎𝑎𝑖𝑖 𝑏𝑏𝑖𝑖 𝑐𝑐𝑖𝑖]𝑇𝑇‖ =

1.  

The algorithm seeks to minimize the weighted sum of n distance upper bounds,  

min
𝑇𝑇∈Ω

�𝑓𝑓𝑖𝑖𝑞𝑞𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 ∋ 0 ≤ 𝑒𝑒𝑖𝑖,𝑗𝑗 ≤ 𝑞𝑞𝑖𝑖 ∀ 𝑟𝑟𝑖𝑖,𝑗𝑗 ∈ 𝑆𝑆𝑖𝑖, 𝑖𝑖 = 1, …𝑛𝑛, 

 

(5.5) 
 

where 𝑓𝑓𝑖𝑖, is a non-negative weighting coefficient for the distance measure, 𝑞𝑞𝑖𝑖 of the ith virtual gage 

has elements. 

The constraints in Equation (5.5) can be written as linear inequalities, 

�
𝑏𝑏𝑖𝑖𝑥𝑥𝑖𝑖,𝑗𝑗 − 𝑎𝑎𝑖𝑖𝑦𝑦𝑖𝑖,𝑗𝑗 𝑎𝑎𝑖𝑖𝑧𝑧𝑖𝑖,𝑗𝑗 − 𝑐𝑐𝑖𝑖𝑥𝑥𝑖𝑖,𝑗𝑗 𝑐𝑐𝑖𝑖𝑦𝑦𝑖𝑖,𝑗𝑗 − 𝑏𝑏𝑖𝑖𝑧𝑧𝑖𝑖,𝑗𝑗 𝑎𝑎𝑖𝑖 𝑏𝑏𝑖𝑖 𝑐𝑐𝑖𝑖 −1
𝑎𝑎𝑖𝑖𝑦𝑦𝑖𝑖,𝑗𝑗 − 𝑏𝑏𝑖𝑖𝑥𝑥𝑖𝑖,𝑗𝑗 𝑐𝑐𝑖𝑖𝑥𝑥𝑖𝑖,𝑗𝑗 − 𝑎𝑎𝑖𝑖𝑧𝑧𝑖𝑖,𝑗𝑗 𝑏𝑏𝑖𝑖𝑧𝑧𝑖𝑖,𝑗𝑗 − 𝑐𝑐𝑖𝑖𝑦𝑦𝑖𝑖,𝑗𝑗 −𝑎𝑎𝑖𝑖 −𝑏𝑏𝑖𝑖 −𝑐𝑐𝑖𝑖 0 � 𝑣⃑𝑣 ≤ �

−ℎ𝑖𝑖,𝑗𝑗
ℎ𝑖𝑖,𝑗𝑗

� 

 

(5.6) 
 

where 𝑣⃑𝑣 = [𝛼𝛼 𝛽𝛽 𝛾𝛾 ∆𝑥𝑥 ∆𝑦𝑦 ∆𝑧𝑧 𝑞𝑞𝑖𝑖]𝑇𝑇  is the vector of controllable variables, ℎ𝑖𝑖,𝑗𝑗 = 𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖,𝑗𝑗 + 𝑏𝑏𝑖𝑖𝑦𝑦𝑖𝑖,𝑗𝑗 +

𝑐𝑐𝑖𝑖𝑧𝑧𝑖𝑖,𝑗𝑗 + 𝑑𝑑𝑖𝑖 is the discrepancy from 𝑟𝑟𝑖𝑖,𝑗𝑗 to the plane. 

The linear program of Equation (5.5) is bounded because Ω, the domain of its decision 

space, is bounded. If the linear programming problem is found to be infeasible, there are two 

possible reasons:  

1. Ω, the limitation on allowable transformations T is restricting the algorithm for 

obtaining a feasible solution: 
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The reason for the infeasibility can be verified by examining the Lagrange multipliers of 

the constraints at termination. If any of the constraints that correspond to the limits imposed by Ω 

have non-zero values, then one can attribute the infeasibility due to restricting the set of feasible 

rigid-body transformation. The situation can be resolved either by relaxing Ω  or by using a 

sequential programming approach, which updates the problem linear program at the current value 

of T and restarting the optimization. As can be seen in Figure 5.4, the two gage problem cannot be 

solved since the point-set is not allowed to rotate about Z direction. There exists no translational 

matrix such that the two gages can be satisfied simultaneously. However, if rotation about Z 

direction is possible in the HTM, the problem is solvable. 

 

Figure 5.4: 2-D examples, problem is: (a) infeasible due to rotation is not allowed; (b) feasible 

(a) Case 1: infeasible  

min
𝑇𝑇∈𝛺𝛺

�𝑞𝑞𝑖𝑖
𝑖𝑖

∋ 0 ≤ 𝑒𝑒𝑖𝑖,𝑗𝑗 ≤ 𝑞𝑞𝑖𝑖,   

where 𝑇𝑇 = �
1 0 ∆𝑥𝑥
0 1 ∆𝑦𝑦
0 0 1

�  

{𝑆𝑆1, 𝑝𝑝1} 

{𝑆𝑆2, 𝑝𝑝2} 

(b) Case 2: feasible  

min
𝑇𝑇∈𝛺𝛺

�𝑞𝑞𝑖𝑖
𝑖𝑖

∋ 0 ≤ 𝑒𝑒𝑖𝑖,𝑗𝑗 ≤ 𝑞𝑞𝑖𝑖,   

where 𝑇𝑇 = �
𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 −𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 ∆𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 ∆𝑦𝑦

0 0 1
�  

{𝑆𝑆1, 𝑝𝑝1} 

𝑞𝑞1 

𝑞𝑞2 

{𝑆𝑆2, 𝑝𝑝2} 
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If none of the tight constraints are associated with Ω, then the infeasibility is due to 

dimensional defects (e.g., insufficient material). In the context of the casting metrology problem 

described earlier, one can choose to reduce clearances or machining allowance requirements, relax 

constraints post by gages deemed less important than other, or reject the casting.  

2. The infeasibility is due to insufficient material on the part:  

As can be seen in Figure 5.5, the 1st and 2nd pair of virtual gage and point-set cause the 

infeasibility of the problem formulated by Equation (5.5). Since the distance between gage 1 and 

2 are shorter than the distance between the two closest points in 𝑆𝑆1 and 𝑆𝑆2, there does not exist any 

displacement that can satisfy these two gages at the same time. In this case, further analysis is 

required to detect the gages that cannot be satisfied. 

 

Figure 5.5: Problem is infeasible since insufficient material on features 1 and 2. 

5.2.3 MULTIPLE GAGE PROBLEM WITH INSUFFICIENT MATERIAL 

A general form of linear programming problem can be written as  

min
𝑇𝑇
∑ 𝑞𝑞𝑖𝑖𝑖𝑖 ∋ 0 ≤ 𝑒𝑒𝑖𝑖,𝑗𝑗 ≤ 𝑞𝑞𝑖𝑖 is infeasible  

Too short 

{𝑆𝑆1,𝑝𝑝1} 

𝑞𝑞1 

𝑞𝑞2 

𝑞𝑞4 

𝑞𝑞3 

{𝑆𝑆2,𝑝𝑝2} 

{𝑆𝑆3,𝑝𝑝3} 

{𝑆𝑆4,𝑝𝑝4} 
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min
𝑥𝑥
𝑓𝑓𝑇𝑇𝑥𝑥 ∋ 𝐴𝐴𝐴𝐴 ≤ 𝑏𝑏, 

 
(5.7) 

 
where 𝑥𝑥  is the vector of controllable variables, 𝑓𝑓  is the coefficient vector, 𝐴𝐴𝐴𝐴 ≤ 𝑏𝑏  are the 

constraints of linear inequalities. 

The existence of the solution to Equation (5.7) depends on only the constraints, 𝐴𝐴𝐴𝐴 ≤ 𝑏𝑏. 

The feasible region is the set of all solutions that satisfy 𝐴𝐴𝐴𝐴 ≤ 𝑏𝑏. There are three different cases of 

feasible region and the associated constraints: 

(a) 𝐴𝐴𝐴𝐴 ≤ 𝑏𝑏 has infinitely many solutions. The constraints are loose. 

(b) 𝐴𝐴𝐴𝐴 ≤ 𝑏𝑏 has unique solution. At least two constraints are tight (can be satisfied exactly). 

(c) 𝐴𝐴𝐴𝐴 ≤ 𝑏𝑏 has no solution. At least two constraints are broken (infeasible). 

A virtual gage is a set of linear constraints. Similarly, a virtual gage can be loose, tight or 

broken when it appears as constraints in a linear programming problem as shown in Figure 5.6.  

 

Figure 5.6: Schematics of three types of virtual gages: (a) loose; (b) tight; (c) broken 

When there exists no feasible solution for Equation (5.5), mathematically speaking, the 

feasible region formed by the corresponding constraints does not exist. Without further analysis, 

the only conclusion can be made is that the raw casting has defectives, so the final casting will not 

dgage 
Gage 1 Gage 2 

(c) Broken gages 
𝐴𝐴𝐴𝐴 ≤ 𝑏𝑏 has no solution 
e.g. dgage>dps 

dps 

Gage 1 Gage 2 

(b) Tight gages 
𝐴𝐴𝐴𝐴 ≤ 𝑏𝑏 has unique solution, 
𝐴𝐴𝐴𝐴 = 𝑏𝑏 
e.g. dgage=dps 

Gage 1 Gage 2 

(a) Loose gages 
𝐴𝐴𝐴𝐴 ≤ 𝑏𝑏 has solutions 
e.g. dgage<dps 

0 + 𝑥𝑥 ≤ 0 
𝑥𝑥 ≤ 0 

5 + 𝑥𝑥 ≥ 5 
𝑥𝑥 ≥ 0 

−1 + 𝑥𝑥 ≤ 0 
𝑥𝑥 ≤ 1 

6 + 𝑥𝑥 ≥ 5 
𝑥𝑥 ≥ −1 

1 + 𝑥𝑥 ≤ 0 
𝑥𝑥 ≤ −1 

4 + 𝑥𝑥 ≥ 5 
𝑥𝑥 ≥ 1 

dgage 

dps 

dgage 

dps 
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satisfy all GD&T requirements. However, the defectives might be fixed by manually adding 

material on the defective surfaces and still gets acceptable finished part. If the features are too 

defective to be manually compensated, rejection could be considered. Therefore, more quantifiable 

information regarding the surfaces, where the material conditions cannot be satisfied are required 

to decide to reject or accept the part.  

This examination of unsatisfiable feature’s machining allowance is implemented by 

allowing the gages to move along the direction of their normal vectors by the values of their slack 

variables, which will be introduced to the linear programming formulation. A virtual gage with a 

positive slack variable cannot be satisfied by any HTM, and its slack variable represents the 

amount of negative machining allowance. In order to find the infeasible virtual gages, slack 

variables, denoted by 𝑠𝑠𝑖𝑖 are introduced: 

min
𝑇𝑇∈Ω

�𝑔𝑔𝑖𝑖𝑠𝑠𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 ∋ −𝑠𝑠𝑖𝑖 ≤ 𝑒𝑒𝑖𝑖,𝑗𝑗 ≤ 𝑞𝑞𝑖𝑖 ∀ 𝑟𝑟𝑖𝑖,𝑗𝑗 ∈ 𝑆𝑆𝑖𝑖, 𝑖𝑖 = 1,2 …𝑛𝑛, 

 

(5.8) 
 

where 𝑒𝑒𝑖𝑖,𝑗𝑗 is the discrepancy of the jth point in the point-set paired with the ith virtual gage defined 

in Equation (5.4), and 𝑔𝑔𝑖𝑖 is the ith non-negative weighting coefficient for the ith slack variable, 𝑠𝑠𝑖𝑖 

for the ith virtual gage. 

The solution to Equation (5.8) suggests the least summation of the slack variables. The 

solution to the ith slack variables is found to be 𝑠𝑠𝑖𝑖∗, where 𝑠𝑠𝑖𝑖∗ > 0. If 𝑠𝑠𝑖𝑖∗ > 0, the ith virtual gage is 

infeasible. By releasing all infeasible gages by the values of the slack variables, Equation (5.5) 

becomes: 

min
𝑇𝑇∈Ω

�𝑓𝑓𝑖𝑖𝑞𝑞𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 ∋ −𝑠𝑠𝑖𝑖∗ ≤ 𝑒𝑒𝑖𝑖,𝑗𝑗 ≤ 𝑞𝑞𝑖𝑖  ∀ 𝑟𝑟𝑖𝑖,𝑗𝑗 ∈ 𝑆𝑆𝑖𝑖, 𝑖𝑖 = 1,2 …𝑛𝑛, 

 

(5.9) 
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where 𝑓𝑓𝑖𝑖 represents non-negative weighting coefficient, 𝑒𝑒𝑖𝑖,𝑗𝑗 is the discrepancy of the jth point in 

the point-set paired with the ith virtual gage defined in Equation (5.4) and 𝑠𝑠𝑖𝑖∗ is the slack variable 

obtained from Equation (5.8). 

Assume that the kth virtual gage is found to be infeasible with positive slack variable, 𝑠𝑠𝑘𝑘∗>0, 

as the 1st gage shown in Figure 5.7(a). There exists at least one gage associated with the kth gage 

that cannot be satisfied if the kth gage is not allowed to be released. As can be seen in Figure 5.7(b), 

the 2nd and 3rd gages must be moved, or the problem is unsolvable. The minimum group of the 

gages that cannot be satisfied simultaneously is called an infeasible gage group. The other 

members in the group can be found be solving a linear programming problem with equality 

constraint of 𝑠𝑠𝑘𝑘∗ = 0: 

min
𝑇𝑇∈Ω

�𝑓𝑓𝑖𝑖𝑞𝑞𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 ∋ −𝑠𝑠𝑖𝑖∗ ≤ 𝑒𝑒𝑖𝑖,𝑗𝑗 ≤ 𝑞𝑞𝑖𝑖  ∀ 𝑟𝑟𝑖𝑖,𝑗𝑗 ∈ 𝑆𝑆𝑖𝑖 (𝑖𝑖 = 1~𝑛𝑛), 𝑠𝑠𝑘𝑘∗ = 0, 

 

(5.10) 
 

where 𝑓𝑓𝑖𝑖 represents non-negative weighting coefficient, 𝑒𝑒𝑖𝑖,𝑗𝑗 is the discrepancy of the jth point in 

the point-set paired with the ith virtual gage defined in Equation (5.4), 𝑠𝑠𝑖𝑖∗ is the slack variable 

obtained from Equation (5.8) and 𝑠𝑠𝑘𝑘∗  is forced to be zero. 

The other gage members that cannot be satisfied with the kth gage are given by the gages 

with positive slack variables. There are always two or more gages in the infeasible group. Figure 

5.7 shows an example of an infeasible gage group of three gages. 
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Figure 5.7: Schematics of infeasible group: (a) the 1st gage is infeasible; (b) the 2nd and 3rd gages 
must be released if 1st gage is not released 

It must be noted that Equation (5.9) is always solvable since all infeasible virtual gages are 

released to be feasible. Although the released virtual gages can be satisfied, the allowances 

associated with these released gages will be all zero. As explained in Figure 5.6(b). The feasible 

region is a single point. Hence, the solution to Equation (5.9) must be that feasible point, which is 

no longer objective function dependent. In fact, the ways of releasing the constraints such that the 

feasible region exists are not unique, and they are all solutions of Equation (5.9), as shown in 

Figure 5.7. Releasing every constraint by same amount is a better strategy because it reduces the 

maximum amount of violation of the infeasible group and hence reduces the chance of rejection. 

To conclude, the downsides of solving Equation (5.9) are: 

(a) There are infinitely many ways to release the constraints. 

(b) Some constraints may be over released. 

(c) The optimal solution is independent on objective function. 

𝑠𝑠1
∗ > 0 𝑦𝑦∗ 

𝑠𝑠1
∗ = 0 

𝑠𝑠3
∗ > 0 𝑠𝑠2

∗ > 0 

𝑠𝑠2
∗ = 0 

𝑠𝑠3
∗ = 0 

(a) (b) 

Released gage Released gages 
Displaced points 
Original points 

Original points 
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Therefore, a generalized problem is given by minimizing the summation of the original 

objective function, all the slacks and the largest slack: 

min
𝑇𝑇∈Ω

�𝑓𝑓𝑖𝑖𝑞𝑞𝑖𝑖 + 𝑔𝑔𝑖𝑖𝑠𝑠𝑖𝑖 + 𝑢𝑢
𝑛𝑛

𝑖𝑖=1

 ∋ −𝑢𝑢 ≤ −𝑠𝑠𝑖𝑖 ≤ 𝑒𝑒𝑖𝑖,𝑗𝑗 ≤ 𝑞𝑞𝑖𝑖  ∀ 𝑟𝑟𝑖𝑖,𝑗𝑗 ∈ 𝑆𝑆𝑖𝑖, 𝑖𝑖 = 1,2 …𝑛𝑛, 

 

(5.11) 
 

where 𝑒𝑒𝑖𝑖,𝑗𝑗 is the discrepancy of the jth point in the point-set paired with the ith virtual gage defined 

in Equation (5.4), 𝑓𝑓𝑖𝑖 and 𝑔𝑔𝑖𝑖 are the non-negative weighting coefficients for the distance measure, 

𝑞𝑞𝑖𝑖 and the slack variable, 𝑠𝑠𝑖𝑖 of the ith virtual gage and 𝑢𝑢 is the largest slack variable. 

Similarly, the constraints given by point 𝑟𝑟𝑖𝑖,𝑗𝑗 in are written as linear inequalities, 

�
𝑏𝑏𝑖𝑖𝑥𝑥𝑖𝑖,𝑗𝑗 − 𝑎𝑎𝑖𝑖𝑦𝑦𝑖𝑖,𝑗𝑗 𝑎𝑎𝑖𝑖𝑧𝑧𝑖𝑖,𝑗𝑗 − 𝑐𝑐𝑖𝑖𝑥𝑥𝑖𝑖,𝑗𝑗 𝑐𝑐𝑖𝑖𝑦𝑦𝑖𝑖,𝑗𝑗 − 𝑏𝑏𝑖𝑖𝑧𝑧𝑖𝑖,𝑗𝑗 𝑎𝑎𝑖𝑖 𝑏𝑏𝑖𝑖 𝑐𝑐𝑖𝑖 −1 0
𝑎𝑎𝑖𝑖𝑦𝑦𝑖𝑖,𝑗𝑗 − 𝑏𝑏𝑖𝑖𝑥𝑥𝑖𝑖,𝑗𝑗 𝑐𝑐𝑖𝑖𝑥𝑥𝑖𝑖,𝑗𝑗 − 𝑎𝑎𝑖𝑖𝑧𝑧𝑖𝑖,𝑗𝑗 𝑏𝑏𝑖𝑖𝑧𝑧𝑖𝑖,𝑗𝑗 − 𝑐𝑐𝑖𝑖𝑦𝑦𝑖𝑖,𝑗𝑗 −𝑎𝑎𝑖𝑖 −𝑏𝑏𝑖𝑖 −𝑐𝑐𝑖𝑖 0 −1� 𝑣⃑𝑣′ ≤ �

−ℎ𝑖𝑖,𝑗𝑗
ℎ𝑖𝑖,𝑗𝑗

� 

 

(5.12) 
 

where 𝑣⃑𝑣′ = [𝛼𝛼 𝛽𝛽 𝛾𝛾 ∆𝑥𝑥 ∆𝑦𝑦 ∆𝑧𝑧 𝑞𝑞𝑖𝑖  𝑠𝑠𝑖𝑖]𝑇𝑇 is the vector of controllable variables, ℎ𝑖𝑖,𝑗𝑗 = 𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖,𝑗𝑗 + 𝑏𝑏𝑖𝑖𝑦𝑦𝑖𝑖,𝑗𝑗 +

𝑐𝑐𝑖𝑖𝑧𝑧𝑖𝑖,𝑗𝑗 + 𝑑𝑑𝑖𝑖 is the discrepancy from 𝑟𝑟𝑖𝑖,𝑗𝑗 to the plane. 

Solution to Equation (5.11) not only detects the features that cannot be satisfied but also 

takes into consideration on optimizing the original objective function. More importantly, Equation 

(5.11) always has solution, even when some material conditions of the part cannot be satisfied. 

would also equalize the amounts of release on infeasible gages because the largest slack in the 

objective, 𝑢𝑢 is introduced in the objective function. If some slack variables are found to be positive, 

their corresponding gage plane will be violated by the same amount and the material condition 

cannot be satisfied. Decision by human is required to determine the acceptability of a defective 

part based on the functionalities of the defective features and the values of the slack variables. If 

all slack variables are found to be zeros, all material conditions are satisfiable. The conformity of 

the part is guaranteed. 
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5.3 EXPERIMENTAL WORK 

A test part is designed to verify the feasibility of virtual gage analysis and shown in Figure 

5.8(a) is scanned to verify the feasibility of virtual gage analysis. A Keyence LJ-V7200 laser 

scanner is mounted on the spindle of a machine tool, and Figure 5.8(b) schematically shows the 

setup. The scan paths are generated by VERICUT®, a machine tool simulation tool and verified 

on the actual machine to ensure that no collision occurs. During the experiment, the machine tool 

is commanded to move the laser scanner along the scanning paths at the feed rate 100 mm/s with 

scan frequency of 1000 Hz.  

 
Figure 5.8: (a) Nominal model of the raw casting; (b) Schematic of using machine tool to move 

laser scanner and collect data  

To test the validity of the virtual gage analysis for the casting with fixturing error, spacers 

were placed between locator X1 and casting as well as between the Y-locators and casting to 

simulate the translation error as shown in Figure 5.9(a). Similarly, a small angular error about the 

Z-axis was introduced by the spacers between the locator Z1, Z2 and the casting. The casting with 

fixturing error was scanned and 130976 points were collected as shown in Figure 5.9(b). 

(a) (b) 

Laser 
scanner 
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Figure 5.9: (a) Locators and spacers setup; (b) Collected point cloud of the casting 

5.4 VIRTUAL GAGE ANALYSIS 

A 2-step virtual gage analysis procedure is developed as shown in Figure 5.10. First, the 

point cloud data is aligned with the raw casting’s CAD model and divided into sub-point-sets to 

represent functional features. The redundant points in the sub-point-sets are removed using a 

convex hull filter. Second, virtual gages are parameterized as 𝑎𝑎𝑖𝑖𝑥𝑥 + 𝑏𝑏𝑖𝑖𝑦𝑦 + 𝑐𝑐𝑖𝑖𝑧𝑧 + 𝑑𝑑𝑖𝑖 ≥ 0 based on 

CAD model and GD&T requirements of the final casting. The parameterized gages and extracted 

sub-point-sets are used to formulate linear programming problem with constraints. The optimal 

solution obtained can be used to correct the machining coordinate system and predict the 

machining allowance of each feature. Each step is explained in detail as follows. 
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Figure 5.10: 2-step procedure of virtual gage analysis 

5.4.1 POINT-SET MANIPULATION 

Data alignment 

The virtual gage integrates the gage planes with sample data (point cloud) from the physical 

part. The gage planes are extracted from CAD models, and compatible reference frames between 

the point cloud data and the CAD model are established. In this example, a 3-2-1 location scheme 

to identify three orthogonal planes that serve as primary, secondary and tertiary data planes are 

used. To locate the reference frame of the part, the features of the locators are also scanned before 

the part is fixed on the locators. A locator frame is fitted using the point-set representing the 

locators. 

Data that corresponds to locator planes is extracted from the point cloud. The primary 

datum or locating plane, by convention, is selected as the XY plane of the reference frame that 

defines its z-direction. Likewise, the XZ-plane and YZ-plane are the secondary and tertiary datum 
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reference, respectively. Each of these locator planes is obtained by identifying best-fit support 

planes for their corresponding point-sets. The planes are identified sequentially, with the primary 

(XY) plane being identified first, the secondary (XZ) plane next with the additional constraint that 

it is perpendicular to primary location plane, and finally the tertiary (YZ) plane is identified with 

constraints added to ensure that it is perpendicular to the other locator planes. 

The primary datum plane, 𝑎𝑎𝑧𝑧𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑧𝑧𝑦𝑦𝑖𝑖 + 𝑧𝑧𝑖𝑖 + 𝑑𝑑𝑧𝑧 = 0 is obtained by using the point-sets 

associated with the location surfaces of the primary datum and finding the best supporting plane 

with the following linear optimization problem: 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑝⃑𝑝𝑧𝑧,𝑑𝑑𝑧𝑧

max( 𝑝⃑𝑝𝑧𝑧
𝑇𝑇 ∙ 𝑟𝑟𝑖𝑖 + 𝑑𝑑𝑧𝑧) 𝑠𝑠. 𝑡𝑡. 𝑝⃑𝑝𝑧𝑧 ∙ 𝑟𝑟𝑖𝑖 + 𝑑𝑑𝑧𝑧 ≥ 0; ‖𝑝⃑𝑝𝑧𝑧‖ = 1 ∀𝑖𝑖, 

 
(5.13) 

 

where 𝑝⃑𝑝𝑧𝑧
𝑇𝑇 = [𝑎𝑎𝑧𝑧 𝑏𝑏𝑧𝑧 𝑐𝑐𝑧𝑧] is the normal to the identified plane and 𝑑𝑑𝑧𝑧 locates it in space and 𝑟𝑟𝑖𝑖 

represents a point in the point-set(s) associated with the primary location plane. The above 

optimization problem can be linearized and solved as a sequential linear program by preprocessing 

the data (For example, setting up the search for the optimal support plane is as a small perturbation 

on the best-fit least square plane for the given data). It should be noted that this formulation can 

be reduced to the linear programming formulation given in Equation (5.5). Additionally, since a 

support plane is searched, the point-set can be reduced (thus reducing the number of constraints), 

by only retaining the points on the convex hull of the point-set.  

After the primary datum plane is fitted, the secondary datum plane can be obtained by same 

formulation given in Equation (5.13) but with the addition of a constraint to enforce the 

perpendicularity requirement between the identified primary datum and the secondary datum. 

Thus, the following constrained optimization problem is considered: 

min
𝑝⃑𝑝𝑦𝑦,𝑑𝑑𝑦𝑦

𝑚𝑚𝑚𝑚𝑚𝑚(𝑝⃑𝑝𝑦𝑦
𝑇𝑇 ∙ 𝑟𝑟𝑗𝑗 + 𝑑𝑑𝑦𝑦)  ∋   𝑝⃑𝑝𝑦𝑦 ∙ 𝑟𝑟𝑗𝑗 + 𝑑𝑑𝑦𝑦 ≥ 0; �𝑝⃑𝑝𝑦𝑦� = 1; 𝑝⃑𝑝𝑦𝑦

𝑇𝑇 ∙ 𝑝⃑𝑝𝑧𝑧 = 0 ∀𝑗𝑗 , 

 
(5.14) 
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where 𝑝⃑𝑝𝑦𝑦
𝑇𝑇 = [𝑎𝑎𝑦𝑦 𝑏𝑏𝑦𝑦 𝑐𝑐𝑦𝑦] is the normal to the identified secondary normal, and 𝑟𝑟𝑗𝑗 represents a 

point in the point-cloud from the surfaces associated with the secondary location plane. 

The normal vector of the tertiary datum plane is fixed as it must be the cross product of 𝑝𝑝𝑦𝑦 

and 𝑝⃑𝑝𝑧𝑧, i.e, 𝑝⃑𝑝𝑥𝑥 =  𝑝⃑𝑝𝑦𝑦 × 𝑝⃑𝑝𝑧𝑧 . The optimization of the tertiary plan can then be written as: 

min
𝑑𝑑𝑥𝑥

max
𝑘𝑘

𝑑𝑑𝑥𝑥 ∋ 𝑝⃑𝑝𝑥𝑥 ∙ 𝑟𝑟𝑘𝑘 + 𝑑𝑑𝑥𝑥 > 0 ∀𝑘𝑘, 

 
(5.15) 

 

where 𝑝⃑𝑝𝑥𝑥 = 𝑝⃑𝑝𝑦𝑦 × 𝑝⃑𝑝𝑧𝑧 , 𝑝⃑𝑝𝑥𝑥
𝑇𝑇 = [𝑎𝑎𝑥𝑥 𝑏𝑏𝑥𝑥 𝑐𝑐𝑥𝑥]  is the normal vector of the virtual X-plane and 𝑟𝑟𝑘𝑘 

represents a point in the point-cloud of the X-locators.  

After three datum planes are fitted, the locator frame can be constructed. The origin of the 

frame is given by solving three plane equations, 

�
𝑜𝑜𝑥𝑥
𝑜𝑜𝑦𝑦
𝑜𝑜𝑧𝑧
� = −�

𝑎𝑎𝑥𝑥 𝑏𝑏𝑥𝑥 𝑐𝑐𝑥𝑥
𝑎𝑎𝑦𝑦 𝑏𝑏𝑦𝑦 𝑐𝑐𝑦𝑦
𝑎𝑎𝑧𝑧 𝑏𝑏𝑧𝑧 𝑐𝑐𝑧𝑧

�

−1

�
𝑑𝑑𝑥𝑥
𝑑𝑑𝑦𝑦
𝑑𝑑𝑧𝑧
�. 

 

(5.16) 
 

A coordinate system can be represented by a 4 by 4 homogeneous transformation matrix 

(HTM). The locator frame identified above, in the coordinate systems of the point-sets (scanner’s 

coordinate system) is given by, 

𝐶𝐶𝐿𝐿𝑆𝑆 = �

𝑎𝑎𝑥𝑥 𝑎𝑎𝑦𝑦 𝑎𝑎𝑧𝑧 𝑜𝑜𝑥𝑥
𝑏𝑏𝑥𝑥 𝑏𝑏𝑦𝑦 𝑏𝑏𝑧𝑧 𝑜𝑜𝑦𝑦
𝑐𝑐𝑥𝑥 𝑐𝑐𝑦𝑦 𝑐𝑐𝑧𝑧 𝑜𝑜𝑧𝑧
0 0 0 1

�. 

 

(5.17) 
 

As an example of the solid model is constructed in a modeling frame, 𝐶𝐶𝐿𝐿𝐶𝐶  the with the same 

primary, secondary and tertiary locator surfaces, then, located in the point-cloud data reference 

system, it should be a 4 by 4 identity matrix. Brought into the point-cloud reference frame (scanner 

frame), it would locate the part at its origin with its locator surfaces, aligned with the principal 

(XY, YZ, and ZX) planes. When the part’s CAD model is brought into the point-cloud coordinate 

system, it is aligned with the locator frame, but situated at the origin. The coordinate transformation 
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𝐻𝐻 moves the point-cloud so that its locator frame is aligned with the locator frame of the part 

model. The point-cloud locator frame, 𝐶𝐶𝐿𝐿𝑆𝑆 , identified by the aforementioned procedure coincident 

with the locator frame attached to the model is given by: 

𝐻𝐻 × 𝐶𝐶𝐿𝐿𝑆𝑆 = 𝐶𝐶𝐿𝐿𝐶𝐶 = 𝐼𝐼4. 
 

(5.18) 
 

Thus,  

𝐻𝐻 = (𝐶𝐶𝐿𝐿𝑆𝑆)−1. 
 

(5.19) 
 

Therefore, HTM, 𝐻𝐻 brings the point-cloud into alignment with the CAD model frame with 

the same datum planes. 

Feature extraction 

After the point-cloud is aligned with the part CAD model, the point-cloud can be 

segmented in to point-sets, such that each set is associated with a virtual gage. Each of these point-

sets can then be processes to remove redundant points from the set.  

The extraction of points from the point cloud to form a point-set for a virtual gage is 

accomplished by creating sampling volumes and classifying (deciding whether a point is in or out) 

the points against these volumes. These sampling volumes are associated with important features 

and constructed with the part CAD model (because the CAD environment has the appropriate tools 

to create and locate them relative to a face in part CAD model that will become a gage plane in the 

virtual gage). Besides identifying the points to be included in the point-set for a virtual gage, the 

sampling volumes are used for the removal of scanning artifacts (especially those produced near 

the edges of a surface during scanning). Figure 5.11(a) schematically depicts the use of sampling 

volumes to extract a set of points from the point cloud, and Figure 5.11(b) shows the sampled 

point-set (green) from the point cloud(as shown in Figure 5.9(b)) after applying the sampling 

volume on a face. In the current stage, only rectangular boxes can be used as sampling volumes. 
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Figure 5.11: (a) Schematic segmentation of point-cloud data using sampling volumes; (b) An 
example of extracting a point-set for a virtual gage from the part’s point-cloud 

Data filtering 

The constrained optimization algorithms that implement the virtual gages are 

computationally intensive. Dense point-sets generate many constraints for a virtual gage, many of 

which are redundant. To reduce the computational time required to check a virtual gage, reducing 

the number of constraints by thinning down the associated point-sets by identifying and 

eliminating redundant points is required.  

Since virtual gages essentially identify optimal support or classifying planes for point-sets 

(i.e., planes that define half-spaces that either contain all the points or none), convex closures of 

the point-set play an important role in characterizing them relative to the gage planes. Therefore, 

only those points involved in the definition of a convex closure or hull (i.e., its vertices) need be 

considered. Other points, interior to the closure can be eliminated without fear of changing any 

metrics relative to the gage planes. 

The convex hull of a finite point-set, 𝑆𝑆 is defined by the convex combination, 

𝐶𝐶𝐶𝐶(𝑆𝑆) = �∑ 𝛼𝛼𝑖𝑖𝑥𝑥𝑖𝑖
|𝑆𝑆|
𝑖𝑖=1 �(∀𝑖𝑖:𝛼𝛼𝑖𝑖 ≥ 0) ∧ ∑ 𝛼𝛼𝑖𝑖

|𝑆𝑆|
𝑖𝑖=1 = 1�, 

 
(5.20) 
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where 𝑥𝑥𝑖𝑖 is the ith point in 𝑆𝑆.  

A finite point-set has unique convex hull, whose vertices, 𝑆𝑆′ are the minimal possible 

subset of 𝑆𝑆 that share the same convex hull. Thus, 

𝐶𝐶𝐶𝐶(𝑆𝑆) = 𝐶𝐶𝐶𝐶(𝑆𝑆′). 
 

(5.21) 
 

All extremal (minimum or maximum) distances between the 𝑆𝑆 and a support or classifying 

plane are defined by points in 𝑆𝑆′. Hence, only the vertices of the convex hull need be considered 

in the virtual gage algorithms. In general, |𝑆𝑆′| ≪ |𝑆𝑆| can be expected, and the computing of 𝐶𝐶𝐶𝐶(𝑆𝑆) 

is computationally much less intensive than solving the constrained optimization problem of the 

virtual gages. Thus, by using the vertices of convex hulls of the point-sets instead of the entire 

point-set for the implementation of the virtual gage algorithm is able be to greatly reduce the 

computational effort. Figure 5.12 shows the use of a convex hull filter in replacing the point-set 

extracted by a sampling volume in Figure 5.11.  

 
Figure 5.12: A point-set shown in Figure 5.11(b) of 20664 points, filtered to 87 points 

5.4.2 LINEAR PROGRAMMING FORMULATION 

A 3-D virtual gage analysis requires to setup a linear programming problem that minimizes 

the sum of maximal distances from gage planes to sub-point-sets. However, before formulating a 

linear programming problem, for every sub-point-set collected in Section 5.4.1, at least one 

corresponding virtual gage plane needs to be defined. Since the virtual gage usually cannot be seen 
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in the CAD model, it should be referred to a reference feature (a reference plane or a datum 

surface), which can be found and defined in CAD software.  

Having known the sub-point-sets and virtual gages, constraints for linear programming are 

defined. Every point provides two constraints, which must be converted to linear inequalities for 

the linear programming solver as shown in Equations (5.6) and (5.12). After all constraints are 

defined, a linear programming problem is formulated. 

5.4.3 RESULTS AND DISCUSSION 

As shown in Figure 5.14(a), three separate locators (Z1, Z2, Z3,) provided data for fitting 

the primary datum as the XY plane of the reference frame that defines the z-direction, followed by 

fitting the secondary and tertiary datum, XZ and YZ planes shown in Figure 5.13(b) and (c). All 

six scanned locators are shown in Figure 5.13(d).  

 

 

Figure 5.13: Fitted datum surfaces: (a) Z-plane; (b) Y-plane; (c) X-plane; (d) the scan data of the 
3-2-1 locators 
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Figure 5.14(a) virtually shows the placement of the CAD model on the 3-2-1 locators. 

Equations (5.13)-(5.17) are solved to fit the point cloud locator frame, 𝐶𝐶𝐿𝐿𝑆𝑆. Figure 5.14(b) shows 

the point cloud and two their reference frames, 𝐶𝐶𝐿𝐿𝑆𝑆 and 𝐶𝐶𝐿𝐿𝐶𝐶 . The homogeneous transformation, 𝐻𝐻 

between two frames is given by solving Equations (5.18) and (5.19). By applying 𝐻𝐻 to displace 

the point cloud, the point cloud is aligned with the CAD model as shown in Figure 5.14(c). 

 

Figure 5.14: a)Virtually located CAD model in point cloud data scanned from the location 
surfaces of a fixture; (b) The raw point cloud and the CAD model; (c) The point cloud given in 

CAD model’s frame 

Initially, thirteen point-sets are extracted using sampling volumes to represent 13 

associated planes of the casting as shown in Figure 5.15(a). However, seven of them, including 

the top and side of the flange, two inner walls and two outer walls and the top of the tower as 

shown in Figure 5.15(b) are used in the virtual gage analysis since they represent the critical 

features with tolerance specifications according to the print. Note that six of the seven faces 

including top of flange, four inner wall faces and top of the tower restrict only the linear translation 

along X and Z-axes as linear constraints. If all normal vectors of virtual gages are perpendicular 

to y-axis, then the motion along y-axis is unconstrained, and the solution for translation along y-
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axis, ∆𝑦𝑦 is not unique. Hence, the side face of flange is also considered to provide restriction on 

translation along Y-direction for the uniqueness of solution.  

 
Figure 5.15: (a) Thirteen extracted point-sets; (b) seven point-sets used in virtual gage analysis 

The GD&T requirements specified in the print include the minimum thickness of two walls 

and with a plus and minus 1.1 mm tolerance region for the machined flange surface. Hence, the 

set of points representing the top of the flange surface, as can be seen in Figure 5.15(b), is checked 

against the virtual gages, 𝑧𝑧 ≥ 109.3 and 𝑧𝑧 ≤ 111.5 for the specified tolerance region to determine 

if the flange surface can be machined properly. Other GD&T specifications are all minimum 

material conditions, which are checked only by single gage. The sets of parameters of all virtual 

gages obtained from CAD model are given in Table 5.1. All extracted point-sets are filtered by 

convex hull to remove redundant points. The size of seven point-sets representing seven features 

with and without filtering is given in Table 5.2.  

  

Top of flange 

Side of flange 

Inner wall 1 

Outer wall 1 

Top of tower 

Flange 
Tower 

Inner wall 2 

Outer wall 2 
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Table 5.1: Virtual gage parameter sets, 𝑎𝑎𝑖𝑖𝑥𝑥 + 𝑏𝑏𝑖𝑖𝑦𝑦 + 𝑐𝑐𝑖𝑖𝑧𝑧 + 𝑑𝑑𝑖𝑖 ≥ 0  
Feature 𝑎𝑎𝑖𝑖 𝑏𝑏𝑖𝑖 𝑐𝑐𝑖𝑖 𝑑𝑑𝑖𝑖(mm) 

Top of flange 0 0 1 -109.30 
Top of flange 0 0 -1 111.50 
Side of flange 0 1 0 -145.80 
Outer wall 1 1 0 0 -87.43 
Outer wall 2 -1 0 0 12.42 
Inner wall 1 -1 0 0 75.62 
Inner wall 2 1 0 0 -23.48 
Top of tower 0 0 1 -124.20 

 
Table 5.2: Point-set size with and without filtering 

Feature Size before 
filtering 

Size after 
filtering 

Top of flange 20664 87 
Side of flange 5361 79 
Outer wall 1 841 57 
Outer wall 2 1024 59 
Inner wall 1 661 47 
Inner wall 2 767 53 
Top of tower 3482 97 

 

Since the machine used in the test has three linear axes and one rotary axis, which only 

allows the table to rotate about Y-axis, the HTM is limited to four degrees-of-freedom, 

𝑇𝑇 = �

1 0 𝛽𝛽 ∆𝑥𝑥
0 1 0 ∆𝑦𝑦
−𝛽𝛽 0 1 ∆𝑧𝑧
0 0 0 1

�, 

 

(5.22) 
 

where translational offsets, ∆𝑥𝑥, ∆𝑦𝑦 and ∆𝑧𝑧 are in mm and rotary offset of Y-axis, 𝛽𝛽 is in radian 

and restricted by the small angular assumption, −0.05 ≤ 𝛽𝛽 ≤ 0.05.  

Since all virtual gages are considered equally important, the weighting coefficient 𝑓𝑓𝑖𝑖  is 

chosen to be 1. A linear programming problem given by Equation (5.5) can be written as, 

min
𝑇𝑇∈Ω

�𝑞𝑞𝑖𝑖

8

𝑖𝑖=1

 ∋ 0 ≤ [𝑎𝑎𝑖𝑖 𝑏𝑏𝑖𝑖  𝑐𝑐𝑖𝑖 𝑑𝑑𝑖𝑖]𝑇𝑇 �
𝑟𝑟𝑖𝑖,𝑗𝑗
1
� ≤ 𝑞𝑞𝑖𝑖, 𝑖𝑖 = 1~8 

 

(5.23) 
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where 𝑒𝑒𝑖𝑖,𝑗𝑗 and 𝑞𝑞𝑖𝑖 are defined in Equation (5.4). 

The linear programming problem is formulated with the linear constraints as given in 

Equation (5.6), and the linear programming solver returns a unique, optimal HTM for the 4-axis 

machine as, 

𝑇𝑇∗ = �

1 −𝛼𝛼∗ 𝛽𝛽∗ ∆𝑥𝑥∗
𝛼𝛼∗ 1 −𝛾𝛾∗ ∆𝑦𝑦∗
−𝛽𝛽∗ 𝛾𝛾∗ 1 ∆𝑧𝑧∗

0 0 0 1

� = �

1 0 −0.0267 −3.12
0 1 0 −3.09

0.0267 0 1 −7.19
0 0 0 1

� 

 

(5.24) 
 

where 𝛼𝛼∗, 𝛽𝛽∗ and 𝛾𝛾∗ are angular offsets in radian, 𝛼𝛼∗ and 𝛾𝛾∗ are restricted to be zeros since the 

table can only be rotated about Y-axis and ∆𝑥𝑥∗, ∆𝑦𝑦∗ and ∆𝑧𝑧∗ are linear offsets in mm. 

As can be seen in Equation (5.24), 𝑇𝑇∗ suggests a rotation of the casting by -0.0267 radian 

(-1.298 degrees) along Y-axis, which is close to the angular offset, generated by the spacers placed 

between spacer Z1, Z2 and the casting. The point-set, which represents the top of the flange, is 

tilted, but the effect of the rigid body transformation rotates the point-set back to the horizontal 

position, as shown in Figure 5.16 and Figure 5.17. The whole point-set is translated by -3.12 mm 

along X-direction and -3.09 mm along Y-direction, respectively. These translated distances are 

close to 3.00 mm, the thickness of the spacers placed between the casting part and the Y-spacers.  

 
Figure 5.16: Front view of the seven point-sets (a) before T* is applied; (b) after T* is applied 
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Figure 5.17: Side view of the point-set that represents flange top (a) before T* is applied; (b) after 

T* is applied 

Similarly, the point-set for the top face of the neck must lie above the cutting line of the 

top face, which is already satisfied. Figure 5.18 shows how 𝑇𝑇∗ compensates for the angular error 

about Y-axis and linear error along Z-axis to make the point-set approximately sit on the horizontal 

plane, z=130 mm.  

 
Figure 5.18: Side view of the point-set that represents tower top (a) before T* is applied; (b) after 

T* is applied 

Also, four virtual gages, shown as four vertical lines in Figure 5.19 are deployed to check 

the two walls’ thickness. By applying 𝑇𝑇∗ to compensate the rotary errors and translational error 

along X-axis, the point-sets moved to the new positions without touching the virtual gages. It 

shows that the requirements on thickness can be satisfied. 
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Figure 5.19: Side view of the point-sets that represents four walls (a) before T* is applied; (b) 

after T* is applied 

To check the validity of the virtual gage analysis, the machining paths in the G-code was 

modified according to the transformation of the machining coordinate frame using 𝑇𝑇∗. The error 

map of the finished part was built by comparing the scan data of the finished part with the nominal 

CAD model. The magnitude of error vector is visualized using color code and shown in Figure 

5.20. All machined surfaces on flange and tower are shown as green (error magnitude is between 

-0.4 and 0.4 mm). Since all locations of machined faces are within tolerance of 1 mm, the machined 

part is conforming. 

 
Figure 5.20: Error map of the finished part (compared with nominal CAD model) 

5.5 EXAMPLE: CASTING WITH UNSATISFIABLE MATERIAL CONDITIONS 

The purpose of this example is to check if the virtual gage analysis developed in Section 

5.2.3 could identify the defective casting where the material conditions specified are not met for 
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some features. An industrial part of approximate size of 1.5 m x 1.5 m x 1.5 m is scanned. The 

part has many features including steps, slots, pockets and holes, etc. However, the example part 

has two specific features, represented as type-A (pocket with slot) and type-B (step) that are shown 

in Figure 5.21 and Figure 5.22, respectively. 

 
Figure 5.21: Type-A feature: (a) CAD model; (b) top view, eight sampling volumes and eight 

virtual gages 

 
Figure 5.22: Type-B feature: (a) CAD model; (b) side view, three sampling volumes and five 

gages; (c) top view, two sampling volumes and four gages 

As can be seen in Figure 5.21 (a), the type-A feature is a pocket with slot. Figure 5.21 (b) 

shows the top view of type-A feature and eight sampling volumes and virtual gages, represented 
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by the black boxes and dashed lines, respectively. Eight point-sets are extracted to represent eight 

faces (Wall 1~4 and Stair 1~4). The blue gages are used to check four wall thicknesses, and the 

green gages examine four depths of steps. All eight gages are built by offsetting the reference 

surfaces, marked as red lines, and the offsets represent the minimum acceptable thicknesses and 

depths. Note the arrows in Figure 5.21(b) and Figure 5.22(b) and (c) point the side of feasible half-

space. If the entire point-set is within the feasible region, the feature has positive allowance and 

has enough material for machining. 

Type-B feature is a step shape feature, which is schematically depicted in Figure 5.22(a). 

Three sampling volumes (black boxes) as shown in Figure 5.22(b) are applied to extract point-sets 

representing two top faces and the bottom face. The ideal machined face (the red line in Figure 

5.22(b)) is defined as a virtual gage to check if the bottom face has enough material to be machined 

properly. To examine if the thicknesses are within a plus/minus tolerance, two pairs of virtual 

gages (Top 1-1, 1-2 and Top 2-1, 2-2) are defined and shown using the side view of type-B feature 

(see the dashed lines in Figure 5.22(b)). These four gages are all defined by offsetting the nominal 

top faces, and the distances between blue/green dashed lines to red line are the minimum/maximum 

acceptable thicknesses. Similarly, two sampled point-sets extracted by the two sampling volumes 

as shown in Figure 5.22(c) are checked against four virtual gages, which are defined to control the 

width of type-B feature. Distances between blue/green dashed lines represent minimum/maximum 

acceptable widths. 

The point cloud data is collected with a blue light scanner by scanning four main features. 

636368 points are collected. A similar 2-step procedure as mentioned in Section 5.4 and Figure 

5.10 is used to execute the virtual gage analysis with slack variables. As shown in Figure 5.21 (b), 

a type-A feature is represented by eight point-sets, which are checked by eight virtual gages. Figure 



110 
 

5.22(b) and (c) show type-B feature has five sampled point-sets, which are checked by nine gages. 

The part has three type-A features and one type-B feature. Therefore, 29 point-sets are extracted, 

and 33 virtual gages are defined in total. The linear programming problem with slack variables is 

formulated as, 

min
𝑇𝑇∈Ω

�𝑞𝑞𝑖𝑖 + 𝑠𝑠𝑖𝑖 + 𝑢𝑢
33

𝑖𝑖=1

 ∋ −𝑢𝑢 ≤ −𝑠𝑠𝑖𝑖 ≤ [𝑎𝑎𝑖𝑖 𝑏𝑏𝑖𝑖 𝑐𝑐𝑖𝑖 𝑑𝑑𝑖𝑖]𝑇𝑇 �
𝑟𝑟𝑖𝑖,𝑗𝑗
1
� ≤ 𝑞𝑞𝑖𝑖  , 𝑖𝑖 = 1~33, 

 

(5.25) 
 

The linear constraints are given in Equation (5.12). T the optimal HTM using 4-axis 

machine is obtained by solving Equation (5.25),  

𝑇𝑇∗ = �

1 −𝛼𝛼∗ 𝛽𝛽∗ ∆𝑥𝑥∗
𝛼𝛼∗ 1 −𝛾𝛾∗ ∆𝑦𝑦∗
−𝛽𝛽∗ 𝛾𝛾∗ 1 ∆𝑧𝑧∗

0 0 0 1

� = �

1 0 −0.0037 −2.25
0 1 0 −8.11

0.0037 0 1 −5.87
0 0 0 1

� 

 

(5.26) 
 

where 𝛼𝛼∗, 𝛽𝛽∗ and 𝛾𝛾∗ are angular offsets in radian, 𝛼𝛼∗ and 𝛾𝛾∗ are restricted to be zeros since the 

table can only be rotated about Y-axis and ∆𝑥𝑥∗, ∆𝑦𝑦∗ and ∆𝑧𝑧∗ are linear offsets in mm. 

The machining allowances with and without compensation on three Type-A features are 

shown in Table 5.3. If the machining coordinate system is not adjusted, the finished casting would 

have four unmet material conditions (not enough material for machining) on three type-A features 

with negative allowances in depth, which are marked as bold in Table 5.3. With the compensation 

of 𝑇𝑇∗, all 24 material conditions of three Type-A features are satisfied. 
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Table 5.3: Machining allowances of three Type-A features (mm) before and after compensation 

No. Gage Depth 
(before) 

Depth 
(after) Gage Thickness 

(before) 
Thickness 

 (after) 

1 

Stair 1 -8.2 0 Wall 1 15.0 7.0 
Stair 2 7.1 0 Wall 2 6.2 13.0 
Stair 3 14.0 5.6 Wall 3 4.3 13.0 
Stair 4 1.8 8.9 Wall 4 8.2 1.1 

2 

Stair 1 -6.8 1.0 Wall 1 18.0 10.0 
Stair 2 4.4 3.9 Wall 2 3.4 3.8 
Stair 3 -0.4 0 Wall 3  13.0 19.0 
Stair 4 6.6 0 Wall 4 6.2 5.8 

3 

Stair 1 5.8 12.0 Wall 1 22.0 16.0 
Stair 2 4.1 0.2 Wall 2 6.7 10.0 
Stair 3 8.6 0.6 Wall 3  12.0 20.0 
Stair 4 -1.7 2 Wall 4 9.7 5.9 

 

For Type-B feature, as can be seen in Table 5.4 and Figure 5.23(a), if the compensation 

HTM, is not applied, the Type-B feature has only one unmet material condition on side 1-1 but is 

placed off-center. With the compensation of 𝑇𝑇∗, the Type-B feature is aligned by center. Two slack 

variables in the analysis are found to be positive, and the two corresponding material conditions 

of maximum acceptable width cannot be satisfied as shown in Figure 5.23(b), which schematically 

shows the unsatisfiable material conditions on sides 1-1 and 2-1. This also shows the width of the 

type-B feature is larger than the maximum acceptable width by 5 mm (sum of two negative 

allowances in the third column of Table 5.4), which is further verified by direct measurement.  

Table 5.4: Material allowances of Type-B feature (mm) 
Gage Thickness/width(before) Thickness/width(after) 

Top 1-1 4.4 2.4 
Top 1-2 3.7 6.6 
Top 2-1 4.5 2.3 
Top 2-2 3.9 6.6 
Bottom 2.5 0.4 
Side 1-1 -7.9 -2.4 
Side 1-2 16.9 11.3 
Side 2-1 2.6 -2.7 
Side 2-2 6.1 11.8 
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Figure 5.23: Type-B feature with unsatisfiable material conditions on maximum width: (a) 

before compensation; (b) after compensation 

5.6 SUMMARY 

In this chapter, the virtual gage analysis is proposed to determine the acceptability of a raw 

casting for the machining process. The concept of virtual gage is proposed by a parameterized 

plane and its half space, which represents a feasible region for the point-cloud data. The analysis 

seeks to displace the point-cloud using a single HTM sot that every defined virtual gage can be 

satisfied simultaneously. If such an HTM exists, the conformity of the part can be guaranteed. The 

analysis is also extended by introducing slack variables to deal with the part without enough 

material. Even the part cannot be properly machined, the HTM given by the analysis can still 

improve the conformity.  
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CHAPTER 6. TOLERANCE VERIFICATION OF CYLINDRICAL SURFACES 

In Chapter 5, the virtual gage analysis is introduced to virtually check the material 

conditions of multiple planner surfaces. The concept of point-set based metrology is extended to 

cylindrical surfaces in this chapter. However, the difficulty of examining cylindrical surfaces is 

higher because a cylindrical surface has more degrees-of-freedom (five for a cylindrical surface 

and three for a planar surface). More importantly, the feasible space of plane fitting is always a 

convex space, which can be used to reduce the size of constraints and thus reduce the complexity 

of the problem. However, not every type of cylinder fitting problem has convex feasible space. 

For example, the fitting of maximum possible inscribed cylinder has non-convex feasible space, 

which makes the complexity of problem grows exponentially with the size by using traditional 

optimization solver. Therefore, different strategies are required.  

Section 6.1 introduces the problem. In Section 6.2, the 2-D circular fitting problems are 

discussed, and the corresponding computational geometry-based approaches are developed. The 

projection model of 3-D point-set is built in Section 6.3, followed by example problems using 

available data sets in the literature demonstrated in Section 6.4. Section 6.5 summarizes this 

chapter. 

6.1 INTRODUCTION 

Modern metrology techniques make the measurements of surface profile efficiently with 

introduction of new measuring equipment such as laser scanner, which allows metrologist to get 

accurate and dense measurement data set. As the accuracy of measuring machine improves, 

requirements on manufacturing tolerance become more rigorous. However, the paradigm of 

workpiece metrology in the industry remains unchanged for decades. Without a good algorithm, 

metrologists are not able to process a larger data sets specifically obtained for the cylindrical 
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surface, which may lead to overestimation of the tolerance, rejecting the acceptable parts and 

increasing the cost. Thus, a quick and accurate algorithm that judge the conformity of cylindrical 

surface is critically needed. 

According to ASME Y14.5 [12], common tolerance specifications of cylindrical surfaces 

include minimum/maximum possible cylinder radii and the cylindricity error. These specifications 

are difficult to be measured or evaluated directly using CMMs since they are controlled by a three-

dimensional data set. However, minimum and maximum possible cylinder radii can be estimated 

by the radii of maximum inscribed cylinder (MIC) and minimum circumscribed cylinder (MCC), 

and the cylindricity can be modeled using minimum zone cylinder (MZC) using optimization 

algorithms. However, the optimization problems cannot be solved easily due to the nonlinearities 

caused by the rotation and their non-differentiable target functions caused by discrete point-set.  

In this chapter, a simplified approach for verifying cylindrical surface’s tolerance 

specifications is proposed. Unlike the reported works, which directly use intelligent searching 

algorithms to find all five parameters of the best-fit cylinder (including two parameters 

representing the orientation of cylinder axis and three parameters for linear offset of cylinder axis), 

the proposed methodology only searches for two parameters that control the orientation of the 

cylinder. This is done by casting projection of the 3-D point-set along different directions to get 

different 2-D projected point-sets and their corresponding 2-D tolerance specifications, which are 

computed by computational geometry-based approaches. After the 2-D model is built by 2-D 

circular fitting problems, particle swarm optimization (PSO) is applied to find the cylinder axis’s 

orientations (specified by azimuthal and polar angles) that optimize the corresponding 2-D 

tolerance specifications. By reducing the number of optimization parameters, the efficiency and 

accuracy of the tolerance verification procedure can thus be improved. 
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6.2 2-D CIRCULAR FITTING PROBLEMS 

These tolerance specifications of cylindrical surface are usually difficult to be measured or 

evaluated directly using CMMs since they are controlled by a three-dimensional data set. For 

simplicity and efficiency, only a portion of the cylinder is measured, and a two-dimensional data 

set is collected around a circle and used to represent the entire cylinder. This method greatly 

simplifies the problems by reducing the dimension. The tolerance specifications in 3-D can be 

approximated using 2-D data set and its 2-D specification, i.e. minimum/maximum possible radii 

and the roundness error of the 2-D point-set. The verifications of these three 2-D tolerance 

specifications can be done in numerical or computational geometry-based approaches, which are 

explained in the following sections. 

6.2.1 MAXIMUM RADIUS AND MINIMUM CIRCUMSCRIBED CIRCLE 

MC is defined by the smallest possible circle that can be fitted around the roundness profile. 

Radius of MC represents the maximum possible radius of a circular profile. A min-max 

optimization can be used to define MC of a point-set, 

min
𝑥𝑥,𝑦𝑦

𝑟𝑟𝑀𝑀𝑀𝑀 ∋  𝑟𝑟𝑀𝑀𝑀𝑀2 ≥(𝑥𝑥 − 𝑥𝑥𝑖𝑖)2 + (𝑦𝑦 − 𝑦𝑦𝑖𝑖)2 ∀𝑖𝑖 = 1 …𝑛𝑛, 
 

(6.1) 
 

where 𝑟𝑟𝑀𝑀𝑀𝑀 and [𝑥𝑥,𝑦𝑦] are the radius and center of MC and the coordinate of ith point in the point-

set is given by [𝑥𝑥𝑖𝑖  𝑦𝑦𝑖𝑖]. 

Equation (6.1) is a quadratically constrained quadratic program problem (QCQP), which 

generally is an NP hard problem [101]. However, as a special case of QCQP, Equation (6.1) can 

be simplified and solved using interior point method since the feasible region is a circle, which is 

a convex region. The two-dimensional optimization can be also solved by optimization solvers 

numerically. 
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The geometrical-based algorithm developed by Welzl [86] is able to solve MC fitting 

problem the problem. The algorithm starts with a MC candidate defined by two or three points in 

the point-set. If a point in the point-set is inside of the circle, the point is ignored in the following 

iteration as shown in Figure 6.1(a). Figure 6.1(b) shows the case that the point, which is outside 

the current circle is used to form the new circle. When a new point is considered, the circle becomes 

larger and circumscribes more points in the point-set. The iteration stops when all points in the 

point-set is either ignored or used to form the circle. The algorithm finds the control points that 

determine MC and provides the solution for Equation (6.1), and its complexity is proportional to 

the size of the point-set.  

 
Figure 6.1: Welzl’s algorithm on finding MC: (a) Case 1: remove a surrounded point; (b) Case 2: 

fit a larger circle using the point out of current circle 

Sorting by the number of control points, there are four outcomes of finding MC for a given 

finite point-set, 𝑃𝑃. The center and radius of MC, and the ith point in 𝑃𝑃 are denoted by 𝑐𝑐𝑀𝑀𝑀𝑀, 𝑟𝑟𝑀𝑀𝑀𝑀 and 

𝑝⃑𝑝𝑖𝑖, respectively. 

1. Number of control points of MC is 1.  

MC candidate MC candidate 

New MC candidate 
(a) (b) 
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It is a special case. Either every point in 𝑃𝑃 coincides or there is only one point in 𝑃𝑃. In this 

case, 𝑐𝑐𝑀𝑀𝑀𝑀 = 𝑝⃑𝑝1, 𝑟𝑟𝑀𝑀𝑀𝑀 = 0. 

2. Number of control points of MC is 2.  

Two control points, the ath and bth points in 𝑃𝑃 define the diameter of MC. If there are more 

than three points in 𝑃𝑃, the triangle determined by the control points and any other point in 𝑃𝑃 is an 

obtuse triangle as shown in Figure 6.2(a). In this case, 𝑐𝑐𝑀𝑀𝑀𝑀 = (𝑝⃑𝑝𝑎𝑎 + 𝑝⃑𝑝𝑎𝑎)/2, 𝑟𝑟𝑀𝑀𝑀𝑀 = ‖𝑝⃑𝑝𝑎𝑎 − 𝑝⃑𝑝𝑏𝑏‖2. 

3. Number of control points of MC is 3.  

The three control points (ath, bth and cth points in 𝑃𝑃 ) form an acute triangle and its 

circumscribed circle is MC of 𝑃𝑃. Figure 6.2(b) shows an example that three points determine the 

point-set’s MC. 

4. Number of control points of MC is 4 or larger than 4.  

As can be seen in Figure 6.2(c), it is a special case like case 3 that all four (or more) control 

points are concyclic.  

 

Figure 6.2: Circumscribed circle determined by: (a) 2 points; (b) 3 points; (c) 4 or more points 

6.2.2 MINIMUM RADIUS AND MAXIMUM INSCRIBED CIRCLE 

According to ISO 12181-1:2011 standard [102], MI is defined by the largest possible circle 

that can be fitted within the roundness profile. For a discrete point-set data, the roundness profile 

is not a continuous boundary and cannot be used to restrict the location of MI. Therefore, the 
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roundness profile is approximated by MC, which surrounds the point-set. This implies that MI 

must be surrounded by MC. For example, if all points in the point-set are concyclic and form a 

perfect circle, MI and MC of the point-set are identical. MI of a finite point-set can thus be 

formulated using the following max-min optimization [20], [77]: 

max
𝑥𝑥,𝑦𝑦

𝑟𝑟𝑀𝑀𝑀𝑀 ∋ 𝑟𝑟𝑀𝑀𝑀𝑀 + |𝑐𝑐𝑀𝑀𝑀𝑀 − 𝑐𝑐𝑀𝑀𝑀𝑀| ≤ 𝑟𝑟𝑀𝑀𝑀𝑀 , 𝑟𝑟𝑀𝑀𝑀𝑀2 ≤(𝑥𝑥 − 𝑥𝑥𝑖𝑖)2 + (𝑦𝑦 − 𝑦𝑦𝑖𝑖)2 ∀𝑖𝑖 = 1 …𝑛𝑛, 
 

(6.2) 
 

where 𝑟𝑟𝑀𝑀𝑀𝑀  and 𝑐𝑐𝑀𝑀𝑀𝑀 = [𝑥𝑥𝑀𝑀𝑀𝑀  𝑦𝑦𝑀𝑀𝑀𝑀] are the radius and center of MC, 𝑟𝑟𝑀𝑀𝑀𝑀  and 𝑐𝑐𝑀𝑀𝑀𝑀 = [𝑥𝑥 𝑦𝑦] are the 

radius and center of MI and the coordinate of ith point in the point-set is given by [𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖]. 

Equation (6.2) also forms a quadratically constrained quadratic program problem like 

Equation (6.1). However, the feasible region formed by the constraints is a ring-shape area, which 

is non-convex, and the problem is hence NP hard [101]. In the other word, without relaxation of 

constraints, the complexity and computation time of the problem grow exponentially with the size 

of problem. Therefore, using traditional optimization solver to solve Equation (6.2) might be 

inefficient for point-set with larger size. Thus, intelligent searching algorithms such as using 

particle swarm optimization (PSO) can be used to solve Equation (6.2) [103]. A generalized 

problem form that intelligent searching algorithms deal with is formulated as, 

max
𝑣𝑣

𝑓𝑓(𝑣𝑣)  ∋ 𝑙𝑙𝑖𝑖 ≤ 𝑣𝑣𝑖𝑖 ≤ 𝑢𝑢𝑖𝑖   ∀𝑖𝑖, 
 

(6.3) 
 

where 𝑣𝑣 ∈ ℝ𝑛𝑛 is the vector with n variables, 𝑓𝑓(𝑣𝑣) is the objective function, 𝑙𝑙𝑖𝑖 and 𝑢𝑢𝑖𝑖 are lower and 

upper bounds for the ith variable 𝑣𝑣𝑖𝑖. 

Equation (6.2) is rewritten without the constraint on MI’s location and size so that 

intelligent searching algorithms can be applied, 

max
𝑥𝑥,𝑦𝑦

min
𝑖𝑖

[(𝑥𝑥 − 𝑥𝑥𝑖𝑖)2 + (𝑦𝑦 − 𝑦𝑦𝑖𝑖)2]∀𝑖𝑖 ∋ 𝑙𝑙𝑥𝑥 ≤ 𝑥𝑥 ≤ 𝑢𝑢𝑥𝑥 , 𝑙𝑙𝑦𝑦 ≤ 𝑦𝑦 ≤ 𝑢𝑢𝑦𝑦, (6.4) 
 

where 𝑙𝑙𝑥𝑥 and 𝑢𝑢𝑥𝑥 are the lower and upper bound for 𝑥𝑥 and 𝑙𝑙𝑦𝑦 and 𝑢𝑢𝑦𝑦 are the lower and upper bound 

for 𝑦𝑦. 
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However, the constraint on MI’s location and size given in Equation (6.2) cannot be fully 

considered in Equation (6.4). The optimal solution might be inaccurate. Alternatively, the nearest 

Voronoi diagram, 𝑁𝑁𝑁𝑁(𝑃𝑃) for point-set 𝑃𝑃 can also be used to find all inscribed circles and MI. 

𝑁𝑁𝑁𝑁(𝑃𝑃) is the intersection of all the nearest Voronoi convex sets. The nearest Voronoi convex set 

associated with the ith point in 𝑃𝑃 is the set of all the points that are closer to the ith point in 𝑃𝑃 than 

to any other point. The nearest Voronoi diagram is composed of Voronoi edges and has two 

important properties [87], which are shown schematically in Figure 6.3: 

1. The vertices of 𝑁𝑁𝑁𝑁(𝑃𝑃), denoted by 𝑉𝑉𝑁𝑁(𝑃𝑃) are all points equidistant from at least three points 

in 𝑃𝑃 and farther to all the others points in 𝑃𝑃. Every point in 𝑉𝑉𝑁𝑁(𝑃𝑃) can be the center of a circle 

that passes through at least three points in 𝑃𝑃 without circumscribing any other points in 𝑃𝑃.  

2. A set of points equidistant from two points in 𝑃𝑃 and farther to all the others in 𝑃𝑃 depict a 

nearest Voronoi edge, and the set of all nearest Voronoi edges are denoted by 𝐸𝐸𝑁𝑁(𝑃𝑃). Every 

edge is a part of perpendicular bisector of two points in 𝑃𝑃. Every point on 𝐸𝐸𝑁𝑁(𝑃𝑃) can be the 

center of a circle that passes through exact two points in 𝑃𝑃 without circumscribing any other 

points in 𝑃𝑃.  

 

Figure 6.3: Schematic of nearest Voronoi diagram and its properties 
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By taking advantage of the first property of nearest Voronoi diagram, one can examine 

every potential inscribed circle that passes through at least three points in 𝑃𝑃  but does not 

circumscribe any other points. The following steps are used to find all inscribed circles defined by 

at least three points: 

1. Find minimum circumscribed circle of 𝑃𝑃, as shown in the black circle in Figure 6.4(a). 

2. Construct nearest Voronoi diagram, 𝑁𝑁𝑁𝑁(𝑃𝑃) with edges, 𝐸𝐸𝑁𝑁(𝑃𝑃) shown as blue lines in Figure 

6.4(a). 

3. For each vertex of 𝑁𝑁𝑁𝑁(𝑃𝑃) (each point in 𝑉𝑉𝑁𝑁(𝑃𝑃)), shown as blue points in Figure 6.4(a), 

(a) Find the three points, which are equally distant to the vertex. 

(b) Define a corresponding inscribed circle using three points found. 

(c) As shown in Figure 6.4(a), check if the potential inscribed circle is inside of MC. If 

yes, add it into the candidate list. 

4. Find the largest potential inscribed circle left from step 3. 

 
Figure 6.4: (a) Schematic of finding inscribed circles defined by 3 points; (b) every inscribed 

circle defined by 3 points is out of the minimum circumscribed circle 
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In general, using algorithms such as PSO to solve Equation (6.4) or constructing Voronoi 

diagram using at least three points in the point-set can find an inscribed circle for finding MI. 

However, it is possible that the found inscribed circle from these approaches is out of the roundness 

profile depicted by MC as shown in Figure 6.4(b). In general, this happens for point-set that hardly 

depicts a circular shape (e.g. the black points shown in Figure 6.4(b)). Hence, two additional 

situations (case I and II) are proposed and their solutions based on Voronoi diagram are developed. 

Case I: MI is defined using 2 points in 𝑃𝑃 and 1 tangent point on MC 

Every point on the edge of Voronoi diagram can be the center of an inscribed circle. The 

inscribed circle passes through exactly two points in the point-set without circumscribing any other 

points. Since the inscribed circle should be as large as possible and within MC, the inscribed circle 

of the point-set must be also the internally tangent circles (ITC) of MC. The following steps explain 

how to find all circles that are not only ITCs of MC but also inscribed circles of the point-set: 

1. Remove the points on MC and construct the new Voronoi diagram for the smaller point-set, 

𝑃𝑃′. 

2. Find all edges in 𝐸𝐸𝑁𝑁(𝑃𝑃′). 

3. For every edge found in step 2, it has two ends, 𝑉𝑉1 and 𝑉𝑉2 as shown in Figure 6.5(a).  

(a) Find 𝐴𝐴 and 𝐵𝐵, the two points in 𝑃𝑃′, which are closest to the edge. 

(b) Given 𝐴𝐴  and 𝐵𝐵 , solve two tangent points, 𝑄𝑄1  and 𝑄𝑄2  on MC so that two circles 

determined by 𝐴𝐴𝐴𝐴𝑄𝑄1  and 𝐴𝐴𝐴𝐴𝑄𝑄2 are two ITCs of MC. 

(c) Determine 𝐶𝐶1 and 𝐶𝐶2, the centers of two ITCs. Note that 𝑉𝑉1, 𝑉𝑉2, 𝐶𝐶1 and 𝐶𝐶2 are collinear. 

(d) Check if ∠𝐴𝐴𝐶𝐶𝑖𝑖𝐵𝐵 > ∠𝐴𝐴𝑉𝑉𝑖𝑖𝐵𝐵  (i=1,2). If yes, add the ith ITC into the candidate list. 

Otherwise, remove the ith ITC because it circumscribes other points in 𝑃𝑃′. For example, 
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ITC 1 in Figure 6.5 (a) is a candidate because ∠𝐴𝐴𝐶𝐶1𝐵𝐵 > ∠𝐴𝐴𝑉𝑉1𝐵𝐵. ITC 2 in Figure 6.5(a), 

on the other hand, will not be considered in the next step. 

4. Find the largest circle in the candidate list found in step 3. 

 
Figure 6.5: (a) Schematic of finding ITC using two points; (b) largest ITC in Case II 

Case II: MI is defined by 1 point from point-set and 1 tangent point on MC. 

A circle can also be determined using two points if these two points also define the 

diameter. To maximize the diameter defined in this way, the ITC can be defined using a point 

inside of MC and the farthest possible point. With the assistance of nearest Voronoi diagram, all 

ITC candidates can be found using the following steps: 

1. Remove the points on MC and construct the new Voronoi diagram for the smaller point-set, 

𝑃𝑃′. 

2. For every point in 𝑃𝑃′, do the following steps (details are shown in Figure 6.6(a)): 

(a) 
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(a) Find the diameter of MC that passes through the point, 𝐴𝐴. The two ends of the diameter 

are 𝑁𝑁 and 𝐹𝐹. Two ITCs can be found using diameters defined by 𝐴𝐴𝐴𝐴���� and 𝐴𝐴𝐴𝐴����. 

(b) Check if 𝐴𝐴𝐴𝐴���� and 𝐴𝐴𝐴𝐴����  intersects with any of the Voronoi edges, 𝐸𝐸𝑁𝑁(𝑃𝑃′). If yes, the 

defined ITC circumscribes other points in 𝑃𝑃′ and hence is not a candidate. As can be 

seen in Figure 6.6(a), 𝐴𝐴𝐴𝐴���� intersects one edge in 𝐸𝐸𝑁𝑁(𝑃𝑃′) at 𝑇𝑇. The circle defined by 𝐴𝐴𝐴𝐴���� 

will not be considered in step 3. 

(c) If 𝐴𝐴𝐴𝐴���� does not intersect with any Voronoi edges, add the ITC with diameter of 𝐴𝐴𝐴𝐴���� to 

the list of candidates as shown in Figure 6.6(a). Similarly, check if the ITC defined by 

𝐴𝐴𝐴𝐴���� should be added. 

3. Find the largest circle in the candidate list found in step 2. 

 
Figure 6.6: (a) Schematic of finding ITC using one point; (b) largest ITC in Case III 

To find MI of a point-set, all cases including MI determined by at least three points should 
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of the six points shown in Figure 6.4(b) cannot be defined using at least three points. Figure 6.5(b) 

shows the inscribed circle defined by Case I with radius of 0.768. The inscribed circle defined by 

Case II as shown in Figure 6.6(b) has radius of 0.815. Therefore, MI of the point-set has radius of 

0.815. 

6.2.3 ROUNDNESS AND MINIMUM ZONE CIRCLE 

Roundness, also known as circularity is described by the tolerance zone bounded by two 

concentric circles [12], [104]. The minimum zone circle (MZ) fitting problem of a point-set, 𝑃𝑃 

with n points can be formulated with a min-max problem [20], which is similar to MI fitting 

problem as stated in Equation (6.4):  

min
𝑥𝑥,𝑦𝑦

𝑓𝑓𝑟𝑟(𝑥𝑥,𝑦𝑦) 

 
(6.5) 

 

where 𝑓𝑓𝑟𝑟(𝑥𝑥, 𝑦𝑦) = max
𝑖𝑖
�(𝑥𝑥 − 𝑥𝑥𝑖𝑖)2 + (𝑦𝑦 − 𝑦𝑦𝑖𝑖)2 − min

𝑗𝑗
��𝑥𝑥 − 𝑥𝑥𝑗𝑗�

2
+ �𝑦𝑦 − 𝑦𝑦𝑗𝑗�

2
 (𝑖𝑖, 𝑗𝑗 = 1~𝑛𝑛)  is 

the objective function of the roundness deviation controlled by 𝑥𝑥 and 𝑦𝑦, the center position of the 

concentric circles and [𝑥𝑥𝑖𝑖 𝑦𝑦𝑖𝑖] is the ith point in 𝑃𝑃. 

The roundness is given by 𝑓𝑓(𝑥𝑥∗,𝑦𝑦∗) where 𝑥𝑥∗ and 𝑦𝑦∗ are the solution of Equation (6.5) as 

well as the positions of MZ. Equation (6.5) can also be numerically solved using intelligent 

searching algorithms such as PSO [105] and  genetic algorithm (GA) [84]. However, a 

computational geometry method based on nearest and farthest Voronois diagrams [87], [88], [90] 

provides the global optimum of Equation (6.5) geometrically. Since a pair of concentric circles has 

four degrees of freedom, four or more control points within the point-set that uniquely determine 

the concentric circles are searched. According to Roy and Zhang’s works [87], [88], one must 

individually find three pairs of concentric circles, whose outer and inner circles are defined by 

three and one points (case 3+1), two and two points (case 2+2), and one and three points (case 
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1+3). The pair with smallest amount of radial separation among three cases to be MZ. Roundness 

error can thus be obtained by radial difference of the concentric circles. 

The roundness is given by 𝑓𝑓𝑟𝑟(𝑥𝑥∗,𝑦𝑦∗), where 𝑥𝑥∗ and 𝑦𝑦∗ are the solution of Equation (6.5) 

as well as the center position of MZ. Equation (6.5) can also be numerically solved using intelligent 

searching algorithms such as PSO and genetic algorithm (GA). However, a computational 

geometry method based on nearest and farthest Voronois diagrams provides the global optimum 

of Equation (6.5) geometrically [87], [88], [90]. Since a pair of concentric circles has four degrees 

of freedom (two for center position and two for radii of two circles), four or more control points 

within the point-set that uniquely determine the concentric circles are searched. According to Roy 

and Zhang’s works [87], [88], one must individually find three pairs of concentric circles, whose 

outer and inner circles are defined by three and one points (case 3+1), two and two points (case 

2+2), and one and three points (case 1+3), respectively. The pair with smallest amount of radial 

separation among three cases to be MZ. Roundness error can thus be obtained by radial difference 

of the concentric circles. The flowchart of computational geometry-based algorithms for MC, MI 

and MZ fitting is shown in Figure 6.7. 
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Figure 6.7: Computational geometry-based algorithms for fitting MC, MI and MZ [87] 

In case 1+3, center of the concentric circles is determined by an inscribing circle of 𝑃𝑃. A 

potential inscribing circle must passes through at least 3 points in the point-set and does not 

circumscribe any other points in the point-set [88]. Hence, a potential inscribing circle must center 

on a vertex of the nearest Voronoi diagram. Equation (6.5) can be modified by searching the 

optimal concentric circles in case 1+3,  

min
𝑘𝑘𝑁𝑁

𝑓𝑓𝑟𝑟(𝑥𝑥𝑘𝑘𝑁𝑁 ,𝑦𝑦𝑘𝑘𝑁𝑁), 

 
(6.6) 

 

where 𝑓𝑓𝑟𝑟�𝑥𝑥𝑘𝑘𝑁𝑁 ,𝑦𝑦𝑘𝑘𝑁𝑁� = max
𝑖𝑖
��𝑥𝑥𝑘𝑘𝑁𝑁 − 𝑥𝑥𝑖𝑖�

2
+ �𝑦𝑦𝑘𝑘𝑁𝑁 − 𝑦𝑦𝑖𝑖�

2
− min

𝑗𝑗
��𝑥𝑥𝑘𝑘𝑁𝑁 − 𝑥𝑥𝑗𝑗�

2
+ �𝑦𝑦𝑘𝑘𝑁𝑁 − 𝑦𝑦𝑗𝑗�

2
, 

∀𝑖𝑖, 𝑗𝑗 = 1~𝑛𝑛 and [𝑥𝑥𝑘𝑘𝑁𝑁  𝑦𝑦𝑘𝑘𝑁𝑁] is one of the vertices in 𝑉𝑉𝑁𝑁(𝑃𝑃). 
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Case 3+1, on the other hand, defines the center of the concentric circles by a circumscribing 

circle of 𝑃𝑃. As discussed in Section 6.2.1, MC of 𝑃𝑃 might be defined by only two points in 𝑃𝑃. The 

potential circumscribing circle in Case 3+1, on the other hand, must be defined by 3 or more points 

[88]. In order to find the potential circumscribing circles, the farthest Voronoi diagram of P, 𝐹𝐹𝐹𝐹(𝑃𝑃) 

is constructed. The center of a potential circumscribing circle is one of the vertices 𝐹𝐹𝐹𝐹(𝑃𝑃) denoted 

by 𝑉𝑉𝐹𝐹(𝑃𝑃). Similarly, the formulation of case 3+1 is given by, 

min
𝑘𝑘𝐹𝐹

𝑓𝑓𝑟𝑟(𝑥𝑥𝑘𝑘𝐹𝐹 ,𝑦𝑦𝑘𝑘𝐹𝐹), 

 
(6.7) 

 

where 𝑓𝑓r�𝑥𝑥𝑘𝑘𝐹𝐹 ,𝑦𝑦𝑘𝑘𝐹𝐹� = max
𝑖𝑖
��𝑥𝑥𝑘𝑘𝐹𝐹 − 𝑥𝑥𝑖𝑖�

2
+ �𝑦𝑦𝑘𝑘𝐹𝐹 − 𝑦𝑦𝑖𝑖�

2
− min

𝑗𝑗
��𝑥𝑥𝑘𝑘𝐹𝐹 − 𝑥𝑥𝑗𝑗�

2
+ �𝑦𝑦𝑘𝑘𝐹𝐹 − 𝑦𝑦𝑗𝑗�

2
, 

∀𝑖𝑖, 𝑗𝑗 = 1~𝑛𝑛 and [𝑥𝑥𝑘𝑘𝐹𝐹  𝑦𝑦𝑘𝑘𝐹𝐹] is one of the vertices in 𝑉𝑉𝐹𝐹(𝑃𝑃). 

It must be noted that the outer and inner circle found in case 3+1 and 1+3 might be different 

circles from MC and MI of 𝑃𝑃.  

In case 2+2, both concentric circles pass through two or more points. The inner circle 

cannot circumscribe any points, while the outer one should circumscribe the entire point-set. The 

center of such a pair of concentric circles is determined by the intersections of nearest and farthest 

Voronoi edges, 𝐸𝐸𝑁𝑁(𝑃𝑃) and 𝐸𝐸𝐹𝐹(𝑃𝑃) [87], [88]. The problem can be written as, 

min
𝑘𝑘𝐼𝐼

𝑓𝑓𝑟𝑟(𝑥𝑥𝑘𝑘𝐼𝐼 ,𝑦𝑦𝑘𝑘𝐼𝐼), 

 
(6.8) 

 

where 𝑓𝑓2�𝑥𝑥𝑘𝑘𝐼𝐼 ,𝑦𝑦𝑘𝑘𝐼𝐼� = max
𝑖𝑖
��𝑥𝑥𝑘𝑘𝐼𝐼 − 𝑥𝑥𝑖𝑖�

2
+ �𝑦𝑦𝑘𝑘𝐼𝐼 − 𝑦𝑦𝑖𝑖�

2
− min

𝑗𝑗
��𝑥𝑥𝑘𝑘𝐼𝐼 − 𝑥𝑥𝑗𝑗�

2
+ �𝑦𝑦𝑘𝑘𝐼𝐼 − 𝑦𝑦𝑗𝑗�

2
, 

∀𝑖𝑖, 𝑗𝑗 = 1~𝑛𝑛 and [𝑥𝑥𝑘𝑘𝐼𝐼  𝑦𝑦𝑘𝑘𝐼𝐼] is one of the intersections of 𝐸𝐸𝑁𝑁(𝑃𝑃) and 𝐸𝐸𝐹𝐹(𝑃𝑃). 

Example problem 

A randomly generated point-set is use to test the PSO-based and Voronoi diagram-based 

methods. PSO algorithm is used to solve Equation (6.5) with particle size of 20 and maximum 

number of iterations of 2000. For the Voronoi-based method, three cases of radial deviation are 
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individually computed using nearest and farthest Voronoi diagrams. Three pairs of concentric 

circles are obtained and shown in Fig. 7. The roundness is found to be 1.055088 determined by 

case 2+2. As seen in Table 6.1, two methods have consistent results on both the center of MZ and 

the roundness. 

 
Figure 6.8: Three cases of finding minimum zone circle with smallest radial separation: (a) case 

3+1; (b) case 2+2; (c) case 1+3 

Table 6.1: Roundness and MZ fitting of a point-set using two proposed methods  
Method 𝑋𝑋𝑐𝑐 𝑌𝑌𝑐𝑐 Roundness 

Voronoi (case 2+2) 0.0906190 -0.1888661 1.0550880 
PSO 0.0906191 -0.1888664 1.0550879 

 
6.3 3-D CYLINDRICAL DATA FITTING PROBLEMS 

A cylinder has five degrees-of-freedom including two parameters for orientation of 

cylinder axis vector, two parameters for the offset of the axis vector and one to specify the radius. 

The schematic of using Plucker coordinate [20] to fit a cylinder is shown in Figure 6.9. The 

optimization formula of fitting MCC and MZC are given by [20], 

min
𝑎𝑎�⃑ ,𝐿𝐿�⃑

𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀(𝑝⃑𝑝𝑖𝑖, 𝑎⃑𝑎, 𝐿𝐿�⃑ ) = min
𝑎𝑎�⃑ ,𝐿𝐿�⃑

max
𝑖𝑖
��𝑝⃑𝑝𝑖𝑖 − 𝐿𝐿�⃑ � × 𝑎⃑𝑎� , 𝑖𝑖 = 1~𝑛𝑛, 

 
(6.9) 

 

min
𝑎𝑎�⃑ ,𝐿𝐿�⃑

𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀(𝑝⃑𝑝𝑖𝑖, 𝑎⃑𝑎, 𝐿𝐿�⃑ ) = min
𝑎𝑎�⃑ ,𝐿𝐿�⃑

�max
𝑖𝑖
��𝑝⃑𝑝𝑖𝑖 − 𝐿𝐿�⃑ � × 𝑎⃑𝑎� − min

𝑗𝑗
��𝑝⃑𝑝𝑗𝑗 − 𝐿𝐿�⃑ � × 𝑎⃑𝑎�� , 𝑖𝑖 = 1~𝑛𝑛, 

 

(6.10) 
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where 𝑎⃑𝑎 is axis direction, 𝐿𝐿�⃑  is locating position vector,  𝑎⃑𝑎𝑇𝑇𝐿𝐿�⃑ = 0, |𝑎⃑𝑎| = 1 is the orientation vector 

of cylinder axis, 𝐿𝐿�⃑  is a point on cylinder axis, 𝑝⃑𝑝𝑖𝑖 is the ith point in 𝑃𝑃. 

 
 

Figure 6.9: Define axis vector and the distance from points to axis using Plucker coordinate 

MIC fitting problem of point-set is an unbounded maximizing problem like MI fitting 

problem. Therefore, two additional constraints to limit the axis location and orientation are 

required for the existence of solution. 

max
𝑎𝑎�⃑ ,𝐿𝐿�⃑

𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀(𝑝⃑𝑝𝑖𝑖, 𝑎⃑𝑎, 𝐿𝐿�⃑ ) = max
𝑎𝑎�⃑ ,𝐿𝐿�⃑

min
𝑖𝑖
��𝑝⃑𝑝𝑖𝑖 − 𝐿𝐿�⃑ � × 𝑎⃑𝑎� , 𝑖𝑖 = 1~𝑛𝑛 ∋ 𝐿𝐿�⃑ ∈ Γ𝐿𝐿 , 

 
(6.11) 

 
where Γ𝐿𝐿 limits the location of the axis within the cylindrical profile. 

As can be seen in Equations (6.9)~(6.11), the three problems seek to optimize variables in 

𝑎⃑𝑎 and 𝐿𝐿�⃑  that specify position and orientation of the axes [20], [95], [99]. The number of variables 

in 𝑎⃑𝑎 can be reduced from 3 to 2 by (a) adjusting the axis coordinate by aligning it with Z-axis and 

(b) assuming the angular displacements of axis are sufficiently small. The simplified model of 𝑎⃑𝑎 

is given by 𝑎⃑𝑎 = [∆𝛽𝛽 −∆𝛾𝛾 1 ]𝑇𝑇, where ∆𝛽𝛽 and ∆𝛾𝛾 are small angular displacements about Y and 

X axes. Similarly, 𝐿𝐿�⃑  has 3 variables but and can be simplified by coordinate adjustment. Since the 

axis, 𝑎⃑𝑎 is assumed to be aligned with Z-axis, 𝐿𝐿�⃑ = [𝐿𝐿𝑥𝑥 𝐿𝐿𝑦𝑦 0 ]𝑇𝑇 is given to reduce the number of 

[0,0,0] 

𝑎⃑𝑎 

𝐿⃑𝐿 

𝑝⃑𝑝𝑖𝑖 − 𝐿⃑𝐿 

𝑝⃑𝑝𝑖𝑖 ��𝑝⃑𝑝𝑖𝑖 − 𝐿⃑𝐿� × 𝑎⃑𝑎� 
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variables. With small variable assumptions, Equations (6.9)~(6.11) are solvable sequentially (e.g., 

by updating ∆𝛽𝛽, ∆𝛾𝛾, 𝐿𝐿𝑥𝑥 and 𝐿𝐿𝑦𝑦 step by step until the objective cannot be improved anymore) [20], 

[77]. Thus, intelligent searching algorithms such as PSO is applied to find global optimum for five 

parameters (including two parameters in axis direction 𝑎⃑𝑎 = [𝑞𝑞1 𝑞𝑞2 1]𝑇𝑇,  and three parameters in 

locating positon vector , 𝐿𝐿�⃑ = [𝑥𝑥0 𝑦𝑦0 𝑧𝑧0]𝑇𝑇  as shown in Figure 6.9) [99]. Cheraghi et al. [94] 

constructed a perturbation model for 3-D point-set’s rotation and projection. Although the global 

optimum is not promised due to the nonlinearities of rotations, the projection model can be used 

to simplify the problem. The radii of MIC and MCC and cylindricity error of a 3-D point-set are 

formulated by maximum radius of MI, minimum radius of MC and minimum roundness error of 

the rotated and projected 3-D point-set, which can be solved using numerical and geometrical 

methods as discussed in Section 6.2. If the projection model is used, parameters in locating positon 

vector, 𝐿𝐿�⃑  are redundant, and only two variables (two angles to specify an arbitrary rotation) are 

required to determine MIC, MCC and MZC as shown in Figure 6.10. After the projection model 

is built, PSO is used to find the optimal rotation (specified by two angles) that optimizes maximum 

radius of MI, minimum radius of MC and minimum roundness error of the rotated and projected 

3-D point-set. 
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Figure 6.10 Project a 3-D point-set, P along 𝑎⃑𝑎 onto x-y plane to be Q 

An arbitrary rotation applied to a point can be described by two consecutive rotations about 

Y and Z axes using polar and azimuthal angles. As shown in Figure 6.10, the projection of the 

rotated point onto x-y plane can be expressed as, 

𝑞⃑𝑞𝑖𝑖 = �1 0 0
0 1 0� �

cos𝜙𝜙 −sin𝜙𝜙 0
sin𝜙𝜙 cos𝜙𝜙 0

0 0 1
� �

cos𝜃𝜃 0 sin𝜃𝜃
0 1 0

−sin𝜃𝜃 0 cos𝜃𝜃
� 𝑝⃑𝑝𝑖𝑖, 

 

(6.12) 
 

where 𝑝⃑𝑝𝑖𝑖 ∈ ℝ3 is the ith point in 𝑃𝑃, 𝑞⃑𝑞𝑖𝑖 ∈ ℝ2 is the ith point 𝑄𝑄, the projected point-set of 𝑃𝑃, 𝜃𝜃 ∈

[0 𝜋𝜋/2] is the polar angle and 𝜙𝜙 ∈ [−𝜋𝜋 𝜋𝜋] is the azimuthal angle. 

As can be seen in Figure 6.10, the projection of rotated 𝑃𝑃 is 𝑄𝑄, a 2-D point-set whose MC, 

MI and MZ can be solved using the methods reviewed in Section 6.2 for given 𝜃𝜃 and 𝜙𝜙. Equations 

(6.9)~(6.11) can be rewritten based on Equations (6.1), (6.4) and (6.5): 

min
𝜃𝜃,𝜙𝜙

𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀 = min
𝜃𝜃,𝜙𝜙

𝑟𝑟𝑀𝑀𝑀𝑀 = min
𝜃𝜃,𝜙𝜙

�min
𝑐𝑐𝑀𝑀𝑀𝑀

max
𝑖𝑖

|𝑐𝑐𝑀𝑀𝑀𝑀 − 𝑞⃑𝑞𝑖𝑖|�, 

 

(6.13) 
 

min
𝜃𝜃,𝜙𝜙

𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀 = min
𝜃𝜃,𝜙𝜙

𝑓𝑓𝑀𝑀𝑀𝑀 = min
𝜃𝜃,𝜙𝜙

�min
𝑐𝑐𝑀𝑀𝑀𝑀

(max
𝑖𝑖

|𝑐𝑐𝑀𝑀𝑀𝑀 − 𝑞⃑𝑞𝑖𝑖| − min
𝑗𝑗
�𝑐𝑐𝑀𝑀𝑀𝑀 − 𝑞⃑𝑞𝑗𝑗�)�, 

(6.14) 
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max
𝜃𝜃,𝜙𝜙

𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀 = max
𝜃𝜃,𝜙𝜙

𝑟𝑟𝑀𝑀𝑀𝑀 = max
𝜃𝜃,𝜙𝜙

�max
𝑐𝑐𝑀𝑀𝑀𝑀

min
𝑖𝑖

|𝑐𝑐𝑀𝑀𝑀𝑀 − 𝑞⃑𝑞𝑖𝑖|� ∋ 

𝑟𝑟𝑀𝑀𝑀𝑀 + |𝑐𝑐𝑀𝑀𝑀𝑀 − 𝑐𝑐𝑀𝑀𝑀𝑀| ≤ 𝑟𝑟𝑀𝑀𝑀𝑀  ∀𝜃𝜃,𝜙𝜙 
 

(6.15) 
 

where 𝑞⃑𝑞𝑖𝑖 is the ith point in 𝑄𝑄, 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀 and 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀 are the radii of minimum circumscribed and maximum 

inscribed cylinder of 𝑃𝑃, 𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀  is the cylindricity of 𝑃𝑃, 𝑟𝑟𝑀𝑀𝑀𝑀 and 𝑟𝑟𝑀𝑀𝑀𝑀 are radii of MC and MI of 𝑄𝑄 and 

𝑐𝑐𝑀𝑀𝑀𝑀 , 𝑐𝑐𝑀𝑀𝑀𝑀, 𝑐𝑐𝑀𝑀𝑀𝑀 are centers of MC, MZ, MI.  

In this chapter, PSO is applied to solve 𝜃𝜃 and 𝜙𝜙 in Equation (6.13)~(6.15). In the main 

loop, 2-D tolerance specifications are computed using the computational geometry-based methods 

as shown in Figure 6.7. The flowchart of operation is given in Figure 6.11. It must be noted that 

one can also use PSO-based fitting in the main loop, since PSO is also capable of fitting circles of 

the projected point-set as demonstrated in Section 6.2. 
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Figure 6.11: Flowchart of MCC, MIC and MZC fitting for a 3-D point-set 

6.4 RESULTS 

Four sets of data from literature are used for testing the proposed method [20], [95], [97]. 

Computational geometry methods are used in all iterations for all test results shown in this section. 

For the PSO solver, the particle size is selected as 20 and maximal number of iterations to be 2000. 

The searching regions of 𝜃𝜃  and 𝜙𝜙  are 0  to 𝜋𝜋/2   and −𝜋𝜋  to 𝜋𝜋 , which represent the half upper 

spherical surface. Table 6.2 to Table 6.5 show the results, and the used data sets are shown in 
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Appendices A, B, C and D, respectively. For each data set, MIC, MCC and MZC are fitted. The 

fitted cylinder axis direction specified by polar and azimuthal angles, the radii of MIC and MCC 

and the cylindricity are compared with the results reported in literature. 

Table 6.2: Results of MIC, MCC and MZC fitting using data set 1 [20] 

 
Proposed approach Literature 

𝜃𝜃∗(rad) 𝜙𝜙∗(rad) Radius/Cylindricity 𝜃𝜃∗(rad) 𝜙𝜙∗(rad) Radius/Cylindricity 
MIC 0.95531 0.78539 49.9956642 0.95531  0.78541 49.9956642 
MCC 0.95539 0.78539 50.0041462 0.95539  0.78541 50.0041462 
MZC 0.95534 0.78539 0.0094101 0.95540 0.78541 0.00941 

 

Table 6.3: Results of MIC, MCC and MZC fitting using data set 2 [20] 

 
Proposed approach Literature 

𝜃𝜃∗(rad) 𝜙𝜙∗(rad) Radius/Cylindricity 𝜃𝜃∗(rad) 𝜙𝜙∗(rad) Radius/Cylindricity 
MIC 5.9435E-03 -2.68556 59.9362261 6.0663E-03 -2.65050 59.9362147 
MCC 7.0404E-03 -1.46939 60.0706331 1.29075E-02 -1.22423 60.0578814 
MZC 2.9801E-03 -1.78017 0.1839574 2.9665E-03   -1.78017 0.18396 

 

Table 6.4: Results of MIC, MCC and MZC fitting using data set 3 [95] 

 
Proposed approach Literature 

𝜃𝜃∗(rad) 𝜙𝜙∗(rad) Radius/Cylindricity 𝜃𝜃∗(rad) 𝜙𝜙∗(rad) Radius/Cylindricity 
MIC 1.5627E-02 2.67553 12.0001738 1.5625E-02    2.67574 12.000174 
MCC 1.5613E-02 2.67779 12.0015866 1.5613E-02 2.67780 12.001587 
MZC 1.5632E-02 2.67489 0.0027883 1.5619E-02 2.67689 0.002788 

 
Table 6.5: Results of MIC, MCC and MZC fitting using data set 4 [97] 

 
Proposed approach Literature 

𝜃𝜃∗(rad) 𝜙𝜙∗(rad) Radius/Cylindricity 𝜃𝜃∗(rad) 𝜙𝜙∗(rad) Radius/Cylindricity 
MIC 2.5528E-05 1.34413 34.9529517 N/A N/A N/A 
MCC 2.3936E-04 -0.90318 34.9823836 N/A N/A N/A 
MZC 1.6417E-04 -1.62812 0.0318301 1.6397E-04 -1.63300 0.0319 
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Compared with the literature using sequential linear programming approach [20], the 

model developed in this paper shows similar results for data set 1 as can be seen in Table 6.2. 

However, for data set 2 given in Table 6.3, results of MCC fitting are slightly different from those 

reported in literature. The difference may be caused by the selection of the initial guess and the 

small displacement assumption. Table 6.4 shows the comparison between the methods presented 

in this paper with the genetic algorithms (GA) method [95], while two methods show high 

consistency on all MIC, MCC and MZC fitting performance. The Geometry Optimization 

Searching Algorithm (GOSA) [97] is also compared with the proposed method in Table 6.5, while 

the proposed method has similar estimation on cylindricity. The validity of the proposed methods 

on MIC, MCC and MZC fitting is thus demonstrated. 

6.5 SUMMARY 

In this chapter, the 2-D circular fitting problems are reviewed to verify tolerance 

specifications including maximum and minimum possible radii, roundness of a circular feature. 

Traditional fitting approaches including numerical and computational geometry-based methods 

define MI using at least three points in the point-set. However, the fitted inscribed circle may not 

be fitted within the roundness profile for some ill-shaped point-set. Hence, two more scenarios that 

define MI with one or two points and a tangent point on MC are considered. The corresponding 

solutions for these two scenarios are also developed based on Voronoi diagram. 

The 3-D cylinder fitting problem for MCC, MIC and MZC can be modeled as problems of 

optimizing cylinder axis and solved using different algorithms. The reported approaches use four 

or five parameters to specify the cylinder axis’s orientation and translation, which are 

geometrically redundant. Only two orientation variables are required if the 3-D point-set is 

projected along the axis direction. The proposed approach fits MIC, MCC and MZC by finding 



136 
 

the optimal cylinder axis direction to project the point-set so that the corresponding 2-D 

specifications (minimum radius, maximum radius and roundness) of the projected 3-D point-set 

are optimized (maximized, minimized and minimized, respectively). 
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CHAPTER 7. CONCLUSIONS AND FUTURE WORK 

This chapter provides a summary of the work presented in this thesis. The overall objective 

of this dissertation is to characterize and compensate for CNC machine tool’s machining 

inaccuracy. The proposed objective is met by machine tool quasi-static error modeling, point-set 

based workpiece metrology and GD&T verification. Specific conclusion drawn from the research 

work is given in Section 7.1. Recommendations for continued research are also presented in 

Section 7.2. 

7.1 SUMMARY AND CONCLUSIONS 

The main contributions of this thesis may be categorized into two basic areas, machine tool 

quasi-static error modeling and point-set based workpiece metrology. 

7.1.1 MACHINE TOOL QUASI-STATIC ERROR MODELING 

(1) A general modeling approach for quasi-static error for a 5-axis machine with a redundant axis 

is developed. This approach can be applied to model machines with different kinematic and 

static structures. The error model for a rotary joint modeled by Fourier sine series is proposed 

based on experimental data provided in literature. The error model of the 5-axis machine was 

found to be dependent on 32 linearly independent parameter groups, whose values could be 

evaluated using the least-squares fitting technique with errors observed in machine’s 

workspace.  

(2) The model is identified and verified experimentally using a laser tracker. A large set of 

volumetric error measurements collected by a laser tracker with 290 quasi-random 

observations in machine’s workspace is done within 90 minutes, which shows the capability 

of laser tracker on collecting a large set of measurements efficiently. 
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(3) The average magnitude of residual error vectors in the two training sets are 27.7 and 30.7 

microns, which are consistent with the repeatability of the machine and the fact that the thermal 

environment changed during the experiments. 90% and 83% of mean and maximum quasi-

static error are captured by the proposed model. The modeling approach, along with the 

convenience of observing errors as a large set of randomly selected points in a machine’s 

workspace with a laser tracker can make for an effective means of regularly updating 

compensation tables of machines.  

(4) To reduce the number of observations for reducing measurement time but still get robust 

estimation on error parameters, different design observers including A, D and K-optimal 

design based on optimal design theory used in design of experiments (DOE) are proposed. 

Experiments have been conducted to assess the behavior of K-optimal (minimizing the 

condition number of the design matrix) observers. Compared with the condition number of 

437.8 for 290 randomly-generated commands, the 80-point K-optimal observers have a better 

conditioned design matrix with condition number of 122.0. The constrained 80-point K-

optimal observer chosen for with a condition number of 207.3 is also found to be an 

improvement.  

(5) Over six identical data collection cycles, the constrained K-optimal observer set produces mean 

and maximum residuals of 30 and 100 microns, respectively, which are comparable to those 

(27.7 and 107.3 microns) produced by the 290 quasi-randomly generated point-set. More 

importantly, one data collection cycle takes only 24 minutes. This clearly demonstrates that a 

smaller strategically-chosen measurement set can produce estimates comparable to those 

produced by larger point-sets. 
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(6) To test the possibility of using the observer sets to track the thermal drift of a five-axis machine 

with 32 error parameters, a data collecting cycle consisting of 76 constrained K-optimal 

observers is used for each of the six thermal states including initial set and four heating and 

one cooling cycles. The mean and maximum modeling residuals for six thermal states are 

found to be 26.3 and 98.2 microns, respectively, which are close to the mean and maximum 

modeling residuals (27.7 and 107.3 microns, respectively) modeled by 290 quasi-random 

generated points. This also shows that using a smaller observer set does not corrupt the 

accuracy of the error model. 

(7) The thermal error of the machine is observed to be significant (around 60 microns over the 

course of 320 minutes) during the operation of the machine. The largest mean residual error 

for the six measurement cycles conducted is observed to be 33.9 microns. During this period, 

if a static compensation model whose parameters were estimated with the machine in a cold 

state was used, the mean residual error (the average error one would expect after compensation) 

would have risen from 26.3 to 155.1 microns over the course of 320 minutes. If rudimentary 

workspace drift was compensated, the residual error would have grown from 26.3 to 98.1 

microns. This not only demonstrates that the observer is able to consistently track thermal 

errors of the machine as its thermal is was continuously varying, but also serves as a reminder 

of the importance and magnitude the thermal component of quasi-static errors. 

(8) It is observed that the error parameters correspond to W-axis vary the most because it holds a 

heat source, the spinning spindle. For the Y-axis, as it is the closet axis to W-axis and the 

second most heated axis, the variation of the error parameters associated with the Y-axis is 

also considerable. The other axes, on the other hand, behave relatively stable as the machine 
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being warmed up and cooled down. The proposed methodology on thermal error tracking is 

also capable of analyzing thermal stability of each axis of the machine. 

7.1.2 POINT-SET BASED METROLOGY 

Planar surfaces 

(1) The concept of replacing traditional metrology with laser-scanned data and virtual gages is 

introduced. A metrology system using point-set, algorithms based on constrained optimization 

formulations has been developed. By fitting a coordinate system of the casting, point-set data 

representing the casting can be aligned with the nominal CAD model. The point-set 

manipulation algorithms are used to extract 13 features represented by sub-point-sets from the 

raw data set with 14 million points. The point-set filter based on convex hull is introduced to 

reduce the number of constraints and greatly improves the computational efficiency. 

(2) To find a displacement such that all functional planar surfaces can have enough material for 

machining, the virtual gage analysis is developed to model the problem as a constrained min-

max optimization. By solving the optimization using linear programing solver, the optimal 

displacement information that simultaneously satisfies all GD&T requirements can be 

obtained. The virtual gage analysis can be used for two metrology purposes: 

(a) Post-process examination: to determine if a finished part satisfies all GD&T requirements. 

(b) Pre-process examination: to adjust the machining reference coordinate before the raw 

casting is machined so that the finished part can be conforming.  

(3) The validity is tested using a test part with eight functional features. Fixturing errors, which 

are introduced intentionally by placing spacers are detected by the virtual gage analysis and 

compensated by the displacement information given by the algorithm. The final casting is 
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measured and found to be conforming against all GD&T requirements. The feasibility of 

examining the raw casting before the machining process is thus demonstrated. 

(4) The virtual gage analysis is enhanced to deal with the case that some material conditions might 

not be satisfied and the solution may not exist because the problem is overconstrained. Slack 

variables are introduced to release the constraints. The system is modeled by linear 

programming problem with slack variable. The enhanced model is tested using an industrial 

part with 29 functional planar features. Although some features may not have enough material 

for machining, the enhanced virtual gage analysis can still suggest an optimal offset 

information that satisfies all satisfiable material conditions. The analysis can also predict the 

machining allowance of every features with and without the suggested compensation. If some 

material conditions cannot be satisfied, the part cannot be properly machined. However, the 

compensation can still improve the conformity of the machined part. 

Cylindrical surfaces 

(1) The common tolerance specifications of cylindrical surfaces include minimum and maximum 

possible cylinder radii and the cylindricity error. Typically, the tolerance specifications of a 

cylinder represented by a 3-D point-set is approximated by 2-D data-set and its specifications. 

Minimum circumscribed circle (MC), maximum inscribed circle (MC) and minimum zone 

circle (MZ) of circular fitting problems are discussed. 

(2) In defining MI of a 2-D point-set, typically, at least three points in the point-set are used. 

However, the inscribed circle determined using three points may not satisfy the condition that 

MI must be fitted within the roundness profile. Two cases are identified for the point-sets 

whose inscribed circles determined by at least three points are not within the roundness profile. 

These two cases provide internally tangent circles of MC, which are also inscribed circles of 
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the point-set. The Voronoi diagram-based approaches to find all these internal tangent circles 

of MC are developed, and MI can be defined as the largest internally tangent circle found in 

these two cases. 

(3) A simplified approach for fitting MIC, MCC and MZC combining PSO solver and 

computational geometry models is developed. The approach has only two angle variables that 

describe the orientation of the cylinder axis. Compared with the approach in the literature, 

which uses five variables that describe cylinder axis’s orientation (two angle variables) and 

offset (three translation variables), the developed model uses only two angle variables but still 

gets comparable results. The tolerance specifications of cylindrical surfaces including 

minimum and maximum acceptable radii and the cylindricity can be verified using the radii of 

MIC, MCC and the radial separation of MZC, respectively.  

(4) Four data sets found in literature are used to test the proposed cylinder fitting method. 

Compared with the sequential linear programming method, the proposed model solved by 

Particle Swarm Optimization (PSO) has slightly different results on three types of cylinder 

fitting. It is because PSO can found global optimum for a nonlinear and discontinuous objective 

function without an accurate initial guess. The Genetic Algorithm (GA)-based approach, 

Geometry Optimization Searching Algorithm (GOSA)-based method and the proposed 

approach have similar performance since GA, GOSA and PSO algorithms all provide global 

optimum for the objective function. The accuracy and validity of the work are demonstrated. 

7.2 RECOMMENDATIONS FOR FUTURE WORK 

The research in this thesis was a step forward towards developing a scientific basis for 

enhancing machining accuracy through machine tool error modeling and compensation and 

workpiece metrology. The methodology was conceptually developed and demonstrated by 
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examining raw casting before machining and machining after compensation. Some 

recommendations for future work in this area are listed below. 

(1) For better performance for quasi-static error model, a thermally stable environment would be 

necessary. Additionally, tracking the thermal drift of the machine with time would yield better 

model performance. For this, a quicker (consisting of fewer and more strategically-chosen 

points) and more convenient data-collection cycle that can be easily embedded into the normal 

operation of the machine is needed. A higher order model that better describes machine’s error 

characteristic is another approach to reduce the modeling residual. 

(2) Chapter 4 has demonstrated the feasibility of tracking thermal errors with constrained K-

optimal observers with periodic measurements taking only around 24 minutes to perform. 

Future work will address the evaluation of D- and A-optimal observers.  

(3) Faster and less intrusive (than laser trackers) methods for implementing the observers need to 

be explored. The error model can be even simplified by replacing the error parameters with 

stable thermal behavior with constants. For the fewer parameters, the fewer observations would 

be required to get robust estimation.  

(4) This work opens possibility of using temperature readings for tracking thermal errors. By 

correlating the estimated values of the error model parameter to temperatures in different parts 

of the machine, it should be possible to compute volumetric errors using only temperature 

readings, thus reducing the time required by, and invasiveness of, the thermal error tracking 

system. 

(5) The main difficulty in implementing the point-set metrology is to setup the constraints in the 

linear programming problem because transferring the GD&T requirements (usually given in a 

2D print) into algebraic inequalities is lengthy and unintuitive. To improve the practicability 
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of the whole process, a better user interface that helps the user to define virtual gages should 

be developed for future consideration. 

(6) The proposed approach can be extended to tolerance verifications of straightness, concentricity 

and runout. More complicated tolerance verification of point-set data, for example, conicity 

and the profile of any given surface can be done using projection model and PSO optimization. 
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APPENDIX A. CYLINDRICITY VERIFICATION DATA SET 1  

Table A.1: Data set 1 [20] 
No. X Y Z No. X Y Z 
1 -11.820859 50.421254 -15.817382 21 33.207329 64.844079 -10.665479 
2 42.403448 -6.693162 56.567707 22 34.46129 41.806234 94.623903 
3 10.366902 80.249947 26.965969 23 -26.871029 3.103967 39.48246 
4 18.527457 61.577469 -13.680418 24 -4.153639 67.427229 23.451422 
5 23.930322 23.878386 -41.820643 25 22.371 47.845956 88.060867 
6 66.363729 0.636729 49.246025 26 67.398986 16.520701 79.062822 
7 -3.608026 -24.493246 39.678687 27 79.257377 49.418921 4.727043 
8 75.507564 20.208045 6.298139 28 -37.543275 31.718373 8.573268 
9 48.919097 55.614254 -13.266609 29 49.576671 65.965076 -6.501629 
10 65.713317 2.841028 3.498858 30 96.781947 53.421231 22.908004 
11 46.632786 80.517454 4.866333 31 -18.623157 23.988046 47.691608 
12 13.598993 83.519129 30.375 32 58.416292 -4.557784 48.525368 
13 84.570573 18.219363 28.224203 33 48.408528 15.833662 81.511728 
14 2.322453 -10.802862 51.268799 34 31.694971 -2.169579 63.538387 
15 82.820384 38.516367 9.148307 35 -18.366214 2.837799 46.415679 
16 3.553158 75.111087 30.738097 36 81.087477 11.573666 46.319607 
17 -5.898713 21.39033 60.097056 37 57.311572 -9.09605 38.123767 
18 30.009532 -24.696147 35.870356 38 68.59397 33.580936 -6.118165 
19 -3.793621 -14.263808 46.897322 39 89.036231 21.72231 35.086999 
20 58.357492 87.161327 11.960644 40 3.141412 52.730721 67.919265 
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APPENDIX B. CYLINDRICITY VERIFICATION DATA SET 2 

Table B.1: Data set 2 [20] 
No. X Y Z No. X Y Z 
1 60.051121 0.002953 3.946134 11 50.684216 -32.022045 22.865941 
2 -57.932024 15.399312 15.983017 12 57.318676 17.619539 22.082457 
3 57.432130 17.488707 20.365942 13 -40.408130 -44.485701 22.692315 
4 55.022756 -23.936632 11.505062 14 -39.838370 44.994386 7.411167 
5 29.180100 -52.423113 1.037163 15 -10.261352 -59.146784 22.600675 
6 -58.861558 -11.113569 20.134482 16 53.919844 26.493193 18.949042 
7 -44.597179 40.113733 2.005267 17 -8.540012 59.442972 13.092342 
8 -23.247383 -55.406652 17.669299 18 -59.369089 8.361285 7.133233 
9 34.041568 -49.309081 15.807863 19 -38.029817 46.404843 4.995216 
10 -34.084135 -49.427745 12.479981 20 47.946099 -35.925380 27.276243 
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APPENDIX C. CYLINDRICITY VERIFICATION DATA SET 3 

Table C.1: Data set 3 [95] 
No. X Y Z No. X Y Z 
1 11.0943 0.4522 65.2328 13 10.8150 0.5918 85.2304 
2 5.0940 10.8450 65.0765 14 4.8148 10.9846 85.0740 
3 -6.9063 10.8439 65.0089 15 -7.1855 10.9835 85.0641 
4 -12.9065 0.4498 65.0897 16 -13.1858 0.5894 84.8952 
5 -6.9063 -9.9429 65.0540 17 -7.1855 -9.8033 85.0516 
6 5.0940 -9.9418 65.2216 18 4.8149 -9.8022 85.2171 
7 10.9546 0.5220 75.2316 19 10.6754 0.6616 95.2291 
8 4.9544 10.9148 75.0752 20 4.6752 11.0544 95.0728 
9 -7.0459 10.9137 75.0770 21 -7.3253 11.0533 94.9077 
10 -13.0461 0.5196 74.8964 22 -13.3254 0.6592 95.0940 
11 -7.0459 -9.8731 75.0528 23 -7.3252 -9.7335 95.0504 
12 4.9545 -9.8720 75.2204 24 4.6752 -9.7323 95.2170 
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APPENDIX D. CYLINDRICITY VERIFICATION DATA SET 4   

Table D.1: Data set 4 [97] 
No. X Y Z No. X Y Z 
1 -7.169 -34.21 30.5 41 6.174 34.448 60.8 
2 -14.324 -31.887 30.5 42 14.594 31.802 60.8 
3 -25.509 -23.877 30.5 43 28.945 19.636 60.8 
4 -33.683 -9.283 30.5 44 34.887 2.506 60.8 
5 -34.167 7.378 30.5 45 31.458 -15.279 60.8 
6 -25.051 24.377 30.5 46 20.538 -28.299 60.8 
7 -7.1 34.238 30.5 47 6.489 -34.352 60.8 
8 8.071 34.034 30.5 48 -7.37 -34.173 60.8 
9 19.797 28.86 30.5 49 -15.817 -31.168 81 
10 28.945 19.647 30.5 50 -28.573 -20.125 81 
11 34.891 2.595 30.5 51 -33.084 -11.238 81 
12 34.168 -7.484 30.5 52 -34.611 4.838 81 
13 28.525 -20.224 30.5 53 -25.488 23.924 81 
14 18.113 -29.908 30.5 54 -16.38 30.884 81 
15 7.971 -34.044 30.5 55 -0.788 34.969 81 
16 -6.778 -34.29 30.5 56 10.206 33.457 81 
17 -11.322 -33.073 43.3 57 21.025 27.971 81 
18 -20.262 -28.475 43.3 58 30.269 17.524 81 
19 -24.016 -25.389 43.3 59 33.93 8.513 81 
20 -31.014 -16.098 43.3 60 34.787 -3.557 81 
21 -34.584 -4.991 43.3 61 31.626 -14.895 81 
22 -30.614 16.878 43.3 62 18.362 -29.755 81 
23 -19.46 29.045 43.3 63 3.4 -34.794 81 
24 -5.802 34.484 43.3 64 -5.318 -34.548 81 
25 10.248 33.444 43.3 65 -8.484 -33.909 97.5 
26 23.395 26.026 43.3 66 -18.607 -29.583 97.5 
27 32.027 14.043 43.3 67 -26.163 -23.175 97.5 
28 34.985 0.374 43.3 68 -33.973 -8.156 97.5 
29 33.364 -10.449 43.3 69 -34.49 5.71 97.5 
30 27.418 -21.716 43.3 70 -29.015 19.502 97.5 
31 17.678 -30.164 43.3 71 -17.564 30.231 97.5 
32 -0.706 -34.942 43.3 72 -3.842 34.765 97.5 
33 -14.539 -31.801 60.8 73 15.389 31.424 97.5 
34 -22.717 -26.563 60.8 74 29.428 18.935 97.5 
35 -26.655 -22.607 60.8 75 34.054 8.042 97.5 
36 -31.59 -14.943 60.8 76 34.931 -2.026 97.5 
37 -34.892 1.967 60.8 77 33.204 -11.008 97.5 
38 -29.347 18.995 60.8 78 29.818 -18.273 97.5 
39 -19.04 29.322 60.8 79 21.451 -27.629 97.5 
40 -6.241 34.407 60.8 80 15.791 -31.216 97.5 
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