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Abstract

In this thesis, we study several generalizations of Turán type problems in graphs and hy-

pergraphs. In particular, we focus on graphs and hypergraphs without long cycles or long

paths, extending famous results of Erdős and Gallai. Results include bounds on the size

of such objects as well as stability theorems about the structure of extremal and “almost”

extremal objects.
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Chapter 1

Introduction

Extremal combinatorics studies the maximum size of a finite object that satisfies a given set

of constraints. In other words, what is a bound on the size of an object such that anything

larger must contain some “bad” property. Some typical questions in extremal combinatorics

are the following:

1. What is the maximum size of a family of subsets in {1, . . . , n} such that that no two

subsets are disjoint?

2. How large is a largest subset of {1, . . . , n} that does not contain an increasing sequence

of k integers such that consecutive elements have the same difference?

3. How many people must one invite to a party such that there exists either k people

who either all know each other or all don’t know each other?

The first question is the subject of the Erdős-Ko-Rado Theorem [EKR61] for intersecting

families, an important result in extremal set theory. The second question is answered by

Szemerédi’s Theorem [Sze75] for arithmetic progressions, for which Szemerédi proved his

famous Regularity Lemma [Sze78]. Notably, this question also attracted the attention of

mathematicians working in harmonic analysis, number theory, ergodic theory, and proba-

bility, although Szemerédi’s proof was purely combinatorial in nature. The last question is

the central question of Ramsey theory [Ram29], a well studied topic in combinatorics which

has its roots in model theory.

In this thesis, we study extremal problems in graphs and hypergraphs. A cornerstone of

extremal graph theory is the Turán problem. Let F be a fixed graph. We say a graph G is

F -free if it does not contain a subgraph isomorphic to G. Then we denote

ex(n, F ) = max{e(G) : G is an n-vertex, F -free graph}.

The first result of this nature was Mantel’s theorem [Man07] which states that every graph

with more than n2/4 edges must contain a triangle (a copy of a K3). Furthermore, the
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complete bipartite graph with partite sets of equal size has n2/4 and no triangles. Mantel’s

theorem was later generalized by Turán.

Theorem 1 (Turán [Tur41]). For n > r ≥ 3, the n-vertex Kr-free graph with the maximum

number of edges is complete (r−1)-partite. In particular, we have ex(n,Kr) = (1− 1
r−1)n

2

2 .

We call ex(n, F ) the Turán number of F . Thus any n-vertex graph with more than ex(n, F )

edges must contain a copy of F . We say that an n-vertex F -free graph G is extremal if it

is F -free and with exactly ex(n, F ) edges.

In the case of Turán’s theorem, the extremal Kr-free graph is the complete, balanced (r−1)-

partite graph.

We will also consider the stability of the extremal examples. Roughly speaking, we study

the structure of n-vertex F -free graphs with “almost” ex(n, F ) edges. Stability occurs if all

such graphs have structure “close to” that of one of the extremal examples. For instance,

we have the following stability version of Turán’s theorem.

Theorem 2 (Erdős–Simonovits [ES66]). For every ε > 0, there exists a δ > 0 and n0 such

that for every n ≥ n0, if G is an n-vertex, Kr-free graph with at least (1− 1
r−1 − δ)n

2

2 edges,

then G has an induced subgraph on at least (1− ε)n vertices that is (r − 1)-partite.

In Chapter 2, we study nonhamiltonian graphs, i.e., n-vertex graphs containing no cycles

of length n. Conditions for forcing hamiltonicity is a classical topic of study. In particular,

hamiltonicity is a monotone property—that is, any graph that is obtained from a hamilto-

nian graph by adding more edges is also hamiltonian. In this manner, most nonhamiltonian

graphs have “few” edges. Our results extend a theorem of Erdős [Erd62b], giving a charac-

terization of the nonhamiltonian graphs with “many” edges. Furthermore, for some fixed

subgraph T , we determine the nonhamiltonian graphs maximizing the number of copies

of T . This notion of forbidding some subgraph F and counting the maximum number of

copies of another graph T has recently been popularized by Alon and Shikhelman [AS16]

and a number of other papers.

In Chapters 3 and 4, we consider graphs without long cycles, i.e., graphs with bounded

circumference, beginning with the classical Erdős–Gallai theorem. Again we have that con-

taining long cycles is a monotone property. We first prove a stability theorem for graphs

with bounded circumference, extending a result of [FKV16]. Our results give a complete

characterization of all such graphs. Next, we count the maximum number of cliques in

graphs without long cycles. In particular, we show that the graphs with bounded circum-

ference that maximize the number of edges also maximize the number of copies of Kr’s for

any r ≥ 3. These results imply analogous results for graphs without long paths.
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After proving the cliques-counting result for graphs with bounded circumference, it was

thought that the result may have application in counting the maximum number of hyper-

edges in hypergraphs without long cycles. We explore this in Chapters 5-8, using a general

notion of cycles in hypergraphs due to Berge. The notion of a Berge cycle in a hypergraph

can also be generalized to other so-called Berge subgraphs in hypergraphs. This was first

introduced recently by Gerbner and Palmer [GP17]. For some graph F , we study the ex-

tremal hypergraphs which forbid copies of Berge F ’s. In particular, we explore reductions

from extremal hypergraph problems to extremal graph problems.

In the final chapters, Chapters 6-8, we return to the study of hypergraphs with bounded

circumference, finding sharp bounds for the maximum number edges in r-uniform hyper-

graphs without Berge cycles of length k or longer. In particular, these bounds depend on the

relationship between r and k. Chapter 6 is devoted to the case where r is small compared to

k, and Chapter 7 when r is large. Finally, in Chapter 8, we study 2-connected hypergraphs

with bounded circumference, obtaining an upper bound for the number of edges that is

significantly smaller than the case without conditions on connectivity.

1.1 Turán numbers for bipartite graphs

The Turán numbers for graphs with chromatic number at least 3 are known, up to a small

error term.

Theorem 3 (Erdős–Stone–Simonovits [ES46, ES66]). Let F be any graph with chromatic

number χ(F ) ≥ 3. Then e(G) ≤ (1− 1
r−1)

(
n
2

)
+ o(n2).

The remaining interesting case, graphs with χ(F ) = 2 includes several classes of graphs such

as paths, (even) cycles, complete bipartite graphs, trees, etc. In particular, determining the

Turán number of even cycles is a well studied open problem.

Problem 4. Determine ex(n,C2k).

An upper bound of O(n1+1/k) was first proved by Erdős in an unpublished manuscript.

Lower bounds of matching order were proved for k = 2, 3, 5. However it is still open to

prove matching lower bounds for all other k.

In [EG59], Erdős and Gallai determined ex(n, Pk), where Pk is the path on k vertices.

Theorem 5 (Erdős and Gallai [EG59]). For k ≥ 3, ex(n, Pk) ≤ 1
2(k − 2)n.

This result can be proved as a corollary of a stronger theorem.

Theorem 6 (Erdős and Gallai [EG59]). Let G be an n-vertex graph with more than 1
2(k−

1)(n− 1) edges, k ≥ 3. Then G contains a cycle of length at least k.
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To obtain the result for paths, suppose G is an n-vertex graph with no copy of Pk. Add

a new vertex v adjacent to all vertices in G, and let this new graph be G′. Then G′ is an

n+ 1-vertex graph with no cycle of length k + 1 or longer, and so e(G) + n = e(G′) ≤ 1
2kn

edges.

Both results are sharp with the following extremal examples: for Theorem 6, when k − 2

divides n − 1, take any connected n-vertex graph whose blocks (maximal connected sub-

graphs with no cut vertices) are cliques of order k− 1. For Corollary 5, when k− 1 divides

n− 1, take the n-vertex graph whose connected components are cliques of order k − 1.

There have been several alternate proofs and sharpenings of the Erdős-Gallai theorem in-

cluding results by Woodall [Woo76], Lewin [Lew75], Faudree and Schelp[FS75b, FS75a],

and Kopylov [Kop77] – see [FS13] for further details.

The strongest version was that of Kopylov who improved the Erdős–Gallai bound for 2-

connected graphs. To state the theorem, we first introduce the family of extremal graphs.

Fix k ≥ 4, n ≥ k, k
2 > a ≥ 1. Define the n-vertex graph Hn,k,a as follows. The vertex

set of Hn,k,a is partitioned into three sets A,B,C such that |A| = a, |B| = n − k + a and

|C| = k− 2a and the edge set of Hn,k,a consists of all edges between A and B together with

all edges in A ∪ C.

Note that when a ≥ 2, Hn,k,a is 2-connected, has no cycle of length k or longer, and

e(Hn,k,a) =
(
k−a
2

)
+ (n− k + a)a.

C A B

Figure 1.1: H14,11,3

Theorem 7 (Kopylov [Kop77]). Let n ≥ k ≥ 5 and let t = bk−12 c. If G is a 2-connected

n-vertex graph with

e(G) ≥ max{e(Hn,k,2, e(Hn,k,t)},

then either G has a cycle of length at least k, or G = Hn,k,2, or G = Hn,k,t.

4



Figure 1.2: Hn,k,2, Hn,k,t(k = 2t+ 1), Hn,k,t(k = 2t+ 2); ovals denote complete subgraphs
of sizes k − 2, t, and t, respectively.

1.2 Main theorems

1.2.1 Results for nonhamiltonian graphs

In 1961, Ore [Ore61] determined the Turán number of the hamiltonian cycle: ex(n,Cn) =(
n−1
2

)
+ 1. The extremal example is a clique of order n− 1 and one vertex of degree 1. In

this example, we see that there cannot exist a hamiltonian cycle because each vertex in a

cycle must have degree at least 2.

In [Erd62b], Erdős showed that if G is an n-vertex, nonhamiltonian graph with minimum

degree at least d, then

e(G) ≤ max{
(
n− d

2

)
+ d2,

(d(n+ 1)/2e
2

)
+ b(n− 1)/2c2}.

Furthermore the graphs Hn,n,d and Hn,n,b(n−1)/2c are nonhamiltonian with
(
n−d
2

)
+ d2 and(d(n+1)/2e

2

)
+ b(n− 1)/2c2 edges respectively.

We show a stability version of Erdős’ theorem. Let K ′n,d be the graph composed of a Kn−d

and a Kd+1 sharing exactly one vertex.

Theorem 8 (Füredi, Kostochka, Luo [FKL17]). Let n ≥ 3 and d ≤
⌊
n−1
2

⌋
. Suppose that

G is an n-vertex nonhamiltonian graph with minimum degree δ(G) ≥ d such that

e(G) > max{
(
n− d− 1

2

)
+ (d+ 1)2,

(d(n+ 1)/2e
2

)
+ b(n− 1)/2c2}.

Then G is a subgraph of either Hn,n,d or K ′n,d.

Next, we consider a recently popular generalization of the Turán number (see [AS16], for

instance). For graphs T , F , and G, let N(G,T ) denote the number of copies of T in G, and

let ex(n, T, F ) denote the maximum number of copies of a graph T in an n-vertex, F -free

graph.

We show that among all sufficiently large nonhamiltonian graphs with minimum degree at

least d, Hn,n,d not only maximizes the number of edges but also the number of any fixed
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small subgraph.

Theorem 9 (Füredi, Kostochka, Luo [FKL18b]). For every graph T with t := |V (T )| ≥ 3,

any d ∈ N, and any n ≥ n0(d, t) := 4dt+3d2 +5t, if G is an n-vertex nonhamiltonian graph

with minimum degree δ(G) ≥ d, then N(G,T ) ≤ N(Hn,n,d, T ).

Finally, we show one more “step” of stability, akin to Theorem 8. In this version, we find

stability not only in the number of edges but for the number of cliques of any size. Roughly

speaking, we give a characterization of all nonhamiltonian graphs with minimum degree at

least d and almost maximal number of copies of cliques.

Theorem 10 (Füredi, Kostochka, Luo [FKL18b]). Let n ≥ 3 and 1 ≤ d ≤
⌊
n−1
2

⌋
. Suppose

that G is an n-vertex nonhamiltonian graph with minimum degree δ(G) ≥ d such that there

exists k ≥ 2 for which

N(G,Kk) > max{
(
n− d− 2

k

)
+(d+2)

(
d+ 2

k − 1

)
,

(d(n+ 1)/2e
k

)
+b(n−1)/2c

(b(n− 1)/2c
k − 1

)
}.

Then G is a subgraph of one of 7 extremal graphs.

See Chapter 2 for the proofs of this Theorems 8, 9, and 10.

1.2.2 Results for graphs with bounded circumference

In Chapters 3 and 4, we prove two extensions of the Erdős–Gallai theorem. In particular,

we prove a stability version and a clique-counting version of Kopylov’s theorem.

Previously, Füredi, Kostochka, and Verstraëte [FKV16] proved a stability version of Kopy-

lov’s theorem for large graphs. They gave a characterization for all 2-connected graphs

without cycles of length k or longer and almost the maximum number of edges. Namely

they showed that every such graph must be contained as a subgraph in Hn,k,b(k−1)/2c or

must contain a large star forest. Their result applied to graphs with at least n ≥ 3k/2

vertices.

In [FKLV18], we modified their original approach to extend the result for all n, with the

extra condition that dense graphs with bounded circumference may also be subgraphs of

Hn,k,2.

Theorem 11 (Füredi, Kostochka, Luo, Verstraëte [FKLV18]). Let t ≥ 4 and k ∈ {2t +

1, 2t+ 2}, so that k ≥ 9. If G is a 2-connected graph on n ≥ k vertices and c(G) < k, then

either e(G) ≤ max{e(Hn,k,t−1), e(Hn,k,3)} or

(a) k = 2t+ 1 and G ⊆ Hn,k,t or

(b) k = 2t+ 2 and G−A is a star forest for some A ⊆ V (G) of size at most t.

(c) G ⊆ Hn,k,2.

6



See Chapter 3 for the proof of Theorem 11.

Next, we study a special case of the ex(n, T, F ) where T = Ks. As a generalization of the

Erdős–Gallai theorem, we show that the same graphs without cycles of length k or longer

that maximize the number of edges also maximize the number of cliques of any size.

Our main theorem which implies this is a generalization of Kopylov’s theorem for 2-

connected graphs.

Theorem 12 (Luo [Luo18]). Let n ≥ k ≥ 5 and let t = bk−12 c. If G is a 2-connected

n-vertex graph with circumference less than k, then

N(G,Ks) ≤ max{N(Hn,k,2,Ks), N(Hn,k,t,Ks)}.

This result implies the analogous result for non-2-connected graphs as well as graphs without

long paths.

See Chapter 4 for the proof of Theorem 12.

1.2.3 Results for hypergraphs with bounded circumference

In the final half of this thesis, we study hypergraphs without long Berge cycles. A Berge

cycle of length ` in a hypergraph is a set of ` vertices {v1, . . . , v`} and ` edges {e1, . . . , e`}
such that {vi, vi+1} ⊆ ei with indices taken modulo `. Note that some other notions of

cycles in hypergraphs include so-called loose or tight cycles, both of which are special cases

of Berge cycles.

Similarly, a Berge path of length ` is a set of ` + 1 vertices {v1, . . . , v`+1} and ` edges

{e1, . . . , e`} such that {vi, vi+1} ⊆ ei for i ≤ `.
In [GKL16], Győri, Katona, and Lemons proved an analogue of the Erdős–Gallai theorem for

paths in hypergraphs. They gave a bound for the maximum number of edges in an r-uniform

graph without a Berge path of length k. For r small compared to k, they showed that the

extremal hypergraphs were the natural hypergraph version of the extremal examples of

graphs without paths of length k (i.e., components isomorphic to K
(r)
k ). The large r case

differed slightly—the extremal examples were hypergraphs where each component contained

r + 1 vertices and k − 1 edges.

We prove an analogous result for hypergraphs without Berge cycles of length k or longer.

Again, our results are broken up into the small r case and the large r case.

Theorem 13 (Füredi, Kostochka, Luo [FKL18a]). Let r ≥ 3 and k ≥ r+3, and suppose H
is an n-vertex r-graph with no Berge cycle of length k or longer. Then e(H) ≤ n−1

k−2
(
k−1
r

)
.

Furthermore, the bound n−1
k−2
(
k−1
r

)
is achieved whenever H is a hypergraph with each block

isomorphic to K
(r)
k−1.

7



See Chapter 6 for a proof of Theorem 13.

Theorem 14 (Kostochka, Luo [KL18]). Let k ≥ 3 and r ≥ k + 1, and suppose H is an

n-vertex r-graph with no Berge cycle of length k or longer. Then e(H) ≤ (k−1)(n−1)
r .

Furthermore, the bound (k−1)(n−1)
r is achieved whenever H is a hypergraph with each block

containing r + 1 vertices and k − 1 edges.

See Chapter 7 for a proof of Theorem 14.

Finally, we consider the case of 2-connected hypergraphs. In the graph case, we get a

stronger upper bound for the number of edges in 2-connected graphs with bounded circum-

ference than in non-2-connected graphs. It turns out that the same phenomenon holds for

hypergraphs, with a significantly better bound.

For our notation, v is a cut vertex of a connected hypergraph if the hypergraph obtained by

removing v and shrinking all edges that contained v is disconnected. We say that a e is a cut

edge of a connected hypergraph if the hypergraph obtained by removing e is disconnected.

We say that a connected hypergraph is 2-connected if it contains neither a cut vertex nor a

cut edge.

Our result holds when the bound on the circumference is large compared to the uniformity

of the hypergraph, and when the number of vertices is sufficiently large.

Theorem 15 (Füredi, Kostochka, Luo [FKL19]). Let k ≥ 4r ≥ 12. There exists some nk,r

such that if n ≥ nk,r and H is an n-vertex 2-connected r-graph with no Berge cycle of length

k or longer, then

e(H) ≤
(d(k + 1)/2e

r

)
+ (n− d(k + 1)/2e)

(b(k − 1)/2c
r − 1

)
.

See Chapter 8 for a proof of Theorem 15.
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Chapter 2

Graphs without Hamiltonian cycles

As a special case of the bounded circumference problem, we first consider n-vertex graphs

without cycles of length n (i.e., nonhamiltonian graphs). In particular, we prove The-

orems 8, 9, and 10. The results of this chapter are joint work with Zoltán Füredi and

Alexandr Kostochka [FKL17, FKL18b].

2.1 Introduction

Ore [Ore61] proved the following Turán-type result:

Theorem 16 (Ore [Ore61]). If G is a nonhamiltonian graph on n vertices, then e(G) ≤(
n−1
2

)
+ 1.

This bound is achieved only for the n-vertex graph obtained from the complete graph Kn−1

by adding a vertex of degree 1. Erdős [Erd62b] refined the bound in terms of the minimum

degree of the graph:

Theorem 17 (Erdős [Erd62b]). Let n, d be integers with 1 ≤ d ≤
⌊
n−1
2

⌋
, and set h(n, d) :=(

n−d
2

)
+ d2. If G is a nonhamiltonian graph on n vertices with minimum degree δ(G) ≥ d,

then

e(G) ≤ max

{
h(n, d), h(n,

⌊
n− 1

2

⌋
)

}
=: e(n, d).

This bound is sharp for all 1 ≤ d ≤
⌊
n−1
2

⌋
.

To show the sharpness of the bound, for n, d ∈ N with d ≤
⌊
n−1
2

⌋
, consider the graph Hn,d

obtained from a copy of Kn−d, say with vertex set A, by adding d vertices of degree d each

of which is adjacent to the same d vertices in A. An example of H11,3 is below.

By construction, Hn,d has minimum degree d, is nonhamiltonian, and e(Hn,d) =
(
n−d
2

)
+d2 =

h(n, d). Elementary calculation shows that h(n, d) > h(n,
⌊
n−1
2

⌋
) in the range 1 ≤ d ≤⌊

n−1
2

⌋
if and only if d < (n+ 1)/6 and n is odd or d < (n+ 4)/6 and n is even. Hence there

9



Figure 2.1: H11,3

exists a d0 := d0(n) such that

e(n, 1) > e(n, 2) > · · · > e(n, d0) = e(n, d0 + 1) = · · · = e(n,

⌊
n− 1

2

⌋
),

where d0(n) :=
⌈
n+1
6

⌉
if n is odd, and d0(n) :=

⌈
n+4
6

⌉
if n is even. Let H ′n,d denote the

graph that is an edge-disjoint union of two complete graphs Kn−d and Kd+1 sharing one

vertex.

2.2 A stability theorem for dense nonhamiltonian graphs

We first present the a refinement of Theorem 17. The following is a refinement of the

statement of Theorem 8.

Theorem 18. Let n ≥ 3 and d ≤
⌊
n−1
2

⌋
. Suppose that G is an n-vertex nonhamiltonian

graph with minimum degree δ(G) ≥ d such that

e(G) > e(n, d+ 1) = max

{
h(n, d+ 1), h(n,

⌊
n− 1

2

⌋
)

}
. (2.1)

(So we have d < d0(n).) Then G is a subgraph of either Hn,d or H ′n,d.

This is a stability result in the sense that for d < n/6, each 2-connected, nonhamilitonian

n-vertex graph with minimum degree at least d and “close” to h(n, d) edges is a subgraph

of the extremal graph Hn,d. Note that h(n, d)− h(n, d+ 1) = n− 3d− 2 is at least n/2 for

d < d0 − 1. Note also that e(H ′n,d) > e(n, d+ 1) only when d = O(
√
n).

We will use the following well-known theorems of Pósa.

Theorem 19 (Pósa [P6́2]). Let n ≥ 3. If G is a nonhamiltonian n-vertex graph, then there

exists 1 ≤ k ≤
⌊
n−1
2

⌋
such that G has a set of k vertices with degree at most k.

Theorem 20 (Pósa [P6́3]). Let n ≥ 3, 1 ≤ ` < n and let G be an n-vertex graph such that

d(u)+d(v) ≥ n+ ` for every non-edge uv in G. Then for every linear forest F with ` edges

contained in G, the graph G has a hamiltonian cycle containing all edges of F .
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2.3 Proof of Theorem 18

Call a graph G saturated if G is nonhamiltonian but for each uv /∈ E(G), G + uv has a

hamiltonian cycle. Ore’s proof [Ore61] of Dirac’s Theorem [Dir52] yields that

for every n-vertex saturated graph G and for each uv /∈ E(G), d(u) + d(v) ≤ n− 1. (2.2)

First we show two facts on saturated graphs with many edges.

Lemma 21. Let G be a saturated n-vertex graph with e(G) > h(n,
⌊
n−1
2

⌋
). Then for some

1 ≤ k ≤
⌊
n−1
2

⌋
, V (G) contains a subset D of k vertices of degree at most k such that G−D

is a complete graph.

Proof. Since G is nonhamiltonian, by Theorem 19, there exists some 1 ≤ k ≤
⌊
n−1
2

⌋
such

that G has k vertices with degree at most k. Pick the maximum such k, and let D be the

set of the vertices with degree at most k. Since e(G) > h(n,
⌊
n−1
2

⌋
), k <

⌊
n−1
2

⌋
. So, by the

maximality of k, |D| = k.

Suppose there exist x, y ∈ V (G)−D such that xy /∈ E(G). Among all such pairs, choose x

and y with the maximum d(x). Since y /∈ D, d(y) > k. Let D′ := V (G)−N(x)− {x} and

k′ := |D′| = n− 1− d(x). By (2.2),

d(z) ≤ n− 1− d(x) = k′ for all z ∈ D′. (2.3)

So D′ is a set of k′ vertices of degree at most k′. Since y ∈ D′, k′ ≥ d(y) > k. Thus

by the maximality of k, we get k′ = n − 1 − d(x) >
⌊
n−1
2

⌋
. Equivalently, d(x) < dn−12 e.

For all z ∈ D′ + {x}, either z ∈ D where d(z) ≤ k ≤
⌊
n−1
2

⌋
, or z ∈ V (G) − D, and so

d(z) ≤ d(x) ≤
⌊
n−1
2

⌋
. It follows that e(G) ≤ h(n,

⌊
n−1
2

⌋
), a contradiction.

Lemma 22. Under the conditions of Lemma 21, if k = δ(G), then G = Hn,δ(G) or G =

H ′n,δ(G).

Proof. Set d := δ(G), and let D be a set of d vertices with degree at most d. Let u ∈ D.

Since δ(G) ≥ |D| = d, u has a neighbor w ∈ V (G) − D. Consider any v ∈ D − {u}. By

Lemma 21, w is adjacent to all of V (G) −D − {w}. It also is adjacent to u, therefore its

degree is at least n− d. We obtain

d(w) + d(v) ≥ (n− d) + d = n.

Then by (2.2), w is adjacent to v, and hence w is adjacent to all vertices of D.
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Let W be the set of vertices in V (G)−D having a neighbor in D. We have obtained that

W 6= ∅ and

N(u) ∩ (V (G)−D) = W for all u ∈ D. (2.4)

Let G′ = G[D ∪W ]. If |W | = 1, then G = H ′n,d. If |V (G′)| = 2d, then by (2.4), each vertex

u ∈ D has the same d neighbors in V (G)−D. Because d(u) = d, D is an independent set.

Thus G = Hn,d. Otherwise, d+ 2 ≤ |V (G′)| ≤ 2d− 1, |D| ≥ 2.

Fix a pair of vertices w1, w2 ∈W . For any x, y ∈ V (G′),

d(x) + d(y) ≥ d+ d ≥ |V (G′)|+ 1.

Therefore by Theorem 20, G′ has a hamiltonian cycle C that uses the edge w1w2. Since

G′′ := G − (V (G′) − {w1, w2}) is a complete graph, it contains a hamiltonian w1, w2-path

P . Then P ∪ (C − w1w2) is a hamiltonian cycle of G, a contradiction.

Proof of Theorem 18. Suppose that an n-vertex, nonhamiltonian graph G satisfies the

constraints of Theorem 18 for some 1 ≤ d ≤
⌊
n−1
2

⌋
. We may assume G is saturated, since

if a graph containing G is a subgraph of Hn,d or H ′n,d, then G is as well.

By Lemma 21, G has a set D of k ≤
⌊
n−1
2

⌋
vertices with degree at most k such that G−D is a

complete graph. Therefore e(G) ≤
(
n−k
2

)
+k2 = h(n, k). If k > d, then e(G) ≤ max{h(n, d+

1), h(n,
⌊
n−1
2

⌋
)} = e(n, d + 1), a contradiction. Thus k ≤ d. Furthermore, k ≥ δ(G) ≥ d,

and hence k = d. Also, since e(G) > h(n,
⌊
n−1
2

⌋
)), we have d + 1 ≤ d0(n) ≤ (n + 8)/6.

Applying Lemma 22 completes the proof.

2.4 Counting subgraphs in nonhamiltonian graphs

One of the main results of this section shows that when n is large enough with respect to d

and t, among then n-vertex nonhamiltonian graphs with minimum degree at least d, Hn,d

not only has the most edges but also contains the most copies of any t-vertex graph. This

is an instance of a generalization of the Turán problem called subgraph density problem:

for n ∈ N and graphs F and H, let ex(n, F,H) denote the maximum possible number of

(unlabeled) copies of F in an n-vertex H-free graph. When F = K2, we have the usual

extremal number ex(n, F,H) = ex(n,H).

Some notable results on the function ex(n, F,H) for various combinations of F and H were

obtained in [Erd62a, BG08, AS16, Grz12, HHK+13, FO17]. In particular, Erdős [Erd62a]

determined ex(n,Ks,Kt), Bollobás and Győri [BG08] found the order of magnitude of

ex(n,C3, C5), Alon and Shikhelman [AS16] presented a series of bounds on ex(n, F,H) for
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different classes of F and H.

In this chapter, we study the maximum number of copies of F in nonhamiltonian n-vertex

graphs, i.e. ex(n, F,Cn). For two graphs G and F , let N(G,F ) denote the number of labeled

copies of F that are subgraphs of G, i.e., the number of injections φ : V (F ) → V (G) such

that for each xy ∈ E(F ), φ(x)φ(y) ∈ E(G). Since for every F and H, |Aut(F )| ex(n, F,H) is

the maximum of N(G,F ) over the n-vertex graphs G not containing H, some of our results

are in the language of labeled copies of F in G. For k ∈ N, let Nk(G) denote the number of

unlabeled copies of Kk’s in G. Since |Aut(Kk)| = k!, we have Nk(G) = N(G,Kk)/k!.

2.5 Results for counting subgraphs

As an extension of Theorem 17, we show that for each fixed graph F and any d, if n is large

enough with respect to |V (F )| and d, then among all n-vertex nonhamiltonian graphs with

minimum degree at least d, Hn,d contains the maximum number of copies of F .

The following is a refinement of the statement of Theorem 9.

Theorem 23. For every graph F with t := |V (F )| ≥ 3, any d ∈ N, and any n ≥ n0(d, t) :=

4dt + 3d2 + 5t, if G is an n-vertex nonhamiltonian graph with minimum degree δ(G) ≥ d,

then N(G,F ) ≤ N(Hn,d, F ).

On the other hand, if F is a star K1,t−1 and n ≤ dt − d, then Hn,d does not maximize

N(G,F ). At the end of Section 2.7 we show that in this case, N(Hn,b(n−1)/2c, F ) >

N(Hn,d, F ). So, the bound on n0(d, t) in Theorem 23 has the right order of magnitude

when d = O(t).

An immediate corollary of Theorem 23 is the following generalization of Theorem 16

Corollary 24. For every graph F with t := |V (F )| ≥ 3 and any n ≥ n0(t) := 9t+ 3, if G

is an n-vertex nonhamiltonian graph, then N(G,F ) ≤ N(Hn,1, F ).

We consider the case that F is a clique in more detail. For n, k ∈ N, define on the interval

[1, b(n− 1)/2c] the function

hk(n, x) :=

(
n− x
k

)
+ x

(
x

k − 1

)
. (2.5)

We use the convention that for a ∈ R, b ∈ N,
(
a
b

)
is the polynomial 1

b!a×(a−1)×. . .×(a−b+1)

if a ≥ b− 1 and 0 otherwise.

By considering the second derivative, one can check that for any fixed k and n, hk(n, x)

as a function of x is convex on [1, b(n − 1)/2c], hence it attains its maximum at one of
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the endpoints, x = 1 or x = b(n − 1)/2c. When k = 2, h2(n, x) = h(n, x). We prove the

following generalization of Theorem 17.

Theorem 25. Let n, d, k be integers with 1 ≤ d ≤
⌊
n−1
2

⌋
and k ≥ 2. If G is a non-

hamiltonian graph on n vertices with minimum degree δ(G) ≥ d, then the number Nk(G) of

k-cliques in G satisfies

Nk(G) ≤ max

{
hk(n, d), hk(n,

⌊
n− 1

2

⌋
)

}
.

Again, graphs Hn,d and Hn,b(n−1)/2c are sharpness examples for the theorem.

Finally, we present a stability version of Theorem 25. To state the result, we first define

the family of extremal graphs.

Fix d ≤ b(n − 1)/2c. In addition to graphs Hn,d and K ′n,d defined above, define H ′n,d:

V (H ′n,d) = A∪B, where A induces a complete graph on n−d−1 vertices, B is a set of d+1

vertices that induce exactly one edge, and there exists a set of vertices {a1, . . . , ad} ⊆ A

such that for all b ∈ B, N(b)−B = {a1, . . . , ad}. Note that contracting the edge in H ′n,d[B]

yields Hn−1,d. These graphs are illustrated below.

d d d d d + 1

Figure 2.2: Graphs Hn,d (left), K′n,d (center), and H ′n,d (right), where shaded background indicates a
complete graph.

We also have two more extremal graphs for the cases d = 2 or d = 3. Define the nonhamil-

tonian n-vertex graph G′n,2 with minimum degree 2 as follows: V (G′n,2) = A ∪ B where A

induces a clique or order n− 3, B = {b1, b2, b3} is an independent set of order 3, and there

exists {a1, a2, a3, x} ⊆ A such that N(bi) = {ai, x} for i ∈ {1, 2, 3} (see the graph on the

left in Fig. 3).

The nonhamiltonian n-vertex graph Fn,3 with minimum degree 3 has vertex set A ∪ B,

where A induces a clique of order n − 4, B induces a perfect matching on 4 vertices, and

each of the vertices in B is adjacent to the same two vertices in A (see the graph on the

right in Fig. 3).

The following is a refinement of the statement of Theorem 10.
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Figure 2.3: Graphs G′n,2 (left) and Fn,3 (right).

Theorem 26. Let n ≥ 3 and 1 ≤ d ≤
⌊
n−1
2

⌋
. Suppose that G is an n-vertex nonhamiltonian

graph with minimum degree δ(G) ≥ d such that there exists k ≥ 2 for which

Nk(G) > max

{
hk(n, d+ 2), hk(n,

⌊
n− 1

2

⌋
)

}
. (2.6)

Let Hn,d := {Hn,d, Hn,d+1,K
′
n,d,K

′
n,d+1, H

′
n,d}.

(i) If d = 2, then G is a subgraph of G′n,2 or of a graph in Hn,2;

(ii) if d = 3, then G is a subgraph of Fn,3 or of a graph in Hn,3;

(iii) if d = 1 or 4 ≤ d ≤
⌊
n−1
2

⌋
, then G is a subgraph of a graph in Hn,d.

The result is sharp because Hn,d+2 has hk(n, d+2) copies of Kk, minimum degree d+2 > d,

is nonhamiltonian and is not contained in any graph in Hn,d ∪ {G′n,2, Fn,3}.
The outline for the rest of the chapter is as follows: in Section 6 we present some structural

results for graphs that are edge-maximal nonhamiltonian to be used in the proofs of the

main theorems, in Section 7 we prove Theorem 23, in Section 8 we prove Theorem 25 and

give a cliques version of Theorem 18, and in Section 9 we prove Theorem 26.

2.6 Structural results for saturated nonhamiltonian graphs

We will use two structural results for saturated graphs.

Lemma 27. Let G be a saturated n-vertex graph with Nk(G) > hk(n,
⌊
n−1
2

⌋
) for some

k ≥ 2. Then for some 1 ≤ r ≤
⌊
n−1
2

⌋
, V (G) contains a subset D of r vertices of degree at

most r such that G−D is a complete graph.

Proof. Since G is nonhamiltonian, by Theorem 19, there exists some 1 ≤ r ≤
⌊
n−1
2

⌋
such

that G has r vertices with degree at most r. Pick the maximum such r, and let D be the

set of the vertices with degree at most r. Since Nk(G) > hk(n,
⌊
n−1
2

⌋
), r <

⌊
n−1
2

⌋
. So, by

the maximality of r, |D| = r.

Suppose there exist x, y ∈ V (G) −D such that xy /∈ E(G). Among all such pairs, choose

x and y with the maximum d(x) and subject to this, the maximum d(y). Let D′ :=
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V (G)−N(x)−{x}. Consider any vertex z ∈ D′. If z ∈ D, then d(z) ≤ r < d(y). If z /∈ D,

then d(z) ≤ d(y) by the choice of y. So D′ is a set of n− 1− d(x) vertices of degree at most

d(y). By (2.2), |D′| ≥ d(y). By the maximality of r, we have d(y) > b(n − 1)/2c. Since

d(x) ≥ d(y), we get d(x) + d(y) ≥ 2d(y) ≥ n, contradicting (2.2).

2.7 Maximizing the number of copies of a given graph and a proof of
Theorem 23

In order to prove Theorem 23, we first show that for any fixed graph F and any d, if n is

large then of the two extremal graphs in Lemma 22, Hn,d contains at least as many copies

of F as K ′n,d.

Lemma 28. For any d, t, n ∈ N with n ≥ 2dt+ d+ t and any graph F with t = |V (F )| we

have N(K ′n,d, F ) ≤ N(Hn,d, F ).

Proof. Fix F and t = |V (F )|. Let K ′n,d = A ∪B where A and B are cliques of order n− d
and d + 1 respectively and A ∩ B = {v∗}, the cut vertex of K ′n,d. Also, let D denote the

independent set of order d in Hn,d. We may assume d ≥ 2, because Hn,1 = K ′n,1. If x is an

isolated vertex of F then for any n-vertex graph G we have N(G,F ) = (n−t+1)N(G,F−x).

So it is enough to prove the case δ(F ) ≥ 1, and we may also assume t ≥ 3.

Because both K ′n,d[A] and Hn,d−D are cliques of order n−d, the number of embeddings of

F into K ′n,d[A] is the same as the number of embeddings of F into Hn,d−D. So it remains

to compare only the number of embeddings in Φ := {ϕ : V (F ) → V (K ′n,d) such that ϕ(F )

intersects B − v∗} to the number of embeddings in Ψ := {ψ : V (F ) → V (Hn,d) such that

ψ(F ) intersects D}.
Let C ∪C be a partition of the vertex set V (F ), s := |C|. Define the following classes of Φ

and Ψ

— Φ(C) := {ϕ : V (F ) → V (K ′n,d) such that ϕ(C) intersects B − v∗, ϕ(C) ⊆ B, and

ϕ(C) ⊆ V −B},
— Ψ(C) := {ψ : V (F ) → V (Hn,d) such that ψ(C) intersects D, ψ(C) ⊆ (D ∪ N(D)),

and ψ(C) ⊆ V − (D ∪N(D))}.
By these definitions, if C 6= C ′ then Φ(C) ∩ Φ(C ′) = ∅, and Ψ(C) ∩ Ψ(C ′) = ∅. Also⋃
∅6=C⊆V (F ) Φ(C) = Φ. We claim that for every C 6= ∅,

|Φ(C)| ≤ |Ψ(C)|. (2.7)

Summing up the number of embeddings over all choices for C will prove the lemma. If

Φ(C) = ∅, then (2.7) obviously holds. So from now on, we consider the cases when Φ(C) is
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not empty, implying 1 ≤ s ≤ d+ 1.

Case 1: There is an F -edge joining C and C. So there is a vertex v ∈ C with NF (v)∩C 6= ∅.
Then for every mapping ϕ ∈ Φ(C), the vertex v must be mapped to v∗ in K ′n,d, ϕ(v) = v∗.

So this vertex v is uniquely determined by C. Also, ϕ(C)∩ (B− v∗) 6= ∅ implies s ≥ 2. The

rest of C can be mapped arbitrarily to B − v∗ and C can be mapped arbitrarily to A− v∗.
We obtained that |Φ(C)| = (d)s−1(n− d− 1)t−s.

To obtain a lower bound for |Ψ(C)|, we construct mappings ψ ∈ Ψ(C) as follows. Let

ψ(v) = x ∈ N(D) (there are d possibilities), then map some vertex of C − v to a vertex

y ∈ D (there are (s− 1)d possibilities). Since N + y forms a clique of order d + 1 we may

embed the rest of C into N − v in (d − 1)s−2 ways and finish embedding of F into Hn,d

by arbitrarily placing the vertices of C to V − (D ∪ N(D)). We obtained that |Ψ(C)| ≥
d2(s− 1)(d− 1)s−2(n− 2d)t−s = d(s− 1)(d)s−1(n− 2d)t−s.

Since s ≥ 2 we have that

|Ψ(C)|
|Φ(C)| ≥

d(s− 1)(d)s−1(n− 2d)t−s
(d)s−1(n− d− 1)t−s

≥ d(2− 1)

(
n− 2d+ 1− t+ s

n− d− t+ s

)t−s
= d

(
1− d− 1

n− d− t+ s

)t−s
≥ d

(
1− (d− 1)(t− s)

n− d− t+ s

)
≥ d

(
1− (d− 1)t

n− d− t

)
> 1 when n > dt+ d+ t.

Case 2: C and C are not connected in F . We may assume s ≥ 2 since C is a union of

components with δ(F ) ≥ 1. In K ′n,d there are at exactly (d + 1)s(n − d − 1)t−s ways to

embed F into B so that only C is mapped into B and C goes to A − v∗, i.e., |Φ(C)| =

(d+ 1)s(n− d− 1)t−s.

To obtain a lower bound for |Ψ(C)|, we construct mappings ψ ∈ Ψ(C) as follows. Select any

vertex v ∈ C and map it to some vertex in D (there are sd possibilities), then map C − v
into N(D) (there are (d)s−1 possibilities) and finish embedding of F into Hn,d by arbitrarily

placing the vertices of C to V −(D∪N(D)). We obtained that |Ψ(C)| ≥ ds(d)s−1(n−2d)t−s.

We have

|Ψ(C)|
|Φ(C)| ≥

ds(d)s−1(n− 2d)t−s
(d+ 1)s(n− d− 1)t−s

≥ ds

d+ 1

(
1− (d− 1)t

n− d− t

)
≥ 2d

d+ 1

(
1− (d− 1)t

n− d− t

)
because s ≥ 2

> 1 when n > 2dt+ d+ t.
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We are now ready to prove Theorem 23.

Theorem 23. For every graph F with t := |V (F )| ≥ 3, any d ∈ N, and any n ≥ n0(d, t) :=

4dt + 3d2 + 5t, if G is an n-vertex nonhamiltonian graph with minimum degree δ(G) ≥ d,

then N(G,F ) ≤ N(Hn,d, F ).

Proof. Let d ≥ 1. Fix a graph F with |V (F )| ≥ 3 (if |V (F )| = 2, then either F = K2

or F = K2). The case where G has isolated vertices can be handled by induction on the

number of isolated vertices, hence we may assume each vertex has degree at least 1. Set

n0 = 4dt+ 3d2 + 5t. (2.8)

Fix a nonhamiltonian graph G with |V (G)| = n ≥ n0 and δ(G) ≥ d such that N(G,F ) >

N(Hn,d, F ) ≥ (n− d)t. We may assume that G is saturated, as the number of copies of F

can only increase when we add edges to G.

Because n ≥ 4dt+ t by (2.8),

(n− d)t
(n)t

≥
(
n− d− t
n− t

)t
=

(
1− d

n− t

)t
≥ 1− dt

n− t ≥ 1− 1

4
=

3

4
.

So, (n− d)t ≥ 3
4(n)t.

By mapping edge xy of F to an edge of G in two labeled ways, we get that N(G,F ) satisfies

2e(G)(n− 2)t−2 ≥ N(G,F ) ≥ (n− d)t ≥
3

4
(n)t,

This yields the loose upper bound

e(G) ≥ 3

4

(
n

2

)
> h2(n, b(n− 1)/2c). (2.9)

By Pósa’s theorem (Theorem 19), there exists some d ≤ r ≤ b(n − 1)/2c such that G

contains a set R of r vertices with degree at most r. Furthermore by (2.9), r < d0. So

by integrality, r ≤ d0 − 1 ≤ (n + 3)/6. If r = d, then by Lemma 22, either G = Hn,d or

G = K ′n,d. By Lemma 28 and (2.8), G = Hn,d, a contradiction. So we have r ≥ d+ 1.

Let I denote the family of all nonempty independent sets in F . For I ∈ I, let i = i(I) := |I|
and j = j(I) := |NF (I)|. Since F has no isolated vertices, j(I) ≥ 1 and so i ≤ t−1 for each

I ∈ I. Let Φ(I) denote the set of embeddings ϕ : V (F ) → V (G) such that φ(I) ⊆ R and

I is a maximum independent subset of φ−1(R ∩ ϕ(F )). Note that ϕ(I) is not necessarily
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independent in G. We show that

|Φ(I)| ≤ (r)ir(n− r)t−i−1. (2.10)

Indeed, there are (r)i ways to choose φ(I) ⊆ R. After that, since each vertex in R has

at most r neighbors in G, there are at most rj ways to embed NF (I) into G. By the

maximality of I, all vertices of F − I−NF (I) should be mapped to V (G)−R. There are at

most (n−r)t−i−j to do it. Hence |Φ(I)| ≤ (r)ir
j(n−r)t−i−j . Since 2r+t ≤ 2(d0−1)+t < n,

this implies (2.10).

Since each ϕ : V (F ) → V (G) with ϕ(V (F )) ∩ R 6= ∅ belongs to Φ(I) for some nonempty

I ∈ I, (2.10) implies

N(G,F ) ≤ (n− r)t +
∑
∅6=I∈I

|Φ(I)| ≤ (n− r)t +
t−1∑
i=1

(
t

i

)
(r)ir(n− r)t−i−1. (2.11)

Hence

N(G,F )

N(Hn,d, F )
≤ (n− r)t +

∑t−1
i=1

(
t
i

)
(r)ir(n− r)t−i−1

(n− d)t

≤ (n− r)t
(n− d)t

+
1

(n− d)t
× r

n− r − t+ 2

t−1∑
i=1

(
t

i

)
(r)i(n− r)t−i

=
(n− r)t
(n− d)t

+
(n)t − (n− r)t − (r)t

(n− d)t
× r

n− r − t+ 2

≤ (n− r)t
(n− d)t

× n− t+ 2− 2r

n− t+ 2− r +
(n)t

(n− d)t
× r

n− t+ 2− r := f(r).

Given fixed n, d, t, we claim that the real function f(r) is convex for 0 < r < (n− t+ 2)/2.

Indeed, the first term g(r) := (n−r)t
(n−d)t ×

n−t+2−2r
n−t+2−r is a product of t linear terms in each of

which r has a negative coefficient (note that the n− t+ 2− r term cancels out with a factor

of n − r − t + 2 in (n − r)t). Applying product rule, the first derivative g′ is a sum of t

products, each with t − 1 linear terms. For r < (n − t + 2)/2, each of these products is

negative, thus g′(r) < 0. Finally, applying product rule again, g′′ is the sum of t(t − 1)

products. For r < (n− t+ 2)/2 each of the products is positive, thus g′′(r) > 0.

Similarly, the second factor of the second term (as a real function of r, of the form r/(c−r))
is convex for r < n− t+ 2.

We conclude that in the interval [d + 1, (n + 3)/6] the function f(r) takes its maximum

either at one of the endpoints r = d+ 1 or r = (n+ 3)/6. We claim that f(r) < 1 at both

end points.

In case of r = d + 1 the first factor of the first term equals (n − d − t)/(n − d). To
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get an upper bound for the first factor of the second term one can use the inequality∏
(1 + xi) < 1 + 2

∑
xi which holds for any number of non-negative xi’s if 0 <

∑
xi ≤ 1.

Because dt/(n− d− t+ 1) ≤ 1 by (2.8), we obtain that

f(d+ 1) <
n− d− t
n− d × n− t− 2d

n− t− d+ 1
+

(
1 +

2dt

n− d− t+ 1

)
× d+ 1

n− t− d+ 1

=

(
1− t

n− d

)
×
(

1− d+ 1

n− t− d+ 1

)
+

(
d+ 1

n− t− d+ 1

)
+

(
2dt(d+ 1)

(n− t− d+ 1)2

)
= 1− t

n− d +
t

n− d ×
d+ 1

n− t− d+ 1
+

t

n− d ×
2d(d+ 1)

n− t− d+ 1
× n− d
n− t− d+ 1

= 1− t

n− d ×
(

1− d+ 1

n− t− d+ 1
− 2d(d+ 1)

n− t− d+ 1
×
(

1 +
t− 1

n− t− d+ 1

))
< 1− t

n− d × (1− 1

4t
− 2

3
(1 +

1

4d
))

≤ 1− t

n− d × (1− 1/12− 2/3× 5/4)

< 1.

Here we used that n ≥ 3d2 + 2d+ t and n ≥ 4dt+ 5t+ d by (2.8), t ≥ 3, and d ≥ 1.

To bound f(r) for other values of r, let us use 1 + x ≤ ex (true for all x). We get

f(r) < exp

{
− (r − d)t

n− d− t+ 1

}
+

r

n− r − t+ 2
× exp

{
dt

n− d− t+ 1

}
.

When r = (n+3)/6, t ≥ 3, and n ≥ 24d by (2.8), the first term is at most e−18/46 = 0.676....

Moreover, for n ≥ 9t (2.8) (therefore n ≥ 27) we get that r
n−r−t+2 is maximized when t is

maximized, i.e., when t = n/9. The whole term is at most (3n + 9)/(13n + 27) × e1/4 ≤
5/21× e1/4 = 0.305..., so in this range, f((n+ 3)/6) < 1.

By the convexity of f(r), we have N(G,F ) < N(Hn,d, F ).

When F is a star, then it is easy to determine maxN(G,F ) for all n.

Claim 29. Suppose F = K1,t−1 with t := |V (F )| ≥ 3, and t ≤ n and d are integers with

1 ≤ d ≤ b(n − 1)/2c. If G is an n-vertex nonhamiltonian graph with minimum degree

δ(G) ≥ d, then

N(G,F ) ≤ max
{
N(Hn,d, F ), N(Hn,b(n−1)/2c, F )

}
, (2.12)

and equality holds if and only if G ∈
{
Hn,d, Hn,b(n−1)/2c

}
.

Proof. The number of copies of stars in a graph G depends only on the degree sequence

of the graph: if a vertex v of a graph G has degree d(v), then there are (d(v))t−1 labeled
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copies of F in G where v is the center vertex. We have

N(G,F ) =
∑

v∈V (G)

(
d(v)

t− 1

)
. (2.13)

Since G is nonhamiltonian, Pósa’s theorem yields an r ≤ b(n−1)/2c, and an r-set R ⊂ V (G)

such that dG(v) ≤ r for all v ∈ R. Take the minimum such r, then there exists a vertex

v ∈ R with deg(v) = r. We may also suppose that G is edge-maximal nonhamiltonian, so

Ore’s condition (2.2) holds. It implies that deg(w) ≤ n− r− 1 for all w /∈ N(v). Altogether

we obtain that G has r vertices of degree at most r, at least n − 2r vertices (those in

V (G) − R − N(v)) of degree at most (n − r − 1). This implies that the right hand side

of (2.13) is at most

r × (r)t−1 + (n− 2r)× (n− r − 1)t−1 + r × (n− 1)t−1 = N(Hn,r, F ).

(Here equality holds only if G = Hn,r). Note that r ∈ [d, b12(n − 1)c]. Since for given n

and t the function N(Hn,r, F ) is strictly convex in r, it takes its maximum at one of the

endpoints of the interval.

Remark 30. As it was mentioned in Section 2.5, O(dt) is the right order for n0(d, t) when

d = O(t).

To see this, fix d ∈ N and let F be the star on t ≥ 3 vertices. If d < b(n − 1)/2c,
t ≤ n and n ≤ dt − d, then Hn,b(n−1)/2c contains more copies of F than Hn,d does, the

maximum in (2.12) is reached for r = b(n − 1)/2c. We present the calculation below only

for 2d+ 7 ≤ n ≤ dt− d, the case 2d+ 3 ≤ n ≤ 2d+ 6 can be checked by hand by plugging

n into the first line of the formula below. We can proceed as follows.
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N(Hn,b(n−1)/2c, F )−N(Hn,d, F ) =
(
b(n− 1)/2c(n− 1)t−1 + d(n+ 1)/2e(b(n− 1)/2c)t−1

)
−
(
d(n− 1)t−1 + (n− 2d)(n− d− 1)t−1 + d(d)t−1

)
=

(
b(n− 1)/2c − d

)
(n− 1)t−1 − (n− 2d)(n− d− 1)t−1

+d(n+ 1)/2e(b(n− 1)/2c)t−1 − d(d)t−1

>
(
b(n− 1)/2c − d

)
(n− 1)t−1

−
(

(n− 2d)(1− d/n)t−1
)

(n− 1)t−1

> (n− 1)t−1

(
b(n− 1)/2c − d− (n− 2d)e−(dt−d)/n

)
≥ (n− 1)t−1 (b(n− 1)/2c − d− (n− 2d)/e)

≥ 0.

2.8 Theorem 25 and a stability version of it

In general, it is difficult to calculate the exact value of N(Hn,d, F ) for a fixed graph F .

However, when F = Kk, we have N(Hn,d,Kk) = hk(n, d)k!. Recall Theorem 25:

Let n, d, k be integers with 1 ≤ d ≤
⌊
n−1
2

⌋
and k ≥ 2. If G is a nonhamiltonian graph on n

vertices with minimum degree δ(G) ≥ d, then

Nk(G) ≤ max

{
hk(n, d), hk(n,

⌊
n− 1

2

⌋
)

}
.

Proof of Theorem 25. By Theorem 19, because G is nonhamiltonian, there exists an r ≥ d

such that G has r vertices of degree at most r. Denote this set of vertices by D. Then

Nk(G − D) ≤
(
n−r
k

)
, and every vertex in D is contained in at most

(
r

k−1
)

copies of Kk.

Hence Nk(G) ≤ hk(n, r). The theorem follows from the convexity of hk(n, x).

Our older stability theorem (Theorem 18) also translates into the the language of cliques,

giving a stability theorem for Theorem 25:

Theorem 31. Let n ≥ 3, and d ≤
⌊
n−1
2

⌋
. Suppose that G is an n-vertex nonhamiltonian

graph with minimum degree δ(G) ≥ d and there exists a k ≥ 2 such that

Nk(G) > max

{
hk(n, d+ 1), hk(n,

⌊
n− 1

2

⌋
)

}
. (2.14)

Then G is a subgraph of either Hn,d or K ′n,d.
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Proof. Take an edge-maximum counterexample G (so we may assume G is saturated). By

Lemma 27, G has a set D of r ≤ b(n− 1)/2c vertices such that G−D is a complete graph.

If r ≥ d + 1, then Nk(G) ≤ max
{
hk(n, d+ 1), hk(n,

⌊
n−1
2

⌋
)
}

. Thus r = d, and we may

apply Lemma 22.

2.9 Discussion and proof of Theorem 26

What happens when we consider n-vertex nonhamiltonian graphs with minimum degree at

least d and less than e(n, d+ 1) but more than e(n, d+ 2) edges?

Note that for d < d0(n)− 2,

e(n, d)− e(n, d+ 2) = 2n− 6d− 7,

which is greater than n. Theorem 26 answers the question above in a more general form—in

terms of k-cliques instead of edges. In other words, we classify all n-vertex nonhamiltonian

graphs with more than max
{
hk(n, d+ 2), hk(n,

⌊
n−1
2

⌋
)
}

copies of Kk.

As in Lemma 31, such G can be a subgraph of Hn,d or K ′n,d. Also, G can be a subgraph of

Hn,d+1 or K ′n,d+1. Recall the graphs Hn,d,K
′
n,d, H

′
n,d, G

′
n,2, and Fn,3 defined earlier:

d d d d d + 1

Figure 2.4: Graphs Hn,d,K
′
n,d, H

′
n,d, G

′
n,2, and Fn,3.

Theorem 26. Let n ≥ 3 and 1 ≤ d ≤
⌊
n−1
2

⌋
. Suppose that G is an n-vertex nonhamiltonian

graph with minimum degree δ(G) ≥ d such that exists a k ≥ 2 for which

Nk(G) > max

{
hk(n, d+ 2), hk(n,

⌊
n− 1

2

⌋
)

}
.

Let Hn,d := {Hn,d, Hn,d+1,K
′
n,d,K

′
n,d+1, H

′
n,d}.

(i) If d = 2, then G is a subgraph of G′n,2 or of a graph in Hn,2;

(ii) if d = 3, then G is a subgraph of Fn,3 or of a graph in Hn,3;

(iii) if d = 1 or 4 ≤ d ≤
⌊
n−1
2

⌋
, then G is a subgraph of a graph in Hn,d.

Proof. Suppose G is a counterexample to Theorem 26 with the most edges. Then G is

saturated. In particular, degree condition (2.2) holds for G. So by Lemma 27, there exists
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an d ≤ r ≤ b(n− 1)/2c such that V (G) contains a subset D of r vertices of degree at most

r and G−D is a complete graph.

If r ≥ d+2, then because hk(n, x) is convex, Nk(G) ≤ hk(n, r) ≤ max
{
hk(n, d+ 2), hk(n,

⌊
n−1
2

⌋
)
}

.

Therefore either r = d or r = d + 1. In the case that r = d (and so r = δ(G)), Lemma 22

implies that G ⊆ Hn,d. So we may assume that r = d+ 1.

If δ(G) ≥ d+1, then we simply apply Theorem 18 with d+1 in place of d and get G ⊆ Hn,d+1

or G ⊆ K ′n,d+1. So, from now on we may assume

δ(G) = d. (2.15)

Now (2.15) implies that our theorem holds for d = 1, since each graph with minimum degree

exactly 1 is a subgraph of Hn,1. So, below 2 ≤ d ≤
⌊
n−1
2

⌋
.

Let N := N(D)−D ⊆ V (G)−D. The next claim will be used many times throughout the

proof.

Lemma 32. (a) If there exists a vertex v ∈ D such that d(v) = d+ 1, then N(v)−D = N .

(b) If there exists a vertex u ∈ N such that u has at least 2 neighbors in D, then u is

adjacent to all vertices in D.

Proof. If v ∈ D, d(v) = d + 1 and some u ∈ N is not adjacent to v, then d(v) + d(u) ≥
d+ 1 + (n− d− 2) + 1 = n. A contradiction to (2.2) proves (a).

Similarly, if u ∈ N has at least 2 neighbors in D but is not adjacent to some v ∈ D, then

d(v) + d(u) ≥ d+ (n− d− 2) + 2 = n, again contradicting (2.2).

Define S := {u ∈ V (G) −D : u ∈ N(v) for all v ∈ D}, s := |S|, and S′ := V (G) −D − S.

By Lemma 32 (b), each vertex in S′ has at most one neighbor in D. So, for each v ∈ D,

call the neighbors of v in S′ the private neighbors of v.

We claim that

D is not independent. (2.16)

Indeed, assume D is independent. If there exists a vertex v ∈ D with d(v) = d+ 1, then by

Lemma 32 (a), N(v) −D = N . So, because D is independent, G ⊆ Hn,d+1. Assume now

that every vertex v ∈ D has degree d, and let D = {v1, . . . , vd+1}.
If s ≥ d, then because each vi ∈ D has degree d, s = d and N = S. Then G ⊆ Hn,d+1. If

s ≤ d−2, then each vertex vi ∈ D has at least two private neighbors in S′; call these private

neighbors xvi and yvi . The path xv1v1yv1xv2v2yv2 . . . xvd+1
vd+1yvd+1

contains all vertices in

D and can be extended to a hamiltonian cycle of G, a contradiction.

Finally, suppose s = d − 1. Then every vertex vi ∈ D has exactly one private neighbor.

Therefore G = G′n,d where G′n,d is composed of a clique A of order n − d − 1 and an

24



independent set D = {v1, . . . , vd+1}, and there exists a set S ⊂ A of size d− 1 and distinct

vertices z1, . . . , zd+1 such that for 1 ≤ i ≤ d+ 1, N(vi) = S ∪ zi. Graph G′n,d is illustrated

in Fig. 5.

d− 1 d + 1

Figure 2.5: G′n,d.

For d = 2, we conclude that G ⊆ G′n,2, as claimed, and for d ≥ 3, we get a contradiction

since G′n,d is hamiltonian. This proves (2.16).

Call a vertex v ∈ D open if it has at least two private neighbors, half-open if it has exactly

one private neighbor, and closed if it has no private neighbors.

We say that paths P1, . . . , Pq partition D, if these paths are vertex-disjoint and V (P1)∪ . . .∪
V (Pq) = D. The idea of the proof is as follows: because G −D is a complete graph, each

path with endpoints in G−D that covers all vertices of D can be extended to a hamiltonian

cycle of G. So such a path does not exist, which implies that too few paths cannot partition

D:

Lemma 33. If s ≥ 2 then the minimum number of paths in G[D] partitioning D is at least

s.

Proof. Suppose D can be partitioned into ` ≤ s − 1 paths P1, . . . , P` in G[D]. Let S =

{z1, . . . , zs}. Then P = z1P1z2 . . . z`P`z`+1 is a path with endpoints in V (G) − D that

covers D. Because V (G)−D forms a clique, we can find a z1, z`+1 - path P ′ in G−D that

covers V (G)−D−{z2, . . . , z`}. Then P ∪P ′ is a hamiltonian cycle of G, a contradiction.

Sometimes, to get a contradiction with Lemma 33 we will use our information on vertex

degrees in G[D]:

Lemma 34. Let H be a graph on r vertices such that for every nonedge xy of H, d(x) +

d(y) ≥ r − t for some t. Then V (H) can be partitioned into a set of at most t paths. In

other words, there exist t disjoint paths P1, . . . , Pt with V (H) =
⋃t
i=1 V (Pi).
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Proof. Construct the graph H ′ by adding a clique T of size t to H so that every vertex of

T is adjacent to each vertex in V (H). For each nonedge x, y ∈ H ′,

dH′(x) + dH′(y) ≥ (r − t) + t+ t = r + t = |V (H ′)|.

By Ore’s theorem, H ′ has a hamiltonian cycle C ′. Then C ′ − T is a set of at most t paths

in H that cover all vertices of H.

The next simple fact will be quite useful.

Lemma 35. If G[D] contains an open vertex, then all other vertices are closed.

Proof. Suppose G[D] has an open vertex v and another open or half-open vertex u. Let

v′, v′′ be some private neighbors of v in S′ and u′ be a neighbor of u in S′. By the maximality

of G, graph G + vu′ has a hamiltonian cycle. In other words, G has a hamiltonian path

v1v2 . . . vn, where v1 = v and vn = u′. Let V ′ = {vi : vvi+1 ∈ E(G)}. Since G has no

hamiltonian cycle, V ′ ∩N(u′) = ∅.
Since d(v) + d(u′) = n − 1, we have V (G) = V ′ ∪ N(u′) + u′. Suppose that v′ = vi and

v′′ = vj . Then vi−1, vj−1 ∈ V ′, and vi−1, vj−1 /∈ N(u′). But among the neighbors of vi and

vj , only v is not adjacent to u′, a contradiction.

Now we show that S is non-empty and not too large.

Lemma 36. s ≥ 1.

Proof. Suppose S = ∅. If D has an open vertex v, then by Lemma 35, all other vertices

are closed. In this case, v is the only vertex of D with neighbors outside of D, and hence

G ⊆ K ′n,d, in which v is the cut vertex. Also if D has at most one half-open vertex v, then

similarly G ⊆ K ′n,d.
So suppose that D contains no open vertices but has two half-open vertices u and v with

private neighbors zu and zv respectively. Then δ(G[D]) ≥ d − 1. By Pósa’s Theorem, if

d ≥ 4, then G[D] has a hamiltonian v, u-path. This path together with any hamiltonian

zu, zv-path in the complete graph G − D and the edges uzu and vzv forms a hamiltonian

cycle in G, a contradiction.

If d = 3, then by Dirac’s Theorem, G[D] has a hamiltonian cycle, i.e. a 4-cycle, say C.

If we can choose our half-open v and u consecutive on C, then C − uv is a hamiltonian

v, u-path in G[D], and we finish as in the previous paragraph. Otherwise, we may assume

that C = vxuy, where x and y are closed. In this case, dG[D](x) = dG[D](y) = 3, thus

xy ∈ E(G). So we again have a hamiltonian v, u-path, namely vxyu, in G[D]. Finally, if

d = 2, then |D| = 3, and G[D] is either a 3-vertex path whose endpoints are half-open or a

3-cycle. In both cases, G[D] again has a hamiltonian path whose ends are half-open.
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Lemma 37. s ≤ d− 3.

Proof. Since by (2.15), δ(G) = d, we have s ≤ d. Suppose s ∈ {d− 2, d− 1, d}.
Case 1: All vertices in D have degree d.

Case 1.1: s = d. Then G ⊆ Hn,d+1.

Case 1.2: s = d− 1. In this case, each vertex in graph G[D] has degree 0 or 1. By (2.16),

G[D] induces a non-empty matching, possibly with some isolated vertices. Let m denote

the number of edges in G[D].

If m ≥ 3, then the number of components in G[D] is less than s, contradicting Lemma 33.

Suppose now m = 2, and the edges in the matching are x1y1 and x2y2. Then d ≥ 3. If

d = 3, then D = {x1, x2, y1, y2} and G = Fn,3 (see Fig 3 (right)). If d ≥ 4, then G[D] has

an isolated vertex, say x3. This x3 has a private neighbor w ∈ S′. Then |S +w| = d which

is more than the number of components of G[D] and we can construct a path from w to S

visiting all components of G[D].

Finally, suppose G[D] has exactly one edge, say x1y1. Recall that d ≥ 2. Graph G[D] has

d − 1 isolated vertices, say x2, . . . , xd. Each of xi for 2 ≤ i ≤ d has a private neighbor

ui in S′. Let S = {z1, . . . , zd−1}. If d = 2, then S = {z1}, N(D) = {z1, u2} and hence

G ⊂ H ′n,2. So in this case the theorem holds for G. If d ≥ 3, then G contains a path

udxdzd−1xd−1zd−2xd−2 . . . z2x1y1z1x2u2 from ud to u2 that covers D.

Case 1.3: s = d − 2. Since s ≥ 1, d ≥ 3. Every vertex in G[D] has degree at most 2, i.e.,

G[D] is a union of paths, isolated vertices, and cycles. Each isolated vertex has at least 2

private neighbors in S′. Each endpoint of a path in G[D] has one private neighbor in S′.

Thus we can find disjoint paths from S′ to S′ that cover all isolated vertices and paths in

G[D] and all are disjoint from S. Hence if the number c of cycles in G[D] is less than d− 2,

then we have a set of disjoint paths from V (G) −D to V (G) −D that cover D (and this

set can be extended to a hamiltonian cycle in G). Since each cycle has at least 3 vertices

and |D| = d+ 1, if c ≥ d− 2, then (d+ 1)/3 ≥ d− 2, which is possible only when d < 4, i.e.

d = 3. Moreover, then G[D] = C3 ∪K1 and S = N is a single vertex. But then G ⊆ K ′n,3.
Case 2: There exists a vertex v∗ ∈ D with d(v∗) = d+1. By Lemma 32 (a), N = N(v∗)−D,

and so G has at most one open or half-open vertex. Furthermore,

if G has an open or half-open vertex, then it is v∗, and by Lemma 32, there are no

other vertices of degree d+ 1.
(2.17)

Case 2.1: s = d. If v∗ is not closed, then it has a private neighbor x ∈ S′, and the

neighborhood of each other vertex of D is exactly S. Furthermore, since d(v∗) = d+1, v∗ has

no neighbors outside of D+{x}. This implies that D is independent, contradicting (2.16). If

v∗ is closed (i.e., N = S), then G[D] has maximum degree 1. Therefore G[D] is a matching

with at least one edge (coming from v∗) plus some isolated vertices. If this matching has
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at least 2 edges, then the number of components in G[D] is less than s, contradicting

Lemma 33. If G[D] has exactly one edge, then G ⊆ H ′n,d.
Case 2.2: s = d − 1. If v∗ is open, then dG[D](v

∗) = 0 and by (2.17), each other vertex in

D has exactly one neighbor in D. In particular, d is even. Therefore G[D − v∗] has d/2

components. When d ≥ 3 and d is even, d/2 ≤ s − 1 and we can find a path from S to S

that covers D − v∗, and extend this path using two neighbors of v∗ in S′ to a path from

V (G)−D to V (G)−D covering D. Suppose d = 2, D = {v∗, x, y} and S = {z}. Then z is

a cut vertex separating {x, y} from the rest of G, and hence G ⊆ K ′n,2.
If v∗ is half-open, then by (2.17), each other vertex in D is closed and hence has exactly

one neighbor in D. Let x ∈ S′ be the private neighbor of v∗. Then G[D] is 1-regular and

therefore has exactly (d + 1)/2 components, in particular, d is odd. If d ≥ 2 and is odd,

then (d+ 1)/2 ≤ d− 1 = s, and so we can find a path from x to S that covers D.

Finally, if v∗ is closed, then by (2.17), every vertex of G[D] is closed and has degree 1 or 2,

and v∗ has degree 2 in G[D]. Then G[D] has at most bd/2c components, which is less than

s when d ≥ 3. If d = 2, then s = 1 and the unique vertex z in S is a cut vertex separating

D from the rest of G. This means G ⊆ K ′n,3.
Case 2.3: s = d−2. Since s ≥ 1, d ≥ 3. If v∗ is open, then dG[D](v

∗) = 1 and by (2.17), each

other vertex in D is closed and has exactly two neighbors in D. But this is not possible,

since the degree sum of the vertices in G[D] must be even. If v∗ is half-open with a neighbor

x ∈ S′, then G[D] is 2-regular. Thus G[D] is a union of cycles and has at most b(d+ 1)/3c
components. When d ≥ 4, this is less than s, contradicting Lemma 33. If d = 3, then s = 1

and the unique vertex z in S is a cut vertex separating D from the rest of G. This means

G ⊆ K ′n,4.
If v∗ is closed, then dG[D](v

∗) = 3 and δ(G[D]) ≥ 2. So, for any vertices x, y in G[D],

dG[D](x) + dG[D](y) ≥ 4 ≥ (d+ 1)− (d− 2− 1) = |V (G[D])| − (s− 1).

By Lemma 34, if s ≥ 2, then we can partition G[D] into s−1 paths P1, ..., Ps−1. This would

contradict Lemma 33. So suppose s = 1 and d = 3. Then as in the previous paragraph,

G ⊆ K ′n,4.

Next we will show that we cannot have 2 ≤ s ≤ d− 3.

Lemma 38. s = 1.

Proof. Suppose s = d− k where 3 ≤ k ≤ d− 2.

Case 1: G[D] has an open vertex v. By Lemma 35, every other vertex in D is closed. Let
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G′ = G[D]− v. Then δ(G′) ≥ k − 1 and |V (G′)| = d. In particular, for any x, y ∈ D − v,

dG′(x) + dG′(y) ≥ 2k − 2 ≥ k + 1 = d− (d− k − 1) = |V (G′)| − (s− 1).

By Lemma 34, we can find a path from S to S in G containing all of V (G′). Because v is

open, this path can be extended to a path from V (G) −D to V (G) −D including v, and

then extended to a hamiltonian cycle of G.

Case 2: D has no open vertices and 4 ≤ k ≤ d−2. Then δ(G[D]) ≥ k−1 and again for any

x, y ∈ D, dG[D](x) + dG[D](y) ≥ 2k− 2. For k ≥ 4, 2k− 2 ≥ k+ 2 = (d+ 1)− (d− k− 1) =

|D| − (s − 1). Since k ≤ d − 2, by Lemma 34, G[D] can be partitioned into s − 1 paths,

contradicting Lemma 33.

Case 3: D has no open vertices and s = d − 3 ≥ 2. If there is at most one half-open

vertex, then for any nonadjacent vertices x, y ∈ D, dG[D](x) + dG[D](y) ≥ 2 + 3 = 5 ≥
(d+ 1)− (d− 3− 1), and we are done as in Case 2.

So we may assume G has at least 2 half-open vertices. Let D′ be the set of half-open vertices

in D. If D′ 6= D, let v∗ ∈ D − D′. Define a subset D− as follows: If |D′| ≥ 3, then let

D− = D′, otherwise, let D− = D′+ v∗. Let G′ be the graph obtained from G[D] by adding

a new vertex w adjacent to all vertices in D−. Then |V (G′)| = d + 2 and δ(G′) ≥ 3. In

particular, for any x, y ∈ V (G′), dG′(x)+dG′(y) ≥ 6 ≥ (d+2)−(d−3−1) = |V (G′)|−(s−1).

By Lemma 34, V (G′) can be partitioned into s − 1 disjoint paths P1, . . . , Ps−1. We may

assume that w ∈ P1. If w is an endpoint of P1, then D can also be partitioned into s − 1

disjoint paths P1 − w,P2, . . . , Ps−1 in G[D], a contradiction to Lemma 33.

Otherwise, let P1 = x1, . . . , xi−1, xi, xi+1, . . . , xk where xi = w. Since every vertex in

(D−)− v∗ is half-open and NG′(w) = D−, we may assume that xi−1 is half-open and thus

has a neighbor y ∈ S′. Let S = {z1, . . . , zd−3}. Then

yxi−1xi−2 . . . x1z1xi+1 . . . xkz2P2z3 . . . zd−4Pd−4zd−3

is a path in G with endpoints in V (G)−D that covers D.

Now we may finish the proof of Theorem 26. By Lemmas 36–38, s = 1, say, S = {z1}.
Furthermore, by Lemma 37,

d ≥ 3 + s = 4. (2.18)

Case 1: D has an open vertex v. Then by Lemma 35, every other vertex of D is closed.

Since s = 1, each u ∈ D − v has degree d − 1 in G[D]. If v has no neighbors in D, then

G[D]− v is a clique of order d, and G ⊆ K ′n,d. Otherwise, since d ≥ 4, by Dirac’s Theorem,

G[D] − v has a hamiltonian cycle, say C. Using C and an edge from v to C, we obtain a
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hamiltonian path P in G[D] starting with v. Let v′ ∈ S′ be a neighbor of v. Then v′Pz1 is

a path from S′ to S that covers D, a contradiction.

Case 2: D has a half-open vertex but no open vertices. It is enough to prove that

G[D] has a hamiltonian path P starting with a half-open vertex v, (2.19)

since such a P can be extended to a hamiltonian cycle in G through z1 and the private

neighbor of v. If d ≥ 5, then for any x, y ∈ D,

dG[D](x) + dG[D](y) ≥ d− 2 + d− 2 = 2d− 4 ≥ d+ 1 = |V (G[D])|.

Hence by Ore’s Theorem, G[D] has a hamiltonian cycle, and hence (2.19) holds.

If d < 5 then by (2.18), d = 4. So G[D] has 5 vertices and minimum degree at least 2.

By Lemma 34, we can find a hamiltonian path P of G[D], say v1v2v3v4v5. If at least one

of v1, v5 is half-open or v1v5 ∈ E(G), then (2.19) holds. Otherwise, each of v1, v5 has 3

neighbors in D, which means N(v1) ∩ D = N(v5) ∩ D = {v2, v3, v4}. But then G[D] has

hamiltonian cycle v1v2v5v4v3v1, and again (2.19) holds.

Case 3: All vertices in D are closed. Then G ⊆ K ′n,d+1, a contradiction. This proves the

theorem.
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Chapter 3

A stability theorem for graphs with bounded circumference

3.1 Introduction

In this section, we prove Theorem 11, a stability result for graphs with no cycles of length

k or longer. This theorem is a strengthening of the Erdős–Gallai Theorem (Theorem 6)

and Kopylov’s theorem (Theorem 7). This is joint work with Zoltán Füredi, Alexandr

Kostochka, and Jacques Verstraëte [FKLV18].

3.2 Stability results

Recall the definition of graphs Hn,k,a: let n ≥ k and 1 ≤ a < 1
2k. The vertex set of Hn,k,a

is the union of three disjoint sets A,B, and C such that |A| = a, |B| = n − k + a and

|C| = k−2a, and the edge set of Hn,k,a consists of all edges between A and B together with

all edges in A ∪ C (Fig. 1 shows H14,11,3). Let

h(n, k, a) := e(Hn,k,a) =

(
k − a

2

)
+ a(n− k + a).

Kopylov [Kop77] showed that the extremal 2-connected n-vertex graphs with no cycles of

C A B

Figure 3.1: H14,11,3.
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length at least k are G = Hn,k,2 and G = Hn,k,t: the first has more edges for small n, and

the second has more edges for large n.

Füredi, Kostochka, and Verstraëte proved in [FKV16] a stability version of Theorems 6

and 7 for n-vertex 2-connected graphs with n ≥ 3k/2, but the problem remained open for

n < 3k/2 when k ≥ 9. The main result of [FKV16] was the following:

Theorem 39 (Füredi, Kostochka, Verstraëte [FKV16]). Let t ≥ 2 and n ≥ 3t and k ∈
{2t+1, 2t+2}. Let G be a 2-connected n-vertex graph c(G) < k. Then e(G) ≤ h(n, k, t−1)

unless

(a) k = 2t+ 1, k 6= 7, and G ⊆ Hn,k,t or

(b) k = 2t+ 2 or k = 7, and G−A is a star forest for some A ⊆ V (G) of size at most t.

The paper [FKV16] also describes the 2-connected n-vertex graphs G with e(G) > h(n, k, t−
1) and c(G) < k ≤ 8 for all n ≥ k. In particular, for k < 8, each such graph satisfies either

(a) or (b) of Theorem 39.

Together with the cases for k ≤ 8, this result gives a full description of the 2-connected

n-vertex graphs G with c(G) < k and ‘many’ edges for all k and n.

The following is a refinement of the statement of Theorem 11.

Theorem 40. Let t ≥ 4 and k ∈ {2t+ 1, 2t+ 2}, so that k ≥ 9. If G is a 2-connected graph

on n ≥ k vertices and c(G) < k, then either e(G) ≤ max{h(n, k, t− 1), h(n, k, 3)} or

(a) k = 2t+ 1 and G ⊆ Hn,k,t or

(b) k = 2t+ 2 and G−A is a star forest for some A ⊆ V (G) of size at most t.

(c) G ⊆ Hn,k,2.

Figure 3.2: Ovals denote complete subgraphs of order t, t, and k − 2.

Note that

h(n, k, t)− h(n, k, t− 1) =

{
n− t− 3 if k = 2t+ 1,

n− t− 5 if k = 2t+ 2,

and

h(n, k, 2)− h(n, k, 3) = k − n− 3.
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We consider the case e(G) > h(n, k, t− 1) whenever n is large compared to k (and t), and

e(G) > h(n, k, 3) whenever n is small. We state these exact bounds in Section 3.

Also, note that the case n < k is trivial and the case k ≤ 8 was fully resolved in [FKV16].

We will reuse many slightly modified lemmas from [FKV16] in the proof of the main result.

As such, when introducing such lemmas, instead of repeating the proofs word-for-word, we

provide brief proof sketches and a reference to the corresponding full proof in [FKV16] for

the interested reader.

3.2.1 A more detailed form of the stability result

In order to prove Theorem 40, we need a more detailed description of the graphs satisfying

(b) in the theorem that do not contain ‘long’ cycles. For this, we introduce four families of

graphs G1, G2, G3, and G4 that (apart from G1) are identical to the families introduced in

[FKV16]. In the definitions below we use t = b(k − 1)/2c.
Let G1(n, k) = {Hn,k,t, Hn,k,2}. Each G ∈ G2(n, k) is defined by a partition V (G) = A∪B∪C
and two vertices a1 ∈ A, b1 ∈ B such that

— |A| = t,

— G[A] = Kt,

— G[B] is the empty graph,

— G(A,B) is a complete bipartite graph, and

— N(c) = {a1, b1} for every c ∈ C.

Every graph G ∈ G3(n, k) is defined by a partition V (G) = A ∪ B ∪ J such that |A| = t,

G[A] = Kt, G(A,B) is a complete bipartite graph, and

— G[J ] has more than one component,

— all components of G[J ] are stars with at least two vertices each,

— there is a 2-element subset A′ of A such that N(J) ∩ (A ∪B) = A′,

— for every component S of G[J ] with at least 3 vertices, all leaves of S have degree 2 in

G and are adjacent to the same vertex a(S) in A′.

The class G4(n, k) is empty unless k = 10. Each graph H ∈ G4(n, 10) has a 3-vertex set A

such that H[A] = K3 and H − A is a star forest such that if a component S of H − A has

more than two vertices then all its leaves have degree 2 in H and are adjacent to the same

vertex a(S) in A.

These classes are illustrated in Figure 3.

Now we define G(n, k) as follows:
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Figure 3.3: Examples of graphs in classes G2(n, k), G3(n, k), and G4(n, 10), respectively.

(1) if k is odd, then G(n, k) = G1(n, k) = {Hn,k,t, Hn,k,2};
(2) if k is even and k 6= 10, then G(n, k) = G1(n, k) ∪ G2(n, k) ∪ G3(n, k);

(3) if k = 10, then G(n, k) = G1(n, 10) ∪ G2(n, 10) ∪ G3(n, 10) ∪ G4(n, 10).

In these terms, we get the following refinement of Theorem 40:

Theorem 41. (Main Stability Theorem) Let k ≥ 9, n ≥ k and t =
⌊
1
2(k − 1)

⌋
. Let G

be an n-vertex 2-connected graph with no cycle of length at least k. Then either e(G) ≤
max{h(n, k, t− 1), h(n, k, 3)} or G is a subgraph of a graph in G(n, k).

Figure 3.4: The set {a, b} forms a separating set of the graph.

Since every graph in G2(n, k) ∪ G3(n, k) and many graphs in G4(n, k) have a separating set

of size 2 (see Figure 4), the theorem implies the following simpler statement for 3-connected

graphs:

Corollary 42. Let k ∈ {2t+ 1, 2t+ 2} where k ≥ 9. If G is a 3-connected graph on n ≥ k
vertices and c(G) < k, then either e(G) ≤ max{h(n, k, t− 1), h(n, k, 3)} or

34



(1) G ⊆ Hn,k,t, or

(2) k = 10 and G is a subgraph of some graph H ∈ G4(n, 10) such that each component of

H −A has at most 2 vertices.

3.3 The setup and ideas

3.3.1 Small dense subgraphs

First we define some more graph classes (also defined identically to [FKV16]). For a graph

F and a nonnegative integer s, we denote by K−s(F ) the family of graphs obtained from F

by deleting at most s edges.

Let F0 = F0(t) denote the complete bipartite graph Kt,t+1 with partite sets A and B where

|A| = t and |B| = t + 1. Let F0 = K−t+3(F0), i.e., the family of subgraphs of Kt,t+1 with

at least t(t+ 1)− t+ 3 edges.

Let F1 = F1(t) denote the complete bipartite graph Kt,t+2 with partite sets A and B where

|A| = t and |B| = t + 2. Let F1 = K−t+4(F1), i.e., the family of subgraphs of Kt,t+2 with

at least t(t+ 2)− t+ 4 edges.

Let F2 denote the family of graphs obtained from a graph in K−t+4(F1) by subdividing an

edge a1b1 with a new vertex c1, where a1 ∈ A and b1 ∈ B. Note that any member H ∈ F2

has at least |A||B| − (t− 3) edges between A and B and the pair a1b1 is not an edge.

Let F3 = F3(t, t
′) denote the complete bipartite graph Kt,t′ with partite sets A and B

where |A| = t and |B| = t′. Take a graph from K−t+4(F3), select two non-empty subsets

A1, A2 ⊆ A with |A1 ∪ A2| ≥ 3 such that A1 ∩ A2 = ∅ if min{|A1|, |A2|} = 1, add two

vertices c1 and c2, join them to each other and add the edges from ci to the elements of

Ai, (i = 1, 2). The class of obtained graphs is denoted by F(A,B,A1, A2). The family F3

consists of these graphs when |A| = |B| = t, |A1| = |A2| = 2 and A1∩A2 = ∅. In particular,

F3(4) consists of exactly one graph, call it F3(4).

Graph F4 has vertex set A∪B, where A = {a1, a2, a3} and B := {b1, b2, . . . , b6} are disjoint.

Its edges are the edges of the complete bipartite graph K(A,B) and three extra edges b1b2,

b3b4, and b5b6 (see Figure 4 below). Define F ′4 as the (only) member of F(A,B,A1, A2)

such that |A| = |B| = t = 4, A1 = A2, and |Ai| = 3. Let F4 := {F4, F
′
4}, which is defined

only for t = 4.

Define F(k) :=

{
F0, if k is odd,

F1 ∪ · · · ∪ F4, if k is even.
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Figure 3.5: Graphs F3(4), F4, and F ′4.

3.3.2 Proof idea

In order to employ a stronger induction assumption, we will prove the following slightly

stronger version of Theorem 41 claiming that the graphs in question contain dense graphs

from F(k):

Theorem 41′ Let t ≥ 4, k ∈ {2t+ 1, 2t+ 2}, and n ≥ k. Let G be an n-vertex 2-connected

graph with no cycle of length at least k. Then either e(G) ≤ max{h(n, k, t − 1), h(n, k, 3)}
or

(a) G ⊆ Hn,k,2, or

(b) G is contained in a graph in G(n, k)− {Hn,k,2}, and G contains a subgraph H ∈ F(k),
where G(n, k) is as defined in Section 2.3.

The method of the proof is a variation of that of [FKV16] for larger n as well as Kopy-

lov’s disintegration method for n close to k. We take an n-vertex graph G satisfying the

hypothesis of Theorem 41′, and iteratively contract edges in a certain way so that each

intermediate graph still satisfies the hypothesis. We consider the final graph of this process

Gm on m vertices and show that Gm satisfies Theorem 41′. We will use two instrumental

lemmas from [FKV16].

Lemma 43 (Main lemma on contraction, Lemma 4.9 in [FKV16]). Let k ≥ 9 and suppose

F and F ′ are 2-connected graphs such that F = F ′/xy and c(F ′) < k. If F contains a

subgraph H ∈ F(k), then F ′ also contains a subgraph H ′ ∈ F(k).

This lemma shows that if Gm contains a subgraph H ∈ F(k), then the original graph G also

contains a subgraph in F(k). The second result concludes that the original graph G = Gn

must satisfy (b) of Theorem 41′. For the full proof of the lemma, we refer the reader to

[FKV16]. Below we include a brief sketch of the proof.

Lemma 44 ([FKV16](Subsection 4.5)). Let k ≥ 9, and let G be a 2-connected graph with

c(G) < k and e(G) > h(n, k, t − 1). If G contains a subgraph H ∈ F(k), then G is a

subgraph of a graph in G(n, k)− {Hn,k,2}.

Sketch of proof. Consider a component of S of G − H. Because G is 2-connected, S has

at least two neighbors, say x and y in H. Let ` be the length of a longest (x, y)-path P
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such that all internal vertices in P are in S. When k is odd, since H is “close” to Kt,t+1, it

contains a long path P ′ from x to y. Thus if ` is too large, P ′ ∪P yields a cycle of length k

or longer, a contradiction. Then one can show that ` = 2 (edges). That is, each path from

H to H that goes through S has only one internal vertex. Thus |V (S)| = 1 and moreover,

x and y both lie in the partite set of of H of size t. This shows that G ⊆ Hn,k,t. The case

for k even is handled similarly (but with more subcases; in particular we have ` ≤ 3). We

obtain that either G ⊆ Hn,k,t or the components of G−H are star forests that connect to

H in the ways described in the classes Gi(n, k), i ∈ {2, 3, 4}, otherwise G would contain a

cycle of length k or longer.

We will split the proof into the cases of small n and large n. The following observations

can be obtained by simple calculations (for t ≥ 4):

k h(n, k, 3) ≥ h(n, k, t− 1) h(n, k, 2) ≥ h(n, k, t− 1)

2t+ 1 If and only if n ≤ k + (t− 5)/2 If and only if n ≤ k + t/2− 1

2t+ 2 If and only if n ≤ k + (t− 3)/2 If and only if n ≤ k + t/2

In the case of large n we will contract an edge such that the new graph still has more than

h(n − 1, k, t − 1) edges. In order to apply induction, we also need the number of edges

to be greater than h(n − 1, k, 3). To guarantee this, we pick the cutoffs for the two cases

n ≤ k + (t− 1)/2 and n > k + (t− 1)/2 (therefore n− 1 > k + (t− 3)/2).

3.4 Tools

3.4.1 Classical theorems

Theorem 45 (Erdős [Erd62b]). Let d ≥ 1 and n > 2d be integers, and

`n,d = max

{(
n− d

2

)
+ d2,

(dn+1
2 e
2

)
+
⌊n− 1

2

⌋2}
.

Then every n-vertex graph G with δ(G) ≥ d and e(G) > `n,d is hamiltonian.

Theorem 46 (Chvátal [Chv72]). Let n ≥ 3 and G be an n-vertex graph with vertex degrees

d1 ≤ d2 ≤ . . . ≤ dn. If G is not hamiltonian, then there is some i < n/2 such that di ≤ i

and dn−i < n− i.

Theorem 47 (Kopylov [Kop77]). If G is 2-connected and P is an x, y-path of ` vertices,

then c(G) ≥ min{`, d(x, P ) + d(y, P )}.
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3.4.2 Claims on contractions

A helpful tool will be the following lemma from [FKV16] on contraction.

Lemma 48 (Lemma 3.2 in [FKV16]). Let n ≥ 4 and let G be an n-vertex 2-connected

graph. For every v ∈ V (G), there exists w ∈ N(v) such that G/vw is 2-connected.

For an edge xy in a graph H, let TH(xy) denote the number of triangles containing xy.

Let T (H) = min{TH(xy) : xy ∈ E(H)}. When we contract an edge uv in a graph H,

the degree of every x ∈ V (H) − u − v either does not change or decreases by 1. Also if

u ∗ v is the vertex created upon contraction, then the degree of u ∗ v in H/uv is at least

max{dH(u), dH(v)} − 1. Thus

dH/uv(w) ≥ dH(w)− 1 for any w ∈ V (H) and uv ∈ E(H). Also dH/uv(u ∗ v) ≥ dH(u)− 1.

(3.1)

Similarly,

T (H/uv) ≥ T (H)− 1 for every graph H and uv ∈ E(H). (3.2)

We will use the following analog of Lemma 3.3 in [FKV16].1

Lemma 49. Let h be a positive integer. Suppose a 2-connected graph G is obtained from a

2-connected graph G′ by contracting edge xy into x ∗ y chosen using the following rules:

(i) one of x, y, say x is a vertex of the minimum degree in G′;

(ii) TG′(xy) is the minimum among the edges xu incident with x such that G′/xu is 2-

connected. If G has at least h vertices of degree at most h, then either G′ = Kh+2 or

(a) G′ also has a vertex of degree at most h, and

(b) G′ has at least h+ 1 vertices of degree at most h+ 1.

Proof. Note that in (ii), such edges exist by Lemma 48. Since G is 2-connected, h ≥ 2.

Below for a positive integer s and a graph H, by V≤s(H) we denote the set of vertices

of degree at most s in H. Then by (3.1), each v ∈ V≤h(G) − x ∗ y is also in V≤h+1(G
′).

Moreover, then by (i),

x ∈ V≤h+1(G
′). (3.3)

Thus if x ∗ y /∈ V≤h(G), then (b) follows. But if x ∗ y ∈ V≤h(G), then by (3.1), also

y ∈ V≤h+1(G
′). So, again (b) holds.

If V≤h−1(G) 6= ∅, then (a) holds by (3.1). So, if (a) does not hold, then

each v ∈ V≤h(G)− x ∗ y has degree h+ 1 in G′ and is adjacent to both x and y in G′.

(3.4)

1The difference between our analog and the original Lemma 3.3 in [FKV16] is small: the rules we are
following are slightly different, and we prove the additional property (b).
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Case 1: |V≤h(G) − x ∗ y| ≥ h. Then by (3.3), dG′(x) = h + 1. This in turn yields

NG′(x) = V≤h(G) + y. Since G′ is 2-connected, each v ∈ V≤h(G) − x ∗ y is not a cut

vertex. Furthermore, {x, v} is not a cut set. If it was, because y is a common neighbor of

all neighbors of x, all neighbors of x must be in the same component as y in G′ − x− v. It

follows that

for every v ∈ V≤h(G)− x ∗ y, G′/vx is 2-connected. (3.5)

If uv /∈ E(G) for some u, v ∈ V≤h(G), then by (3.5) and (i), we would contract the edge xu

rather than xy. Thus G′[V≤h(G) ∪ {x, y}] = Kh+2 and so either G′ = Kh+2 or y is a cut

vertex in G′, as claimed.

Case 2: |V≤h(G) − x ∗ y| = h − 1. Then x ∗ y ∈ V≤h(G). This means dG′(x) = dG′(y) =

h + 1 and NG′ [x] = NG′ [y]. So by (3.4), there is z ∈ V (G) such that NG′ [x] = NG′ [y] =

V≤h(G) ∪ {x, y, z}. Again (3.5) holds (for the same reason that NG′ [x] ⊆ NG′ [y]). Thus

similarly vu ∈ E(G′) for every v ∈ V≤h(G) − x ∗ y and every u ∈ V≤h(G) + z. Hence

G′[V≤h(G)∪{x, y, z}] = Kh+2 and eitherG′ = Kh+2 or z is a cut vertex inG′, as claimed.

3.4.3 A property of graphs in F(k)

A useful feature of graphs in F(k) is the following.

Lemma 50. Let k ≥ 9 and n ≥ k. Let F be an n-vertex graph contained in Hn,k,t with

e(F ) > h(n, k, t− 1). Then F contains a graph in F(k).

Proof. Assume the sets A,B,C to be as in the definition of Hn,k,t. We will use induction

on n.

Case 1: k = 2t+ 1. If n = k, then F ∈ K−t+3(Hk,k,t) because h(k, k, t)−h(k, k, t− 1)− 1 =

t − 3. Thus, since Hk,k,t ⊇ F0(t), F contains a subgraph in F0. Suppose now the lemma

holds for all k ≤ n′ < n. If δ(F ) ≥ t, then each v ∈ V (F ) − A is adjacent to every u ∈ A.

Hence F contains Kt,n−t. If δ(F ) < t, then since A is dominating and n > 2t, there is

v ∈ V (F )−A with dF (v) ≤ t− 1. Then F − v ⊆ Hn−1,k,t, and we are done by induction.

Case 2: k = 2t+ 2. Let C = {c1, c2}. If n = k then as in Case 1,

e(Hk,k,t)− e(F ) ≤ h(k, k, t)− h(k, k, t− 1)− 1 = t− 4,

i.e., F ∈ K−t+4(Hk,k,t). Since F1(t) ⊆ Hk,k,t, F contains a subgraph in F1. Suppose now the

lemma holds for all k ≤ n′ < n. If δ(F ) < t, then there is v ∈ V (F )−A with dF (v) ≤ t− 1.

Then F − v ⊆ Hn−1,k,t, and we are done by induction.

Finally, suppose δ(F ) ≥ t. So, each v ∈ B is adjacent to every u ∈ A and each of c1, c2 has

at least t − 1 neighbors in A. Since |B ∪ {c1}| ≥ n − t − 1 ≥ t + 2, F contains a member
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of K−1(F1(t)). Thus F contains a member of F1 unless t = 4, n = 2t + 3 and c1 has a

nonneighbor x ∈ A. But then c1c2 ∈ E(F ), and so F contains either F3(4) or F ′4.

3.5 Proof of Theorem 41′

Let n ≥ k ≥ 9 and suppose Theorem 41′ holds for all graphs with n′ vertices where

k ≤ n′ < n. Suppose further that

G is an n-vertex 2-connected graph with c(G) < k and e(G) > max{h(n, k, t− 1), h(n, k, 3)}.
(3.6)

3.5.1 Contraction procedures

If n > k, we iteratively construct a sequence of graphs Gn, Gn−1, ...Gm where Gn = G and

|V (Gj)| = j for all m ≤ j ≤ n. In [FKV16], the following Basic Procedure (BP) was

used:

At the beginning of each round, for some j : k ≤ j ≤ n, we have a j-vertex 2-connected

graph Gj with e(Gj) > h(j, k, t− 1).

(R1) If j = k, then we stop.

(R2) If there is an edge uv with TGj (uv) ≤ t− 2 such that Gj/uv is 2-connected,

choose one such edge so that

(i) TGj (uv) is minimum, and subject to this

(ii) uv is incident to a vertex of minimum possible degree.

Then obtain Gj−1 by contracting uv.

(R3) If (R2) does not hold, j ≥ k + t − 1 and there is xy ∈ E(Gj) such that

Gj − x− y has at least 3 components and one of the components, say H1 is

a Kt−1, then let Gj−t+1 = Gj − V (H1).

(R4) If neither (R2) nor (R3) occurs, then we stop.

Remark 5.1. By definition, (R3) applies only when j ≥ k+ t−1. As observed in [FKV16],

if j ≤ 3t− 2, then a j-vertex graph Gj with a 2-vertex set {x, y} separating the graph into

at least 3 components cannot have TGj (uv) ≥ t−1 for every edge uv. It also was calculated

there that if 3t− 1 ≤ j ≤ 3t, then any j-vertex graph G′ with such 2-vertex set {x, y} and

TG′(uv) ≥ t− 1 for every edge uv has at most h(j, k, t− 1) edges and so cannot be Gj .

In this version, we use a quite similar Modified Basic Procedure (MBP): start with a

2-connected, n-vertex graph G = Gn with e(G) > h(n, k, t− 1) and c(G) < k. Then
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(MR0) if δ(Gj) ≥ t, then apply the rules (R1)–(R4) of (BP) given above;

(MR1) if δ(Gj) ≤ t− 1 and j = k, then stop;

(MR2) otherwise, pick a vertex v of smallest degree, contract an edge vu with the

minimum TGj (vu) among the edges vu such that Gj/vu is 2-connected, and

set Gj−1 = Gj/uv.

3.5.2 Proof of Theorem 41′ for the case n ≤ k + (t− 1)/2

Let G satisfy (3.6). Apply to G the Modified Basic Procedure (MBP) starting from Gn = G.

Denote by Gm the terminating graph of MBP. By Remark 1, (R3) was never applied, since

k + (t− 1)/2 < k + t− 1. Therefore

for each m ≤ j < n, graph Gj is obtained from Gj+1 by contracting an edge. (3.7)

Then Gj is 2-connected and c(Gj) ≤ c(G) < k for each m ≤ j ≤ n. By construction, after

each contraction, we lose at most t− 1 edges. It follows that e(Gm) > h(m, k, t− 1).

Suppose first that m > k. Then the same argument as in [FKV16] gives us the following

structural result:

Lemma 51 (Proposition 4.2 in [FKV16]). Let m > k ≥ 9 and n ≥ k.

• If k 6= 10, then Gm ⊆ Hm,k,t.

• If k = 10, then Gm ⊆ Hm,k,t or Gm ⊇ F4.

Again we sketch the proof briefly and refer the reader to [FKV16] for the full proof.

Sketch of proof. If δ(Gm) ≤ t− 1, then either Rule (R2) or Rule (MR2) applies to Gm, so

Procedure MBP does not stop, contradicting the definition of m. Thus δ(Gm) ≥ t. Since

Gm is 2-connected, c(Gm) ≥ 2δ(Gm) ≥ 2t. So if k is even, c(Gm) ∈ {2t, 2t+ 1}, and if k is

odd, c(Gm) = 2t. For simplicity in this sketch, we only consider the odd case.

Let C = v1, . . . , v2t be a longest cycle in Gm. Because we could not apply rule (R2), for each

edge vivi+1 in C, either vivi+1 is contained in at least t − 1 triangles, or the set {vi, vi+1}
is separating in Gm. In the latter case, we show that C can be extended to a longer cycle.

Thus the former holds. If vivi+1z is a triangle, then z ∈ V (C), otherwise we get a longer

cycle by including z. Thus we have shown that the induced subgraph G[V (C)] has many

edges, and furthermore it can be shown that G[V (C)] is 3-connected. We then apply a

structural theorem for 3-connected graphs due to Enomoto [Eno84] (see, e.g. Theorem 2.7

in [FKV16]) that yields three possible cases for the structure of G[V (C)]. In the first case,

Kt + Kt ⊆ Gm[V (C)] ⊆ Kt + Kt. In this case, by considering the connected components

of Gm − V (C) and the ways they connect to C, similarly to the proof of Lemma 44, we
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obtain Gm ⊆ Hm,k,t. In the other two cases, we either obtain c(G) ≥ k or q < 2t, a

contradiction.

Since F4 ∈ F(k), if k = 10 and Gm ⊇ F4, then Gm contains a subgraph in F(k). Otherwise,

by Lemmas 50 and 51, again Gm has a subgraph in F(k). Then by (3.7) and Lemma 43,

for every m ≤ j ≤ n, graph Gj contains a subgraph Hj ∈ F(k). In particular, G = Gn

contains such a subgraph. Thus by Lemma 44, G satisfies Theorem 41′.

So, below we assume

m = k. (3.8)

Since c(Gk) < k, Gk does not have a hamiltonian cycle. Let d1 ≤ d2 ≤ ... ≤ dk be the

vertex degrees of Gk. By Theorem 46, there exists some 2 ≤ i ≤ t such that di ≤ i and

dk−i < k − i. Let r = r(Gk) be the smallest such i.

Let R be a set of r vertices of degree at most r in Gk. Then

e(Gk) ≤ r2 + e(Gk −R) ≤ r2 +

(
k − r

2

)
.

For k = 2t+1, r2+
(
k−r
2

)
> h(n, k, t−1) only when r = t or r < (t+4)/3, and for k = 2t+2,

when r = t or r < (t + 6)/3. If r = r(Gk) = t, then repeating the argument in [FKV16]

yields:

Lemma 52 (Lemma 4.4 in [FKV16]). If r(Gk) = t then Gk ⊆ Hk,k,t.

Sketch of proof. Since c(Gk) < k, Gk is nonhamiltonian. Let G′ be the hamiltonian closure

of Gk. Then r(G′) exists, and furthermore, r(G′) ≥ r(Gk). Thus r(G′) = t. Our goal is to

show that G′ ⊆ Hk,k,t. Let V (G′) = {v1, . . . , vk} and d′i = dG′(vi) for i = 1, . . . , k. Rename

the vertices of G′ so that d′1 ≤ . . . ≤ d′k. By the definition of r(G′) = t, d′1 ≤ . . . d′t ≤ t.

Let A = {vk, vk−1, . . . , vk−t+1}. If any vertex in A has too small degree, then we show

e(Gk) ≤ h(k, k, t − 1), a contradiction. Since G′ is hamiltonian-closed, for each nonedge

xy /∈ E(G′),

d(x) + d(y) ≤ |V (G′)| − 1 = k − 1. (3.9)

Using this, we show that G′[A] = Kt. Next, we consider the edges between G′ − A and

A. If there are many non-edges, then applying (3.9) for each non-edge yields that e(G′) ≤
h(k, k, t− 1), so we finally show that every vertex in A but at most one is adjacent to every

other vertex in G′. We focus here on the case that every vertex in A is adjacent to every

other vertex. Then the neighborhood of every vertex of degree at most t is exactly A. If

k is odd, we show that also d′t+1 = t and so G′ = Hk,k,t, since the vertices of G′ − A must

form an independent set. The even case is proved similarly, but with more subcases.
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By Lemmas 50, 43, and 44, G ⊆ Hn,k,t and contains some subgraph in F(k). This finishes

the case r = t.

So we may assume that

if k = 2t+ 1 then r < (t+ 4)/3, and if k = 2t+ 2 then r < (t+ 6)/3. (3.10)

Our next goal is to show that G contains a large “core”, i.e., a subgraph with large minimum

degree. For this, we recall the notion of disintegration used by Kopylov [Kop77].

Definition: For a natural number α and a graph G, the α-disintegration of a graph G

is the process of iteratively removing from G the vertices with degree at most α until the

resulting graph has minimum degree at least α + 1. This resulting subgraph H = H(G,α)

will be called the α-core of G.

It is well known that H(G,α) is unique and does not depend on the order of vertex deletion.

Claim 53. The t-core H(G, t) of G is nonempty.

Proof of Claim 53: We may assume that for all m ≤ j < n, graph Gj was obtained from

Gj+1 by contracting edge xjyj , where dGj+1(xj) ≤ dGj+1(yj). By Rule (MR2), dGj+1(xj) =

δ(Gj+1), provided that δ(Gj+1) ≤ t− 1.

By definition, |V≤r(Gk)| ≥ r. So by Lemma 49 (applied several times), for each k+ 1 ≤ j ≤
k + t− r, because each Gj is not a complete graph (otherwise it would have a hamiltonian

cycle),

δ(Gj) ≤ j − k + r − 1 and |V≤j−k+r(Gj)| ≥ j − k + r. (3.11)

To show that

δ(Gj) ≤ t− 1 for all k ≤ j ≤ n, (3.12)

by (3.11) and (3.10), it is enough to observe that

δ(Gj) ≤ j − k + r − 1 ≤ (n− k) + r − 1 ≤ t− 1

2
+
t+ 6

3
− 1 =

5t+ 3

6
< t.

We will apply a version of t-disintegration in which we first manually remove a sequence

of vertices and count the number of edges they cover. By (3.12) and (MR2), dGn(xn−1) =

δ(Gn) ≤ n − k + r − 1. Let vn := xn−1. Then G − vn is a subgraph of Gn−1. If xn−2 6=
xn−1 ∗ yn−1 in Gn−1, then let vn−1 := xn−2, otherwise let vn−1 := yn−1. In both cases,

dG−vn(vn−1) ≤ n − k + r − 2. We continue in this way until j = k: each time we delete

from the graph G− vn − . . .− vj+1 the unique survived vertex vj that was in the preimage

of xj−1 when we obtained Gj−1 from Gj . Graph G − vn − ... − vk+1 has r ≥ 2 vertices of

degree at most r. We additionally delete 2 such vertices vk and vk−1. Altogether, we have

lost at most (r + n− k − 1) + (r + n− k − 2) + ...+ r + 2r edges in the deletions.
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Finally, apply t-disintegration to the remaining graph on k − 2 ∈ {2t − 1, 2t} vertices.

Suppose that the resulting graph is empty.

Case 1: n = k. Then

e(G) ≤ r + r + t(2t− 1− t) +

(
t

2

)
,

where r+r edges are from vk and vk−1, and after deleting vk and vk−1, every vertex deleted

removes at most t edges, until we reach the final t vertices which altogether span at most(
t
2

)
edges.

For k = 2t+ 1,

h(k, k, t−1)−e(G) ≥
(

2t+ 1− (t− 1)

2

)
+(t−1)2−

[
r + r + t(2t− 1− t) +

(
t

2

)]
= t+2−2r,

which is nonnegative for r < (t+ 3)/3. Therefore e(G) ≤ h(k, k, t− 1), a contradiction.

Similarly, if k = 2t+ 2,

e(G) ≤ r + r + t(2t− t) +

(
t

2

)
,

and

h(k, k, t− 1)− e(G) ≥
(

2t+ 2− (t− 1)

2

)
+ (t− 1)2− [r+ r+ t(2t− t) +

(
t

2

)
] = t+ 4− 2r,

which is nonnegative when r < (t+ 6)/3.

Case 2: k < n ≤ k + (t− 1)/2. Then for k = 2t+ 1,

e(G) ≤
[
(r + n− k − 1) + (r + n− k − 2) + . . .+ r

]
+ 2r + t(2t− 1− t) +

(
t

2

)
≤
[
(t− 1) + (t− 1) + . . .+ (t− 1)

]
+ h(k, k, t− 1)

= (t− 1)(n− k) + h(k, k, t− 1)

= h(n, k, t− 1),

where the last inequality holds because r + n− k − 1 ≤ t− 1.

Similarly, for k = 2t+ 2,

e(G) ≤
[
(r + n− k − 1) + (r + n− k − 2) + . . .+ r

]
+ 2r + t(2t− t) +

(
t

2

)
≤ (n− k)(t− 1) + h(k, k, t− 1)

= h(n, k, t− 1).

This contradiction completes the proof of Claim 53.

For the rest of the proof of Theorem 41′ for n ≤ k + (t − 1)/2, we will follow the method
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of Kopylov in [Kop77] to show that G ⊆ Hn,k,2. Let G∗ be the k-closure of G. That is,

add edges to G until adding any additional edge creates a cycle of length at least k. In

particular, for any non-edge xy of G∗, there is an (x, y)-path in G∗ with at least k−1 edges.

Because G has a nonempty t-core, and G∗ contains G as a subgraph, G∗ also has a nonempty

t-core (which contains the t-core of G). Let H = H(G∗, t) denote the t-core of G∗. We will

show that

H is a complete graph. (3.13)

Indeed, suppose (3.13) does not hold. Choose a longest path P of G∗ whose terminal vertices

x ∈ V (H) and y ∈ V (H) are nonadjacent. By the maximality of P , every neighbor of x in

H is in P . The same holds for y. Hence dP (x)+dP (y) = dH(x)+dH(y) ≥ 2(t+1) > k, and

also P has k − 1 edges. By Theorem 47, c(G∗) ≥ k, a contradiction. This proves (3.13).

Let ` = |V (H)|. Because every vertex in H has degree at least t+1, ` ≥ t+2. Furthermore,

if ` ≥ k − 1, then G∗ has a clique K of size at least k − 1. Because G∗ is 2-connected, we

can extend a (k− 1)-cycle of K to include at least one vertex in G∗ −H ′, giving us a cycle

of length at least k. It follows that

t+ 2 ≤ ` ≤ k − 2, (3.14)

and therefore k− ` < t. Apply (k− `)-disintegration to G∗, and denote by H ′ the resulting

graph. By construction, H ⊆ H ′.
Case 1 : There exists v ∈ V (H ′)−V (H). Since v /∈ V (H), there exists a nonedge between a

vertex in H and a vertex in H ′−H. Pick a longest path P with terminal vertices x ∈ V (H ′)

and y ∈ V (H). Then dP (x) + dP (y) ≥ (k − `+ 1) + (`− 1) = k, and therefore c(G∗) ≥ k.

Case 2 : H = H ′. Then

e(G∗) ≤
(
`

2

)
+ (n− `)(k − `) = h(n, k, k − `).

If 3 ≤ (k − `) ≤ t − 1, then e(G) ≤ max{h(n, k, 3), h(n, k, t − 1)}, so by (3.14), k − ` = 2,

and H is the complete graph with k − 2 vertices. Let D = V (G∗) − V (H). If there is an

edge xy in G∗[D], then because G∗ is 2-connected, there exist two vertex-disjoint paths, P1

and P2, from {x, y} to H such that P1 and P2 only intersect {x, y} ∪ H at the beginning

and end of the paths. Let a and b be the terminal vertices of P1 and P2 respectively that

lie in H. Let P be any (a, b)-hamiltonian path of H. Then P1 ∪ P ∪ P2 + xy is a cycle of

length at least k in G∗, a contradiction.

Therefore D is an independent set, and since G∗ is 2-connected, each vertex of D has degree

2. Suppose there exists u, v ∈ D where N(u) 6= N(v). Let N(u) = {a, b}, N(v) = {c, d}
where it is possible that b = c. Then we can find a cycle C of H that covers V (H) which
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contains edges ab and cd. Then C − ab − cd + ua + ub + vc + vd is a cycle of length k in

G∗. Thus for every v ∈ D, N(v) = {a, b} for some a, b ∈ H. I.e., G∗ = Hn,k,2, and thus

G ⊆ Hn,k,2. This completes the proof of Theorem 41′ for the case n ≤ k + (t− 1)/2.

3.5.3 Proof of Theorem 41′ for all n

We use induction on n with the base case n ≤ k + (t− 1)/2. Suppose n ≥ k + t/2 and for

all k ≤ n′ < n, Theorem 41′ holds. Let G be a 2-connected graph G with n vertices such

that

e(G) > max{h(n, k, t− 1), h(n, k, 3)} and c(G) < k. (3.15)

Apply one step of Procedure BP. If (R4) was applied (so neither (R2) nor (R3) applies to

G), then Gm = G (with Gm defined as in the previous case). By Lemmas 51, 50, and 44,

the theorem holds.

Therefore we may assume that either (R2) or (R3) was applied. Let G− be the resulting

graph. Then c(G−) < k, and G− is 2-connected.

Claim 54.

e(G−) > max{h(|V (G−)|, k, t− 1), h(|V (G−)|, k, 3)}. (3.16)

Proof. If (R2) was applied, i.e., G− = G/uv for some edge uv, then

e(G−) ≥ e(G)− (t− 1) > h(n− 1, k, t− 1) ≥ h(n− 1, k, 3),

so (3.16) holds. Therefore we may assume that (R3) was applied to obtain G−. Then

n ≥ k + t− 1 and e(G)− e(G−) =
(
t+1
2

)
− 1. So by (3.15),

e(G−) > h(n, k, t− 1)−
(
t+ 1

2

)
+ 1. (3.17)

The right hand side of (3.17) equals h(n− (t−1), k, t−1) + t2/2−5t/2 + 2 which is at least

h(n− (t− 1), k, t− 1) for t ≥ 4, proving the first part of (3.16).

We now show that also e(G−) > h(n− (t− 1), k, 3). Indeed, for k = 2t+ 1,

e(G−)− h(n− (t− 1), k, 3) >

(
t+ 2

2

)
+ (t− 1)(n− t− 2)−

(
t+ 1

2

)
+ 1

−
[(

2t− 2

2

)
+ 3(n− (t− 1)− (2t− 2))

]
≥ 0 when n ≥ 3t.
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Similarly, for k = 2t+ 2,

e(G−)− h(n− (t− 1), k, 3) >

(
t+ 3

2

)
+ (t− 1)(n− t− 3)−

(
t+ 1

2

)
+ 1

−
[(

2t− 1

2

)
+ 3(n− (t− 1)− (2t− 1))

]
> 0 when n ≥ 3t+ 1.

Thus if n ≥ 3t + 1, then (3.16) is proved. But if n ∈ {3t − 1, 3t} then by Remark 5.1, no

graph to which (R3) applied may have more than h(n, k, t− 1) edges.

By (3.16), we may apply induction to G−. So G− satisfies either (a) G− ⊆ H|V (G−)|,k,2, or

(b) G− is contained in a graph in G(n, k)−H|V (G−)|,k,2 and contains a subgraph H ∈ F(k).

Suppose first that G− satisfies (b). If (R3) was applied to obtain G− from G, then because

G− contains a subgraph H ∈ F(k) and G− ⊆ G, G also contains H. If (R2) was applied,

then by Lemma 43, G contains a subgraph H ′ ∈ F(k). In either case, Lemma 44 implies

that G is a subgraph of a graph in G(n, k)−Hn,k,2.

So we may assume that (a) holds, that is, G− is a subgraph of H|V (G−)|,k,2. Because

δ(G−) ≤ 2, δ(G) ≤ 3, and so G has edges in at most 2 ≤ t − 2 triangles. Therefore

(R2) was applied to obtain G−, where G/uv = G−. Let D be an independent set of

vertices of G− of size (n − 1) − (k − 2) with N(D) = {a, b} for some a, b ∈ V (G−). Since

TG−(xa), TG−(xb) ≤ 1 for every x ∈ D, we have that TG(uv) ≤ 2 with equality only if

T (G) = 2 where T (G) = minxy∈E(G) TG(xy).

We want to show that TG(uv) ≤ 1. If not, suppose first that u ∗ v ∈ D ⊆ V (G−). Then

there exists x ∈ D−u ∗ v, and x and u ∗ v are not adjacent in G−. Therefore x was not in a

triangle with u and v in G, and hence TG(xa) = TG−(xa) ≤ 1, so the edge xa should have

been contracted instead. Otherwise if u ∗ v /∈ D, at least one of {a, b}, say a, is not u ∗ v. If

T (G) = 2, then for every x ∈ D ⊆ V (G), TG(xa) = 2, therefore each such edge xa was in a

triangle with uv in G. Then TG(uv) ≥ |D| = (n− 1)− (k − 2) ≥ k + t/2− 1− k + 2 ≥ 3, a

contradiction.

Thus TG(uv) ≤ 1 and e(G) ≤ 2+e(G−) ≤ 2+h(n−1, k, 2) = h(n, k, 2). But for n ≥ k+t/2,

we have h(n, k, t−1) ≥ h(n, k, 2), a contradiction. This completes the proof of Theorem 41′

and therefore the proof of the main result.
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Chapter 4

Counting cliques in graphs with bounded circumference

4.1 Introduction

In this chapter, we prove Theorem 12, a generalization of Kopylov’s theorem (Theorem 7)

which counts the maximum number of cliques in a 2-connected graph without cycles of

length k or longer. This work can be found in [Luo18].

4.2 Clique counting results

Definition. Let fs(n, k, a) :=
(
k−a
s

)
+ (n− k + a)

(
a
s−1
)
, where f2(n, k, a) = e(Hn,k,a).

By considering the second derivative, one can check that fs(n, k, a) is convex in a in the

domain [1, b(k − 1)/2c], thus it attains its maximum at one of the endpoints a = 1 or

a = b(k − 1)/2c.
We again consider a generalized Turán-type problem. Recall that the function ex(n, T,H)

denotes the maximum number of (unlabeled) copies of T in an H-free graph on n vertices.

When T = K2, we have the usual extremal number ex(n, T,H) = ex(n,H).

Definition. For s ≥ 2, let Ns(G) denote the number of unlabeled copies of Ks in G, e.g.,

N2(G) = e(G).

The following is a refinement of the statement of Theorem 12.

Theorem 55. Let n ≥ k ≥ 5 and let t = bk−12 c. If G is a 2-connected n-vertex graph with

circumference less than k, then

Ns(G) ≤ max{fs(n, k, 2), fs(n, k, t)}.

Again, this theorem is sharp with the same extremal examples Hn,k,2 and Hn,k,t.

This theorem implies the cliques version of Theorem 6:

Corollary 56. Let n ≥ k ≥ 4. If G is an n-vertex graph with circumference less than k,
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then

Ns(G) ≤ n− 1

k − 2

(
k − 1

s

)
.

Unlike the edges case, Theorem 55 unfortunately does not easily imply ex(n,Ks, Pk). How-

ever, a Kopylov-style argument very similar to the proof of Theorem 55 gives the result for

paths.

Theorem 57. Let n ≥ k ≥ 4 and let G be an n-vertex connected graph with no path on k

vertices. Let t = b(k − 2)/2c. Then Ns(G) ≤ max{fs(n, k − 1, 1), fs(n, k − 1, t)}.

We have sharpness examples Hn,k−1,1 and Hn,k−1,t. Finally, using induction on the number

of components gives the following result:

Corollary 58. ex(n,Ks, Pk) = n
k−1
(
k−1
s

)
.

And the same extremal examples as for Corollary 5 apply.

The proofs for Corollary 56, Theorem 57, and Theorem 58 are given in Section 4 of this

chapter. We first prove Theorem 55.

4.3 Proof of Theorem 55

Let G be an edge-maximal counterexample. Then G is k-closed, i.e., adding any additional

edge to G creates a cycle of length at least k. In particular, for any nonadjacent vertices x

and y of G, there exists a path of at least k − 1 edges between x and y. We will use the

following lemma:

Lemma 59 (Kopylov [Kop77]). Let G be a 2-connected n-vertex graph with a path P of m

edges with endpoints x and y. For v ∈ V (G), let dP (v) = |N(v) ∩ V (P )|. Then G contains

a cycle of length at least min{m+ 1, dP (x) + dP (y)}.

Our first goal is to show that G contains a large “core”, i.e., a subgraph with large minimum

degree. For this, we use the notion of disintegration.

Recall the definition of α-disintegration.

Definition: For a natural number α and a graph G, the α-disintegration of a graph G

is the process of iteratively removing from G the vertices with degree at most α until the

resulting graph has minimum degree at least α + 1 or is empty. This resulting subgraph

H = H(G,α) will be called the (α+ 1)-core of G. It is well known that H(G,α) is unique

and does not depend on the order of vertex deletion (for instance, see [PSW96]).

Let H(G, t) denote the (t+1)-core of G, i.e., the resulting graph of applying t-disintegration

to G. We claim that

H(G, t) is nonempty.
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Suppose H(G, t) is empty. In the disintegration process, every time a vertex of degree at

most t is removed, we delete at most
(
t

s−1
)

copies of Ks. For the last ` ≤ t vertices, we

remove at most
(
`−1
s−1
)

copies of Ks with each deletion. Thus

Ns(G) ≤ (n− t)
(

t

s− 1

)
+

(
t− 1

s− 1

)
+

(
t− 2

s− 1

)
+ . . .+

(
0

s− 1

)
= (n− t)

(
t

s− 1

)
+

(
t

s

)
= (n− (t+ 1))

(
t

s− 1

)
+

(
t+ 1

s

)
≤ fs(n, k, t),

a contradiction.

Therefore H(G, t) is nonempty. Next we show that

H(G, t) is a complete graph.

If there exists a nonedge of H(G, t), then in G, there is a path of length at least k− 1 edges

with these vertices as its endpoints. Among all nonadjacent pairs of vertices in H(G, t),

choose x, y such that there is a longest path P in G with endpoints x and y. By maximality

of P , all neighbors of x in H(G, t) lie in P : if x has a neighbor x′ ∈ H(G, t) − P , then

either x′y ∈ E(G) and x′P is a cycle of length at least k, or x′y /∈ E(G) and so x′P

is a longer path. Similar for y. Hence, by Lemma 59, G has a cycle of length at least

min{k, dP (x) + dP (y)} = min{k, 2(t+ 1)} = k, a contradiction.

Now let r = |V (H(G, t)|. Each vertex in H(G, t) has degree at least t + 1, so r ≥ t + 2.

Also, if r ≥ k − 1, as G is 2-connected and H(G, t) is a clique, we can extend a path on

r vertices of H(G, t) to a cycle of length at least r + 1 ≥ k, a contradiction. Therefore

t+ 2 ≤ r ≤ k − 2. In particular, 2 ≤ k − r ≤ t. Apply (k − r)-disintegration to G, and let

H(G, k − r) be the resulting graph. Then H(G, t) ⊆ H(G, k − r).
If H(G, t) = H(G, k − r), then

Ns(G) ≤
(
r

s

)
+ (n− r)

(
k − r
s− 1

)
= fs(n, k, k − r) ≤ max{fs(n, k, 2), fs(n, k, t)}

by the convexity of fs. Therefore, H(G, t) is a proper subgraph of H(G, k − r), and there

must be a nonedge between a vertex in H(G, t) and a vertex in H(G, k − r). Among all

such pairs, choose x ∈ H(G, t) and y ∈ H(G, k − r) to have a longest path P between

them. As before, P contains at least k − 1 edges, and each neighbor of x in H(G, t) and

each neighbor of y in H(G, k − r) lie in P . Then G contains a cycle of length at least
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min{k, (r − 1) + (k − r + 1)} = k, a contradiction.

4.4 Proofs for general graphs and graphs without long paths

Proof of Corollary 56. Define gs(n, k) = n−1
k−2
(
k−1
s

)
and t = bk−12 c. One can check that when

n ≥ k,

gs(n, k) ≥ max{fs(n, k, t), fs(n, k, 2)}.

Fix a graph G on n vertices with circumference less than k. If G is disconnected, simply

apply induction to each component of G to obtain the desired result. Therefore we may

assume G is connected. We induct on the number of blocks of G. First suppose k ≥ 5. If

G is a block, i.e., 2-connected, then either n ≤ k − 1, and so Ns(G) ≤
(|V (G)|

s

)
≤ gs(n, k),

or n ≥ k, and so by Theorem 55, Ns(G) ≤ max{fs(n, k, t), fs(n, k, 2)} ≤ gs(n, k).

Otherwise, consider the block-cut tree of G—the tree whose vertices correspond to blocks of

G such that two vertices in the tree are adjacent if and only if the corresponding blocks in G

share a vertex. Let B1 be a block in G corresponding to a leaf-vertex in the block-cut tree

such that B1 and its complement are connected by the cut vertex v. Set B2 = G−B1+{v}.
Apply the induction hypothesis to B1 and B2 to obtain

Ns(G) = Ns(B1) +Ns(B2) ≤ gs(|B1|, k) + gs(n− |B1|+ 1, k)

=
|B1| − 1

k − 2

(
k − 1

s

)
+

(n− |B1|+ 1)− 1

k − 2

(
k − 1

s

)
= gs(n, k).

If k = 4, then either G is a forest or G has circumference 3. In the second case, each block

of G is either a triangle or an edge. Thus Ns(G) ≤ gs(n, k) in both cases.

The proof of Theorem 57 follows the same steps as the proof of Theorem 55. As some

details here will be omitted to prevent repetition, it is advised that the reader first reads

the proof of Theorem 55.

Proof of Theorem 57. Suppose for contradiction that Ns(G) > max{fs(n, k−1, 1), fs(n, k−
1, t)} where t = b(k − 2)/2c. Let G0 be the graph obtained by adding a dominating vertex

v0 adjacent to all of V (G). Then G0 is 2-connected, has n + 1 vertices, and contains no

cycle of length k + 1 or greater. Let G′ be the k + 1-closure of G0 (i.e., add edges to G0

until any additional edge creates a cycle of length at least k + 1). Denote by N ′s(G
′) the

number of Ks’s in G′ that do not contain v0. Thus N ′s(G
′) ≥ N ′s(G0) = Ns(G). Apply

(t + 1)-disintegration to G′, where if necessary, we delete v0 last. Let H(G′, t + 1) be the

resulting graph of the disintegration. If H(G′, t+ 1) is empty, then at the time of deletion
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each vertex has at most t neighbors that are not v0. Hence

N ′s(G
′) ≤ (n− (t+ 1))

(
t

s− 1

)
+

(
t+ 1

s

)
≤ fs(n, k − 1, t),

a contradiction.

The same argument as in the proof of Theorem 55 also shows that H(G′, t+1) is a complete

graph, otherwise there would be a cycle of length at least 2(t + 2) ≥ (k − 1) + 2 in G′.

Note that v0 must be contained in H(G′, t + 1) as it is adjacent to all vertices in G′.

Set |V (H(G′, t + 1))| = r where t + 3 ≤ r ≤ k − 1 (and so k − r ≥ 1). In particular,

(k+1)−r ≤ t+1. Apply (k+1−r)-disintegration to G′. If H(G′, t+1) 6= H(G′, k+1−r),
then again we can find a cycle of length at least (r − 1) + k + 2 − r = k + 1. Otherwise,

suppose H(G′, t + 1) = H(G′, k + 1 − r). In H(G′, t + 1), the number of s-cliques that do

not include v0 is
(
r−1
s

)
, and in V (G)− V (H(G′, k+ 1− r)), every vertex had at most k− r

neighbors that were not v0 at the time of its deletion. We have

N ′s(G
′) ≤

(
r − 1

s

)
+ (n+ 1− r)

(
k − r
s− 1

)
= fs(n, k − 1, k − r) ≤ max{fs(n, k − 1, 1), fs(n, k − 1, t)},

a contradiction.

Proof of Corollary 58. Define hs(n, k) = n
k−1
(
k−1
s

)
, and note that when n ≥ k,

hs(n, k) ≥ max{fs(n, k − 1, t), fs(n, k − 1, 1)}.

We induct on the number of components in G. First suppose k ≥ 4. If G is connected,

then either n ≤ k − 1, in which case Ns(G) ≤
(|V (G)|

s

)
≤ hs(n, k), or n ≥ k and Ns(G) ≤

max{fs(n, k − 1, 1), fs(n, k − 1, t)} ≤ hs(n, k). Otherwise if G is not connected, let C1 be

a component of G. Then Ns(G) = Ns(C1) + Ns(G − C1) ≤ hs(|C1|, k) + hs(n − |C1|, k) =

hs(n, k).

If k = 3 (the cases k ≤ 2 are not interesting), then the longest path in G has two vertices.

It follows that G is the union of a matching and isolated vertices. Therefore Ns(G) ≤
hs(n, k).
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Chapter 5

Berge hypergraphs

5.1 Introduction

In this chapter, we consider a generalization of the Turán problem for hypergraphs.

An early notion of cycles and paths in hypergraphs is due to Berge.

Definition 60. A Berge cycle of length ` in a hypergraph is a set of ` distinct vertices

{v1, . . . , v`} and ` distinct edges {e1, . . . , e`} such that {vi, vi+1} ⊆ ei with indices taken

modulo `.

A Berge path of length ` in a hypergraph in a hypergraph is a set of ` + 1 vertices

{v1, . . . , v`+1} and ` hyperedges {e1, . . . , e`} such that {vi, vi+1} ⊆ ei for all 1 ≤ i ≤ `.

We wish to generalize this notion to other graphs.

Fix a graph F . We say an r-uniform hypergraph H is a Berge F if there exists a bijective

mapping f : E(F )→ E(H) such that for every xy ∈ E(F ), xy ⊆ f(xy).

We consider the following function:

exr(n, F ) := max{e(H) : H ⊆
(

[n]

r

)
,H is Berge F -free}.

Note that when forbidding Berge copies of graphs, we are actually forbidding a family of

subhypergraphs, rather than a single subhypergraph.

The so-called Berge Turán number has recently become a popular area of research. In the

following sections, we demonstrate the relationship between extremal hypergraph problems

and generalizations of Turán problems for graphs. These lemmas will be helpful tools for

proving extremal results in hypergraphs.

5.2 Reduction to graphs

Let F be a fixed graph. Recall the following parameter for graphs:
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ex(n,Kr, F ) := max{N(G,Kr) : |V (G)| = n,G is F -free},

where N(G,Kr) is the number of copies of Kr in G.

Gerbner and Palmer [GP17] proved upper and lower bounds for exr(n, F ) in terms of Turán

numbers for graphs.

Theorem 61 (Gerbner and Palmer [GP17]). Fix r ≥ 2 and let F be any graph. Then

ex(n, F ) ≤ exr(n, F ) ≤ ex(n,Kr, F ) + ex(n, F ).

In [FKL18a], Füredi, Kostochka, and I proved a strengthening of the result.

Definition 62. For a hypergraph H, a system of distinct representative pairs (SDRP)

of H is a set of distinct pairs A = {{x1, y1}, . . . , {xs, ys}} and a set of distinct hyperedges

A = {f1, . . . fs} of H such that for all 1 ≤ i ≤ s
— {xi, yi} ⊆ fi, and

— {xi, yi} is not contained in any f ∈ H − {f1, . . . , fs}.

Let H be a hypergraph and p be an integer. The p-shadow, ∂pH, is the collection of the

p-sets that lie in some edge of H. In particular, we will often consider the 2-shadow ∂2H of

a r-uniform hypergraph H in which each edge of H yields a clique on r vertices.

Lemma 63. Let H be a hypergraph, let (A,A) be an SDRP of H of maximum size. Let

B := H \ A and let B = ∂2B be the 2-shadow of B. For a subset S ⊆ B, let BS denote

the set of hyperedges that contain at least one edge of S. Then for all nonempty S ⊆ B,

|S| < |BS |.

Proof. Suppose there exists a nonempty set S ⊆ B such that |S| ≥ |BS |. Choose a smallest

such S.

We claim that |S| = |BS |. Indeed, if |S| > |BS | then |S| ≥ 2 because BS 6= ∅ by definition.

Take any edge e ∈ S. The set S \ e is nonempty and |S \ e| = |S| − 1 ≥ |BS | ≥ |BS\e|, a

contradiction to the minimality of S.

Consider the case |S| = |BS |. By the minimality of S, each subset S′ ⊂ S satisfies |S′| <
|BS′ |. Therefore by Hall’s theorem, one can find a bijective mapping of S to BS , where

say the edge ei ∈ S gets mapped to hyperedge fi in BS for 1 ≤ j ≤ |S|. Then (A ∪
{ei, . . . , e|S|},A ∪ {f1, . . . , f|S|}) is a larger SDRP of H, a contradiction.

Lemma 64. Let H be a hypergraph and let (A,A) be an SDRP of H of maximum size. Let

B := H \ A, B = ∂2B, and let G be the graph on V (H) with edge set A ∪B. If G contains

a copy of a graph F , then H contains a Berge F on the same base vertex set.
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Proof. Let {v1, . . . , vp} and {e1, . . . , eq} be a set of vertices and a set of edges forming a

copy of F in G such that the edges e1, . . . , eb belong to B. By Lemma 63, each subset S of

{e1, . . . , eb} satisfies |S| < |BS |. So we may apply Hall’s Theorem to match each of these

ei’s to a hyperedge fi ∈ B. The edges ei ∈ A can be matched to distinct edges of A given

by the SDRP. Since A∩B = ∅ this yields a Berge F in H on the same base vertex set.

We note that this Lemma 64 was proved independently by Gerbner, Methuku, and Palmer [GMP18].

We have |H| = |A| + |B|. Note that the number of r-edges in B is at most the number

of copies of Kr in its 2-shadow. Therefore Lemma 64 gives a new proof for the result of

Gerbner and Palmer [GP17].

5.3 Forbidding Berge paths and long Berge cycles

Recently, several interesting results were obtained for Berge paths and cycles. Notably, the

results depend on the relationship between k and r.

Theorem 65 (Győri, Katona, and Lemons [GKL16]). Let H be an n-vertex r-graph with

no Berge path of length k. If r ≥ k ≥ 3, then e(H) ≤ (k−1)n
r+1 . If k > r + 1 > 3, then

e(H) ≤ n
k

(
k
r

)
.

Later, the remaining case k = r + 1 was resolved by Davoodi, Győri, Methuku, and Tomp-

kins [DGMT18].

Furthermore, the bounds in Theorem 65 and in [DGMT18] are sharp for each k and r for

infinitely many n.

Győri, Methuku, Salia, Tompkins, and Vizer [GMS+18] proved an asymptotic version of

the Erdős–Gallai theorem for Berge paths in connected hypergraphs whenever r is fixed and

n and k tend to infinity.

Theorem 66 (Győri, Methuku, Salia, Tompkins, and Vizer [GMS+18]). Let r be given.

Let Hn,k be a largest r-uniform connected n-vertex hypergraph with no Berge path of length

k. Then

lim
k→∞

(
lim
n→∞

e(Hn,k)
kr−1n

)
=

1

2r−1(r − 1)!
.

In the following chapters, we will present analogous results for hypergraphs without long

Berge cycles. The exact result for k ≥ r + 3 was obtained in [FKL18a]:

Theorem 67 (Füredi, Kostochka and Luo [FKL18a]). Let k ≥ r + 3 ≥ 6, and let H be an

n-vertex r-graph with no Berge cycles of length k or longer. Then e(H) ≤ n−1
k−2
(
k−1
r

)
.

The case of k ≤ r − 1 was resolved by Kostochka and Luo [KL18].
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Theorem 68 (Kostochka and Luo [KL18]). Let k ≥ 4, r ≥ k+ 1, and let H be an n-vertex

r-graph with no Berge cycles of length k or longer. Then e(H) ≤ (k−1)(n−1)
r .

Later, Ergemlidze, Győri, Methuku, Salia, Thompkins, and Zamora [EGM+18] extended

the results to k ∈ {r+ 1, r+ 2}, and Győri, Lemons, Salia, and Zamora [GLSZ18] extended

the results to k = r.

Theorem 69 (Ergemlidze et al. [EGM+18]). If k ≥ 4 and H is an n-vertex r-graph with

no Berge cycles of length k or longer, then k = r + 1 and e(H) ≤ n − 1, or k = r + 2 and

e(H) ≤ n−1
k−2
(
k−1
r

)
.

Theorem 70 (Győri et al. [GLSZ18]). If r ≥ 3 and H is an n-vertex r-graph with no Berge

cycles of length r or longer, then e(H) ≤ max{bn−1r c(r − 1), n− r + 1}.

Furthermore, stronger bounds for 2-connected hypergraphs were proved in [KL18] and [FKL19].
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Chapter 6

Hypergraphs with bounded circumference and small

uniformity

6.1 Introduction

In this chapter, we prove Theorem 13 which provides an upper bound for the maximum

number of hyperedges in hypergraphs without long cycles, where the uniformity of the

hypergraphs is small. This can be viewed as a hypergraph version of the Erdős–Gallai

Theorem (Theorem 6). We will make use of Systems of Distinct Representatives (SDRPs)

which were introduced in the previous section. This is joint work with Zoltán Füredi and

Alexandr Kostochka.

6.2 Results for avoiding long Berge cycles

Our main result is an analogue of the Erdős–Gallai theorem on cycles for r-graphs. The

following is a refinement of the statement of Theorem 13.

Theorem 71. Let r ≥ 3 and k ≥ r + 3, and suppose H is an n-vertex r-graph with no

Berge cycle of length k or longer. Then e(H) ≤ n−1
k−2
(
k−1
r

)
. Moreover, equality is achieved if

and only if ∂2H is connected and for every block D of ∂2H, D = Kk−1 and H[D] = K
(r)
k−1.

Note that a Berge cycle can only be contained in the vertices of a single block of the

2-shadow. Hence the aforementioned sharpness examples cannot contain Berge cycles of

length k or longer.

K
(r)
k−1

K
(r)
k−1 K

(r)
k−1 K

(r)
k−1 K

(r)
k−1 K

(r)
k−1

K
(r)
k−1

Figure 6.1: An extremal example for Theorem 71.
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For convenience, below we will use notation

Cr(k) :=
1

k − 2

(
k − 1

r

)
. (6.1)

(So C2(k)(n−1) = (k−1)(n−1)/2.) Theorem 71 yields the following implication for paths.

Corollary 72. Let r ≥ 3 and n ≥ k+ 1 ≥ r+ 4. If H is a connected n-vertex r-graph with

no Berge path of length k, then e(H) ≤ Cr(k)(n− 1).

This gives a k−2
k−r times stronger bound than Theorem 34 for connected r-graphs for all r ≥ 3

and n ≥ k+1 ≥ r+4 and not only for sufficiently large k and n. In particular, Corollary 72

implies the following slight sharpening of Theorem 34 for k ≥ r+3 in which we also describe

the extremal hypergraphs.

Corollary 73. Let r ≥ 3 and n ≥ k ≥ r+3. If H is an n-vertex r-graph with no Berge path

of length k, then e(H) ≤ n
k

(
k
r

)
with equality only if every component of H is the complete

r-graph K
(r)
k .

6.3 Kopylov’s Theorem and two inequalities

Recall again the definition of α-distintegration.

Definition: For a natural number α and a graph G, the α-disintegration of a graph G

is the process of iteratively removing from G the vertices with degree at most α until the

resulting graph has minimum degree at least α + 1 or is empty. This resulting subgraph

H(G,α) will be called the (α + 1)-core of G. It is well known (and easy) that H(G,α) is

unique and does not depend on the order of vertex deletion. If H(G,α) is the empty graph,

then we say H is α-disintegrable.

We use a consequence of Kopylov [Kop77] about the structure of graphs without long cycles.

We state it in the form that we need.

Theorem 74 (Kopylov [Kop77]). Let n ≥ k ≥ 5 and let t = bk−12 c. Suppose that G is a

2-connected n-vertex graph with no cycle of length at least k. Suppose that it is saturated,

i.e., for every nonedge xy the graph G ∪ {xy} has a cycle of length at least k. Then either

(74.1) the t-core H(G, t) is empty, i.e., G is t-disintegrable; or

(74.2) |H(G, t)| = s for some t+ 2 ≤ s ≤ k− 2, it is a complete graph on s vertices, and

H(G, t) = H(G, k−s), i.e., the rest of the vertices can be removed by a (k−s)-disintegration.

Note that in the second case 2 ≤ k − s ≤ t.
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Lemma 75. Let k, r, t, s, a nonnegative integers, and suppose k ≥ r+3 ≥ 6, t = b(k−1)/2c,
and 0 ≤ a ≤ s ≤ t. Then

a+

(
s− a
r − 1

)
≤ 1

k − 2

(
k − 1

r

)
:= Cr(k).

This is the part of the proof where we use k ≥ r + 3 because this inequality does not hold

for k = r+ 2 (then the right hand side is (r+ 1)/r while the left hand side could be as large

as b(r + 1)/2c).

Proof. Keeping k, r, t, s fixed the left hand side is a convex function of a (defined on the

integers 0 ≤ a ≤ s). It takes its maximum either at a = s or a = 0. So the left hand side is

at most max{s,
(
s
r−1
)
}. This is at most max{t,

(
t

r−1
)
}. We have eliminated the variables a

and s.

We claim that t ≤ 1
k−2
(
k−1
r

)
. Indeed, keeping k, t fixed, the right hand side is minimized

when r = k − 3, and then it equals to (k − 1)/2. This is at least b(k − 1)/2c = t.

Finally, we claim that
(
t

r−1
)
≤ 1

k−2
(
k−1
r

)
. If t < r − 1, then there is nothing to prove. For

t ≥ r − 1 rearranging the inequality we get

r ≤ k − 1

t
× k − 3

t− 1
× · · · × k − r

t− r + 2
.

Each fraction on the right hand side is at least 2. Since r < 2r−1, we are done.

Lemma 76. Let w, r ≥ 2, k ≥ r + 3 and let H be a w-vertex r-graph. Let ∂2H denote

the family of pairs of V (H) not contained in any member of H (i.e., the complement of the

2-shadow). Then

|H|+ |∂2H| ≤ ar(w) :=


(
w

2

)
for 2 ≤ w ≤ r + 2,(

w

r

)
for r + 2 ≤ w.

Moreover, for 2 ≤ w ≤ k − 1, |H| + |∂2H| = ar(w) if and only if w = k − 1 and either

w > r + 2 and H is complete, or w = r + 2 and one of H or ∂2H is complete.

Also, if 2 ≤ w ≤ k − 1, we have ar(w) ≤ (w − 1)
(
k−1
r

)
/(k − 2) = Cr(k)(w − 1).

Proof. The case of w ≥ r + 2 is a corollary of the classical Kruskal-Katona theorem, but

one can give a direct proof by a double counting. If ∂2H is empty, then |H| =
(
w
r

)
if and

only if H =
(
V (H)
r

)
. Otherwise, let H denote the r-subsets of V (H) that are not members of

H, H =
(
V (H)
r

)
\ H. Each pair of ∂2H is contained in

(
w−2
r−2
)

members of H and each e ∈ H
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contains at most
(
r
2

)
edges of ∂2H. We obtain

|∂2H|
(
w − 2

r − 2

)
≤ |H|

(
r

2

)
.

Since
(
w−2
r−2
)
≥
(
r
r−2
)

=
(
r
2

)
, |∂2H| ≤ |H| with equality only when w = r + 2. Furthermore,

if ∂2H and H are both nonempty, then for any xy ∈ ∂2H and uv ∈ ∂2H (with possibly

x = u), any r-tuple e containing {x, y}∪{u, v} is in H but contributes strictly less than
(
r
2

)
edges to ∂2H, implying |∂2H| < |H|. This completes the proof of the case.

The case w ≤ r+ 1 is easy, and the calculation showing ar(w) ≤ Cr(k)(w−1) with equality

only if w = k − 1 is standard.

6.4 Proof of Theorem 71, the main upper bound

Proof. Let H be an r-uniform hypergraph on n vertices with no Berge cycle of length k or

longer (k ≥ r + 3 ≥ 6). Let (A,A) be an SDRP of H of maximum size. Let B := H \ A,

B = ∂2B. By Lemma 64 the graph G with edge set A∪B does not contain a cycle of length

k or longer.

Let V1, V2, . . . , Vp be the vertex sets of the standard (and unique) decomposition of G into

2-connected blocks of sizes n1, n2, . . . , np. Then the graph A ∪ B restricted to Vi, denoted

by Gi, is either a 2-connected graph or a single edge (in the latter case ni = 2), each edge

from A ∪B is contained in a single Gi, and
∑p

i=1(ni − 1) ≤ (n− 1).

This decomposition yields a decomposition of A = A1 ∪ A2 ∪ · · · ∪ Ap and B = B1 ∪ B2 ∪
· · · ∪Bp, Ai ∪Bi = E(Gi). If an edge e ∈ Bi is contained in f ∈ B, then f ⊆ Vi (because f

induces a 2-connected graph Kr in B), so the block-decomposition of G naturally extends

to B, Bi := {f ∈ B : f ⊆ Vi} and we have B = B1 ∪ · · · ∪ Bp, and Bi = ∂2Bi.
We claim that for each i,

|Ai|+ |Bi| ≤ Cr(k)(ni − 1), (6.2)

and hence

|H| = |A|+ |B| =
p∑
i=1

|Ai|+ |Bi| ≤
p∑
i=1

Cr(k)(ni − 1) ≤ Cr(k)(n− 1),

completing the proof.

To prove (6.2) observe that the case ni ≤ k− 1 immediately follows from Lemma 76. From

now on, suppose that ni ≥ k.

Consider the graph Gi and, if necessary, add edges to it to make it a saturated graph with no

cycle of length k or longer. Let the resulting graph be G′. Kopylov’s Theorem (Theorem 74)
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can be applied to G′. If G′ is t-disintegrable, then make (ni−k+2) disintegration steps and

let W be the remaining vertices of Vi (|W | = k − 2). For the edges of Ai and Bi contained

in W we use Lemma 76 to see that

|Ai[W ]|+ |Bi[W ]| < Cr(k)(|W | − 1).

In the t-disintegration steps, we iteratively remove vertices with degree at most t until we

arrive to W . When we remove a vertex v with degree s ≤ t from G′, a of its incident edges

are from A, and the remaining s − a incident edges eliminate at most
(
s−a
r−1
)

hyperedges

from Bi containing v. Therefore v contributes at most a +
(
s−a
r−1
)
≤ Cr(k) (by Lemma 75)

to |Bi|+ |Ai|.
It follows that

|Ai|+ |Bi| <
( ∑
v∈G′−W

Cr(k)

)
+ Cr(k)(|W | − 1) = Cr(k)(ni − 1).

This completes this case.

Next consider the case (74.2), W := V (H(G, t)), |W | = s ≤ k − 2. We proceed as in the

previous case, making (ni− s) disintegration steps. Apply Lemma 76 for |Ai[W ]|+ |Bi[W ]|
and Lemma 75 for the (k−s)-disintegration steps (where k−s ≤ t) to get the desired upper

bound (with strict inequality). This completes the proof of (6.2).

The extremal systems. Suppose that e(H) = |A|+|B| = Cr(k)(n−1). Then
∑p

i=1(ni−1) =

n− 1 (so A ∪B is connected) and |Ai|+ |Bi| = Cr(k)(ni − 1) for each 1 ≤ i ≤ p. From the

previous proof and Lemma 76, we see that this holds if and only if for each i, ni = k − 1,

and either Bi or Ai is complete. In particular, this implies that each block of A ∪ B is a

Kk−1. We will show that each Gi corresponds to a block in H that is K
(r)
k−1 with vertex set

Vi.

In the case that Bi is complete for all 1 ≤ i ≤ p, we are done. Otherwise, if some Ai is

complete (ni = k−1 = r+2 by Lemma 76) then there are
(
k−1
2

)
=
(
k−1
k−3
)

=
(
k−1
r

)
hyperedges

in A intersecting Vi in at least two vertices. If all such hyperedges are contained in Vi, again

we get H[Vi] = K
(r)
k−1. So suppose there exists a f ∈ A which is paired with an edge xy ∈ Ai

in the SDRP, but for some z /∈ Vi, {x, y, z} ⊆ f . Then z belongs to another block Gj of

A ∪ B. In A ∪ B, there exists a path from x to z covering Vi ∪ Vj which avoids the edge

xy. Thus by Lemma 64, there is a Berge path from x to z with at least 2(k − 1) − 1 base

vertices which avoids the hyperedge f (since edge xy was avoided). Adding f to this path

yields a Berge cycle of length 2(k − 1)− 1 > k, a contradiction.
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6.5 Corollaries for paths

In order to be self-contained, we present a short proof of a lemma by Győri, Katona, and

Lemons [GKL16].

Lemma 77 (Győri, Katona, and Lemons [GKL16]). Let H be a connected hypergraph with

no Berge path of length k. If there is a Berge cycle of length k on the vertices v1, . . . , vk

then these vertices constitute a component of H.

Proof. Let V = {v1, . . . , vk}, E = {e1, . . . , ek} form the Berge cycle in H. If some edge, say

e1 contains a vertex v0 outside of V , then we have a path with vertex set {v0, v1, . . . , v`} and

edge set E. Therefore each ei is contained in V . Suppose V 6= V (H). Since H is connected,

there exists an edge e0 ∈ H and a vertex vk+1 /∈ V such that for some vi ∈ V , say i = k,

{vk, vk+1} ⊆ e0. Then {v1, . . . , vk, vk+1}, {e1, . . . , ek−1, e0} is a Berge path of length k.

Proof of Corollary 72. Suppose n ≥ k + 1 and H is a connected n-vertex r-graph with

e(H) > Cr(k)(n− 1). Then by Theorem 71, H has a Berge cycle of length ` ≥ k. If

` ≥ k + 1, then removing any edge from the cycle yields a Berge path of length at least k.

If ` = k, then by Lemma 77, H again has a Berge path of length k.

Now Theorem 71 together with Corollary 72 directly imply Corollary 73.

Proof of Corollary 73: Suppose k ≥ r + 3 ≥ 6 and H is an r-graph. Let H1,H2, . . . ,Hs be

the connected components of H and |V (Hi)| = ni for i = 1, . . . , s.

If ni ≤ k − 1, then |Hi| ≤
(
ni
r

)
< ni

k

(
k
r

)
. If ni ≥ k + 1, then by Corollary 72, |Hi| ≤

Cr(k)(ni − 1) < ni
k

(
k
r

)
. Finally, if ni = k, then |Hi| ≤

(
k
r

)
= ni

k

(
k
r

)
, with equality only if

Hi = K
(r)
k . This proves the corollary.
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Chapter 7

Hypergraphs with bounded circumference and large uniformity

7.1 Introduction

In this chapter we prove Theorem 14, an analogue of the Erdős–Gallai theorem for long

Berge cycles in hypergraphs with large uniformity. In particular, we get bounds for general

hypergraphs as well as 2-connected hypergraphs with some lower rank r. The methods we

use differ from those of the previous chapter. In much of this work, we focus instead on

proving results in the incidence bipartite graph of a hypergraph. This is joint work with

Alexandr Kostochka [KL18].

7.2 Notation and results

7.2.1 Hypergraph notation

The lower rank of a multi-hypergraph H is the size of a smallest edge of H.

In view of the structure of our proof, it is more convenient to consider hypergraphs with

lower rank at least r instead of r-uniform hypergraphs. It also yields formally stronger

statements of the results.

The incidence graph G(H) of a multi-hypergraph H = (V,E) is the bipartite graph with

parts V and E where v ∈ V is adjacent to e ∈ E iff in H vertex v belongs to edge e.

There are several versions of connectivity of hypergraphs. We will call a multi-hypergraph

H 2-connected if the incidence graph G(H) is 2-connected.

A hyperblock in a multi-hypergraph H is a maximal 2-connected sub-multi-hypergraph of

H.

Definition 78. For integers r, k with r ≥ k+ 1, we call a multi-hypergraph with lower rank

at least r an (r + 1, k − 1)-block if it contains exactly r + 1 vertices and k − 1 hyperedges.

Definition 79. A multi-hypergraph H with lower rank at least r is an (r+ 1, k− 1)-block-

tree if
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(r + 1, k − 1)

-block

Figure 7.1: An (r + 1, k − 1)-block tree. Each hyperblock contains r + 1 vertices and k − 1
hyperedges.

(i) every hyperblock of H is an (r + 1, k − 1)-block,

(ii) all cut-vertices of the incidence graph G(H) of H are in V .

An (r+1, k−1)-block cannot contain a Berge-cycle of length k or longer because it contains

fewer than k edges. Therefore an (r+ 1, k− 1)-block-tree also cannot contain such a cycle.

7.2.2 Results for hypergraphs

The following is a refinement of the statement of Theorem 14.

Theorem 80. Let k ≥ 4, r ≥ k + 1 and let H be an n-vertex multi-hypergraph such that H
has lower rank at least r, and each edge of H has multiplicity at most k − 2. If H has no

Berge-cycles of length k or longer, then e(H) ≤ (k−1)(n−1)
r , and equality holds if and only if

H is an (r + 1, k − 1)-block-tree.

As a corollary of Theorem 80 we obtain a slight generalization of Theorem 65 [GKL16]

(their result is for uniform hypergraphs without repeated edges):

Corollary 81. Let r ≥ k + 1 ≥ 3, and let H be an n-vertex multi-hypergraph such that H
has lower rank at least r, and each edge of H has multiplicity at most k − 2. If H has no

Berge-paths of length k, then e(H) ≤ (k−1)n
r+1 .

Theorem 80 also implies the following analogue of the Erdős–Gallai theorem for cycles in

r-uniform hypergraphs (without repeated edges).

Theorem 82 (Erdős–Gallai for hypergraphs). Let k ≥ 4, r ≥ k+1, and let H be an n-vertex

r-graph with no Berge-cycles of length k or longer. Then e(H) ≤ (k−1)(n−1)
r . Furthermore,

equality holds if and only if H is an (r + 1, k − 1)-block-tree.

There is a phase transition when r = k. Let H be an r-uniform hypergraph with vertex set

{v1, . . . , vn} and edge set {e1, . . . , en−r+1}, where ei = {vi} ∪ {vn, vn−1, . . . , vn−r+2}. Then
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the longest Berge-cycle in H has length r − 1, and m = n − (r − 1). Thus when r is fixed

and n is large, e(H) = n− r + 1 > (r−1)(n−1)
r . But when n is small, (r−1)(n−1)

r is larger.

In [GLSZ18], it was proved that this construction and the aforementioned (r + 1, k − 1)-

block-trees are optimal.

The key to our proof is a stronger version of Theorem 80 for multi-hypergraphs that are

2-connected.

Theorem 83. Let k ≥ 4, r ≥ k + 1 and let H be an n-vertex multi-hypergraph such that H
is 2-connected, has lower rank at least r, and each edge of H has multiplicity at most k− 2.

If H contains no Berge-cycles of length k or longer, then

e(H) ≤ max{k − 1,
k

2r − k + 2
(n− 1)}.

A proof similar to that of Corollary 81 (see the last section) yields the following result for

paths in connected hypergraphs.

Corollary 84. Let r ≥ k ≥ 3, and let H be a connected n-vertex r-graph with no Berge-path

of length k. Then

e(H) ≤ max{k − 1,
k

2r − k + 4
n}.

Remark 85. We do not know if the bound for e(H) in Theorem 83 is sharp. But the

following multi-hypergraph construction shows that when k is much smaller than r, our

bound is asymptotically (when r tends to infinity) optimal: Let k ≥ 3 be odd, t ∈ N and

V (Ht) = {a, b} ∪ V1 ∪ . . . ∪ Vt where |Vi| = r − 2 for each 1 ≤ i ≤ t, and the Vi’s are

pairwise disjoint. The edge set of Ht consists of k−1
2 copies of Vi∪{a, b} for each 1 ≤ i ≤ t.

Then each Berge-cycle in Ht intersects at most two Vi’s and hence contains at most k − 1

hyperedges. We also have

e(Ht) =
k − 1

2
t =

k − 1

2r − 4
(n− 2).

7.2.3 Results for bipartite graphs

By definition, a multi-hypergraph H has a cycle of length k if and only if the incidence

graph G(H) has a cycle of length 2k. Also if H has lower rank r, then the degree of each

vertex in one of the parts of G(H) is at least r. In view of this we have studied bipartite

graphs G = (X,Y ;E) with circumference at most 2k−2 in which the degrees of all vertices

in X are at least r. One of the main results (implying Theorem 80) is:

Theorem 86. Let k ≥ 4, r ≥ k+1 and let G = (X,Y ;E) be a bipartite graph with |X| = m

and |Y | = n such that d(x) ≥ r for every x ∈ X. Also suppose G has no blocks isomorphic
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to Kk−1,r. If c(G) < 2k, then m ≤ k−1
r (n − 1). Moreover, if m = k−1

r (n − 1), then every

block of G is a subgraph of Kk−1,r+1 and every cut vertex is in Y .

The heart of the proof is the following stronger bound for 2-connected graphs.

Theorem 87. Let k ≥ 4, r ≥ k + 1 and let G = (X,Y ;E) be a bipartite 2-connected graph

with |X| = m and |Y | = n such that m ≥ k and d(x) ≥ r for every x ∈ X. If c(G) < 2k,

then m ≤ k
2r−k+2(n− 1).

In order to use induction on the number of blocks, we will prove a more general statement:

We will allow some vertices in X to have degrees less than r and assign them a deficiency.

Let G = (X,Y ;E) be a bipartite graph, and r be a positive integer. For a vertex x ∈ X, the

deficiency of x is DG(x) := max{0, r − dG(x)}. For a subset X∗ ⊆ X, define the deficiency

of X∗ as D(G,X∗) :=
∑

x∈X∗ DG(x).

In these terms our more general theorem is as follows.

Theorem 88 (Main Theorem). Let k ≥ 4, r ≥ k+ 1 and m,m∗, n be positive integers with

n ≥ k, m ≥ m∗ ≥ k−1 and m ≥ k. Let G = (X,Y ;E) be a bipartite 2-connected graph with

parts X and Y , where |X| = m, |Y | = n, and let X∗ ⊆ X with |X∗| = m∗. If c(G) < 2k,

then

m∗ ≤ k

2r − k + 2
(n− 1 +D(G,X∗)). (7.1)

7.3 Proof outline

As we discussed in the previous section, our main theorem is on bipartite graphs with

circumference at most 2k − 2, based on a stronger result for 2-connected graphs.

In Section 4, we present a general theorem on the structure of 2-connected bipartite graphs

with no long cycles and the most edges. In particular, we show that for 3 ≤ d ≤ (k − 1)/2,

each such graph that is neither d-degenerate nor “too dense” contains a substructure that

we call a “saturated crossing formation”. In Section 5, we state the Main Theorem for

2-connected bipartite graphs that will be used to prove the inductive statement for general

bipartite graphs. In Sections 5, 6, and 7 we show that if a graph is too sparse then it

satisfies the Main Theorem, but if it is too dense, then it contains a long cycle. So our

graphs must contain a path in saturated crossing formation, but we also prove that any

graph that contains such a path satisfies our Main Theorem, a contradiction. In Section 8,

we prove a bound on the size of X for general bipartite graphs, and in Section 9, we apply

this bound to finally prove Theorem 80 for hypergraphs.
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7.4 Structure of bipartite graphs without long cycles

Definition 89. Let P = v1, . . . , vp be a path with endpoints x = v1 and y = vp. For vertices

vi, vj of P , let P [vi, vj ] = vi, vi+1, . . . , vj if i < j, and vi, vi−1, . . . , vj if i > j.

Definition 90. Vertices vi, vj in P are called crossing neighbors if i < j, vi ∈ N(y), vj ∈
N(x), and for each i < ` < j, v` /∈ N(x) ∪ N(y). The edges xvj , yvi are called crossing

edges.

Definition 91. For a set S ⊆ V (P ), define S+
P := {vi+1 : vi ∈ S} and S−P := {vi−1 : vi ∈

S}. When there is no ambiguity, we will simply write S+ = S+
P and S− = S−P .

Lemma 92. Let G be a 2-connected bipartite graph, and let P be an (x, y)-path. Then

either

(a) P contains no crossing neighbors and G has a cycle of length at least 2(dP (x)+dP (y)−
1), or

(b) x and y are in different partite sets of G and there exists a cycle of length at least

min{|V (P )|, 2(dP (x) + dP (y)− 1)}

in G, or

(c) x and y are in the same partite set and there exists a cycle of length at least

min{|V (P )| − 1, 2(dP (x) + dP (y)− 2)}

in G. Furthermore in all cases, we obtain a cycle that covers NP (x) ∪NP (y).

Proof. Suppose first that P contains no crossing neighbors. Our proof is based off Bondy’s

theorem for general 2-connected graphs.

Let P = v1, . . . , vp where v1 = x, vp = y. Let t0 = max{s : vs ∈ N(x)} and u = min{s :

vs ∈ N(y)}, thus t0 ≤ u. Iteratively construct paths P1, P2, . . . as follows: given tr−1, find

sr, tr such that sr < tr−1 < tr where tr is as large as possible, and Pr is a path from vsr to

vtr that is internally disjoint from P . It is always possible to find such a Pr because G is

2-connected. We stop at step ` at the first instance where ` > u. Observe that for r1 < r2,

paths Pr1 and Pr2 must be disjoint: if they share a vertex, then we would have chosen Pr1

to end at vertex vr2 , contradicting the maximality of r1. Also, sr+1 ≥ tr−1, otherwise we

would choose Pr+1 instead of Pr.

Now let a = min{r : vr ∈ N(x), r > s1}, b = max{r : vr ∈ N(y), r < t`}.
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Figure 7.2: A cycle in a path without crossing neighbors.

If ` is odd, then we take the cycle

C1 := P [x, vs1] ∪ P1 ∪ P [vt1 , vs3 ] ∪ P3 ∪ . . . ∪ P [vt`−2
, vs` ] ∪ P` ∪ P [vt`, y]∪

∪yvu ∪ P [vu, vt`−1
] ∪ P`−1 ∪ . . . ∪ P [vs4 , vt2 ] ∪ P2 ∪ P [vs2 , vt0 ] ∪ vt0x.

And if ` is even, we take the cycle

C2 := P [x, vs1 ] ∪ P1 ∪ P [vt1 , vs3 ] ∪ P3 ∪ . . . ∪ P [vt`−3
, vs`−1

] ∪ P`−1 ∪ P [vt`−1
, vu]∪

∪vuy ∪ P [y, vt` ] ∪ P` ∪ . . . ∪ P [vs4 , vt2 ] ∪ P2 ∪ P [vs2 , vt0 ] ∪ vt0x.

Both cycles cover NP (x) ∪ NP (y). If x and y are the same parity, since P contains no

crossing neighbors, |NP (x) ∩NP (y)| ≤ 1. Therefore P contains at least dP (x) + dP (y)− 1

even vertices, which implies |V (C)| ≥ 2(dP (x)+dP (y)−1) becauseG is bipartite. Otherwise,

if x and y are different parities, then the neighbors of x and the successors of neighbors of y

are disjoint, of the same parity, and are contained in C. Thus |V (C)| ≥ 2(dP (x) + dP (y)),

as desired.

Now suppose G has crossing neighbors vi and vj with j < i and xvj , yvi ∈ E(G). Let

C = P [x, vi]∪ viy ∪P [y, vj ]∪ vjx. If j = i+ 1, then C contains all vertices of P , as desired.

If j = i + 2, then x and y must be the same parity, and C omits only vertex vi+1. I.e.,

|V (C)| = |V (P )| − 1.

Consider first the case where x and y are different parities and each pair of crossing neighbors

has at least 2 vertices between them. For every neighbor vs of x in P −{vj} (note s is even),

the odd vertex vs−1 is in C and is not a neighbor of y, otherwise vs−1 and vs would form

a pair of crossing neighbors. Also, each neighbor of y in P is in C. Thus C has at least

dP (x)− 1 + dP (y) odd vertices. That is, |C| ≥ 2(dP (x) + dP (y)− 1).

Now suppose x and y are the same parity and that crossing neighbors have at least 3 vertices

between them. Let C be as before.

For any vertices vs ∈ NP (x) − {vj} and vt ∈ NP (y) − {vi}, vs−1 and vt+1 are distinct and

of the same parity (in this case, odd). Thus C contains at least dP (x)− 1 + dP (y)− 1 odd

vertices. It follows that |C| ≥ 2(dP (x) + dP (y)− 2), as desired.
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Definition 93. Let G be a 2-connected bipartite graph, and let P be a path v1, . . . , vp. We

say that P is in crossing formation if there is a sequence of vertices vi0 , vi1 , . . . , viq such

that vi, vi′ are crossing neighbors if and only if {vi, vi′} = {vi` , vi`+1
} for some 0 ≤ ` ≤ q−1.

Definition 94. Let G be a 2-connected bipartite graph, and let P be an x, y-path v1, . . . , vp.

Say that P is in saturated crossing formation if

1. P is in crossing formation,

2. G[{v1, v2, . . . , vi0}∪{vi0 , . . . , viq}] and G[{viq , . . . , vp}∪{vi0 , . . . , viq}] are both complete

bipartite,

3. if P has more than one pair of crossing neighbors, then each pair has exactly 3 vertices

between them,

4. v2 has a neighbor v′1 outside of P such that N(v′1) = N(v1), and vp−1 has a neighbor

v′p outside of P such that NP (v′p) = NP (vp),

5. for every even h ≤ i0−2 and every u ∈ NG(vh), NG(u) ⊆ NP (v1), similarly, for every

even h ≥ iq + 2 and every w ∈ NG(vh), NG(w) ⊆ NP (vp); in particular, for every odd

g ≤ i0 − 1, NG(vg) ⊆ V (P ) and for every odd h ≥ iq + 1, NG(vh) ⊆ V (P ).

Figure 7.3: A crossing formation, a saturated crossing formation

Definition 95. For a bipartite graph G = A∪B, α ∈ N, and subsets X∗ ⊆ A, Y ∗ ⊆ B, the

α(X∗, Y ∗)-disintegration of G is the process of first deleting the vertices of (A − X∗) ∪
(B−Y ∗) from G, then iteratively removing the remaining vertices of degree at most α until

the resulting graph is either empty or has minimum degree at least α + 1. Let Gα(X∗, Y ∗)

denote the result of applying α(X∗, Y ∗)-disintegration to G.

In the case where X∗ = A and Y ∗ = B, in literature, Gα(X∗, Y ∗) is commonly referred to

as the (α+ 1)-core of G, that is, the unique maximum subgraph of G with minimum degree

at least α+ 1.

Note that if α ≥ (k − 1)/2, then k − 1− α ≤ α, so Gα(X∗, Y ∗) ⊆ Gk−1−α(X∗, Y ∗).

Definition 96. A bigraph G = (X,Y ;E) is 2k-saturated if c(G) < 2k, but for each x ∈ X
and y ∈ Y with xy /∈ E(G), the graph G+ xy has a cycle of length at least 2k.
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For example, if s ≤ k − 1 then for any t, the complete bipartite graph Ks,t is 2k-saturated,

because it does not have x ∈ X and y ∈ Y with xy /∈ E(G)

Theorem 97. Fix k ≥ 3 odd and let G be a 2-connected 2k-saturated bipartite graph. For

some (k − 1)/2 ≤ α ≤ k − 2, and (X∗, Y ∗), suppose there are x ∈ V (Gα(X∗, Y ∗)) and

y ∈ V (Gk−1−α(X∗, Y ∗)) that are nonadjacent to each other. Let P = v1, . . . , vp be a path

with the following properties: (1) P is a longest path in G such that v1 ∈ Gα(X∗, Y ∗) and

vp ∈ Gk−1−α(X∗, Y ∗), and (2) subject to the first condition,
∑p

i=1 dP (vi) is maximized.

Then P is in a saturated crossing formation.

Proof. For simplicity, denote Gα = Gα(X∗, Y ∗) and Gk−1−α = Gk−1−α(X∗, Y ∗).

Because G is saturated and xy /∈ E(G), G contains an (x, y)-path with at least 2k vertices.

Thus p ≥ 2k. By the maximality of P , all neighbors of v1 in Gα and all neighbors of vp in

Gk−1−α are in P . Thus

dP (v1) ≥ α+ 1 and dP (vp) ≥ k − 1− α+ 1. (7.2)

By Lemma 92, G contains a cycle of length at least 2(dP (x) +dP (y)− 2) ≥ 2((α+ 1) + (k−
1−α+1)−2) = 2(k−1). But c(G) ≤ 2k−2, so P satisfies neither (a) nor (b) in Lemma 92.

In particular, p is odd (so p ≥ 2k + 1), and G has crossing neighbors. Let vi, vj be a pair

of crossing neighbors such that vi − vj is minimized. Examining the proof of Lemma 92,

each pair of crossing neighbors in P has at least 3 vertices between them. Furthermore, we

obtain a cycle C = P [v1, vi] ∪ vivp ∪ P [vp, vj ] ∪ vjv1 such that

I. V (C) = V (P )− {vi+1, . . . , vj−1},

II. |V (C)| = 2(dP (x) + dP (y)− 2), and

III. each odd vertex in C belongs to NP (v1)
− ∪NP (vp)

+ with NP (v1)
− ∩NP (vp)

+ = ∅.

In particular, since C misses only vertices between one pair of crossing neighbors, if C

contains more than one pair of crossing neighbors, then each pair only contains 3 vertices

between them, otherwise condition III. is violated. Thus Part 3 in the definition of saturated

crossing formation holds.

First we show that

v2 has a neighbor v′1 ∈ Gα outside of P . (7.3)

By Lemma 92, v1 has exactly α + 1 neighbors in P . So by the maximality of P , each of

these neighbors must be in Gα. In particular, v2 ∈ V (Gα), and so it has at least α + 1

neighbors in Gα as well. Suppose that all of its neighbors in Gα are in P .

If v2 has a neighbor vt ∈ N(vp)
+, then P [v2, vt−1] ∪ vt−1vp ∪ P [vp, vt] ∪ vtv2 is a cycle

of length at |V (P )| − 1 ≥ 2k, a contradiction. So N(v2) ∩ N(vp)
+ = ∅. Hence by fact
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III, NGα(v2) ⊂ NP (v1)
− ∪ V (P − C). Since vj−1 ∈ NGα(v1)

− but vj−1 /∈ V (C), we have

|NP (v1)
− \ V (P − C)| ≤ α. Thus v2 has a neighbor vh ∈ V (P − C). Furthermore, because

vh /∈ N(vp)
+, i+ 3 ≤ h ≤ j − 1.

Let v` be the first neighbor of vp that appears in P (so v`−2 ∈ N(v1) by III). Then the cycle

C ′ := v2vh ∪ P [vh, v`] ∪ v`vp ∪ P [vp, vj ] ∪ vjv1 ∪ v1v`−2 ∪ P [v`−2, v2]

has at least |V (C)|+ 2 vertices, a contradiction. This proves (7.3).

Consider the path P ′ = v′1v2∪P [v2, vp]. By definition, |V (P ′)| = |V (P )|. By the maximality

of P , each neighbor of v′1 in Gα must also lie in P ′, and v′1 must have α+ 1 such neighbors,

otherwise we would apply Lemma 92 to get a longer cycle in G.

Suppose v′1 is adjacent to vh for some i+ 1 ≤ h ≤ j − 1. Then the cycle P ′[v′1, vi] ∪ vivp ∪
P ′[vp, vh] ∪ vhv′1 is longer than C, a contradiction. Thus N(v′1) ∩ P ⊆ V (C). Then the

analog of fact III for P ′ yields

NP (v′1) = NP (v1). (7.4)

By a symmetric argument, we get the analog of (7.3) and (7.4):

vp−1 has a neighbor v′p outside of P such that NP (v′p) = NP (vp). (7.5)

This shows that Part 4 of the definition of saturated crossing formation holds.

Again, let v` be the first neighbor of vp in P . We claim that

for each even h ≥ `, either v1vh /∈ E(G) or v1vh+2 /∈ E(G). (7.6)

Indeed, suppose h ≥ `, v1vh ∈ E(G) and v1vh+2 ∈ E(G). Then by (7.4), v′1vh ∈ E(G) and

by the definition of `, v1v`−2 ∈ E(G). Then the cycle

C ′′ := v′1vh ∪ P [vh, v`] ∪ v`vp ∪ P [vp, vh+2] ∪ vh+2v1 ∪ v1v`−2 ∪ P [v`−2, v2] ∪ v2v′1

avoids only the vertices v`−1 and vh+1 in P and includes v′1 /∈ P . Thus |V (C ′′)| ≥ 2k, a

contradiction.

Similarly , if v`′ is the last neighbor of v1 in P , then

for each even h ≤ `′, either vpvh /∈ E(G) or vpvh−2 /∈ E(G). (7.7)

Together, (7.6) and (7.7) imply Part 1 of the definition of the saturated crossing formation

holds, i.e. there is a sequence of vertices vi0 , vi1 , , . . . , viq with i0 = i and i1 = j such that

vr, vr′ are crossing neighbors if and only if {vr, vr′} = {vi` , vi`+1
} for some 0 ≤ ` ≤ q − 1.
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To see this, suppose there exists two pairs of crossing neighbors, {va1 , vb1} and {va2 , vb2}
such that there are no other pairs of crossing neighbors between them, and b1 < a2. Then

a2 ≥ b1 + 2. Then by (7.6), vb1+2v1 /∈ E(G). If vb1vp /∈ E(G), then the vertex vb1+1 violates

fact III. Otherwise, if vb1vp ∈ E(G), then because there are no crossing pairs between

{va1 , vb2} and {va2 , vb2}, for each b1 < c ≤ a2, vcv1 /∈ E(G). By condition III, this means

each even vertex vc between vb1 and va2 belong to N(vp), contradicting (7.7).

Therefore we have proved that P is in crossing formation (Part 1 of the definition of satu-

rated crossing formation). Let vi0 , . . . , viq be the set of crossing neighbors. By fact III,

for each even s ≤ i0, v1vs ∈ E(G), and for each even t ≥ iq, vpvt ∈ E(G). (7.8)

Next we will prove Part 5 in 3 steps. Our first step is to prove:

For each odd 1 ≤ h < i0, N(vh) ⊆ NP (v1). In particular, N(v1) = NP (v1). (7.9)

Indeed, suppose for some odd 1 ≤ h < i0, vertex vh has a neighbor w /∈ {v2, v4, . . . , vi0−2}∪
{vi0 , . . . , viq}. Since G is 2-connected, G− vh contains a path Q = w1, . . . , ws from w = w1

to P − vh + v′1 (possibly, s = 1 if w ∈ P ) that is internally disjoint from P . If ws = v′1, then

the path

P1 = Q−1 ∪ wvh ∪ P [v1, vh] ∪ v1vh+1 ∪ P [vh+1, vp]

starts from v′1 ∈ Gα and is longer than P , a contradiction. Suppose now that ws = vg.

Then v′1 /∈ V (Q). If g > iq, then the cycle

C1 = vhw ∪Q ∪ P [vg, vp] ∪ vpv2b(g−1)/2c ∪ P [v2b(g−1)/2c, vh+1] ∪ vh+1v1 ∪ P [v1, vh]

has at least 2k vertices, a contradiction. If ij < g ≤ ij+1 for some 1 ≤ j < q, then the cycle

C2 = vhw ∪Q ∪ P [vg, vp] ∪ vpvij ∪ P [vh+1, vij ] ∪ vh+1v1 ∪ P [v1, vh]

is longer than C, unless g = ij+1 and s = 1. But g = ij+1 and s = 1 means w = vij+1 ,

contradicting the fact that w /∈ NP (v1). So suppose 1 ≤ g ≤ i0. If |g − h| = 1 then s ≥ 2:

if s = 1 then Q = w = ig ∈ NP (v1), a contradiction. But if s ≥ 2, then replacing edge vhvg

in P with Q, we obtain a longer (v1, vp)-path. So let |g−h| ≥ 2. Since v′1 /∈ V (Q), if g > h,

then the path

P1 = P [v1, vh−1] ∪ vh−1, v′1 ∪ v′1v2b(g−1)/2c ∪ P [v2b(g−1)/2c, vh] ∪ vhw ∪Q ∪ P [vg, vp]

has the same ends as P , but is longer than P , contradicting the choice of P . Similarly, if
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g < h, then the path

P2 = P [v1, v2b(g−1)/2c] ∪ v2b(g−1)/2c, v′1 ∪ v′1vh−1 ∪ P [vg, vh−1] ∪Q ∪ wvh ∪ P [vh, vp]

has the same ends as P , but is longer than P . This proves (7.9).

By the symmetry between v1 and v′1, the same proof implies

N(v′1) = NP (v1). (7.10)

Now let h < i0 be even.

For any g ∈ {i0, . . . , p} \ {i0, . . . , iq}, there is no vh, vg-path internally disjoint from P .

(7.11)

Indeed, suppose such a path Q = w1, w2, . . . , ws exists with w1 = vh and ws = vg. If

ij < g < ij+1 for some 1 ≤ j < q, then the cycle

C3 = Q ∪ P [vg, vp] ∪ vpvij ∪ P [vh+2, vij ] ∪ vh+2v1 ∪ P [v1, vh]

is longer than C unless s = 2 and g = ij+1 − 1. In this case, by (7.4), the cycle

vhvg ∪ P [vg, vi0 ] ∪ vi0vp ∪ P [vp, vg+1] ∪ vg+1v1 ∪ P [v1, vh−2] ∪ vh−2v′1 ∪ v′1vi0−2 ∪ P [vh, vi0−2]

has at least 2k vertices, a contradiction. So, suppose g > iq. Then the cycle

C4 = Q ∪ P [vg, vp] ∪ vpv2b(g−1)/2c ∪ P [v2b(g−1)/2c, vh+2] ∪ vh+2v1 ∪ P [v1, vh]

has more than 2k − 2 vertices, a contradiction. This proves (7.11).

To finish the proof of Part 5 by contradiction, suppose that for some even h ≤ i0 − 2,

vertex vh has a neighbor u that has a neighbor w /∈ NP (v1). By (7.9), (7.10) and (7.11),

u /∈ V (P ) + v′1. Since u is in the same partite set of G as v1, (7.11) implies that w /∈ V (P ).

Since G is 2-connected, G−u has a path Q connecting w with V (P ) + v′1 internally disjoint

from P + v′1. Let Q = w1, . . . , ws, where w1 = w and either ws = v′1 or ws = v` ∈ V (P ).

By (7.9) and (7.10), ws /∈ {v1, v3, . . . , vi0−1, v′1}. So, in view of (7.11), ws = v` ∈ V (P ),

where ` ∈ {2, 4, . . . , i0 − 2} ∪ {i0, . . . , iq}. If ` ∈ ∪{i1, . . . , iq}, say ` = ij then the cycle

C5 = vhu ∪ uw ∪Q ∪ P [vij , vp] ∪ vpvij−1 ∪ P [vij−1 , vh+2] ∪ vh+2v1 ∪ P [v1, vh]

is longer than C. The last possibility is that 1 ≤ g ≤ i0. Since G is 2-connected, we may

assume that g 6= h (indeed, if g = h, then G−vh has a path from V (Q)−vg+u to V (P )+v′1
which together with a part of Q can play the role of Q). For definiteness, suppose g > h (the
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case of g < h works the same way with the roles of vh and vg switched). If h < g ≤ h+ 2,

then the path P [v1, vh] ∪ vhu ∪ uw ∪ Q ∪ P [vg, vp] has the same ends as P , but is longer.

Let g ≥ h+ 3. Then the path

v1v2b(g−1)/2c∪P [v2b(g−1)/2c, v2d(h+1)/2e]∪v2d(h+1)/2ev
′
1∪v′1v2∪P [v2, vh]∪vhu∪uw∪Q∪P [vg, vp]

has the same ends as P , but is longer, a contradiction. Similarly, we obtain the symmetric

part of Part 5.

Finally, we will show Part 2 of the definition of saturated crossing formation. Suppose

there exists some odd h ≤ i0 − 1 such that for some s ∈ {i0, . . . , iq} ∪ {2, 4, . . . , i0 − 2},
vhvs /∈ E(G). By Part 5, N(vh) ⊂ N(v1) = N(v′1). Also, vh−1v

′
1, vh+1v

′
1 ∈ E(G) (by

(7.8)), so we can replace vh in P with v′1 to obtain a new path such that
∑p

i=1 dP (vi) <∑p
i=1 dP (vi) − dP (vh) + dP (v′1), a contradiction. Together with the symmetric argument

for the other side of P , we have shown that Part 2 of the definition of saturated crossing

formation holds.

Let P be a path satisfying the conditions of Theorem 97. For simplicity, we denote

P = L ∪H1 ∪ ... ∪Hq ∪R

where L = P [v1, vi0 ], and R = P [viq , vp], V (H1) ∩ V (L) = {vi0}, V (Ht) ∩ V (Ht+1) = {vit}
for all 1 ≤ t ≤ q − 1, and V (Hq) ∩R = {viq}. Let H := H1 ∪ . . . ∪Hq.

Lemma 98. Let P satisfy the conditions of Theorem 97. Let I := {vi0 , . . . , viq}, Lo :=

L − I,Ro := R − I,Ho := H − I. Then I separates Lo, Ro, and Ho. That is, Lo, Ro, and

Ho are each in different connected components in G− I.

Proof. Let Q = z1, z2, . . . , zs be a shortest path that between vertices from two different

sets in {Lo, Ro, Ho}. By minimality, Q only intersects P at z1 and zs. Also, |V (Q)| ≥ 3 by

Part 5 of the definition of saturated crossing formation.

Without loss of generality, z1 ∈ Lo (so zs ∈ Ho∪Ro). (Note that the case where Q goes from

Ro to Ho is symmetric to the case from Lo to Ho.) By Part 5, since odd vertices in P only

have neighbors in P , z1 and zs must be even. Also by Part 5, N(z2) ⊆ N(v1) ⊆ L ∪X. In

particular, z3 is in P , so we must have z3 = zs, but zs ∈ L∪I, where (L∪I)∩(Ro∪Ho) = ∅,
a contradiction.

Claim 99. Under the conditions of Theorem 97, for any 0 ≤ s < t ≤ q, let Q be a

(vis , vit)-path that is internally disjoint from P . Then

1. if P has exactly one pair of crossing neighbors (so s = 0, t = 1), then |V (Q)| < k+ 1.
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2. if P has multiple pairs of crossing neighbors, then |V (Q)| < 6.

Proof. First suppose P has only one pair of crossing neighbors. Then v1 has α + 1 − 1

neighbors in L. That is, |V (L)| ≥ 2α ≥ k− 1. If |V (Q)| ≥ k+ 1, then the cycle P [v1, vi0 ]∪
Q ∪ vi1v1 has length at least k − 1 + k + 1− 1 = 2k − 1, a contradiction.

Otherwise, if P has more than one pair of crossing neighbors, then each pair has 3 vertices

strictly between them in P . Suppose |V (Q)| ≥ 6 (so there are at least 4 internal vertices).

If t = s+ 1, then replacing P [vis , vis+1 ] with Q gives a longer path with the same endpoints

as P . So we may assume s ≥ t+ 2. Then the cycle

P [v1, vis ] ∪Q ∪ P [vit , vp] ∪ vpvit−1 ∪ P [vit−1 , vis+1 ] ∪ vis+1v1

has length at least |V (P )|+ 2.

Observe that because P is in crossing formation, |V (L)|, |V (R)| ≥ 4 and c(G) = 2(k− 1) ≥
|V (L)|+ |V (R)| = 8, thus k ≥ 5.

7.5 The Main Lemma

Recall that the deficiency of a vertex x ∈ X in a bipartite graph G = (X,Y ;E) is

DG(x) := max{0, r − dG(x)}. For a subset X∗ ⊆ X, the deficiency of X∗ as D(G,X∗) :=∑
x∈X∗ DG(x).

Our goal is to eventually to prove the Main Theorem, Theorem 88.

The first big step is to prove the Main Lemma below that states roughly that graphs that

contain a path in saturated crossing formation satisfy Theorem 88.

Lemma 100 (Main Lemma). Let k ≥ 5 be odd, and let G = (X,Y ;E) and X∗ ⊆ X be a

minimum (with respect to |X|) counterexample to Theorem 88. Fix any X∗ ⊆ X and set

Y = Y ∗. If |Y | ≥ k and P is a path as in the hypothesis of Theorem 97, then P is not in

saturated crossing formation.

7.5.1 Lemmas for induction

We first prove a series of lemmas. Often, we will use the following inductive argument:

Lemma 101. Let k ≥ 4. Let G = (X,Y ;E) and X∗ ⊆ X be a minimum (with respect to

|X|) counterexample to Theorem 88. Suppose |X| ≥ k + 1, |X∗| ≥ k, |Y | ≥ k and there

exists a vertex x ∈ X∗ with d(x) ≤ k − 2. Then G− x is not 2-connected.
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Proof. Suppose G − x is 2-connected. As dG(x) ≤ k − 2, we have DG(x) ≥ r − k + 2.

Since |X − x| ≥ k + 1 − 1 = k and |X∗ − x| ≥ k − 1, by the choice of G as a minimum

counterexample, G− x and X∗ − x satisfy

|X∗|−1 = |X∗−x| ≤ k

2r − k + 2
(n−1+D(G′, X∗−x)) ≤ k

2r − k + 2
(n−1+D(G,X∗))−k(r − k + 2)

2r − k + 2
.

Elementary calculation shows that k
2r−k+2(r − k + 2) ≥ 1 whenever r ≥ k − 1. Thus

|X∗| ≤ k

2r − k + 2
(n− 1 +D(G,X∗)),

a contradiction.

Lemma 102. Let k ≥ 4. Let G = (X,Y ;E) and X∗ ⊆ X be a minimum (with respect

to |X|) counterexample to Theorem 88. Suppose |X| ≥ k + 1, |X∗| ≥ k, |Y | ≥ k, and P

is a path in G with an endpoint x. Suppose also that x has no neighbors outside of P ,

d(x) ≤ k − 2, and x ∈ X∗. Then there does not exist a vertex x′ ∈ V (G)− V (P ) such that

N(x) ⊆ N(x′).

Proof. Suppose such a vertex x′ exists. If G − x is not 2-connected, then it contains a

cut vertex v such that (G − x) − v contains at least two components, C1 and C2, and v

is the only vertex in G − x with neighbors in both C1 and C2. Then in G, x and v form

a cut set, and x and v are the only vertices in G with neighbors in both C1 and C2. As

N(x) ⊆ N(x′), v = x′. Let y1, and y2 be neighbors of x such that y1 ∈ C1, and y2 ∈ C2.

Because N(x) ⊆ V (P ), y1, y2 ∈ V (P )−x, but the path P [y1, y2] is a (y1, y2)-path in G that

avoids both x and x′, a contradiction.

7.5.2 Paths in saturated crossing formation

Lemma 103. Let k ≥ 5 be odd, and let G = (X,Y ;E) and X∗ ⊆ X be a minimum (with

respect to |X|) counterexample to Theorem 88. Fix any X∗ and set Y = Y ∗. If |Y | ≥ k and

P = v1, . . . , vp is a path as in the hypothesis of Theorem 97, then the endpoints v1 and vp

of P belong to the partite set Y of G.

Proof. Suppose v1, vp ∈ X. By Lemma 92, one of the endpoints of P , say vp, must satisfy

dP (vp) ≤ k+1
2 . Since v2 ∈ Gα(X∗) ⊆ X∗, vp−1 ∈ Gk−1−α(X∗) ⊆ X∗ and v2 and vp−1

have no common neighbors by Lemma 98, we have |X∗| ≥ dGα(v2) + dGk−1−α(vp−1) ≥
α + 1 + k − α = k + 1. Also, by Part 4 of the definition of saturated crossing formation,
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there exists a vertex v′p ∈ V (G)− V (P ) with NP (v′p) = NP (vp). By Part 5 of the definition

of saturated crossing formation, N(vp) = NP (vp), so d(vP ) ≤ k− 2. But the existence of v′p

contradicts Lemma 102.

Suppose P = v1, . . . , vp is in saturated crossing position. Denote P = L ∪H1 ∪ ... ∪H` ∪R
as before.

Lemma 104. Under the conditions of Theorem 97, let F be a component of G−{vi0 , . . . , viq}
distinct from the components containing L and R. Then the k−1

2 (X∗∩F, Y ∩F )-disintegration

of F is empty.

Proof. Set α′ = (k− 1)/2 and denote Fα′ = Gα′(X
∗ ∩F, Y ∩F ) = Gk−1−α′(X

∗ ∩F, Y ∩F ).

Because G is 2-connected, there are at least 2 neighbors of F in P , and so these neighbors

must be contained in {vi0 , . . . , viq} by Lemma 98.

If Fα′ is complete bipartite, then each part has size at least α′ + 1 = (k + 1)/2, so we may

find a path of length at least k+ 1 from some vis to some vit whose internal vertices are all

from F , violating Lemma 99.

If Fα′ is not complete bipartite, then fix a longest path PF = u1, . . . , up′ with nonadjacent

endpoints in Fα′ such that
∑p′

i=1 dPF (ui) is maximized. Then by Theorem 97, PF must

be in saturated crossing formation. Again, u1 has exactly α′ + 1 neighbors in Fα′ in PF .

Furthermore, by Lemma 103, u1, up′ ∈ Y .

Denote PF = L′∪H ′1∪. . .∪H ′q′∪R′ whereH ′1∩L′ = {uj0}, for each 0 ≤ s ≤ q′−1, H ′s∩H ′s+1 =

ujs , and H ′q′∩R′ = {ujq′}. There exists a cycle C ′ = PF [u1, uj0 ]∪uj0up′∪PF [up′ , uj1 ]∪uj1u1
which has length exactly 2(k − 1).

Case 1: at most 1 vertex from {vi0 , . . . , viq} is contained in C ′. Then because {vi0 , . . . , viq}
separates F from G − F , C ′ never leaves F ∪ {vi0 , . . . , viq}. Choose two shortest disjoint

paths Ps, Pt from {vi0 , . . . , viq} to V (C ′) (possibly Ps or Pt may be a single vertex). Such

paths exist because G is 2-connected. Furthermore, by choice of Ps and Pt, the paths

each contain exactly one vertex from {vi0 , . . . , viq} and one vertex from C ′, and hence the

paths cannot leave F ∪ {vi0 , . . . , viq}. Say Ps has endpoints vis and us′ ∈ V (C ′) and Pt has

endpoints vit and ut′ ∈ V (C ′).

Because |V (C ′)| = 2(k − 1), one of the (us′ , ut′)-paths along C ′ must have at least k − 1

edges, i.e., k vertices. Then because at least one of Ps or Pt has at least 2 vertices by the

case, we have that Ps ∪ PF [us′ , ut′ ] ∪ Pt is a path of length at least k + 1 from vis to vit ,

contradicting Lemma 99.

Case 2: at least 2 vertices from {vi0 , . . . , viq} are contained in C ′. Let NF = {vi0 , . . . , viq}∩
V (PF ). If any vertex vis ∈ NF appears in L′ or R′, then because vis is even, we have that

vis ∈ N(u1)∪N(up′). Therefore either dPF (u1) ≥ (k+ 1)/2 + 1 or dPF (up′) ≥ (k+ 1)/2 + 1,

which would give us a longer cycle by Lemma 92, a contradiction. Therefore we may assume
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that each vertex in NF appears in PF strictly between some crossing neighbors. We will

show that PF has only one pair of crossing neighbors, in which case NF ∩V (C ′) = ∅, leading

to a contradiction.

Suppose not, then each pair of crossing neighbors have exactly 3 vertices strictly between

them in PF . Because each vis ∈ NF is even, vis must appear as the middle vertex between a

pair of crossing neighbors, say ujs′−1
and ujs′ , and there cannot be any other vertices from

NF in between these crossing neighbors. Furthermore, the predecessor and the successor

of vis in PF belong to K since they are odd neighbors of ujs′1
or ujs′ which are both in F .

Thus PF never leaves K ∪ {vi0 , . . . , viq}.
Suppose there exists vis , vit ∈ NF such that vis and vit appear between consecutive pairs of

crossing neighbors in PF . Say vis ∈ H ′s′ and vit ∈ H ′s′+1. Then the cycle C ′′ = PF [u1, vis ]∪
[v1, v2, v3]∪PF [vit , uP ′ ]∪up′ujs′ ∪ujs′u1 omits only the successor of vis and the predecessor

of vit in PF and includes three additional vertices, v1, v2, v3 from P . Therefore |V (C ′′)| =

|V (PK)| − 2 + 3 > 2k, a contradiction. Otherwise, each vis , vit ∈ NF appear in PF between

nonconsecutive pairs of crossing neighbors of PF . Pick vis , vit such that no other vertex

in NF lies between them in PF . Then PF [vis , vit ] is a path with at least 9 vertices that is

internally disjoint from P , contradicting Lemma 99. It follows that Fα′ is empty.

We are now ready to prove the Main Lemma.

Lemma 100. Let k ≥ 5 be odd, and let G = (X,Y ;E) and X∗ ⊆ X be a minimum (with

respect to |X|) counterexample to Theorem 88. Fix any X∗ ⊆ X and set Y = Y ∗. If |Y | ≥ k
and P is a path as in the hypothesis of Theorem 97, then P is not in saturated crossing

formation.

Proof. Let P = v1, . . . , vp be the path in saturated crossing formation. Let CL and CR

denote the connected components of G−{vi0 , . . . , viq} that contain L−{vi0} and R−{viq}
respectively. By Lemma 98, CL and CR are distinct. Let D = CL ∪CR ∪ {vi0 , . . . , viq} and

set X ′ = X∗ ∩D, n′ = |Y ∩D|.
By Lemma 103, v1, vp ∈ Y , and hence each odd vertex in P also belongs to Y . We first

claim that there cannot be any X vertices in CL outside of P : suppose such vertices exist,

and pick a shortest path Q from X − L to P with endpoints x ∈ X − L, v ∈ L. If v is

odd, then Q = vx, but x is a neighbor of v outside of P , violating Part 5 of the definition

of saturated crossing formation. If v is even, then Q contains at least 3 vertices, and the

predecessor of v in Q is in X and has a neighbor outside of P , again violating Part 5.

Therefore X ∩ CL ⊆ L. Similarly, X ∩ CR ⊆ R. It follows from Part 2 of the definition of

saturated crossing formations that X ∩D ⊆ N(v1) ∪N(vp).

Observe that we must have X ′ = N(v1)∪N(vp): by definition of saturated crossing forma-

tion, all neighbors of v1 and all neighbors of vp belong in Gα ∪ Gk−1−α ⊆ X∗ ∩ D = X ′.
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Furthermore, N(v1) ∪ N(vp) contains all of the even vertices in L ∪ R ∪ {vi0 , . . . , viq} and

therefore all of the X vertices in D. This proves that X ′ = N(v1) ∪N(vp).

As v1 and vp share at least two neighbors (the crossing neighbors), we have

|X ′| = |N(v1) ∪N(vp)| ≤ (α+ 1) + (k − α)− 2 = k − 1.

Furthermore, because v2 and vp−1 share no neighbors,

n′ +D(G,X ′) ≥ dG(v2) +DG(v2) + dG(vp−1) +DG(vp−1) ≥ 2r.

Putting these together, we have

|X ′|
n′ − 1 +D(G,X ′)

≤ k − 1

2r − 1
,

and therefore

|X ′| ≤ k − 1

2r − 1
(n′ − 1 +D(G,X ′)) <

k

2r − k + 2
(n′ − 1 +D(G,X ′)). (7.12)

Finally, for any component F of G − {vi0 , . . . viq} distinct from CL and CR, we have that

the k−1
2 (X∗ ∩ F, Y ∩ F )-disintegration of F is empty by Lemma 104. Set nF = |Y ∩ F |.

Each time we delete a vertex in the disintegration process, we delete at most (k−1)/2 edges

until we reach the last k − 1 vertices where there are at most ((k − 1)/2)2 edges. Thus

e(F ) ≤ k − 1

2
(nF +mF − (k − 1)) +

(
k − 1

2

)2

=
k − 1

2
(nF +mF −

k − 1

2
).

As e(F ) ≥ r|X∗ ∩ F | −D(G, (X∗ ∩ F )), we have

|X∗ ∩ F | ≤
k−1
2

(
nF − k−1

2

)
+D(G,X∗ ∩ F )

r − k−1
2

<
k

2r − k + 2
(nF +D(G,X∗ ∩ F )). (7.13)

Combining (7.12) and (7.13),

|X∗| = |X ′|+
∑

F 6=CL,CR

|X∗ ∩ F |

<
k

2r − k + 2
(n′ − 1 +D(G,X ′)) +

∑
F 6=CL,CR

k

2r − k + 2
(nF +D(G,X∗ ∩ F ))

≤ k

2r − k + 2
(n− 1 +D(G,X∗)),
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a contradiction.

7.6 Large complete bipartite subgraphs in extremal graphs

We will need three more lemmas to be used later in the Proof of Theorem 88.

Definition 105. For a set U of vertices in a graph G, we say a U,U -path is a path whose

ends are in U and all internal vertices are not in U .

We will use several times the following simple property of 2-connected graphs.

Property 1. Let G be a 2-connected graph, U ⊂ V (G) with |U | ≥ 2, and xy be an edge in

E(G) such that {x, y} 6⊆ U . Then there is a U,U -path P containing xy.

Lemma 106. Let m,n ≥ k ≥ 4 be positive integers. Let G = (X,Y ;E) be a bipartite

2-connected graph with |X| = m, |Y | = n and c(G) < 2k. Suppose G contains a copy K of

Kk−1,k−2 with parts A ⊂ X and B ⊂ Y such that |A| = k − 1. Then

|N(Y −B)| = 2 or |N(Y −B) ∩A| ≤ 1. (7.14)

Proof. Suppose that G = (X,Y ;E) is a bipartite 2-connected graph with |X| = m ≥ k,

|Y | = n ≥ k and c(G) < 2k containing a copy K = (A,B;E1) of Kk−1,k−2 with |A| = k− 1,

|B| = k − 2, A ⊂ X and B ⊂ Y . Suppose further that (7.14) does not hold, i.e., that

|N(Y −B)| ≥ 3 and |N(Y −B) ∩A| ≥ 2.

First, we remark that

each A ∪B,A ∪B-path in G contains at most one vertex in Y −B. (7.15)

Indeed, if an A∪B,A∪B-path P contains two vertices in Y −B, then G[A∪B∪V (P )] has

a cycle C that contains B ∪V (P ). This C has at least k vertices in Y , and hence |C| ≥ 2k,

contradicting c(G) < 2k. This proves (7.15).

Case 1: There is y1 ∈ Y −B with |N(y1) ∩A| ≥ 2. Suppose N(y1) ∩A = {a1, . . . , aq}.
Case 1.1: V (G)−A−B− y1 has an edge xy2. By Property 1, there is an (A∪B,A∪B)-

path P containing xy1. Let P = w1w2 . . . wh, x = wj and y1 = wj+1 for some 2 ≤ j ≤
h − 2. By (7.15), y1 /∈ P and j = 2. In particular, w1 ∈ B. Let P ′ = a1y1a2. Then

G[A ∪B ∪ V (P ) ∪ {y1}] has a cycle C containing B ∪ P ∪ P ′ and hence at least k vertices

in Y . So |C| ≥ 2k, contradicting c(G) < 2k.
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Case 1.2: V (G) − A − B − y1 is an independent set. Then any y2 ∈ Y − A − y1 has at

least two neighbors in A. So by the Case 1.1 for y2 in place of y1, V (G)−A−B − y2 is an

independent set. Then V (G)−A−B is an independent set. In particular, any x ∈ X−A has

two neighbors in B. So, the graph G[A∪B∪{y1, y2, x}] has no cycle containing B∪{y1, y2}
only if q = 2 and N(y2)∩A = {a1, a2}. Trying each y ∈ Y −B− y1 as y2, we conclude that⋃
y∈Y N(y) = {a1, a2}, so (7.14) holds.

Case 2: |N(y)∩A| ≤ 1 for every y ∈ Y −B. Because |N(Y −B)∩A| ≥ 2, there are distinct

a1, a2 ∈ A adjacent to Y − B. Let a1y1, a2y2 ∈ E(G) where y1, y2 ∈ Y − B. By the case,

y2 6= y1. By Property 1, for j = 1, 2 there is an (A∪B,A∪B)-path Pj = w1,j , w2,j , . . . , whj ,j

containing ajyj . Since aj ∈ A, we may assume w1,j = aj and w2,j = yj . By the case

w3,j /∈ A, and so hj ≥ 4. Furthermore, by (7.15), w4,j ∈ B, and so h1 = h2 = 4. If

w3,2 = w3,1, then the path a1, y1, w3,1, y2, a2 contradicts (7.15). So, paths P1 and P2 are

internally disjoint and have at most one common end. Thus G[A∪B∪V (P1)∪V (P2)] has a

cycle C containing B∪V (P1)∪V (P2), which implies |C| ≥ 2k, contradicting c(G) < 2k.

Lemma 107. Let H be a bipartite graph with parts A and B, where |B| = g ≥ 2. Suppose

H has no isolated vertices and for each b ∈ B, d(b) ≥ g. Then either (i) H = Kg,g or (ii)

there exist disjoint paths Q1, . . . , Q` such that for each 1 ≤ i ≤ `, Qi has both ends in A,

and B ⊂ V (Q1 ∪ . . . ∪Q`).

Proof. We proceed by induction. If g = 2 and H 6= K2,2, then H contains either a P5 or

two disjoint copies of P3, both of which satisfy (ii). Now let g > 2. Fix ab ∈ E(G) such

that a ∈ A, b ∈ B. Set B′ = B−{b} and A′ = N(B′)−{a}. Then H ′ = H[B′ ∪A′] satisfies

the conditions of the lemma for g − 1.

Suppose first that H ′ = Kg−1,g−1. Then because each vertex b′ ∈ B′ has exactly g − 1

neighbors in H ′ and at least g neighbors in H, b′a ∈ E(H) for each b′ ∈ B′. If b has no

neighbors outside A′∪{a}, then G = Ka,a. Otherwise, if b has a neighbor a′ ∈ A−A′−{a},
we may take any path P with 2g vertices starting with a and covering A′ ∪B′ and append

the edge ba′ to P .

If H ′ 6= Kg−1,g−1, then let Q′1, . . . , Q
′
q be the set of paths satisfying (ii) for H ′. If b has

a neighbor a′ ∈ A − {a} − ⋃q
i=1 V (Q′i), then we take the set of paths Q′1, . . . , Q

′
q, aba

′.

Otherwise, all neighbors of b are in N(B′) + a. In particular, b has at least g − 1 neighbors

distinct from a. But each Q′i has fewer internal vertices in A than in B. Thus paths

Q′1, . . . , Q
′
q together have at most g−2 internal vertices in A. Thus b has a neighbor a′ that

is an end of a path, say of Q′q. Then we append the path a′, b, a to Q′q.

Lemma 108. Let G = (X,Y ;E) and X∗ ⊆ X be a counterexample to Theorem 88 with

minimum |X|. Then G cannot contain a complete bipartite subgraph G′ = Ks,t with parts
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A ⊆ X∗ and B ⊆ Y such that

|A| = t ≥ k and |B| = s with k/2 ≤ s ≤ k − 2. (7.16)

Proof. Suppose that such a Ks,t exists. We may assume that s and t are largest possible,

i.e. each x ∈ X −A has a nonneighbor in B and each y ∈ Y −B has a nonneighbor in A.

Consider a mixed (k − s, k − s − 1)(X∗, Y )-disintegration of G: we first delete all vertices

from X −X∗ and then consecutively delete remaining vertices in X if their degrees in the

current graph are at most k − s and vertices in Y −B if their degrees in the current graph

are at most k − s− 11. Let G0 be the resulting graph. If G0 = G′ = Ks,t, then by (7.16),

rm∗ −D(G,X∗) ≤ e(G) ≤ st+ (m∗ − t)(k − s) + (n− s)(k − s− 1)

= (2s− k)t+m∗(k − s) + (n− s)(k − s− 1) (7.17)

≤ ((2s− k) + (k − s))m∗ + (n− s)(k − s− 1)

= sm∗ + (n− s)(k − s− 1),

and hence

m∗ ≤ (k − 1− s)(n− s) +D(G,X∗)

r − s <
(k − 1− s)(n− 1 +D(G,X∗))

r − k + s

≤ (k − 1− (k/2))(n− 1 +D(G,X∗)

r − (k/2)
=

(k − 2)(n− 1 +D(G,X∗)

2r − k ,

but k−2
2r−k <

k
2r−k+2 , a contradiction. Thus, suppose G0 6= G′′, and the partite sets of G0 are

A ∪A′ and B ∪B′.
Since G is 2k-saturated and G0 is not complete bipartite, there exist paths with at least 2k

vertices both ends of which are in V (G0) and at least one end in A∪B. Among such paths

choose a path P = v1, . . . , vp with v1 ∈ A ∪B so that

(P1) p is maximum possible,

(P2) modulo (P1), dG(vp) is maximum, and

(P3) modulo (P1) and (P2), P has as many vertices from A as possible.

Our first observation is

v1 ∈ A. (7.18)

Indeed, if v1 ∈ B, then by (P1), each a ∈ A is in P and dP (vp) ≥ k− s. Thus by t ≥ k and

1Note that we do not delete vertices in A even when s = k/2 and they have degree k/2 = k − s in the
current graph.
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s ≤ k − 2,

dP (v1) + dP (vp) ≥ t+ (k − s) ≥ k + 2.

So by Lemma 1.2, c(G) ≥ 2k, a contradiction.

By (7.18) and (P1),

B ⊆ V (P ). (7.19)

Case 1: dP (vp) ≥ k − s+ 1. Then Lemma 2.1 implies

dP (v1) = s, dP (vp) = k− s+ 1, p is odd, and P has crossing neighbors vi1 and vi2 . (7.20)

Let C = P [v1, vi1 ] ∪ vi1vp ∪ P [vi2 , vp] ∪ vi2v1. By the choice of G, |C| ≤ 2k − 2. Since

NP (v1)
− ∩NP (vp)

+ = ∅, |NP (v1)
−|+ |NP (vp)

+| ≥ k + 1, and C does not contain only two

vertices from NP (v1)
− ∪NP (vp)

+,

|C| = 2k − 2 and each vi ∈ C ∩ (A ∪A′) is in NP (v1)
− ∪NP (vp)

+. (7.21)

By (7.19) and (7.20), NP (v1) = B. In particular, v2 ∈ B. If A ⊂ V (P ), then by (7.16) and

s ≤ k − 2, for the path P ′ = P − v1 we have dP ′(v2) + dP ′(vp) ≥ |A − v1| + (k − s + 1) ≥
(t − 1) + 3 ≥ k + 2. In this case, by Lemma 1.2, c(G) ≥ 2k, a contradiction. Thus, there

is a vertex a ∈ A − V (P ). So, if for some 3 ≤ i ≤ p − 2, vertices vi−1 and vi+1 are in B,

then the path P ′′ obtained from P by replacing vi with a has the same length and ends as

P . Hence (P3) implies that

if for some 3 ≤ i ≤ p− 2, vertices vi−1 and vi+1 are in B, then vi ∈ A. (7.22)

Case 1.1: v1 has no neighbors outside of P . Thus DG(v1) = r − s ≥ r − (k − 2). As v1

is contained in the Ks,t and has no neighbors outside of B, it is easy to see that G − v1
is 2-connected. Since |V (P )| ≥ 2k (and therefore |V (P )| ≥ 2k + 1 since |V (P )| is odd),

|X − v1| ≥ k. Furthermore, since A ⊆ X∗, |X∗| ≥ k and so |X∗ − v1| ≥ k − 1. Applying

Lemma 101 yields a contradiction.

Case 1.2: v1 has a neighbor z ∈ N(v1)−V (P ). Let Q = w1, . . . , wj be a path from z = w1

to P − v1 in G− v1. Suppose wj = vh. Let Q′ = v1z ∪Q. Since z /∈ V (P ), j ≥ 2. We claim

that

for h− 4 ≤ g ≤ h− 1, vg /∈ N(vp). (7.23)

Indeed, otherwise the cycle P [v1, vg] ∪ vgvp ∪ P [vh, vp] ∪Q′ would have at least

2k + 1− (h− g − 1) + (j − 1) ≥ 2k + 1− 3 + 1 = 2k − 1
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vertices. This contradicts the choice of G.

Similarly, we show

vh /∈ P [vi1+1, vi2 ]. (7.24)

Indeed, if i1 + 1 ≤ h ≤ i2, then the cycle P [v1, vi1 ] ∪ vi1vp ∪ P [vh, vp] ∪ Q′ would have at

least |C|+ 1 vertices, which means at least 2k vertices.

Also

{vh−2, vh−1} ∩B = ∅. Since vi2 ∈ NP (v1) = B, this yields h /∈ {i2 + 1, i2 + 2}. (7.25)

Indeed if h− 2 ≤ g ≤ h− 1 and vg ∈ B, then the path P [vg, v1] ∪Q′ ∪ P [vh, vp] starts from

vg ∈ B and is longer than P (because if g = h− 2 then by parity, j ≥ 3).

Let α ∈ {0, 1} be such that h − 2 − α is odd. Then by (7.25), vh−2−α /∈ B− = NP (v1)
−,

by (7.23), vh−2−α /∈ NP (vp)
+, and by (7.24) and (7.25), vh−2−α /∈ P [vi1+1, vi2−1]. But this

contradicts (7.21).

Case 2: dP (vp) = k − s and p ≥ 2k + 2. Then vp ∈ B′ or k is even. Lemma 92 together

with (7.18) implies

dP (v1) = s and P has crossing neighbors vi1 and vi2 . (7.26)

As in Case 1, let C = P [v1, vi1 ]∪ vi1vp ∪P [vp, vi2 ]∪ vi2v1. By the choice of G, |C| ≤ 2k− 2.

By (7.19) and the definition of C, B ⊂ V (C) and only one vertex in NP (vp)
+ is not in C.

So since B ∩NP (vp)
+ = ∅ and |B|+ |NP (vp)

+| = s+ (k − s) = k,

|C| = 2k − 2 and each vi ∈ C ∩ Y is in B ∪NP (vp)
+. (7.27)

By (7.19) and (7.27), NP (v1) = B. In particular, v2 ∈ B. Repeating the proof of (7.22),

we derive that it holds also in our case.

Again, as in Case 1.1, if v1 has no neighbors outside of P , we obtain m∗ ≤ k
2r−k+2(n− 1 +

D(G,X∗)). So we may assume there exists z ∈ N(v1)−V (P ) and a path Q′ = v1, w1, . . . , wj

from v1 through w1 = z to P − v1 internally disjoint from P . Suppose wj = vh. Then

repeating the proofs word by word, we derive that (7.23), (7.24) and (7.25) hold in our case,

as well.

Let β ∈ {0, 1} be such that h−1−β is even. Then by (7.25), vh−1−β /∈ B, by (7.23), vh−1−β /∈
NP (vp)

+, and by (7.24) and (7.25), vh−1−β /∈ P [vi1+1, vi2−1]. But this contradicts (7.27).

Case 3: dP (vp) = k − s and p = 2k. We claim that

A′ = ∅ and dG0(b′) = k − s for each b′ ∈ B′. (7.28)
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Indeed, if there is a′ ∈ A′, then a′ has a nonneighbor b ∈ B and since G is saturated, it

contains an (a′, b)-path P ′ with at least 2k vertices. Choose P ′ to satisfy (P1), (P2), and

(P3). By the case, P ′ has exactly 2k vertices, and A ⊆ V (P ′) otherwise we could extend

P ′. But then |V (P ′)| ≥ 2|A| + 1 > 2k, a contradiction. Similarly, if there is b′ ∈ B′ with

dG0(b′) ≥ k − s+ 1, then b′ has a nonneighbor a ∈ A, but any (a, b′)-path P ′ with at least

2k vertices contradicts the choice of P in our case. This proves (7.28).

If |B′| ≤ s, then by (7.28), instead of (7.6) we have

rm∗ −D(G,X∗) ≤ st+ (m∗ − t)(k − s) + (n− s)(k − s− 1) + s

= (2s− k)t+m∗(k − s) + n(k − s− 1)− s(k − s− 2),

which is maximized when t = m∗. Because k − s− 2 ≥ 0, this yields

rm∗ ≤ ((2s− k) + (k − s))m∗ + n(k − s− 1) +D(G, x∗) = sm∗ + n(k − s− 1) +D(G,X∗),

and hence as before,

m∗ ≤ (k − s− 1)n+D(G,X∗)

r − s ≤ k

2r − k + 2
(n− 1 +D(G,X∗)),

a contradiction. So suppose |B′| ≥ s+ 1.

Recall that dA(v) = k − s for each v ∈ B′. By Lemma 107, either (i) there exists a set

A1 ⊂ A with |A1| = k−s such that NA(v) = A1 for each v ∈ B′, or (ii) there exists B′′ ⊂ B′
with |B′′| = k− s such that there exists a set of disjoint paths from A to A that covers B′′.

If (ii) holds, then because G[A∪B] is complete bipartite, we can extend the set of paths to

a cycle containing B ∪B′′. This cycle must have at least 2k vertices, a contradiction.

Therefore we may assume that for each (k−s)-subset B′′ of B′, we have B′′∪(A∩N(B′′)) =

Kk−s,k−s. Fix any (k− s)-subset B′′ ⊂ B′. Let G2 = G[A∪B ∪B′′]. Since G2 is the union

of Ks,t and Kk−s,k−s with the intersection A1, it has the following property: for each

a∗ ∈ A−A1, a1 ∈ A− a∗ and b ∈ B ∪B′′,

G2 has an (a∗, a1)-path with 2k − 1 vertices and an (a∗, b)-path with 2k − 2 vertices.

(7.29)

Let a∗ ∈ A−A1. Since a∗ /∈ A1, NG2(a∗) = B. If also NG(a∗) = B, i.e., a∗ has no neighbors

outside of P , then again as in Case 1.1, we obtain |X∗| ≤ k
2r−k+2(n− 1 +D(G,X∗)). So we

may assume a∗ has a neighbor, say y ∈ Y , outside of B ∪ B′. Let Q = a∗, y, w1, . . . , w` be

a path internally disjoint from A ∪ B ∪ B′ such that w` ∈ A ∪ B ∪ B′. Such a path exists

because G is 2-connected. Note that if w` ∈ B∪B′′, then by parity, ` ≥ 2. Then Q together

with a path in G2 satisfying (7.29) forms a cycle of length at least 2k.
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7.7 Proof of Theorem 88 for 2-connected graphs

Recall the statement of the Main Theorem for bipartite graphs.

Theorem 88. Let k ≥ 4, r ≥ k + 1 and m,m∗, n be positive integers with n ≥ k, m ≥
m∗ ≥ k − 1 and m ≥ k. Let G = (X,Y ;E) be a bipartite 2-connected graph with parts X

and Y , where |X| = m, |Y | = n, and let X∗ ⊆ X with |X∗| = m∗. If c(G) < 2k, then

m∗ ≤ k

2r − k + 2
(n− 1 +D(G,X∗)). (7.30)

Proof. Let G = (X,Y ;E) and X∗ ⊆ X be an edge-maximal counterexample with minimum

|X|. Note that adding edges to G can only decrease the deficiency while m∗,m, and n

stay the same. So we may assume that G is 2k-saturated, i.e., adding any additional edge

connecting X with Y creates a cycle of length at least 2k. Therefore,

for any nonadjacent x ∈ X and y ∈ Y , there is an (x, y)-path on at least 2k vertices.

(7.31)

If n ≤ k − 1 then each vertex x ∈ X has DG(x) ≥ r − n ≥ r − k + 1. Then for r ≥ k + 1,

we get
k

2r − k + 2
(n− 1 +D(G,X∗)) ≥ k

2r − k + 2
(n− 1 +m∗(r − k + 1))

≥ k

2r − k + 2
m∗(r − k + 1) ≥ m∗,

where the last inequality holds whenever k(r−k+1) ≥ 2r−k+2, i.e., whenever r ≥ k+ 2
k−2 .

Thus we may assume from now on that n ≥ k.

Our first claim is:

e(G) >

⌊
k − 1

2

⌋
m∗ +

⌈
k − 1

2

⌉
(n− 1). (7.32)

Indeed, e(G) ≥ rm∗ −D(G,X∗). So, if (7.32) fails and k is odd, then rm∗ −D(G,X∗) ≤
k−1
2 (m∗ + (n− 1)). Solving for m∗, we get

m∗ ≤ (k − 1)(n− 1 +D(G,X∗))

2r − k + 1
.

Since r ≥ k, this yields (7.30), a contradiction to the choice of G. So suppose k is even.

Then rm∗+D(G,X∗) ≤ k
2 (m∗+ (n− 1))−m∗. Solving for m∗ and using k ≥ 4 and r ≥ k,

we get

m∗ ≤ k(n− 1 +D(G,X∗))

2r − k + 2
,

and the theorem holds. This proves (7.32).

Apply a mixed (
⌊
k−1
2

⌋
,
⌈
k−1
2

⌉
)(X∗, Y )-disintegration to G, that is, first delete all vertices in
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X −X∗ and then consecutively delete vertices of degree at most
⌊
k−1
2

⌋
in X and vertices of

degree at most
⌈
k−1
2

⌉
in Y . Let G′ be the resulting graph with parts A ⊆ X∗ and B ⊆ Y .

Suppose first that G′ is empty. Then at each step of the disintegration process, we lose at

most
⌊
k−1
2

⌋
edges if a vertex in X∗ is deleted and at most

⌈
k−1
2

⌉
edges if a vertex in Y is

deleted. Furthermore, when we arrive to the last
⌊
k−1
2

⌋
+
⌈
k−1
2

⌉
= k − 1 vertices in the

disintegration process, there exists at most
⌊
k−1
2

⌋
·
⌈
k−1
2

⌉
edges. Thus

e(G) ≤
⌊
k − 1

2

⌋
m∗ +

⌈
k − 1

2

⌉
n−

⌊
k − 1

2

⌋
(k − 1) +

⌊
k − 1

2

⌋
·
⌈
k − 1

2

⌉
=

⌊
k − 1

2

⌋
m∗ +

⌈
k − 1

2

⌉
n−

⌊
k − 1

2

⌋2
≤
⌊
k − 1

2

⌋
m∗ +

⌈
k − 1

2

⌉
(n− 1),

contradicting (7.32). Therefore G′ is not empty,

dG′(a) ≥ 1 +
⌊
k−1
2

⌋
for each a ∈ A, and dG′(b) ≥ 1 +

⌈
k−1
2

⌉
for each b ∈ B. (7.33)

Case 1: G′ is a complete bipartite graph . Let s = min{|A|, |B|} and t = max{|A|, |B|}.
Since c(G) ≤ 2k − 2, by (7.33),

k
2 ≤ s ≤ k − 1, and if s = |A|, then s ≥ k+1

2 . (7.34)

Moreover, suppose s = k − 1. Then G contains a Kk−1,k−1 with parts A and B′ where

B′ ⊆ B. Let u ∈ G − (A ∪ B′). Such a vertex exists because m,n ≥ k. Because G is

2-connected, there exists two internally disjoint paths P1 and P2 from u to A∪B′ such that

P1 has endpoints u and u1 and P2 has endpoints u and u2, and these paths only interesect

A ∪ B′ at u1 and u2 respectively. If |V (P1 ∪ P2)| ≥ 4, that is, P1 ∪ P2 contains a vertex in

G − (A ∪ B′) other than u, then we may find a path P3 in A ∪ B′ of length 2k − 2 if u1

and u2 are in different partite sets, or of length 2k − 3 if they are in the same partite set.

Then P1 ∪ P2 ∪ P3 yields a cycle of length at least 2k. Therefore P1 ∪ P2 = u1, u, u2. Next

let w be a vertex in G − (A ∪ B′) in the opposite partite set than that of u (again such a

vertex exists because n,m ≥ k). Similarly, all internally disjoint paths Q1, Q2 connecting

w to A∪B′ must be of the form Q1 ∪Q2 = w1ww2 for some w1, w2 ∈ A∪B′. Thus we may

find disjoint paths R1 and R2 partitioning V (A ∪ B′) such that R1 has endpoints u1 and

w1 and R2 has endpoints u2 and w2. Then P1 ∪R2 ∪Q2 ∪R1 yields a cycle of length 2k, a

contradiction. Therefore s ≤ k − 2.

Case 1.1: s = |B|.
For k odd, by (7.32) and the definition of G′, st > k−1

2 (t + s − 1). Solving for t and
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using (7.34), we have

t >
(k − 1)(s− 1)

2s− k + 1
=

k − 1
2(s−1)
s−1 + 2

s−1 − k−1
s−1

=
k − 1

2− k−3
s−1
≥ k − 1

2− k−3
(k−2)−1

= (k − 1).

For k even, we instead get st > k−2
2 t+ k

2 (s− 1) and so

t >
k(s− 1)

2s− k + 2
=

k

2− k−4
s−1

,

so t ≥ k except in the case where s = k − 2 and t = k − 1. So suppose |B| = k − 2 and

|A| = k − 1.

By Lemma 106, either |N(Y −B)| = 2 or |N(Y −B)∩A| ≤ 1. Suppose the first case holds.

Let N(Y − B) = {x1, x2} so that each vertex in X∗ − {x1, x2} has neighbors only in B.

Without loss of generality, first assume that x1 ∈ X∗. Then

D(G,X∗) ≥ DG(x1) + (|X∗| − 2)(r − k + 2).

Also n− 1 +DG(x1) ≥ r − 1. Thus using the fact that |X∗| ≥ k − 1, we have

k(n− 1 +D(G,X∗))

2r − k + 2
− |X∗| ≥ k(r − 1 + (|X∗| − 2)(r − k + 2))

2r − k + 2
− |X∗|

=
k((|X∗| − 1)(r − k + 2) + k − 3)

2r − k + 2
− |X∗| ≥ k((k − 2)(r − k + 2) + k − 3)

2r − k + 2
− (k − 1) ≥ 0.

where the last inequality holds whenever r ≥ k + 2
k(k−4)+2 − 2. Therefore

|X∗| ≤ k

2r − k + 2
(n− 1 +D(G,X∗)),

a contradiction. The case where X∗ contains neither x1 nor x2 is similar (and easier) as we

would have D(G,X∗) = |X∗|(r − k + 2).

So we may assume that |N(Y − B) ∩ A| ≤ 1 but |N(Y − B)| 6= 2. If |X∗| = k − 1, i.e.,

X∗ = A, then all vertices in X∗ but at most one have neighbors only in B. Then just as in

the previous case, we have

|X∗| ≤ k

2r − k + 2
(n− 1 +D(G,X∗)).

Also, if |X| = k, then there is a single vertex x′ ∈ X−A. Because |N(Y −B)∩A| ≤ 1 and G

is 2-connected, all vertices in Y −B must also be adjacent to x′. But then |N(Y −B)| = 2,

a contradiction.
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So we may assume that |X∗| ≥ k and |X| ≥ k + 1. Fix x ∈ A − N(Y − B). Then x is

contained in a Kk−1,k−2 subgraph of G and has no neighbors outside of this subgraph. It

is easy to see then that G− x is 2-connected. Furthermore, |X∗ − x| ≥ k − 1, |X − x| ≥ k

and D(G−x,X∗−x) = D(G,X∗)− (r− k+ 2), contradicting Lemma 101. This completes

the proof that t = |A| ≥ k. Applying Lemma 108 completes the case.

Case 1.2: s = |A|. By (7.32), s ≥ k+1
2 . Apply the (k − s)(X∗, Y )-disintegration to G,

and let G′′ be the resulting graph. If G′′ 6= G′, then there is some u ∈ V (G′′)− V (G′) not

adjacent to some v ∈ V (G′) in the other partite set. By (7.31), G contains a (u, v)-path P ′

on at least 2k vertices. Choose a path P ′′ of maximum length in G whose both endpoints

are in G′′ and at least one of them in G′. Let P ′′ = v1, . . . , vp where v1 ∈ V (G′). In view of

P ′, p ≥ 2k. By the maximality of P ′′, all neighbors of vp in G′′ and all neighbors of v1 in

G′ lie in P ′′. So, dP ′′(v1) + dP ′′(vp) ≥ (k− s+ 1) + s = k+ 1. By Lemma 92, v1 and vp are

in the same partite set (i.e. p is odd) and have crossing neighbors in P ′′. So, P ′′ satisfies

the conditions of Theorem 97 for α = k− s, therefore P ′′ is in crossing formation. But this

contradicts the Main Lemma. Thus G′ = G′′, i.e., everything except for G′ is removed in

the weaker (k − s)(X∗, Y )-disintegration.

Next, we apply a mixed disintegration process to G− (A ∪B) where vertices in Y −B are

removed (iteratively) if at the time of deletion they have at most k− s− 1 neighbors within

X∗−A, and vertices in X ∗−A are removed if they have at most k− s neighbors total. Let

G′′′ be the resulting graph. We claim that also

G′′′ = G′. (7.35)

Suppose not. Then there exists a non-edge between A ∪ B and G′′′ − (A ∪ B). Among

such nonadjacent vertices, choose a pair v1 ∈ A ∪ B, vp ∈ G′′′ − (A ∪ B) such that a path

P = v1, . . . , vp between them is longest possible. Thus all neighbors of v1 in A ∪ B are in

P , and all neighbors of vp in G′′′ − (A ∪B) are in P .

First observe that if v1 ∈ A, then by the maximality of P , all vertices in B (which are

neighbors of v1) appear in P . Thus by Lemma 92, we may find a cycle that contains all of

B. Such a cycle contains at least 2|B| ≥ 2k vertices, a contradiction. So we assume v1 ∈ B.

If vp ∈ X −A, then because dP (vp) ≥ k− s+ 1, Lemma 92 implies that G contains a cycle

of length at least 2(s + (k − s + 1) − 1) = 2k. Therefore vp ∈ Y − B, and vp has at least

k − s neighbors from X − A in P . Since v1 has s neighbors in A, we can find a cycle that

covers NP (v1) ∪ NP (vp). Note that NP (v1) and NP (vp) are the same parity. Thus such a

cycle has at least 2(k − s+ s) vertices, a contradiction. Thus proves (7.35).

Case 1.2.1: t ≥ r. For simplicity, let D′ = D(G,X∗ − A) denote the deficiency of vertices

in X∗ −A.
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For any v be any vertex in X∗ − A, because v was deleted in the first disintegration, v

has at most k − s neighbors in B. Thus v has at most (n − t) + (k − s) neighbors. Since

d(v) +D(v) ≥ r, (n− t) + (k − s) +D(v) ≥ r which implies that

n− t+D′ ≥ r − k + s ≥ r − k − 1

2
(7.36)

By (7.35), we obtain that r(m∗ − s) + D′ ≤ (k − s)(m∗ − s) + (k − s − 1)(n − t). Solving

for m∗, we get

m∗ ≤ k − s− 1

r − k + s
(n− t) +D′ + s ≤ k − s− 1

r − k + s
(n− t+D′) + s.

We first show that for fixed r, k, n, t,D′, the function f(s) := k−s−1
r−k+s (n − t + D′) + s is

decreasing in s. Indeed, taking the first derivative, we have

f ′(s) =
−(r − k + s)− (k − s− 1)

(r − k + s)2
(n− t+D′) + 1 =

−(r − 1)(n− t+D′)

(r − k + s)2
+ 1.

Since r−1 > r−k+s and n−t+D′ > r−k+s, −(r−1)(n−t)
(r−k+s)2 < −1, therefore it is maximized

at s = k+1
2 .

m∗ ≤ (k − k+1
2 − 1)(n− t)−D′
r − k + k+1

2

+
k + 1

2
<

(k − 3)(n− t+D′)

2r − k + 1
+
k + 1

2

=
(k − 1)(n− t+D′)

2r − k + 1
− 2(n− t+D′)

2r − k + 1
+
k + 1

2

≤ (k − 1)(n− 1 +D′)

2r − k + 1
− (k − 1)(t− 1)

2r − k + 1
− 2(r − k−1

2 )

2r − k + 1
+
k + 1

2

≤ (k − 1)(n− 1 +D′)

2r − k + 1
− (k − 1)(r − 1)

2r − k + 1
+ (

k + 1

2
− 1)

≤ (k − 1)(n− 1 +D′)

2r − k + 1
− (k − 1)(r − 1)

2r − k + 1
+

(k − 1)(r − k−1
2 )

2r − k + 1
<

(k − 1)(n− 1 +D′)

2r − k + 1
,

which is less than k
2r−k+1(n− 1 +D(G,X∗)).

Case 1.2.2: t ≤ r. For simplicity, let D = D(G,X∗). We have that rm∗ − D ≤ e(G) ≤
st+ (k − s)(n− t) + (k − s)(m∗ − s). Solving for m∗, we have

m∗ ≤ s(t− k + s) + (k − s)(n− t) +D

r − k + s
≤ s(t− k + s) + (k − s)(n− t) +D

r − k + s
.

Again, it can be shown that this function is decreasing with respect to s, and so it is

maximized when s = k+1
2 . Furthermore, the function is maximized whenever t is as large

as possible, i.e., when t = r. Therefore
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m∗ ≤ (k − 1)(n− r +D)

2r − k + 1
+
k + 1

2

=

[
k(n− r +D)

2r − k + 2
− (2r − 2k + 2)(n− r +D)

(2r − k + 2)(2r − k + 1)

]
+
k + 1

2

=
k(n− 1 +D)

2r − k + 2
− k(r − 1)

2r − k + 2
− (2r − 2k + 2)(n− r +D)

(2r − k + 2)(2r − k + 1)
+
k + 1

2

≤ k(n− 1 +D)

2r − k + 2
− k(r − 1)

2r − k + 2
− (2r − k + 2− k)(r − k−1

2 )

(2r − k + 2)(2r − k + 1)
+
k + 1

2

=
k(n− 1 +D)

2r − k + 2
− k(r − 1)

2r − k + 2
− 1

2

(
1− k

2r − k + 2

)
+
k + 1

2

=
k(n− 1 +D)

2r − k + 2
− k(r − 1− 1

2)

2r − k + 2
+
k

2

=
k(n− 1 +D)

2r − k + 2
− k(r − 1− 1

2)

2r − k + 2
+
k(r − k−2

2 )

2r − k + 2
≤ k(n− 1 +D)

2r − k + 2
,

a contradiction.2

Case 2: G′ is not a complete bipartite graph. Let P = u1, . . . , uq be a longest path in G

whose both ends are in V (G′), and subject to this,
∑q

i=1 dP (ui) is maximized. By (7.31)

and the case, q ≥ 2k. By the maximality of P , all neighbors of u1 and of uq in G′ lie in P .

Case 2.1: k is odd. Then P satisfies the conditions of Theorem 97 for α = k−1
2 . But then

P is in saturated crossing formation, contradicting the Main Lemma.

Case 2.2: k is even. By (7.33), dG′(a) ≥ k
2 for each a ∈ A and dG′(b) ≥ k+2

2 for each b ∈ B.

Since c(G) ≤ 2k − 2, by Lemma 92,

q is odd, {u1, uq} ⊆ A, dG′(u1) = dP (u1) ∈ {k2 , k2 + 1}, dP (uq) = dG′(uq) ∈ {k2 , k2 + 1}.
(7.37)

First we show the following claim.

Claim 109. Path P has a pair of crossing neighbors.

Proof. Suppose not. Suppose the largest index of a neighbor of u1 in P is j1 and the smallest

index of a neighbor of uq in P is j2. Since P has no crossing neighbors, j1 ≤ j2. If j1 < j2 or

dG′(u1) +dG′(uq) ≥ k+ 1, then by the ”furthermore” part of Lemma 92, G has a cycle with

at least k vertices in B, a contradiction to c(G) ≤ 2k − 2. Thus dG′(u1) = dG′(uq) = k/2

and j1 = j2.

2Note that the last inequality holds whenever k ≥ 5. If k = 4, then instead of s = (k+ 1)/2 we substitute
s = k/2 and obtain the same inequality in the end.
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By the definition of P , q ≥ 2k + 1. By symmetry, we may assume j1 ≥ k + 1. Since k and

j1 are even, this yields

j1 ≥ k + 2 and hence u1 has a nonneighbor uj for some even j < j1. (7.38)

Since G is 2-connected, G− uj1 has a path P1 that is internally disjoint from P connecting

P [u1, uj1−1] with P [uj1+1, uq]. Among such paths, choose a path P1 = w1, . . . , w` with

w1 = uj3 and w` = uj4 so that j3 < j1 < j4 and j3 is as small as possible. Let j5 be

the smallest index such that j5 > j3 and uj5u1 ∈ E(G) and let j6 be the largest index

such that j6 < j4 and uj6uq ∈ E(G) Since j3 < j1 = j2 < j4, indices j5 and j6 are

well defined and j5 ≤ j1 ≤ j6. If j3 = 1, then by the definition of j1, ` ≥ 3 and hence

w2 ∈ Y − V (P ). Thus the cycle P1 ∪P [uj4 , uq]∪ uquj6 ∪P [u1, uj6 ] has at least k vertices in

Y : NP (u1) ∪NP (uq) ∪ {w2}. This contradicts to c(G) ≤ 2k − 2. Therefore

j3 ≥ 2. (7.39)

Cycle C1 = P [u1, uj3 ] ∪ P1 ∪ P [uj4 , uq] ∪ uquj6 ∪ P [uj5 , uj6 ] ∪ uj5u1 contains NP (u1) ∪
NP (uq) ∪ V (P1). Since c(G) ≤ 2k − 2, V (C1) ∩ Y = NP (u1) ∪ NP (uq). In particular,

|V (C1)| = 2|k/2 + k/2− 1| = 2k − 2, and

for every even 2 ≤ j ≤ j3 and j5 ≤ j ≤ j1, u1uj ∈ E(G), (7.40)

and similarly for uq,

for every even j1 ≤ j ≤ j6 and j4 ≤ j ≤ q − 1, uquj ∈ E(G). (7.41)

From (7.38) and (7.40) we conclude

u1uj5−2 /∈ E(G). (7.42)

Now we will show that

u1 has a neighbor outside of P . (7.43)

Suppose not. Since NP (u1) ⊆ G′, we have u2 ∈ G′. In particular, u2 has at least k
2 + 1

neighbors in G′.

If u2 has a neighbor ur in P that is a successor of some neighbor, say us of uq, that is,

r = s+ 1, then the cycle u2us+1 ∪P [us+1, uq]∪uqus ∪P [us, u1] has length |V (P )| − 1 ≥ 2k,

a contradiction.

Suppose that u2 is adjacent to a vertex in ur with j6 < r < j4. Then the cycle C ′ =

u2ur ∪ P [ur, uq] ∪ uquj6 ∪ P [uj6 , u2] contains NP (u1) ∪ NP (uq) ∪ {uj5−2}. By (7.38) this
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means C ′ has at least k vertices in Y . Thus c(G) ≥ 2k, a contradiction.

Therefore, by (7.41), if u2 has neighbors in P , they appear in P [u1, . . . , uj1−1]. If u2 has a

neighbor ur with j3 < r < j5, then the cycle P [u2, uj3 ]∪P1∪P [uj4uq]∪uquj6∪P [uj6 , ur]∪uru2
is longer than C1 except when ur = uj5−1. This implies that

each neighbor of u2 in P is a predecessor of a neighbor of u1. (7.44)

Similarly,

each neighbor of uq−1 in P is a successor of a neighbor uf uq. (7.45)

Since dG′(u2) ≥ k/2 + 1, and dG(u1) = k/2, u2 has at least 1 neighbor outside of P in

G′. Call this neighbor u′1. By definition of G′, dG(u′1) ≥ k/2. Let P ′ = u′1 ∪ P [u2, uq],

where |V (P ′)| = |V (P )|. If u′1 has a neighbor v ∈ V (G′)− V (P ′), then the path v ∪ P ′ is a

longer path with endpoints in G′, contradicting the choice of P . Therefore, by Lemma 92,

dG′(u
′
1) = dP ′(u

′
1) = dP (u1) = k/2, and we may assume P ′ has no crossing neighbors. If u′1

has any neighbors in G outside of P , then we instead consider the path P ′ and vertex u′1
and arrive at (7.43).

Define the indices j′1, j
′
3, and j′5 as before in view of P ′ and u′1. By symmetry, we have

j′1 = j1. Because P ′ − u′1 = P − u1 and by (7.39), j′3 = j3. Finally, if j′5 < j5, then

C2 = P [u′1, uj′3 ] ∪ P1 ∪ P [uj4 , uq] ∪ uquj6 ∪ P [uj′5 , uj6 ] ∪ uj′5u
′
1 is a longer cycle than C1. If

j′5 > j5, then u′1 must have less than k/2 neighbors in P ′, a contradiction. Therefore j′5 = j5

and again by symmetry, (7.40) and (7.41) hold for P ′ and u′1.

Thus NG(u1) ⊆ NG(u′1). Note that |X∗−u1| ≥ |N(u2)∪N(uq−1)|−1 ≥ k/2+1+k/2+1−1 =

k + 1, where the last inequality holds because if u2 and uq−1 shared a neighbor v (note

that it cannot be in P by (7.44) and (7.45)) then u2vuq−1 ∪ P [u2, uq−1] is a cycle with

|V (P )| − 1 ≥ 2k vertices, a contradiction. Applying Lemma 102 gives a contradiction,

hence (7.43) holds.

Let z1 ∈ NG(u1)−V (P ). As G is 2-connected, G−u1 contains a path P2 = z1, . . . , zm from

z1 to V (P ∪ P1)− u1. By (7.39), zm ∈ V (P ), say zm = uj7 . Again by (7.39), j7 ≤ j1.
If j3 < j7 ≤ j5, then the cycle C2 = P [u1, uj3 ]∪P1∪P [uj4 , uq]∪uquj6∪P [uj7 , uj6 ]∪P2∪z1u1
contains at least k vertices from Y , namely, NP (u1)∪NP (uq)∪{z1}, a contradiction. Suppose

now that j7 ∈ {2i − 1, 2i} for some i ∈ {2, . . . , j3/2} ∪ {1 + j5/2, . . . , j1/2}. By (7.40),

u1u2i−2 ∈ E(G) and so by (7.37), u2i−2 ∈ V (G′). But the path P3 = P [u2i−2, u1] ∪ u1z1 ∪
P2 ∪ P [uj7 , uq] is longer than P , contradicting the choice of P . Finally, if j7 = 2, then we

instead take the path u1z1 ∪ P2 ∪ P [u2, uq]. This proves the claim.

Let ui1 and ui2 be the first occurring pair of crossing neighbors on P .
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Claim 110. If |X∗| ≥ k+ 1, then every cycle in G containing N(u1) also contains u1, and

every cycle containing N(uq) also contains uq.

Proof. We prove the claim for u1. The result for uq follows by symmetry. Suppose there

exists a cycle C that contains N(u1) but not u1. If G−u1 has a cut vertex v, then because

G is 2-connected, {v, u1} is a cut set of G. Therefore there exist vertices ui, uj ∈ NG(u1)

that are in distinct components of (G−u1)− v. Let P ′ be a segment of C from ui to uj not

containing v. Then P ′ is a path from ui to uj in (G − u1) − v, a contradiction. Therefore

G− u1 is 2-connected, contradicting Lemma 101.

Claim 111. Each of u1 and uq has at least one neighbor outside of P .

Proof. Similarly to the proof of Case 1 of Lemma 108, let C = P [u1, ui1 ]∪ui1uq∪P [ui2 , uq]∪
ui2u1. By the choice of G, |C| ≤ 2k − 2. Since NP (u1)

− ∩ NP (uq)
+ = ∅, |NP (u1)

−| +
|NP (uq)

+| ≥ k, and C does not contain only two vertices in NP (u1)
− ∪NP (uq)

+,

2k − 2 ≥ |C| ≥ 2k − 4 and |(NP (u1)
− ∪NP (uq)

+) ∩ C ∩A| ≥ dP (u1) + dP (uq)− 2 .

This means

either |C| = 2k− 4 and each ui ∈ C ∩A is in NP (u1)
− ∪NP (uq)

+, or |C| = 2k− 2 and

there is at most one i0 such that ui0 ∈ (C ∩A)− (NP (u1)
− ∪NP (uq)

+).
(7.46)

We will show that u1 has a neighbor in G′ outside of P . The result for uq follows by

symmetry.

Case 2.2.1: |C| = 2k − 4. By Lemma 92, dP (u1) = dP (uq) = k/2. As before, the vertex u2

is in G′ and hence has at least k/2 + 1 neighbors in G′. Suppose first that all neighbors of

u2 in G′ are in P . As in the previous case, u2 cannot have a neighbor that is a successor of

a neighbor of uq. If u2 has a neighbor ur with r ∈ {i1 +1, . . . , i2−5} then u2ur ∪P [ur, uq]∪
uqui1 ∪ P [ui1 , u2] is a cycle with length at least |C| − 1 + 5 ≥ 2k, a contradiction.

Thus every neighbor of u2 in G′ is in N(u1)
− + ui2−3. Also by symmetry NP (uq−1) ⊆

N(uq)
+ + ui1+3, so NP (u2) and NP (uq−1) intersect in at most one vertex. As before, u2

and uq−1 cannot share a neighbor outside of P . Therefore

|X∗| ≥ |NG′(u2) ∪NG′(uq−1)| ≥ (k/2 + 1) + (k/2 + 1)− 1 ≥ k + 1. (7.47)

If ui2−1 ∈ N(u2), then the cycle P [u2, ui1 ] ∪ ui1uq ∪ P [uq, ui2−1] ∪ ui2−1u2 contradicts

Claim 110. So dP (u2) ≤ |N(u1)
− + ui2−3 − ui2−1| = k/2, hence u2 has a neighbor u′1

in G′ outside of P . If u′1 is adjacent to some vertex ur with r ∈ {i1 + 2, . . . , i2}, then the

cycle P ′[u′1, ui1 ] ∪ ui1uq ∪ P ′[uq, ur] ∪ uru′1 contradicts Claim 110. So by (7.46), NP (u′1) ⊆
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N(u1)− ui2 , and hence dP (u′1) ≤ k/2− 1 < d(u′1), so u′1 has a neighbor outside of P . Then

again we consider P ′ and u′1, and complete the case.

Case 2.2.2: |C| = 2k − 2. Assume NG′(u1)(and NG′(uq)) ⊆ V (P ). Suppose first that

dP (u1) = k/2. As before, we will show that u2 must have a neighbor u′1 in G′ outside of P .

So suppose first that u2 has no such neighbors.

If it exists, let ui0 be the unique vertex in C∩A which is not contained in N(u1)
−∪N(uq)

+.

Note that in this case, C∩A contains all vertices in N(u1)
−∪N(uq)

+−ui1+1−ui2−1+ui0 . In

particular, |N(u1)
−∪N(uq)

+−ui1+1−ui2−1+ui0 | ≤ k−1 if and only if d(u1) = d(uq) = k/2.

If u2 is adjacent to a vertex ur with r ∈ {i1+1, . . . , i2−3}, then the cycle P [u2, ui1 ]∪ui1uq∪
P [uq, ur] ∪ uru2 has at least |C|+ 2 ≥ 2k vertices. Therefore NG′(u2) ⊆ N(u1)

− + ui0 . We

obtain a similar result for uq−1 by symmetry, and again we get |X∗| ≥ k + 1.

We also have that u2ui2−1 /∈ E(G), otherwise the cycle P [u2, ui1 ] ∪ ui1uq ∪ P [u1, ui2−1] ∪
ui2−1u2 contradicts Claim 110. Therefore dP (u2) ≤ k/2. This implies u2 has a neighbor u′1
in G′ outside of P . If u′1 has a neighbor outside of P , then we instead consider the path

P ′ = u′1 ∪ P [u2, uq] and are done. As in the previous case, u′1 does not have neighbors

in {ui1+2, . . . , ui2}. Hence N(u′1) is contained in C but u′1 is not, contradicting Claim 110

(applied to P ′ and u′1).

This completes the proof for u1. By symmetry, we have that up also contains a neighbor

outside of P .

For j = 1 and j = q, let zj ∈ N(vj)− V (P ). Since G is 2-connected, this implies that there

is a path Qj = w1,j , . . . , w`j ,j from uj through zj = w2,j to P − uj internally disjoint from

P . Let w`,j = uhj . If Q1 and Qq share a vertex outside of P , then G has a cycle containing

P , a contradiction to c(G) ≤ 2k − 2. So, the only vertex common for Q1 and Qq could be

uh1 if it coincides with uhq . Also, h1 ≥ 3, since if h1 = 2, then the path Q1 ∪ P [u2, uq] is

longer than P . Similarly, hq ≤ q − 2.

We claim that

for h1 − 4 ≤ g ≤ h1 − 1, ug /∈ N(uq) and for hq + 1 ≤ g ≤ hq + 4, ug /∈ N(u1) . (7.48)

Indeed, by symmetry suppose uguq ∈ E(G) for some h1 − 4 ≤ g ≤ h1 − 1. Then the cycle

P [u1, ug] ∪ uguq ∪ P [uq, uh1 ] ∪Q1 would have at least

2k + 1− (h1 − g − 1) + (j1 − 1) ≥ 2k + 1− 3 + 1 = 2k − 1

vertices. This contradicts c(G) ≤ 2k − 2.

Also

{uh1−2, uh1−1, uhq+1, uhq+2} ∩B = ∅. (7.49)
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Indeed if h1 − 2 ≤ g ≤ h1 − 1 and ug ∈ B, then the path P [ug, u1] ∪Q1 ∪ P [uh1 , uq] starts

from ug ∈ B and is longer than P (because if g = h1− 2 then by parity, α1 ≥ 4). The proof

for hq + 1 ≤ g ≤ hq + 2 is symmetric.

Similarly to (7.24), we show

(i) if |C| = 2k − 4, then uh1 /∈ P [ui1+1, ui2−2] and uhq /∈ P [ui1+2, ui2−1];

(ii) if |C| = 2k − 2, then uh1 /∈ P [ui1+1, ui2 ] and uhq /∈ P [ui1 , ui2−1] .
(7.50)

Indeed, if for example, i1 +1 ≤ h1 ≤ i2−2, then the cycle P [u1, ui1 ]∪ui1uq∪P [uq, uh1 ]∪Q1

would have at least |C|+ 3 vertices, which means at least 2k vertices. All other possibilities

are very similar.

Let λ be the odd integer in the set {h1 − 3, h1 − 2}. Similarly, let µ be the odd integer in

the set {hq + 2, hq + 3}. By (7.48), uλ /∈ P+(NP (uq)). By (7.46), we have the following

cases.

First suppose |C| = 2k− 4 and each ui ∈ C ∩A is in NP (u1)
−∪NP (uq)

+. Since NP (u1)
−∩

NP (uq)
+ = ∅ and each of u1 and uq has k/2 neighbors in B, this means

all neighbors of u1 and uq in P are in B. (7.51)

By (7.49) and (7.51), uλ /∈ NP (u1)
−. So by the case and the fact that λ is odd, i1 + 1 ≤

λ ≤ i2 − 1. This means i1 + 3 ≤ h1 ≤ i2 + 2. Since ui2 ∈ B, by (7.50)(i) and (7.49),

i2 − 1 ≤ h1 ≤ i2. Similarly, i1 ≤ hq ≤ i1 + 1. Then the cycle

P [u1, uhq ] ∪Qq ∪ P [uq, uh1 ] ∪Q1

has length at least |C|+ 4, contradicting c(G) ≤ 2k − 2.

Next, suppose |C| = 2k−2 and there is exactly one i0 such that ui0 ∈ (C∩A)− (NP (u1)
−∪

NP (uq)
+). As the case |C| = 2k−4 this yields (7.51). By (7.49) and (7.51), uλ /∈ NP (u1)

−.

So by the case and the fact that λ is odd, either λ = i0, or i1 + 1 ≤ λ ≤ i2− 1. If the latter

holds, then i1 + 3 ≤ h1 ≤ i2 + 2, which is impossible by (7.50)(ii) and (7.49). Thus λ = i0.

Similarly, we conclude µ = i0. In particular, hq < h1. Since λ = µ is odd, the cycle

P [u1, uhq ] ∪Qq ∪ P [uq, uh1 ] ∪Q1

has length at least |V (P )| − 1 ≥ 2k, contradicting c(G) ≤ 2k − 2.

Finally, suppose |C| = 2k−2 and each ui ∈ C ∩A is in NP (u1)
−∪NP (uq)

+. By Lemma 92,

dP (u1)+dP (uq) ≤ k+1. So by the symmetry between u1 and uq, we may assume dP (u1) =

k/2 and hence NP (u1) = NG′(u1). Since i0 does not exist, repeating the argument of Case

2.2.2, we get a contradiction even earlier.
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7.8 Proof of Theorem 86 for general graphs

For disjoint vertex sets X and Y , an (X,Y )-frame is a pair (G,X∗) where G is a bigraph

with parts X and Y , and X∗ ⊆ X.

A block G′ in an (X,Y )-frame (G,X∗) with parts X ′ and Y ′ is special if all of the following

holds:

(i) G′ = Kk−1,r with |X ′| = k − 1;

(ii) X ′ ⊆ X∗;
(iii) NG(x) = Y ′ for each x ∈ X ′.
Let Q(G,X∗) denote the number of special blocks in an (X,Y )-frame (G,X∗). Recall the

definition of deficiency:

D(G,X∗) =
∑
x∈X∗

DG(x) =
∑
x∈X∗

max{0, r − dG(x)}.

The following theorem implies Theorem 86.

Theorem 112. Let k ≥ 4, r ≥ k + 1 and m,m∗, n be positive integers with m∗ ≤ m.

Let (G,X∗) be an (X,Y )-frame, where |X| = m, |Y | = n, and |X∗| = m∗, and G is

2k-saturated. If c(G) < 2k, then

m∗ ≤ k − 1

r
(n− 1 +D(G,X∗) +Q(G,X∗)). (7.52)

Furthermore, equality holds if and only if G and X∗ satisfy the following:

(i) G is connected;

(ii) all blocks of G are copies of either Kk−1,r or Kk−1,r+1 with the partite set of size k− 1

in X and all cut vertices of G in Y ;

(iii) X∗ = X;

(iv) D(G,X∗) = 0.

It is straightforward to check that the graphs described in (i)-(iv) are indeed sharpness

examples to Theorem 112: suppose G has s blocks of the form Kk−1,r and t of the form

Kk−1,r+1. Then m = m∗ = (s + t)(k − 1), n = s(r − 1) + tr + 1, D(G,X) = 0, and

Q(G,X) = s, since each Kk−1,r block is special. Therefore

k − 1

r
(n−1+D(G,X)+Q(G,X)) =

k − 1

r
(s(r−1)+tr+1−1+0+s) =

k − 1

r
(r(s+t)) = m∗.

Proof of Theorem 112. Let (G,X∗) be a counterexample to the theorem with the fewest
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vertices in G. For short, let D = D(G,X∗) and Q = Q(G,X∗). By the definition of D(x),

d(x) +D(x) ≥ r for every x ∈ X. (7.53)

Case 1: G is 2-connected. If m∗ ≥ k − 1 and m ≥ k , then (7.52) follows Theorem 88. In

fact, we get strict inequality as k
2r−k+2 <

k−1
r whenever k− 1 < r. Suppose 1 ≤ m∗ ≤ k− 2

and x ∈ X∗. Then by (7.53),

n− 1 +D ≥ d(x) +D(x) ≥ r − 1,

so k−1
r (n− 1 +D) ≥ k−1

r (r − 1) > k − 2 ≥ m.

The last possibility is that m∗ = m = k− 1. If n+D ≥ r+ 1, then (7.52) holds, so suppose

n + D = r. Since k − 1 ≥ 2, this together with (7.53), implies that n = r and D = 0.

Thus G = Kk−1,r and X∗ = X which yields that G is a special block. Thus Q = 1 and so

n− 1 +D +Q = r. This finishes Case 1.

Note that equality is obtained only in this subcase where G = Kk−1,r, X = X∗, and D = 0.

Therefore G and X∗ satisfy (i)-(iv).

Since Case 1 does not hold, G has a pendant block, say with vertex set B. Let b be the

cut vertex in B, X∗B = X∗ ∩ B − b, m∗B = |X∗B|, and nB = |B ∩ Y |. Furthermore, let

G1 = G− (B − b) and n1 = |Y ∩ V (G1)|.
Note that G1 is 2k-saturated: as a cycle cannot span multiple blocks in a graph, if there

exists an edge xy /∈ E(G1) such that G1 + xy contains no cycle of length 2k or longer, then

G+ xy also contains no cycle of length 2k or longer, contradicting that G is 2k-saturated.

Case 2: b ∈ Y . Let X∗1 = X∗ −X∗B. By the minimality of G,

|X∗1 | ≤
k − 1

r
(n1 − 1 +D(G1, X

∗
1 ) +Q(G1, X

∗
1 )), and (7.54)

m∗B ≤
k − 1

r
(nB − 1 +D(G[B], X∗B) +Q(G[B], X∗B)), (7.55)

using m∗ = |X∗1 |+m∗B, we obtain

m∗ ≤ k − 1

r

(
n1+nB−2+D(G1, X

∗
1 )+D(G[B], X∗B)+Q(G1, X

∗
1 )+Q(G[B], X∗B)

)
. (7.56)

Since n1 + nB − 2 = n − 1, D = D(G1, X
∗
1 ) + D(G[B], X∗B) and Q = Q(G1, X

∗
1 ) +

Q(G[B], X∗B), (7.56) implies (7.52).

Furthermore, if equality holds in (7.52), then we have equalities in both (7.54) and (7.55).

Again by the minimality of G, frames B with X∗B and G1 with X∗1 both satisfy (i)-(iv). In

particular, we have X∗B = X ∩ B and X∗1 = X − B. Since X∗ = X∗B ∪X∗1 = X, it follows
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that G also satisfies (i)-(iv).

Case 3: b ∈ X and X∗B = ∅. By the minimality of G,

|X∗| ≤ k − 1

r
(n1 − 1 +D(G1, X

∗) +Q(G1, X
∗)). (7.57)

Since dG(b) − dG1(b) ≤ nB, D(G1, X
∗) ≤ D(G,X∗) + nB. If Q(G1, X

∗) = Q(G,X∗),

then (7.57) implies (7.52). Furthermore, suppose that equality holds in (7.52). Then

equality also holds in (7.57), and D(G,X∗) + nB = D(G1, X
∗). By the minimality of

G, G1 and X∗ satisfy (i)-(iv). In particular by (iv), D(G1, X
∗) = 0, contradicting that

D(G,X∗) + nB = D(G1, X
∗).

So, suppose Q(G1, X
∗) > Q(G,X∗). By Part (iii) of the definition of a special block, if this

happens, then Q(G1, X
∗) = Q(G,X∗)+1 and the unique block B1 that is special in (G1, X

∗)

but not special in (G,X∗) contains b. This means dG1(b) = r and hence D(G1, X
∗) = D.

But nB ≥ 1, and so again (7.57) implies (7.52). Furthermore, if nB ≥ 2, then we obtain

strict inequality in (7.52). If nB = 1, say Y ∩ B = {y}, then since B is 2-connected, B

consists of a single edge yb attached to the special block B1, where B1 is a copy of Kk−1,r

with |X∩B1| = k−1. Note that if a block in G has a partite set of size k−1, then the longest

cycle in G has length at most 2(k−1). Thus for any x ∈ X ∩ (B1− b), c(G+xy) ≤ 2(k−1),

contradicting that G is 2k-saturated.

Case 4: b ∈ X and 1 ≤ m∗B ≤ k − 2. Let X∗1 = X∗ −X∗B − b. By the minimality of G,

|X∗1 | <
k − 1

r
(n1 − 1 +D(G1, X

∗
1 ) +Q(G1, X

∗
1 )). (7.58)

Where note that we have strict inequality because X∗1 does not satisfy (iii) for G1. Since

b /∈ X∗1 , Q(G1, X
∗
1 ) = Q. Let x ∈ X∗B. By (7.53), D(x) + nB ≥ r. Thus by the case,

m∗ ≤ |X∗B ∪ {b}|+ |X∗1 | < k − 1 +
k − 1

r
(n1 − 1 +D(G1, X

∗
1 ) +Q) ≤

k−1+
k − 1

r
(n−nB−1+(D−D(x))+Q) ≤ k−1+

k − 1

r
(n−1+D−r+Q) =

k − 1

r
(n−1+D+Q),

as claimed.

Case 5: b ∈ X and m∗B ≥ k−1. Let X∗1 = X∗−X∗B−b. By the minimality of G, again (7.58)

holds. Also, as in Case 4, Q(G1, X
∗
1 ) = Q and m∗ ≤ |X∗1 | + 1 + m∗B. Since n = n1 + nB,

and D(G1, X
∗
1 ) + D(G[B], X∗B) ≤ D, in order for (G,X∗) to be a counterexample to the

theorem, all this together yields

m∗B + 1 >
k − 1

r
(nB +D(G[B], X∗B)). (7.59)
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On the other hand, by Theorem 112,

m∗B ≤
k

2r − k + 2
(nB − 1 +D(G[B], X∗B)).

Plugging this into (7.59), we get

k

2r − k + 2
(nB − 1 +D(G[B], X∗B)) + 1 >

k − 1

r
(nB +D(G[B], X∗B)). (7.60)

Since the coefficient at nB + D(G[B], X∗B) in the left side of (7.60) is less than the one in

the right side, and since by (7.53), nB +D(G[B], X∗B) ≥ r, (7.60) implies

k

2r − k + 2
(r − 1) + 1 >

k − 1

r
r = k − 1. (7.61)

But (7.61) is equivalent to k(r−1) > (k−2)(2r−k+2), which is not true when r ≥ k ≥ 4.

As a corollary, we obtain the same result for graphs that are not 2k-saturated.

Corollary 113. Let k ≥ 4, r ≥ k + 1 and m,m∗, n be positive integers with m∗ ≤ m. Let

(G,X∗) be an (X,Y )-frame, where |X| = m, |Y | = n, and |X∗| = m∗. If c(G) < 2k, then

m∗ ≤ k − 1

r
(n− 1 +D(G,X∗) +Q(G,X∗)). (7.62)

Proof. Add edges to G until the resulting graph is 2k-saturated. Call this graph G′. Note

that when adding edges, the deficiency D(G,X∗) of any X∗ ⊆ X cannot grow. That is,

D(G,X∗) ≤ D(G′, X∗).

Applying Theorem 112 to G′, we obtain

|X∗| ≤ k − 1

r
(n− 1 +D(G′, X∗) +Q(G′, X∗)).

IfQ(G′, X∗) ≤ Q(G,X∗), then we’re done. Otherwise suppose thatQ(G′, X∗) = Q(G,X∗)+

t. This implies that there were t special blocks created when adding edges within the blocks

of G. Let B be such a block that was not special in G but became special in G′. Then

in G, B ( Kk−1,r. Thus some vertex v ∈ B ∩ X has dG(v) < r but dG′(v) = r. Hence

DG(v) > DG′(v). It follows D(G,X∗) ≥ D(G′, X∗) + t.

Thus

|X∗| ≤ k − 1

r
(n− 1 +D(G′, X∗) +Q(G,X∗) + t) ≤ k − 1

r
(n− 1 +D(G,X∗) +Q(G,X∗),

as desired.
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7.9 Proofs for hypergraphs: Theorem 80 and Corollary 81

Proof of Theorem 80. Let H be an n-vertex multi-hypergraph with lower rank r and

edge multiplicty at most k − 2. Let G = G(H) be the incidence graph of H with parts

X = V (H) and Y = E(H). By construction, since H has lower rank at least r, each x ∈ X
has dG(x) ≥ r. Therefore D(G,X) = 0. Also, G cannot contain a special block (i.e.,

Q(G,X) = 0) as such a block in G would correspond to a set of k − 1 edges in H that are

composed of the same r vertices. But we assumed that H has no edges with multiplicity

greater than k − 2.

Applying Theorem 112 to G with X∗ = X, we obtain

e(H) = |X| ≤ k − 1

r
(n− 1 +D(G,X) +Q(G,X)) =

k − 1

r
(n− 1).

Finally, suppose equality holds. Add edges to G until it is 2k-saturated. Let G′ be the

resulting graph. Again we have Q(G′, X) = Q(G,X) = 0 and D(G′, X) = D(G,X) = 0,

therefore |X| = k−1
r (n− 1 +D(G′, X) +Q(G′, X)). Hence G′ satisfies (i)-(iv) in the second

part of the statement of Theorem 112. In particular, all blocks of G′ are copies of Kk−1,r+1

with cut vertices in Y . Then in G within each block, every vertex x ∈ X is adjacent to

a subset of the r + 1-partite set of size r or r + 1. That is, each Kk−1,r+1 block in G′

corresponds to an (r + 1, k − 1)-block in H. This completes the proof of Theorem 80.

Proof of Corollary 81. Recall that a Berge-path of length k has k + 1 base vertices

and k hyperedges. Suppose H satisfies the conditions of the corollary. We construct the

multi-hypergraph H′ by adding a new vertex x to H and extending each hyperedge of H to

include x. Then H′ has n+ 1 vertices, lower rank at least r + 1, no edge with multiplicity

at least k − 1, and e(H′) = e(H).

We claim that H′ has no Berge-cycle of length k or longer. Suppose there exists such a

cycle with edges e1, . . . , e` and base vertices v1, . . . v` and ` ≥ k. If x ∈ {v1, . . . , vk}, say

x = v1, then since each edge in H′ contains at least r+1 vertices, there exist distinct vertices

v′1 ∈ e1 − {v1, . . . , vk} and v′k+1 ∈ ek − {v1, . . . , vk}. For each 1 ≤ i ≤ `, let e′i = ei − {x}.
Then e′1, . . . , e

′
k and {v′1, v2, . . . , vk, v′k+1} form a Berge-path of length k. The case where

x /∈ {v1, . . . , vk} is similar (and simpler). Therefore, applying Theorem 82 to H′, we obtain

e(H) = e(H′) ≤ k − 1

r + 1
((n+ 1)− 1),

as desired.
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Chapter 8

2-connected hypergraphs with bounded circumference

8.1 Introduction

In this chapter, we prove Theorem 15 which provides a better upper bound the number

of edges in 2-connected hypergraphs without long cycles. Here we consider hypergraphs

with upper rank r without cycles of length k ≥ r or longer. Our results are sharp for

general hypergraphs for all n ≥ k ≥ r, and for r-uniform hypergraphs when k ≥ 4r and n is

sufficiently large. This is joint work with Zoltán Füredi and Alexandr Kostochka [FKL19].

8.1.1 Basic definitions

The upper rank of a hypergraph H is the size of a largest edge. For brevity, instead of saying

“a hypergraph of upper rank r” we will say “an r−-graph”. When every edge has size r,

i.e., H is r-uniform, we call H an “r-graph”.

A hypergraph H is Sperner if no edge of H is contained in another edge. In particular, a

Sperner hypergraph has no multiple edges, and all simple uniform hypergraphs are Sperner.

8.2 Results for hypergraphs and bipartite graphs

8.2.1 2-connected hypergraphs without long Berge cycles

Our goal is to prove a version of Kopylov’s theorem for hypergraphs, i.e., to find the max-

imum number of edges in a 2-connected hypergraph with no Berge cycle of length k or

greater.

Define

f(n, k, r, a) :=

(
k − a

min{r, bk−a2 c}

)
+ (n− k + a)

(
a

min{r − 1, ba/2c}

)
.
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Also define

f∗(n, k, r, a) :=

(
k − a
r

)
+ (n− k + a)

(
a

r − 1

)
.

Note that f(n, k, r, a) = f∗(n, k, r, a) whenever r ≤ b(k − a)/2c and r − 1 ≤ ba/2c. Our

main result is:

Theorem 114. Let n ≥ k ≥ r ≥ 3. If H is an n-vertex Sperner 2-connected r−-

hypergraph with no Berge cycle of length k or longer, then e(H) ≤ max{f(n, k, r, b(k −
1)/2c), f(n, k, r, 2)}.

This bound is sharp. To see this, we construct a series of hypergraphs (not necessarily

uniform).

Construction 115. For n ≥ k ≥ r, 1 ≤ a ≤ b(k − 1)/2c, let Hn,k,r,a be the hypergraph

with vertex set A ∪B ∪ C such that |A| = k − 2a, |B| = a, |C| = n− (k − a). The edge set

of Hn,k,r,a is the family

{e ⊆ A ∪B : |e| = min{r, b(k − a)/2c}} ∪ {c ∪ e′ : c ∈ C, e′ ⊆ B, |e′| = min{r − 1, ba/2c}}.

For a ≥ 2, Hn,k,r,a is 2-connected and contains no Berge cycle of length k or longer. We have

that |E(Hn,k,r,a)| = f(n, k, r, a), which is maximized when a = b(k − 1)/2c or a = 2 by the

convexity of f (as a function of a). Furthermore, when r ≤ b(k − a)/2c and r − 1 ≤ ba/2c,
Hn,k,r,a is r-uniform with f∗(n, k, r, a) edges.

For integers k ≥ r, let nk,r be the smallest positive integer n such that f(n, k, r, b(k −
1)/2c) ≥ f(n, k, r, 2). Asymptotically nk,r is about 2r−1k/r. Then as a corollary of The-

orem 114 we obtain the following result for r-graphs (note that this is a restatement of

Theorem 15).

Theorem 116. Let n ≥ nk,r ≥ k ≥ 4r ≥ 12. If H is an n-vertex 2-connected r-graph with

no Berge cycle of length k or longer, then e(H) ≤ f(n, k, r, b(k − 1)/2c) = f∗(n, k, r, b(k −
1)/2c).

For n large, this bound is almost 2r−1/r stronger than the (exact) bound with no restriction

on connectivity. Again we have sharpness example Hn,k,r,b(k−1)/2c.

8.2.2 Connected hypergraphs without long Berge path

We also obtain a result for connected graphs with no Berge path of length k.

Theorem 117. Let n ≥ k ≥ r ≥ 3. If H is an n-vertex Sperner connected r−-graph with

no Berge path of length k, then e(H) ≤ max{f(n, k, r, b(k − 1)/2c), f(n, k, r, 1)}.

103



For integers k ≥ r, let n′k,r be the smallest positive integer n such that f(n, k, r, b(k −
1)/2c) ≥ f(n, k, r, 1). Then we obtain the following result for r-uniform graphs with no

Berge path of length k as a corollary of Corollary 117. This improves Theorem 66.

Theorem 118. Let n ≥ n′k,r ≥ k ≥ 4r ≥ 12. If H is an n-vertex connected r-graph with

no Berge path of length k, then e(H) ≤ f(n, k, r, b(k − 1)/2c) = f∗(n, k, r, b(k − 1)/2c).

The family Hn,k,r,b(k−1)/2c again shows sharpness of our bounds.

8.3 Proof outline

The basic idea of the proof is to consider instead of the family of r-graphs the larger family of

Sperner r−-graphs. Then we can in some situations shrink some edges keeping the r−-graph

Sperner.

We start with a dense Sperner r−-graph H. By definition, each edge e in H yields a clique

of order |e| in the 2-shadow of H. If H contains a long Berge cycle C, then ∂2H contains a

cycle of the same length. However, the converse is not always true. So, our first goal is to

reduce H to a smaller dense Sperner r−-graph H′ for which we know that the existence of

a long cycle in ∂2H′ implies the existence of a long cycle in H′ itself.

Our second goal is to give an upper bound on the maximum size of a Sperner family of cliques

of order at most r in the shadow ∂2H′ that does not have long cycles. This automatically

yields a bound on |H′|.
We systematically consider incidence graphs of r−-graphs instead of the r−-graphs them-

selves, because we find the language of 2-connected bipartite graphs convenient for our

goals.

In Section 4, we prove two results for the maximum number of cliques in graphs without

long cycles or paths which will later be applied to the 2-shadows of r−-graphs. Specifically,

we give upper bounds for the size of Sperner families of cliques of size at most r in graphs

with bounded circumference and graphs that do not contain long paths between every pair

of vertices.

In Sections 5 and 6, we prove that our hypergraphs have such a dense subhypergraph that

we may reduce to, working in the language of incidence bigraphs in Section 5 and the

language of hypergraphs in Section 6. In Section 7, we combine the results from Sections

4-6 to prove Theorem 114. Finally, in Section 8 we prove Theorem 117 for Berge paths in

connected hypergraphs.
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8.4 Sperner cliques in graphs

A set family H is called Sperner if no element of H is contained in another element of H.

In particular, every uniform family is Sperner.

The classic proof of LYM Inequality yields also the following result.

Theorem 119. Let H be a set of h elements. Let C be a Sperner family of subsets of H

such that |C| ≤ r for each C ∈ C. Then |C| ≤
(

h
min{r,bh/2c}

)
.

8.4.1 Cliques in graphs with bounded circumference

Recall

f(n, k, r, a) :=

(
k − a

min{r, bk−a2 c}

)
+ (n− k + a)

(
a

min{r − 1, ba/2c}

)
.

For fixed positive integers n ≥ k ≥ r, f(n, k, r, a) is convex over integers a in [0, b(k−1)/2c]
(see the appendix for a proof). Thus the value of f(n, k, r, a) is maximized at one of the

endpoints of the domain.

For a graph G and a positive integer r, let NSp(G, r) denote the maximum size of a Sperner

family C of subsets of V (G) such that for each C ∈ C, G[C] is a clique of size at most r.

Theorem 120. Let n, k, r be positive integers with n ≥ k. Let G be an n-vertex 2-connected

graph with no cycle of length k or longer. Then

NSp(G, r) ≤ max{f(n, k, r, 2), f(n, k, r, b(k − 1)/2c)}.

To prove Theorem 120, we again use the following structural theorem by Kopylov for 2-

connected graphs without long cycles.

Theorem 121 (Kopylov [Kop77]). Let n ≥ k ≥ 5 and let t = bk−12 c. Suppose that G is a

2-connected n-vertex graph with no cycle of length at least k.

Then either

(121.1) the t-core H(G, t) is empty, the graph G is t-disintegrable; or

(121.2) |H(G, t)| = s for some t + 2 ≤ s ≤ k − 2, and H(G, t) = H(G, k − s), i.e., the

rest of the vertices can be removed by a (k − s)-disintegration.

Proof of Theorem 120. Set t := b(k − 1)/2c. Let G be an n-vertex 2-connected graph with

no cycle of length k or longer. Let C be a Sperner family of subsets of V (G) that are cliques

of size at most r with |C| = NSp(G, r). Apply Theorem 121 to G. If (121.1) holds, then

every vertex is deleted in the t-disintegration. At the time of its deletion, each vertex v has

at most t neighbors and by Theorem 119, is contained in at most
(

t
min{r−1,bt/2c}

)
cliques of
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C (since each clique containing v has at most r− 1 other vertices). After n− k + t steps in

the disintegration process, the remaining k − t vertices contain at most
(

k−t
min{b((k−t)/2)c,r}

)
elements of C. Therefore |C| ≤ NSp(G, r) ≤ f(n, k, r, t).

Now suppose (121.2) holds. Then we consecutively delete vertices of degree at most k − s
until we arrive at the core H(G, t) of size s. As in the previous case, when deleting a vertex

v of degree at most k − s, we remove at most
(

k−s
min{(k−s)/2,r−1}

)
cliques of C containing v.

Since H(G, t) contains at most
(

s
min{s/2,r}

)
=
( k−(k−s)
min{(k−(k−s))/2c,r}

)
cliques in C, we obtain

|C| = NSp(G, r) ≤ f(n, k, k − s) ≤ max{f(n, k, r, 2), f(n, k, r, t)}.

The last inequality holds by the convexity of f .

8.4.2 k-path connected graphs

A graph G is `-hamiltonian if for each linear forest L with ` edges (and no isolated vertex)

on the vertex set V (G) there is a hamiltonian cycle in G ∪ L that contains L.

A graph G is k-path connected if for each pair of vertices x, y ∈ V (G), G contains an x, y-

path with k or more vertices. In particular, every n-vertex 1-hamiltonian graph is n-path

connected. The following theorem will be helpful for us.

Theorem 122 (Enomoto [Eno84]). Let G be a 3-connected graph on n vertices such that

for every pair of vertices u, v such that uv /∈ E(G), d(u) + d(v) ≥ t. Then G is k-path

connected where k = min{n, 2t− 1}.

Define the function

hSp(n, `, r, d) :=

(
n− d+ `

min{r, bn−d+`2 c}

)
+ (d− `)

(
d

min{r − 1, bd/2c}

)
.

Note that hSp(n, `, r, d) = f(n, n + `, r, d). For given positive n, r, and ` ≥ 0, the function

hSp(n, `, r, d) is convex for ` ≤ d ≤ n.

Theorem 123. Let n, d, r, ` be integers with 0 ≤ ` < d ≤
⌊
n+`−1

2

⌋
. If G is an n-vertex

graph with minimum degree δ(G) ≥ d, and G is not `-hamiltonian, then

NSp(G, r) ≤ max

{
hSp(n, `, r, d), hSp(n, `, r, bn+ `− 1

2
c)
}
.

Proof. Let C be a Sperner family of cliques of size at most r inG. Suppose thatNSp(G,Kr) >

hSp(n, `, r, b(n + ` − 1)/2c). By a generalization of Pósa’s theorem, there exists some

` < k < b(n + ` − 1)/2c such that V (G) contains a subset D of k − ` vertices with de-

gree at most k (and so k ≥ δ(G) ≥ d).
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For each vertex v ∈ D, v is contained in at most
(

k
min{k/2,r−1}

)
cliques of C, and G − D

contains at most
(

n−k+`
min{b(n−k+`)/2c,r}

)
cliques of C. Hence |C| ≤ NSp(G, r) ≤ hSp(n, `, r, k) ≤

hSp(n, `, r, d).

Our new result is:

Theorem 124. Let n ≥ 4. Let G be an n-vertex 2-connected graph. If

NSp(G, r) >
n− 2

k − 3

(
k − 1

min{r, b(k − 1)/2c}

)
, (8.1)

then G is k-path connected.

Proof of Theorem 124. We use induction on n. If n ≤ k − 1, then by Theorem 119,

NSp(G, r) ≤
(

n

min{r, bn/2c

)
=
n− 2

k − 3

(
k − 3

n− 2

(
n

min{r, bn/2c}

))
.

And for n ≤ k − 1,

k − 3

n− 2

(
n

min{r, bn/2c}

)
≤ k − 3

(k − 1)− 2

(
k − 1

min{r, b(k − 1)/2c}

)
=

(
k − 1

min{r, b(k − 1)/2c}

)
.

Hence (8.1) does not hold.

If n = k, consider any x, y ∈ V (G) such that there is no hamiltonian x, y-path in G. If

xy ∈ E(G), then G is not 1-hamiltonian, then by Theorem 123 with d = 2 (since G is

2-connected),

NSp(G, r) ≤ max{hSp(n, 1, r, 2), hSp(n, 1, r, bn/2c)) = hSp(n, 1, r, 2)

=

(
k − 1

min{r, b(k − 1)/2c}

)
+2 <

(
k − 1

min{r, b(k − 1)/2c}

)
k − 2

k − 3
=

(
k − 1

min{r, b(k − 1)/2c}

)
n− 2

k − 3
,

and (8.1) again does not hold. If xy /∈ E(G), then the graph G′ := G ∪ xy satisfies

NSp(G′, r) ≥ NSp(G, r), and G′ is not 1-hamiltonian. So again we obtain NSp(G, r) ≤
NSp(G′, r) ≤

(
k−1

min{r,b(k−1)/2c}
)
n−2
k−3 .

Thus from now on we may assume n ≥ k + 1.

Claim 125. G is 3-connected.

Proof. Suppose {v1, v2} is a separating set. Let C1 be the vertex set of a component of

G − {v1, v2} and C2 = V (G) − C1. For i = 1, 2, let Gi be obtained from G − C3−i by

adding edge v1v2 if it is not in G. Let ni = |V (Gi)|. By construction, each of G1 and G2 is
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2-connected. Also,

n1 + n2 = n+ 2 and NSp(G, r) ≤ NSp(G1, r) +NSp(2, r). (8.2)

By (8.2), some of Gi satisfies (8.1). By symmetry, suppose G2 does. If x, y ∈ V (G2), then

we are done by induction. Suppose neither of x and y is in V (G2). Then by induction, G2

has a v1, v2-path P with at least k vertices. Also, the 2-connected graph G1 has two disjoint

paths P1 and P2 from {x, y} to {v1, v2}. Then P1 ∪ P ∪ P2 forms a long x, y-path.

Finally, suppose x ∈ V (G2) and y /∈ V (G2). Again by induction, G2 has a v1, x-path P

with at least k vertices. Also, the 2-connected graph G1 has a v1, y-path P1 that avoids v2.

Then P ∪ P1 is what we need.

Claim 126. δ(G) ≥ k+1
2 .

Proof. Suppose v1 ∈ V (G) and d(v1) ≤ k/2. Since G is 3-connected, we can choose a

neighbor v2 of v1 so that v2 /∈ {x, y}. Let G′ be obtained from G by contracting v1 and v2

into a new vertex that we again will call v1. Since G was 3-connected, G′ is 2-connected.

Let SG be a maximum Sperner family of cliques of size at most r in G. We construct a

family S ′ of cliques of size at most r in G′ from SG by

(a) deleting from SG all cliques containing v1; and

(b) replacing each clique S ∈ SG with v2 ∈ S and v1 /∈ S with the clique S − v2 + v1.

We claim that S ′ is Sperner. Indeed, suppose S1, S2 ∈ S ′ and S1 ⊂ S2. Since SG was

Sperner, v1 ∈ S2 − S1. But then S2 − v1 + v2 ∈ SG and S1 ⊂ S2 − v1 + v2.

By construction and Theorem 119,

|SG| − |S ′| ≤
(

d(v1)

min{r − 1, bd(v1)/2c}

)
≤
( bk/2c

min{r, bk/4c}

)
.

But ( bk/2c
min{r, bk/4c}

)
≤ 1

k − 3

(
k − 1

min{r, b(k − 1)/2c}

)
,

and hence G′ satisfies (8.1). So by the minimality of G, graph G′ has a long x, y-path. But

then G also does.

Applying Theorem 122 completes the proof of our theorem.

8.5 Constructing happy incidence bigraphs

8.5.1 Language of layered r−-bigraphs

A layered bigraph is a bigraph G = (A, Y ;E) in which parts A and Y are ordered.
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An r−-bigraph is a layered bigraph G = (A, Y ;E) with d(a) ≤ r for each a ∈ A.

A layered bigraph G = (A, Y ;E) is Sperner if the family {N(a) : a ∈ A} is Sperner. By

definition, if N(a) = {v, u} in a Sperner bigraph, then the codegree of the pair vu is 1.

In particular, the incidence graph GH of an r−-graph H is a Sperner r−-bigraph if and only

if H is Sperner.

A vertex a ∈ A of a layered bigraph G = (A, Y ;E) is happy, if the the codegree d(x, y) of

each pair {x, y} ⊆ N(a) is at least d(a) − 1 (and unhappy otherwise). A layered bigraph

G = (A, Y ;E) is happy if every vertex a ∈ A is happy.

A vertex y ∈ Y of degree 2 in is special, if each of the two neighbors is either unhappy or

also has degree 2.

Vertices x, y ∈ Y and a ∈ A form a special triple if x and y are special (in particular they

have degree 2), N(a) = {x, y}, and the other neighbors of x and y are unhappy.

Given a layered bigraph G = (A, Y ;E), let the shadow ∂(G) be the graph F with vertex set

Y such that xy ∈ E(F ) iff there is a ∈ A with {x, y} ⊆ N(a).

For each graph H, the circumference, c(H), is the length of a longest cycle in H.

We first prove a simple corollary of Hall’s Theorem.

Lemma 127 (Folklore). Let G = (A,B;E) be a bipartite graph with no isolated vertices

such that for each a ∈ A and every b ∈ N(A), d(a) ≥ d(b). Then G has a matching covering

A.

Proof. Suppose that G has no matching covering A. By Hall’s Theorem, there is S ⊆ A

with |S| > |N(S)|. Choose a minimum such S, say S = {a1, . . . , as}. By the minimality

of S, G has a matching M covering S′ := S − as, say M = {aibi : 1 ≤ i ≤ s − 1}. Since

|N(S)| ≤ s− 1, we have N(S) = {b1, . . . , bs−1}. So,

d(a1) + . . .+ d(as−1) + d(as) = e(S,N(S)) = dS(b1) + . . .+ dS(bs−1) ≤ d(a1) + . . . d(as−1),

a contradiction.

Lemma 128. Let r ≥ 3. If G = (A, Y ;E) is a happy Sperner r−-bigraph and ∂(G) contains

a cycle of length ` ≥ r, then G contains a cycle of length 2`.

Proof. Let C = x1, . . . , x` be a cycle of length ` ≥ r in ∂(G). Let F be the bipartite

graph with parts Q = E(C) and A such that a pair (xixi+1, a) is an edge in F if and

only if {xixi+1} ⊆ N(a). If ` ≥ r + 1, then since each a ∈ A has degree less than `, a is

adjacent to at most d(a) − 1 pairs xixi+1. On the other hand, for each edge (xixi+1, a) in

F , dF ({xixi+1}) ≥ d(a)− 1 since G is happy. So by the previous lemma, F has a matching

that covers E(C), say with xixi+1 matched to f(xixi+1) ∈ A. Then we obtain the cycle

x1, f(x1x2), x2, f(x2x3), . . . , x`, f(x`x1), x1 of length 2` in G.
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Now suppose ` = r. If for every a ∈ A, NG(a) 6= {x1, . . . , xr}, then dF (a) ≤ d(a) − 1,

and we are done as in the previous case. So suppose there exists an a such that NG(a) =

{x1, . . . , xr}. Then because G is Sperner, each a′ ∈ A − a is adjacent to at most r − 1

vertices in {x1, . . . , xr}, and hence dF (a′) ≤ (r − 1) − 1. Consider the graph F − a. For

a′ ∈ A− a,

dF−a(a
′) = dF (a′) ≤ min{r − 2, d(a′)− 1}.

If some vertex xixi+1 was adjacent to a in F , then dF (xixi+1) ≥ d(a) − 1 = r − 1 and

so dF−a(xixi+1) ≥ r − 2. Otherwise, for each xixi+1 not adjacent to a in F , and each

a′ ∈ NF (xi, xi+1), dF−a(xixi+1) = dF (xixi+1) ≥ d(a′)− 1, so we are finished as in the first

case.

The same proof also yields the following Lemma for paths of any length.

Lemma 129. Let G = (A, Y ;E) be a happy r−-bigraph. If ∂(G) contains a path with `

vertices, then G contains a path with 2`− 1 vertices with endpoints in Y .

We will often use the following known property of 2-connected graphs.

Lemma 130. Let G be a 2-connected graph, xy ∈ E(G) and S ⊂ V (G) with |S| ≤ |V (G)|−
2.

(1) G− xy is 2-connected iff G− xy has a cycle containing x and y;

(2) the graph G/S obtained by gluing the vertices of S into one vertex s∗ is 2-connected

iff s∗ is not a cut vertex of G/S.

8.5.2 Unhappy r−-bigraphs

Definition 131. Let G = (A, Y ;E) be a Sperner layered 2-connected r−-bigraph G =

(A, Y ;E). A shrinking of G is one of the following operations:

(1) deleting an edge of G incident to an unhappy vertex,

(2) deleting a special vertex y ∈ Y and all neighbors b ∈ N(y) with d(b) = 2,

(3) deleting a special triple x, y ∈ Y and a ∈ A, or

(4) gluing together all but one of the neighbors of some unhappy vertex a ∈ X.

The goal of this subsection is to prove that unhappy Sperner layered 2-connected r−-

bigraphs not admitting a shrinking have a special structure and high maximum average

degree. The main result of the subsection is the following lemma.

Lemma 132. Suppose k ≥ r ≥ 3 are integers. Let G = (A, Y ;E) be a Sperner layered

2-connected r−-bigraph with c(G) < 2k that is not happy. Then either G admits a shrinking

such that the resulting graph G′ satisfies
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(S1) G′ is 2-connected;

(S2) |E′| ≤ |E|, |Y ′| ≤ |Y |, and |E′|+ |Y ′| < |E|+ |Y |;
(S3) G′ is Sperner;

(S4) |A| − |A′| ≤ |Y | − |Y ′|; and

(S5) c(G′) < 2k,

or for every unhappy vertex a ∈ A, there exists three vertices y1, y2, y3 ∈ N(a) and three

subgraphs B1, B2, B3 of G such that for i ∈ {1, 2, 3}
(B1) yi ∈ V (Bi), a /∈ V (Bi), and yi is the only neighbor of a in Bi;

(B2) Bi is 2-connected and Sperner;

(B3) there exists a xi ∈ Y such that {a, xi} separates Bi from G−Bi;
(B4) G− (Bi − xi)− a is Sperner and 2-connected; and

(B5) for j ∈ {1, 2, 3} − {i}, |V (Bi) ∩ V (Bj)| ≤ 1 with equality if and only if xi = xj.

Proof. Suppose, G = (A, Y ;E) is a Sperner layered 2-connected r−-bigraph with c(G) < 2k

that is not happy. Then it has an unhappy vertex a ∈ A. Let NG(a) = {y1, . . . , yt}. Since

a is unhappy, t ≥ 3. Assume that there are no G′ satisfying the lemma. We derive a series

of properties of such G.

A vertex yi ∈ N(a) is an a-menace, if there is a vertex m(a, yi) ∈ A−a such that N(a)−yi ⊆
N(m(a, yi)). Since G is Sperner,

G− ayi is Sperner if and only if yi is not an a-menace. (8.3)

For brevity, we call pairs of vertices in Y of codegree 1 thin and of codegree at least 2 —

thick.

Claim 133. N(a) contains a thin pair.

Proof. Suppose that all pairs of N(a) are thick pairs. For each yi ∈ N(a), the graph

Gi := G− ayi trivially satisfies (S2), (S4), and (S5) in the definition of shrinking. We will

show that Gi is also 2-connected, i.e., it satisfies (S1). Let yj , yk ∈ N(a)−yi. Because every

pair of N(a) is thick, there exists distinct vertices bij , bik 6= a such that {yi, yj} ∈ N(bij)

and {yi, yk} ∈ N(bik). Applying Lemma 130 with the cycle yibijyjaykbikyi certifies that Gi

is 2-connected.

If for some 1 ≤ i ≤ t, the graph Gi is Sperner, i.e., satisfies (S3), then we are done. Assume

not. Because a is the only vertex with a changed neighborhood in Gi, for all i there exists

a vertex bi in G such that {y1, . . . , yt} − {yi} ⊂ N(bi). Furthermore, for i 6= j, bi 6= bj ,

otherwise some N(bi) contains N(a), contradicting the fact that G is Sperner.

In particular, each pair in N(a) belongs in the neighborhoods of a and d(a)− 2 additional

vertices, contradicting that a is unhappy.
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Claim 134. All distinct thick pairs in N(a) are disjoint.

Proof. Suppose not. First we show that there exist some thick pairs {yi∗ , yj∗}, {yi∗ , yk∗}
and a thin pair {ys∗ , yt∗} such that s∗, t∗ 6= i∗. Let {yi, yj}, {yi, yk} and {ys, yt} be any

intersecting thick pairs of N(a) and a thin pair respectively where without loss of generality,

ys /∈ {yi, yj}. If yt 6= yi then we are done. If not then consider instead the pair {ys, yj}. If it

is thin, then we take this pair instead of {ys, yt}. If it is thick, then we let {yi, yj}, {ys, yj}
be our intersecting thick pairs with yj playing the role of yi∗ and {ys, yt} = {ys, yi} be the

thin pair.

Now consider the graph G−ayi∗ . As in the previous claim, it satisfies (S2), (S4), and (S5) as

well as (S1) in the definition of shrinking where we define vertices bi∗j∗ , bi∗k∗ similarly. Since

no other vertex contains the pair {ys∗ , yt∗} in its neighborhood, G− ayi∗ is Sperner.

Claim 135. The codegree of each pair in N(a) is at most 2.

Proof. Suppose there exist distinct vertices b1, b2 6= a both adjacent to y1 and y2. Since

{y1, y2} is a thick pair, {y1, y3} and {y2, y3} are thin by the previous claim. Let P be

a shortest path in G − a from y3 to {y1, y2}. Note that if P contains b1 or b2, then by

the minimality of |P |, either y1 or y2 follows directly after. Therefore we may assume by

symmetry that y1 ∈ P and b2 /∈ P . Consider the graph G− ay1. Trivially it satisfies (S2),

(S4), and (S5). Because {y2, y3} is thin, it also satisfies (S3). Finally, the cycle y3Py1b2y2ay3

certifies that (S1) is satisfied.

Claim 136. If a proper subset S of N(a) is a separating set in G, then S contains an

a-menace.

Proof. If the claim does not hold, choose a smallest separating subset S = {y1, . . . , ys} of

N(a) not containing a-menaces. Since S is a proper subset of N(a), s < t. Let D1 and D2

be components of G− S, where D1 contains a. By the minimality of S,

each yi ∈ S has a neighbor in D2. (8.4)

Since G is 2-connected, there are two vt, S-paths P1 and P2 sharing only vt. By symmetry

we may assume that P1 avoids a. Let y1 be the end of P1 in S. By (8.4), there is a

y1, y2-path P3 all whose internal vertices are in D2.

Consider G′ = G− ay1. Properties (S2), (S4) and (S5) in the claim of the lemma hold for

G′ by definition. Since y1 is not an a-menace, by (8.3), G′ is Sperner, i.e. (S3) holds. Cycle

y2avtP1y1P3y2 together with Lemma 130 show that G′ is 2-connected. Thus, G′ satisfies

the lemma.

Claim 137. N(a) has no thick pairs.
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Proof. Suppose pair y1y2 is thick. By Claims 134 and 135, d(y1y2) = 2 and the com-

mon neighbor b ∈ A − a of y1 and y2 has no other neighbors in N(a). Let N(b) =

{y1, y2, z1, . . . , zs}. Since G is Sperner, s ≥ 1.

By Claim 134, neither of y1 and y2 is an a-menace. So, by Claim 136, G− y1 − y2 contains

an a, b-path P1. We may assume that vt is the second and z1 is the second to last vertices

of P1. Since d(y1y2) = 2, by Claim 5, z1 /∈ N(a). So vt 6= z1.

Case 1: d(y1) = 2. Then d(y1z1) = 1 and hence b is unhappy. So, since d(y1y2) = 2, by

Claim 134, d(y2z1) = 1. Consider G′ = G−y1. As in the proof of Claim 136, (S2), (S4) and

(S5) hold for G′ by definition. Cycle y2ay2P1by2 together with Lemma 130 sertify that G′

is 2-connected, i.e., (S1) holds. Only the neighborhoods of a and b in A′ are distinct from

those in A. So the fact that d(y2z1) = d(y2yt) = 1 shows that G′ is Sperner. This proves

Case 1.

Case 2: d(y1) ≥ 3. Let c ∈ N(y1)− a− b, where if possible we choose c to be adjacent to

z1. Since G is 2-connected, G− y1 has a shortest path P2 from c to V (P1)∪ {y2}. Let x be

the end of P2 in V (P1) ∪ {y2}.
Case 2.1: x 6= b. Consider G′ = G − ay1. As above, (S2), (S4) and (S5) trivially hold

for G′. Since only the neighborhood of a in A′ is distinct from those in A and d(y2yt) = 1,

G′ is Sperner. We need now only to show that G′ is 2-connected. If x = y2, then cycle

cP2y2aP1by1c certifies this. If x ∈ V (P1)−b, then our certificate is cycle cy1by2aP1(a, x)xP2c,

where P1(a, x) denotes the subpath of P1 from a to x.

Case 2.2: x = b. Note that because x 6= z1, by the choice of c and the choice of P2,

z1 /∈ N(c) for any c ∈ N(y1) − a − b. In particular, d(y1z1) = 1, and so b is unhappy.

The second to last vertex of P2 is none of z1, y1, y2, so we may assume it is z2. Consider

G′ = G−by1. Cycle cP2by2ay1c shows that G′ is 2-connected. As above, (S2), (S4) and (S5)

trivially hold for G′. Thus if G′ is Sperner, then the claim is proved. If G′ is not Sperner,

then y1 is a b-menace, and there is a vertex g ∈ A− b such that N(g) ⊃ {y2, z1, z2}. Since

z1a /∈ E, g 6= a. But then instead of the path P2, we can consider the path P2(c, z2)z2gz1,

and will have Case 2.1.

Let G′ be obtained from G by gluing all vertices in N(a)− yt into one vertex y∗. (8.5)

(S2) holds for G′ trivially. When gluing the vertices, we lose edges only if some pair

yi, yj ∈ N(a) have a common neighbor. But because {yi, yj} is thin, they have no common

neighbors other than a. Hence |E′| = |E| − (t − 2) and |Y ′| = |Y | − (t − 2) so (S4) holds.

Property (S5) is less clear but still is true: If G′ has a cycle C of length at least 2k, then

it must go through y∗. Furthermore, if C does not go through a, then either C is present
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in G with y∗ replaced by some yi, or it can be extended through a connecting some yi and

yj . If C does through a, then it uses edges ayt and ay∗; we can modify C in G to a cycle

of the same length. Thus, (S5) also holds.

Since all pairs in N(a) are thin, none of yi is an a-menace. So by Claim 136 and Lemma 130,

G′ is 2-connected. Again, since all pairs in N(a) are thin, NG′(a) is not contained in any

other neighborhood. Hence, in order the lemma to fail, by symmetry there are b1, b2 ∈ A−a
such that NG(b2)−y2 ⊂ NG(b1) and y1b1 ∈ E. Note that b1 and b2 each contain exactly one

vertex in N(a) (y1 and y2 respectively), and there is x ∈ N(b1)∩N(b2) such that x /∈ N(a).

Claim 138. d(b2) = 2.

Proof. Suppose N(b2) ⊇ {y2, x1, x2}. Then by the definition of b1, N(b1) ⊇ {y1, x1, x2}. So

by Claim 137 applied to b1 and b2, because the pair {x1, x2} is thick, both b1 and b2 are happy

. Since G is 2-connected, G− a has a shortest path P from vt to Z = {y1, y2, b1, b2, x1, x2}.
Let z be the last vertex of P . By symmetry, we may assume z ∈ {y2, b2, x2}. Consider

G′ = G − ay2. As before, (S2),(S4) and (S5) hold for G′. Since all pairs in N(a) are thin,

G′ is Sperner. If z = y2, then the cycle aPy2b2x2b1y1a shows that G′ is 2-connected.

So suppose z ∈ {b2, x2}. Since b2 is happy, there is another b3 adjacent to y2 and x2. By

definition, it is distinct from b1 and a. So if z = x2 and P does not pass through b3, then

we have cycle aPx2b3y2b2x2b1y1a. Similarly, if z = b2 and P does not pass through b3,

then we have cycle aPb2y2b3x1b1y1a. Finally, if P passes through b3, then we have cycle

aP (a, b3)b3y2b2x1b1y1a.

Claim 139. d(y2) ≥ 3.

Proof. Recall x = N(b1)∩N(b2). Assume N(y2) = {a, b2}. By Claim 136, G− y1− y2 has

an a, x-path P . We can choose a shortest such path. Let c be the second to last vertex in

P .

Case 1: c 6= b1. Consider G′ = G−b2−y2. As before, (S2),(S4) and (S5) hold for G′. Since

all pairs in N(a) are thin, G′ is Sperner. The cycle aPxb1y1a shows that G′ is 2-connected.

Case 2: c = b1. Let z be the previous to c vertex of P . Since all pairs in N(a) are thin,

z 6= vt. If b1 is happy, then there exists a vertex b3 6= b1 with {y1, x} ⊆ N(b3). Then b3 can

play the role of b1 in the definition of b1 and b2. In this case, we get Case 1 and are done.

Thus, b1 is unhappy. Hence all pairs in N(b1) are thin.

If d(x) = 2, consider G′ = G− b2− y2− x. As before, (S2),(S4) and (S5) hold for G′. Since

all pairs in N(a) and in N(b1) are thin, G′ is Sperner. The cycle aPb1y1a shows that G′ is

2-connected.

So suppose b4 ∈ N(x) − b1 − b2. Since G is 2-connected, G − x has an b4, a-path P1. If

P1 does not intersect {b1, y1}, then we have Case 1 with P = aP1b4x. So, suppose u is the
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first vertex in {b1, y1} that is hit by P1. Note that if P1 meets P − u before u, then we can

modify it to avoid intersecting with {b1, y1}. Thus we assume below that this is not the

case.

If u = y1, consider G′ = G − ay1. As before, (S2),(S4) and (S5) hold for G′. Since all

pairs in N(a) are thin, G′ is Sperner. The cycle aPb1y1P1(y1, b4)xb2y2a shows that G′ is

2-connected. Finally, if u = b1, consider G′ = G− b1x. As before, (S2),(S4) and (S5) hold

for G′. Since all pairs in N(b1) are thin, G′ is Sperner. The cycle aPb1P1(b1, b4)xb2y2a

shows that G′ is 2-connected.

Claim 140. Set {x, y1, y2} separates a from b1.

Proof. Suppose not. Then G − {x, y1, y2} has an a, b1-path P . Note that b2 /∈ P since

N(b2) = {x, y2}. Let the second vertex of P be vt.

If b1 is happy, then there is b3 ∈ A − b1 with N(b3) ⊇ {y1, x}. Consider G′ = G − ay1.
As before, (S2),(S4) and (S5) hold for G′. Since all pairs in N(a) are thin, G′ is Sperner.

We need to show that G′ is 2-connected. If b3 ∈ P , then the cycle aP (a, b3)b3y1b1xb2y2a

certifies this. Otherwise, the cycle aPb1y1b3xb2y2a certifies this.

So, b1 is unhappy, and all pairs in N(b1) are thin. If d(y1) = 2, consider G′ = G − y1. As

before, (S2),(S4) and (S5) hold for G′. Since all pairs in N(b1) and in N(a) are thin, G′ is

Sperner. The cycle aPb1xb2y2a shows that G′ is 2-connected.

Thus, d(y1) ≥ 3. Let c ∈ N(y1) − a − b1. Let P1 be a shortest path in G − y1 from c to

V (P )∪ {x, y2}. Let z be the last vertex of P1. If z ∈ V (P )− b1, consider G′ = G− ay1. As

before, (S2),(S4) and (S5) hold for G′. Since all pairs in N(a) are thin, G′ is Sperner. The

cycle aP (a, z)zP1cy1b1xb2y2a certifies that G′ is 2-connected.

If z ∈ {b1, x, y2}, consider G′ = G− b1y1. As before, (S2),(S4) and (S5) hold for G′. Since

all pairs in N(b1) are thin, G′ is Sperner. Let P2 denote the path ay2b2xb1. Then the cycle

ay1cP1zP2(z, b1)b1Pa certifies that G′ is 2-connected.

Claim 141. Set {x, a} separates y2 from N(a)− y2.

Proof. Suppose not. Let P be a shortest a, x-path in G− y1 − y2. By Claim 140, P does

not go through b1. Let the second vertex of P be vt. Let P1 be a shortest path in G− a−x
from y2 to (N(a) − y2) ∪ V (P ). Let z be the last vertex of P1. If b1 ∈ V (P ), then we can

take z = y1. Consider G′ = G − ay2. As before, (S2),(S4) and (S5) hold for G′. Since all

pairs in N(a) are thin, G′ is Sperner. If z ∈ N(a)−vt then the cycle y2P1zaPxb2y2 certifies

that G′ is 2-connected. Otherwise, the cycle y2P1zP (z, a)ay1b1xb2y2 does it.

Let C2 be the vertex set of the component of G − a − x containing y2 and let G2 =

G[C2 ∪ {a, x}]. By Claim 141, C2 ∩ N(a) = {y2}. If x has no neighbors in C2 − b2, then

by Claim 140, y2 would be a cut vertex, a contradiction. Thus, in view of b2, no vertex in

115



G2− a separates x from y2. Since no vertex in G2− a may separate {y2, x} from any other

vertex, we conclude

G2 − a is 2-connected and the unique neighbor of a in C2 is y2. (8.6)

Claim 142. Set {x, a} separates y1 from N(a)− y1.

Proof. Suppose not. If d(b1) = 2, then by symmetry of b1 and b2 and the previous claim,

we are done. So d(b1) ≥ 3. Let x′ ∈ N(b1) − y1 − x. Let P be a shortest a, x-path in

G− y1 − y2. By Claim 141, P does not go through b2. Let the second vertex of P be vt.

Let P1 be a shortest path in G − a − x from {y1, b1} to V (P ) ∪ (N(a) − y1 − y2). Let

z1 be the first vertex of P1 and z2 — the last. If z1 = y1, consider G′ = G − ay1. As

above, (S2),(S4) and (S5) hold for G′. Since all pairs in N(a) are thin, G′ is Sperner. If

z2 ∈ N(a)− vt then the cycle y1P1z2ay2b2xb1y1 certifies that G′ is 2-connected. Otherwise,

the cycle y1P1z2P (z2, a)ay2b2xb1y1 does it.

So suppose z1 = b1.

Case 1: b1 is unhappy. If z2 ∈ V (P ), then we consider G′ = G− xb1. As above, (S2),(S4)

and (S5) hold for G′. Since b1 is unhappy, all pairs in N(b1) are thin, and hence G′ is

Sperner. The cycle b1P1z2P (z2, x)xb2y2ay1b1 certifies that G′ is 2-connected. So below we

assume z2 = y3 and t ≥ 4.

If d(y1) = 2, then we consider G′ = G− y1. As above, (S2),(S4) and (S5) hold for G′. Since

all pairs in N(a) and N(b1) are thin, G′ is Sperner. The cycle b1P1y3ay2b2xb1 certifies that

G′ is 2-connected.

Thus there is b0 ∈ N(y1)− a− b1. If G− b1 − y1 has a path from b0 to N(a)− y1, then we

would have the case z1 = b1 above. Hence there is no such path. But then G−V (P )−N(a)

has a b0, b1-path P2. In this case, we consider G′ = G− y1b1. As above, (S2),(S4) and (S5)

hold for G′. Since all pairs in N(b1) are thin, G′ is Sperner. The cycle y1b0P2b1xb2y2ay1

certifies that G′ is 2-connected.

Case 2: b1 is happy. Then there is another common neighbor b′1 of x and y1. Again, consider

G′ = G−ay1. As above, (S2),(S4) and (S5) hold for G′. Since all pairs in N(a) are thin, G′

is Sperner. If b′1 /∈ P1 and z2 ∈ N(a) − vt then the cycle b1P1z2ay2b2xb
′
1y1b1 certifies that

G′ is 2-connected. If b′1 /∈ P1 and z2 ∈ V (P ) then the cycle b1P1z2P (z2, a)ay2b2xb
′
1y1b1 does

it. If b′1 ∈ P1, then we switch the roles of b1 and b′1: consider the path P ′1 = P1(b
′
1, z2).

Claim 143. Vertex a has only one neighbor (namely, y1) in the component C1 of G−x−a
containing y1 and b1.

Proof. Otherwise, {x, a} would not separate y1 from N(a) − y1, a contradiction to

Claim 142.
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Similarly to the definition of G2, let C1 be the vertex set of the component of G − a − x
containing y1 and let G1 = G[C1 ∪ {a, x}]. By Claim 143, C1 ∩N(a) = {y1}.

Claim 144. G1 − a is 2-connected.

Proof. Case 1: G − a − b1 has an x, y1-path P . Then P + b1 forms a cycle in G1 − a
containing x and y1. Since G is 2-connected and {y1, x} is a separating set in G1, this

finishes the case.

Case 2: d(b1) = 2. Then y1 can play the role of y2, and we are done by (8.6).

Case 3: Vertex b1 separates y1 from x in G1 − a, and b1 has a neighbor y′ /∈ {x, y1}. If b1

were happy, there would be b′ 6= b1 adjacent to x and y1 and we would have Case 1. So, b1

is unhappy. Let P1 be a shortest path from y′ to {a, x} in G− b1. and z be the last vertex

on P1.

Suppose first that z = a. Then by Claim 143, the second to last vertex of P1 is y1.

Consider G′ = G− y1b1. As above, (S2),(S4) and (S5) hold for G′. Since b1 is unhappy, all

pairs in N(b1) are thin. Thus G′ is Sperner. The cycle y′P1ay2b2xb1y
′ certifies that G′ is

2-connected.

Suppose now that z = x. Since Case 1 does not hold, y1 /∈ P1. Consider G′ = G− xb1. As

above, (S2),(S4) and (S5) hold for G′. Since all pairs in N(b1) are thin, G′ is Sperner. The

cycle y′P1xb2y2ay1b1y
′ certifies that G′ is 2-connected.

Claim 145. G− C1 and G− C2 are 2-connected Sperner r−-graphs.

Proof. Let P be a shortest y3, x-path in G− a. By Claim 141 and 142, P avoids C1 ∪C2.

For i = 1, 2, the cycle y3Pxb3−iy3−iay3 certifies that G − Ci is 2-connected. Since the

degrees of the vertices in G − C1 and G − C2 are dominated by those in G, G − C1 and

G−C2 are r−-graphs. Since a is the only vertex in A∩ V (G−Ci) whose degree decreased

w.r.t. G and all pairs in N(a) are thin, G− C1 and G− C2 are Sperner.

Now set B1 = G1−a, B2 = G2−a, and x1 = x2 = x. Note that the choice of yt in (8.5) was

arbitrary. So we may repeat the proof instead taking G′′ to be the graph obtained by gluing

N(a)− y1 into a single vertex y∗∗. If G′′ satisfies (S1) - (S5), then we are done. Otherwise

we find some vertices y′1, y
′
2 ∈ N(a)− y1 which play the role of y1 and y2. We may assume

that y′1 /∈ {y1, y2} and it is coupled with some vertex x′ which plays the role of x.

Again, repeating the previous proofs for Claims 138-145 with y′1 and y′2, we obtain that

either G admits a shrinking, or we can define G′1 similarly to play the role of G1 (defined

after Claim 143) for y′1. Let B3 = G′1 − a, y3 = y′1, and x3 = x′. We now show that (B1) -

(B5) hold.

(B1) and (B3) are trivial. Since G was Sperner each vertex of A ∩ V (Bi) has the sane

neighborhood in Bi, Bi is also Sperner. Hence together with (8.6) and Claim (144), we get
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(B2). Claim 145 proves (B4). Claims 141 and 142 imply that V (B1) ∩ V (B2) = {x}, and

y′1(= y3) is contained in a component of G−{a, x} not containing y1 and y2. In particular,

B3 is disjoint from B1 and B2 except possibly at x′ if x′ = x. This proves (B5) and thus

the Lemma 132.

8.5.3 Consequences of Lemma 132

This technical lemma implies the following more applicable fact.

Lemma 146. Suppose k ≥ 5, r ≥ 3 are integers with k ≥ r. Set t = b(k − 1)/2c. Let

G = (A, Y ;E) be a Sperner layered 2-connected r−-bigraph with c(G) < 2k that is not

happy. Then either G admits a shrinking such that the resulting graph satisfies (S1) - (S5),

or there exists an unhappy vertex a∗ ∈ A and some block B∗ satisfying the hypothesis of

Lemma 2.4 such that B∗ is happy and |A ∩B∗| ≤
(

t
min{r−1,bt/2c}

)
(|Y ∩B∗| − 2).

Proof. Suppose G does not admit any shrinking. By Lemma 132, for each unhappy vertex

a we obtain some {yi, xi, Bi} for i ∈ {1, 2, 3} satisfying (B1) - (B5).

Claim 147. For each unhappy a, at most one Bi has a (xi, yi)-path of length k or longer.

Proof. Suppose without loss of generality that for i ∈ {1, 2}, there exists a (yi, xi)-path Pi

in Bi of length at least k. Recall that y1, y2 ∈ N(a). Let P3 be a (x1, x2)-path internally

disjoint from V (B1) ∪ V (B2) (where P3 may be a singleton). Then P1 ∪ P3 ∪ P2 ∪ a is a

cycle of length at least 2k − 1, i.e., length at least 2k.

Among all vertices in A that are not happy, choose a and a corresponding 2-connected

graph B1 from Lemma 2.4 so that (a) B1 does not have a (xi, yi)-path of length k or longer,

and (b) subject to (a), |V (B1)| is minimized.

Suppose first that B1 contains an unhappy vertex a′. By Lemma 2.4, there exists {x′i, y′i, B′i}
for i ∈ {1, 2, 3} satisfying (B1)-(B5) with a′.

Claim 148. At most one j ∈ {1, 2, 3} satisfies V (B′j) 6⊆ V (B1).

Proof. Suppose without loss of generality V (B′2) 6⊆ V (B1) and V (B′3) 6⊆ V (B1). Then since

{x1, a} separates B1 from G−(B1−x)−a, and B′2 and B′3 are 2-connected, {x1, a} ⊆ V (B′2)

and {x1, a} ⊆ V (B′3). But this violates (B5).

Therefore we may assume V (B′1), V (B′2) ⊆ V (B1). By Claim 147, we can also assume that

V (B′1) has no (x′1, y
′
1)-path of length k or longer. Furthermore, since a′ ∈ V (B1)− V (B′1),

|V (B′1)| < |V (B1)|. But this contradicts the choice of a and B1. Thus B1 cannot have any

unhappy vertices, i.e., B1 is happy.
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Consider the shadow ∂(B1) of B1. By Lemma 129, ∂(B1) is not d(k+1)/2e-path connected,

otherwise B1 would contain an (x1, y1)-path of length at least 2d(k + 1)/2e − 1 ≥ k, a

contradiction.

Let α = d(k − 1)/2e, β = b(k − 1)/2c.

Claim 149. 1
α−2

(
α

min{r,bα/2c}
)
≤
( β
min{r−1,bβ/2c}

)
.

Proof. First suppose α = β, i.e., k is odd. Then the case min{r, bα/2c} = α/2 is trivial.

Otherwise 1
α−2

(
α
r

)
= 1

α−2
α−r+1

r

(
β
r−1
)
≤
(
β
r−1
)
. So assume α = β + 1. If min{r, bα/2c} = r

(so min{r − 1, bβ/2c = r − 1), then we have 1
α−2

(
α
r

)
= 1

β−1
β+1
r

(
β
r−1
)
≤
(
β
r−1
)
. Otherwise if

bα/2c < r, then bβ/2c ≤ r−1, and 1
α−2

(
α
bα/2c

)
= 1

β−1
( β+1
b(β+1)/2c

)
= 1

β−1
β+1

b(β+1)/2c
( β
b(β+1)/2c−1

)
≤( β

bβ/2c
)
.

Therefore because ∂(B1) is not (α + 1)-path connected, by Theorem 124 and the previous

claim,

|A ∩B1| ≤ NSp(∂(B1), r) ≤
|Y ∩B1| − 2

α− 2

(
α

min{r, bα/2c}

)
≤ (|Y ∩B1| − 2)

(
β

min{r − 1, bβ/2c}

)
.

8.6 Constructing happy r−-graphs

In this section, we translate Lemma 132 into the language of r−-graphs. We also refine it.

8.6.1 Unhappy r−-graphs

A Sperner r−-graph H is happy if its layered incidence bigraph I(H) is happy, and is

unhappy otherwise. The happy and unhappy vertices in I(H) correspond to happy and

unhappy edges in H.

For an unhappy edge e in an unhappy r−-graph H and a vertex v ∈ e, let F (H, e, v) denote

the r−-graph obtained from H by replacing e with e− v.

A vertex v of degree 2 in an unhappy r−-graph H is special if each of the two incident edges,

say e1 and e2, is either unhappy or a graph edge (i.e., contains exactly two vertices). If v

is special and incident with e1 and e2, then F (H, v, e1, e2) is the r−-graph obtained from H
by deleting v and for i = 1, 2 deleting ei if |ei| = 2 and replacing ei with ei − v otherwise.

A graph edge vu in an unhappy r−-graph H is special if both v and u are special, and both

adjacent to vu edges are unhappy. If vu is special and adjacent to e1 and e2, then F (H, vu)
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is the r−-graph obtained from H by deleting v and u, replacing e1 with e1−v, and replacing

e2 with e2 − u.

A 2-block in a 2-connected H is a 2-connected H′ ⊂ H such that only two vertices of H′
have neighbors outside of H′. These two vertices will be called outer vertices of H′.
A 2-block H′ with outer vertices x and y in an unhappy Sperner r−-graph H is special if

H′ is happy and there is exactly one edge, say a, in G−E(H′) containing y, and this edge

does not contain x.

Given a special 2-block H′ with outer vertices x and y in an unhappy Sperner r−-graph

H, the r−-graph F (H,H′, x, y) is obtained from H by deleting all vertices of H′ − x − y
together with the edges containing them and adding edge {x, y} if it is not in H.

Translating from the language of incidence bipartite graphs to hypergraphs, we obtain the

following versions of Lemmas 128 and 129 about Berge cycles and Berge paths.

Lemma 150. Let r ≥ 3. Let H be a happy r−-graph. If the 2-shadow ∂2H contains a cycle

of length ` ≥ r + 1, then H contains a Berge cycle of length ` on the same base vertices.

Furthermore, if ∂2H contains a path, then H contains a Berge path with the same base

vertices.

For simplicity, for an r−-graph H, denote
∑ |E(H)| :=

∑
e∈E(H) |e|. For example, if H

is r-uniform, then
∑ |E(H)| = r|E(H)|. We also obtain the following as a corollary of

Lemma 146.

Lemma 151. Suppose k ≥ r ≥ 3 are integers, and set t = b(k− 1)/2c. Let H be a Sperner

2-connected r−-graph with c(H) < k that is not happy. Then we can obtain a Sperner 2-

connected r−-graph H′ such that

(i)
∑ |E(H′)| ≤ ∑ |E(H)|, |V (H′)| ≤ |V (H)|, and

∑ |E(H′)| + |V (H)| < ∑ |E(H)| +
|V (H′)|;

(ii) |E(H)| − |E(H′)| ≤
(

t
min{r−1,bt/2c}

)
(|V (H)| − |V (H′)|); and

(iii) c(H′) < k

using one of the following transformations:

(T1) for an unhappy edge e and v ∈ e, replacing H with F (H, e, v);

(T2) for a special vertex v with incident edges e1 and e2, replace H with F (H, v, e1, e2);

(T3) for a special edge vu, replace H with F (H, vu);

(T4) glue together all but one vertices of an unhappy edge;

(T5) for a special 2-block H ′ with outer vertices say x, y, replace H with F (H,H ′, x, y).

Furthermore, if (T5) is not applied, then instead of (ii), we obtain |E(H)| − |E(H′)| ≤
(|V (H)| − |V (H′)|).
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8.6.2 A refinement of Lemma 151

Suppose we start from a Sperner 2-connected unhappy r−-graph H with at least k vertices

and c(H) < k. Lemma 151 provides that we can obtain fromH a happy Sperner 2-connected

r−-graph in several steps using the following rule at each step:

if possible, apply (T1); if not then try (T2), then (T3) and so on. (8.7)

We may think that we have started from H = H0 and after Step i obtain Hi from Hi−1
using one of (T1)–(T5).

Claims 2.7–2.8 in the proof of Lemma 151 yield that following (8.7), at each Step i,

if (T1) is not applied on Step i + 1, then in each unhappy edge a of Hi, thick pairs form

a matching,
(8.8)

and

if neither (T1) nor (T2) is applied on Step i+1, then all pairs of vertices in each unhappy

edge a of Hi are thin.
(8.9)

Claim 152. If (T2) was applied on Step i, then (T1) cannot be applied on Step i+ 1.

Proof. Suppose Hi = F (Hi−1, v, e1, e2) and Hi+1 = F (Hi, e0, w).

Case 1: Edge e0 is neither e1 − v nor e2 − v. We want to show that in this case, e0 is

unhappy in Hi−1 and H′ = F (Hi−1, e0, w) is a Sperner 2-connected r−-graph satisfying

(i)–(iii) with Hi−1 in place of H. That would contradict Rule (8.7).

To prove the first part (that e0 is unhappy in Hi−1), recall that e0 is unhappy in Hi. But

the codegree in Hi of each pair in V (Hi) is the same as in Hi−1.
To prove the second part, we use the fact that H′ can be obtained from Hi+1 by adding

back vertex v and for j = 1, 2 constructing ej either by adding v to ej − v ∈ Hi+1 when

|ej | ≥ 3 or adding edge ej when |ej | = 2. Since the incidence graph I(Hi+1) is 2-connected

and this operation corresponds to adding a vertex of degree 2 or an ear to I(Hi+1), I(H′)
also is 2-connected. Since Hi+1 is Sperner, and H′ differs from it only e1, e2 and v, H ′ is

also Sperner: new edges are not contained in any old edge because of v, and no old edge

can be contained in ej , since otherwise it would be contained in ej − v in Hi+1. Properties

(i)–(iii) are trivial.

Case 2: e0 = e1 − v. In this case, we know that e1 is unhappy in Hi−1 and want to show

that H′ = F (Hi−1, e1, w) is a Sperner 2-connected r−-graph satisfying (i)–(iii) with Hi−1
in place of H. Now H′ can be obtained from Hi+1 by adding back vertex v, adding v to
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e0 − w and constructing e2 either by adding v to e2 − v ∈ Hi+1 when |e2| ≥ 3 or adding

edge e2 when |e2| = 2. The rest is as in Case 1.

Practically the same proof yields the following similar claim.

Claim 153. If (T3) was applied on Step i, then (T1) cannot be applied on Step i+ 1.

The proof of the next claim is somewhat different.

Claim 154. If (T4) was applied on Step i, then (T1) cannot be applied on Step i+ 1.

Proof. Suppose Hi−1 has an unhappy edge a = {y1, . . . , yt} such that Hi is obtained from

Hi−1 by gluing {y1, . . . , yt−1} into a new vertex y∗, and Hi+1 = F (Hi, e, w). By (8.9),

all pairs of vertices in each unhappy edge of Hi−1 are thin. In particular, the size of each

edge in Hi apart from the edge y∗yt is the same as in Hi−1.
(8.10)

Case 1: w 6= y∗. By (8.10), in Hi−1, |e ∩ a| ≤ 1. So, since e is unhappy in Hi, it is

also unhappy in Hi−1. We want to show that H′ = F (Hi−1, e, w) is a Sperner 2-connected

r−-graph satisfying (i)–(iii). Since each pair in e is thin, H′ is Sperner. Properties (i)–(iii)

are evident, so we need to check that H′ is 2-connected.

By construction, H′ can be obtained from the 2-connected Hi+1 by blowing up vertex y∗

into vertices y1, . . . , yt−1 (each of a positive degree) and replacing edge y∗yt with a. In terms

of the incidence graphs, in the 2-connected I(Hi+1), we split y∗ into t− 1 vertices of degree

at least 1, delete vertex y∗ and add vertex a adjacent to y1, . . . , yt. It is easy to check that

the new graph is 2-connected.

Case 2: w = y∗. By (8.10), there is a unique v1 ∈ a− yt such that e′ = e− y∗+ v1 ∈ Hi−1.
Since e is unhappy in Hi, it has a pair xy of codegree at most |e| − 2. If y∗ /∈ {x, y}, then

the codegree of xy in Hi−1 also is at most |e| − 2. And if y∗ = y, then the codegree of y1x

in Hi−1 is at most |e| − 2. Thus e′ is unhappy in Hi−1. The rest is as in Case 1.

8.6.3 Stopping at k − 1 vertices

Lemma 155. Suppose r ≥ 3 and k ≥ r are integers. Let H be a Sperner 2-connected r−-

graph with c(H) < k and at least k vertices that is not happy. Suppose H = H0, . . . ,Hi,Hi+1

is a sequence of r−-graphs obtained by iteratively applying Lemma 151 following Rule (8.7)

to H until Hi+1 is happy. If (T5) was never applied and |V (Hi+1)| = k−1, then |E(Hi+1)| ≤(
k−2

min{r,b(k−2)/2c}
)

+ 2.

Proof. Since (T1) does not change the number of vertices and H0 has at least k vertices,

one of (T2), (T3), or (T4) was applied. Moreover, by Claims 152–154, one of (T2), (T3), or

(T4) was applied to Hi to obtain the happy r−-graph Hi+1. For short, denote H′ = Hi+1.
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IfH′ has a vertex of degree at most 3, then the number of edges inH′ is at most
(

k−3
min{r,b(k−3)/2c}

)
+(

3
min{r−1,1}

)
, and we are done. Hence

δ(H′) ≥ 3. (8.11)

In the following, for any r−-graph A and any vertex v ∈ V (A), we use A− v to denote the

r−-graph obtained by removing vertex v and shrinking any edge e that contains v to the

edge e− v, unless |e| = 2, in which case we simply delete e in A− v. Note that A− v need

not be Sperner, even if A is Sperner.

Case 1: (T4) was the last applied operation. Let a = {y1, . . . , yt} be the unhappy edge

such that H′ is obtained from Hi by gluing {y1, . . . , yt−1} into a new vertex y∗. Since H′ is

happy, Hi−a is happy. The r−-graph F (Hi, a, yt) satisfies (i)-(iii) and is Sperner by (8.10).

So if F (H′, a, yt) is 2-connected, then we would have applied (T1) to Hi instead of (T4), a

contradiction to Rule (8.7). Therefore

the incidence graph I(Hi − a) has a vertex xt separating yt from {y1, . . . , yt−1}.
(8.12)

If xt corresponds to an edge b in Hi − a, then some pair of its vertices is thin. So, since

Hi − a is happy, |b| = 2. Then instead of xt, we can choose as a vertex x′t separating yt

from {y1, . . . , yt−1} the neighbor of xt that is farther from yt. Thus we may assume that xt

corresponds to a vertex in Hi − a.

If xt /∈ {y1, . . . , yt−1}, then yt and y∗ are also separated by xt in H′ − y∗yt. Since there

are at least 2 components in H′ − y∗yt − xt, the largest block of H′ − y∗yt has at most

|V (H′)− 1| = k − 2 vertices.

We have that

|E(H′)| = |E(H′−y∗yt)|+1 ≤
(

k − 2

min{r, b(k − 2)/2c}

)
+1+1 =

(
k − 2

min{r, b(k − 2)/2c}

)
+2.

If xt ∈ {y1, . . . , yt−1}, then let C be a component of (Hi − a) − xt which does not contain

yt. Then C contains a vertex y /∈ {y1, . . . , yt−1}, otherwise every edge of C + xt in Hi would

be a subset of the edge a, contradicting that Hi is Sperner. Thus in H′− y∗yt, y and yt are

in different blocks. Hence we again get |E(H′)| ≤
(

k−2
min{r,b(k−2)/2c}

)
+ 2.

Case 2: Hi+1 = F (Hi, v, e1, e2) for some special vertex v. By (8.8), if |e1| ≥ 4, then some

pair in e1 − v is thin, and hence e1 − v is unhappy in Hi+1, a contradiction the happiness

of Hi+1. Thus |e1|, |e2| ≤ 3. Since Hi was unhappy, we may assume that |e1| = 3, say

e1 = {v, v′, v′′}. By (8.8), either vv′ or vv′′ is a thin pair in Hi. Suppose vv′′ is thin.

Consider H′′ = F (Hi, e1, v′). Since vv′′ is thin, H′′ is Sperner. If H′′ is 2-connected, we get
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a contradiction to Rule (8.7). Thus the incidence graph I(H′′) has a cut vertex x separating

v′ from {v, v′′}. We claim that

we can choose x corresponding to a vertex in H′′ distinct from v. (We allow x = v′′.)

(8.13)

Indeed, if v separates v′ from v′′ in I(H′′), then vertex e1 in the incidence graph I(Hi)
separates v′ from v′′, a contradiction to the 2-connectedness of Hi. If x corresponds to an

edge in I(Hi), then again x contains thin pairs. If |x| ≥ 3. Then x is unhappy. By the

choice Hi+1, the only unhappy edge in H′′ could be e2. Recall that in this case, |e2| = 3,

say x = e2 = {v, w,w′}. But in this case, one of v, w and w′ also separates v′ from v′′, and

we know that it is not v. Recall that vv′′ is a thin pair, and so v′′ /∈ {w,w′}. Otherwise if

|x| = 2, then both of its vertices are cut vertices. This proves (8.13).

Recall that |V (H′′)| = |V (Hi)| = k and e(H′′) = e(Hi) ≤ e(Hi+1) + 1. Suppose first that

each component of H′′ − x has at least 3 vertices. Since H′′ − x has k − 1 vertices and at

least 2 connected components, k ≥ 7, and the largest component of H′′ − x has at most

k − 4 vertices. Therefore we obtain

e(Hi+1) ≤ e(H′′) ≤
(

k − 3

min{r, b(k − 3)/2c}

)
+

(
4

2

)
≤
(

k − 2

min{r, b(k − 2)/2c}

)
+ 2.

Now suppose that some component C of H′′ − x contains at most 2 vertices. By (8.11),

|C| = 2 and each of the two vertices in C either has degree in H′′ less than in Hi+1 or is v.

But the only vertex having degree in H′′ less than in Hi+1 is v′, and the vertices v and v′

are in distinct components of H′′ − x.

Case 3: Hi+1 = F (Hi, vu) for some special edge vu. Let e1 be the unhappy edge incident

to v and e2 be the unhappy edge incident to u. By (8.9), all pairs in e1 and e2 are thin. So

since Hi+1 is happy, |e1| = |e2| = 3. Let e1 = {v, v′, v′′} and e2 = {u, u′, u′′}, where possibly

v′ = u′. As in Case 2, consider H′′ = F (Hi, e1, v′). Since vv′′ is thin, H′′ is Sperner. If H′′
is 2-connected, we get a contradiction to Rule (8.7). Thus the incidence graph I(H′′) has a

cut vertex x separating v′ from {v, v′′}.
Similarly to the proof of (8.13), we derive

we can choose x corresponding to a vertex in H′′ distinct from v and u. (We allow

x = v′′.)
(8.14)

Furthermore, x /∈ {u′, u′′}. Now |V (H′′)| = |V (Hi)| = k+1 and e(H′′) = e(Hi) = e(Hi+1)+

1.

Note that there cannot be any isolated vertices in H′′− x since by (8.11), δ(H′′) ≥ 3. Also,

as in the previous case, there cannot be a component of H′′ − x with exactly 2 vertices. So
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we may assume that each component of H′′ − x has at least 3 vertices.

Let C be the component of H′′−x that contains v. Then C must also contain u and at least

two of the vertices in {v′′, u′, u′′}. Therefore |C| ≥ 4. In particular, since H′′ − x contains

exactly k vertices and at least 2 connected components, k ≥ |C|+ 3 ≥ 7.

As in Case 2, if the largest component of H′′ − x has at most k − 4 vertices (so k ≥ 8 since

|C| ≥ 4), then

e(Hi+1) ≤ e(H′′) ≤
(

k − 3

min{r, b(k − 3)/2c}

)
+

(
5

2

)
≤
(

k − 2

min{r, b(k − 2)/2c}

)
+ 2,

a contradiction.

Now suppose a component C′ of H′′ − x has k − 3 or k − 2 vertices. If C′ contains v, (i.e.,

C′ = C), then since C contains u as well, and u and v are incident to exactly 3 edges (vu, e1,

and e2),

e(H′′[C + x]) ≤
( |C′| − 2 + 1

min{r, b(|C′| − 2 + 1)/2c}

)
+ 3.

For |C′| = k − 3 we get

e(H′′) ≤
(

k − 4

min{r, b(k − 3)/2c}

)
+ 3 +

(
4

2

)
≤
(

k − 2

min{r, b(k − 2)/2c}

)
+ 2,

and for |C′| = k − 2 we get

e(H′′) ≤
(

k − 3

min{r, b(k − 3)/2c}

)
+ 3 +

(
3

2

)
≤
(

k − 2

min{r, b(k − 2)/2c}

)
+ 2.

So C′ 6= C. But since |C| ≥ 4, we have |V (H′′)| ≥ |C′|+ |C|+ 1 ≥ 4 + (k − 3) + 1 = k + 2, a

contradiction.

8.7 Proof of Theorem 114

Proof. Apply Lemma 151 repeatedly to H following Rule (8.7) to obtain an r−-hypergraph

H′ that is happy. By Lemma 150, ∂2H′ has no cycle of length k or longer.

Let nS and mS be the number of vertices and r−-edges respectively that were deleted

going from H to H′ by applying operations (T1)-(T4), and let nB and mB be the number

of vertices and r−-edges respectively that were deleted from applying operation (T5). So

n = |V (H′)| + nS + nB and |E(H)| ≤ NSp(∂2H′, r) + mS + mB. If |V (H′)| ≥ k, then by

Theorem 120 (applied to ∂2H′) and Lemma 151, we have

|E(H′)| ≤ NSp(∂2H′, r) +mS +mS
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≤ max{f(|V (H′)|, k, r, 2), f(|V (H′)|, k, r, t)}+ nS +

(
t

min{r − 1, bt/2c}

)
nB (8.15)

First suppose that nB = 0, i.e., (T5) was never applied. Examining the coefficient of

nS we see 1 ≤ min{2,
(

t
min{r−1,bt/2c}

)
}. So in the case |V (H′)| ≥ k, from (8.15), we get

|E(H′)| ≤ max{f(n, r, k, 2), f(n, r, k, t)}, as desired. Otherwise, if |V (H′)| ≤ k − 1, then

either

|E(H′)| ≤
(

k − 2

min{r, b(k − 2)/2c}

)
+ 2 = f(k − 1, k, r, 2)

by Lemma 155, or |V (H′)| ≤ k − 2 and

|E(H′)| ≤
( |V (H′)|

min{r, b|V (H′)|/2c}

)
≤ f(|V (H′)|, k, r, 2).

Either way we obtain |E(H)| ≤ f(n, k, r, 2).

So we may assume that at least one application of (T5) was required to obtain H′.
Denote H ′ := ∂2H′ and let Q be the t-core of H ′ (that is, the resulting graph from ap-

plying t-disintegration to H ′). If H ′ is t-disintegrable, i.e., Q is empty, then NSp(H ′, r) ≤
f(|V (H ′)|, k, r, t) and so by (8.15), we get |E(H)| ≤ f(n, k, r, t). So we may assume that Q

is non-empty. In particular, since δ(Q) ≥ t+ 1, |V (Q)| ≥ t+ 2.

Claim 156. The graph Q is 1-hamiltonian.

Proof. First note that |V (Q)| ≤ k − 1: the case for |V (H ′)| ≤ k − 1 is trivial, and if

|V (H ′)| ≥ k, then by applying Kopylov’s Theorem, we obtain |V (Q)| ≤ k − 2.

Next, we claim that Q is 3-connected. If not, then there exists a cut set {x, y} ⊂ V (Q) and

at least two components in H ′ − {x, y}. Since δ(Q) ≥ t + 1, for each of these components

C, |C ∪{x, y}| ≥ t+ 2. Hence |V (Q)| ≥ 2(t+ 2)− 2 ≥ k, a contradiction to |V (Q)| ≤ k− 1.

Therefore Q is 3-connected. By Enomoto’s Theorem (Theorem 122), Q is s-path connected

where s = min{|V (Q)|, 2(t+ 1)} = |V (Q)|. I.e., Q is 1-hamiltonian.

Let q := |V (Q)|. Let B be a special (in particular, happy) block that was removed in

some application of (T5), and set B = ∂2B. Let xB and aB be the vertex-edge cut pair

corresponding to B, where some vertex yB ∈ V (B) \ V (H′) is contained in aB.

Claim 157. Suppose H ′ is s-path connected. There does not exist a (xB, yB)-path of length

at least k − s+ 1 in B.

Proof. Since H is 2-connected, its incidence bigraph contains two shortest disjoint paths P1,

P2 from {xB, aB} to V (H′) (where possibly |V (P1) or V (P2) = 1). Note that these paths

are internally disjoint from V (H′)∪V (B). In H, P1 and P2 yield Berge paths P1 and a∪P2
from xB to V (H′) and yB to V (H′) respectively. Say Pi has endpoint vi ∈ V (H′).
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Now suppose there exists a path of length at least k − s + 1 from xB to yB. This yields a

Berge path P3 from xB to yB with at least k − s + 1 base vertices such that all edges of

P3 are contained in V (B). Similarly, we find a Berge path P4 from v1 to v2 with at least s

base vertices such that all edges of P4 are contained in V (H′).
Then P1 ∪ P3 ∪ a ∪ P2 ∪ P4 is a Berge cycle of length at least (k − s + 1) + s − 1 = k, a

contradiction.

Claim 158. If H ′ contains a subgraph S that is s-path connected, then H ′ is also s-path

connected.

Proof. Let {x, y} ⊂ V (H ′). We will show that there exists an (x, y)-path in H ′ with at

least s vertices. Let Px, Py be two disjoint shortest paths from {x, y} to V (S), say with

endpoints vx and vy respectively (where possibly one or both paths are singletons). Such

paths exist because H ′ is 2-connected. Let PS be a (vx, vy)-path in S of length at least S.

Then Px ∪ PS ∪ Py has length at least s.

Therefore the previous claim shows that H ′ is q-path connected. Applying Claim 157 and

Theorem 124, we get

e(B) ≤ NSp(B, r) ≤ |V (B)| − 2

k − q − 2

(
k − q

min{r, b(k − q)/2c}

)
. (8.16)

Summing up over all blocks deleted via big cuts, we obtain

mB ≤ nB
(

1

k − q − 2

(
k − q

min{r, b(k − q)/2c}

))
(8.17)

Claim 159. For each integer s ≥ 3, 1
s−2
(

s
min{r,bs/2c}

)
≤
(

s
min{r−1,bs/2c}

)
.

Proof. The case for min{r, bs/2c} = bs/2c is trivial. So we may assume s ≥ 2r + 2. We

have 1
s−2
(
s
r

)
= 1

s−2
s−r+1
r

(
s
r−1
)
≤
(
s
r−1
)
.

So first suppose that |V (H′)| ≥ k. By Kopylov’s theorem, t+ 2 ≤ q ≤ k − 2, and V (H ′)−
V (Q) can be removed via (k − s)-disintegration. Therefore

e(H′) ≤
(

q

min{r, bq/2c}

)
+ (|V (H′)| − q)

(
k − q

min{r − 1, b(k − q)/2c}

)
,

and hence by (8.17) and the previous claim,

e(H) = e(H′) +mB +mS ≤
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≤
(

q

min{r, bq/2c}

)
+ (|V (H′)| − q)

(
k − q

min{r − 1, b(k − q)/2c}

)
+nB

(
1

k − q − 2

(
k − q

min{r, b(k − q)/2c}

))
+ nS

≤
(

q

min{r, bq/2c}

)
+ (n− q)

(
k − q

min{r − 1, b(k − q)/2c}

)
≤ max{f(n, k, r, t), f(n, k, r, 2)},

where the last inequality follows from the convexity of the function f . So from now on we

may assume |V (H ′)| ≤ k − 1.

Claim 160. Let S be a 1-hamiltonian subgraph of H ′ with s := |V (S)| and t+2 ≤ s ≤ k−2.

Let S′ be the result of (k − s)-disintegration applied to H ′. Then S′ is also 1-hamiltonian.

Proof. We will show a stronger statement: S′ is (k − |V (S′)|)-hamiltonian. Suppose not.

Set s′ := |V (S′)|. Applying Theorem 123 with d = k − s (so d ≤ 2t + 2 − (t + 2) = t) and

` = k − s′, we get

NSp(S′, r) ≤ max{hSp(s′, k − s′, r, k − s), hSp(s′, k − s′, r, bs′/2c, )}.

If hSp(q′, k − s′, r, k − s) ≥ hSp(s′, k − s′, r, bs′/2c), then

NSp(S′, r) ≤ hSp(s′, k − s′, r, k − s)

=

(
s

min{r, bs/2c}

)
+ (s′ − s)

(
k − s

min{r − 1, b(k − s)/2c}

)
= f(s′, k, r, k − s),

Recall that since S is 1-hamiltonian, H ′ is s-path connected. Hence for each B deleted in

an application of (T5), ∂2B is not (k − s+ 1)-path connected.

It follows that

e(H) ≤ NSp(H ′, r) +mB +mS

≤ f(s′, k, r, k − s) + (|V (H ′)| − s′ + nB)

(
k − s

min{r − 1, b(k − s)/2c}

)
+ nS ≤ f(n, k, r, k − s).

So by the convexity of the function f , we are done.

Next suppose hSp(s′, k−s′, r, k−s) ≤ hSp(s′, k−s′, r, bs′/2c). For simplicity, let a := bs′/2c.
We have that 2 ≤ a ≤ b(k − 1)/2c = t.
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NSp(S′, r) ≤ hSp(s′, k − s′, r, a)

=

(
s′ − (a− k + s′)

min{r, b(s′ − (a− k + s′))/2c}

)
+ (a− k + s′)

(
a

min{r − 1, ba/2c}

)
=

(
k − a

min{r, b(k − a)/2c}

)
+ (s′ − (k − a))

(
a

min{r − 1, ba/2c}

)
≤ f(s′, k, r, a) ≤ f(s′, k, r, t).

Therefore

e(H) ≤ f(s′, k, r, t) + (|V (H ′)| − s′ + nB)

(
k − s

min{r − 1, b(k − s)/2c}

)
+ nS ≤ f(n, k, r, t).

Starting from the 1-hamiltonian subgraph Q of H ′, we obtain a sequence of graphs Q =

Q0 ⊂ Q1 ⊂ . . . ⊂ Qq such that Qi is the resulting 1-hamiltonian subgraph obtained from

(k−|V (Qi−1)|)-disintegration applied to H ′. The sequence ends when either the graph Qq+1

resulting from the (k − |V (Qq)|)-disintegration of H ′ is exactly Qq, or |V (Qq)| = k − 1. In

the former case, we have that |V (Qq+1)| = |V (Qq)| =: q′. Then

e(H) ≤ NSp(H ′, r) +mB +mS

≤ f(q′, k, r, k− q′) + (|V (H ′)|− q′+nB)

(
k − q′

min{r − 1, b(k − q′)/2c}

)
+nS ≤ f(n, k, r, k− q′).

Finally suppose that |V (Qq)| = k − 1. Then H ′ is (k − 1)-path connected. Because H′ is

2-connected, we can complete a Berge path in H′ with at least k − 1 vertices to a Berge

cycle of length at least k. This proves the theorem.

8.8 Proof of Theorem 117 for paths

Proof. Let H be a counterexample of Theorem 117 with minimum
∑

e∈E(H) |e| on at least

k+1 vertices. If H contains a Berge cycle of length k+1 or longer, then removing any edge

from this Berge cycle yields a Berge path with at least k+ 1 base vertices, a contradiction.

If H contains a Berge cycle of length exactly k, then we use the following Lemma which

contradicts that n := |V (H)| ≥ k + 1.

Lemma 161 (Győri, Katona, and Lemons [GKL16]). Let H be a connected hypergraph with
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no Berge path of length k. If there is a Berge cycle of length k on the vertices v1, . . . , vk

then these vertices constitute a component of H.

Therefore H contains no Berge cycle of length k or longer. If H is 2-connected, then by

Theorem 114, e(H) ≤ max{f(n, k, r, 2), f(n, k, r, b(k − 1)/2c)}, and we are done.

Now suppose H is not 2-connected. Then the incidence bigraph IH of H contains a set of

cut vertices. If a cut vertex x of IH corresponds to an edge in H, then we say x is a cut

edge of H. Otherwise, we say x is a cut vertex of H.

Suppose H has an cut-edge e. We claim that for each component C of H \ e,

|V (C) ∩ e| ≤ 1. (8.18)

Indeed suppose that some component C of H\ e contains at least 2 vertices in e. Let H′ be

the r−-graph obtained by shrinking e to remove all but one vertex in C from e. Then H′ is

still connected and Sperner (since e is a cut edge of H). Furthermore, after this operation,

the length of a longest path cannot increase. This contradicts the choice of H.

Now suppose H contains a cut edge e. By (8.18), e intersects every component of H \ e in

at most one vertex. Let H′ be the r−-graph obtained by contracting two vertices of e into a

single vertex (and then deleting e if it now contains only one vertex). The new r−-graph H′
is Sperner, contains no Berge Pk, and is connected. If |V (H′)| ≥ k + 2, we obtain that H′
contradicts the choice of H (note that e(H′) ≥ e(H)− 1 ≥ max{f(n, k, r, 1), f(n, k, r, b(k −
1)/2c)} − 1 ≥ max{f(n− 1, k, r, 1), f(n− 1, k, r, b(k − 1)/2c)}).
Iterating this process, we may assume that H contains no cut edges unless n = k + 1.

Case 1: H does not have a cut edge.

Any block B of H is a subhypergraph of H. In particular, B is a Sperner 2-connected

r−-graph. Let B1, . . . ,Bp be the blocks of H. For each i, let si be the length of a longest

Berge cycle in Bi. Without loss of generality, we may assume s1 ≥ . . . ≥ sp.

Claim 162. For all i ≥ 2, s1 + si ≤ k + 1.

In particular, si ≤ (k + 1)/2 for all i ≥ 2.

Proof. Suppose s1 + si ≥ k + 2. Let C1 be a Berge cycle of B1 of length s1 and let Ci

be a Berge cycle of Bi of length si. Let P be a shortest Berge path from V (B1) to V (Bi).
Note that P contains at most one edge from each Berge cycle. Then removing an edge

from each Berge cycle, we obtain together with P a Berge path whose base vertices cover

V (C1) ∪ V (Ci). Since |V (C1) ∩ V (Ci)| ≤ 1, this path has at least s1 + si − 1 ≥ k + 1 base

vertices.
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For each block Bi, let ni := |V (Bi)|. If ni = si, then

e(Bi) ≤
(

si
min{r, bsi/2c}

)
≤ (ni − 1)

(
si − 1

min{r − 1, b(si − 1)/2c}

)
.

If ni ≥ si + 1, then we apply Theorem 114 to Bi with cycle length si + 1. We obtain

e(Bi) ≤ max{f(ni, si + 1, r, 2), f(ni, si + 1, bsi/2c}.

Furthermore,

f(ni, si + 1, r, 2) =

(
si − 1

min{r, b(si − 1)/2c}

)
+ 2(ni − si + 1)

≤ (si − 1)

(
si − 2

min{r − 1, b(si − 2)/2c}

)
+ (ni − si)

(
si − 2

min{r − 1, b(si − 2)/2c}

)
= (ni − 1)

(
si − 2

min{r − 1, b(si − 2)/2c}

)
.

And f(ni, si + 1, r, bsi/2c) ≤ (ni − 1)
(

si−1
min{r−1,b(si−1)/2c}

)
.

In all cases we get

e(Bi) ≤ (ni − 1)

(
si − 1

min{r − 1, b(si − 1)/2c}

)
. (8.19)

For B1, if n1 = s1 then e(B1) ≤
(

s1
min{r,bs1/2c}

)
and so by (8.19),

e(H) ≤
(

s1
min{r, bs1/2c}

)
+

p∑
i=2

(ni − 1)

(
si − 1

min{r − 1, b(si − 2)/2c}

)
. (8.20)

If s1 ≥ d(k + 1)/2e, then from (8.20) we obtain

e(H) ≤
(

s1
min{r, bs1/2c}

)
+

p∑
i=2

(ni − 1)

(
k − s1

min{r − 1, b(k − s1)/2c}

)
≤ f(n, k, r, k − s1)

≤ max{f(n, k, r, 1), f(n, k, r, b(k − 1)/2c}).

Otherwise,

e(H) ≤
(

s1
min{r, bs1/2c}

)
+

p∑
i=2

(ni−1)

(
s1 − 1

min{r − 1, b(s1 − 1)/2c}

)
≤ f(n, k, r, b(k−1)/2c).

If n1 ≥ s1 + 1, then we get
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e(B1) ≤ max{f(n1, s1 + 1, r, 2), f(n1, s1 + 1, r, bs1/2c}).

If f(n1, s1 + 1, r, bs1/2c) ≥ f(n1, s1 + 1, r, 2), then together with (8.19), we get

e(H) ≤ f(n1, s1 + 1, r, bs1/2c) +

p∑
i=2

(ni − 1)

( bk−12 c
min{r − 1, bk−14 c}

)
≤ f(n, k, r, b(k − 1)/2c).

If f(n1, s1 + 1, r, bs1/2c) < f(n1, s1 + 1, r, 2), then

f(n1, s1+1, r, 2) =

(
s1 − 1

min{r, b(s1 − 1)/2c}

)
+2(n1−s1+1) ≤

(
s1

min{r, bs1/2c}

)
+2(n1−s1).

Thus we obtain

e(H) ≤
(

s1
min{r, bs1/2c}

)
+ 2(n1 − s1) +

p∑
i=2

(ni − 1)

(
si − 1

min{r − 1, b(si − 1)/2c}

)
,

and we are done as in the the case for (8.20).

Case 2: n = k + 1 and H contains a cut edge.

Let e be a cut edge of H. By (8.18), each component C of H \ e contains only at most one

vertex of e. If |e| ≥ 3, then e(H\ e) ≤
(

k+1−2
min{r,b(k+1−2)/2c}

)
. Hence e(H) ≤

(
k−1

min{r,b(k−1)/2c}
)

+

1 < f(n, k, r, 1).

So we may assume |e| = 2. Suppose first that H \ e contains a component C with 2 ≤
|V (C)| ≤ k − 1.

Then

e(H) ≤ 1 +

( |V (C)|
min{r, b|V (C)|/2c}

)
+

(
(k + 1)− |V (C)|

min{r, b((k + 1)− |V (C)|)/2c}

)
≤ 1 +

(
k − 1

min{r, b(k − 1)/2c}

)
+ 1

= f(n, r, k, 1).

Thus H\e must consist of one component of size k and one of size 1. The same also holds for

every other cut edge e′ of H. This together with (8.18) implies that if H has two cut edges

e, e′, then e′ is a cut edge of H\ e, and vice versa. Therefore e(H) ≤
(

k−1
min{r,b(k−1)/2c}

)
+ 2 =

f(n, k, r, 1).

So we may assume that e is the only cut edge of H. Let C be the component of H of size

k. This component cannot contain a Berge cycle of length k, otherwise with e we would

obtain Berge path with of length k.
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If C is 2-connected, then by Theorem 114,

e(H) = e(C) + 1 ≤ max{f(k, k, r, 2), f(k, k, r, b(k − 1)/2c)} < f(n, k, r, 1).

Otherwise C has a cut vertex v and a block B with 2 ≤ |V (B)| ≤ k − 1. Therefore

e(C) ≤
( |V (B)|

min{r, b|V (B)|/2c}

)
+

(
k − |V (B)|+ 1

min{r, b(k − |V (B)|+ 1)/2c}

)
≤
(

k − 1

min{r, b(k − 1)/2c}

)
+1,

so we get e(H) = e(C) + 1 ≤ f(n, k, r, 1). This proves the theorem.

8.9 Concluding remarks

1. As it is mentioned in Theorem 116, if k ≥ 4r and n is asymptotically larger than 2r−1

r k,

then our bound is also exact for r-graphs: a sharpness example is Hn,k,r,b(k−1)/2c. We

think that for smaller n, our bound for r-graphs is not exact. It would be interesting

and challenging to find exact bounds for the number of edges in n-vertex 2-connected

r-graphs with no cycles of length k or longer for k > r and k ≤ n < 2r−1

r k.

2. When r is large, k ≥ 4r and n is polynomial in k, thenHn,k,r,2 has not much more than(
k−2
r

)
edges. Also Hn,k,r,2 is not uniform whenever r ≥ 4. The following construction

of 2-connected r-uniform hypergraphs also has more than
(
k−2
r

)
edges in this case,

although fewer edges than Hn,k,r,2 has (and it works only for n such that n− k+ 2 is

divisible by r − 1).

Construction 163. Fix k ≥ 4r ≥ 12, s ≥ 1, n = k − 2 + s(r − 1). Define the

n-vertex r-graph Fn,k,r,s as follows. The vertex set of Fn,k,r,s is partitioned into s+ 1

sets A1, . . . , As, C such that |C| = k − 2 and |Ai| = r − 1 for all i ∈ [s]. We fix two

special vertices c1, c2 ∈ C. The edge set of Fn,k,r,s consists of all edges contained in C

and of the 2(r − 1) edges of the form Ai ∪ {cj} for i ∈ [s] and j ∈ [2].

We do not currently know of any uniform hypergraphs with more edges and no Berge

cycles of length k or longer.

3. Note that here we use r−-graphs to prove a bound for r-graphs when k > r and in

Chapter 7 we used r+-graphs (i.e. hypergraphs with the lower rank at least r) in the

case k < r.
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