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Abstract

In my thesis, I study left-orderability of Q-homology spheres. I use P̃SL2R
representations as a tool. First, I showed this tool has its limitations by

constricting a series of Z-homology spheres with potentially left-orderable

fundamental groups but no non trivial P̃SL2R representations.

However, this tool is still useful in most cases. With P̃SL2R representa-

tions, I construct the holonomy extension locus of a Q-homology solid torus

which is an analog of its translation extension locus. Using extension loci, I

study Q-homology 3-spheres coming from Dehn fillings of Q-homology solid

tori and construct intervals of orderable Dehn fillings.
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Chapter 1

INTRODUCTION

1.1 The L-space conjecture and left-orderability

A nontrivial group is called left-orderable if there exists a strict total order

on the set of group elements which is invariant under left multiplication. We

will say that a closed 3-manifold is orderable when its fundamental group is

left-orderable.

The reason why we care about left-orderability is that this property is

conjectured to detect L-spaces. Recall an irreducible Q-homology 3-sphere

(abbr. QHS) Y is called an L-space if dim ĤF (Y ) = |H1(Y ;Z)|, i.e. it

has minimal Heegaard Floer homology [34]. Boyer, Gordon, and Watson

conjectured in [6] that a QHS is a non L-space if and only if its fundamental

group is left-orderable. A stronger conjecture states that for an irreducible Q-

homology 3-sphere, being a non L-space, having left-orderable fundamental

group and admitting a co-orientable taut foliation are the same (see e.g.

Culler-Dunfield [11]). This conjecture is known as the L-space conjecture. It

has been studied extensively in recent years and evidence has accumulated

in favor of the conjecture [5, 21].

One of the main difficulties of proving the conjecture is to show left-

orderability of a fundamental group. Various tools have been developed

to study left-orderability. In particular, P̃SL2R representations have been

proven very useful in studying left-orderability of 3-manifold groups [16, 11,

26, 39, 40]. Boyer, Rolfsen, and Wiest showed that a compact, connected, P 2-

irreducible 3-manifold is left-orderable if and only if its fundamental group

admits a non-trivial homomorphism to a left-orderable group [4]. The group

P̃SL2R is left-orderable. So we can show orderability of a 3-manifold by

constructing a non trivial homomorphism from its fundamental group to

P̃SL2R.
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To study P̃SL2R representations, Culler and Dunfield introduced the idea

of the translation extension locus of a compact 3-manifold M with torus

boundary [11]. They gave several criteria implying whole intervals of Dehn

fillings of M have left-orderable fundamental groups.

1.2 The translation extension locus

We follow the notation in [11]. Denote PSL2R by G, and P̃SL2R by G̃. Let

RG̃(M) = Hom(π1M, G̃) be the variety of G̃ representations of π1(M). For

a precise definition of the representation variety, see Section 2.2.

The name translation extension locus comes from the fact that we need

to use translation number in the definition. For an elements g̃ in G̃, define

translation number to be

trans(g̃) = lim
n→∞

g̃n(x)− x
n

for some x ∈ R.

Then trans: RG̃(∂M)→ H1(∂M ;R) can be defined by taking ρ̃ to trans◦ρ̃.

Let M be a knot complement in a QHS or equivalently a Q-homology

solid torus. To study G̃ representations of M whose restrictions to π1(∂M)

are elliptic, Culler and Dunfield gave the following definition of translation

extension locus.

Definition 1.1. (See [11] Section 4) Let PEG̃(M) be the subset of represen-

tations in RG̃(M) whose restriction to π1(∂M) are either elliptic, parabolic,

or central. Consider composition

PEG̃(M) ⊂ RG̃(M)
ι∗−→ RG̃(∂M)

trans−→ H1(∂M ;R)

The closure in H1(∂M ;R) of the image of PEG̃(M) under trans◦ ι∗ is called

translation extension locus and denoted ELG̃(M).

They showed that translations extension locus of a knot complement in

QHS satisfies the following properties.

Theorem 1.1. [11, Theorem 4.3] The extension locus ELG̃(M) is a locally

finite union of analytic arcs and isolated points. It is invariant under D∞(M)

with quotient homeomorphic to a finite graph. The quotient contains finitely
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many points which are ideal or parabolic in the sense defined above. The locus

ELG̃(M) contains the horizontal axis L0, which comes from representations

to G̃ with abelian image.

They obtained the following results using translation extension loci.

Theorem 1.2. [11, Theorem 7.1] Suppose that M is a longitudinally rigid

irreducible Q-homology solid torus and that the Alexander polynomial of M

has a simple root ξ on the unit circle. When M is not a Z-homology solid

torus, further suppose that ξk 6= 1 where k > 0 is the order of the homological

longitude λ in H1(M ;Z). Then there exists a > 0 such that for every rational

r ∈ (−a, 0) ∪ (0, a) the Dehn filling M(r) is orderable.

Theorem 1.3. [11, Theorem 1.4] Let K be a hyperbolic knot in a Z-homology

3-sphere Y . If the trace field of the knot exterior M has a real embedding

then:

(a) For all sufficiently large n, the n-fold cyclic cover of Y branched over

K is orderable.

(b) There is an interval I of the form (−∞, a) or (a,∞) so that the Dehn

filling M(r) is orderable for all rational r ∈ I .

(c) There exists b > 0 so that for every rational r ∈ (−b, 0) ∪ (0, b) the

Dehn filling M(r) is orderable.

Recently, Herald and Zhang [24] improved Theorem 1.2 in the case of M

being a Z-homology solid torus by removing the longitudinally rigid condition

of M . Their result is stated as follows.

Theorem 1.4. Let M be the exterior of a knot in an integral homology 3-

sphere such that M is irreducible. If the Alexander polynomial ∆(t) of M

has a simple root on the unit circle, then there exists a real number a > 0

such that, for every rational slope r ∈ (−a, 0) ∪ (0, a), the Dehn filling M(r)

has left-orderable fundamental group.

I will construct holonomy extension locus which has similar properties to

translations extension locus as described in Theorem 1.1 and prove theo-

rems with similar conclusions to Theorem 1.2 and Theorem 1.3 but different

hypotheses.
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1.3 Holonomy extension locus

Let M be the complement of a knot in a QHS or equivalently a Q-homology

solid torus. In my thesis, to encode information about boundary-hyperbolic

representations of π1(M), I construct the holonomy extension locus which is

an analog of the translation extension locus. The exact definition of all the

terminologies are described in Chapter 4.

Definition 4.3. Let PHG̃(M) be the subset of representations whose restric-

tion to π1(∂M) are either hyperbolic, parabolic, or central. Consider the

composition

PHG̃(M) ⊂ Raug

G̃
(M)

ι∗−→ Raug

G̃
(∂M)

EV−→ H1(∂M ;R)×H1(∂M ;Z)

The closure of EV ◦ ι∗(PHG̃(M)) in H1(∂M ;R) is called the holonomy ex-

tension locus and denoted HLG̃(M).

The following theorem describes the structure of a holonomy extension

locus.

Theorem 4.1. The holonomy extension locus HLG̃(M) =
⊔
i,j∈ZHi,j(M),

−kM ≤ j ≤ kM is a locally finite union of analytic arcs and isolated points.

It is invariant under the affine group D∞(M) with quotient homeomorphic to

a finite graph with finitely many points removed. Each component Hi,j(M)

contains at most one parabolic point and has finitely many ideal points locally.

The locus H0,0(M) contains the horizontal axis L0, which comes from rep-

resentations to G̃ with abelian image.

1.4 Main result of my thesis

I give examples where there are no irreducible PSL2(R) representations. Let

M be the manifold m137 [8] and M(1, n) be the integral homology sphere

obtained by (1, n) Dehn fillings on M. The main result states:

Theorem 3.1. For all n� 0, the manifold M(1, n) is a hyperbolic integral

homology 3-sphere where

a) π1(M(1, n)) does not have a nontrivial ˜PSL2(R) representation.
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b) M(1, n) is not an L-space.

This means that we can not produce an order on π1(M(1, n)) simply by

pulling back the action of ˜PSL2(R) on R.

Using holonomy extension loci, I study QHSs coming from Dehn fillings of

Q-homology solid tori and construct intervals of left-orderable Dehn fillings.

The following are the main two applications. The first theorem was also

proven independently by Steven Boyer.

Theorem 6.1. Suppose M is the exterior of a knot in a Q-homology 3-sphere

that is longitudinal rigid. If the Alexander polynomial ∆M of M has a simple

positive real root ξ 6= 1, then there exists a nonempty interval (−a, 0] or [0, a)

such that for every rational r in the interval, Dehn filling M(r) is orderable.

Theorem 7.1. Suppose M is a hyperbolic Z-homology solid torus. Assume

the longitudinal filling M(0) is a hyperbolic mapping torus of a homeomor-

phism of a genus 2 orientable surface and its holonomy representation has

trace field with a real embedding at which the associated quaternion algebra

splits. Then every Dehn filling M(r) with rational r in an interval (−a, 0] or

[0, a) is orderable.
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Chapter 2

BACKGROUND

In the L-space conjecture, we study Q-homology/Z-homology 3-spheres. They

are Dehn fillings of Q-homology/Z-homology solid tori, where a Q-homology/Z-

homology solid torus is a compact 3-manifold with a torus boundary whose

rational/integral homology groups are the same as a solid torus.

2.1 Preliminaries in graph theory

To study holonomy extension locus, we need some basic definitions from

graph theory. We call a graph finite if its edge set and vertex set are both

finite. In fact, a holonomy extension locus is still slightly different from a

finite graph. It is the union of a finite graph part and finitely many branches

going to infinity. So we need some proper notion to describe it and we can

use the notion finite graph with finitely many points removed.

2.2 Representation Variety and Character Variety

An affine algebraic set is defined to be the zeros of a set of polynomials.

In my thesis, I also need real semialgebraic sets [1, Chapter 3], which are

defined by polynomial inequalities. The dimension of a real semialgebraic

set is equal to its topological dimension. An affine algebraic variety is an

irreducible affine algebraic set.

With these notions, we can define representation and character variety of a

3-manifold M . We are interested in representations into Lie groups PSL2C '
PGL2C and PSL2R. The set of PSL2C representations, Hom(π1(M), PSL2C)

is an affine algebraic set in some Cn equipped with Zariski topology. We call

it the PSL2C representation variety of M and denote it by R(M). The group
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PSL2C acts on R(M) by conjugation, so we can consider the geometric in-

variant theory quotient R(M)//PSL2C, which we denote by X(M). It is

called the PSL2C character variety of M .

Recall G = PSL2R, G̃ = P̃SL2R. Similarly we can consider G represen-

tation variety RG(M). Also we define the G character variety XG(M) to be

the geometric invariant theory quotient RG(M)//PGL2R. Both RG(M) and

XG(M) are real algebraic varieties.

Let f : X̂(M) → X(M) be a birational map with X̂(M) a smooth pro-

jective curve. Then X̂(M) is called the smooth projectivization of X(M).

Points in X̂(M) − f−1(X(M)) are called ideal points. To each ideal point,

we can associate incompressible surfaces to it. See [9] for more details.

2.3 Augmented Representation Variety and Character

Variety

We will also need the augmented representation variety and character variety.

See [2, Section 10] for more details.

As a subgroup of PSL2C, G acts on P 1(C) by the Möbius transformation

as well as on S1 = P 1(R) ⊂ P 1(C). Nontrivial abelian subgroups of G either

have one (if the subgroup contains parabolic elements) or two fixed points(if

the subgroup contains hyperbolic or elliptic elements) on P 1(C).

Let Raug
G (M) be the subvariety of RG(M)×P 1(C) consisting of pairs (ρ, z)

with z is a fixed point of ρ(π1(∂M)). Let Xaug
G (M) be the GIT quotient of

Raug
G (M) under the diagonal action of G by conjugation and Möbius trans-

formations. There is a natural regular map π : Xaug
G (M) → XG(M) which

forgets the second factor.

The reason why we need augmented character variety Xaug
G (M) is that

given γ ∈ π1(∂M) there is a regular function eγ which sends [(ρ, z)] to the

square of the eigenvalue of ρ(γ) corresponding to z. In contrast, on XG(M)

only the trace of [ρ(γ)] is well-defined up to sign and we cannot specify

which eigenvalue we want. In Chapter 4, I will need eigenvalues of images of

hyperbolic and parabolic representations to define holonomy extension locus.

The fiber of π : Xaug
G (M) → XG(M) contains 2 points except at [ρ] with

ρ|π1(∂M) parabolic (fiber is one point) or trivial (fiber isomorphic to P 1(C)).

7



2.4 P̃SL2R

Consider the Lie group SU(1, 1) =

{(
α β

β α

)
| |α|2 − |β|2 = 1

}
. So we can

parameterize SU(1, 1) by (γ, ω) where γ = −β/α ∈ C and ω = argα is

defined modulo 2π. Then SL2R ' SU(1, 1) can be described as {(γ, ω) | |γ| <
1,−π ≤ ω < π}. As the universal cover of SL2R and G = PSL2R, G̃ =

P̃SL2R is also a Lie group and can be described as {(γ, ω) ∈ C × R | |γ| <
1,−∞ < ω <∞} with group operation given by:

(γ, ω)(γ′, ω′) =(
(γ + γ′e−2iω)(1 + γ̄γ′e−2iω)−1, ω + ω′ +

1

2i
log (1 + γ̄γ′e−2iω)(1 + γγ̄′e2iω)−1

)
(2.1)

So we have a copy of R sitting inside G̃ as an abelian subgroup.

The following properties of G̃ can be found in [28]. The universal cover of

S1 is R, where S1 can be viewed as lifting to unit length intervals. Being the

universal cover of G which acts on S1 = P 1(R) by Möbius transformation,

G̃ acts on R so it is left-orderable. For elements in G̃, define the translation

number to be

trans(g̃) = lim
n→∞

g̃n(x)− x
n

for some x ∈ R.

It’s independent of the choice of x.

Let A ∈ SL2R, A 6= ±Id. Then A is called elliptic if |trace(A)| < 2 and

in this case A is conjugate to a matrix of the form[
cos(α) sin(α)

− sin(α) cos(α)

]
, 0 ≤ α < 2π.

The matrix A is called parabolic if |trace(A)| = 2 and it is conjugate to a

matrix of the form

±

[
1 2u

0 1

]
,−∞ < u <∞.

The matrix A is called hyperbolic if |trace(A)| > 2 and in this case it is
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conjugate to a matrix of the form

±

[
a 0

0 a−1

]
, a 6= 0.

Elements of SU(1, 1) are classified in the same way via the identification

SU(1, 1) ' SL2R. We then call an element of G̃ elliptic, parabolic or hy-

perbolic if it covers an element of the corresponding type in SU(1, 1). By

Lemma 2.1 in [28], conjugacy classes in G̃ can be presented as

• elliptic: (0, α), with −∞ < α/2π < ∞ the translation number of

elements in the conjugacy class.

• parabolic: ( iu
1+iu

, tan−1(u) + kπ), with u ∈ R and k ∈ Z the translation

number of elements in the conjugacy class.

• hyperbolic: (a−a
−1

a+a−1 , kπ) with a ∈ R and k ∈ Z the translation number.

In particular, if g̃ is conjugate to (0, kπ), then g̃ is called central, with k ∈ Z
the translation number.

Representative of conjugacy class of hyperbolic elements may not be unique.

To solve this problem, we need fixed points of each element as extra infor-

mation and define augmented G̃ representations.

2.5 Augmented P̃SL2R Representations

As a subgroup of PSL2C, G acts on P 1(C). There is a natural action of

G̃ on P 1(C) by projecting to G. Hyperbolic and elliptic elements have two

fixed points and parabolic elements have one fixed point on P 1(C). Consider

the following subset of G̃× P 1(C),

Aug(G̃) = {(Ã, v)|Ã ∈ G̃, v ∈ P 1(C) is a fixed point of Ã}.

Denote by A ∈ G the projection of Ã ∈ G̃. Notice that v is in fact a

fixed point of A on P 1(C). Then for any element (Ã, v) in Aug(G̃) with

Ã hyperbolic, we can use (a−a
−1

a+a−1 , kπ) as the representative of the conjugacy

class of Ã in G̃, where a is any of the square root of the derivative of A at v.

And it doesn’t matter which root we choose as a−a−1

a+a−1 is an even function.
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We can now construct the augmented G̃ representation variety of M . Let

Raug

G̃
(M) be the subvariety of RG̃(M)× P 1(C) consisting of pairs (ρ̃, z) with

z a fixed point of ρ(π1(∂M)), where ρ is the projection of ρ̃. A subgroup of

G may not have a fixed point on P 1(C). However, an abelian subgroup has

at least one fixed point on P 1(C). So ρ(π1(∂M)) has at least one fixed point.

Similarly, let Raug

G̃
(∂M) be the subvariety of RG̃(∂M)× P 1(C) consisting of

pairs (ρ̃, z) with z a fixed point of ρ(π1(∂M)).

There is a natural projection from Raug

G̃
(−) to RG̃(−) forgetting the second

factor. We call a representation in RG̃(∂M) hyperbolic/elliptic/parabolic if

its image in G̃ contains an element of the corresponding type and call it

central if its image contains only central elements. We call a representation in

Raug

G̃
(∂M) hyperbolic/elliptic/parabolic/central if its projection to RG̃(∂M)

is of the corresponding type.

10



Chapter 3

A COUNTER EXAMPLE

3.1 Introduction

As stated in Chapter 2, to show the fundamental group π1(Y ) of a 3-manifold

Y is orderable, it is most common to consider ˜PSL2(R) representations of

π1(Y ). In fact in many cases, ˜PSL2(R) representations are sufficient to define

an order on π1(Y ) [11]. However, Theorem 3.1 shows that, even in the case

of non L-space integral homology spheres, orders coming from ˜PSL2(R) are

not enough to prove the L-space conjecture.

It is conjectured that any integer homology 3-sphere different from the

3-sphere admits an irreducible representation in SU2(C) (see e.g. Kirby’s

problem list [29, Problem 3.105]). Zentner showed that if one enlarges the

target group to SL2(C), then every such integral homology 3 sphere has an

irreducible representation [43]. In contrast, I will give examples where there

are no irreducible PSL2(R) representations. Let M be the manifold m137

[8] and M(1, n) be the integral homology sphere obtained by (1, n) Dehn

fillings on M. The main result of this chapter states:

Theorem 3.1. For all n� 0, the manifold M(1, n) is a hyperbolic integral

homology 3-sphere where

a) π1(M(1, n)) does not have a nontrivial ˜PSL2(R) representation.

b) M(1, n) is not an L-space.

This means that we can not produce an order on π1(M(1, n)) simply by

pulling back the action of ˜PSL2(R) on R.

Section 2 of this chapter is devoted to proving part (a) of Theorem 3.1. Let

X0(M) be the component of the SL2(C) character variety of M containing

the character of an irreducible representation (see Culler-Shalen [13] for def-

inition). Here is an outline of the approach. Let X0,R(M) be the real points

11



of X0(M). Define [ρ] ∈ X0,R(M) and denote by s the trace of ρ(λ) where

λ is the homological longitude of M. The proof is divided into two parts.

In the first part, I show that points on the |s| < 2 components of X0,R(M)

all correspond to SU2(C) representations while points on the |s| > 2 compo-

nents correspond to SL2(R) representations. In the second part, I show that

SL2(R) representations of π1(M) give rise to no SL2(R) representations of

π1(M(1, n)) when n � 0. This part of the proof is basically analysing real

solutions to the A-polynomial of M under the relation µλn = 1 given by

(1, n) Dehn filling , where µ is a choice of meridian of ∂M.

In Section 3, by applying techniques in the paper by Rasmussen, Ras-

mussen [37] and Gillespie [19], I show that none of the (1, n) Dehn fillings on

m137 is an L-space, completing the proof of Theorem 3.1.

3.2 ˜PSL2(R) representations

I will prove Theorem 3.1 (a) in this section.

SnapPy [12] gives us the following presentation of the fundamental group

of M = m137:

π1(M) = 〈α, β | α3β2α−1β−3α−1β2〉.

The peripheral system of M can be represented as:

{µ, λ} = {α−1β2α4β2, α−1β−1} = {β2λ−1β−3λ−1β2, λ}

where λ is the homological longitude and µ is a choice of meridian. Then we

can rewrite the fundamental group as:

π1(M) = 〈λ, β | β−1λ−1β−1λ−1β2λ = λβ−2λ−1β2〉, (3.1)

and the meridian becomes µ = β2λ−1β−3λ−1β2 under this presentation.

Remark. The triangulation of m137 we used (included in [17]) to get these

presentations is different from SnapPy’s default triangulation. We got it by

performing random Pachner moves on the default triangulation in SnapPy.

In particular, our notations for longitude and meridian in the peripheral

system are meridian and longitude respectively in SnapPy’s default notations.
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We will first look at irreducible SL2(C) representations of the fundamental

group of M before we look at those of Dehn fillings of M. Denote by

X(M) the SL2(C) character variety of M, that is the Geometric Invariant

Theory quotient Hom(π1(M), SL2(C))//SL2(C). It is an affine variety [13].

Suppose ρ : π1(M) −→ SL2(C) is a representation of the fundamental group

ofM. Recall that a representation ρ of G in SL2(C) is irreducible if the only

subspaces of C2 invariant under ρ(G) are {0} and C2 [13]. This is equivalent

to saying that ρ can’t be conjugated to a representation by upper triangular

matrices. Otherwise ρ is called reducible. We will call a character irreducible

(reducible) if the corresponding representation is irreducible (reducible).

First, I determine which components of X(M) contain characters of ir-

reducible representations. Computation with SnapPy [12] shows that the

Alexander polynomial ∆M of m137 is 1, which has no root. So there are

no reducible non-abelian representations [9, Section 6.1]. Therefore all the

reducible representations are abelian. Since H1(M) = Z, there is only one

such component and it is parameterized by the image of β and is isomorphic

to Hom(Z, SL2(C))//SL2(C) ' C. Moreover, it is disjoint from any compo-

nent of X(M) containing the character of an irreducible representation [9,

Section 6.2]. For more details, we refer the readers to Tillmann’s note [38]

where he studied m137 as an example.

An abelian representation of π1(M) that induces an abelian representation

of π1(M(1, n)) factors through the abelianization ab(π1(M(1, n))) = 1. So

they correspond to trivial SL2(C) representations and we don’t need to worry

about them.

Now we consider components of X(M) that contain the character of an

irreducible representation. We have:

Lemma 3.1. There is a single component X0(M) of X(M) containing an

irreducible character. The functions s = trρ(λ) = trρ(α−1β−1) = trρ(αβ)

and t = trρ(β) give complete coordinates on X0(M), which is the curve in

C2 cut out by

(−2− 3s+ s3)t4 + (4 + 4s− s2 − s3)t2 − 1 = 0

Moreover, w := trρ(λβ) = trρ((λβ)−1) = t− 1
t(s+1)

.

Proof of Lemma 3.1. Let X0(M) be X(M)− {reducible characters}. From
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the discussion above, we know that all the reducible characters form a single

component of X(M) and this component is disjoint from any other compo-

nent of X(M). So X0(M) is Zariski Closed. We will show later that X0(M)

is actually an irreducible algebraic variety, as claimed in the lemma.

Suppose [ρ] ∈ X0(M). So ρ is an irreducible representation. By conjugat-

ing ρ if necessary, we can assume that ρ has the form

ρ(λ) =

(
z 1

0 1/z

)
, ρ(β) =

(
x 0

y 1/x

)
.

From the relator of π1(M) in (3.1) we have ρ(β)−1ρ(λ)−1β−1ρ(λ)−1ρ(β)2ρ(λ) =

ρ(λ)ρ(β)−2ρ(λ)−1ρ(β)2. Comparing the entries of the matrices on both sides,

we get four equations. These four equations together with s = z + 1/z,

t = x+ 1/x and w = zx+ z−1x−1 +y form a system S which defines X0(M).

By computing a Gröbner basis of this system, SageMath [14] gives the fol-

lowing generators of the radical ideal I = I(X0(M)):

stw − t2 − w2 − s+ 2 (3.2)

t3 − w3 + st− sw − 2t+ w (3.3)

st2 − tw − w2 − s+ 1 (3.4)

sw3 − s2t+ s2w − t2w − tw2 + st− sw + t (3.5)

Subtracting (3.4) from (3.2), we get:

w = t− 1

t(s+ 1)
. (3.6)

Eliminating w, we get a defining equation for X0(M):

0 = (−2− 3s+ s3)t4 + (4 + 4s− s2 − s3)t2 − 1

= (s− 2)(s+ 1)2t4 − (s− 2)(s+ 2)(s+ 1)t2 − 1.
(3.7)

Thus, we can think of X0(M) as living in C2.

To prove the lemma, we must show that X0(M) is irreducible or equiva-

lently the polynomial P (s, t) := (s− 2)(s+ 1)2t4− (s− 2)(s+ 2)(s+ 1)t2− 1

in (3.7) does not factor in C[s, t]. Assume P (s, t) factors. Suppose it factors

14



as

(at2+bt+c)(dt2+et−1/c) = adt4+(ae+bd)t3+(cd−a/c+be)t2+(ce−b/c)t−1,

where a, b, d, e ∈ C[s] and c ∈ C − {0}. Setting the coefficients of t and t3

to be 0, we get b = c2e and ae = −c2de. If e 6= 0, then a = −c2d. But this

is impossible as ad = (s − 2)(s + 1)2 is a polynomial in s of odd degree. So

e = 0 and it follows that b = 0. Comparing the coefficients of t2 and t4, we

get

ad = (s− 2)(s+ 1)2 (3.8)

and

cd− a/c = −(s− 2)(s+ 2)(s+ 1). (3.9)

So degree(a) + degree(d) = 3 and max{degree(a), degree(d)} ≥ 3, which

implies exactly one of a and d has degree 3 and the other has degree 0.

Without loss of generality, we can assume that degree(a) = 3 and degree(d) =

0. Multiply both sides of (3.9) by c, we get a = c2d+ c(s− 2)(s+ 2)(s+ 1).

So the coefficient of s3 in a is c. Comparing with the coefficient of s3 in

(3.8), we know that d = 1/c. Eliminating a and d gives us an equality

1 + (s− 2)(s+ 2)(s+ 1) = (s− 2)(s+ 1)2, which does not hold.

Else suppose P (s, t) factors as

(at+c)(bt3 +dt2 +et−1/c) = abt4 +(ad+cb)t3 +(cd+ae)t2 +(ce−a/c)t−1,

where a, b, d, e ∈ C[s] and c ∈ C− {0}. Setting the coefficients of t and t3 to

be 0, we get a = c2e and b = ced. Comparing the coefficients of t2 and t4, we

get

c3de2 = (s− 2)(s+ 1)2 (3.10)

and

cd+ c2e2 = −(s− 2)(s+ 2)(s+ 1). (3.11)

So degree(d) + 2degree(e) = 3 and max{degree(d), 2degree(e)} ≥ 3 which

implies degree(d) = 3 and degree(e) = 0. Comparing the coefficients of s3 in

(3.10) and (3.11), we know that c2e2 = −1. Plugging into (3.10), we get cd =

(s−2)(s+1)2, which when plugging into (3.11) implies c2e2 = −(s+1)(s−2),

a contradiction. So P (s, t) is irreducible over C. Therefore X0(M) has only

15



one component.

To find irreducible SL2(R) representations of π1(M), we need to check all

real points on X0(M), which correspond to real solutions of (3.7). Notice

that equation (3.7) has no solutions when s = −1 or 2, so (3.7) is a quadratic

equation in t2. In order for t to be real, t2 has to be real and nonnegative.

Then first we need the discriminant to be nonnegative. That is:

∆1 = (s+ 1)2(s− 2)(s3 + 2s2 − 4s− 4) ≥ 0.

So s ∈ U := (−∞, p1] ∪ [p2, p3] ∪ (2,∞), where p1 ≈ −2.9032, p2 ≈ −0.8061

and p3 ≈ 1.7093 are three roots of cubic polynomial s3 + 2s2 − 4s− 4.

The following lemma will help us determine when a SL2(C) representation

of π1(M) can be conjugated into SL2(R) by simply checking where it lies on

the character variety.

Lemma 3.2. The real points X0,R(M) = X0(M) ∩ R2 of X0(M) has 6

connected components:

Points on the two components with |s| < 2 correspond to SU2(C) repre-

sentations.

Points on the four components with |s| > 2 correspond to SL2(R) repre-

sentations.

Remark. The above lemma shows that in our case, the absolute value of one

character being smaller than 2 implies that the representation is SU2(C). But

in general, this is not true.

To prove this lemma, we need to determine when [ρ] ∈ X0,R(M) corre-

sponds to ρ ∈ SU2(C) and when it corresponds to ρ ∈ SL2(R). It can’t be in

both because otherwise it would be reducible [11, Lemma 2.10] and we know

X0(M) contains only irreducible characters. The tool we use is a reformula-

tion of Proposition 3.1 in [27] which states that given three angles θi ∈ [0, π],

i = 1, 2, 3, there exist three SU2(C) matrices Ci, satisfying C1C2C3 = I with

eigenvalues exp(±iθi) respectively if and only if these angles satisfy:

|θ1 − θ2| ≤ θ3 ≤ min{θ1 + θ2, 2π − (θ1 + θ2)}. (3.12)

We want to rewrite the above inequality in terms of traces of C1, C2 and C3.

We have the following lemma:
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Lemma 3.3. Suppose t1, t2, t3 ∈ (−2, 2) are the traces of three matrices

C1, C2, C3 ∈ SL2(C) satisfying C1C2C3 = I. Then C1, C2, C3 are simultane-

ously conjugate into SU2(C) if and only if

(2t3 − t1t2)2 ≤ (4− t21)(4− t22).

Proof. Suppose t1 = 2 cos(θ1), t2 = 2 cos(θ2) and t3 = 2 cos(θ3) where

θ1, θ2, θ3 ∈ [0, π].

If 0 ≤ θ1 + θ2 ≤ π, then the inequality (3.12) becomes |θ1 − θ2| ≤ θ3 ≤
θ1 + θ2. Taking cosine, we get cos(θ1 + θ2) ≤ cos(θ3) ≤ cos(θ1 − θ2).

If π ≤ θ1 + θ2 ≤ 2π, then the inequality becomes |θ1 − θ2| ≤ θ3 ≤ 2π −
(θ1 + θ2). Taking cosine, we also get cos(θ1 + θ2) ≤ cos(θ3) ≤ cos(θ1 − θ2).

Use the relations t1 = 2 cos(θ1), t2 = 2 cos(θ2), and t3 = 2 cos(θ3), we get

in both cases that:

t1t2
4
−

√(
1− t21

4

)(
1− t22

4

)
≤ t3

2
≤ t1t2

4
+

√(
1− t21

4

)(
1− t22

4

)
.

Then

−

√(
1− t21

4

)(
1− t22

4

)
≤ t3

2
− t1t2

4
≤

√(
1− t21

4

)(
1− t22

4

)
.

So we have: ∣∣∣∣t32 − t1t2
4

∣∣∣∣ ≤
√(

1− t21
4

)(
1− t22

4

)
.

Squaring both sides and simplifying, we get

(2t3 − t1t2)2 ≤ (4− t21)(4− t2),

as desired.

With the criterion of Lemma 3.3 in hand, we now can prove Lemma 4.8.

Proof of Lemma 4.8. The six components correspond to s ∈ (−∞, p1] ∪
[p2, p3] ∪ (2,∞) and t ∈ (−∞, 0) ∪ (0,∞).

Set C1 = ρ(λ), C2 = ρ(β) and C3 = ρ(β−1λ−1) = ρ((λβ)−1). Then t1 = s,
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t2 = t and t3 = w. Applying Lemma 3.3 we have:

(2w − st)2 ≤ (4− s2)(4− t2). (3.13)

Plugging (3.6) into (3.13) and simplifying:

(s− 2)2t2 +
4(s− 2)

s+ 1
+

4

t2(s+ 1)2
≤ (4− s2)(4− t2).

Multiplying both sides by t2(s+ 1)2, we get:

(s+ 1)2(s− 2)2t4 + 4(s− 2)(s+ 1)t2 + 4 ≤ (4− s2)(s+ 1)2(4− t2)t2.

which simplifies to:

−(s+ 1)2(s− 2)t4 + (s2 + 3s+ 3)(s− 2)(s+ 1)t2 + 1 ≤ 0.

Plugging in (3.7), we get

(s+ 1)3(s− 2)t2 ≤ 0,

which always holds when s ∈ (p2 ≈ −0.8061, p3 ≈ 1.7093) ⊂ (−2, 2).

So, points on X0,R(M) correspond to SU2(C) representations if and only if

|s| < 2 and correspond to SL2(R) representations if and only if |s| > 2.

Proof of Theorem 3.1 (a). Lemma 2 tells us a SL2(C) representation ρ of

m137 is real if and only if eigenvalues of ρ(λ) are real. Moreover, the condition

µλn = 1 forces the eigenvalues of ρ(µ) to also be real in this case. So we

could restrict our attention to |s| > 2 and look at the A-polynomial instead

(see e.g. [9] for definition of A-polynomial). Recall that z is an eigenvalue of

ρ(λ). Denote by m the eigenvalue of ρ(µ) which shares the same eigenvector

with z. The A-polynomial of m137 is computed by SAGE [14] as:

(z4 + 2z5 + 3z6 + z7 − z8 − 3z9 − 2z10 − z11) +m2(−1− 3z − 2z2 − z3

+ 2z4 + 4z5 + z6 + 4z7 + z8 + 4z9 + 2z10 − z11 − 2z12 − 3z13 − z14)

+m4(−z3 − 2z4 − 3z5 − z6 + z7 + 3z8 + 2z9 + z10).

Denote by A = −1−2z−3z2−z3+z4+3z5+2z6+z7 = (z−1)(z2+z+1)3 and

B = 1+3z+2z2+z3−2z4−4z5−z6−4z7−z8−4z9−2z10+z11+2z12+3z13+z14.
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So the A-polynomial could be simplified as −z4A − Bm2 + z3Am4. We are

interested in the real solutions of

− z4A−Bm2 + z3Am4 = 0. (3.14)

Now consider the (1, n) Dehn filling on m137. Then we are adding an extra

relation µλn = 1, which is ρ(µ)ρ(λ)n = I under the representation ρ, i.e.

ρ(µ) = ρ(λ)−n =

(
z−n ∗
0 zn

)
.

Restricting to ∂M gives us the relation m = z−n.

When n is negative, we shall denote n′ = −n. So we have m = zn
′
.

Plugging into (3.14) and dividing both sides by z4, we get

− A−Bz2n′−4 + Az4n
′−1 = 0. (3.15)

We will show the following lemma is true, completing the proof of Theorem

3.1 (a).

Lemma 3.4. Equation (3.15) has no real solutions when n′ is large enough.

Proof of Lemma 3.4. Define F (z) = A(z4n
′−1 − 1) − Bz2n

′−4. We’ll show

F (z) > 0.

First notice that A = 0 only when z = 1. And A > 0 when z > 1 while

A < 0 when z < 1. The polynomial B has 6 real roots which are all simple:

−2.3396, −1.4121, −0.7082, −0.4274, 0.8684, 1.1516 (rounded to the fourth

digit).

As we saw earlier, the domain for s is U := (−∞, p1 ≈ −2.9032] ∪ [p2 ≈
−0.8061, p3 ≈ 1.7093] ∪ (2,∞). So the |s| > 2 condition restricts s to

(−∞, p1 ≈ −2.9032]∪(2,∞). Then z ∈ V := (−∞,−2.5038]∪ [−0.3994, 0)∪
(0, 1) ∪ (1,∞). Notice that z7A(1/z) = −A(z) and z14B(1/z) = B(z). In-

terchange z with 1/z in F (z) gives us F (1/z) = A(1/z)(z−(4n
′−1) − 1) −

B(1/z)z−(2n
′−4) = F (z)/z4n

′+6. So we can assume |z| < 1.

case 1: 0.8684 ≤ z < 1

In this case, we have A(z) < 0, B(z) ≤ 0 and z4n
′−1 − 1 < 0. So F (z) > 0.
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case 2: −0.3994 ≤ z < 0.8684 and z 6= 0

In this case, we have A(z) < C5 < 0 and C6 > B(z) > 0 for some constants

C5 and C6. When n′ is large enough, we have |C5|× |(z4n
′−1−1)| > C6z

2n′−4.

So A(z4n
′−1−1) = |A|×|(z4n′−1−1)| > Bz2n

′−4 and it follows that F (z) > 0.

Therefore when n′ = −n is large enough, we always have F (z) > 0 on the

domain V . So equation (3.15) has no real solution when n′ � 0.

It follows from the above lemma that equation (3.14) has no real solution

when n� 0 and thus equality ρ(µ)ρ(λ)n = I does not hold for n� 0.

From all the discussion above, we can now conclude that M(1, n) has no

nontrivial SL2(R) representation and thus no nontrivial PSL2(R) represen-

tation for n � 0. Since the first Betti number of M(1, n) is 0, the lift of a

trivial PSL2(R) representation of π1(M(1, n)) into P̃SL2(R) will be trivial.

So all representations of π1(M(1, n)) into P̃SL2(R) are trivial for n � 0,

proving Theorem 3.1 (a).

In contrast, when n is positive there are examples of non trivial SL2(R)

representations.

Plugging m = z−n into (3.14) and multiplying both sides by z4n−3, we get

−A+Bz2n−3 + Az4n+1 = 0.

Similarity, defineG(z) = A(z4n+1−1)+Bz2n−3. SinceG(1) = −4, G(0.8684) >

0, G(z) must have at least one root in [0.8684, 1). So π1(M(1, n)) has at least

one nontrivial SL2(R) representation for any n > 0. They lift to a P̃SL2(R)

representations, since the Euler number of any representation of an integral

homology sphere vanishes [18, Section 6].

3.3 No L-space fillings

In this section, I will prove Theorem 3.1 (b) using results from Gillespie’s

paper [19], which is based on Rasmussen and Rasmussen’s paper [37]. In

fact, I will show that none of the non-longitudinal fillings of m137 is an L-

space. The homology groups in this section are all homology with integral

coefficients.
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Suppose Y is a compact connected 3-manifold with a single torus as bound-

ary. I will follow Gillespie’s [37] notation. Define the set of slopes on ∂Y as:

Sl(Y ) = {a ∈ H1(∂Y )| a is primitive}/± 1.

Define the set of L-space filling slopes of Y :

L(Y ) = {a ∈ Sl(Y )| Y (a) is an L-space}.

Moreover, Y is said to have genus 0 if H2(Y, ∂Y ) is generated by a surface of

genus 0.

We will use Theorem 1.2 from Gillespie’s paper [19] which is stated as:

Theorem 3.2. The following are equivalent

1) L(Y ) = Sl(Y )− {l}.

2) Y has genus 0 and has an L-space filling.

Proof of Theorem 3.1 (b). Let l ∈ Sl(M) be the homological longitude. In

our case l can be taken to be [λ]. I will show that none of the (1, n) fillings

to M is an L-space.

I will find one non L-space filling first. Snappy [12] shows that (1,−1) fill-

ing on the knot 820 complement with homological framing is homeomorphic

to m011(2, 3), which is also homeomorphic toM(1,−3). Ozsváth and Szabó

showed that if some (1, p) Dehn filling of a knot complement in S3with ho-

mological framing is an L-space, then the Alexander polynomial of the knot

has coefficients ±1 [34, Corollary 1.3]. We can compute with SnapPy [12]

that the Alexander Polynomial of 820 is x4−2x3 +3x2−2x+1. SoM(1,−3)

is not an L-space. Therefore

−3l + [µ] /∈ L(M) 6= Sl(M)− {l} 3 −3l + [µ],

By Theorem 3.2, either M has no L-space fillings or M has positive genus.

The manifoldM can be viewed as the complement of a knot K in S2×S1

[15]. This knot K intersects each S2 three times. So [K] 6= 0 in H1(S
2 ×

S1;Z). It follows that H2(M, ∂M) is generated by genus 0 surface (S2 ×
{P}) ∩M for generic point P on K. So M has genus 0, which forces M
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to have no L-space filling. Therefore none of the integral homology spheres

M(1, n) is an L-space.
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Chapter 4

HOLONOMY EXTENSION LOCUS

In the next four chapters, I will use P̃SL2R representations to prove some

results about left-orderability.

In this chapter, I define the holonomy extension locus, show its structure

and explain how it works.

4.1 Definition of holonomy extension locus

Definition 4.1. For hyperbolic element g̃ ∈ G̃, take v ∈ P 1(C) to be a fixed

point of g̃. Define ev : Aug(G̃) −→ R×Z, (g̃, v) 7→ (ln(|a|), trans(g̃)), with a

any of the square root of the derivative of g (projection of g̃ in G) at v.

For parabolic elements, define ev : Aug(G̃) −→ R×Z, taking g̃ to (0, trans(g̃)).

Lemma 4.1. The map ev(−, v) preserves group structure of hyperbolic or

parabolic abelian subgroup of G̃ with v any fixed point of the subgroup. As a

consequence, ev((ρ̃(−), v)) : π1(∂M)→ R× Z is a group homomorphism for

ρ̃ hyperbolic or parabolic, where v is a fixed point of ρ̃(π1(∂M)).

Proof. Any nontrivial hyperbolic/parabolic abelian subgroup of G̃ has at

least one fixed point in P 1(C) and let v be any one of them. Consider the

stabilizer group Stab(v) ⊂ SL2R of v. We can define a homomorphism eig:

Stab(v) −→ R× which takes g ∈ Stab(v) to |a| where gv = av. Since ±I
is the kernel, this homomorphism descends to a homomorphism from the

stabilizer group of v in G to R× which we will still call eig. As trans is also

a homomorphism and ev(g̃, v) = (ln(eig(g)), trans(g̃)) for any g̃ ∈ G̃ where

g ∈ G is the projection, it follows that ev(−, v) preserves group structure of

hyperbolic or parabolic abelian subgroup of G̃.

When ρ̃ is hyperbolic/parabolic, ρ̃(π1(∂M)) becomes an abelian hyper-

bolic/parabolic subgroup of G̃, with v a fixed point. So being the composite
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of two homomorphisms ρ̃ and ev(−, v), ev((ρ̃(−), v)) : π1(∂M) → R × Z is

also a group homomorphism.

Identifying Hom(π1(∂M),R × Z) with H1(∂M ;R) × H1(∂M ;Z), we can

view ev((ρ̃(−), v)) as living in H1(∂M ;R) ×H1(∂M ;Z). Let M be an irre-

ducible Q-homology solid torus, and let ι : ∂M → M be the inclusion map.

With the above lemma, we can now define:

Definition 4.2. Let PHG̃(M) be the subset of representations whose re-

striction to π1(∂M) are either hyperbolic, parabolic, or central. Define EV :

Raug

G̃
(∂M) −→ H1(∂M ;R)×H1(∂M ;Z) by (ρ̃, v) 7→ ev((ρ̃(−), v)) on ι∗(PHG̃(M)),

where ι∗ is the restriction Raug

G̃
(M) −→ Raug

G̃
(∂M) of representations of

π1(M) to π1(∂M).

Lemma 4.2. Fix v ∈ P 1(C). Let Hv be the set of hyperbolic elements of G̃

that fix v. Then any two elements of Hv with the same image under ev(−, v)

are conjugate in G̃.

Proof. We will use the homomorphism eig as in 4.1 and the property that

ev(g̃, v) = (ln(eig(g)), trans(g̃)) for any g̃ ∈ G̃ where g ∈ G is the projection.

Two elements g̃ and g̃′ in Hv are conjugate if and only if gv = g′v and

trans(g̃) = trans(g̃′). So if ev(g, v) = ev(g′, v), then eig(g) = eig(g′) and

trans(g̃) = trans(g̃′), implying that g is conjugate to g′.

Definition 4.3. Consider the composition

PHG̃(M) ⊂ Raug

G̃
(M)

ι∗−→ Raug

G̃
(∂M)

EV−→ H1(∂M ;R)×H1(∂M ;Z)

The closure of EV ◦ ι∗(PHG̃(M)) in H1(∂M ;R) × H1(∂M ;Z) is called the

holonomy extension locus of M and denoted HLG̃(M).

We will call a point in HLG̃(M) a hyperbolic/parabolic/central point if

it comes from a representation ρ̃ ∈ PHG̃(M) such that ρ̃|π1(∂M) is hyper-

bolic/parabolic/central.

Definition 4.4. We call a point in HLG̃(M) an ideal point if it only lies in

the closure EV ◦ ι∗(PHG̃(M)) but not in EV ◦ ι∗(PHG̃(M)).

Lemma 4.3. Suppose (ρ̃, v) ∈ Raug

G̃
(∂M) is hyperbolic or central. If EV (ρ̃, v)(γ) =

(0, 0) for some γ ∈ π1(∂M), then ρ̃(γ) = 1.

24



Proof. It follows from Lemma 4.2 that ev(ρ̃(γ), v) = EV (ρ̃, v)(γ) = (0, 0)

implies ρ̃(γ) is conjugate to the identity element of G̃. So ρ̃(γ) = 1.

Suppose λ is the homological longitude of M . Define

kM = min{−χ(S)|S is a connected incompressible surface of M that bounds λ}.

We will use Milnor-Wood inequality in the form of Proposition 6.5 from

[11].

Proposition 4.1. Suppose S is a compact orientable surface with one bound-

ary component. For all ρ̃ : π1(S)→ G̃ one has

|trans(ρ̃(δ))| ≤ max(−χ(S), 0) where δ is a generator of π1(∂S).

Applying this proposition, we see immediately that |trans(ρ̃(λ))| ≤ kM .

In the next theorem, we will show that HLG̃(M) =
⊔
i,j∈ZHi,j(M), −kM ≤

j ≤ kM . Each Hi,j(M) := HLG̃(M) ∩ (R2 × {i} × {j}) ⊂ R2 is a finite

union of analytic arcs and isolated points. Denote the infinite dihedral group

ZoZ/2Z by D∞(M). Then D∞(M) acts on R2×Z2 by translating (x, y, i1, j)

to (x, y, i2, j) for any i1, i2, j ∈ Z and taking (x, y, i, j) to (−x,−y,−i,−j)
by reflecting about (0, 0, 0, 0). We will show HLG̃(M) is invariant under the

action of D∞(M).

Define Lr to be line of slope −r going through the origin in R2. Then L0

is the x-axis. Now we can state the theorem.

Theorem 4.1. The holonomy extension locus HLG̃(M) =
⊔
i,j∈ZHi,j(M),

−kM ≤ j ≤ kM is a locally finite union of analytic arcs and isolated points.

It is invariant under the affine group D∞(M) with quotient homeomorphic to

a finite graph with finitely many points removed. Each component Hi,j(M)

contains at most one parabolic point and has finitely many ideal points locally.

The locus H0,0(M) contains the horizontal axis L0, which comes from rep-

resentations to G̃ with abelian image.

Remark. If we assume the manifold M is small, i.e. it has no closed essen-

tial surface, then there is no ideal point in HLG̃(M). The proof is similar to

[11, Lemma 6.8]. See Lemma 4.7.
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4.2 Properties of holonomy extension locus

Lemma 4.4. The holonomy extension locus HLG̃(M) is invariant under

D∞(M).

Proof. We will show the image I of PHG̃(M) under EV◦ι∗ is invariant under

D∞(M). Take (ρ̃, v) ∈ PHG̃(M) and let t = EV ◦ ι∗(ρ̃, v) be the corre-

sponding point in I. Let s be the generator of the center of G̃ which is

isomorphic to Z and take any ϕ ∈ H1(M ;Z). Then PHG̃(M) 3 ϕ · ρ̃ :

γ 7→ ρ̃(γ)sϕ(γ) is another lift of π ◦ ρ̃, where π : G̃ → G is the projection.

It’s easy to see that ρ̃(π1(∂M)) and ϕ · ρ̃(π1(∂M)) share the same fixed

point v. We can check that for any γ ∈ π1(M), we have ev(ϕ · ρ̃(γ), v) =

ev(ρ̃(γ)sϕ(γ), v) = ev(ρ̃(γ), v)+(0, ϕ(γ)). So EV◦ι∗(ϕ·ρ̃, v) = EV◦ι∗(ρ̃sϕ, v) =

EV◦ι∗(ρ̃, v) + (0, ϕ). It follows that I is invariant under translation by ele-

ments of ι∗(H1(M ;Z)) ⊂ H1(∂M ;R).

Next, we will show HLG̃(M) is invariant under reflection about the origin

in R2 × Z2. Define f to be the element in Homeo(R) taking x ∈ R to −x,

and consider the conjugate action of f on G̃. The group G̃ is preserved under

this conjugation because π(fg̃f−1) has the same action as π(g̃−1) on S1 for

any g̃ ∈ G̃. Suppose a is a square root of the derivative of π(g) at v, then

a−1 is a square root of the derivative of π(g̃−1) at v and a−1 is a square root

of the derivative of π(fg̃f−1) at −v. Moreover we can check that

trans(fg̃f−1) = lim
n→∞

(fg̃f−1)n(0)− 0

n
= lim

n→∞

fg̃n(−0)− 0

n
= −trans(g̃).

This shows that ev(ρ̃(γ), v) = −ev(fρ̃f−1(γ),−v) and it follows that EV◦ι∗(ρ̃, v) =

−EV(fρ̃f−1,−v). Given such an f , the image of (fρ̃f−1,−v) in I is −t,
proving invariance.

As a consequence of Lemma 4.4, we can now look at the quotient PLG̃(M) =

HLG̃(M)/D∞(M). In fact PLG̃(M) = t−kM≤j≤kMH0,j(M)/(Z/2Z), where

Z/2Z acts on the disjoint union by taking (x, y) ∈ H0,j(M) to (−x,−y) ∈
H0,−j(M). In particular, Z/2Z acts on H0,0(M) via reflection about the

origin.

Lemma 4.5. PLG̃(M) has finitely many connected components. In particu-

lar, each Hi,j(M) has finitely many connected components.
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Proof. The proof works similarly as Lemma 6.2 of [11].

Let Π : RG̃(M) → RG(M) be the map between representation varieties

induced by π : G̃ → G. Let PHG(M) be the subset of RG(M) consisting

of representations whose restrictions to π1(∂M) consist only of hyperbolic,

parabolic and trivial elements. The set PHG(M) is a subset of the real

algebraic set RG(M) cut out by polynomial inequalities. It follows that

PHG(M) is a real semialgebraic set.

Let PH lift
G (M) ⊂ PHG(M) be the image of PHG̃(M) under Π. By continu-

ity of the translation number, PH lift
G (M) is a union of connected components

of PHG(M). Moreover PH lift
G (M) ⊂ PHG(M) is the quotient of PHG̃(M)

under the action of H1(M,Z) and Π is the covering map. So it is also a real

semialgebraic set and thus has finitely many connected components.

The action of H1(M,Z) on PHG̃(M) induces an action of Z ≤ D∞(M) on

HLG̃(M). Let Π−1(PH lift
G (M)) be any sheet in the covering of PH lift

G (M).

So PLG̃(M) = EV ◦ ι∗(Π−1(PH lift
G (M)))/(Z/2Z), and thus has finitely many

components. Let PHj
G(M) be the subset of PH lift

G (M) consisting of repre-

sentations with translation number of the homological longitude being j.

Then PH j
G(M) is a finite union of connected components of PHG(M). It

follows that Hi,j(M) = EV ◦ ι∗(Π−1(PH j
G(M))) has finitely many compo-

nents, where Π−1(PH j
G(M)) is any sheet in the covering of PH j

G(M).

Proof of Theorem 4.1. First notice that the index j is bounded, which follows

from Proposition 4.1.

Define c : H1(∂M ;R)×H1(∂M ;Z)→ XG(∂M), (f1, f2) 7→ character of ρ,

where ρ is given by ρ(µ) =

[
ef1(µ) 0

0 e−f1(µ)

]
, ρ(λ) =

[
ef1(λ) 0

0 e−f1(λ)

]
.

Consider the dual basis {µ∗, λ∗,m∗, l∗} for H1(∂M ;R)×H1(∂M ;Z), where

µ∗(pµ+ qλ) = p, λ∗(pµ+ qλ) = q, m∗(pµ+ qλ) = p and l∗(pµ+ qλ) = q for

any pµ+ qλ ∈ π1(∂M). Take (x, y, i, j) ∈ HLG̃(M). If we use trace-squared

coordinates on XG(∂M), we get

c(x, y, i, j) = (e2x + e−2x + 2, e2y + e−2y + 2, e2x+2y + e−2x−2y + 2).

It is easy to check that c(−x,−y,−i,−j) = c(x, y, i, j) and c(x, y, i+ n1, j +

n2) = c(x, y, i, j), where n1 and n2 are integers.
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Consider the diagram

PHG̃(M) EV◦ι∗ //

��

H1(∂M ;R)×H1(∂M ;Z)

c

��
XG(M) ι∗ // XG(∂M)

The vertical map c maps HLG̃(M) into ι∗(XG(M)). Being the image of a real

algebraic set under a polynomial map, XG(M) is a real semialgebraic subset

of XR(M). Since ι∗(X(M)) ⊂ X(∂M) has complex dimension at most 1 [11,

Lemma 2.4], then the real semialgebraic set ι∗(XG(M)) has real dimension

at most 1. Moreover ι∗(XG(M)) is a locally finite graph as XG(M) is. Thus,

its preimage under c is a locally finite graph with analytic edges that is

invariant under D∞(M). So each Hi,j(M) and thus PLG̃(M) is a locally

finite graph and by Lemma 4.5 it has finitely many connected components.

Therefore PLG̃(M) is homeomorphic to a finite graph with finitely many

points removed.

Suppose D is a closed disc in H1(∂M ;R), then D ∩ Hi,j(M) lives in a

finite graph. Since by Lemma 4.5 Hi,j(M) has finitely many components,

then D ∩ Hi,j(M) also has finitely many components and thus is a finite

graph. So D∩Hi,j(M) is the closure of a set of finitely many components in

a finite graph and thus contains finitely many ideal points.

Parabolic points can only occur at origin of each Hi,j(M), so there can be

at most one parabolic point in each component Hi,j(M).

Recall from Section 2.4 that there is an abelian subgroup of G̃ that is

isomorphic to R. Consider diagonal representations in G. They lift to a

one parameter family of abelian representations π1(M)→ G̃ by sending the

generator of H1(M ;Z)free ∼= H1(M ;Z)/(torsion) ∼= Z to a given element in

R. Since the longitude λ of ∂M is 0 in H1(M ;Z)free, this one parameter

family of abelian representations give rise to the line L0 in H0,0(M).

The following lemma describes some other properties of HLG̃(M).

Lemma 4.6 (structure of Hi,j(M)). Suppose for some i, j, Hi,j(M) contains

an arc that goes to infinity. Then this arc approaches asymptotes y = −rx
in R2 as it goes to infinity, where r is the boundary slope of the associated

incompressible surface to some ideal point of X̂(M).

28



Proof. The vertical map c in the proof of Theorem 4.1 maps HLG̃(M) into

ι∗(XG(M)). Let X̂(M) be the smooth projectivization of X(M).

Suppose Hi,j(M) contains an arc A that goes to infinity, then there is a

an ideal point x of X̂(M) that is the limit of a sequence of characters {[ρk]}
in X(M) of hyperbolic representations {ρk} such that images of lifts {ρ̃k}
under EV◦ι∗ are contained in A. To show this, suppose images of {ρ̃k} under

EV◦ ι∗ go to infinity in HLG̃(M). Then {[ρk]} march off to infinity in X(M)

as eigenvalues of either {ρk(µ)} or {ρk(λ)} go to infinity. Thus by passing

to a subsequence {[ρk]} converge to an ideal point x of X̂(M). Notice that

traces of elliptic and parabolic elements of G are bounded, by passing to

a subsequence, we can assume that ρ̃k|π1(∂M) are hyperbolic. Moreover can

choose a sequence of points {vk} where vk ∈ P 1(C) is a common fixed point

of ρk(π1(∂M)) acting on P 1(C). And by passing to a subsequence, we can

assume {vk} limits to v ∈ P 1(C).

By the result in [9, Section 5.7], there exists β ∈ π1(∂M) such that

tr2β(x) = b2 + b−2 + 2 is finite and β = pµ + qλ, where r = p/q is the

boundary slope of the associated incompressible surface to the ideal point

x. Then limk→∞ tr2β([ρk]) = b2 + b−2 + 2 as [ρk] → x, where b2 is a positive

real number as it is the limit of eigenvalue square of hyperbolic G matrices.

Moreover, b has to be a root of unity by [9, Section 5.7]. It follows that

b2 = 1, which implies limk→∞ ρk(β) = I. It follows that limk→∞ ρ̃k(β) =

Ĩ, where Ĩ is a lift of I with translation number limk→∞ trans(ρ̃k(β)) =

p limk→∞ trans(ρ̃k(µ)) + q limk→∞ trans(ρ̃k(λ)) = pi+ qj. Then we can check

slope of the asymptote of the arc containing {EV(ρ̃k, vk)} in HLG̃(M). We

have p limk→∞ EV(ρ̃k, vk)(µ)+q limk→∞ EV(ρ̃k, vk)(λ) = p limk→∞ ev(ρ̃k(µ), vk)+

q limk→∞ ev(ρ̃k(λ), vk) = limk→∞ ev(ρ̃k(pµ + qλ), vk) = ev(Ĩ , v) = (ln(|b|) =

0, pi+ qj). So limk→∞ slope[ρk] = −r and thus the curve A is asymptotic to

the line of slope −r going through the origin.

Holonomy extension locus is related to the A-polynomial which was first

introduced in [9]. To explain this relation, we will start with the definition

of eigenvalue variety [38, Section 7].

Let Raug
U (M) be the subvariety of Raug(M) defined by two equations which

specify that the lower left entries in ρ(M) and ρ(L) are equal to zero. Con-
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sider the eigenvalue map,

Raug
U (M)→ (C− 0)2

Taking closure of image of this map and discarding zero dimensional com-

ponents, we get the eigenvalue variety E(M) of M , which is defined by a

principal ideal. A generator for the radical of this ideal is called the A-

polynomial. We will call points that are only in the closure but not in the

image ideal points.

We are only interested in the intersection of E(M) with R2 as those points

come from boundary parabolic/hyperbolic/trivial representations. The com-

position Raug
G → Raug

U (M) → R2 ∩ E(M) gives a map from boundary hy-

perbolic representations to eigenvalues of the meridian and longitude of the

boundary, which is similar to but not entirely the same as EV◦ι∗ defined in

4.3.

Recall that M is called a small manifold if it contains no closed essential

surface. We will prove the following lemma.

Lemma 4.7. If M is small, then there is no ideal point in HLG̃(M) or

(R2 − 0) ∩ E(M).

Proof. The proof works the same way as in [11, Lemma 6.8]. Suppose t0 is an

ideal point in HLG̃(M) (resp. (R2−0)∩E(M)) and {ρ̃i} ⊂ PHG̃(M) is a se-

quence of G̃ representations whose images inHLG̃(M) (resp. (R2−0)∩E(M))

converge to t0. Suppose {[ρi]} is the sequence of corresponding characters

in XG(M). A similar argument shows that by passing to a subsequence, [ρi]

lies in a single irreducible component X ′ of X(M) and either [ρi] limit to

a character χ in XG(M) or the [ρi] march off to infinity in the noncompact

curve X ′. In the latter case, as both |tr(ρi(µ))| and |tr(ρi(λ)| are bounded

above, |tr(ρi(γ))| is bounded above for any γ ∈ π1(∂M). The argument of [9,

Section 2.4] produces a closed essential surface associated to a certain ideal

point of X ′, contradicting our hypothesis that M is small.

In the case when the [ρi] limit to χ in XG(M), a similar argument shows

that t0 is not actually an ideal point, proving the lemma.

Finally, we use the following lemma to construct order. Recall that Lr is

a line through origin in R2 with slope −r.
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Lemma 4.8. If Lr intersects H0,0(M) component of HLG̃(M) at non parabolic

or ideal points, and assume M(r) is irreducible, then M(r) is left-orderable.

Proof. Let f = (x1, y1) be a point in Lr ∩H0,0(M) that is different from the

origin as f is not parabolic by assumption and further assume that it is not

ideal. Then there exists a preimage ρ̃ ∈ RG̃(M) of f which is hyperbolic when

restricting to π1(∂M). Suppose γ ∈ π1(∂M) realizes slope r = j/k, i.e. γ =

λkµj. By definition of Lr : y = −rx, we have f(γ) = EV(ρ̃)(γ) = ev ◦ ρ̃(γ) =

(ky1 + jx1, k · trans(λ) + j · trans(µ)) = (k(−jx1/k) + jx, k0 + j0) = (0, 0). It

follows from Lemma 4.3 that ρ̃(γ) = 1, so we get an induced representation

ρ : π1(M(r)) → G̃. As f is different from the origin, then we can always

find an element η ∈ π1(∂M) with slope different from r such that ρ(η) 6= 0,

which implies that ρ is nontrivial. Since M(r) is irreducible, it follows from

[4, Theorem 3.2] that π1(M(r)) is left-orderable.
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Chapter 5

EXAMPLES

In this chapter, I will show some examples of holonomy extension loci.

Our first example is the figure eight knot 41, whose Alexander polynomial

is t2 − 3t+ 1.

Figure 5.1: Holonomy Extension Locus HLG̃(41)

There is nothing interesting going on in the translation extension locus of the
figure-eight knot complement as it contains only the x-axis y = 0 coming from
abelian representations. The above figures shows its holonomy extension locus
which has no other copies except H0,0(M) since the translation extension locus
has no component other than the x axis. The figure-eight knot complement has
genus 1, so the 2g−1 bound for translation number j of the longitude is not sharp.
There are two asymptotes of the graph with slopes ±4. So fillings of figure-eight
knot complement with slope lying in the interval (−4, 4) are orderable. This phe-
nomenon was first noticed by Steven Boyer.

Our next example is the (7, 3) two-bridge knot 52. Complements of two-

bridge knots are small [23, Theorem 1(a)]. So holonomy extension loci of

two-bridge knots do not have ideal points by Lemma 4.7.
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Figure 5.2: Holonomy and Translation Extension Locus of (7, 3) 2-bridge
Knot

The top left figure is the translation extension locus of the (7, 3) two-bridge knot,
where the six circles are parabolic points. The translation extension locus tells us
(−∞, 1) fillings are orderable.
The top right figure is the H0,0(M) component of its holonomy extension locus.
There are two asymptotes with slope −4 and 0. The interval of left-orderable Dehn
fillings we can read off from the holonomy extension locus is [0,4). So compared to
translation extension locus, the holonomy extension locus does tell us something
more.
The two figures on the bottom are H0,1 and H0,−1. Notice that asymptotes in
H0,±1 both have slope −10. Actually, boundary slopes associated to ideal points
of the character variety of the (7, 3) two-bridge knot complement are 0, 4, 10. This
result confirms Lemma 4.6.

The (7, 3) two-bridge knot, whose genus is 1, is a twist knot of three half

twist. So its Alexander polynomial is not monic and it follows that it is not

fibered [36]. Moreover, it cannot be an L-space knot [33, Corollary 1.3]. In

[11, Section 9, Question (4)], it is observed that for fibered knots, the 2g− 1

bound for translation number of the longitude is never sharp. However we

can see from this example that for non fibered knots, this bound can be

sharp.
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For the above examples, we actually computed equations of the graphs.

Next we show some more complicated pictures produced by programs [10]

written by Culler and Dunfield under SageMath [14]. We will only show

the quotient PLG̃(M) of HLG̃(M) under the action of D∞(M), where we

identify H0,j with H0,−j when j 6= 0 and quotient H0,0 down by reflection

about the origin.

Our first example is t03632, which has a loop in its holonomy extension

locus.

Figure 5.3: PLG̃(t03632)

Top left figure is H0,1 of t03632, where we see a small loop based at the origin
(parabolic point). The Alexander polynomial of t03632 has no positive real root.
The locus H0,0 contains nothing other than the horizontal line representing abelian
representations so we will not show it here.

Our next example is 73 which has more interesting H0,0.
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Figure 5.4: PLG̃(73)

The Alexander polynomial of 73 is 2t4 − 3t3 + 3t2 − 3t + 2, which has no real
root. But we can see H0,0 (figure on top) contains an arc that is different from the
x-axis, even though this arc does not intersect the x-axis.

5.1 Simple Roots of the Alexander Polynomial

When the Alexander polynomial ∆M of M has a positive root ξ, we can draw

a point (ln(ξ)/2, 0) on the x-axis and call it an Alexander point. When ξ

is a simple root, Lemma 6.1 predicts that there is an arc coming out of the

Alexander point (ln(ξ)/2, 0). Moreover, this Alexander point corresponds

to the abelian representation associated to the root ξ of ∆M , e.g. ρα as

constructed in proof of Lemma 6.1. We use large dots to indicate Alexander

points in our figures.

In addition to the example of the figure eight knot shown in Figure 5.1,

we will show more holonomy extension loci with Alexander points.
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Figure 5.5: PLG̃(v2362)

This figure is PL
G̃

(v2362), the quotient of the holonomy extension locus of v2362.
The Alexander polynomial of v2362 is 6t2−13t+6 which has two simple real roots
2/3 and 3/2. So we can expect to see the Alexander point (12 ln(32), 0). (The other
point (12 ln(23) = −1

2 ln(32), 0) is mapped to the same point under the quotient.)
We can see in this figure that the arc that goes through the Alexander point is not
tangent to the x-axis at the Alexander point.

5.2 Multiple Roots of the Alexander Polynomial

Figure 5.6: PLG̃(K10n2)

This figure is PL
G̃

(K10n2), the quotient of the holonomy extension locus of
K10n2. It only contains the quotient locus H0,0/(Z/2Z). The Alexander poly-
nomial of K10n2 has two positive real double roots that are reciprocals of each
other. We can see that the two arcs are tangent to the x-axis at the Alexander
point.
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Figure 5.7: PLG̃(K10a2)

The Alexander polynomial of K10a2 has two positive real double roots that are
reciprocals of each other. We can see that two arcs in H0,0(K10a2) in the left
figure are tangent to the x-axis at the Alexander point.

The above examples K10n2 and K10a2 have typical patterns for multiple

roots. They all have arcs tangent to the x-axis at Alexander points.

The manifold K9a37 in our next example also has Alexander polynomial

with double roots. However the local picture of its holonomy extension locus

at the Alexander point is quite different from Figure 5.6, 5.7.

Figure 5.8: H0,0(K9a37)

The Alexander polynomial of K9a37 has two positive real double roots. The figure
on the left is H0,0 of he holonomy extension locus of K9a37. (To be precise, we
still need to remove a small segment of arc on the red curve to get the actual
H0,0(K9a37). ) We can see that there is an arc coming out of the Alexander point
in both directions but not tangent to the x-axis.
Remark: There is an arc A0 in H0,2(K9a37) (not shown since it does not belong
to H0,0(K9a37)) that is tangent to the bottom arc (green) shown in the above
pictures at some point and our current graphing program is unable to separate
these two tangent curves automatically. So we have to remove A0 from the pictures
above by hand.

The holonomy extension locus of K9a37 has some interesting phenomena,

which are shown in Figure 5.8 on the right. The ’x’s on the red curve (second
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curve from the bottom) mean that this point comes from a PSL2C represen-

tation ρ that is not PSL2R even though ρ|∂M is a PSL2R representation. So

these points do not belong to the holonomy extension locus. (The small dots

on the curves simply mean this point comes from a PSL2R representation.)

From this example, we can see that an arc in a holonomy extension locus can

end at a point that is not the infinity, Alexander point or parabolic point.

We guess such a point could be a Tillmann point (see [11] end of Section 5

for definition).

The statement of Lemma 6.1 requires the root of the Alexander polynomial

to be simple. When we have a root that is not simple, we expect to see an

example where there is no arc coming out of the corresponding Alexander

point at all, as this is what happened in the translation extension locus in

Figure 10 of Section 5 of [11]. However, we were not able to find such an

example at this moment as the graphing program is still unfinished and we

only have very limited number of samples.

Remark. In addition to issues with graphing like unseparated curves and

Tillmann points as mentioned above, we also spotted missing components.

In the above example K9a37, we know a curve in H0,2(K9a37) is missing

from our figure. In their graphing program, Culler and Dunfield use gluing

varieties rather than character varieties to simplify computation. Some of

the graphing issues might be caused by this. Check the end of Section 5 of

[11] for more details about computation and graphing issues.
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Chapter 6

Alexander polynomials and orderability

In this chapter, we prove Theorem 6.1. To state the theorem, we will need

some definitions from [11]. We say a compact 3-manifold Y has few characters

if each positive dimensional component of the PSL2C character variety of

Y consists entirely of characters of reducible representations. An irreducible

Q-homology solid torus M is called longitudinally rigid when its Dehn filling

M(0) along the homological longitude has few characters.

The following result was also proven independently by Steven Boyer.

Theorem 6.1. Suppose M is the exterior of a knot in a Q-homology 3-sphere

that is longitudinal rigid. If the Alexander polynomial ∆M of M has a simple

positive real root ξ 6= 1, then there exists a nonempty interval (−a, 0] or [0, a)

such that for every rational r in the interval, Dehn filling M(r) is orderable.

The following lemma is key to proving Theorem 6.1.

Lemma 6.1. Suppose M is an irreducible Q-homology solid torus. If ξ 6= 1

is a simple positive real root of the Alexander polynomial, then there exists

an analytic path ρt : [−1, 1]→ RG(M) where:

(a) The representations ρt are irreducible over PSL2C for t 6= 0.

(b) The corresponding path [ρt] of characters in XG(M) is also a noncon-

stant analytic path.

(c) tr2γ(ρt) is nonconstant in t for some γ ∈ π1(∂M).

Proof. First I prove (a) and (b).

As in Proposition 10.2 of [25], let α : π1(M) → R+ = (R > 0) be a

representation such that α factors through H1(M ;Z)free ∼= Z and takes a

generator of H1(M ;Z)free to ξ. Let ρα : π1(M) → PSL2R be the associated
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diagonal representation given by

ρα = ±

[
α1/2(γ) 0

0 α−1/2(γ)

]
, where α1/2(γ) is the positive square root of α(γ).

Then χα = tr2(ρα) is real valued, as α(γ)+1/α(γ)+2 ∈ R ∀γ ∈ π1(M). Since

Im(α) is contained in R+ but not in {±1}, Im(ρα) is contained in PGL2(R)

and in fact in PSL2R. Next, we carry out the computation of obstruction

in the real setting. Let sl2(C) be the complexification of sl2(R), we have the

corresponding isomorphism of cohomology groups.

H∗(π1(M); sl2(C)α) = H∗(π1(M); sl2(R)α)⊗R C.

So computations with complex variety X(M) in the proof of [25, Theorem

1.3] can be carried out in the real case. It follows that the tangent space

to XG(M) at χα is H∗(π1(M);R+ ⊕ R−)//R∗ ∼= R and thus χα is a smooth

point. Carrying out the computation of obstructions in the real setting, we

are able to show that d+ + d− ∈ H1(π1(M); sl2(R)ρα) can be integrated to

an analytic path ρt : [−1, 1] → RG(M) with ρ0 = ρα and ρt irreducible over

PSL2C for t 6= 0. So χα is contained in a curve containing characters of

irreducible PSL2R representations, which gives (a).

The path [ρt] ⊂ XG(M) is nonconstant because ρt is irreducible whenever

t 6= 0 and thus cannot have same character as the reducible representation

ρ0, proving (b).

Next, we will prove (c). In fact the existence of γ ∈ π1(∂M) such that

tr2γ(ρt) is nonconstant in t is proved similarly as [11, Lemma 7.3 (4)]. We

first construct nonabelian representation ρ+ ∈ RG(M) which corresponds to

[ρα] in XG(M). Then the Zariski tangent space of XG(M) at [ρα] can be

identified with H1(M ; sl2(R)ρ+) while the Zariski tangent space of XG(∂M)

at [ρ+ ◦ ι] can be identified with H1(∂M ; sl2(R)ρ+). So the proof of (c) boils

down to showing the injectivity of ι∗ : H1(M ; sl2(R)ρ+)→ H1(∂M ; sl2(R)ρ+).

See [11, Lemma 7.3 (4)] for more details.

We will also need the following property of closed 3 manifolds with few

characters.
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Lemma 6.2. Suppose Y is a closed 3 manifold with H1(Y,Q) = Q. If Y has

few characters, then Y is irreducible.

Proof. Prove by contradiction. If Y is reducible, then we can decompose

it as a connected sum Y1]Y2, where H1(Y1,Q) = Q and Y2 is a QHS. So

π1(Y ) = π1(Y1) ∗ π1(Y2). We want to use PSL2C representations of Y1 and

Y2 to construct a dimension one component of PSL2C character variety of Y

containing an irreducible representation so that it contradicts the assumption

that Y has few characters. As H1(Y1,Z) = Z ⊕ (possible torsion), we can

construct a nontrivial abelian PSL2C representation ρ1 of Y1 by composing

π1(Y1) � Z and Z ↪→ PSL2C. For Y2, there are two cases. If H1(Y2,Z)

contains a cyclic subgroup H, then similarly we can construct a nontrivial

abelian PSL2C representation ρ2 of Y2 by composing π1(Y2) � H and H ↪→
PSL2C. If Y2 is actually a ZHS, then by Theorem 9.4 of [43], there is an

irreducible SL2C representation ρ2 of π1(Y2). Moreover we can make ρ2 an

irreducible PSL2C representation by simply projecting to PSL2C. So we

can construct a set of PSL2C representations ρP = ρ1 ∗Pρ2P−1 of Y , where

P is any matrix in PSL2C. These representations are not conjugate to each

other as long as they have different P and at least one of them is irreducible

as we can vary P so that ρ1 and Pρ2P
−1 are not upper triangular at the

same time.

Now we can prove Theorem 6.1.

Proof of Theorem 6.1. Let ρt be the associated path in RG(M) given by

Lemma 6.1. As ρ0 factors through H1(M ;Z)free ∼= Z, we can lift it and

its lift ρ̃0 also factors through H1(M ;Z)free. Hence trans(ρ̃0(λ)) = 0. And ρ̃0

is mapped to a point on the horizontal axis of H0,0(M) as ρ0(λ) = I. The x

coordinate of ρ̃0, ln(|ξ|) is nonzero as ξ 6= ±1.

As ρ0 lifts, we can extend this lift to a continuous path ρ̃t in RG̃(M). More-

over, we can assume ρ̃t is actually in Raug

G̃
(M), as fixed points of ρ̃t(π1(∂M))

also vary continuously with t.

Let k be the index of 〈ι∗(µ)〉 in H1(M,Z)free, where ι : ∂M → M is the

inclusion. By construction tr2µ(ρ̃0) = ξk + 2 + ξ−k > 4, so there exists ε > 0

such that tr2µ(ρ̃t) ≥ 4 for t ∈ [−ε, ε]. As ρt(µ) is hyperbolic, ρt(λ) is also

hyperbolic. Therefore ρt is a path in PHG(M) and ρ̃t is a path in PHG̃(M).
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Then we can build path A by composing ρ̃t with EV◦ι∗ : PHG̃(M) →
HLG̃(M). That the path A is nonconstant follows from Lemma 6.1. More-

over, it is not contained in x-axis L0. If it is contained in the x-axis, then

ρt(λ) = I as ρt(λ) is always hyperbolic or trivial. So each ρt factors through

representations of the 0 filling M(0). Therefore [ρt] must lie in a component

of X(M(0)) of dimension at least 1, contradicting the assumption that M is

longitudinally rigid.

Since all points in A come from actual G̃ representations, there is no ideal

point in A. As all but at most three Dehn fillings of a knot complement are

irreducible [22, Theorem 1.2], we can shrink A if necessary so that none of

the Dehn fillings involved is reducible. The only parabolic point in H0,0(M)

is the origin so A contains no parabolic point. Applying Lemma 4.8, we get

interval (0, a) or (−a, 0) of orderable Dehn fillings.

Finally, we show M(0) is orderable. The first Betti number of M(0) is 1 as

rational homology groups of M(0) are the same as S2×S1. The irreducibility

of M(0) follows from Lemma 6.2. So we can apply Theorem 1.1 of [4] and

show that π1(M(0)) is left-orderable, completing the proof of the theorem.
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Chapter 7

Real embeddings of trace fields and
orderability

In this chapter, we use a different assumption for the manifolds we study,

and prove Theorem 7.1.

Let Y be a closed hyperbolic 3-manifold with fundamental group Γ. Let

ρhyp : Γ → PSL2C be the holonomy representation of Y . The trace field

K = Q(trΓ) of ρhyp is the subfield of C generated over Q by the traces of

lifts to SL2C of all elements in ρhyp(Γ). It is a number field by [30, Theorem

3.1.2]. Assume we have a real embedding σ of the trace field K into R.

Define the associated quaternion algebra to be D = {Σaiγi|ai ∈ K, γi ∈
ρhyp(Γ)}. To say D splits at the real embedding σ means D ⊗σ R ∼= M2(R),

which implies that we can conjugate Γ into PSL2R. So we get a Galois

conjugate representation ρ : Γ→ PSL2R. See Section 2.1 and 2.7 of [30] for

more details.

The following conjecture is due to Dunfield.

Conjecture 1. Suppose M is a hyperbolic Z homology solid torus. Assume

the longitudinal filling M(0) is hyperbolic and its holonomy representation has

trace field with a real embedding at which the associated quaternion algebra

splits. Then every Dehn filling M(r) with rational r in an interval (−a, a) is

orderable.

By adding some extra conditions, I am able to prove the following result.

Theorem 7.1. Suppose M is a hyperbolic Z-homology solid torus. Assume

the longitudinal filling M(0) is a hyperbolic mapping torus of a homeomor-

phism of a genus 2 orientable surface and its holonomy representation has

trace field with a real embedding at which the associated quaternion algebra

splits. Then every Dehn filling M(r) with rational r in an interval (−a, 0] or

[0, a) is orderable.

First let us fix some notations. Denote the holonomy representation of

hyperbolic manifold M(0) by ρhyp : π1(M(0)) −→ PSL2R and the projec-
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tion map p : π1(M) → π1(M(0)). The composition ρM = p ◦ ρhyp has

kernel normally generated by the longitude λ. The Galois conjugate of ρM

is denoted by ρ0. It is also the Galois conjugate of ρhyp composed with

p. Denote ρV : π1(V ) −→ PSL2R the induced representation of ρhyp on

V = S1 ×D2 ⊂ M(0), ρT 2 : π1(T
2) −→ PSL2R the induced representation

of ρhyp on ∂M = T 2.

Let Γ be a group and let ρ : Γ→ PSL2C be a representation. Then we can

turn the Lie algebra sl2(C) into a Γ module via the adjoint representation,

which means taking conjugation g · a := ρ(g)aρ(g)−1. Denote this Γ module

by sl2(C)ρ.

To study smoothness of a point on the character variety, we need to study

the Zariski tangent space at that point.

Definition 7.1. [35, 3.1.3] Suppose V is an affine algebraic variety in Cn.

Let I(V ) = {f ∈ C[x1, . . . , xn]|f(x) = 0 ∀x ∈ V } be the ideal of V . Define

the Zariski tangent space to V at p to be the vector space of derivatives of

polynomials.

T Zar
p (V ) = {dγ

dt
|t=0 ∈ Cn|γ ∈ (C[t])n, γ(0) = p s.t. f ◦ γ ∈ t2C[t] ∀f ∈ I(V )}

A point p on V is called smooth if the dimension of T Zar
p (V ) is equal to

the dimension of the component of V which p lies on.

Weil’s infinitesimal rigidity in the compact case, which is stated as follows,

is key to the proof of Theorem 7.1.

Theorem 7.2. Let M be a compact 3-manifold with torus boundary whose in-

terior admits a hyperbolic structure with finite volume, then H1(M(0), sl2(C)ρhyp) =

0. [41](See also [35, Section 3.3.3][31])

The reference [35] works with SL2C rather than PSL2C character varieties.

So to apply argument in [35], we will lift PSL2R representations to SL2R
when necessary. That they always lift is guaranteed by [13, Proposition

3.1.1].

The proof of Theorem 7.1 relies on the following lemma whose proof is

based on Weil’s theorem.

Lemma 7.1. Suppose ρ0 is defined as above. Then there exists an arc c in

RG(M) such that
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(a) c 3 ρ0 is a smooth point of RG(M).

(b) tr2γ is the local parameter of arc c near ρ0, where γ ∈ π1(∂M) is some

primitive element different from the longitude λ.

Proof. (a) First, let us prove ρ0 is a smooth point of RG(M). We compute

the Mayer-Vietoris sequence for cohomology with local coefficient, associated

to decomposition M(0) = M ∪∂M V .

· · · → H1(M(0); sl2(C)ρhyp)

→ H1(V ; sl2(C)ρV )⊕H1(M ; sl2(C)ρM )→ H1(T 2; sl2(C)ρT2 )→

→ H2(M(0); sl2(C)ρhyp)→ · · ·

It follows from Weil’s infinitesimal rigidity 7.2 that H1(M(0); sl2(C)ρhyp) =

0. SoH1(V ; sl2(C)ρV )⊕H1(M ; sl2(C)ρM )→ H1(T 2; sl2(C)ρT2 ) is an injection.

To see that it is actually an isomorphism, note that by Poincare duality

H2(M(0); sl2(C)ρhyp)
∼= H1(M(0); sl2(C)ρhyp) = 0.

Let Xc(M) be the component of X(M) containing [ρM ]. As ρV and ρT 2

are nontrivial, by [3, Theorem 1.1 (i)], we get dimCH
1(V ; sl2(C)ρV ) = 1 and

dimCH
1(T 2; sl2(C)ρT2 ) = 2. So dimCH

1(M ; sl2(C)ρM ) = 1. By [35, Propo-

sition 3.5], we have inclusion of the Zariski tangent space T Zar
ρM

(Xc(M)) ↪→
H1(M ; sl2(C)ρM ). So dimC T

Zar
ρM

(Xc(M)) ≤ dimCH
1(M ; sl2(C)ρM ) = 1.

Following from Thurston’s result [13, Proposition 3.2.1], dimXc(M) ≥ 1 as

ρM(im(π1(∂M) → π1(M))) = Z. Since dimCXc(M) ≤ dimC T
Zar
ρM

(Xc(M)),

then dimXc(M) = dimT Zar
ρM

(Xc(M)) = dimCH
1(M ; sl2(C)ρM ) = 1. There-

fore [ρM ] is a smooth point of X(M).

To show the Galois conjugate ρ0 of ρM is also a smooth point, we use the

same argument as in the proof of [11, Lemma 8.3]. Construct X1 by taking

the C-irreducible component X0 of X(M) containing [ρM ], which must be

defined over some number field, and then take the union of the Gal(Q/Q)-

orbit of X0. Then X1 is the unique Q-irreducible component of X(M) that

contains [ρM ]. Since X1 is invariant under the Gal(Q/Q)-action, it contains

[ρ0] as well as [ρM ]. As by definition, T Zar
ρM

(X(M)) is defined by derivatives

of a set of polynomials. Then T Zar
ρ0

(X(M)) is defined by derivatives of Galois

conjugates of this set of polynomials and thus should have dimension 1, same

as T Zar
ρM

(X(M)). Any component of X1 has the same dimension as Xc(M),
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which is 1. So [ρ0] is a smooth point of X1 and thus of X(M).

Moreover, By Théorème 3.15 of [35], [ρM ] is γ-regular (see [35, Definition

3.21] for definition) for some simple closed curve γ ⊂ ∂M . So trγ is a local

parameter X(M) at [ρM ]. Since [ρM ] is not λ-regular as ρM(λ) = I, γ must

be a curve different from λ. Locally the sign of trγ does not change, so

we could make tr2γ the local parameter. Whether a regular function is a

local parameter at a smooth point on the curve X1 can be expressed purely

algebraically and hence is Gal(Q/Q)-invariant. It follows that [ρ0] is also a

smooth point of X1 with local parameter tr2γ.

Applying [11, Proposition 2.8], we get a smooth arc c of real points in

XR(M) containing [ρ0], locally defined by tr2γ being real. By restricting ε if

necessary, we can assume that every character in c comes from an irreducible

PSL2C representation. Since [ρ0] ∈ XPSL2R(M) is irreducible, we can restrict

ε so that c is actually contained in XPSL2R(M) as both XPSL2R(M) and

XSU2(C)(M) are closed in X(M)[11, Lemma 2.12]. Then by [11, Lemma 2.11]

we can lift c to c ∈ RPSL2R(M) and c is still parametrized by tr2γ.

Lemma 7.2. trans(ρ̃0(λ)) is an even integer.

Proof. When mapping down to SL2R, the image of ρ̃0(λ) ∈ P̃SL2R is I. It

follows from [11, Claim 8.5] that trans(ρ̃0(λ)) is an even integer.

Now we are ready to prove Theorem 7.1.

Proof of Theorem 7.1. First we lift the arc c ⊂ RG(M) as constructed in

Lemma 7.1 to c̃ ∈ RG̃(M). In the case of hyperbolic integer solid torus M ,

H2(π1(M);Z) ∼= H2(M ;Z) = 0, so we can always lift.

Since M(0) admits a complete hyperbolic structure, elements in π1(M(0))

are mapped to loxodromic elements in PSL2C by ρhyp. So λ ∈ π1(M(0))

mapped to either hyperbolic or elliptic under the Galois conjugate ρ0. There-

fore we divide our proof in two cases according to the image of the longitude

λ.

Remark. We do not consider the case that λ is mapped to parabolic because

ρhyp(λ) is hyperbolic and Galois conjugate cannot take norm greater than 2

to 2.

Case 1: λ is mapped to an elliptic element.
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At ρ̃0, the local parameter s = tr2(ρ̃0(γ)) < 4. As c̃ is parameterized near

ρ̃0 by tr2γ ∈ [s− ε, s+ ε], we can require s+ ε < 4 so that c̃ ⊂ PEG̃(M). Then

we map c̃ down to arc A ⊂ ELG̃(M) which is locally parameterized by tr2γ

on some small interval [0, δ].

To obtain an interval of orderable Dehn fillings, we want to apply Lemma

8.4 of [11] which works similarly as Lemma 4.8. So we need to show that A is

not contained in the horizontal axis L0 of ELG̃(M) ⊂ R2. If it is contained in

L0, suppose trans(ρ̃0(λ)) equals integer k, which implies every representation

ρt ∈ c satisfies trans(ρ̃t(λ)) = k. Then ρt(λ) = ±I since ρt(λ) is either elliptic

or trivial. So all ρt factor through π1(M(0)) and it follows that [ρt] lie in an

irreducible component of X(M(0)) with complex dimension at least one. But

we have seen that H1(M(0); sl2(C)ρhyp) = 0, so 1 ≤ dimT Zar
ρ0

(X(M(0))) =

dimT Zar
ρhyp

(X(M(0))) ≤ dimCH
1(M(0); sl2(C)ρhyp) = 0, which is a contradic-

tion.

Now we can draw arc A inside the translation extension locus ELG̃(M)

near ρ̃0. It contains no ideal point as all points on A come from G̃ represen-

tations. Applying Lemma 8.4 of [11], we get a > 0 so that Lr meets ELG̃(M)

for all r in interval (−a, a). Invoking [22, Theorem 1.2p], we can shrink a to

make M(r) irreducible. Then we can apply Lemma 4.4 of [11].

Case 2: λ is mapped to a hyperbolic element.

This case is similar to Case 1 except we start with s=tr2(ρ̃0(γ)) > 4. As

c̃ is parameterized by tr2γ ∈ [s − ε, s + ε], we can require s − ε > 4 so that

c̃ ⊂ PHG̃(M). Again map c̃ down to arc A ⊂ HLG̃(M) which is locally

parameterized by tr2γ on some small interval [−δ, δ].
To show A ⊂ H0,0(M), we compute trans(ρ̃0(λ)) and show it is 0. By

assumption, M(0) is a mapping torus of a homeomorphism of a genus 2

surface S. Then M(0) = Mφ where φ is a pseudo-anosov map of S since

M(0) is hyperbolic. Suppose there is a G representation ρ0 of π1(M(0)), then

it restricts to a G representation ρ0|S of π1(S). Let eu(ρ0|S) be the Euler

number of ρ0|S as defined in [20] (or equivalently in [32, 42]). It is equal

to trans(ρ̃0([a1, b1][a2, b2])) with a1, b1, a2, b2 the standard generators of π1(S)

and is thus equal to trans(ρ̃0(λ)). We claim that |eu(ρ0|S)| 6= 2. Otherwise

ρ0|S would determines a hyperbolic structure on S (Milnor-Wood inequality

[32, 42]) which is invariant under φ, implying that φ has finite order which

contradicts that φ is pseudo-anosov. So |trans(ρ̃0(λ))| = |eu(ρ0|S)| 6= 2. By

Lemma 7.2 and Proposition 4.1, we must have trans(ρ̃0(λ)) = 0.
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Claim that A is not contained in the horizontal axis L0 of H0,0 ⊂ R2.

If it is contained in the horizontal axis, then ρt(λ) = ±I since ρt(λ) is ei-

ther hyperbolic or trivial. So all ρt factor through π1(M(0)) and it follows

that [ρt] lie in an irreducible component of X(M(0)) with complex dimen-

sion at least one. But we have seen that H1(M(0); sl2(C)ρhyp) = 0, so 1 ≤
dimT Zar

ρ0
(X(M(0))) = dimT Zar

ρhyp
(X(M(0))) ≤ dimCH

1(M(0); sl2(C)ρhyp) =

0, which is a contradiction.

So we have constructed arc A ⊂ H0,0(M) that is not contained in L0 near

ρ̃0. Then we can find a > 0 such that Lr meets H0,0(M) at points that

are not parabolic or ideal and M(r) irreducible for all r in interval (0, a) or

(−a, 0). Applying Lemma 4.8 then tells us M(r) is orderable for r in (0, a)

or (−a, 0).

Finally, we show M(0) is orderable. The first Betti number of M(0) is 1 as

the integral homology groups of M(0) are the same as those of S2×S1. The

irreducibility of M(0) follows from the assumption that it is hyperbolic. So

we can apply Theorem 1.1 of [4] and show that π1(M(0)) is left-orderable,

completing the proof of the theorem.

Remark. The assumption that M(0) being a mapping torus of genus 2 is

used to show trans(λ) = 0. It is a very strong. However, when λ is mapped to

elliptic, M(0) being a mapping torus in not needed at all. When λ is mapped

to hyperbolic, the author does not know how to weaken this assumption.

Using the method of Calegari [7, Section 3.5], we are able to prove the

following result.

Lemma 7.3. Suppose M is a mapping torus of closed surface S of genus at

least 2 and π1(M) has no torsion. If M has a faithful G representation ρ.

Then ρ|S can never be discrete.

Proof. First notice that ρ is indiscrete, as otherwise ρ(π1(M)) ≤ G acts on

H2 with quotient a hyperbolic surface, which is impossible as M is a closed

3 manifold.

Now suppose ρ|S is discrete, then ρ|S determines some hyperbolic struc-

ture on S as it is faithful. So ρ(π1(S)) consists of hyperbolic elements only.

Moreover, any isometry of S is of finite order as it has to preserve the hy-

perbolic structure. Let π1(M) = 〈t〉n π1(S). Then ρ(t) acts on ρ(π1(S)) by
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conjugation and normalizes ρ(π1(S)). Since Isom+(S) is of finite order, the

action of ρ(t) on ρ(π1(S)) by conjugation is of finite order. To show that

actually ρ(t) is a finite order element in G, notice that ρ(π1(S)) has at least

two hyperbolic elements of different axes. But this contradicts the fact that

ρ is a faithful representation as π1(M) has no torsion. So ρ|S could not be

discrete.
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