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Abstract

This thesis finds its roots in the Nielsen-Thurston classification of the mapping class group, a

result that is fundamental to the field of low dimensional topology. In particular, Thurston’s

work gives us a powerful normal form for mapping classes: up to taking powers and restricting

to subsurfaces, every mapping class can be decomposed into pieces which are either the

identity or pseudo-Anosov. Associated to each of these pseudo-Anosov mapping classes is a

unique algebraic number called its dilatation or “stretch-factor”. In this thesis, we build on

work of Penner who introduced the study of the minimal dilatation of pseudo-Anosovs in

subgroups of the mapping class group. We prove upper and lower bounds on the minimal

dilatation of pseudo-Anosovs in the n-stranded pure surface braid group extending results

of Aougab–Taylor and Dowdall for the 1-stranded pure surface braid group.
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Prologue

I used to think the hardest part of grad school would be the math. I was wrong. Now I’m

not saying math isn’t hard. Trust me, math IS hard. It’s way harder than I thought it was

when I was a bright eyed and bushy tailed undergrad at a tiny school that no one has ever

heard of. But even harder than the math is the doubt whispered (and sometimes shouted)

at you from every side until it seeps cold and grey into your soul. I used to think there was

nothing worse than failing, but once again I was wrong. If you fail, at least that means you

had the courage to try. Doubt is relentlessly insidious. It makes you so certain of your own

inability to succeed that you become convinced there is no use in trying before you have

even got started.

I can’t begin to tell you the number of times I have spent hours staring at a blank white

sheet of paper afraid to start working because, let’s be honest, no one thinks I can solve this

problem, not even me. And before you tell me that all this doubt is just imagined, a conjuring

of my own mind, born out of a long standing fear of failure (and a lack of practicing how

to fail), which to be fair wouldn’t be such a far fetched explanation, let me tell you a story.

You see during my first year of grad school I realized I didn’t have nearly the preparation

that many of my classmates had and what I thought was a thorough knowledge of various

topics which I had ambitiously sought out in my undergraduate years turned out to be little

more than what would be covered in the first day of my graduate lectures. Now that’s a

difficult truth to press your hands up against, finding out that you are at the bottom of a

ladder that you can’t even see the top of when you used to think you were at least a fair

ways up. But so what if I was a little behind, I was sure I could catch up before long.

Of course, the doubt was already whispering to me at this point, and had found a voice

among a few of my classmates, but what did they know, they were only a few steps ahead
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of me. So I shook it off and kept my head down, plugging away. I found an area of research

I liked, and a professor I liked and I thought things were starting to take shape. Till the

beginning of my fourth semester, when my doubts materialized in the form of the following

words spoken by my would-be advisor, “I don’t think you have it in you to write a good

enough thesis to do research.”

My dreams evaporated right there in that dusty little office and unrelenting doubt took

their place. I could hear the words playing over and over again in my head and all I could

think was, “You can’t do this. You can’t get your PhD. You can’t do math. You can’t do

anything. You are a failure.” I couldn’t take this opinion for granted. I couldn’t dismiss it,

because it came from the mouth of one of my most respected professors, a leader in his field,

a true mathematician. If he said it, then it must be so. Who could know better than he?

That day the doubt wasn’t a whisper anymore. It was screaming into my ear, louder than

any words of affirmation I have ever heard. Doubt said, “You are not enough!” And after

that day, I believed it.
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Chapter 1

Introduction

Let Sg,n be a connected, oriented surface of genus g ≥ 2 with n ≥ 1 punctures and let

Sg = Sg,0. We define the mapping class group of Sg,n, denoted by Mod(Sg,n), to be the

group of orientation preserving homeomorphisms of Sg,n up to isotopy. The pure mapping

class group of Sg,n, denoted PMod(Sg,n), is the subgroup of Mod(Sg,n) that fixes each

puncture pointwise.

Consider the following short exact sequence

1 −→ ker(Forget) −→ PMod(Sg,n) −→ Mod(Sg) −→ 1, (1)

where Forget : PMod(Sg,n) → Mod(Sg) is the forgetful map obtained by “filling in” the

n punctures of Sg,n. This sequence is often refered to as the Birman Exact Sequence. The

n-stranded pure surface braid group of a surface of genus g is defined to be the kernel

of this forgetful map and is denoted by PBn(Sg). Note that ker(Forget) is isomorphic to

the fundamental group of the configuration space of ordered n-tuples of points on Sg; see

Section 2.2 for further discussion.

Given a pseudo-Anosov mapping class f ∈ PBn(Sg) we denote its dilatation by λ(f)

and its entropy by log(λ(f)), which is indeed the topological entropy of the pseudo-Anosov

representative of f . In particular, we will be interested in the least entropy

L(PBn(Sg)) := inf{log(λ(f)) | f ∈ PBn(Sg) is pseudo-Anosov}.
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Main Theorem. For a surface Sg,n of genus g ≥ 2 with n ≥ 1 punctures there exist

constants c, c′ > 0 such that,

c log

(⌈
log g

n

⌉)
+ c ≤ L(PBn(Sg)) ≤ c′ log

(⌈g
n

⌉)
+ c′.

Explicit values for c and c′ are obtained from the bounds given in Theorem 3.1, Theorem

4.1, and Theorem 4.2.

To put the Main Theorem in context, we recall the results of Penner [34] and Tsai [40],

which give bounds on the least entropy in the full mapping class group (Penner for closed

surfaces and Tsai for punctured surfaces).

Theorem 1.1 (Penner). For a surface Sg of genus g ≥ 2,

log 2

12g − 12
≤ L(Mod(Sg)) ≤

log 11

g
.

The constants in Penner’s bounds have been improved by many authors; see Aaber–

Dunfield [1], Bauer [6], Hironaka [19], Hironaka–Kin [20], Kin–Takasawa [25], and McMullen

[31]. In particular, the best known upper bound, given by Hironaka [19], is

L(Mod(Sg)) ≤ log

(
3 +
√

5

2

)
,

while the lower bound has also been sharpened by McMullen [31] to

log 2

6g − 6
≤ L(Mod(Sg)).

Theorem 1.2 (Tsai). For any fixed g ≥ 2, there is a constant cg ≥ 1 depending on g such

that, for all n ≥ 3,

log n

cgn
< L(Mod(Sg,n)) <

cg log n

n
.

The constant cg in Tsai’s result was improved from an exponential dependence on genus
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to a polynomial one by Yazdi [41].

Theorem 1.1 shows that L(Mod(Sg)) goes to 0 as g tends to infinity and Theorem 1.2

shows that, for fixed genus g, L(Mod(Sg,n)) goes to 0 as n tends to infinity. Theorems 1.1

and 1.2 contrast sharply with the behavior of the least entropy in the pure surface braid

group demonstrated by the Main Theorem, which shows that L(PBn(Sg)) is bounded away

from 0: in fact, for any fixed number of punctures n, L(PBn(Sg)) tends to infinity as g tends

to infinity.

In addition to studying the least entropy of the mapping class group, many people have

studied the least entropy of various subgroups of the mapping class group. For example,

Farb–Leininger–Margalit studied the minimal entropy of the Torelli group, the Johnson

kernel, and congruence subgroups in [12] and Hirose–Kin studied the least entropy of hyper-

elliptic handlebody groups in [21]. The least entropy of classical pure braid groups, that is

the fundamental group of the configuration space of ordered n-tuples of points in the complex

plane, has also been an object of significant study. Song provided upper and lower bounds

for the least entropy of the classical braid groups in [36]. Specific values of the least entropy

were found when n = 4 and n = 5 by Song–Ko–Los [37] and Ham–Song [17], respectively.

More recently, Lanneau–Thiffeault [27] gave simple constructions to realize the least entropy

for n = 4, 5 and found the least entropy for braid groups of up to 8-strands. The entropy of

pseudo-Anosovs in the point pushing subgroup was also studied extensively by Dowdall in

[10]. Note that the point pushing subgroup coincides with the 1-stranded pure surface braid

group PB1(Sg). Combining the upper bound of Aougab and Taylor [5] and the lower bound

of Dowdall [10] gives the following.

Theorem 1.3 (Aougab–Taylor, Dowdall). For the closed surface Sg of genus g ≥ 2,

1

5
log(2g) ≤ L(PB1(Sg)) < 4 log(g) + 2 log(24).

For fixed genus, the upper bound in our Main Theorem interpolates between the log(g)

3



upper bound in Theorem 1.3 in the case of a single puncture and a constant upper bound

of 4 log(6) when n > 2g; see Theorem 3.1.

Dilatations of pseudo-Anosov mapping classes have been studied in a number of other

situations; see [32, 22, 29, 35, 33]. In fact, an analogous problem to ours on small dilatation

pseudo-Anosovs has been studied in the context of nonorientable surfaces by Liechti and

Strenner [28].
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Chapter 2

Background

Here we establish our notation for the remainder of this thesis and recall the necessary

notions, definitions, and tools.

2.1 The Mapping Class Group

Let S = Sg,n be a connected, oriented surface of genus g ≥ 2 with n ≥ 0 punctures and

let f : S → S be a homeomorphism. Throughout the rest of the paper we will assume any

surface we discuss is as described here.

Definition 2.1. The homemorphism f is called periodic or finite order, if fk is isotopic

to the identity for some k > 0.

The most trivial example of a periodic homeomorphism is the identity. Another example

is the rotation shown in Figure 2.1.

Figure 2.1: A rotation through 2π
3

of this genus 3 surface is a periodic homeomorphism
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Recall that a closed curve γ on S is a continuous map γ : S1 → S. However, we will often

identify a curve with its image in S and simply denote γ : S1 → S by γ ⊂ S. Furthermore,

we will often abuse notation and conflate a curve with its unoriented homotopy class.

Definition 2.2. If there is a collection C of disjoint, essential simple closed curves on S

such that the homeomorphism f preserves C, then f is said to be reducible. If f is not

reducible, then it is said to be irreducible.

Note that the rotation through 2π
3

of the genus 3 surface shown in Figure 2.1 is not only an

example of a periodic homeomorphism it is also an example of a reducible homeomorphism.

We can see this by noting that it preserves the collection of three disjoint essential simple

closed curves on the surface shown in blue in Figure 2.2.

Figure 2.2: The rotation of this genus 3 surface through 2π
3

preserves the collection of blue
curves

Another important example of a reducible homeomorphism is a Dehn twist about a simple

closed curve.

6



Definition 2.3. Let α be a simple closed curve on a surface S. The (positive) Dehn twist

about α is a homeomorphism Tα : S → S with an annular neighborhood A of α homeomorphic

to {reiθ ∈ C | 1 ≤ r ≤ 2} such that Tα acts by the identity outside of A and acts on A by

reiθ 7→ rei(θ+2πr).

From Definition 2.3 we can see that α is fixed by Tα for any simple closed curve α. Thus,

Tα is indeed reducible. See Figure 2.3 for an example of a Dehn twist.

Tα
α

β Tα(β)

Figure 2.3: An example of a Dehn twist about a simple closed curve α (in red)

The final type of homeomorphism which we will discuss is called a pseudo-Anosov home-

omorphism and it is central to this thesis. However, in order to define it we first need to

introduce a few more concepts.

A singular foliation F on a surface S is a decomposition of S as a disjoint union of leaves

(one dimensional injectively immersed submanifolds). Any point x ∈ S, outside a finite set

of (singular) points, has a chart from a neighborhood of x to R2 that takes the leaves of F

contained in U to horizontal intervals.

If y is a singular point, then x has a chart from a neighborhood of y to R2 that takes

leaves to the level set of a k-prong singularity for k 6= 2. This is illustrated in Figure 2.4 for

k = 3.

Two singular foliations are transverse if they have the same set of singular points and

their leaves are transverse at every nonsingular point. A transverse measure µ on a

singular foliation F is a function that assigns a positive real number to each arc transverse

to F such that it is invariant under leaf preserving isotopy, and for each point, there is

7



Figure 2.4: A 3-prong singularity

a smooth chart from a neighborhood to R2, so that the measure is induced by |dy|. We

call a singluar foliation F equipped with a transverse measure µ a transverse measured

foliations.

Definition 2.4. If there exists a pair of transverse measured foliations (F s, µs) and (Fu, µu)

on S and a real number λ(f) > 1 such that

f · (F s, µs) = (F s, λ(f)−1µs) and f · (Fu, µu) = (Fu, λ(f)µu),

then f is called pseudo-Anosov. We call λ(f) the stretch factor or dilatation of f .

Figure 2.5: A pair of transverse measured foliations shown locally around at a singular and
nonsingular point.

A mapping class ϕ ∈ Mod(S) is said to be pseudo-Anosov, reducible, or periodic,

respectively, if there is a representative homeomorphism f ∈ ϕ such that f is pseudo-

Anosov, reducible, or periodic, respectively. Thurston proved the following classification

8



of elements in Mod(S).

Theorem 2.1 (Nielsen–Thurston). A mapping class ϕ ∈ Mod(S) is pseudo-Anosov, re-

ducible, or periodic. In addition, ϕ is pseudo-Anosov if and only if it is neither reducible

nor periodic.

A proof of this result can be found in [14], as well as a detailed discussion of the definitions

above. The interested reader can also find an introduction to these topics in [13].

2.2 Surface Braids

Let X be a topological space. We define the configuration space of n distinct ordered points

in X relative to a collection of m fixed but arbitrarily chosen distinct points (y1, . . . , ym) in

X to be the subspace of Xn given by

Conf(Xn,m) := {(x1, x2, . . . , xn) : xi ∈ X \ (y1, . . . , ym) with xi 6= xj for i 6= j}.

Note that the symmetric group, Σn, acts on Conf(Xn,m) on the left by

σ(x1, . . . , xn) = (xσ(1), . . . xσ(n)).

Definition 2.5. Let S be a surface and let z0
1 , . . . , z

0
n be a collection of n fixed but arbitrarily

chosen points on S. The braid group of S on n-strands is

Bn(S) := π1(Conf(Sn, 0)/Σn, (z
0
1 , . . . , z

0
n)).

The pure braid group of S on n-strands is

PBn(S) := π1(Conf(Sn, 0), (z0
1 , . . . , z

0
n)).

9



Note that Bn = π1(Conf(C, n)/Σn) and PBn = π1(Conf(C, n)) are the classical braid and

pure braid groups, respectively; see [13]. Although at first glance Definition 2.5 appears

different from the definition of PBn(Sg) given in the introduction, Birman established that

these definitions are equivalent in the following theorem, which first appeared in [7].

Theorem 2.2 (Birman). For each pair of integers g, n ≥ 0 let Forget : PMod(Sg,n) →

Mod(Sg) be the forgetful map. If g ≥ 2, then ker(Forget) is isomorphic to π1(Conf(Sg, n)).

We include the proof of Theorem 2.2 here for the sake of completeness and refer the

reader to [8] for a further discussion of braid groups. The proof of this result appeals

to both a long and short exact sequence of homotopy groups, which at first glance can

be a bit intimidating. However, the intuition is straightforward if we observe that for a

homeomorphism representing a mapping class in the n-stranded pure braid group the isotopy

on the closed surface from the homeomorphism back to the identity traces out a loop of n

ordered point configurations and this defines the isomorphism in Theorem 2.2.

Proof. Let z0
1 , . . . , z

0
n be a collection of n fixed but arbitrarily chosen points on Sg, as in

Definition 2.5. Consider the following portion of the long exact sequence of homotopy groups,

where Homeo+(Sg,n) is the group of orientation preserving homeomorphisms of Sg,n that fix

the punctures pointwise:

· · · → π1(Homeo+(Sg,n))
ε∗−→ π1(Conf(Sng , 0))

d∗−→π0(Homeo+(Sg,n))

ι∗−→ π0(Homeo+(Sg,0))→ π0(Conf(Sng , 0)) = 1.

The homomorphism ε∗ is induced by the evaluation map ε : Homeo+(Sg,n)→ Conf(Sng , 0)

given by f 7→ (f(z0
1), . . . , f(z0

n)) and the homomorphism ι∗ is induced by the inclusion

ι : Homeo+(Sg,n)→ Homeo+(Sg,n).

We will begin by constructing the homomorphism d∗. Consider a loop β ∈ π1(Conf(Sng , 0))

given by β = (β1, . . . , βn) : I → Conf(Sng , 0). It is straightforward to construct an iso-

10



topy Ft : Sg → Sg with t ∈ (0, 1) such that F0 = id and Ft(z
0
i ) = βi(t) and thus,

F1 ∈ π0(Homeo+(Sg,n)). So we have that [F1] = d∗β.

By exactness, we know that ker ι∗ = im d∗. Thus, it only remains to show that im d∗ =

π1(Conf(Sng , 0)). In particular, we must show that d∗ is injective. Consider ker d∗. We will

show that ker d∗ = 1 in two steps. First we show that ker d∗ ⊂ Center(π1(Conf(Sng , 0))) and

then show that Center(π1(Conf(Sng , 0))) = 1 for g ≥ 2.

Suppose α ∈ ker d∗ = im ε∗ and let H ∈ π1(Homeo+(Sg,0)) such that ε∗H = α. The

element H is represented by a loop h = {ht|0 ≤ t ≤ 1} in Homeo+(Sg,0), where each ht

is in Homeo+(Sg,0) and h0 = h1 = id. Then ε(ht) = (ht(x1), . . . , ht(xn)) (0 ≤ t ≤ 1)

represents α. Let β ∈ π1(Conf(Sng , 0)) with β represented by (β1(s), . . . , βn(S)). Define

G : I × I → Conf(Sng , 0) by G(t, s) = (ht(β1(s)), . . . , ht(βn(s)) ((t, s) ∈ I × I). Then G is

continuous and G|∂(I×I) represents the homotopy class αβα−1β−1. Since β was arbitrary in

π1(Conf(Sng , 0)), then α ∈ Center(π1(Conf(Sng , 0))).

Next we will use induction to show that Center(π1(Conf(Sng , 0)) is trivial. Recall the

Fadell–Neuwirth short exact sequence [11]:

1→ π1(Conf(S1
g , n− 1))

j∗−→ π1(Conf(Sng , 0))
π∗−→ π1(Conf(Sn−1

g , 0))→ 1.

The homomorphism j∗ is induced by the inclusion j : Conf(S1
g , n− 1) ↪→ Conf(Sng , 0) given

by zn 7→ (z0
1 , . . . , z

0
n−1, zn) where zn ∈ Sg \ {z0

1 , . . . , z
0
n−1} and the homomorphism π∗ is in-

duced by the projection π : Conf(Sng , 0) → Conf(Sn−1
g , 0) given by (z1, . . . , , zn−1, zn) 7→

(z1, . . . , zn−1). Note that when n = 1, we have that π1(Conf(S1
g , 0)) = π1(Sg) and is

thus centerless. Now assume that π1(Conf(Sng , 0)) is centerless. Since π∗ is surjective, then

π∗(Center(π1(Conf(Sng , 0)))) ⊂ Center(π1(Conf(Sn−1
g , 0))) = 1. Hence, Center(π1(Conf(Sng , 0)))

lies in im j∗ = kerπ∗. But π1(Conf(Sn−1
g , 0)) ∼= im j∗ is a free group of rank > 1, hence cen-

terless. Thus, Center(π1(Conf(Sng , 0))) = 1, as desired.

Note that the map ι∗ : π0(Homeo+(Sg,n))→ π0(Homeo+(Sg,0)) in the proof of Theorem 2.2

11



is precisely the “forgetful map” Forget : PMod(Sg,n → Mod(Sg) in the short exact sequence

given in (1).

2.3 Some Teichmüller Theory

A Teichmüller theoretic approach is employed in the proof of Theorem 4.2, which is part of

the lower bound in the Main Theorem. Consequently, we will introduce several definitions

and results which come from the study of Teichmüller theory and quasiconformal maps.

The Teichmüller space of a surface S, denoted T (S), can be defined equivalently as either

the space of equivalence classes of complex structures on S or the space of equivalence classes

of hyperbolic structures on S. We will focus on the former perspective. Note that a surface

Sg,n only admits a hyperbolic metric when χ(Sg,n) = 2 − 2g − n < 0, hence our restriction

to surfaces with genus at least 2.

Definition 2.6. The Teichmüller space of a surface S is the collection of complex structures

on S up to the following equivalence: two complex structures X and Y on S are equivalent

if there exists a map f : (S,X) → (S, Y ) that is isotopic to the identity and biholomorphic

in the coordinate charts.

In order to define the Teichmüller metric on T (S) we will recall the definition of a quasi-

conformal map; see [3] for more on quasiconformal mappings.

Definition 2.7. Let f : Ω → f(Ω) be a homeomorphism between open sets Ω, f(Ω) ⊂ C.

Suppose f has locally integrable weak partial derivatives and let Df =
|fz|+ |fz̄|
|fz| − |fz̄|

≥ 1. We

say that f is quasiconformal if ‖Df‖∞ <∞ and K-quasiconformal if ‖Df‖∞ ≤ K. The

quasiconformal dilatation is K(f) = ‖Df‖∞ .

We can now define the Teichmüller metric on T (S) as

dT (X, Y ) :=
1

2
inf
f∼id
{logK(f) | f : (S,X)→ (S, Y )},

12



where f is a quasiconformal map.

One of the foundational results in Teichmüller Theory is the following theorem of Te-

ichmüller which establishes that given any two complex structures there is a unique quasi-

conformal map which realizes their Teichmüller distance.

Theorem 2.3 (Teichmüller’s Theorem). Given any X, Y ∈ T (S), there exists a unique

quasiconformal map f : (S,X) → (S, Y ) isotopic to the identity, called the Teichmüller

map such that

dT (X, Y ) =
1

2
logK(f).

Furthermore, f has an explicit description in terms of holomorphic quadratic differentials

on X and Y , respectively, and is affine in preferred coordinates.

We will briefly describe how to construct a Teichüller map given a Riemann surface (S,X),

a holomorphic quadratic differential ϕX , and someK > 1. Note that the pair (S,X) describes

a Riemann surface in terms of the underlying topological surface S and the complex structure

X on S.

Let (S ′, X ′) be the complement of the zeros of ϕX . In fact, (S ′, X ′) is also a Riemann

surface since X ′ is a complex structure with respect to a sufficiently large collection of

preferred coordinates for ϕX , thought of as a holomorphic quadratic differential on X ′.

Now compose each chart of X ′ with the affine map

f(x+ iy) =
√
Kx+ i

1√
K
y.

This new collection of charts defines a new complex structure, call it Y ′, on S ′. The final

step to obtain from Y ′ a complex structure on the closed surface S is to apply the removable

singularities theorem to see that Y ′ extends uniquely to a complex structure Y on S.

So we have an induced homeomorphism f : (S,X)→ (S, Y ) and an induced holomorphic

quadratic differential ϕY on Y . By construction f is the unique Teichmüller map from X to

Y as in Theorem 2.3.

13



An important component of our proof of the lower bound is a result of Teichmüller [38]

and Gehring [16] which relates the dilatation of a quasiconformal map f on the hyperbolic

plane H2 to the maximum distance a point of H2 is moved by f . We give a version of the

statement which can be found in Kra [26].

Theorem 2.4 (Kra). Consider H2 with Poincaré metric ρ. For x, y ∈ H2 there exists a

unique self-mapping f : H2 → H2 so that f is the identity on the boundary of H2, f(x) = y,

and f minimizes the quasiconformal dilatation among all such mappings. Let K(x, y) be

the quasiconformal dilatation of such an extremal f . Then there exists a strictly increasing

real-valued function κ : [0,∞)→ [0,∞) such that

(i) log(1 + t
2
) ≤ κ(t), and

(ii) 1
2

logK(x, y) = κ(ρ(x, y)).

The second important component of the proof of Theorem 4.2 is Theorem 2.5 below. The

statement and proof of Theorem 2.5 in the case of n = 2 are due to Imayoshi–Ito–Yamamoto

[23] with a weaker upper bound on the quasiconformal dilatation. The proof of Imayoshi–

Ito–Yamamoto holds in the case of n > 2 punctures without any modification so we will

omit the full argument and will instead provide a sketch of the proof.

Theorem 2.5 (Imayoshi–Ito-Yamamoto). Let ϕ : Sg,n → Sg,n be a pseudo-Anosov homeo-

morphism representing an element of PBn(Sg) and let ϕ̂ : Sg → Sg be the extension of ϕ to

the surface with the punctures filled in. There exists a conformal structure on Sg together with

an isotopy Ft : Sg → Sg with t ∈ [0, 1], through quasiconformal maps, between id : Sg → Sg

and ϕ̂ on the closed surface Sg. Furthermore, for each t ∈ [0, 1] the quasiconformal dilatation

Kt of Ft satisfies

log(Kt) ≤ 3 log(λ(ϕ)).

Sketch of Proof. We will begin by constructing Ft. Let Sg be given a conformal structure

so that [id] = [id : Sg,n → Sg,n] lies on the axis for ϕ and [0, 1] 3 t 7→ [ft] ∈ T (Sg,n) be the
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Teichmüller geodesic connecting [id] and ϕ−1([id]). So for all t ∈ [0, 1], ft : Sg,n → ft(Sg,n) is

a Teichmüller mapping and

1

2
log(K(ft)) ≤

1

2
log(K(f1)) = log(λ(ϕ−1)) = log(λ(ϕ)).

By filling in the punctures, we can extend ft to f̂t : Sg → f̂t(Sg). Denote by ϕ̂t the Teichmüller

map of Sg onto f̂t(Sg) isotopic to f̂t on Sg. Then we define the map Ft : Sg × [0, 1]→ Sg by

Ft(x) = ϕ̂t
−1 ◦ f̂t(x) for x ∈ Sg and t ∈ [0, 1].

The fact that Ft is an isotopy is proved in [23]. Note that

log(Kt) = log(K(ϕ̂t
−1 ◦ f̂t)) ≤ log(K(ϕ̂t

−1)) + log(K(f̂t)).

Furthermore, we have that t 7→ [f̂t] is a closed loop of length at most log(λ(ϕ)). So

1

2
log(K(ϕ̂t

−1)) = dT (Sg)([f̂t], [id]) ≤ diamT (Sg)({[f̂s] | s ∈ [0, 1]}) ≤ 1

2
log(λ(ϕ)).

Thus,

log(Kt) ≤ 3 log(λ(ϕ)).

2.4 Perron–Frobenius Theory

Matrices play an important role in the proof and application of Thurston’s construction. In

particular, we will consider primitive integer matrices, where we call a matrix primitive

if it has a power that is a positive matrix. Note that we call a matrix positive (respec-

tively nonnegative) if all of its entries are positive (respectively nonnegative). A matrix is

called Perron–Frobenius if it is both primitive and nonnegative. The following theorem

is fundamental to the study of these matrices.
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Theorem 2.6 (Perron–Frobenius). Let A be an n × n matrix with integer entries. If A is

primitive, then A has a unique nonnegative unit eigenvector v. The vector v is positive and

has a positive eigenvalue u that is larger in absolute value than all other eigenvalues.

The eigenvector v in Theorem 2.6 is called the Perron–Frobenius eigenvector of A

and the eigenvalue u in Thoerem 2.6 is called the Perron–Frobenius eigenvalue of A.

The following is an important fact about Perron–Frobenius matrices that we will leverage

frequently and can find [15].

Theorem 2.7 (Gantmacher). If an n × n matrix A is Perron–Frobenius, then its Perron–

Frobenius eigenvalue is bounded above both by the maximal row sum and maximal column

sum of A.

2.5 Thurston’s Construction

Here we will introduce a useful tool for constructing pseudo-Anosov mapping classes due

to Thurston [39]. We say a collection C of essential simple closed curves fills our surface

S = Sg,n if the curves intersect transversely and minimally and the complement of C in S

is a collection of disks and once-puncture disks. Equivalently, we could say that C fills S if

any essential simple closed curve on S has nonzero geometric intersection number with at

least one curve in our collection C.

Now suppose we have a collection C = {c1, c2, . . . , cm} of pairwise disjoint, essential simple

closed curves on S. We can define a multi-twist TC about C to be the product of positive

Dehn twists about each ci ∈ C.

Theorem 2.8 (Thurston). Let A = {α1, α2, . . . , αm} and B = {β1, β2, . . . , βk} be collections

of pairwise disjoint, essential, simple closed curves on S such that A ∪B fills S. There is a

real number µ > 1 and homomorphism

ρ : 〈TA, TB〉 → PSL(2,R) given by
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TA 7→

1 −µ1/2

0 1

 and TB 7→

 1 0

µ1/2 1

 .

Furthermore, for f ∈ 〈TA, TB〉, f is pseudo-Anosov if its image ρ(f) is hyperbolic, in which

case the dilatation of f is equal to the spectral radius of ρ(f).

Consider a mapping class TAT
−1
B ∈ 〈TA, TB〉 as given by Theorem 2.8. The image of TAT

−1
B

under ρ is given by

1 −µ1/2

0 1


 1 0

µ1/2 1


−1

=

µ+ 1 −µ1/2

−µ1/2 1

 .

The trace of this matrix is 2 + µ. Thus, by Theorem 2.8, TAT
−1
B is pseudo-Anosov and

log(λ(TAT
−1
B )) is bounded above by log(2 + µ).

The real number µ in Theorem 2.8 is the Perron–Frobenius eigenvalue of NNT , where N

is defined as Ni,j = i(αi, βj). If A = {α} and B = {β}, then µ = i(α, β)2. This will be a

useful fact to keep in mind for the following section. In general, µ cannot be computed in

such a straightforward manner. Since NNT is nonnegative and primitive we can bound µ

from above by the maximum row sum of NNT .

In order to compute the row sums of NNT we will follow the method used in [2], which

we describe here. Given N , we can build a labeled bipartite graph G with m red vertices

and k blue vertices corresponding to the multicurves A and B, respectively. An edge from

the ith red vertex to the jth blue vertex exists if Ni,j 6= 0, in which case it is labeled by Ni,j.

We will define the weight of a path in G to be the product of edge labels in that path. The

(i, j) entry of NNT is equal to the sum of the weights of the paths of length 2 from the ith

red vertex to the jth red vertex in G. To compute the row sum of NNT corresponding to a

particular curve we start at the vertex associated to that curve and sum the weights of all

paths of length two, possibly with backtracking, beginning at that vertex.
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2.6 The Point Pushing Subgroup

The construction given by Aougab–Taylor in [5] of point pushing homeomorphisms used to

realize the upper bound in Theorem 1.3 will play an important role in our proof of the Main

Theorem so we will recall it here. We also employ some further work of Aougab–Huang [4]

to gain a more careful estimate of the upper bound than that provided in [5]. In particular,

we will prove the following.

Theorem 2.9 (Aougab–Taylor). For the closed surface Sg of genus g ≥ 2,

L(PB1(Sg)) < 4 log(g) + 2 log(24).

Proof of Theorem 2.9. Let α and β be a minimally intersecting filling pair of curves on the

closed surface Sg. By [4], we have that i(α, β) = 2g − 1. Let β1, β2 be the boundary

components of a small tubular neighborhood of β. Thus, β1, β2 are homotopic to β on Sg.

Now place a marked point z at some point of β \ α. We can puncture Sg at z to form the

surface Sg,1.

Set fβ = T 3
β1
◦ T−3

β2
. This is a point pushing map in Sg,1 obtained by pushing the marked

point z along β three times. Our goal is to show that {α, fβ(α)} fills the punctured surface

Sg,1, and then apply Theorem 2.8 to obtain a pseudo-Anosov mapping class in PB1(Sg). We

apply the following inequality of Ivanov found in [24] to show that any essential simple closed

curve on Sg,1 must intersect either α or fβ(α).

Lemma 2.1 (Ivanov). Let c1, . . . cm be a collection of pairwise disjoint, pairwise non-homotopic

simple closed curves on a surface S with negative Euler characteristic and let (s1, . . . , sm) ∈
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Zm. For any simple closed curves γ, ρ,

m∑
i=1

(|si| − 2)i(ρ, ci)i(ci, γ)− i(ρ, γ) ≤ i(T s1c1 ◦ · · · ◦ T
sm
cm (ρ), γ)

≤
m∑
i=1

|si| i(ρ, ci)i(ci, γ) + i(γ, ρ).

Suppose γ is an essential simple closed curve on Sg,1 such that i(γ, α) = 0. Now we can

apply Lemma 2.1 with ρ = α, (s1, s2) = (3,−3), and (c1, c2) = (β1, β2). Recall that α and

β filled Sg, so {α, β1, β2} fill Sg,1. Thus, i(γ, βi) 6= 0 for i = 1, 2, which implies that the

lefthand side of the inequality in Lemma 2.1 is nonzero. Hence, i(γ, fβ(α)) 6= 0, as desired.

Furthermore, we can use the fact that i(α, β) = 2g−1, together with Lemma 2.1, to calculate

that i(α, fβ(α)) ≤ 24g2 − 24g + 6.

Since fβ is a point pushing map, we know that α and fβ(α) are homotopic on the closed

surface Sg. Thus, TαT
−1
fβ(α) ∈ PB1(Sg) and, by Theorem 2.8, is also pseudo-Anosov. Recall

that in the case of two filling curves Theorem 2.8 tells us that λ(TαT
−1
fβ(α)) ≤ i(α, fβ(α))2 + 2.

Thus, λ(TαT
−1
fβ(α)) < 242g4 and we obtain the desired upper bound

L(PB1(Sg)) < 4 log(g) + 2 log(24).

We will denote the curves α and fβ(α) which we constructed above by α and τ , respectively,

and call them an Aougab–Taylor pair. Note that we can construct an Aougab–Taylor pair

{α, τ} on a surface of genus g with a single boundary component with the same bound of

24g2 − 24g + 6 on intersection number, since on a surface of genus g > 2 with a single

boundary component there exists a pair of filling curves that intersect 2g − 1 times. In the

case of a genus two surface with a single boundary component a minimally intersecting pair

of filling curves will intersect 4, not 3, times. However we can still construct an Aougab–

Taylor pair {α, τ} with i(α, τ) ≤ 24. When our surface is a torus with a single boundary

component, we can construct an Aougab–Taylor pair {α, τ} with i(α, τ) = 6.
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Chapter 3

The Upper Bound

We will begin by proving the Main Theorem’s upper bound which depends on the genus g

and number of punctures n of our surface. We state this upper bound with explicit constants

in Theorem 3.1. To prove the upper bound it suffices to construct a pseudo-Anosov pure

braid satisfying the desired upper bound for each g and n.

Theorem 3.1. For a surface Sg of genus g ≥ 2 with 1 ≤ n ≤ 2g, we have

L(PBn(Sg)) ≤ 4 log

(⌈
2g

n

⌉)
+ 4 log(7).

Fix a genus g ≥ 2. Our main tool throughout this section will be leveraging Thurston’s

construction to build our desired pseudo-Anosov pure surface braids by building pairs of

filling multicurves.

Proof of Theorem 3.1. The main strategy of our proof is to divide our surface into subsur-

faces with a single boundary component, fill each of these subsurfaces with an Aougab–Taylor

pair, and then add a few additional curves which bound twice punctured disks to combine

these Aougab–Taylor pairs into a single pair of filling multicurves. We will employ this

strategy in each of our three cases: when n = 2, 3, when 4 ≤ n < 2g, and when n ≥ 2g.

Case 1. We begin our construction in the case of n = 2. Let A and B denote the multicurves

marked in red and blue, respectively, in Figure 3.1 which are constructed in the following

way. Consider two subsurfaces of Sg,n given by cutting along a separating curve that divides

Sg,n into two subsurfaces of genus at most
⌈
g
2

⌉
each containing a single puncture. On each
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of these subsurfaces we can construct an Aougab–Taylor pair as described in Section 2.6.

We then add an additional curve bounding a twice-punctured disk containing the pair of

punctures. We illustrate this construction in Figure 3.1 for the case of a genus 2 surface. In

this situation our Aougab–Taylor pairs on each genus 1 subsurface intersect 6 times and our

additional red curve, which bounds a twice-punctured disk containing the pair of punctures,

intersects each blue curve 8 times. For n = 3 we can add an additional puncture, as shown

on the right of Figure 3.1.

Figure 3.1: Construction of filling multicurves, A and B, for 2 and 3 punctures

Let f = TAT
−1
B . Note that f is pseudo-Anosov by Thurston’s Construction, since A and B

jointly fill Sg,n. Furthermore, f ∈ PBn(Sg), since the red curve bounding the twice punctured

disk is trivial on the closed surface and the pairs of curves which fill each subsurface will be

homotopic to each other on the closed surface. Thus, the composition of positive and negative

multitwists about A and B is the trivial mapping class on the closed surface. As discussed in

Section 2.5, we can bound λ(f) from above by the Perron–Frobenius eigenvalue, µ, of NNT .

Since there are only 5 curves in A ∪B as shown in Figure 3.1, we can explicitly compute µ.

Note that the red curve which bounds a twice (or thrice) punctured disk intersects each blue

curve at most 24
(⌈

g
2

⌉)2−24
⌈
g
2

⌉
+8 times. So we have that µ ≤ 3(24

(⌈
g
2

⌉)2−24
⌈
g
2

⌉
+8)2 <

74
(⌈

g
2

⌉)4− 2, where µ is the Perron–Frobenius eigenvalue of NNT as described in Theorem

2.8. Thus,

log(λ(f)) ≤ log(µ+ 2) ≤ log

(
74
(⌈g

2

⌉)4
)

= 4 log
(⌈g

2

⌉)
+ 4 log(7).
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Case 2. Now consider the case when 4 ≤ n < 2g. We will illustrate our construction in

Figure 3.2 in the case of a genus 4 surface. We will build our pair of filling multicurves

on Sg,n in the following way. We will paritition Sg into bn
2
c + 1 subsurfaces, bn

2
c of which

have genus at most
⌈

2g
n

⌉
and one boundary component, and one of which is a sphere with

bn
2
c holes. Puncture each non-planar subsurface once, and as before, we fill each of these

subsurfaces with an Aougab–Taylor pair α and β, shown in red and blue, respectively, in

Figure 3.2. We then add an additional puncture to each non-planar subsurface so that it is

near the boundary component of that subsurface. This is illustrated in Figure 3.2. Let A be

the union of the α curves and B be the union of the β curves from our Aougab–Taylor pairs.

Now view the non-planar subsurfaces as being arranged cyclically around the sphere with

boundary, as shown in Figure 3.2, and for consecutive pairs of punctures, one coming from

the Aougab–Taylor pair and one a puncture added near the subsurface boundary, add a red

curve to our multicurve A which bounds a twice punctured disc. We have now constructed

a pair of filling multicurves A and B which fill our surface Sg,n.

Note that these additional bounding pair curves will each intersect with two blue curves.

They will intersect with one blue curve twice and with the other blue curve at most 24
(⌈

2g
n

⌉)2−

24
⌈

2g
n

⌉
+8 times. The picture on the left of Figure 3.2 illustrates the case of an even number

of punctures and the picture on the right the case of an odd number of punctures where we

add an additional puncture to the central sphere with boundary.

Let f = TAT
−1
B . Note that f is a pseudo-Anosov pure braid for the same reasons given in

Case 1. Thus, we can proceed immediately to computing the maximum row sum of NNT in

order to bound λ(f). We can compute the maximum row sum of NNT by considering the

labeled bipartite graph in Figure 3.3 that describes the intersection pattern of red and blue

curves.

Note that each blue vertex has valence 3 and each red vertex has valence at most 2.

Furthermore, the dashed edges have label at most 24
(⌈

2g
n

⌉)2 − 24
⌈

2g
n

⌉
+ 8 and the solid

edges have label 2.
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Figure 3.2: Examples of filling multicurves, A and B, for 4 ≤ n < 2g

Figure 3.3: Bipartite graph for A and B when 4 ≤ n < 2g

Thus, for the red vertices of valence 2 we have a corresponding row sum of at most

2

(
24

(⌈
2g

n

⌉)2

− 24

⌈
2g

n

⌉
+ 8

)2

+ 6

(
24

(⌈
2g

n

⌉)2

− 24

⌈
2g

n

⌉
+ 8

)
+ 4.

For the red vertices of valence 1 we have a corresponding row sum of at most

2

(
24

(⌈
2g

n

⌉)2

− 24

⌈
2g

n

⌉
+ 8

)2

+ 2

(
24

(⌈
2g

n

⌉)2

− 24

⌈
2g

n

⌉
+ 8

)
.

Note that each of these is at most 1152
(⌈

2g
n

⌉)4 − 2 < 64
(⌈

2g
n

⌉)4 − 2. Thus, the maximum
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row sum of NNT is bounded above by 64
(⌈

2g
n

⌉)4 − 2 and we have that

log(λ(f)) ≤ log(µ+ 2) ≤ log

(
64

(⌈
2g

n

⌉)4
)

= 4 log

(⌈
2g

n

⌉)
+ 4 log(6).

Case 3. Note that when n ≥ 2g the inequality in Theorem 3.1 says that we have a constant

upper bound on L(PBn(Sg)). The construction given above is for n < 2g, but can be

extended to give a constant upper bound as we add additional punctures. Suppose we have

n ≥ 2g. We can divide Sg into g subsurfaces of genus 1 and one sphere with g boundary

components. We then puncture each of the g non-planar subsurfaces and fill each one with

an Aougab–Taylor pair, {α, τ}, such that i(α, τ) = 6 using the construction in Section 2.6

and continue to add punctures to the central sphere with boundary as shown in Figure 3.4

where the red curves belong to A and the blue curves belong to B. Note that this manner of

adding additional punctures does not increase the number of pairwise intersections between

red and blue curves nor does it introduce any curves that have nonzero intersection with

more than two other curves.

Figure 3.4: Examples of filling multicurves, A and B, for n ≥ 2g

Let f = TAT
−1
B . Note that f is a pseudo-Anosov pure braid by the same reasoning used

previously. Thus, just as we did before, we can proceed directly to computing the maximum

row sum of NNT in order to bound λ(f). We can compute the maximum row sum of NNT
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by considering the labeled bipartite graph in Figure 3.5 which is constructed in the same

way as the bipartite graph in Figure 3.3.

Figure 3.5: Bipartite graph for A and B when n > 2g

The dashed edges in Figure 3.5 are labeled by 8 and the solid edges are labeled by 2. Thus,

we can compute that the maximum row sum of NNT is 152 and we have that log(λ(f)) <

4 log(6).

Thus, we have addressed each of our three cases and shown that

L(PBn(Sg)) ≤ 4 log

(⌈
2g

n

⌉)
+ 4 log(7).
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Chapter 4

The Lower Bounds

4.1 A Constant Lower Bound

In this section we provide a constant lower bound on L(PBn(Sg).

Theorem 4.1. For a surface Sg of genus g ≥ 2 with n ≥ 1, we have

.000155 ≤ L(PBn(Sg)).

The proof of Theorem 4.1 relies on the following result of Agol–Leininger–Margalit which

can be found in [2].

Proposition 4.1. Let S be a surface and f ∈ Mod(S) pseudo-Anosov, then

.00031

(
κ(f) + 1

|χ(S)|

)
≤ log(λ(f)),

where κ(f) is the dimension of the subspace of H1(S;R) fixed by f.

In order to make use of this result we must examine the action of a pure surface braid

f ∈ PBn(Sg) on H1(Sg,n;R). We can place the following lower bound on κ(f).

Lemma 4.1. If f ∈ PBn(Sg), then

max{2g, n− 1} ≤ κ(f).

Proof of Lemma 4.1. Let Mf denote the mapping torus of f and let b1(Mf ) denote the first
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Betti number of Mf with coefficients in R. Note that b1(Mf ) = κ(f) + 1. This can be

obtained by an application of the Mayer–Vietoris long exact sequence, which we work out

below.

Consider the following portion of the Mayer–Vietoris long exact sequence (Example 2.48,

[18]), where coefficients are assumed to be in R:

· · · → H1(Sg,n)→ H1(Sg,n)→ H1(Mf )→ H0(Sg,n)→ H0(Sg,n)→ H0(Mf )→ · · · .

The maps from Hk(Sg,n) → Hk(Sg,n) are given by id−f∗ and the map from Hk(Sg,n) →

Hk(Mf ) is the map induced on homology by the inclusion ι : Sg,n ↪→ Mf . We will denote

that map H1(Mf )→ H0(Sg,n) by T . Note that H1(Sg,n) ∼= R2g+n−1 and H0(Sg,n) ∼= R.

By the exactness of this sequence we have that im(id−f∗) = ker(ι∗) and im(ι∗) = ker(T ).

Thus, we have the following equalities:

dim(H1(Mf )) = dim(im(T )) + dim(ker(T )) = 1 + dim(im(ι∗)) (2)

dim(H1(Sg,n) = dim(im(ι∗)) + dim(ker(ι∗)) = dim(ι∗) + dim(im(id−f∗)) (3)

dim(H1(Sg,n) = dim(im(id−f∗)) + dim(ker(id−f∗)) (4)

We can then solve (3) for dim(im(ι∗)) and solve (4) for dim(im(id−f∗)) to get

dim(im(ι∗)) = 2g + n− 1− dim(im(id−f∗)) (5)

dim(im(id−f∗)) = 2g + n− 1− dim(ker(id−f∗)) (6)

Lastly, we combine (2), (5), and (6).

dim(H1(Mf )) = 1 + dim(im(ι∗)) = 2g + n− dim(im(id−f∗))

= 2g + n+ dim(ker(id−f∗))− (2g + n− 1)) = dim(ker(id−f∗)) + 1.
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Note that if x ∈ H1(Sg,n) is fixed by f , then (id−f∗)(x) = id(x) − f∗(x) = x − x = 0.

Conversely, if x ∈ ker(id−f∗), then (id−f∗)(x) = 0 implies that f∗(x) = x. So we have that

κ(f) = dim(ker(id−f∗)). Hence, we have that b1(Mf ) = dim(H1(Mf )) = dim(ker(id−f∗)) +

1 = κ(f) + 1, as desired.

For n − 1 < 2g, we will show that b1(Mf ) ≥ 2g + 1. Since f̂ : Sg → Sg, obtained

by filling in the punctures of Sg,n and extending f to Sg, is isotopic to the identity, then

Mf̂
∼= Mid

∼= Sg×S1. Thus, there exists a map fromMf → Sg×S1 that induces a surjection on

the fundamental groups. By the Hurewicz Theorem, we know that H1(Mf ;Z) is isomorphic

to the abelianization of π1(Mf ). Thus, we have that dim(H1(Mf ;R)) ≥ rank(π1(Sg×S1)ab) =

2g + 1. Thus, κ(f) ≥ 2g.

For 2g ≤ n−1, observe that f fixes the subspace, P , ofH1(Sg,n) generated by the peripheral

curves bounding each puncture because f fixes each puncture. Thus, κ(f) ≥ n− 1, since P

has dimension n− 1.

Proof of Theorem 4.1. By Lemma 4.1, for a pseudo-Anosov f ∈ PBn(Sg), we have that

κ(f) + 1

|χ(Sg,n)|
>

1

2
. This, together with Proposition 4.1, gives our desired lower bound

.000155 ≤ L(PBn(Sg)).

4.2 A Lower Bound for Fixed Number of Punctures

We conclude with a proof of the lower bound which, for fixed n, goes to infinity as g does.

Theorem 4.2. If f ∈ PBn(Sg) is pseudo-Anosov and g > 5, then

1

3
log

(
1 +

log
(
g−2

3

)
+ 2

160n

)
≤ log(λ(f)).

Proof of Theorem 4.2. By Theorem 2.5, we have a hyperbolic/conformal structure on Sg and

an isotopy Ft through quasiconformal maps from the identity to f such that for each t the
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quasiconformal constant, Kt, satisfies

log(Kt) ≤ 3 log(λ(f)).

Choose a lift, F̃t, of Ft to the universal cover, H2, of Sg so that F̃0 is the identity. Therefore,

F̃t is the identity on the circle at infinity. Thus, we can apply Theorem 2.4 and Theorem 2.5

to see that

κ
(

max
x∈H2

ρ(x, F̃t(x))

)
≤ 1

2
log(Kt) ≤

3

2
log(λ(f)).

Since this holds for all t ∈ [0, 1], we have

κ
(

max
t∈[0,1]

max
x∈H2

ρ(x, F̃t(x))

)
≤ 3

2
log(λ(f)).

Note that when measuring distance on the surface we are using the hyperbolic metric, de-

noted dSg , and in the hyperbolic plane we are using the Poincarè metric, denoted ρ, which

is one-half the hyperbolic metric. Thus, the covering map π : H2 → Sg is 2-Lipschitz and

for all x ∈ H2,

dSg(π(x), Ft(π(x))) ≤ 2ρ(x, F̃t(x)).

So we have that

κ
(

max
t∈[0,1]

max
x∈Sg

dSg(x, Ft(x))

)
≤ 3 log(λ(f)).

If {z1, . . . , zn} are the marked points of Sg such that Sg,n = Sg \{z1, . . . , zn}, then for each i,

γi : t 7→ Ft(zi), with t ∈ [0, 1], is a closed curve. Since f is pseudo-Anosov, γ1 ∪ · · · ∪ γn fills

Sg. These n curves define the 1-skeleton, Γ, of a cell decomposition of Sg. Thus, for some i,

diam(Γ)

n
≤ 2 max

t∈[0,1]
dSg(zi, Ft(zi)).

By Theorem 5.1,

log
(
g−2

3

)
− 2

40n
≤ diam(Γ)

n
.
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By Theorem 2.4, κ is strictly increasing, so we have that

κ

(
log
(
g−2

3

)
− 2

80n

)
≤ κ

(
diam(Γ)

2n

)
≤ κ

(
max
t∈[0,1]

dSg(zi, Ft(zi))

)
≤ 3 log(λ(f)).

Since, by Theorem 2.4, log

(
1 +

log( g−2
3 )−2

160n

)
≤ κ

(
log( g−2

3 )−2

80n

)
, then we have that

1

3
log

(
1 +

log
(
g−2

3

)
− 2

160n

)
≤ log(λ(f)),

as desired.
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Chapter 5

Bounding the Diameter of a Surface
joint work with Hugo Parlier

Let S be a closed genus g ≥ 2 hyperbolic surface and let Γ be the 1-skeleton of a cell

decomposition of S. Our goal in this appendix is to provide a lower bound on the diameter

of Γ, which we define as

diam(Γ) = max
x,y∈Γ

dS(x, y).

This lower bound is a crucial piece of the proof of Theorem 4.2. For a result related to

Theorem 5.1, see [30].

Theorem 5.1. Let Γ be an embedded graph in S such that S \ Γ is a collection of disks. If

g > 5, then

log
(
g−2

3

)
− 2

40
≤ diam(Γ).

The first ingredient we will need for the proof of Theorem 5.1 is a type of generalized trian-

gulation of S which consists of both geodesic triangles and a type of annular generalization

of a triangle called a trigon as defined by Buser; see [9].

Definition 5.1. Let S be a compact Riemann surface of genus ≥ 2. A closed domain D ⊂ S

is called a trigon if it is a simply connected, embedded geodesic triangle or if it is a doubly

connected, embedded domain, with one boundary component a smooth closed geodesic and

the other boundary component two geodesic arcs as shown in Figure 5.1. The closed geodesic

and the two arcs are the sides of D.

Buser proved that S admits such a triangulation into trigons of controlled size.
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Figure 5.1: A trigon

Theorem 5.2 (Buser [9] Theorem 4.5.2). Any compact Riemann surface of genus ≥ 2 admits

a triangulation such that all trigons have sides of length ≤ log 4 and area between 0.19 and

1.36. Furthemore, all geodesic triangles have sides of length at least log(2).

Suppose we have a generalized triangulation T of S as in Theorem 5.2. We will extend

our generalized triangulation to an even more general combinatorial model, T ′, for S in

the following way. First, we note that a computation (which we omit) using equation (iii)

of Theorem 2.3.1 in [9] shows that the width (i.e. minimal distance between non-adjacent

boundary components) of a doubly connected trigon which occurs in T is at least 1
4
. Next,

consider collars of closed geodesics in Sg formed by gluing together two doubly connected

trigons along their closed geodesic sides as in Figure 5.2. Now we divide each collar along

appropriately chosen simple closed curves (each an equidistant-curve to the closed geodesic)

into annuli between simple closed curves and two generalized trigons on the ends, so that

each annulus or generalized trigon has width between 1
4

and log(2) > 1
2
; see the right-hand

side of Figure 5.2. Our combinatorial model T ′ consists of three types of pieces: geodesic

triangles, generalized trigons, and annuli. Note that each of these pieces is of bounded size.

Figure 5.2: A collar formed by two trigons

We can now define the combinatorial length of a geodesic between two points p, q ∈ S in

terms of our combinatorial model T ′. For a geodesic segment pq ⊂ S between p and q we
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define the combinatorial length of pq, denoted by `C(pq), as the minimum number of pieces

of T ′ that pq passes through. The following lemma establishes an explicit inequality between

`C and the hyperbolic length `S.

Lemma 5.1. Let p, q ∈ Sg, let pq be a geodesic segment between them, and let T ′ be the

extended combinatorial model of S given above. Then `C(pq) ≤ 40 · `S(pq) + 2.

Proof of Lemma 5.1. Note that pq can be subdivided into segments which each lie inside a

single piece of T ′. Our proof of Lemma 5.1 will consist mainly of analyzing which segments

of pq are short and which are good. We will then show that segments of pq cannot be short

too many times in a row.

There are three types of short segments we will consider, one in each of the three types

of pieces. In order to define the first type, we add midpoints to each side of the geodesic

triangles in T . A segment which has endpoints on adjacent subdivided pieces of a single

geodesic triangle is called short. The second type of short segment occurs when pq enters and

exits an annulus from a single side instead of passing through the entire width of the annulus.

In this situation, a segment which has both endpoints on a single boundary component of

an annulus will also be considered short. The third type of short segment occurs when

a segment without self intersections has endpoints on adjacent subdivided pieces of the

geodesic boundary arcs of a generalized trigon, cutting off a corner, as shown by the blue

segment in Figure 5.3. If a segment is not short, then we will call it good.

Figure 5.3: Short (blue) and good (red) segments in a generalized trigon

Recall the following formula for a geodesic triangle in the hyperbolic plane where a, b, c
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are the sides of the triangle and α, β, γ are the respective opposite angles:

cos(γ) =
cosh(c)− cosh(a) cosh(b)

− sinh(a) sinh(b)
. (7)

We can find a lower bound on the length of γ for a geodesic triangle in T ′ by maximizing

the length of a and b and minimizing the length of c. Taking a, b = log(4) and c = log(2),

equation (7) implies that γ > π
9
. Thus, there is a lower bound of π

9
on the interior angles of

the triangles in T . So we conclude that pq has no more than π
π/9

= 9 short segments of the

first type in a row. Next, we note that there cannot be two short segments of type two or

three in a row. So we can assume that for every ten adjacent segments of pq, at least one of

them is good.

We now establish that good segments have length at least 1
4
. Once again we have three

types of segments to consider, the shortest possible good segments within each of our three

types of pieces in T ′. Within a geodesic triangle in T ′ the shortest possible good segment is

one that joins the midpoints of two sides of a triangle. Once again using equation (7), we

see that the length of a good segment is bounded below by

cosh−1
(
− sinh(log(2)) sinh(log(2)) cos

(π
9

)
+ cosh(log(2)) cosh(log(2))

)
≥ 1

4
.

Within a generalized trigon the shortest possible good segment is a perpendicular segment

going from the closed boundary component of the trigon to the midpoint of one of the

geodesic arc boundary components. A segment of this type has length at least 1
4

by our

definition of T ′. One might think that a shorter possible good segment in a generalized

trigon is one passing from one geodesic arc boundary to the other as shown by the red arc

in Figure 5.3. However, this red arc has length at least half of the length of the geodesic arc

boundary and so it has length at least log(2)
2

> 1
4
. Lastly we have that within an annulus

the shortest possible good segment is a perpendicular segment passing from one boundary

component to the other, which has length at least 1
4

since we defined our annuli to have
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width at least 1
4
.

Thus, at worst we have that 1
4
· `C(pq)−2

10
≤ `S(pq), where the −2 comes from the fact that

the initial and terminal segments of pq can be arbitrarily short depending on where they lie

within a piece of T ′, but still add 2 to `C(pq). So we have that `C(pq) ≤ 40 · `S(pq) + 2, as

desired.

We now define the combinatorial distance, denoted dC , between two points p, q ∈ Sg as

dC(p, q) = inf {`C(pq) : pq is a geodesic segment between p and q}.

Thus, by Lemma 5.1, we have that dC(p, q) ≤ 40 · dS(p, q) + 2.

Let TΓ be the subset of T ′ that minimally covers Γ, where a piece t ∈ T ′ belongs to TΓ if

Γ ∩ t 6= ∅. We will denote by Γ′ the 1-skeleton of TΓ together with a geodesic arc for each

generalized trigon and annulus in T ′ as shown by the dotted arc in Figure 5.4, which ensures

Γ′ is connected.

Figure 5.4: A generalized trigon’s contribution to Γ′

We will need one more fact relating the length of Γ′ to the genus of our surface before we

continue to the proof of our main result.

Lemma 5.2. Let Γ′ be as above. Then

`(Γ′) =
∑
e∈Γ′

`(e) > 2π(g − 1).

Proof of Lemma 5.2. Note that if α is a simple closed curve that intersects Γ, then it must
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intersect Γ′. Thus, Γ′ fills Sg, since Γ does. Now because Γ′ fills, it cuts Sg into polygons. The

sum of the lengths around these polygons is 2`(Γ′), while the sum of their areas is 4π(g− 1).

Now recall that the maximum area A(p) enclosed by a loop of length p in the hyperbolic

plane is at most the area of a circle of radius r = sinh−1
(
p

2π

)
. Therefore,

A(p) ≤ 4π sinh2

(
sinh−1

(
p

2π

)
2

)
≤ 4π sinh2

(
1

2
log
(

1 +
p

π

))
=

p2

p+ π
< p.

Applying this inequality to each of the polygons and summing, we have 4π(g − 1) ≤ 2`(Γ′),

as desired

Lemma 5.2 implies that TΓ contains at least g−1 pieces of T ′, since each piece contributes

a length of at most 3 log(4) > 2π to `(Γ′). We are now in a position to prove Theorem 5.1.

Proof of Theorem 5.1. Let T ′ and TΓ be as described previously. Consider the graph G

in Sg which is dual to T ′, that is the vertices of G each correspond to a piece of T ′ and

edges in G correspond to shared boundary components. Note that each vertex of G has

valence at most 3. Thus, we if we take a base piece ∆0 ∈ TΓ ⊂ T ′, then we know that at

combinatorial distance d from ∆0 there are at most 3 · 2d−1 + 1 pieces in T ′. This is because

a ball of radius d in G has size at most 3 · 2d−1. So, unless g − 1 < 3 · 2d−1 + 1, there is a

piece of TΓ not in this ball. Hence, the combinatorial diameter of TΓ (within T ′) is at least

log
(
g−2

3

)
< log2

(
g−2

3

)
< diamC(TΓ) for g > 5 and we are done.

36



Epilogue

I don’t believe that voice of doubt anymore. I am enough.
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[10] Spencer Dowdall. Dilatation versus self-intersection number for point-pushing pseudo-
anosov homeomorphisms. Journal of Topology, 4(4):942–984, 2011.

[11] Edward Fadell and Lee Neuwirth. Configuration spaces. MATHEMATICA SCANDI-
NAVICA, 10:111–118, 1962.

[12] Benson Farb, Christopher Leininger, and Dan Margalit. The lower central series and
pseudo-Anosov dilatations. American Journal of Mathematics, 130(3):799–827, 2008.

[13] Benson Farb and Dan Margalit. A primer on mapping class groups. Princeton Mathe-
matical Series, 2012.

38



[14] A. Fathi, F. Laudenbach, and V. Poenaru. Thurston’s work on surfaces. Mathematical
Notes, 48, 2012.

[15] F.R. Gantmacher. The theory of matrices. Chelsea Publishing Company, 1, 1959.

[16] F. W. Gehring. Quasiconformal mappings which hold the real axis pointwise fixed.
Mathematical Essays dedicated to A. J. Macintyne, pages 145–148, 1970.

[17] H.-Y. Ham and W.T. Song. The minimum dilatation of pseudo-Anosov 5-braids. Ex-
perimental Mathematics, 16(2):167–179, 2007.

[18] A. Hatcher. Algebraic Topology. Algebraic Topology. Cambridge University Press, 2002.

[19] Eriko Hironaka. Small dilatation mapping classes coming from the simplest hyperbolic
braid. Algebraic and Geometric Topology, 10(4):2041–2060, 2010.

[20] Eriko Hironaka and Eiko Kin. A family of pseudo-Anosov braids with small dilatation.
Algebraic and Geometric Topology, 6:699–738, 2006.

[21] Susumu Hirose and Eiko Kin. The asymptotic behavior of the minimal pseudo-Anosov
dilatations in the hyperelliptic handlebody groups. The Quarterly Journal of Mathe-
matics, 2017.

[22] Chenxi Wu Hyungryul Bai, Ahmad Rafiqi. Construction pseudo-Anosovs maps with
given dilatations. Geometriae Dedicata, 180:39–48, 2016.

[23] Y. Imayoshi, M. Ito, and H. Yamamoto. On the Nielsen-Thurston-Bers type of some
self-maps of reimann surfaces with two specified points. Osaka Journal of Mathematics,
4:659–685, 2003.

[24] Nikolai V. Ivanov. Subgroups of Teichmüller modular groups. Translations of Mathe-
matical Monographs, 115, 1992.

[25] Eiko Kin and Mitsuhiko Takasawa. Pseudo-Anosovs on closed surfaces having small
entropy and the Whitehead sister link exterior. Journal of the Mathematical Society of
Japan, 65(2):411–446, 2013.

[26] Irwin Kra. On the Nielsen-Thurston-Bers type of some self-maps of Reimann surfaces.
Acta Mathematica, 146:231–270, 81.

[27] E. Lanneau and J.-L. Thiffeault. On the minimum dilitation of braids on the punctured
disc. Geometriae Dedicata, 152(1):165–182, 2011.

[28] Livio Liechti and Balázs Strenner. Minimal pseudo-Anosov stretch factors on nonori-
entable surfaces. arXiv:1806.00033, 2018.

[29] Justin Malestein and Andrew Putman. Pseudo-Anosov dilatations and the Johnson
filtration. Groups, Geometry, and Dynamics, 10:771–793, 2016.

39



[30] B. Martelli, M. Novaga, A. Pluda, and S. Riolo. Spines of minimal length. Ann. Sc.
Norm. Super. Pisa Cl. Sci, pages 1067–1090, 2017.

[31] Curtis T. McMullen. Polynomial invariants for fibered 3-manifolds and teichmüller
geodesics for foliations. Annales scientifiques de l’École Normale Supérieure, Ser. 4,
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